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ABSTRACT

WORD-BASED COMPRESSION IN FULL-TEXT 
RETRIEVAL SYSTEMS

All Aydın Selçuk 
M.S. in Industrial Engineering 

Supervisor: Prof. M. Akif Eyler 
May, 1995

Large space requirement of a full-text retrieval system can be reduced sig

nificantly by data compression. In this study, the problem of compressing the 

main text of a full-text retrieval system is addressed and performance of several 

coding techniques for compressing the text database is compared. Experiments 

show that statistical techniques, such as arithmetic coding and Huffman cod

ing, give the best compression among the implemented; and using a semi-static 

word-based model, the space needed to store English text is less than one third 

of the original requirement.

Key words: Full-text retrieval, Data compression. Text compression, VVor 

based model
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ÖZET

ТА М  M E TİN  ERİŞİM SİSTEMLERİNDE KELİME 
TABANLI S IK IŞTIRM A

Ali Aydın Selçttk
Endüstri Mühendisliği Bölümü Yüksek Lisans 

Tez Yöneticisi: Prof. Dr. M. Akif Eyler · 
Mayıs^ 1995

Tam metin erişim sistemlerinin büyük yer ihtiyaçları veri sıkıştırma ile 
büyük ölçüde azaltılabilinir. Bu çalışmada bir tam metin erişim sisteminin 
metin veritabanının sıkıştırılması problemi incelenmiş, ve ana metnin sıkıştırıl
ması için değişik kodlama tekniklerinin performansları karşılaştırılmıştır. Yapı
lan deneyler uygulanan metodlar arasında en iyi sıkıştırmanın Huffman kod
laması ve aritmetik kodlama gibi istatistiksel teknikler tarafından sağlandığını 
göstermiştir.

Anahtar kelimeler: Tam metin erişimi, Veri sıkıştırma, Metin sıkıştırma. 
Kelime tabanlı modelleme
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Chapter 1

Introduction

1.1 Full-Text Retrieval System s

A full-text retrieval(FTR) system is an information retrieval system enabling 

computer searching of text databases using an automatically-constructed in

dex. FTR  systems are used for storing and accessing document collections such 

as newspaper archives, on-line article collections, office automation systems, 

and on-line help facilities. The data in an FTR system is usually unstructured 

running text and the general topic and style of the documents are usually re

lated. The text database of an FTR  system usually includes a large number 

of text fragments, where each fragment is an individually retrievable portion of 

text. For example, a fragment might be a sentence, a paragraph, a page, oí

an entire document. The needs of full-text databases are not well served by 

traditional database systems, since, instead of key indexing, full-text requires 

facilities such as document indexing on text content.

1.1.1 Queries to Full-Text Databases

Queries in full-text databases can be either Boolean or ranked. Boolean queries 

involve searching for text fragments containing terms specified by a Boolean
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expression, such as "information and (storage or retrieval)” . All fragments 

that contain the word “ information” and either "storage” or “retrieval” or 

both would be answers to this query.

To obtain consistently good results by a Boolean query is usually not pos

sible for ordinary end users. This is mainly due to two reasons. First, the 

user may not be able to formulate his query as a Boolean query. Second, at 

the end of the query, the user has a set of text fragments among which it is 

not possible to distinguish between the more and the less relevant fragments. 

Ranking is more oriented toward these end users. First, the user is allowed to 

input a simple informal query such as a sentence, a phrase or a text. Second, 

he ends up with a ranked solution set, from most to least relevant fragment. 

There is a wide variety of ranking techniques used to measure the similarity 

of a fragment to a query [41, 39, 16]. These techniques are usually based 

on statistical measures, whereas some of them use natural language processing 

methods. Cosine measure is a good example to the statistical techniques which 

not only performs well, but is cheap to compute [2].

The major drawback of ranking approach compared to the Boolean ap

proach is that it does not allow using the Boolean logical operators such as 

and, or and not. A number of methods, known as the extended Boolean meth

ods, have been proposed to combine the ranking and the Boolean approaches 

[40, 16].

1.1.2 The Text Index

.Answering queries by scanning the entire text for the query terms is usually too 

slow -it takes about an hour to read all the data on a CD-ROM. [2]. Instead, 

an index must be provided with the text to enable queries to be answered 

within a reasonable delay. Indexes should enable query terms to be located in 

the index to get the information where the term appears in the main text.

In full-text retrieval, most (if not all) words in the text must be indexed.
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Although some words are unlikely to be used in practical queries -for example 

common words such as ‘‘the’’ - there are relatively few such words,they can 

be stored so that they make only a small contribution to the size of indexes 

[2], and omitting them makes queries on these words much more expensive to 

evaluate.

The most common types of indexes are bitmaps, inverted files, and signature 

files. Inverted file and bitmap structures both require a lexicon or vocabulary 

-a list of all index terms- whereas the signature file method does not. The 

indexing method used in this study is the inverted file structure. However, we 

will discuss all these schemes briefly to provide an overview of the indexing 

concept.

Lexicon. A lexicon (also known as vocabulary) is a list of all index terms. 

It is one of the major components of the index in bitmap and inverted file index 

structures. In inverted file indexes pointers to inverted lists are stored together 

with the index terms in the lexicon. Frequency counts of the terms are also 

stored in the lexicon if the index is to support ranked cjueries depending on 

statistical methods. Usually words in the main text are stemmed and case- 

folded before being recorded to the lexicon, in order to improve the retrieval 

effectiveness. A conventional approach is not to include the stopwords (i.e. 

common words with low information content such as the, of, at, etc.) in the 

lexicon. Recently several authors have proposed to index every occurrence of 

every term including stopwords [2, 49]. The reason for this suggestion is the 

fact that bitmaps or inverted lists of the stopwords can be stored in a relatively 

small space by index compression techniques, and omitting them makes queries 

on these words much more expensive to evaluate.

B itm aps. A bitmap is perhaps the most obvious indexing structure. For 

every term in the vocabulary (also known as the lexicon) a bitvector is stored, 

each bit corresponding to a text fragment. A bit is set to one if the term ap

pears anywhere in that fragment, and zero otherwise. Bitmaps are particularly 

efficient for answering Boolean queries -the bitvectors for the terms are simply 

combined using the appropriate Boolean operations, which are often available
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in fast dedicated hardware [2]. Bitmaps are fast, easy to use, but extravagant 

in storage. For a text of N  fragments and n distinct ind&x terms, a bitmap 

occupies Nn bits.

In verted  Files. An inverted file contains, for each index term, an inverted 

file entry or an inverted list that stores a list of pointers to occurrences of that 

term in the main text, where each pointer is the number of a text fragment 

(usually a document) in which that term appears. This approach is quite 

natural and corresponds closely to the index of a book.

The granularity OÎ an index is the accuracy to which it identifies the location 

of a term. A coarse-grained index might identify only a block of text, where 

each block stores several documents; while a fine-grained one will return a 

sentence or a word number. Coarse indexes require less storage, but are less 

efficient in retrieval performance. At the other extreme, word-level indexing 

enables queries involving proximity. However, adding such precise location 

information significantly increases the size of the index. More generally, an 

inverted file may provide a multi-level index structure with a hierarchical set 

of addresses -for example, a word number within a sentence number within a 

paragraph number within a section number within a chapter number. In this 

case each pointer in the list will be a k-tuple in a k-level index.

•An inverted file index can be augmented to store the within document fre

quency of index terms together with the pointers in the index. This kind of 

information is extremely important to support ranked queries that use similar

ity measures based on statistical techniciues.

.\ major drawback of an inverted file index is the space it requires. An 

uncompressed inverted file may occupy -50 percent to 100 percent of the space 

of the text itself.

Description of the implementation of inverted file retrieval systems have 

been given by numerous authors [8, 27, 21, 28].

Signature Files. A signature file is a probabilistic method for indexing



text. Each text fragment has an associated signalure, in which every index 

term is used to generate several hash values, and the bits of the signature 

corresponding to those hash values are set to one. To test whether a query 

term occurs in a given fragment, the values of the hash functions for that term 

are determined. If all corresponding bits in the signature are set, the term 

probably occurs in the fragment. The fragment should then be read to check 

that the term really does occur. The probability of a false match can be kept 

arbitrarily low by setting several bits for each term and making the signature 

sufficiently large.

Signature files become more effective as the queries become more specific, 

since the queries involving the conjunction of several terms can check more bits 

in the signature file. Only one bit needs to be zero to cause the match to fail, 

and this leads to a low probability for false matches. Signature files cannot 

be used directly to implement Boolean negation, because even if a signature 

indicates that a term might occur, that fragment still needs to be obtained from 

the main text to check that the word actually does appear and that fragment 

cannot be an answer. Thus any negations must be ignored while checking 

signatures, and instead have to be checked after the text has been read.

Faloutsos surveys signature file techniques [14]. Various structures based 

on signature files are described by Sacks-Davis et al. [3S, 23]. The tradeoff 

between storage space and the probability of false matches in signature files is 

examined by Faloutsos and Christodoulakis [12, 13].
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1.2 Problem  D efinition

FTR systems are traditionally large [16]. Therefore, their space requirement 

has been a problem and reducing the space required has been studied by sev

eral people [9, 24, 53, 32]. The advances in the CD-RO.M (compact disk-read 

only memory) technology made compression of FTR systems more attractive, 

because a very large text database can be distributed very easily if it can be
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compressed to fit on a single CD; and data compression in FTR systems has 

become an active area of research in the last years.

Two major components of an FTR system are the main text and the index. 

The main text is usually a large amount of running text in natural language. 

The information content of several natural languages has been studied and it 

is shown that a text in natural language usually contains a lot of redundancies 

[1, 24]. For example, in English, the letter q is almost always followed by u, 

and in French yi is almost always followed either by ons or by ez [24].

The index of the text may also occupy as much space as the text does, or 

even more. For a text of N  fragments and n distinct index terms, a bitmap 

occupies Nn bits. More than 90 % of these bits are usually zeros. Signature 

files and inverted files can be considered as special forms of bitmaps and also 

occupy significant amount of space with removable redundancies [2].

Our study has concentrated on the problem of compressing the main text 

of an FTR  system by using the information stored at the index as a word- 

based semi-static model. Word-based approach is to take each word as a token 

instead of individual characters. “Semi-static” indicates that the model is 

static throughout a collection, but is different for different collections.

The objective of the study was to compare several coding techniques for 

compression of the text database, and to find the most appropriate one(s).

For this purpose we have implemented and compared a variety of compres

sion techniques on several full-text databases indexed with an inverted file that 

stores the overall frequencies and the within fragment frequencies of the index 

terms.

Criteria used in measuring the performance are compression ratio, encoding 

speed and decoding speed. Compression ratio is defined as the proportion of the 

size of the compressed text to the size of the original text. Encoding speed 

is important if the compressed text is not likely to be used again, such as 

backups and archives, but can be overlooked in compression of an FTR system,.
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especially when the system is static. Decoding speed is the most important 

speed consideration of a coding scheme for our purpose.

1.3 Previous Work

1.3.1 Com pression Techniques

The relationship between probabilities and codes was established in Shannon's 

source coding theorem [43], which shows that a symbol that is expected to 

occur with probability p can be represented in no less than —log p bits*, av

eraged over all symbols emitted from a stochastic source. Later, Shannon and 

Fano independently discovered an asymptotically optimal coding algorithm [1]. 

Shortly after Shannon’s work, Huffman discovered a way of constructing opti

mal codes for any given discrete memoriless source. [22]. The code produced 

by Huffman’s algorithm was optimal given that each message must be coded 

with an integral number of bits. Later, Gallager showed that the redundancy of 

Huffman codes, defined as the average code length less the entropy, is bounded 

above by Pmax +  0.086, where pmax is the probability of the most likely message 

[17].

The honor of first realizing the idea of arithmetic coding is usually at

tributed to Elias [1, 25]. The discovery that the calculation could be approxi

mated in finite-precision arithmetic was made independently in the mid 1970s 

by Pasco and Rissanen [33, 34]. Shortly after that, first practical implementa

tions appeared [36, 20, 35]. Witten et al. [50] presented a full description and 

evaluation of arithmetic coding.

In 1967 White made the first remark that better compression could be ob

tained by “replacing a repeated string by a reference to an earlier occurrence " 

[46]. His idea was not pursued until 1977, when Ziv and Lempel described an 

adaptive dictionary encoder [51]. Since that time, together with a different

'Throughout this thesis the base o f logarithms is 2



adaptive dictionary coding technique that came one year later [52], their work 

has been the basis for almost all practical adaptive dictionary encoders. This 

family of adaptive dictionary encoders is known as Ziv-Lempel coding, abbre

viated as LZ coding. Welch introduced a very practical variant of Ziv-Lempel 

coding, that is known as the LZW algorithm [45].

Rissanen and Langdon first expressed that data compression process can 

be split into two parts: an encoder that actually produces the compressed bit- 

stream and a modeler that feeds information to it. These two separate tasks 

are called coding and modeling. Modeling assigns probabilities to symbols, and 

coding translates these probabilities to a sequence of bits [3].

Word-based text compression was studied by Ryabko, Bentley et ai, and 

Moffat [37, 4, 29]. Ryabko and Bentley et al. proposed a move-to-front (M TF ) 

coding scheme, a technique that assigns shorter codes to more recently ap

peared w'ords, and have given results that their scheme can represent English 

text in 3 to 4 bits per character. Moffat made a word-based implementation of 

adaptive arithmetic coding and attained compressed representation of English 

text requiring as little as 2.2 bits per character.

CHAPTER 1. INTRODUCriOX 8

1.3.2 Com pressing the M ain Text

Many implementations have been made investigating the compression of the 

main text of an FTR system using the information stored at the index. It has 

been shown that good compression can be achieved by coding words based on 

their frequency [47, 48, 30, 53]. Witten et at. have investigated the use of 

arithmetic coding with the semi-static zero-order word model [47, 48]. Moffat 

and Zobel investigated the performance of Huffman coding and compared their 

results with the performance of several other compression schemes, including 

the Unix utility Compress·, ZeroWord, a zero-order word-based adaptive arith

metic encoder, and PPMC, a variable context character-based model [30, 53].
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All these experiinents showed that the approach of using,the lexicon as a semi- 

static word-based model results in good compression performance, in terms of 

both time and space.

Bookstein tt al. proposed an algorithm based on Markov-modeled Huffman 

coding on an extended alphabet and obtained good compression with relatively 

slower encoding and decoding speed [7].

1.3.3 Com pressing the Text Index

Several authors have proposed storing the differences between consecutive 

entries rather than the document numbers in the lists of an inverted file 

[42, 15, 6. 47, 48, 30]. In fact this is the same as the run-length encoding of 

zeros in the corresponding bit vectors [31, 54]. Then the problem of compress

ing the inverted lists is reduced to forming a good model for these interword 

gaps -the run lengths in the bitmap. Several methods have been proposed for 

modeling the interword gaps.

A simple technique to represent the run lengths is to use the universal codes 

discovered by Elias [11]. Moffat and Zobel implemented these techniques and 

compared them with several others [31, 54].

The simplest model to estimate the run length probabilities is to assume 

that a particular term’s occurrence probability is constant for each document 

and independent among the documents throughout the collection. Then the 

probability distribution function for the run lengths is the geometric distribu

tion with the probability of an interword gap of size k being (1 where

p is the number of documents including the term divided by the total number 

of documents.

Witten et al. and Bookstein et al. independently investigated coding the 

inverted file with arithmetic coding with respect to the geometric distribution 

model [47. 48, 6]. Their experiments showed that the concordance can be
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stored in less than half of its uncompressed size.

The geometric distribution also yields a surprisingly effective infinite Huff

man code. Golomb [19], and Gallager and Van Voorhis [18] describe a b-block 

code, in which a positive integer x is coded as (x -  1) div b bits set to one. 

followed by a zero bit, followed by (x -  1) mod b coded in binary. They proved 

that if b is chosen to satisfy the inequality

(1 _ p)6 + (1 _  p)Hi < ! < ( ! _  p)6-i + (1 _

this generates the infinite Huffman code for the geometric distribution. Moffat 

and Zobel [31, 54] applied this coding scheme to inverted files. They report 

compression ratios similar to those obtained by arithmetic coding with much 

higher coding and decoding speeds.

In practice the assumption that the one bits are uniformly and indepen

dently distributed within a bitvector is quite unrealistic. The natural ordering 

of the documents means that most of the terms will be relatively frequent 

over some sections of the collection, and relatively infrequent in the remainder. 

Teuhola [44] described an encoding similar to the Golomb codes but which also 

e.xploits the skewness in the run lengths. Moffat and Zobel [31, 54] showed that 

this scheme gives significantly better results than the Golomb code.

Another model that assumes the skewness of the bitvectors is the hyperbolic 

distribution model proposed by Schuegraf [42]. Bell et al. reported this model 

gives better compression than the geometric distribution model, but is more 

complex to implement [2].

Bookstein and Klein [5] has developed models which exploit possible cor

relations between rows and between columns of a bitmap. They tested their 

models with Shannon-Fano, Huffman and arithmetic coding. They reported 

improvements over previous methods.

Another alternative is to use an exact model that gives the exact number of 

occurrences of all run length values. Huffman coding is prefered to arithmetic
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coding for coding the run lengths with respect to an exact model [54, 2]. This 

approach is implemented by Fraenkel and Klein [15] and by Moffat and Zobel 

[31, 54]. Experiments showed that exact modeling gives better compression 

than the other techniques. The major drawback of this approach is that it 

requires two passes, one for modeling and one for coding, and it is not suitable 

if the updates are frequent.

.A. completely different approach to compress sparse bitmaps is proposed 

by Choueka et al. [10]. They propose a tree representation that enables fast 

random access to a compressed bitmap. The bits of the map become leaves 

whose parent nodes are the disjunction of their values. This continues recur

sively up to the root. A zero at any node indicates that all its descendants are 

also zero, obviating the need to inspect lower levels when searching for a term. 

Nodes containing zeros can then be deleted, and nodes that contain few ones 

can be replaced with a short list of their positions. In this manner the bitmap 

is compressed. However the reported compression is not as good as the ones 

discussed above.

Another redundancy in the inverted files occurs in multi-level inde.xes. 

These indexes provide positional information about several levels of the text 

-for example, a word number within a sentence number within a paragraph 

number within a section number within a chapter number. In this case each 

pointer in the list will be a k-tuple in a k-level index. In such an index the 

higher level coordinates of consecutive entries would usually be the same. .An 

obvious method to remove this redundancy is to replace the common fragment 

numbers occuring in consecutive entries with a flag of a few bits that tells 

how many coordinates are the same as the coordinates of the previous entry. 

This technique is known as the prefix omission technique (POM ) and different 

variants have been studied by several authors [9, 26].
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Compression Techniques

2.1 HufFman Coding

Let a source S output independently chosen messages from the set M  — 

{rni, m2 , . . . ,  m „}, with respective probabilities pi.p 2 , · · · ,Pn· hi his seminal 

paper, Shannon showed that the expected number of bits used to represent 

the messages m,’s. cannot be less than — · log p,) [43]. The cpiantity

-  · log Pi) is known as the entropy of the source S and shown as H{ S)

or //■(pi,p2 , . . . ,p „ )  [1].

A set of binary strings C =  {ci,C 2 , ... ,c „ } is called a code for the source 

5, if each message m, is to be coded into c,. A code C is called prefix code or 

instantaneous code if no codeword is a prefix of another codeword.

Huffman [22] gave an algorithm to produce prefix codes with minimal ex

pected codeword lengths. The algorithm is easy to implement and the code it 

generates is optimal given that each message must be coded with an integral 

number of bits. Later, Gallager showed that the redundancy of Huffman codes, 

defined as the average code length less the entropy, is bounded above by Pmax 

+  0.086, where Pmai is the probability of the most likely message [17]. The av

erage length of Huffman codes is equal to the entropy if occurrence probability

12
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of each message is a negative power of 2.

Huffman’s algorithm begins with the following construction:

construct_HufFman_tree()

T ^  { { in }  : m e M }  

repeat n-1 times,

set si and S2 *— the two sets of least probability in T  

T  ^ T [ j { { s u S 2 } } - { S l } - { s 2 }

^({•Sl  ̂-5 2 } )  ^  P('Sl) +  p{^2)

This procedure produces a recursively structured set of sets, each of which 

contains exactly two members. It can therefore be represented as a binary tree 

with the original messages at the leav̂ es. Then codes are assigned to messages 

by the following algorithm:

assign-CodesQ 

construct _HufFman_tree()

for each message do
Traverse the tree from the root to the message, recording 0 for a left 

branch and 1 for a right branch.

Figure 2.1 illustrates the process for an example message set.
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.symbol probability

a 0.2

e 0.3

i 0.1

o 0.2

u 0.1

X 0.1

u

code

10

01

001

11

0000

0001 u X

e a o

n

e 0.3 e 0.3 e 0.3 {a,o} 0.4

a 0.2 a 0.2 {{u,xhi} 0.3 e 0.3

O 0.2 O 0.2 a 0.2 ({U,x},i} 0.3

/ 0.1 {u,x} 0.2 O 0.2

u 0.1 / 0.1

X 0.1

({N,x}.i},e} 0.6

{a.o} 0.4

{{{{u,x},i},e},{a,o}} 10

Figure 2.1: An example of Huffman coding

Decoding is done similarly. It can be done by the following algorithm if the 

Huffman tree is available at decoding time:

decode_niessage()

node <— root

while node is not a leaf node do 

bit <— next_input_b it() 

if bit=0 then

node left[node] 

else

node <— right[node] 

return(rnessa^e[node])
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The main problem of Huffman codes is the decoding procedure. Keeping 

the code tree may be an easy solution if the total number ©f mcssiiges is small 

(e.g. 128 ASCII characters). But this solution is quite wasteful when the total 

number of messages is large. There is a slightly different representation of 

Huffman codes that decodes very efficiently despite the extremely large models 

that can occur in FTR  systems. This representation is known as the canonical 

Huffman code. It uses the same codeword lengths as a Huffman code, but 

imposes a particular choice on the codeword bits. The canonical Huffman 

algorithm is as follows:

assign_codes()

construct _HufFman_tree()

Use the Huffman tree to find the code length for each message and 

keep the total number of messages of each code length in 

the array numl[min2tngth,maxJength] 

for i  =  max-length downto minJength do 

i f  f =  max -length then 

f  irst-Code{i] <— 0 

else

first-Code[i\  <— {f irs t-Code{i  +  1] +  numl[i +  l])/2 

next-Code[i] <— first-Code\i] +  1 

for each message m with the code length i  do

Assign the code next-code[i], represented in i bits, to m 

next-code[i\ next-Code[i] + 1 

for each length i  of which no codeword exists do 

first-code[i\ <— 2̂

The algorithm above uses the Huffman tree to find the length of the code

words. After that, it processes the messages in descending codeword length, 

and assigns the smallest available codeword to each message. An available 

codeword is one which is not the prefix of another. Figure 2.2 illustrates the 

process for our example message set.
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symbol probability

a 0.2

e 0.3

i 0.1

o 0.2

u 0.1

X 0.1

code

01

10

001

1 1

0000

0001

u

construct_Huffman_tree()

length # cod-is (numl) first code

4 2 0 (0000)

3 1 1 (001)

2 3 1 (01)

symbol code length (bit)

a 2

e 2

/ 3

0 2

u 4

X 4

Figure 2.2: An example of canonical Huffman coding

The code generated by the algorithm above can be decoded very fast with

out the code tree if the information in the array f  irst-code is stored together 

with the code table. Decoding a message can be achieved by the following 

algorithm:

decode jmessageQ 

code c -  n extJnpu t_b it()

length — 1

while code <  first-Code[length] do 

code <- 2 · code+next Jnput_b it() 

length <— length +  1

return the message whose codeword is code
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Compression and decompression algorithms for the Huffman codes are c[uite 

straight forward.

compress J iu ff()

assign_codes() 

while not end of stream

m <— read_next_message()

output codeword[m] 

encode a special end of stream symbol

decompress Jiu ff()

repeat

rn <— decode_message() 

i f  m is the end of stream symbol then 

break 

else

output m

2.2 Arithm etic Coding

Arithmetic coding dispenses with the restriction that messages translate into 

an integral number of bits. It actually achieves the theoretical entropy bound 

for any source, with a small termination overhead of maximum two bits.

In arithmetic coding a stream is represented by an interval of real numbers 

between 0 and 1. .As the stream becomes longer, the interval needed two 

represent it becomes smaller, and the number of bits needed to specify that 

interval grows. Successive messages of the stream reduce the size of the interval 

in accordance with the message probabilities generated by the model. The more 

likely messages reduce the range by less than unlikely messages and hence add 

fewer bits to the stream.
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Before anything is transmitted, the range for the stream is the entire half 

open interval from zero to one, [0.1). As each message is processed, the range is 

narrowed to the portion of it allocated to the message. In Figure 2.3 arithmetic 

coding process of a string beginning with aaba is illustrated where individual 

symbol probabilities of a and b are 0.6 and 0.4 respectively.

after
nothing

1.0

0.6 -

0.0-

0.36 -

0.216

0.3024 -
0.26784 -

Figure 2.3: Representation of the arithmetic coding process

It is not really necessary for the decoder to know both ends of the range 

produced at the end of encoding. Instead, a single number within the range 

will suffice. To resolve the ambiguity, a special termination symbol must be 

encoded at the end of the stream.

The compression and decompression algorithms for the arithmetic coding 

are as follows:
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com press_arth()

Set the working interval workJnt *— [0,1) 

while not end of stream

m. <— read_next_m essage()

set workJnt i— the range in work.int that corresponds to the message m 

Transmit any number in workJnt as the output

decom press_arth()

read the number value in [1,0) representing the message ensemble

set workJnt <— [0,1)

repeat:

Find the message m for which the corresponding interval in 

workJnt includes value 

i f  m is the termination symbol then 

break 

else

output the message m

set workJnt <— the range in workJnt that corresponds 

to the message m

2.2.1 Increm ental Transmission and R eception

The algorithm above is overly simplistic. An important ejuestion arising is how 

to represent the shrinking interval in [0,1) as the process advances. Any finite- 

precision representation will be inadequate after a certain point. An approach 

to solve this problem is the incremental transmission and reception of the code. 

That is to encode and decode each bit as soon as it is determined. For e.xample, 

consider the encoding situation where ivorkJnt is completely included in the 

interval [0, 0.5). Since the final code must be within this range, we can be 

certain that it will begin with “0.0...” in binary representation. Similarly if 

workJnt is completely included in the interval [0.75, 1), then we can guarantee
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that the final code begins with “0.11...” . The decoder can also interpret the 

codes incrementally in a similar fashion. It receives the final code bit by bit and 

decodes a message as soon as it is determined. If coding is incremental, it can 

be performed using finite-precision arithmetic, because once a digit has been 

transmitted it will have no further influence on the calculations. For example, 

if the “0.11” of the interval [0.11001, 0.11100) has been sent, future output 

would not be affected if the interval were changed to [0.00001, 0.00100) or even 

[0.001, 0.100), thus decreasing the precision of the arithmetic required.

To adapt the given algorithms with respect to incremental transmission and 

reception let loiv and high represent the low and high end points of workJjit 

respectively. The following step must be appended into the while loop in the 

encoding algorithm.

while high < 0.5 or loiu >  0.5 do 

i f  high < 0.5 then 

outputbit(O) 

low *— 2 · low 

high <— 2 · high 

i f  loiv >  0.5 then 

ou tpu tb it(l) 

low <— 2 · (low - 0.5) 

high 2 · (high - 0.5)

And the last step must be replaced by the termination step which will be 

discussed later.

For incremental reception, the follow'ing step must be inserted into the 

the decoding algorithm just after the second clause. The include_next_bit() 

procedure reads the next input bit to the least significant bit of value, the 

number representing the message ensemble.
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while high <  0.5 or low > 0.5 do 

if  high <  0.5 then 

value 2 · value 

include_next_b it() 

low <— 2 · I OIL' 

high *— 2 · high 

i f  low >  0.5 then

value 2 ■ {value - 0.5) 

include_next_bit() 

low <— 2 · {low - 0.5) 

high <— 2 · {high - 0.5)

2.2.2 T he Underflow Problem

The encoder must guarantee that workJnt is always large enough to maintain 

the adequacy of the finite-precision arithmetic. Incremental transmission and 

reception guarantees that workJnt will be expanded as long as it completely 

falls into one of the upper and lower halves. So we know that low and high 

can only become close together when they straddle 0.5 . Suppose that, in fact, 

they become as close as

0.25 <  low < 0.5 <  high <  0.75

Then the next two bits sent will have opposite polarity, either 01 or 10. For 

example, if the next bit turns out to be 0 (i.e. high de.scends below 0.5 and 

[0, 0.5) is expanded to [0,1) ), the bit after that will be 1, since the range has 

to be above the midpoint of the expanded interval. Conversely, if the next bit 

happens to be 1, the one after that will be 0. Therefore, the interval can safely 

be expanded right now, if only we remember that whatever bit actually comes 

next, its opposite must be transmitted afterward as well. In this situation 

we simply expand [0.25, 0.75) to [0,1) remembering in a variable - we will call 

it BitsToFollow  -  that the bit that is output next must be followed by an 

opposite bit.
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i f  0.25 <  low and high <  0.75 then 

BitsToFolloiu  1 

low <— 2 · {low - 0.25) 

high i— 2 · {high - 0.25)

But what if, after this operation, it is still true that

0.25 < low <  0.5 <  high < 0.75 ?

Figure 2.4 illustrates this situation, where the current workJnt has been 

expanded a total of three times. Suppose that the next bit will turn out to be 

0, as indicated by the arrow in Figure 2.4.a being below 0.5 . Then the next 

three bits will be I ’s, since not only is the arrow in the top half of the bottom 

half of [0,1), it is in the top quarter, and moreover in the top eighth, of that 

half -that is why the expansion can occur three times. Similarly, as Figure 

2.4.b shows, if the next bit turns out to be 1, it will be followed by three O’s. 

Consequently, we need only count the number of expansions and follow the 

next bit by that number of opposites, replacing the code fragment above by-

while 0.25 <  low and high <  0.75 then 

BitsToFollow  *— B itsToFollow  +  1 

low 2 · {low - 0.25) 

high <— 2 · {high - 0.25)

Using this technique, the encoder guarantees that after the shifting opera

tions.

either low <  0.25 < 0.5 <  high.

or low <  0.5 <  0.75 < high.

(2 . 1)

(2.2)
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Figure 2.4: Scaling the interval to prevent underflow 

2.2.3 Term inating the Message

To finish a transmission, it is necessary to send a unique terminating symbol 

and then follow it by enough bits to ensure that the encoded string falls within 

the final range. After the terminating symbol has been encoded, toio and high 

are constrained by either (2.1) or (2.2) above. Consequently it is only necessary 

to transmit 01 in the first ca.se and 10 in the second to remove the remaining 

ambiguity.

The decoder's include_next.bit() procedure will actually read a few more 

bits than were sent by the encoder’s outputbit(). It does not matter what value 

these bits have, because the termination symbol is uniquely determined by the



CHAPTER 2. COMPRESSION TECHNIQUES 24

last two bits actually transmitted.

Witten et al. present a full description of arithmetic coding and discusses 

further details for implementation [50].

2.3 D ictionary Encoders and Ziv-Lempel C od
ing

Dictionary-based compression methods use the principle of replacing substrings 

in a te.xt with a codeword that identifies that substring in a “dictionary” , or 

“codebook” . The dictionary contains a list of substrings, and a codeword for 

each substring. This type of substitution is used naturally in everyday life, for 

example, in the substitution of the number 12 for the word December. Unlike 

statistical coding techniques such as arithmetic coding or Huffman coding, 

dictionary methods often use fixed-length codewords.

The simplest dictionary compression methods use small codebooks. For ex

ample, in digram coding, selected pairs of letters are replaced with codewords. 

A codebook for the ASCII character set might contain the 128 ASCII char

acters, as well as 128 common letter pairs. The output codewords are 8 bit 

each, and the presence of the full ASCII character set in the codebook ensures 

that any input can be represented. At best, every pair of characters is replaced 

with a codeword, reducing the input from 7 bits per character to 4 bits per 

character. At worst, each 7-bit characters will be expanded to 8 bits. Fur

thermore, a straightforward extension caters to files that might contain some 

non-.ASCTI bytes -one codeword should be reserved as an escape, to indicate 

that the next byte should be interpreted as a single 8-bit character rather than 

as a codeword for a pair of ASCII characters. Of course, a file consisting of 

mainly binary data will be expanded significantly by this approach; this is the 

inevitable price that must be paid for a static model.
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Another natural extension of this system is to put even larger entries in the 

codebook -perhaps common words like and and the, or coilimon components of 

words such as pre and tion. Strings like these that appear in the dictionary are 

sometimes called phrases. A phrase may sometimes be as short as one or two 

characters, or it may include several words. Unfortunately, having a dictionary 

with a predetermined set of phrases does not give very good compression, 

because the entries must usually be quite short if input-independence is to be 

achieved. In fact, the more suitable the dictionary is for one sort of text, the less 

suitable it is for others. For example, if this thesis were to be compressed, then 

one would do well if the codebook contained phrases related to compression, 

but such a codebook may be unsuitable for a text on linear programming.

One way to avoid the problem of the dictionary being unsuitable for the text 

at hand is to use a semi-static dictionary scheme, constructing a new codebook 

for each text that is to be compressed. However, the overhead of transmitting 

or storing the dictionary is significant, and deciding which phrases should be 

put in the codebook to maximize compression is a difficult problem.

.An elegant solution to this problem is to use an adaptive dictionary scheme. 

Practically all adaptive dictionary compression methods are based on one of 

just two related methods developed by Ziv and Lempel in the 1970s. These 

methods are usually labeled as LZ77 and LZ78, depending on the years in 

which they were published.These methods are the basis for many schemes that 

are widely used in utilities for compression and archiving, although they have 

undergone much fine-tuning since their invention.

Both methods use a simple principal to achieve adaptivity; a substring of 

text is replaced with a pointer where it has occured previously. Thus, the code

book is essentially all the text prior to the current position, and the codewords 

are represented by pointers. The prior text makes a very good dictionary, since 

it is usually in the same style and language as upcoming text; furthermore, the 

dictionary is transmitted implicitly at no cost, because tlie decoder has access 

to all previously encoded text. The many variants of Ziv-Lempel coding differ 

primarily in how pointers are represented, and in the limitations they impose
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on what the pointers are able to refer to. Bell et al. give detailed discussions 

of these techniques [1, 3].

2.3.1 LZW

LZW is one of the most widely known variants of Ziv-Lempel coding. It has 

been used as the basis of several popular programs, including the Unix compress 

program and some personal computer archiving systems.

The main difference between LZW and LZ78 is that LZW encodes only 

the phrase numbers, and does not have explicit characters in the output. This 

is made possible by initializing the list of phrases to include all characters in 

the input alphabet. LZW uses the greedy parsing algorithm, where the input 

string is examined character-serially in one pass, and the longest recognized 

input string is parsed off each time. A recognized string is one that exists in 

the string table. The strings added to the string table are determined by this 

parsing: Each parsed input string extended by its next input character forms 

a new string added to the string table. Each such added string is assigned a 

unique identifier, namely its code value. In precise terms, this is the algorithm:

compressXZW ()
Initialize the table to contain single-character strings 

read first input character c 

set the prefix string u *— c 

while not end of stream

read next input character c

if  u-’c exists in the string table then

U) (jJC

else

output code(u;)

append cue to the string table

cu <— c

output code(cu)
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At each iteration of the while loop an acceptable input string uj has been 

parsed off. The next character c is read and the extended string icc is tested to 

see if it exists in the string table. If it exists, then the extended string becomes 

the parsed string u  and the step is repeated. If u>c is not in the string table, 

then it is entered, the code for the successfully parsed string u  is put out as 

the compressed data, the character c becomes the beginning of the next string, 

and the step is repeated. An example of this procedure is shown in Figure 2.5. 

For simplicity a two-character alphabet is used.

INPUT
SYMBOLS a a b a b a b a a a

OUTPUT
CODES

0 0

NEW STRINGS 
ADDED TO 
TABLE

Figure 2.5; LZVV coding of the string ‘‘aabababaaa” (phrases 0 and 1 are 
present before coding begins)

This algorithm makes no real attempt to optimally select strings for the 

string table or optimally parse the input data. It produces compression results 

that, while less than optimum, are effective.

.A source is said to be ergodic if any sequence it produces becomes en

tirely representative of the source as its length tends to infinity. An important 

theoretical property of LZW (in fact of LZ78) is that when the input text is 

generated by a stationary, ergodic source, compression is asymptotically opti

mal as the size of the input increases. That is, LZW will code an indefinitely
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long string in the minimum size dictated by the entropy of the source. In fact 

very few coding methods enjoy this property [1].

Decom pression: The LZVV decompressor logically uses the same string 

table as the compressor and similarly constructs as the message is translated. 

Each received code value is translated via the string table.

An update to the string table is made for each code received (except the 

first one). When a code has been translated, its initial character is used as 

the extension character, combined with the prior string, to add a new string 

to the string table. This new string is assigned a unique code value, which 

is the same code that the compressor assigned to that string. In this way, 

the decompression incrementally reconstructs the same string table that the 

compressor used.

The basic algorithm can be stated as follows: 

d eco m p ressX Z W ()

last_code <— code <— read first input code 

output string_table[code] 

while not end of stream

code read next input code 

output string_table[code]

append ‘‘string.table[last_code],c” to stringJable where 

c is the first character of string_table[code] 

last_code <— code

Unfortunately, this simple algorithm has a complicating problem. The 

problem occurs when a new phrase is used by the encoder immediately af

ter it is constructed. In this case the decoder reads a code for which no entry 

corresponds in the string table yet. To tackle this difficulty the whz/e clause of 

the decoding algorithm must be extended as follows:
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while not end of stream

code read next input code 

if  code not defined (special case) then 

output string_table[last_code]

output the first character of string.table[last_code] 

append “string.table[last_code],c” to string.table where 

c is the first character of string_table[last.code] 

last .code code 

else

output string_table[code]

append “string.table[last.code],c” to string.table where 

c is the first character of string-table[code] 

last .code <— code

A decompression example is shown in Figure 2.6. Decoding of the phrase 

“aba” illustrates the tricky case mentioned above.

INPUT
CODES 0 0

OUTPUT
STRINGS ab aba aa

NEW STRINGS 
ADDED TO 
TABLE

Figure 2.6: LZW decoding of the string “001352” (phrases 0 and 1 are present 
before decoding begins)
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Implementation

3.1 Com pression Schemes

Th e Index. The test databases are indexed using an inverted file index struc

ture. Every string of alphabetic characters is indexed without case folding and 

stemming. Stemming is the automated conflation of related words, usually by 

reducing the words to a common root form [16]. Case folding is converting 

all characters to either upper or lower case. Each index term is stored at the 

vocabulary together with its frequency count. Within fragment frequencies of 

the index terms are also stored in the inverted lists together with the pointers. 

These frequency counts may be used to support ranked queries [41, 16].

Compression. The information of index terms and their overall frequen

cies, which is provided by the index, is used as a word-based semi-static model. 

Zero-order word-based applications of Huffman coding, canonical Huffman cod

ing, arithmetic coding and LZW coding have been investigated. LZW has also 

been implemented as character-based. Zero-order word-based approach is to 

take each word as a token instead of individual characters. Non-alphabetic 

characters are also taken as tokens since they are not included in the index. 

The Unix utilities Compress and Ucbcompress are also included in performance

30
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comparisons.

Several versions of arithmetic coding have been proposed in the literature 

[1]. The one applied in this study depends on the algorithm proposed by W it

ten et a/.[50, 1]. This version brings the restriction that the number of bits 

used to represent the cumulative frequencies of tokens can be at most one 

less than half of the number of bits used to represent the maximum integer 

[50, 1]. This implies that software arithmetics must be used at machines pro

viding hardware arithmetic operations on 32-bit integers maximum, to handle 

large collections with cumulative frequency of all tokens larger than 2*’ . The 

first two implemented versions use software arithmetics that is developed in 

this study (see Appendix A). The third one uses hardware arithmetics and 

it can be considered only for small collections if the machine used provides 

hardware arithmetic operations on 32-bit integers maximum. This version is 

not applied to the tb database which totally includes 453867 words and 782157 

non-alphabetic characters. The difference between the first and the second ver

sions is that the first keeps a table of cumulative frequencies, where the second 

calculates it from the token frequencies of the vocabulary at the beginning of 

decompression. The third version also calculates cumulative frequencies at the 

beginning of decompression, like the second version.

LZW is applied both as character-based and word-based. In both applica

tions 16-bit codewords are used. Although the character-based implementation 

completely disregards every information stored at the index, it is included in 

this study. The reason for this is that if the database is not static and a 

document insertion with new words occurs then the whole collection must be 

recompressed if it was previously compressed with respect to the word-based 

model provided by the index. Therefore, a word-based semi-static model is 

not convenient if document insertions with new words are likely to occur. So, 

this technique is hardly of any use for a static database, but may be the most 

convenient one if document insertions are frequent. This technic[ue deserves 

attention for one more thing. That is the character-based LZW is a one-pass 

approach and makes the compression and indexing simultaneously. So it can 

be considered as a fast alternative that gives relatively poor compression.
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Several data structures have been proposed for Ziv-Lempel coding [1]. One 

of the most convenient is a trie structure. Also there are several ways to repre

sent trie nodes [1]. We have implemented LZW using trie structures. Nodes of 

tries are implemented as linked lists for LZW . word(l) and LZW_char(l) and 

as binary search trees for LZW.word(2) and LZW_char(2).

The Unix utilities Compress emd Ucbcompress operate on files and cannot 

compress and decompress fragments within a file separately. To test their 

performance on the test databases, each fragment is copied to an artificial file 

and then compressed using the Unix utilities. Therefore, their time figures do 

not provide a good basis for comparison.

3.2 Test Databases

Three different text files are used to test the programs; aHcel3a.txt, un.dalamp 

and tb. The first one is Lew'is Carroll’s Alice in Wonderland, the second is 

a text about finding e-mail addresses of users at universities from all around 

the world, and the third is the collection of TidBITS, an electronic weekly 

newsletter. Concise information about the test databases are given in Table3.1.

Size ^  words #  n o n -a lp h ab e t ic  characters

(in  K B y te ) D istinct T ota l D istinc t T o ta l

a lic e l3 a .tx t 150 2976 26863 27 44197
u n .d a la m p 190 4598 28651 43 53597

tb 2900 21931 453867 44 782157

Table 3.1: Information about test databases

Each text is fragmentized twice; alicel3a.txt and un.dalamp with average 

fragment size of 1 KByte and 10 KByte, and tb with average fragment size of 

10 KByte and 100 KByte.
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3.3 R esults

Programs are implemented on Sun SPARCstations with CPU architecture 

SUNW 4/25 in a single user environment. The results are summarized in 

the following tables. Compression ratio is defined as the proportion of the size 

of the compressed text to the size of the original text. The time figures given 

are for the whole collections. In the tables, the columns user and system show 

the time figures given by the Unix time command. User time is the CPU time 

devoted to the user’s process. System time is the CPU time consumed by the 

kernel on behalf of the user’s process. Each of these figures are in seconds.
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C o m p . T im e  (s ec .) Decon^p. T im e  (s ec .) C o m p .

R a t io

C o d e  T a b le  

O v erh eadU ser S ystem U ser Sy stem

A r t h ( l ) 14 1 53 80 32% 8 %

A r t h (2 ) 14 1 54 78 32% -

A r t h (3 ) 8 1 15 44 32% -

C a ji. H u ff. 20 1 6 58 32% 8 %

Huffm гuı 23 1 6 65 32% 16%
L Z W _ w o r c l ( l ) 59 1 19 12 65% -

L Z V V .w o rd (2 ) 4 1 19 12 65% -

L Z W _ c h a r ( l ) 12 1 3 1 110% -

L Z W .c h a r (2 ) 4 0 3 1 110% -

com press 6 21 4 20 57% -

u cbco m p ress 5 19 4 21 66% -

Table 3.2: Experiment results for alicel3a.txt (av. frag, size =  1 KByte)

C o m p . T im e  (sec .) D ecom p . T im e  (sec .) C o m p .

R a tio

C o d e  T a b le  

O v e rh e a dU ser System U ser S y stem

A r t h ( l ) 16 1 52 80 32% 8%
A r t h (2 ) 15 1 52 78 32% -

A r t h (3 ) 8 1 15 44 32% -

C an . H u ff. 21 1 5 57 32% 8%
H u ffm an 23 1 5 64 32% 16%

L Z V V .w o r d ( l ) 50 1 3 2 48% -

L Z W _ w o r d (2 ) 3 1 3 2 48% -

L Z V V .c h a r ( l ) 9 1 2 1 72% -

L Z W .c h a r (2 ) 3 0 2 1 72% -

com press 2 2 1 2 43% -

ucbco m press 1 2 1 3 51% -

Table 3.3: Experiment results for alicel3a.txt (av. frag, size = 10 KByte)
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C o m p . T im e  (s e c . ) D ecom p . T im e  (s ec .) C o m p .

R atio

C o d e  T a b le  

O v e rh e a dU se r S y ste m U ser S y stem

A r t h ( l ) 19 1 65 116 32% 10%
A r th (2 ) 18 1 66 114 32% -

A r th {3 ) 10 1 23 65 32% -

C an . Huff. 43 1 7 70 33% 10%
H u ffm an 46 1 7 73 33% 20%

L Z V V _ w o rd (l ) 131 1 44 29 60% -

L Z V V _w o rd (2 ) 6 1 44 29 60% -

L Z W .c h a r ( l ) 16 1 5 1 114% -

L Z V V .c h a r (2 ) 5 0 5 1 114% -

com press 8 29 5 25 56% -

u cbcom press 6 26 5 27 69% -

Table 3.4: Experiment results for un.dalamp (av. frag, size =  1 KByte)

C o m p . T im e  (s e c . ) D ecom p . T im e  (s e c .) C o m p .

R atio

C o d e  T a b le  

O v e rh e a dU se r S y stem U se r S ystem

A r t h ( l ) 18 1 63 114 32% 10%
A r t h (2 ) 18 1 64 112 32% -

A r t h (3 ) 11 1 21 62 32% -

C a n . Huff. 43 1 65 64 32% 10%
H u ffm an 47 1 7 70 32% 20%

L Z W . w o r d ( l ) 118 1 6 3 48% -

L Z V V .w o rd (2 ) 4 1 6 3 48% -

L Z W .c h a r ( l ) 12 1 3 1  ̂ 77% -

L Z W .c h a r (2 ) 4 0 3 1 77% -

com press 2 3 6 3 43% -

ucbco m press 1 3 1 3 51% -

Table 3.5: Experiment results for un.dalamp (av. frag, size = 10 KByte)
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C o m p . T im e  (sec .) D econ ip . T im e  (sec .) C o m p . C o d e  T ab le

U se r System U ser System R atio O v e rh e a d

A r t h ( l ) 468 3 1303 2242 33% 3%
A r t h (2 ) 467 2 1266 2076 33% -

C an . H u ff. 527 30 112 1190 33% 3%
H u ffm an 442 28 108 1213 33% 6%

L Z W . w o r d ( l ) 10626 5 3.39 208 49% -

L Z W .w o r d (2 ) 77 2 339 208 49% -

L Z W _ c h a r ( l ) 135 11 50 7 81% -

L Z V V .c h a r (2 ) 43 6 50 7 .81% -

com press 38 42 13 40 46% -

u cbco m press 22 42 16 43 56% -

Table 3.6: Experiment results for tb (av. frag, size =  10 KByte)

C o m p . T im e  (sec .) D ecom p . T im e  (sec .) C o m p .

R atio

C o d e  T a b le  

O verh eadU se r System U ser System

A r t h ( l ) 467 2 1297 2219 33% 3%
A r t h (2 ) 466 1 1251 2075 33% -

C an . H u ff. 509 31 102 1158 33% 3%
H u ffm an 435 27 100 1185 33% 6%

L Z V V .w o r d ( l ) 9547 410 58 25 39% -

L Z V V .w o rd (2 ) 64 2 58 25 39% -

L Z W . c h a r ( l ) 141 8 35 5 56% -

L Z W .c h a r {2 ) 35 5 35 5 56% -

com press 14 8 9 7 38% -

ucbco m press 47 6 6 5 47% -

Table 3.7: Experiment results for tb (av. frag, size = 100 KByte)
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Conclusions

The purpose of this study was to compare various coding techniques to com

press the text database of an FTR  system. For this purpose the index has been 

used as a semi-static word-based modeler and several variations of arithmetic 

coding, Huffman coding and LZW  coding have been implemented.

The results reveal that both arithmetic coding (the third variant) and Huff

man coding give good compression with similar decoding speed. They compress 

the English text being represented in 2.5 bits per character and this quantity 

is not very sensitive to the fragment size. Arithmetic coding is superior since it 

does not require keeping a code table and provides faster encoding. The main 

disadvantage of arithmetic coding is that, at machines providing hardware 

arithmetic operations on 32-bit integers maximum, the cumulative frequency 

of all tokens cannot exceed 2* .̂ Decoding time increases dramatically if .soft

ware arithmetics is used to handle larger collections (the first and the .second 

variants of arithmetic coding). Comparison of the performance of the first 

and the second variants reveal that keeping a table of cumulative frequencies, 

which may be as large as 10% of the text, does not significantly improve the 

decompression speed, and must not be prefered.

Performance comparison between Huffman coding and canonical Huffman 

coding shows that they achieve the same compression with similar encoding and

37
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decoding speed. Canonical Huffman coding is superior because the codetable 

overhead is less, and is the most convenient method when the size of the text 

reciuires software arithmetics for arithmetic coding.

Performance of LZVV is not good in compression ratio but gets better as 

the fragment size increases. This is due to the fact that LZW is an adaptive 

compression technique and normally gives better compression as the stream 

to be compressed gets larger. LZW ’s compression and decompression speed 

is relatively good but decompression speed of the word-based version signifi

cantly gets worse as the average fragment size decreases. This is due to the 

dictionary initialization that must be done at the beginning of decompression 

for each fragment. The system’s standard compression programs behave sim

ilar to LZVV. Their compression performance gets better as the fragment size 

increases. This is natural since they are variants of the Ziv-Lempel coding, 

like LZW. Especially ucbcompress uses the LZC variant which is a slightly im

proved version of LZW. The reason of the significant difference between the 

performances of the word-based LZW and ucbcompress is the word-based ap

plication of LZW. This increases the compression performance of LZW since 

it uses words instead of characters; but decreases both compression and de

compression speed due to the initialization of the large dictionary. One more 

thing to note is the system’s compression utilities operate on files and cannot 

compress and decompress fragments within a file separately. This is the main 

reason for the seeming slowness of the system’s utilities, especially when the 

average fragment size is small. Therefore these time figures do not provide a 

good basis for comparison.

Character-based implementation of LZW shows that the information of 

existing words contributes greatly to the performance of LZW. Therefore, word- 

based LZW may be a convenient technique if term frequency information is not 

available in the index.

The character-based implementation of LZW can even increase the size of 

the text when the average fragment size is small. Therefore, using shorter codes 

instead of 16-bit codes may be more appropriate for compressing collections
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of short documents. Still the speed figures are very rheaningful and shows 

the improvement in compression time when a one-pass approach is used. But 

compression time is hardly of any concern for static FTR systems and may 

matter only if the database is dynamic and insertion of new documents with 

new words is likely to occur frequently.

Another noteworthy point is the great improvement in compre-ssion time 

obtained by the binary search tree implementation of the trie nodes for LZVV. 

Word-based compression time of the tb collection has dropped from three hours 

to appro.ximately one minute. This improvement is less significant for small 

vocabularies and character-based implementations, but is extremely significant 

for texts including a high number of distinct words.

Suggestions for Future Research

Performance of sophisticated adaptive models such as Dynamic Markov 

Compression (DMC) and Prediction by Partial Match (PPM ) for compression 

of the text database of an FTR system may be analyzed [1]. These techniques 

give very good models on a long text, but compression is relatively poor at 

the initial steps. Therefore, an appropriate way to use these models may be 

to split the text into large blocks, each consisting of several documents; and 

compress each block independently. To access any part of the block, it must 

be decoded from the beginning. Then determination of the block size emerges 

as an essential tradeoff question between retrieval time and storage space.

Coding techniques used in this study may be used in conjunction with 

different types of inverted files which does not give the exact information of 

term frequencies. A challenging and common situation is index terms may be 

stemmed or case-folded. In this case some sophistication is needed to use the 

index as a modeler.



Appendix A

Software Arithmetics for 
Arithmetic Coding

Consider the problem of finding the exact result of the operation (a-6)/c\ where 

all a, b and c are integers known to be less than half of m axJnt, the maximum 

integer representable in the registers, but a · 6 is larger than maxJnt. One 

more thing that is known is either a or 6 or both are less than c, and c is 

greater than zero, so that the result oi {a - b)fc is also less than m axJnt. Such 

a problem arises several times in the decoding procedure of arithmetic coding, 

the version proposed by Witten et al. [50, 1] and applied in this study.

First calculating the decimal value of a/c and then multiplying this with 

b usually does not return the exact result because of the finite-precision float

ing point operations involved. To find the exact value we have developed an 

algorithm that uses some basic facts from the elementary number theory. For 

convenience, assume that a <  b. Let b be equal to dj · c -f rj; wTere di and ri 

are the quotient and the remainder resulting from the division of b by c. Then 

the problem of finding {a-b)/c becomes the problem of finding a-di + {a -r i)/ c . 

If a · Ti is less than maxSnt, then the rest is straight forward. Otherwise, some 

more effort is needed.

'A l l  divisions in this discussion are integer divisions
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At this point, one may think that the value of (a · fi)/c can be calculated 

by using the same simple partitioning recursively. But there is no guarantee 

that this recursion will terminate after a finite number of iterations. In fact, it 

will never stop if 6 is less than c. Therefore, a more delicate solution is needed.

Let n be the maximum integer such that n ■ a is less than maxJnt, and let 

m ulti Ji denote n-a. Let ri be equal to d2 «+ ^ 2 : where di and T2 are the quotient 

and the remainder resulting from the division of t’l by n. Then the problem of 

calculating {a -r i)/ c  becomes the problem of calculating {multi m - ¿2 + a -7-2)/c.

In short, our algorithm uses the fact that

{a ■ b)/c =  a ■ di +  {multi.a ■ d2 +  a · r2)/c.

{multi .a-d2) lc  and {a-r2)jc  are calculated  by ca llin g  the algorithm  recursively.

Remainders are accumulated in an external variable and the result is corrected 

w henever th e  accu m u la ted  value exceeds c. T h e  q u estion  of convergence o f the  

algorithm arises because of the recursive calls. This question will be addressed 

after the p resen ta tion  o f th e  pseudo-code.

The following algorithm calculates (a · b)/c in the way discussed above if 

a · b exceeds max Ant. It also considers the possibility of the trivial case that 

a · b IS less than max Ant. The variable residue is a static external variable and 

accumulates the remainder values resulting from different divisions. The vari

able quotient is a local variable and is used to store the value of the division 

being calculated. All variables are integers and the operations div and mod 

stand for the integer division and modulation operations respectively.

APPENDIX A. SOFTWARE ARITHMETICS FOR ARITHMETIC CODINCA1

The algorithm is as follows:



m ultip ly  _divide(a, 6, c) 

i f  a=0 or 6=0 then 

return(O)

i f  6 <  [inaxJnt div a) then 

quotient *— {a · b) div c 

I'esidue <— residue +  ((a · 6) mod c) 

i f  residue >  c then

quotient *— quotient +  1 

residue <— residue — c

else

quotient ^  a · {h div c) 

i'\ <r- b mod c 

n <— maxJnt div 6 

i f  Ti <  n then

quotient ^  quotient +  ((r j · a) div c) 

residue ^  residue +  ((r i ■ a) mod c) 

i f  residue > c then

quotient <— quotient +  1 

residue <— residue — c

else

quotient <— quotient+ m ultip ly_d ivide(ri div n,a -n ,c ) 

quotient <— quotient+ m ultip ly_d ivide(ri mod n ,a ,c ) 

return (quotient)
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Convergence o f the A lgorithm :

Since all variables are integers, we can assure that the algorithm will ter

minate after a finite number of iterations if we can show the multiplication 

factors decrease in recursive calls. Recall that the basis of the algorithm is 

partitioning the question to calculating a ■ di, [multi.a ■ d2)/c and (a · r2 )/c, 

and calculation of {multi.a ^ 2) Ic  and {a -r2) l c  is done by calling the algorithm 

recursively. It is obvious that numerators of these recursive calls will be less 

than a · 6 if ¿ 1  is greater than zero. Then suppose di is equal to zero. The
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algorithm will enter the last else clause in which the recursive calls occur, only 

if both a and ¿ 2  different than zero. Then the only possibility that can 

lead to an infinite loop is the possibility of being equal to zero. Even in that 

case we know, by definition of that multija is greater than half of

tnaxJnt, so greater than c. Hence, we can assure that di will be greater than 

zero at rnultiply jiiv ide{d 2·, m ultiM , c ) , or at multiply jdivide{ri div n,a · n,c), 

as it appears in the algorithm. Therefore, the numerator of recursive calls will 

decrease in at most two consecutive steps, and the algorithm will terminate 

after a finite number of iterations.
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