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ABSTRACT

ANALYTIC AND ASYMPTOTIC PROPERTIES OF
NON-SYMMETRIC LINNIK’S PROBABILITY DENSITIES

M. Burak Erdogan
M.S. in Mathematics
Supervisor: Prof. Iossif V. Ostrovskii
August 1995

We prove that the function

1

(t) = . geR
QOO,( ) 1+ e—gosgntlt,a , @ € (O, 2); € K,

is a characteristic function of a probability distribution if and only if

(a,0) € PD = {(e,0) : @ € (0,2), 6] < min(F*, 7 — %F) (mod 27)}.
This distribution is absolutely continuous, its density is denoted by pf(z).
For 8 = 0 (mod 2r), it is symmetric and was introduced by Linnik (1953).

Under another restrictions on 8 it was introduced by Laha (1960), Pillai
(1990), Pakes (1992).

In the work, it is proved that p?(+z) is completely monotonic on (0, 00)
and is unimodal on R for any (a,0) € PD. Monotonicity properties of
p?(z) with respect to 0 are studied. Expansions of p%(z) both into asymp-
totic series as £ — +oo and into conditionally convergent series in terms
of log |z|, |z|**, |z|¥ (k = 0,1,2,...) are obtained. The last series are abso-
lutely convergent for almost all but not for all values of (a,8) € PD. The
corresponding subsets of PD are described in terms of Liouville numbers.

Keywords : Cauchy type integral, Characteristic function, Completely
monotonicity, Liouville numbers, Plemelj-Sokhotskii formula, Unimodality
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OZET

SIMETRIK OLMAYAN LINNIK OLASILIK
YOGUNLUKLARININ ANALITIK VE ASIMTOTIK
OZELLIKLERI

M. Burak Erdogan
Matematik Yiksek Lisans
Tez Yoneticisi: Prof. Iossif V. Ostrovskii
Agustos 1995

1
o(t) = -
()oa( ) 1+ e—;esgntltla

,a€(0,2), 0 €R,

fonksiyonu bir olasilik dagiliminin karakteristik fonksiyonudur, ancak ve an-
cak (a,0) € PD = {(a,0) : a € (0,2), |0] < min(Z*, 7—=%¥) (mod 27)}. Bu
dagihm mutlak sireklidir ve yogunlugu p’(z) ile gosterilir. § = 0 (mod 27)
icin simetriktir ve Linnik (1953) tarafindan ortaya atilmigtir. Ayrica, Laha
(1960), Pillai (1990) ve Pakes (1992) tarafindan @ lizerine bagka sinirlamalar

getirilerek incelenmigtir.

Bu c¢aligmada, her (a,8) € PD igin, pf,(:l::c)’in (0,00) tzerinde tam
monoton ve R iizerinde unimodel oldugu ispatlanmistir. p’(z)'in @’ya gore
monotonluk ozellikleri incelenmistir. p?(z)’in = sonsuza giderken asimtotik
seri agihmuyla, log |z], |z[*, |z|*¥ (k = 0,1,2,...) terimleri cinsinden kosulsal
yakinsak seriye agilimi elde edilmigtir. Bunlardan ikincisi (a,8) € PD nin
hemen hemen bitin degerleri (fakat timi degil) i¢in mutlak yakinsaktir.
PD’nin kargilik gelen altkiimeleri Liouville sayilan cinsinden ifade edilir.

Anahtar Kelimeler : Cauchy tipi integral, Karakteristik fonksiyon, Tam
monotonluk, Liouville sayilari, Plemelj-Sokhotskii formiili, Unimodellik
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Chapter 1

Introduction

In 1953, Ju. V. Linnik [1] proved that the function

1

walt) = Tltr;’ a € (0,2), (1.1)

is a characteristic function of a symmetric probability density p,(z). Since
then, the family of symmetric Linnik’s densities {p,(z) : a € (0,2)} had
several probabilistic applications (see, e.g. [2]-[7]). In 1994, S. Kotz, I. V.
Ostrovskii and A. Hayfavi [8] carried out a detailed investigation of analytic

and asymptotic properties of p,(z).

In 1992, A. G. Pakes [9] showed that, in some characterization prob-
lems of Mathematical Statistics, the probability densities with characteristic

functions
Ta

1 Y Ta
A7 — i < in( — _— .
Pa (t) (1 + ezasgntltla) € (072), w, - mln( 9 x D) ), v > O)(l 2)

play an important role. These densities can be viewed as generalizations
of symmetric Linnik's densities. For v = 1, |8] = min(5*, 7 ~ ), these
densities had appeared in the papers by R. G. Laha [10] and R. N. Pillai
[11]. Therefore, the problem of study of analytic and asymptotic properties
of the densities with characteristic function (1.2) seems to be of interest. In

this paper, we restrict ourselves to the study of the case v = 1.

We show that the function

1
9 1) = i .
()oa( ) 1+ e—wsgntltlaa a € (Oaz)a f € R, (1 3)




is a characteristic function of a probability distribution iff |#| < min(%¥, 7 —

Z2) (mod 27). The distribution is absolutely continuous. We denote its den-
sity by p’(z). Surely, for 8 = 0 (mod 27),p’(z) coincides with symmetric
Linnik’s density pa(z). For 8 # 0 (mod 2r), we call p?(z) non-symmetric
Linnik’s density. Applying some ideas of (8], we study analytic and asymp-
totic properties of p?(z) and obtain generalizations of results of [8]. As in
the symmetric case, convergence of series expansions of p? (z) depends on the
arithmetical nature of the parameter a, but several new phenomena appear

connected with the non-symmetry parameter 6.

o



Chapter 2

Statement of Results

When considering the function ¢! (¢) defined by (1.3), we shall assume with-
out loss of generality that the parameter @ satisfies the additional condition

6 € (—m, 7). This follows from 2-periodicity of ©?(t) with respect to § and
its discontinuity in ¢ for § = .

The fact that the function ¢,(t) (= ©2(t)) defined by (1.1) is a charac-
teristic function of a probability density was deduced by Linnik [1] from the

following theorem.
Theorem A (Linnik) The following formula is valid.

Yalt) = /oo e'“po(z)dz , t €R,
where the function po(r) €L(R) is representable in the form

sin( %) /°° e lyrdy R
s 0 ek ’ '

I1+y%e

Pa(z) =

To study the function % (t) for all values of § € (—=,7), we generalize

Theorem A in the following way.

Theorem 2.1 The following formula is valid.
A0 = [7 i () de, t e R,

where the function pl(x) €LY(R) is representable in the form
(i) for0<@<m— I

sin(%* + Osgnz) /°° elydy R (2.1)
0 b ) .

6
TI) = . ita
Pa( ) T Il +et9sgn.ryaeTl2

3



(i) form -T2 < < =

sin(%X + 6 o0 —vlzl o g
p() = TE LTI 7 WY ey e ks (22)
T 0 Il + etasg-n:yae—z—P .
where
1 =0 | e
G(z) = _%Imexp (zﬂa + z:re'Ta) .z €R, (2.3)

(iii) for 0 = 7 — ZX;

] _Sin(ﬂ-a) /oo eyz!:":dya 2 y I < O’
Po(z) = T Jo |l - ety (2.4)

e ’/a ,z >0,

(iv) for —m < 6 < 0 we have

pi(z) =p;°(-z),z €R. (2.5)

In virtue of Theorem 2.1, the function ¢/ (¢) is a characteristic function of
a probability distribution iff the corresponding function p (z) is non-negative
for all z € R. The following theorem determines the values of 8.

Theorem 2.2 The function ¢/ (t) defined by (1.3) is a characteristic func-
tion of a probability distribution iff @ satisfies the following condition:

6] < min(ﬁy,ﬂ' - Zl--C—Y). (2.6)
2 2

If this condition is satisfied, then the corresponding distribution is absolutely

continuous and its density p’(z) is given by one of the formulas (2.1)-(2.5).

The sufficiency of the condition (2.6) was proved by A. G. Pakes [9] (by
R. G. Laha [10] and R. N. Pillai [11] in the case of equality sign in (2.6)) by
a quite different method based on the properties of stable distributions. Our

proof is immediate.

The set of all pairs (a, 8) for which ! (t) is a characteristic function of a
probability distribution is visualized on fig.2.1 (i) (p.5) as a closed diamond-
shaped region without the points (0,0) and (2,0). Note that the point (2,0)
can be interpreted as the well-known Laplace distribution with the charac-
teristic function @,(t) = (1 +¢2)~! and the density p;(z) = e”¥1/2. We shall

4



6 8 0
ﬂz ............ m ........... :.7",.
PD* * D,
] 2 @ o 2«
® (i) (iii)
Figure 2.1:

denote this set by PD and call it the parametrical domain. Denote by PD*
the part of PD consisting of pairs (a,8) such that § > 0 (see fig.2.1 (ii),
p.5). Without loss of generality, we can restrict our study of p’(z) to pairs
(a,8) € PD* since one can obtain p’(z) for (a,8) € PD\PD* from (2.5).

Recall that a function f(z) defined on an interval I C R is called com-
pletely monotonic (resp. absolutely monotonic) if it is infinitely differentiable

on I and, moreover, (—1)* f*)(z) > 0 (resp. f*¥)(z) > 0) for any z € I and
any k =0,1,...

The following theorem related to analytic properties of pf(z) was proved

in the symmetric case § = 0 in [8].

Theorem 2.3 (i) For any pair (a,0) € PD*, the function p’(z) is com-
pletely monotonic on (0,00) and is absolutely monotonic on (—0o0,0).
(i) Forl <a<2,0<0 <m—22 pl(z) is a continuous function on R

and

]
lcosa

(] . [’} . 9
0):=1 = = - .
Pa(0) := lim py(z) = lim po(z) = —— :

Ta

For0<a<1,0<0< 7% we have

lim p3(z) = lim pf(z) = +oo.

z—0~

Ta

For0<a<1,0="7"", we have

lim pl(z) = o0; pl(z) =0, for z<0.



(it1) For 1 <a<2,0<0 <722 and 0 <a<1,0<60 < 22, we have

lim (—1)* (pi(a:))(k) =00, xl—i»%)— (pg(z))(k) =00,k=1,23,..

z—0+

The first of these equalities remains be true for0 < a <1, 6 = ra/2.

Recall that an absolutely continuous distribution is called unimodal with
mode 0 if its density is non-decreasing on (—o00,0) and is non-increasing on
(0, 00). The following theorem is an immediate corollary of Theorem 2.3.

Theorem 2.4 For any pair (a,8) €PD, the distribution with the character-
istic function (1.3) is unimodal with mode 0.

Note that, in the case § = min(%*, 7 — Z¥), this theorem was proved by

R. G. Laha [10] in 1961.

The following theorem measures the non-symmetry of p%(z). Surely, this

non-symmetry increases with |8|. We shall denote by PD{ the part of PD*
which is obtained by removing the pairs (a, #) with 6 = min(%, 7 — %) (see

fig.2.1 (iii), p.5).

Theorem 2.5 (i) For any pair (a,0) € PD*, we have

g 0
/ Pl (£z)dz = ! + —.
0

2 7a
(ii) For any pair (a,0) € PD*, we have
pl(z)sin(5 — 0) 2 ph(~z)sin(T- +6) , = > 0.
(i1i) For any pair (a,0) € PD* such that a € (0,1), we have

Pa(z) 2 pi(=2), z> 0.

For any pair (a,0) € PD* such that o € (1,2), 8 > 0, this assertion is

false.
(iv) As a function of 8.0 < 0 < min(%&, % —22), pf(z) increases and p}(—z)

decreases for any fired a € (0,1) and z > 0.

For any pair (a,0) € PD* such that o € (1,2), 8 > 0, this assertion is
false.



(id)

Figure 2.2:

On fig.2.2, there are pictured graphs of p% (z) and p%(z): (i) for 0 < a <

1,0<6; <8, <min(Z, 7 -22), (ii)for | <a<3/2, 2 -2<6,<0,<

m — Z%. The graphs of p1(z) are pictured by continuous lines, the graphs of

p%(z) are pictured by dotted lines.
The following two theorems characterize the asymptotic behaviour of

p2(z) at oco. For 8 = 0, they were proved in [8]

Theorem 2.6 For any pair (a,0) € PD{ the following asymptotic (diver-

gent) series describes the asymptotic behaviour of pl(z) at co.

pl(z) ~ 7%2 T(1 + ak)(-1)! sin(W?.dc + kfsgnz) |z] 717 | |z| = 00 (2.7)
k=1

This theorem is an immediate consequence of the following more infor-

mative theorem:

Theorem 2.7 For any pair (a,0) € PD§ and N=1,2,3,.., the following

formula is valid:

N
Pl(z) = % Y T(1 + ak)(=1)** sin(%akz + kbsgnz) |z] 7% + Ry o(2),(2.8)
k=1

where
al(1 + a(N + 1)) |z 1oV, (2.9)
m|sin(Z* + fsgnz)) |

|Rn.a(z)] <

Corollary 1. For any pair (a,0) € PD{, the following representation is

valid:

1 ., Ta o —1-2a
ph(z) = —T(L + @)sin(~5- + fsgna) Ja| '~ + O(lz]™'7*), |o| — co.

7



Corollary 2. For any pair (a,8) € PD*, the following equality is valid:

i A _ (2 +0)

= — , x>0,
z=x pi(-z) sin(F —0)

(the right hand side is equal to +oo if § = 7).
Corollary 3. For any pairs (a,8,), (a,0;) € PD¢, the following equality is

valid:

L pz) _sin(E+0)

= = ,yz>0.
% p(z)  sin( 4 0)

Corollary 4. For N=1,2,3,.., the following formulas are valid:
(i) For a € (0,1], 6 = =,

0 , <0,
Pa(z) = { 230 D(1 + ak)(=1)** sin(rak) |z| 71 ==+
+ Ry oz) 2>0,

T

(it) For a € (1,2), 0 =7 — T7;

%E;cv:l I'(1 4+ ak)(—1)sin(rak) |z|~ 1+

Pi(-”’) = +RN,a(z) y T < 0)
e~ /e ,z >0,

where

al(1+ o(N + 1))|$|—1—°(N+1)
7| sin(ra)| '

'RN.a(z)l <

The analytic structure of p®(z) depends on the arithmetic nature of the
parameter a. Firstly we will deal with the case a = 1/n, where n is an

integer.

Theorems 2.8-2.11 were proved for § = 0 in [8].

Theorem 2.8 For any n=1,2,3,.., and 0 < 8 < - the following formula
is valid:

1 k k
Paz) = = 3 F(l——)(—l)"“sin(%+k0sgnz)|z|5“l

x
T n
k=1.1gN



+= Z,( Ly EJ;S’“( + Onjsgnz)|z ! (2.10)

-1 g
yi=r - ) (10g Je])=t=10" 5206 cos(z cos(Bn) — bn(~1)")

M (2(~1)" sin(6n))
W

—(-1)" sin(z cos(fn) + On).

Corollary 1. For any 0 <8 < 7 the following representation is valid:

oy o |
@) = 23T sin( 4 gjsgnz) e

1=1 Fz(])

1 :

;(log |z])e™=9"¢ cos(z cos 8 + 6)

1 20 :

= %)e‘“‘“o sin(z cos § + 9).

Following theorem deals with the general case of a rational a:

Theorem 2.9 Let a € (0,2) be a rational number. Set a = m/n where
m and n are relatively prime integers both greater than 1. The following

Ta

representation is valid for a =m/n € (0,2) , 0 < 0 < min(5, 7 — 7F):
(=11 sin(# + kfsgnz)

Pa(2) = k_lz;ﬂ, T(ka)sin(rka)

l lka—l

-1 (m4n)t

)
P
(-

Imt—l

t
51n(7r;n + Ontsgnz)|z
l)("“'")It (1rmt
cos
2 = T'(mt) 2
i (—1)’ -1 sm(-;Z + £5sgnz)
I'(4) sin 22

j=1.%¢N
L'1(m t
+— Z( 1) (’"+")'F Emt; sin(m; + Ontsgnz)|z|™.

Osgnx

+ Ontsgnz)|z|™12.11)

+

|z~

QI'—-

All the series in (2.11) can be represented by entire functions. Following
theorem is an immediate corollary of Theorem 2.9.

Theorem 2.10 Under the conditions of Theorem 2.9, the following repre-
sentation holds for r > 0

PR(r) = T Aul(al) + Flog 1 Ba(ll™) + Cael)

|=|
9



where A4(z), Bi(z), Ci(z) are entire functions of finite order.

Note that the term with log|z| in (2.11) vanishes identically if § = xl/n, for

some integer ! and, moreover, m is even, n is odd.

The following theorem deals with the general case of irrational a:

Theorem 2.11 If the number a € (0,2) is not a rational number, then the
following representation is valid for 0 < 6 < min(%2, 7 — £¥).

0, \ * (=1)¥*'sin(Z2 + kfsgnz), .,
Pa() = |z| ’l--'oo{Z ['(ka) sin(rka) 2]

k=1
—1)F+1sin(zk 4 Egong
R == T

% 1<k<a(s+})

The limit is uniform with respect to z on any compact subset of R.

The following theorem deals with the "extremely” non-symmetric case.

In the case 0 < a < 1, it was proved by R. N. Pillai [11].

Theorem 2.12 The following representations are valid:
(i) for0<a<l, 0="%

pl(z) = 0 , <0,

() ( l)lc 1 ka-1
pi(z) = Z |z|** 1,z >0,
(%) forl <a <2, §=7—-7%
o _€eF )
Po(z) = > x>0,
e~% T ka-1
e = S-S e<o

The representations above can also be written in the following form

(i) for0<a<l, =22

t(a) = —-2E (B, (—2%))

o

(ii) for 1 <a <2, 0=m—
e* 1—sgnz

pi(z) = —+ ——— (Ea(l=*))

10



where the function E,(z) is the well-known Mittag-Leffler’s function defined

as
k

Eu(z) =2 T(1+ ak)’

k=0

It is natural to ask whether the limits of each of the two sums in the
right hand side of (2.12) exist. We prove that it is the case for almost
all (a,0) € PD in the sense of the planar Lebesgue measure. To describe
the corresponding set we need Liouville numbers. Recall that an irrational
number [ is called a Liouville number if, for any r = 2,3,4, ..., there exists a
pair of integers p, ¢ > 2, such that

1

O<|l—-£|<—.
q q

We denote the set of all Liouville numbers by L. By the famous Liouville
theorem (see, e.g. [12], p.7), all numbers in L are transcendental. Moreover

([12], p.8), the set L has the Lebesgue measure zero.

Theorem 2.13 If (a,0) € {(a,0) € PD : « ¢ LUQ}, then the following

representation is valid

— — (—1)k+1 Sin(WkTa + kasgnz) Izlka_l

o
Pa(®) iz T(ka) sin(rka)
1 & (1) sin(Z + ¥sgnz)
il a 2.13
+a ; ['(k) sin(Z£) & (2.13)

where both of the series converge absolutely and uniformly on any compact

set.

The following theorem is an immediate corollary of Theorem 2.13.

Theorem 2.14 If (a,0) € {(a,0) € PD : o € LUQ}, then the following
representation holds for z > 0

PU(E2) = —Ga(lel") + ~Ha(J2])

|z

where G4(z), Hy(z) are entire functions of finite order.

11



Since the set L{JQ has zero linear Lebesgue measure, the set {(a,8) €
PD : a & LUQ} is of full planar measure in PD. Thus, (2.13) is valid
almost everywhere in PD. But it turns out that the set where both of the
series in the right hand side of (2.13) diverge is non-empty and, moreover, it

is large in some sense.

Theorem 2.15 Both of the series in (2.13) diverge on a dense subset of PD

of the continuum power.

This theorem is a generalization of a theorem of I.V. Ostrovskii [13] re-
lated to the case § = 0 (when the role of PD is played by the interval (0, 2)).

12



Chapter 3

Description of the Parametrical Domain and
Some Analytic Properties of Non-Symmetric

Linnik’s Probability Densities

Proof of Theorem 2.1. Case (i): 0 <0 <7 — =¥ ;
Firstly we will prove that pf(zr) € L!(R). It is evident from (2.1) that

p2(z) > 0 and we have

© sin( 0)/ / e y*dy
dr = - 5
/—oo pa(x) o Il _I_e—:ayaeiTlQ
P ady
d /
/ T 1+ eyee’ k2 |2

Since the integrands in the in the rlght hand side are measurable and non-

negative, by Fubini’s theorem we have

00 o __ o) a 0
/ H(z)de = & =0 / vy / e dz
- o |l+e ¥yt |? /oo

T
L Sin( +9) A
m o |1+ eye'z |2 Jo
_ sin(%2 - /°° y*ldy
- |l+e—-19 apt 2'2
0 e
T o |1+ eyt [?

Now we will prove that [ e“’pg( )dz = ¢?(t). From (2.1) we derive
e¥ydy

> i, 8 d — sm 0)/ ttzd /oo _
./.xe pa( ) 'y T A |l+e_"ayae,ml2
sm(—;‘i . e v °’dy
2 'Id / )
* T / Il + efye'T |2

13




We have proved that the integrands in the right hand side are in L'(R?).
Using Fubini’s theorem again, we obtain
/m e'pl(z)dr = sin(%' = )/oo yf"dy S5 /O eV dz
-0 m o |1+e ¥yt )
+Sin(52£ +0) /°° y"”dy _ /°° ¢itT eV g
n o |1 +ePyetz |2 Jo
sin(Z2 — @) reo y*dy
4 /0 |1+ ey’ [2)(y +1t)
+sin(’;—° +9) /°° y°dy
m o [T+ ety TRy - it)

1 o0 ydy
= —I / ; TR
™ "‘{ o (1+ePyeF)(y? + tz)}

1 0 ydy }
—I / S “Ta
ol e
itI /°° dy }
——1m . oy 2
7f o (1+efy%e™7)(y*+1?)

it 0 ydy }
_I 3 Ra
i {/0 (1 +e~#yee™7)(y* + £2)

=: ;r[ImA + ImB — #tImC + itImD)]. (3.1)

In the complex y-plane, we consider the region
Gr={y={+in:lyl<Rn>0}, R> | (3.2)

and define the branch of multivalued function y* as
y* = |y|*e >, 0 <argy < 7. (3.3)

The integrands of A and C are analytic in the closure of Gr except the simple

pole at y = t|t|. From the residue theory we have

f’ y dy oriR .7
; “Ra =4LMINeS|| = — T
26 (1 + ey 7)(y? +17) M= T et
Setting Cr ={y =&+ : |y| = R, n > 0} , we have
e _ /R E df
1+ Cioltla . 0 (1 + eiegae—i%)({ﬂ + t2)
y dy

+ . - T
Cr (1 + efy=e™ 2 )(y* + 1?)

_ /R £ d¢
0 (L+ebgae) (€2 +12)
14



Letting R — oo, the integral along Cg obviously tends to 0, so we have

/°° § d¢
o (14 e2e™"7)(E2 +82)
oo & d¢ i

o (1+ eiofaei’;—")(fz + 12) - 1+ eif)t]e”

Using the notations A and B, we can rewrite this equality in the following

form
— T
A-B= :
1+ e|t]>
whence
1
ImB = rRe———M—. .
ImA + Im v el+e‘9|t|°’ (3.4)

For evaluating —ImC + ImD, we have in the similar way:

dy . s
S "X = 2 R ) = —_—’
on (T e B ) = 2705 = (T o

R § dé
b e EETE)
dy
or (1 + ety e F)(y? + )
d¢ T

R .
+/o (14 ebeeeT)(E2 +12) (1 +ef)t|)fe]

+

0 (1 + eiogae—i—-";')(gz + t2)
d¢ _ T

+/o (1 4 eiffae’ ) (€2 +12) - (1+e‘9]t|°')|t|;

—_— s
C+D=—"—75+7—7—,
Y 0T e
~ImC 4+ ImD = — "t (3.5)

T + et

Substituting (3.4) and (3.5) into (3.1), we have

oo . 1 1
it pfr)dr = ——— 4 isgnllm —————
/_we p(7)dr Rel+e‘9|t|°+zsgn ml+e"’|t|°’

1
1+ e—i0sgnt ltla )

15



Case (ii): m— X << 7;
As in the case (i), firstly we will prove that pf(z) € L'(R). From (2.2) we

have

|sm e¥*y*dy

/_: Ipi(z)|dz = l/ d:r/ Tew=

+/ z)|dz
lsm (22 +0) l/ / e™v* °‘dy
[1+ efyae’ [

It is evident from (2.3) that G(z) € L'(R). Since the integrands of first and
third integrals in the right hand side of (3.6) are measurable and nonnegative,

(3.6)

from Fubini’s theorem we have
0o a-14g
oies - 1020 “dy
[-oo Ipa(z)l ¥ / ll + e-—leyaet-z—-l2
+ / IG(z)| dz
+|sin(1'§g + 9)| /°°

y*'dy

. NEX 1 < -
L+ efyae s -

Now we will prove that [*2 e“p?(z)dz = ¢!(t). From (2.2) we derive

e it 0 Sln(£2g_ —0) /0 ftr /00 eytyady
dr = —————~ d . =
/—ooe Pa(il?) T . —OOC T A Il +e_,gyaet-2—|2
+/ e*G(z) dz
e v "dy

sin( % + 0) "
et /
+ T / 11+ efyee’™ |2

We have proved that the integrands in the right hand side are in L'(R?)

thus, from Fubini’s theorem we have as in the case (i)
1 ol ydy
itr 0 d = -] / . 7
/_ooe Pa(-’l‘) I - m A (1 +e-'3y°‘e‘7)(y2+t2)
N —1
o (1+e fyee™ 7 )(y? + %)

dy }
’“{ (I + iy )y + )

dy }
N S e

+/;°o e'"G(z) dz

1 . =
;[lmA + ImB — itlmC + itImD]) + G(t). (3.7)

16



As in the case (i), in the complex y-plane we consider the region (3.2) and
define the branch of the multivalued function y* by (3.3).

The integrands of A and C are analytic in the closure of Gr except the
simple poles at y = i|t| and at y = ie'¥ where 1 = "a;o. By the residue
theory, we have

y dy . .
- “Fa = 2 ; 2 »
fécn (1+ efyee™7 ) (y? + ) miRes; + 2miRes;civ

o) 4 2rs  eHV
1+ e|t]e a 12— elv’

Letting R — oo, we have, as in the case (i),

/°° ¢ de
o (14 e?¢"e ") (€2 + )

/00 £ dE _ o) + 2w eV
o (1+ e“’{“e"%g)(fz +12) 14 e?|t|o a 12— e2i¥’
Using the notations A and B, we can rewrite this equality in the following
form
A_F=_ T  2m _fi'i_
1+ edftle " a 12— e
whence
1 2 i
ImA + ImB = WReT-}-e—‘”ItF + ;Rem (38)

For evaluating —ImC + ImD we have in the similar way:

fiaan (1+ <=:'"’y"‘eii‘fy";_c')(y2 + t2) = PriRtesiy + 2mResies
T or e
= et e E
and, letting R — oo,
00 df
| e e
Cﬁb

00 d§ B T +g£
+/o (L+ePeeeT) 2 +12) — (L+efto)t] a2 — e

whence
— i1 or e
C+D= — e
MR (R i T R
1w
ImC — ImD = - Im—! 27 I (3.9)

i T+ et R e

17



Using (3.7), (2.3) and remembering that ¢ = =¢  we obtain

G(t) = C%/Owe"'lmexp{i¢+ixe"”}dx

(' —z'd/
= ir_i A exp{izt + ize’} dr — —-/ exp{izt — ize™*} dzx
2 —l+atsin
= L4 (3.10)

a —1 + 2itsint + 2
Substituting (3.8), (3.9), (3.10) into (3.7), we obtain

| e riz)dz = pht).

Ta

Case (iii): 0 =7 — %
The proof of belonging of p¢ (z) defined by (2.4) to L!(R) is nearly same. We

will prove that [%, e'“pf(z)dz = ©%(t). From (2.4) we have

© 8 _ sin(ra Gite e¥s "‘dy
/- e py(z)de = - / / |1 — efmoye |1 = emeya]? +/ —da:

The integrand of first integral in the right hand side is in L!(R?), thus, as in

case (i), we have:

1 sin(ra) [ y* dy
ttx, 6 d — —_ / :
/—oo e p,(z)dz a‘(l — it) . o |1 —emeye2(y + it)

_ 1 1 o0 y dy
B {/o (T= o) + t2>}

__za[m{ R R
(l _ e—iﬂa a)(yZ + t2)

Having defined the region Gg by (3.2) and the branch of y* by (3.3), we have

y dy ‘ .

.p- . = 2miRes; Res_
v.p 3G (1 _ 6_'"°ya)(y2 + t2) TIRES )| + m 1
7 1) T

1—e ' Fft]e ol +12)

whence, letting R — 50, we obtain
/ . g . m (3.12)
mor l—f“ £2+t2) o l—e Bt a(l+2) T

18



Similarly for evaluating integral B, we obtain

dy

o ~ 27tRes;  Res_
P oG (1 — e=maya)(y? + t2) 7”RCS.|:| + miRes_,

T Q- T ety

o0 d¢ _ vy T
B+U.P-./0 (1 _60)(62 +t2) - (1 _e_%_gltla)ltl + a(l +t2)- (313)

From (3.12), (3.13) we obtain

1 Y |
“ImA-ZImB = Re———— —isgnt Imn———
™ T 1 — e 3t 1 —e 72 |t
1 it
- - . 3.14
a(l +¢2) ol +1t2) (3.14)
Substituting (3.14) into (3.11) we have
1 1 1
ep’(z)dz = ——— +Re———z— — isgntlm——
./—oo pa( ) a(l - Zt) 1 - e_TItl“ & 1 — e—Tltlo‘
1 it
a(l+1t%) ol +1t?)
1

ira

1- e—ss"‘ltl"

Case (iv): =7 < 6 < 0;
From (1.3) it is evident that 9 (t) = ¢;°(—t). By (i)-(iii) the following

formula is valid
o't = [ el (a)ds
- /:e"wp;"(-r)d:.
Hence

2 (t) =/ ¢**p=¥(~z)dz, t € R, —1 < 8 < 0.

Thus, the representation is valid

At = [ eph(z)dz, ~r<8<0

where pf,(z) = p;*(~2). O
19



Proof of Theorem 2.2. In Theorem 2.1 we have proved that ¢!(t) is a
Fourier transform of some function p’(z) € L'(R) for (a,8) € (0,2)x(—7,).
Hence ©(t) is a characteristic function for the values of (e,8) for which
pi(z) > 0 almost everywhere. It is not a characteristic function for the
values of (a,8) for which pf(z) < 0 on a set of positive Lebesgue measure.

Therefore it suffices to determine the values of (a, 8) for which p’(z) >0
almost everywhere . It is evident from (2.1), (2.2), (2.4), (2.5) that it is the
case iff (a,0) € PD. Since [ pl(z)dz = ¢%(0) = 1, the function p?(z) is
a probability density iff (a,8) € PD. It means that ¢/ (¢) is a characteristic
function iff (a,0) € PD. O

Proof of Theorem 2.3. (i) It is obvious, that for any |z| > 0, (a,0) €
PD{§ and for any k = 1,2,3... the integral in the formula (2.1) is k-times
differentiable and we have

in( I —yz, atk
k(8 (k)=3m(_2‘+0)/°° e ¥y tidy
(=1)*(Pa(2)) ) Tremeep >0 =20 (319)

sin(Z2 — ) oo e¥Tyotkgy
(P(2)® = 252 A T, 0 7 <0 (316)

Hence, p?(z) is completely monotonic on (0,00) and absolutely monotonic

Io g xa

on (—00,0) for (a,8) € PD¢. The proof is similar for § = min(ZZ, 5

(i1) By the monotonic convergence theorem, we have from (2.1)

sin(Z2 + ) fo° y°dy
l. o - _—2—‘—/ Ka .
z_l’r(% pa(z) - 0 Il + e"z—+“9y°'|2
sin(Z2 — ) [ y*dy
l. g = _2—/ e .
A Pal() TR

Evidently, the integrals in the right hand side are divergent for 0 < o <1
and convergent for 1 < a < 2 and in the latter case we have
cos0/a
lim pi(z) = lim pi(z) = ——
o0t Pa(2) i Pa(2) asint/a

For the (a,6) located on the boundary of the PD, proof is obvious.
(iit) For 0 < 8 < %2, the proof is obvious by applying monotonic convergence
theorem to (3.15), (3.16) For § = 22 it follows from (2.1) immediately. O
Proof of Theorem 2.5. (i) For (a,8) € PD{, we have from (2.1)
eyt - LD [y [y
/o Pa(z)dz T 0 ’ o |1 + e¥tiT a2

20




Since the integrand in the right hand side belongs to L'(R?), from Fubini’s

theorem we have

[Tr@e = RGO = vl

0 T 0 ll + et ya|2
_ sin(”—;- + 0) y"'l dy
- .3 /c; 1+ 2cos(7 + 0)y> + y**
. sm( + 6) du
- / 1+ 2cos(%* + 0)u + u?
1 9
= 5+

For § = min(7}, 7 — Z%), proof is evident from (2.1) and (2.4).
(ii) For the pairs (a,8) € PD¢, from (2.1) we have for z > 0
pg(z) Pﬁ(—z) _ 1 /°° ey dy 1 /°° e vy dy

sin(Z2 +6)  sin(Z=—0) 1o |1+ Fyer who |14 Tyl

o 7 2y%%(cos(ZE — 0) — cos(5X 4 6)) dy
./ 1+ e¥+% °|2l1 + e~ ya|2

e ¥4y?* sin Zsin 0 dy

= ;/0 |1 +e‘0+' =y , Il +e-io+i%ya'z
> 0.

For § = min(%¥, 7 — Z2), proof is evident from (2.1) and (2.4).

(iii) The inequality p? (z) > p2(—z) for z > 0, (a,0) € PD*, a € (0,1) is an
immediate corollary of (ii). Using Corollary 2 of Theorem 2.7 (see p.8), we
conclude that p’(z) < p?(—z) for z being large enough if (a,0) € PD*, a €
(1,2), 8 > 0.

(iv) From (2.1) we have

inf Ie ) —yTr, o
Pg(z) = Sln(? +0)/ eway dv 2 ,z >0,
14+ 2cos(5* + 0)y* + y**
p _ ~°>in(”2—"—6’)/oo e¥*y* dy <0 (317
pa(z) - T A l+2(:os(’;—°——0)y°+y20’x . ( . l)
For 0 < 6 < min(%}. 7 — 5¥), both Z* 4 8 and %* — 0 are in between 0 and

Z. Thus as 6 increases sin( %" + ) increases and cos(12g + 8) decreases, hence

p’ () increases for fixed r > 0. Similarly p/(z) decreases for fixed z < 0.

For a € (1,2), pl(z) is a continuous function of z on R by Theorem 2.3

(ii). Moreover, for fixed a € (1,2), p%(0) decreases as # increases. Hence,

p?(z) can not increase in @ for £ > 0 being small enough. O

2]



Note that (3.17) yields that p’(z) remains to be decreasing in 8 €
(0, min(%2, % — Z2)) for any fixed a € (1,3/2) and z < 0. Corollary 3 of
Theorem 2.7 (see p.8) shows that, for a € (1,2), p’(z) is increasing in 6 for

fixed z > 0 being large enough. This justifies the picture on fig.2.2 (ii) (p.7).
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Chapter 4

Representation by a Cauchy Type Integral

Consider the Cauchy type integral
—vt/ y1fa gy

1 [~e
fa(2)=;/o Y,  0<ac<2 (4.1)

The function is analytic in the region C = {z : 0 < argz < 27}. Since
the function e~ v/ is analytic on the open positive ray RY, it satisfies
Lipschitz condition on this ray. Therefore by the well-known properties of

Cauchy type integrals (see, e.g. [14], p.25), f4(2) has boundary values f,(z+
:0) and f,(x — ¢0) for any z > 0. Below, it will be convenient to write f,(z)

instead of f,(z + :0) for z > 0.

The following lemma is a generalization of Lemma 4.1 of [8], the latter

can be obtained from ours by setting 6 = 0.

Lemma 4.1 For any pair (a,0) € PD*, the following representation is

valid:
!
a

[a[1/* g8 (sgnz [2]'/2) = ~ I/ (Jo] ¢~ 5em), (42)

Proof. Except a € (1,2),0 =7 -2,z > 0; for all (o,0) € PD* we
have |z| ("~ % *+%€n7) € C. Firstly we will make the proof for these values of

parameters «, 0 and z.

Putting sgnr|z|!/® instead of z in (2.1) and multiplying by |z|'/, we have

sin(”Ta’ + asgnz) /oo e"!/l-rllla ya ,xll/a dy
0

t/a 8 1/ay _
el f (sgnz 2]/ R’ e

71'
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(9)
r(0)

z-plane
r(-6)

Figure 4.1:

Changing the variable y = (v/|z])}/*, we obtain

sin(%* 4 Osgnz) /°° e~ v/ || dy
0

1/, 6 1/
T p. \sgnr |z -

T

o T

1 . xa
—1 o i(m—EZ2 —fsgnz)
> mf,(|z|e 2 ) (4.3)

Ta

1 1 /°° e~ pllady
0 v+ |z|eitsgnz ¢~

For the exceptional values of (a, ) and z > 0 we have from (2.4)

_gl/a

a o o e
zV/ pz(—xl/ )=zl/ — (4.4)

By the Plemelj-Sokhotski theorem ([14], p.25), the following equality holds

falz +10) = fu(z — i0) = 26~ g1/, (4.5)

Evidently, for any z,y € R, y # 0, fo(z + 2y) and f,(z — iy) are complex
conjugate. Hence. fo(z)(:= fo(z + ¢0)) and fo(x — 70) are also, and (4.5)

can be rewritten in the form

Im f,(z) = e~ g1/,

Comparing with (4.4). we obtain

2o (=) = ~ Im fu(2).

which coincides with (4.2) in this case. O

o

In fig.4.1 (p.24), r(—0).7(0), r(6) denote the rays {-:argz =7 - %
0}, {z:argz =7 — ). {z:argz = 7 — 7% + 0} respectively. In Lemma
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4.1 we showed that p’(z) depends on the values of the Cauchy type integral
(4.1) on the rays r(—#8), r(8) for z > 0, z < 0, respectively. When 8 = 0,
both r(—8), r(8) coincide with r(0). This is the symmetric case which was
investigated in [8]. In our case, for 8 # 0, the rays do not coincide. It is
evident that, for the (@,8) € PD§, the rays are situated in the open upper
half plane and, for the pairs (a,0) € PD*\ PD{, either r(—8) coincides with
the positive ray or 7(@) coincides with the negative ray. Fora =1, 6 = x/2

both of them lie on the real axis.



Chapter 5

Asymptotic Behaviour at Infinity

We are now ready to prove Theorem 2.7.

Proof of Theorem 2.7. From (4.2) we have
l ., ra
|21/ pa(sgnz /%) = = Imfy(|z] €07~ ~%n2)), (5.1)
a

As it was shown in [8], the function f,(z) can be represented in the form

fulz) = —_E [(1 +ak)

T & +fa,N(z)’ (5'2)

where

al'(1 + a(N + 1)) e s
oo < =m0 =

for N=1,2,3,... Substituting (5.2) into (5.1) we obtain

o o (1 + ak rak
|z["/* p (sgnz |z['/*) = - E ‘(—le—k——)( 1)**1 s ln(—z—— + kfsgnz)
k=1

1 N na
+=Imfon(|z|e"= 7 ~0e2))
o

where

al(1 + a(N +1))

i(r— 22 —fsgnz) <
[Im fo,n(]z]e )< wlz|¥+| sin(ZX + fsgnz)|’

putting |z| instead of |z|'/* we obtain (2.8). O



Chapter 6

Analytic Structure of p’(z)

Proof of the theorems concerning the analytic structure of p(z) for the ratio-
nal values of a are based on the following facts about the analytic structure

of the Cauchy type integral (4.2):

Theorem In C = {z: 0 < argz < 27} the following representation is valid:
1 = k k n n
fin(z) = =Y 2*FT(1 = =) + 2" Au(2) + 2" Ba(2). (6.1)
nT k=0 n

Here
A.(z) = le_’"[log ! + i), (6.2)
n z
(the branch of the logarithm is defined by the condition 0 < argz < 2m);
B.(z) is an entire function representable by the power series

(oo}

B.(z) = Eﬁ,ﬁ")zk

k=0

where .
) [(—kn)/mn ,k/ngN

y =4 (=1) ['(1+3) L
mn (1 +7) ykfn=3,7=0,1,2,....

Theorem Assume, a € (0.2) is represented in the form a = m/n, where m.
n are relatively prime integers. The following formula is valid in C = {z :

0 < argz<2r};
m < km

fmm(2) = —ZF(I——n—)zk

nm k=0
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Z (ktr
- i L ,..( b Lt 4
= sin(Z(k+r+ l))
kg{ms—r-1}%
+m Z s r— lz (64)

where q is the greatest integer strictly less then 2 r =n —qm — 1 and

, k/n € N

1
j) ,k/n=3,7=0,1,2,..

(6.5)

(n) _
L=

ﬂ,ﬁ") was defined by (6.3).

The first of above theorems is a combination of Lemma 6.1 and Lemma
7.1 of [8]. The second one is a combination of Lemma 10.1 and Lemma 11.1

of [8].
Proof of Theorem 2.8. From (4.2), putting a = 1/n we obtain
2[5! (sgnalz|”) = n1m fyu(|z] €'~ —058n2)), (6.6)
Substituting (6.1) into (6.6) we have
15 k Tk
n, @ n _ 1 k41 ko 7k \
|z]"Pi /s (sgnz|z|") = Z( a1 n)sm(2n + 0ksgnz)|z|
+n'.’l:| (_l)n+l COS(0n)Re{An(|$|ei(ﬂ——"——ngnz))}
+n|l" ( l)n+l COS(@n)Re{B ('zle’(”“——asg'na:))}
—n|z|*(-1)" SIH(anSgnz)Im{An(lzlet(w-——;‘-—esgn:c))}
“nlzln(—l)"Sin(ﬂnsgnz)lm{Bn(lzlei(r—%—0sgnz))}
= Y4+ Ra+Rg+14+1Ip. (6.7)

Utilizing (6.2), we obtain

Ry = Ela:l"(—l)"“ cos(fn) exp(|z|*(—1)"sgnz sin(fn))
[~ log |z| cos(|z]|" cos(8n)) — (Osgnz + 2—7:;)(—1)" sin(|z|™ cos(ﬂn))l;
I, = —%Izl"(—l)" sin(fnsgnz) exp(|z|"(—1)"sgnz sin(fn))

[~ log |z|(—1)" sin(|z|" cos(fn)) + (fsgnz + g;) cos(|z|" cos(8n))],
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hence

n(_1)»
Ra+14 = %Lexp(la:l"(-—l)"sgna:sin(ﬂn))

[log |z| cos(]z|™(—1)" cos(6n) — Onsgnz)] (6.8)
__nlz] i—l) exp(|z|*(~1)"sgnz sin(fn))

[(8sgnz + %) sin(|z[" cos(fn) + Onsgnz)].

Utilizing (6.3), we obtain

1 & k k
3 |z|k+”(—1)k+"“l"(—7—z) cos(fn) COS(;_n + Oksgnz)

Rp = —
d k:l,f“N
+$J§0|x]ni+n(_1)(1+l)(n+l)F?.Z__Ei +J; cos(fn) cos(— 2J + Ojynsgnz);
1 oo
Is == |:z:]’°+"(—l)"+"f‘(——)sin(0nsgn:l:) sin(W—k + Oksgnz)
k n 2n
_%g ,xlnj+n(_1)(j+l)(n+l)rl;ﬁ +]; sin(fnsgnz) sin(g—'? + Ojnsgnz),
hence
1 = k4n k4+n+1 k : T
Rp+1Ip =— > |z|**(-1) I'(—=)sin((k + n)(7— + fsgnz))
k=1,%kgN n 2n

1 & (1
+;Z|x|n1+n(_ (J+1><n+uﬁ§__+_;sm((1 + 1)( + Onsgnz)).
Jj=0

Putting s = k + n in the first sum and substituting j + 1 for j in the second

one, we have

[o. o)

1
Rp+1p =—- >
4 s=n+1,%€N

s 1ys+1 '__i : E
lz|°(=1)*"'T(1 n)sm(2n+035gnx)

+l i |l'|ni(—l)f(n+1)II:;E]; sm( 5 + Gjnsgnz). (6.9)

Putting (6.8), (6.9) into (6.7), we get

© k rk
__1yk+1 A P k
> (= n)sm(Zn + Oksgnz)|z|

|z"p]/n(sgnelz|") = =
k=0,%gN

+= Z 1)1("“) 8; sm( 5 +0]nsgn:r)|1‘| "
+?'x',f—_l)expurl“(—msgmsinwn»
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[log |z| cos(|z|*(~1)" cos(én) — Onsgnz)]
L (1) sgna sinon)

{(6sgnz + ) sin(ja|" cos(8n) + Bnsgna)).
Substituting |z| for |z[* we obtain (2.10). O

Proof of Theorem 2.9. From (4.2) we have
2780, (sEnz [2[/™) = ZImfom(feleir=5R-49). (6.10)
Substituting (6.4) into (6.10) we obtain
|21*/™ P (sg02 [2]™/™) =
1 Xq: (1 - kTm)( 1)k sm(

T k=0

+ fksgnz)|z|*

+guog Zd::,, 1)+ sin((s + )( 5 + bsgnz))lal**

o .
HE + ”Sg“%zsfnz,x 1)**9 cos((s + g)(=— + fsgnz))|z|*

2 2n
™ " sin(rq — (fsgnz + 22)(AZL 4 q)),  marar,
SUESS o550

m sin(Z(k + r + 1))

k=0
kg{ms—r—1}%2,

#3B (1P sin((s 4 9) G + Bogne)l

9
=%+ — logI I22+(— "Sg“x)za——24+n25, (6.11)

say. Now we shall transform ¥, , 3, ¥4, X5 by substituting f,(c"), ,(c").

The coefficients {,E ™ differ from zero only if = % s an integer, hence fm, e
is nonzero iff ®*='=L js an integer. Remembermg the definition of r we have

ms—r—1 m(s+q)
n T n

-1

Since m, n are relatively prime, ’"—’;—'—"—l is an integer iff %ﬂ i1s. Hence
() | #£0iff s € {nt—q}2,. When s = nt — g, using (6.5), we obtain

(n) (n) (_l)mt—l B
ms—r—1 fn(mt -1) — m ’ l= 1,2,...
Thus,
1 & (_1)(m+n)t . mmt t
L= Ont ", 6.12
1= L Gy g+ Ot (6.12)



Similarly,

( l)(m+n)t—l rmt nt
w; (mi = 1), cos( 5 + Ontsgnz))|z|™. (6.13)

Substituting r = n — ¢gm — 1, we obtain

_ = (n)Sln(( ™+ fsgnz)(EE2)) ke
24 - § Zsin(w!k+n!) ,(D, i

kg{ms—r-1}%2,
This sum is taken over the values of k such that k¥ & {ms —r —1}%2,, and
summand vanish if > k is of the form k = nj, j =0,1,2... Now the relation is
nj € {ms —r —1}%, and it is equivalent to j ¢ {—(fﬂl 1}2,. But the
numbers —Lfﬁl 1 are integers iff s = nt — ¢, t =1,2,..., hence the relation

nj & {ms —r —1}2, is equivalent to j & {mt — 1}%2,. Using (6.5), we can

rewrite X4

00 -1 7 ; 1(E on n

5, = - Z ( ") Sln((].-f- ")752'+ msgn:z:))l:c| 1)
= J! sin( 27 +1))
Jﬁ{mt l}g =1
Substituting j + 1 for j, we obtain
o (_1yi-1sin(% 4 fni y
(=1)]7" sin(5 + 'sgna), =2 (6.14)

Ty=- %

jot,2gN (7= 1)! sin("—:li)
Using the same argument, we shall divide ¥s into two parts. The first

summation is taken over the values of s for which **=1 is an integer, i.e.

s =nt—gq,t =1,23.... The second summation is taken over the values
of s for which 22="=1 js non-integer, i.e. the values of s for which *X? e ¢ N.

Remembering the formulas for ﬁ( ™) we can rewrite Ts, in the form

mi+nt FI( mt)

= (=1)
E mn  I'?(mt)

t
sin(wm + Ontsgnz)|z|™

2
ls+q+1
+ 5 EEr0 - Do+ ) (G 4 dognelet .

_ﬂgN

Putting p = s + ¢ in the second sum we have,

O (=)™ M(mt) . wmt n
Ys = g  T(mt) sin( 5 + Ontsgnz)|z|™
+ i (= l)pH ——1TI(1- p)sm(— + Opsgnz)|z|P. (6.15)
™m n 2n

p:q+l.£EN
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Substituting (6.12), (6.13), (6.14), (6.15) into (6.11) we obtain

I-‘vl”/"‘an/n(sgn:v lzl"/’") =
7l'

LS ra- ey n I

k: -‘ieN

+ Oksgnz)|z|*

( 1)(m+n)t
log 2] & Z (mt = 1! sm( + Ontsgnz)|z

Int

1 nfsgnz, & (—l)("”"‘)“l mmt .
—_ t n
+(2 +— )t; (i = 1)1 cos( 5 + Ontsgnz))|z|
i (=1)~'sin(Z + £Lsgnz)
Pl (-1 sin(Z22)
1 & ["(mt) . ,mmt
el _1)(m+n)t nt
+7r Z( 1) T2 (mt) sin( 5 + Ontsgnz))|z|™.

t=1

+ |z| =

n
m

Substituting |z| for |z|*/™ and using the well-known equalities

s

T(z)sin(rz) ’ Tn)=(m-1)! ,neN

F(l —Z) =

we obtain (2.11). O
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Chapter 7

Representation of p/(z) by a Contour

Integral

In this chapter we shall represent p’(z) by a contour integral. This repre-
sentation plays the key role in the transition from rational to irrational a’s.

For @ = 0, this representation was obtained in [8].

Fix a positive § < 1 and consider the integral

. zlog |z] 3 (1rz + 20 )d
i e sin(ZZ + Z*sgnz) dz

jo,0) = —/ 2« :
Is(z;,9) 2a JL(6) ['(z) sin Z% sin 7z (7.1)

where L(§) is the boundary of the region
1 s
G(é)={z:|z| > 55, |arg z] < Z}

The transition on the boundary is in the direction such that the region G(§)

remains to the left.

The contour representation mentioned above is given in the following

theorem:

Theorem 7.1 The following representation is valid for (a,8) € PD*\{(a,0) :
§=r—naj2}, x>0, and for (a,0) € PD*\{(a,0): 0 =7a/2}, z < 0;

pg(x) = Ii—l]g(r;a,O) (7.2)

where & is such that a € [6,2 — §].
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This theorem is a generalization of Theorem 13.1 of [8], the latter can be

obtained from ours by setting 6 = 0.

Firstly we will prove the following two lemmas.

Lemma 7.1 For any fized 0 < 8 < min(%2, 7 — 2),0<6<},1 <M<

0o, the integral Is(z; a,8) converges absolutely and uniformly with respect to

both a € [6,2— &) and |z| < M.

Proof. Note that
| sin 7—rfl > sinh(zllmzl) , |sin wz| > sinh(x|Imz|),
a a

moreover, on the rays {z : |z| > g, arg z = F5} we have [Imz| > -265. Hence
sin Z% | sinwz are bounded on L(6) from below by a positive constant C' not

depending on « € [6,2 — §].
Using the Stirling formula ([15],p.249)

log'(z) — (2 — —21-)]ogz+z— %log27r = 0(|z|™"), z = o0, Rez > 0,

we obtain

log |T'(z)] = (Rez)log |z| + O(l2]), z — oo.
Hence, there are positive constants € and B such that

I(2)| > Bt 2 € G(é).

Noting that

ISln(zr; + Egsgn;[:)l < el';'*'%%“”l-"m:l
< (84
< errllmz|,

we see that for [z| < M the integrand in (7.1) can be estimated as follows

e*oel=l sin( 22 + Lsgnz)| _ exp(Rez log |z| + 7|Imz|)
. = < , (7.3)
['(z) sin 22 sinmz Becl:loglzlC2

This yields the assertion of the lemma. O
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Lemma 7.2 p’(z) is a continuous function of
(i) a on [% 2 — 2) for any fized 0 € (0, 3) and £ >0,
(ii) a on (270,2 — 3] for any fized 8 € (0, 2) and z <0,
(i) a on (0,2) for =0, and any fized z # 0.

Proof. Comparing (2.1) and (2.4), we see that the formula (2.1) is valid
for the intervals mentioned in the statement of the lemma.
(i) Take 0 < 6 < 0 and consider o € [%,2 - 3@:—51] we have the following
bound for the integrand staying in the right hand side of the formula (2.1)

for fixed z > 0
e~veyo ~ e~y
11+ efyee T2 e + yof2
ey _ (14
(sin(Z2 +8))> = (sind)*

Therefore the integral in (2.1) converges uniformly with respect to a €
(2,2 - H@] for fixed 6 € (0,7/2) and fixed z > 0, hence is a continuous

function of a.
(ii) As in the case (i), take 0 < § < 0 and consider a € [@,2 - :;—9] we

have the following bound for the integrand staying in the right hand side of
the formula (2.1) for fixed ¢ < 0

ey:cya eyxya < ey::(l + y)2
(sin(Z2 —90))? = (siné)?

ll + e—iayae%& l2

Therefore the integral in (2.1) converges uniformly with respect to a €
[@,2 — 28] for fixed @ € (0,7/2) and fixed z < 0, hence is a continuous

function of a.
(iii) This part was proved in [8] and the proof is similar to the cases (i), (ii).

a
Now we can prove Theorem 7.1

Proof of Theorem 7.1. Firstly we will prove the validity of the formula
(7.2) for rational a’s. Since the rational numbers are dense in (0, 2), by the
continuity of pl(z) and of the integral Is(z;a,8) as functions of @, theorem
will be proved for (a. 8, z)’s mentioned in the statement of the theorem.

Since a is rational, it has a unique representation a = m/n where m and

n are relatively prime integers. The functions sin Z%, sin 7z vanish on the
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set {ka}2__ and {k}§2__ correspondingly. These sets have an intersection
which is the set {m¢}2__, and they are contained in the set {2}%2__.
Taking a positive v < 1/2n, both functions are bounded from below on the

set C\U2_o{2: |2 — s/n| < v} by a positive constant C.

Set X, =s/n+1/2n, s =1,2,... and consider the integral

i e?losl=l sin( %% + ’a—asgnz) dz

Ii(z;0,0,X,) = - [ 2 " e .
(7@ ) 2a Ji(s,x,) I'(z) sin Z2 sin7z (74)
where L(6, X,) is the boundary of the region
G(6)(){z : Rez < X,}.
By the residue theory we have
Is(z;0,0,X,) = I >~ (Residue at z = ka)
a<ka<Xy
k/ngN
I Y~ (Residue at z = k)
1<k<Xs
k/mgN
I )" (Residue at z = mt)
a 1<mi< X,
= —2(21 + 3,4+ 5s). (7.5)
At the points z = ka, k =1,2,..., k/n € N, we have the residue
Resy, = & (—1)*sin(Z2* + kﬂsgn:c)lz:l’“”
s ['(ka)sin Tka
hence
s (mak o
5 = 5 (—1)k+1 sm(—2—.+-k95gn:r)].rl’° . (7.6)
T o chaex, [(ka)sin Tka
k/ngN
At the points z = k, k =1,2,..., k/m & N, we have the residue
CEsin(zk 4 & k-1
Res, = 1(=1)"sin(% +.as§nz)|z| ’
m I'(k)sin
hence
1 —1)k+1 54 7k 4 ko k-1
22 __1 ( ) sm( 2 + axignz)lfl . (77)
T e, ['(k)sin Z*
k/mgN
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To evaluate the residues at the points z = mt, t =1,2,..., put

__sin(% —sgnz)lzl
f(Z) T F(Z)
Evidently f(z) is anélytic at z=mt,t=12,..,

(z - mt)zf(Z)J'

. mz -
sin o sinwz

and we have

Res,; = lim[

z—rmt

= (=1 (i)

rmi mt
o many T [ cos( X7 + Ontsgnz)|z|
7r2( 2 (2 + asgnz) ['(mt)

tnf Tmt mt
Q) sin( %3 + Ontsgnz)|z|
+ 551 logof

I(mt

)
[*(mt)

sin(wm + Ontsgnz)|x

lmt.

a
= (m+n)t
- 2( l)

Hence
(—1)(m*™)t cos(Z2L + Ontsgna)|z|™
Y3 = (—+ —s nz
’ (2” ¥ )1<r§£x, I‘(mt)
o (~1)(™+ sin(=3¢ + Grtsgna)|]™
+_2 log Izl Z T(mt
1r 1<mt<X, (mt)

a —~1)m+ i (mt) | wmt o
—FKZ@)( ( )Fz(mt)( )sm( 5+ Ontsgnz)|z|™. (7.8)
Substituting (7.6), (7.7), (7.8) into (7.5), we obtain

. _ (=1)**'sin(ZE + kbsgnz), .
lo(z0,0, %) = 3 I'(ka) sin(rka) o

alka<X,

k/neN
+zl; 5 (_Fl(;:)ﬂ Sin(!{;é’fsgm)lzlk (7.9)

1<k<X,

k/mgN
1 ['(mt) . wmt
- —1)(mtn)t sin + Ontsgnz)|z|™.
+7r,5§<x,( ) M2 (m) (= gnz )|z

On the other hand, we have
e*Voslelsin( % + Zsgnz) dz

le(z; 0.0, X,) = 5= {/;(5,\'.) +/C(x.)} [(z) sin T+ sinmz
37
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where

L(6,X,) = L(§)[{z:Rez < X,},
C(X,) = {z:Rez=X,, |argz| < %} (7.11)

Using the bound (7.3), we have

e8I sin( % + Zsgna)| _ exp(X,(log|z] + 7))
['(z) sin 72 sinwz = BetXslgX.C2 °’

2eC(X,)  (7.12)

Hence, integral along C(X,) tends to zero as s — oco. Therefore
311210 Is(z; 2,0, X,) = Is(z; 0, 0)

Taking the limit in (7.9) and from (2.11) we obtain

m

1
15(.’17;0,0) = E—Ipi(x) y A= ;’ u
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Chapter 8

The Case of Irrational «

Proof of Theorem 2.11. We shall evaluate the integral I5(z; a, §) by means of
the Cauchy residue theorem. Substitution of the result into (7.2) of Theorem
7.1 yields (2.12). Under the conditions of Theorem 2.11, the sets {ka} __,

{k}% _., have the empty intersection since « is irrational.

We construct a sequence {Q,}32, which plays the role of {X,}%2, in the
proof of Theorem 7.1 as follows. Since a € (0,2), each of the intervals
(sa, (s + 1)a) contains none, one or two points from the {k}$2,. In the first
case we define Q, = (s + })a. In the second and third cases we choose

Qs € (sa,(s + 1)a) so that the distance from @, to the nearest of the three
points sa, (s + 1)a, k € (sa,(s + 1)a) be at least a/4.

Taking a positive v < a/4, we observe that the modulus of both functions

sin ZZ | sin 7z are bounded from below by a positive constant C on the set

O\ U [{z: ]z = kol <} U{z : |z — K < v}]

k=-oc

The vertical lines {z : Rez = Q,}, s =1,2,..., are located in the interior of

this set.

Consider the integral Is(z;a,0.Q,) defined by (7.4) with @, instead of
X;. Analogously to (7.9). (7.10), we have
(—1)**1 sin(== + kfsgnz)
I'(ka)sin tka

leka

Is(x;(lvaacgs) = }E:

a<lka<@,
1 (—1)F+! sin(’;—’c + %sgnx) ' 81
+"~ 2: F k . 1& III (‘ )
QX ock<Q, (k)sin o
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i CZIOSle Sin(ﬁ + ﬁsgnx) dZ
] ) &, 01 s) = 5~ / / i 2 af '
5(1’ [0 Q ) 20 { L(6,Q|) + C(Qa)} F(z) sin -’;i sSin Ttz (8 2)

where L(6,Q,), C(Q5) are defined by (7.11) with Q, instead of X,. Obviously
the inequality (7.12) is valid with @, instead of X,. The integral along
C(Q,) tends to zero as s — oo uniformly. By Lemma 7.1, the integral along
L(6,Q;) approaches to the integral along L(é) as s — oo uniformly with
respect to z on any compact subset of R. Taking the limits as s — oo
in (8.1), (8.2), we arrive at the assertion of Theorem 2.7 except the cases

€ (L2\Q,0 =7 —-%, 2> 0and @ € (0,1)\Q,0 = Z,z < 0. But
by comparing the series expansion in (2.12) with (2.1), (2.4) for exceptional

values of (a, 8, z) we see that the series expansion in (2.12) is also valid for

the exceptional cases. O

Proof of Theorem 2.12. For irrational values of a, proof is evident from

(2.12). For rational values of a, @ € (0,1), 0 =%, z > 0and a € [1,2), 0 =

m — I, z < 0 assertion of Theorem 2.9 is valid and same with the assertion
of the theorem. For the remaining values of the parameters a, 8, proof is

obvious by (2.1) and (2.4). O

Proof of Theorem 2.13. For any integer k > 2, there exists an integer
such that

ey 1
o~ 21 < 5 (8.3)

Since « is not a Liouville number, there is an integer r > 2 such that for any

pair of integers p, ¢ > 2

1
o= B> — (8.4)
q q
Using (8.4), we have
l
o — <[ > k7. (8.5)
k
From (8.3) and (8.5), we obtain
l-r 1
k < Iak — Ikl < 5
Using the inequality
sinz > g.r, 0<zr< E, (8.6)
T 2
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we obtain

|sin ka| = [sinw(ka — li)| > 2|ka — Ii| > 2k,
Hence the first of series in (2.12) converges absolutely and uniformly on any
compact subset of R.

Similarly, as above, for any integer k > 2, there exists an integer /; such

that
1 L 1 i
l——"‘|<—k- (8.7)
It follows that
l;, 1 1 1 1 2
AR R
hence
2k
I, <=
kS (8.8)

Since a is not a Liouville number, we have

k
lo — | 2 7
Iy

Multiplying the inequality by lx/a and using (8.7) and (8.8), we obtain

1 ko0 1,2
- L —=> k> —(Z\1-r 1-r
2>lk al_ a _a(a) k

Hence, using (8.6), we obtain
2

nk k k
TR sinm(E > 2 L > (2)2rE
Ismal |smr(a k)|_2la lk|_(a) k

Hence the second of series in (2.12) converges absolutely and uniformly on
any compact subset of R. O

Proof of Theorem 2.15. We shall construct a subset D of PD* which (i) is
dense in PD*, (ii) has the power continuum, (iii) is such that, for (a,8) € D,
both of the series in (2.13) diverges.

Let {0,}32, be a sequence of rapidly increasing integers defined by the
equations

n=12,.. (8.9)

—_ 230.,

ki

o = 2. On41

41



Denote by A the set of all sequences {§;}22, with terms é; having values 0
or 1 only and satisfying the conditions

(i) 6; is allowed to be equal to 1 if j € {0,}%, only;

(i1) infinitely many of §;’s equal to 1.

ol
in (0,2) representable by finite binary fractions. Set

Let @ = {y:y =132, 6;277,{6;}32, € A}. Let A be the set of numbers

E={a€(0,2):a=z+y,z€ A ye€N}
Evidently E is dense in (0,2) and it is of power continuum. Set

260
D={(a,0) € PD:a€ E,(a+ 7) ¢ L|JQ}.
[t is easy to see that D is dense in PD and it is of power continuum.

It suffices to prove that for any (a,8) € D the first of series in (2.12)

diverges.

If a € E then there is an integer m such that
a="b+ Zan—j + Z 5j2—j
=1 J=m+1
where b, a; take values 0 or 1, and {§;}%2, € A. Denote by {7,}32, the
subsequence of {0,}52, such that
6;=1 for j € {m}is,
§=0 for j & {m}
Then for any 5, > m, we have
m . n . (=] .
O<a—(b+> a;277+ Y 627)= Y 627 <27murtl
J=1 J=m+l J=Mnt1
Multiplying this inequality by 27 we see that there is an integer p, such
that
0 < a2™ — p, < 2 TenHl < 97 Fne (8.10)

for sufficiently large n.

Consider the terms of the first of series in (2.12) possessing the numbers
q = g, = 2™. From (8.10) we obtain
(8.11)

|sin ﬂqnal = lsin(qua - ﬂpn)' < 7!'2_;-""'“
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Since a + 3§ is an irrational, non-Liouville number, as in the proof of the

previous theorem, there is an integer r > 2 such that

TqnQ I A 26 Inler
5 a0l =lsin To(at 22T (B12)

< <

| sin(

Hence, for sufficiently large n we have

(=D)* sin(F5= + gub)|e|™| _ 2

> Z90m=1)(1=r)|z|ameg-ga"gimer (313)

[(gna)sin Tq -7;

Since {1, }22, is a subsequence of {0,}22,, the following inequality holds

31n 3
M1 = 2™ = gq,.

Hence from (8.13) the series diverges. O
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