
Ri:. f· ,7 Vv '̂ ; '?.
•Í¿· 'C«ii iíí a it'vJ ‘iiî if ii ’Ѵ.І»

* .·Λ ·̂ ¡-/л ̂?л ί\ ··? 3 r̂?} «?** 'Tä »'■’·.' ·> Í,·· ;> -̂ ‘ί;, ·Μ ’;Í! ·.!*
« ІМ* ¿ ' ^ І.М i ' # vW V w '-S»' Î. J »i '4^ i ¿

tSi <s l Í H t H Й i" 3 ■!' 'Я :·
«<«. 4<,· 4. ij .. »a’· '«»· 4.І.1І .« W' * <«!·'

• w '·ς ̂ W V Ч,' Iv: .-·.' w s*

•гл - .">, , “;, r, ;' Г· 'У ·'■·- .■ ■*· Г' ?: · ,Гу

tc»· ■i ■«[·>

»... «'>.·;. '· Л* t. Д. ir/ ĵ ,;.■ -Д

•.'S ·-·. -.. ·· ̂ f i · . ·· -<.

• А В Л
i B S B

ADAPTIVE SOURCE ROUTING AND
ROUTE GENERATION FOR

MULTICOMPUTERS

A THESIS

SUBMITTED TO THE DEPARTMENT OF COMPUTER

ENGINEERING AND INFORMATION SCIENCE

AND THE INSTITUTE OF ENGINEERING AND SCIENCE

OF BILKENT UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF SCIENCE

By
Yücel Ay doğan

July, 1995

II

I certify that I have read this thesis and that in my opinion it is fully adequate,
in scope and in quality, as a thesis for the degree of Master of Science.

Assoc. Prof. C«ivdet Aykanat (Advisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,
in scope and in quality, as a thesis for the degree o f ,Master of Science.

Asst. Prof. Ilyas Çiçekli

I certify that I have read this thesis and that in my opinion it is fully adequate,
in scope and in quality, as a thesis for the degree of Master of Science.

Asst. Prof. Tuğrul Dayar

Approved for the Institute of Engineering and Science:

'rot. MehmexBaray
Director of the Institut

ABSTRACT

ADAPTIVE SOURCE ROUTING AND ROUTE
GENERATION FOR MULTICOMPUTERS

Yücel Ay doğan
M .S. in Computer Engineering and Information Science

Advisor: Assoc. Prof. Cevdet Aykanat
July, 1995

Scalable multicomputers are based upon interconnection networks that typi
cally provide multiple communication routes between any given pair of proces
sor nodes. In such networks, the selection of the routes is an important prob
lem because of its impact on the communication performance. We propose the
adaptive source routing (ASR) scheme which combines adaptive routing and
source routing into one which has the advantages of both schemes. In ASR,
the degree of adaptivity of each packet is determined at the source processor.
Every packet can be routed in a fully adaptive or partially adaptive or non-
adaptive manner, all within the same network at the same time. The ASR
scheme permits any network topology to be used provided that deadlock con
straints are satisfied. We evaluate and compare performance of the adaptive
source routing and non-adaptive randomized routing by simulations. Also we
propose an algorithm to generate adaptive routes for all pairs of processors in
any multistage interconnection network. Adaptive routes are stored in a route
table in each processor’s memory and provide high bandwidth and reliable in
terprocessor communication. We evaluate the performance of the algorithm on
IBM SP2 networks in terms of obtained bandwidth, time to fill in the route
tables, and efficiency exploited by the parallel execution of the algorithm.

Keywords: Adaptive Routing, Multicomputers, Interconnection Networks, Par
allel Processing

111

ÖZET

Ç O K İŞLEMCİLİ BİLGİSAYARLARDA UYARLANABİLİR
K A Y N A K DAĞITIM I VE Y O L ÜRETİM İ

Yücel Aydoğan
Bilgisayar ve Enforaıatik Mühendisliği, Yüksek Lisans

Danışman: Doç. Dr. Cevdet Aykanat
Temmuz, 1995

Olçeklenebilir çokişlemcili bilgisayarlar herhangi iki işlemci arasında birden
fazla haberleşme yolu sağlayan bağlantı ağları üzerine kurulan sistemlerdir.
Bu tür ağlarda yol seçimi haberleşme performansını etkileyen önemli bir etk
endir. Uyarlanabilir Kaynak Dağıtımı (UKD), uyarlanabilir dağıtım ve kaynak
dağıtımı yöntemlerini birleştiren ve her ikisinin de avantajlarına sahip olan
bir dağıtım yöntemi olarak önerilmiştir. Her paket tam uyarlanabilir, kısmi
uyarlanabilir yada uyarlamasız şekilde yöneltilir. UKD yöntemi kilitlenme
sınırlamalarının sağlandığı herhangi bir ağ topolojisi kullanımına izin verir.
Uyarlanabilir kaynak dağıtımı ve uyarlamasız rastlantısal dağıtım yöntemleri
benzetim yapılarak karşılaştırılmıştır. Ayrıca çokişlemcili bilgisayar ağlarında
işlemciler arasında uyarlanabilir yollar üreten bir yöntem önerilmiştir. Üretilen
uyarlanabilir yollar her işlemcinin belleğindeki yol çizelgelerinde saklanır. Bu
yöntem yüksek veri iletişim kapasitesi ve işlemciler arası güvenilir iletişimi
sağlar. Önerilen yöntem ile IBM SP2 çokişlemcisi ağları kullanılarak deneyler
yapılmış ve sağlanan veri iletişim kapasitesi ve işlemcilerde yol çizelgesi
oluşturma zamanları ölçülmüştür. Yöntemin çokişlemcili bilgisayarlarda par
alel işlemesi ile elde edilen verim de deneysel olarak sunulmuştur.

Anahtar Sözcükler: Uyarlanabilir Dağıtım, Çokişlemcili Bilgisayarlar, Bağlantı
Ağları, Paralel İşleme

IV

ACKNOWLEDGEMENTS

I would like to express my deep gratitude to Dr. Bülent Abalı for his invaluable
guidance, suggestion, and encouragement throughout the development of this
thesis. I would like to thank my advisor Dr. Cevdet Aykanat for his guidance,
suggestions, and contributions. I would like to thank Dr. Ilyas Çiçekli for
reading and commenting on the thesis. I would also like to thank Dr. Tuğrul
Dayar for reading and commenting on the thesis. I owe special thanks to
Dr. Craig B. Stunkel at IBM T.J. Watson Research Center for providing figures
for the thesis.

Bu çalışmamı
anneme ve bahama

adıyorum

VI

Contents

1 Introduction 1

2 Adaptive Source Routing (ASR) 5

2.1 Adaptive Source Routing S ch em e... 6

2.2 The Matching of Packets and Outputs ... 8

2.2.1 Maximum Matching P r o b le m ... 8

2.2.2 Maximum Matching H euristic... 9

2.2.3 Performance of Maximum Matching H euristic................ 11

3 Simulation of Adaptive Source Routing 13

3.1 The Switch Architecture... 13

3.2 The Network .. 15

3.3 The Simulator.. 16

3.3.1 Packet Generator... 17

3.3.2 Control of Packet Flow in the N etw ork............................ 19

3.4 The Routing Schemes in the Sim ulator.. 22

3.4.1 Random R ou tin g .. 22

3.4.2 Adaptive Routing... 22

vii

3.5 Simulation R e s u lts ... 23

4 Route Generation in Multicomputers 25

4.1 Route Table Generator.. 26

4.1.1 Routability between P rocessors... 29

4.1.2 Generating All Adaptive R outes... 31

4.1.3 Selection of an Optimal R ou te ... 34

4.2 IBM SP2 Network A rchitecture.. 36

4.2.1 The Switch C h i p ... 37

4.2.2 IBM SP2 Network T opology .. 39

4.3 Route Generation in SP2 N etw orks.. 40

4.3.1 An Example Route Generation ... 40

4.3.2 Adapting the Algorithm to SP2 Networks44

4.3.3 Experimental Results.. 44

4.3.4 An Improvement in the Algorithm 45

4.4 Parallel Route Table G en erator.. 47

4.4.1 Experimental Results... 49

5 Conclusion 52

A Simulation Results of ASR 54

B IBM SP2 Network Examples 60

CONTENTS viii

List of Figures

2.1 Message Packet Format.. 6

2.2 A bipartite graph and its m atch in g ... 8

2.3 The Matching Heuristic .. 9

2.4 A request matrix R and finding the maximum matching 10

2.5 A bipartite graph with S{G) = 2 .. 12

3.1 Maximum matchings for some of the possible request matrices
for 2 X 2 sw itches... 14

3.2 Request matrices for 2 x 2 switches for which the maximum
matchings may ch a n g e ... 15

3.3 8 x 8 Benes n e tw o rk ... 16

3.4 Function defined for generating an inter-arrival time between
two successive packets using Poisson distribution.......................... 18

3.5 Algorithm used for generating packets into the network at an
arbitrary t im e ... 19

3.6 Algorithm of packet flow control during one clock cycle. Move
ments of all packets in the network during one clock cycle is
handled by this algorithm.. 20

3.7 Algorithm for the network simulator .. 21

4.1 Route Table Generator.. 27

ix

LIST OF FIGURES

4.2 Generating routes from a processor to other processors............. 28

4.3 Modified Breadth First Search algorithm. The algorithm finds
all shortest paths from a source processor node to other proces
sor nodes in a topology graph.. 30

4.4 The algorithm for generating the solution graph S = (V5, Es)
for a routability graph R = {Vr , Er) .. 32

4.5 Example digital search tree... 33

4.6 Algorithm for determining maximum adaptive path in a A:-stage
multistage graph S = (V5, Es). It also constructs and returns
the maximum adaptive path.. 36

4.7 The Switch chip organization. Courtesy Dr. Craig. B. Stunkel,
IBM T.J. Watson Research Center... 37

4.8 The Switch Board consisting of 8 Switch Chips (an SP2 frame) . 39

4.9 SP2 48 way system interconnection... 40

4.10 A 32 node SP2 network... 41

4.11 i? = (Vfl, Eß) for processor pair (4,30) .. 42

4.12 S = {Vs, Es) for processor pair (4 ,3 0).. 43

4.13 A parallel algorithm for generating routes at a processor to other
processors in the network.. 48

4.14 Speedup graph for parallel route table generator......................... 50

4.15 Efficiency graph for parallel route table generator..................... 51

A .l Performance of adaptive source routing and non-adaptive ran
dom routing on a 16 X 16 network with uniform communication
pattern... 55

A.2 Performance of adaptive source routing and non-adaptive ran
dom routing on a 32 X 32 network with uniform communication
pattern... 55

LIST OF FIGURES XI

A.3 Performance of adaptive source routing and non-adaptive ran
dom routing on a 64 X 64 network with uniform communication
pattern... 56

A.4 Performance of adaptive source routing and non-adaptive ran
dom routing on a 128x128 network with uniform communication
pattern... 56

A.5 Performance of adaptive source routing and non-adaptive ran
dom routing on a 512x512 network with uniform communication
pattern... 57

A .6 Performance of adaptive source routing and non-adaptive ran
dom routing on a 16 X 16 network with shift-right communica
tion p attern .. 57

A .7 Performance of adaptive source routing and non-adaptive ran
dom routing on a 32 X 32 network with shift-right communica
tion p attern .. 58

A .8 Performance of adaptive source routing and non-adaptive ran
dom routing on a 64 X 64 network with shift-right communica
tion p attern .. 58

A.9 Performance of adaptive source routing and non-adaptive ran
dom routing on a 128 x 128 network with shift-right communi
cation pattern.. 59

A. 10 Performance of adaptive source routing and non-adaptive ran
dom routing on a 512 x 512 network with shift-right communi
cation pattern.. 59

B. l A 128 node network consisting of 8 first stage and 4 second
stage switch boards. Courtesy Dr. Craig. B. Stunkel, IBM
T.J. Watson Research Center... 61

B.2 A 256 node network consisting of 16 first stage and 16 second
stage switch boards. Courtesy Dr. Craig. B. Stunkel, IBM
T.J. Watson Research Center... 61

List of Tables

2.1 Performance of the matching heuristic. Percentage of the time
a maximum, or a maximum—1, or a maximum—2 matching is
found.. 12

3.1 Throughput under uniform and non-uniform packet traffic . . . 23

4.1 Average adaptivity for different sized networks 44

4.2 Average route table generation times for one p rocessor45

4.3 Average route table generation times for one processor for the
improved algorithm... 46

4.4 Statistics for parallel route table generator................................... 50

xn

Chapter 1

Introduction

Scalable multicomputers are based upon interconnection networks that typi
cally provide multiple communication routes between any given pair of pro
cessor nodes. Interconnection networks [2, 7] can be classified according to
their topology. A static network topology is one that does not change after the
machine is built. Ring, star, mesh, and hypercubes are some of the examples
for static interconnection topologies. Parallel computers employing static in
terconnection networks can have very good performance on specific problems
to which their network topologies are well matched. However, it is hard to
achieve a multipurpose highly parallel system using a fixed interconnection
topology short of an all-to-all network. This difficulty has given rise to much
work on dynamic interconnection networks. Bus networks, multistage switch
ing networks, and crossbar networks are examples for dynamic interconnection
topologies. A bus network is very much like a party-line telephone. A crossbar
network, on the other hand, is like a private exchange that allows any processor
to contact any other non busy processor at any time. A multistage switching
network falls in between these two extremes.

Multiple routes provided by interconnection networks and routing algo
rithms play important role in providing low latency, high bandwidth, and re
liable interprocessor communication. Examples of interconnection networks
used in commercial machines are the IBM SP2 multistage interconnection net
work [1, 27], Cray T3D 3-dimensional torus [12], and the Connection Machine
fat tree [4, 16].

Given an interconnection network, a distance measure D can be defined on
it. A routing algorithm is said to be minimal [22] if for every sequence of nodes

1

CHAPTER 1. INTRODUCTION

Go, such that they conform a feasible path from gq to Ok, it holds that
D{ai,ak) > D(aj,ak) if i < j , i.e., every hop brings the message closer to its
destination.

A routing algorithm is adaptive if for some pair of nodes a, b it can use more
than a path when routing messages from a to b. Note that not only must these
paths exist physically, but the routing algorithm must be able to make use of
them. The choice of the path to be taken by a particular message may depend
on many factors, e.g., faulty links or congestion in the network. Minimal fully
adaptive algorithms do not impose any restrictions on the choice of shortest
paths to be used in routing messages; in contrast, partially adaptive minimal
routing algorithms allow only a subset of available minimal paths in routing
messages. The well known e-cube [5] algorithm is an example of non-adaptive
routing algorithms [5, 6] since it has no flexibility in routing messages.

Usually, two kinds of routing algorithms are defined. In packet switching
routing, the messages are of constant size and they are called packets. In this
kind of routing, packets are moved from node to node. If the messages are of
variable size, wormhole routing can be used instead. In wormhole routing, a
message m is divided into a sequence of constant size flits. The first flit (the
head) of the sequence must hold the destination’s address because it is used
to determine the path the message must take. Once a link is occupied by the
head, it cannot be used for other messages until the last flit of m has left it. If
the head of m discovers that the next link it has to traverse is being used, it
must wait in the buffers until the link is freed.

Adaptive routing schemes are employed in some networks to eliminate con
gestion by finding alternate routes to destinations [3, 4, 6, 13]. On the other
hand, some networks trade off performance for simplicity of switch design be
tween flexible choice of topology by employing non-adaptive routing schemes
such as the source routing scheme used in SP2 [1, 27]. In the source routing
scheme, the packet route is deterministic and it is completely determined at the
source processor sending the packet. In the first part of this thesis, we propose
the adaptive source routing (ASR) scheme which combines adaptive routing
and the source routing to exploit the advantages of both schemes. In ASR,
the degree of adaptivity of each packet is determined at the source processor
node. Every packet can be routed in a fully adaptive, or partially adaptive, or
non-adaptive manner, all within the same network at the same time. Adaptive

CHAPTER 1. INTRODUCTION

source routing is a superset of the source routing scheme used in IBM SP2 mul
ticomputer, thus ASR is backward compatible with the SP2 routing scheme.
The ASR scheme also permits any network topology to be used provided that
deadlock constraints are satisfied, unlike other adaptive routing schemes.

The ASR scheme has the advantages of both adaptive routing and source
routing schemes as it combines both. However, the problem we address when
we make use of adaptivity is the assignment of outputs to the packets in the
switches. The switch must -adaptively and in a conflict free manner- assign an
output to each packet from a set of permitted outputs specified in the packet
header, with the consideration that multiple packets may be waiting for an
output assignment. This problem can be formulated as a maximum matching
problem in a bipartite graph [19, 23, 28]. Polynomial time algorithms exist for
solving maximum matching problem [19, 23] however these algorithms require
sophisticated data structure that are difficult and impractical to implement
in switch hardware. We propose a maximum matching heuristic that can be
implemented in terms of primitive logic operations AND, OR, NOT, and Rotate
which makes it possible to implement in switch hardware.

The performance of the ASR scheme is evaluated by a network simulator.
We describe the network simulator and present the experimental results of
simulations on a sample network. We compare the ASR scheme with non-
adaptive random routing scheme by giving the average latency as a function
of average load in the network for different sized networks.

The second part of this thesis is on route table generation for multicom
puters based upon any interconnection network. Packets in interconnection
networks that have a regular structure, make use of the regular structure in
the interconnection topology to determine the possible ports that lead the
packet to correct destination at each stage. The main disadvantage of such
networks is the restriction on the number of processors that can be connected
to maintain the interconnection structure. The requirement is that the number
of processors should generally be a power of 2. IBM SPl and SP2 multicom
puters make use of multistage interconnection networks that provides a wide
flexibility in the number of processors connected because of the interconnect
technology used. However such networks need not have any structure in the
interconnection topology which complicates route decision at each stage.

CHAPTER 1. INTRODUCTION

We propose an algorithm for route generation in any multistage intercon
nection network regardless of the regularity in the topology. Generated routes
for each pair of source-destination processors are adaptive routes that provide
multiple distinct paths and are stored in a route table in each processor’s mem
ory. We implemented and evaluated the performance of the proposed algorithm
on IBM SP2 [26] interconnection networks. The SP2 switch architecture and
the network implementations are introduced. The experimental results show
how much the generated adaptive routes make use of the physically existing
paths with the execution times on different sized networks. We also give an
improvement in the algorithm and the results of the improvement. The parallel
version of the proposed algorithm is also presented.

The organization of the thesis is as follows: we describe the proposed adap
tive source routing scheme and the maximum matching heuristic in a bipartite
graph in Chapter 2. The network simulator and the simulation results of ASR
on a sample network are given in Chapter 3. The proposed route generation al
gorithm for any interconnection network and experimental results on IBM SP2
network samples with the parallel route generation algorithm are presented in
Chapter 4. Finally, conclusions are given in Chapter 5.

Chapter 2

Adaptive Source Routing (ASR)

In adaptive routing networks, message packets make use of multiple paths
between source-destination node pairs [6]. Switches alleviate the congestion
problem by sending packets from less busy alternate routes. For example, a
busy output port will cause an adaptive routing switch to use another output
port in routing a packet to its destination. This means that the adaptive
routing switch must know which of its outputs lead to the intended destination.
For this reason, a common requirement for all adaptive networks is a regular,
simply described network topology such as a hypercube, mesh, ¿-ary n-cube,
or a fat tree [3, 4, 6, 13, 16]. The switches then have an implicit knowledge
of the topology, and therefore can route packets using shortest paths. For
example, in a 2-dimensional mesh topology, each switch knows that a node at
the upper right corner of the network can be reached by sending a packet either
in the North or East direction. In an alternative approach, routing tables may
be put in each switch, however this would be impractical since it would occupy
valuable real-estate on the switch chips.

In the source routing scheme, unlike adaptive routing, switches need not
know the topology; the source processor determines the route and encodes the
routing information in the packet header, which is then used by the switches.
Thus, switches make routing decisions purely based on local information. For
example, in the SP2 multistage network, which consists of 8 x 8 switches [27],
the packet header for an n-hop message initially contains 3-bit routing bytes
Ri, R2 , .. ■, Rn as shown in Fig. 2.1. Each routing byte indicates a switch port
numbered from 0 to 7. The source processor determines the route and puts

CHAPTER 2. ADAPTIVE SO URGE RO UTING (ASR)

LENGTH Ri Rn DATAI DATAk

Figure 2.1. Message Packet Format

respective bytes in the header. As the message packet proceeds in the net
work, each switch examines the first byte and forwards the packet through the
indicated output port. The switch also strips off that first byte before forward
ing the packet to the next level in the network. Thus the packet contains no
routing information upon arriving at its destination. In SP2, routing bytes are
computed only once and then kept in a route table in each processor node.
Keeping route tables in processors is inexpensive since processors already have
large memory. The algorithm for creating the routing tables is described in [1].
The route table approach enables routing to be done in a topology independent
fashion which is important in practice. Any network topology is possible to
implement without having to change the hardware or the routing algorithms,
provided that cost, performance, and deadlock constraints are satisfied. Fur
thermore, faulty links and switches are handled easily by modifying routing
tables. In that respect, source routing is more flexible than adaptive routing.

2.1 Adaptive Source Routing Scheme

In the adaptive source routing scheme proposed in this thesis, the packet format
is similar to that of SP2. However, each routing byte indicates a set of possible
output ports, rather than a specific output port. Each m-bit byte has the
format R = rm-i^m-2 · · · 0̂) where m is the number of switch ports. One bits
indicate the set of outputs that the switch is permitted to route the packet
through. Routing header is determined by the source processor sending the
message packet, as in source routing. Each switch examines the first byte and
adaptively selects from one of permitted outputs by considering the local traffic,
and then forwards the packet to the next level in the network. The switch also
strips off that first byte before forwarding the packet as in source routing. For
example, in a network constructed of 8 x 8 switches such eis in SP2, a packet
header may consist of bytes Ri = 00001111, i?2 = 11000000, R3 = 01000000,
which tells to the first switch that the packet may be routed through one of

CHAPTER 2. ADAPTIVE SO URGE RO UTING (ASR)

the four ports 0-3, and to the next switch that through one of the ports 6, 7,
and to the last switch that through the port 6. Thus, the number of distinct
paths a packet may follow from source to destination is

^path = |7?l| X W X X |77„_i| X |7?„| (2 .1)

where |i?,| is defined as the number of ones in the routing byte 72,·. Obviously
Npath paths must exist between the source and destination, and any combina
tion of the outputs specified in the header must correctly lead the packet to
its destination. In Chapter 3 of the thesis, we describe only the switch archi
tecture and simulations of the proposed routing scheme. The algorithms we
proposed for determining routing headers for multistage interconnection net
works will be described in the later chapters and the experimental results on
SP2 interconnection networks are also presented.

Each source processor can determine the degree of adaptivity of each mes
sage packet by varying TVpath· If .Âpath = 1, then the adaptivity is zero; the
packet is to be routed through a single deterministic path. This case is equiv
alent to the routing scheme used in SP2 [27]. Furthermore, TVpath = 1 case
may be useful for several other applications. When interprocessor communi
cation patterns are known in advance, optimal route between each processor
pair may be selected to minimize congestion. A heuristic for solving that op
timization problem is described in [1]. When operating in the SIMD mode
such that permutations to be realized by the network are known in advance,
single deterministic routes may be selected. A/path = 1 Ccise may also be use
ful for diagnosis of the interconnection network, where faulty links or switches
are to be determined; for example a source processor may identify faulty el
ements by circulating packets through deterministic paths. If Apath = max,
then the adaptivity is maximum and packets may reap performance bene
fits of full adaptivity. This case is useful when some switches get congested
due to non-uniform message traffic and difficult communication patterns. If
1 < Apath < max, then each packet is routed in a partially-adaptive manner,
where only a subset of all possible paths is utilized. This case may be useful
when the network is to be logically partitioned among multiple parallel tasks
so that their respective communications do not influence each other; using the
ASR scheme, each packet may be forced to remain in its partition, however
routed in a fully adaptive manner within the partition.

CHAPTER 2. ADAPTIVE SO URGE RO UTING (ASR)

IN OUT
0

1

Figure 2.2. A bipartite graph and its matching

2.2 The Matching of Packets and Outputs

In this section, we address the problem of assigning outputs to the packets.
Each packet in a switch has a set of permitted outputs specified in the packet
header leading the packet to its destination in an adaptive manner. The switch
must assign an output to each packet considering the permitted set of outputs.
The switch must also consider that multiple packets may be waiting for an
output assignment. The assignment of outputs to packets must be adaptive
and conflict free. This problem can be formulated as a maximum matching
problem in a bipartite graph [19, 23, 28].

2.2.1 Maiximum Matching Problem

A graph G{V\ ̂V2 , E) is called a bipartite graph if its vertex set V is the disjoint
union of sets Vi and V2, and every edge in E has the form (vi, U2)) where vi € Vi
and V2 € V2. If G{Vi, V2 ,E) is a bipartite graph, a matching in G is a set of
edges in G such that no two edges share a vertex. A maximum matching in G
is defined as the matching that has as many vertices in Vi as possible with the
vertices in V2·

The problem of matching outputs to packets can be formulated as a max
imum matching problem as follows. Let G{IN,OUT,E) be a bipartite graph
with a set of vertices IN, OUT, and a set of edges E. Each vertex in I N
represents a packet waiting to be assigned an output. Each vertex in OUT
represents an output. Each edge in E represents a permitted output assign
ment specified in the routing byte of the packet. Let M be the set of edges in

CHAPTER 2. ADAPTIVE SO URGE RO UTING (ASR)

a matching in G. In maximum matching problem, we try to maximize the car
dinality of M, i.e., the number of successful output assignments in our case, so
that the message bandwidth through the switch is maximized. Fig. 2.2 shows
an example bipartite graph where the matching is maximum.

Note that a matching scheme is also described for the Chaos router in [13,
14]. Our scheme differs in that we try to maximize matching, whereas in
their scheme, packets are assigned without consideration for the other packets
waiting in the switch. Their justification was that for the hypercube topology
they considered, only one packet would be in the switch even under heavy
traffic conditions.

MATCH(i?,passes)
1 Let M be an m X m matrix representing the

matching, and M, denote the ¿-th row of M,
Let i? be an m X m matrix representing the request

matrix, and Ri denote the ¿-th row of R,
Let C be an m-bit row vector

2 Initialize M using R
3 for A; = 1 to passes
4 for ¿ = 0 to m — 1
5 C *— ColumnOR(M)
6 C ^ C OR ~Ri
7 Mi ^ RotateJJntil.Zero{Mi,C)
8 endfor
9 endfor
10 return M

Figure 2.3. The Matching Heuristic

2.2.2 Maximum Matching Heuristic

Polynomial time algorithms exist for solving the maximum matching prob
lem [19, 23]. However, these algorithms require sophisticated data structures
which would be difficult to implement in hardware. Here, we describe a heuris
tic that can be implemented in terms of primitive logic operations AND, OR,

CHAPTER 2. ADAPTIVE SO URGE RO UTING (ASR) 10

(a) (b)
0 1 2 3 0 1 2 3

-► 0 0) 1 0 0 0-0 1 0 0
1 0 0 1 0 1 1 0 0 0
2 0 1 0 1 2 0 1 0 1
3 0 0 0 1 3 0 0 0 1

OFI 1 1 0 0 OF 1 1 1 0
(C) (d)

0 1 2 3 0 1 2 3
0 rv 1 0 0 0 1 0 0
1 1 0 (D 0 1 1 0 I0 0

-̂ 2 1 1 0 (0 2 1 1 0 (0
3 0 fD 0 1 -► 3 0 (0 0 1

o f I 1 1 1 1 o f I 1 1 1 1

Figure 2.4. A request matrix R and finding the maximum matching

NOT, and Rotate.

The set of packets waiting for an assignment is represented by an m x m
binary request matrix R as shown in Fig. 2.4(a), where m is the number of
outputs. Matrix R is constructed from packets’ routing bytes. Each row of R
corresponds to a packet, and each column corresponds to an output. One bits
in a row indicate the set of outputs that the respective packet may be routed
through. An m X m binary output assignment matrix M is defined such that
each row of M comprises at most 1 one bit. A one bit Mij in M indicates
that output j is assigned to packet i for routing. By definition M should have
one bits only at places where R has one bits. In Fig. 2.4(a), the M matrix
is superimposed over i?, indicated by circled one bits of R. A ColumnOR
operation on M is defined such that M's rows are ORed column-wise, whose
m -bit result C gives the set of assigned outputs (ones) and unassigned outputs
(zeros) for the given M matrix. An operation called RotateJJntil-Zero{Mi, C)
is defined on m-bit row vectors Mi and C such that the one bit in Mi is aligned
to a zero bit in C7, i.e.. Mi is rotated until the result of M,· AN D C is all
zeros. Using the primitive operations defined, the heuristic shown in Fig. 2.3
attempts to find a maximum matching. The heuristic starts with an arbitrary
matching Af, then for each row Mi [i = 0, 1, . . . , m — 1), it does ColumnOR
on M finding unused outputs, and then rotates Mi to an unused output with
the condition that i?,· (the routing byte) has a one in that column position.

CHAPTER 2. ADAPTIVE SO URCE RO UTING (ASR) 11

Fig. 2.4(a)-(d) illustrates the procedure: in step (a) Mo cannot be rotated
because there is no permitted free output. In step (b) Mi is rotated to output
2. In step (c) M2 is rotated to output 3, resulting in a maximum matching
since no free outputs are left. In step (d) no change is made.

The heuristic doesn’t find a matching in the strict sense because it may
assign multiple packets to the same output. In that case, we assume that the
switch will employ some fair arbitration policy to choose one of those packets
for routing. Note that the cardinality of the matchings found by the heuristic
is monotonically increasing; in each step a better solution is found or there
is no change. Note also that the heuristic does not always find a maximum
matching. However, at the expense of increased execution time, the procedure
may be repeated few more times to improve the solution (the variable passes
is the repeat count). The number of repetitions for finding the maximum
matching depends on the request instance and there is not a bound on the
number of repetitions that will yield the maximum matching.

2.2.3 Performance of Maximum Matching Heuristic

We evaluated the performance of the matching heuristic on pseudo-randomly
generated request matrices R. To be able to evaluate how good the matching
found by the heuristic is, we must determine the cardinality of the maximum
matching that is possible in a bipartite graph G. We use the idea in [8] to
determine the maximum number of vertices that can be matched in a bipartite
graph as follows. Let G = (Vi,V2 ,E) be a bipartite graph. H A Ç 14, then
6{A) = \A\ — |i?(y4)|, where R{A) is the subset of V2 consisting of those ver
tices that are adjacent to the vertices in Â is called the deficiency of A. The
deficiency o f graph G, denoted 6{G), is given by S(G) = max{6{A) \ A C Vi}.
The following theorem, proved in [8], gives the cardinality of the maximum
possible matching in a bipartite graph.

T heorem 2.1 Let G = (14,14, E) be a bipartite graph. The maximum number
of vertices in 14 that can be matched with those in V2 is |V4| — 6{G). Moreover,
a matching of size |I4| — 6{G) exists.

To illustrate the theorem, consider the bipartite graph in Fig. 2.5. Note that
¿({a , 6, d }) = 2 and this is maximum, so S(G) = 2. So \X\ — S(G) = 4 — 2 = 2.

CHAPTER 2. ADAPTIVE SO URGE RO UTING (ASR) 12

Figure 2.5. A bipartite graph with S(G) = 2

The largest subset of X that can be matched has two elements. An example
of such a set is {a,c} .

We generated a number of request matrices for the heuristic and compared
the matching found by the heuristic with the possible maximum matching
given by Theorem 2.1. Table 2.1 shows that the heuristic finds a maximum
matching over 88% of the time using one pass and 98% of the time using two
passes for 4 x 4 switches. For 8 x 8 and 16 x 16 switches, our matching heuristic
finds a maximum matching over 86% of the time using two passes. It is worth
noticing that the percentage of finding a maximum—2 matching is very low
(2%) using one pass and is 0% using two passes. So the matching found by the
proposed heuristic is either a maximum matching with a very high probability
or a maximum—1 matching with a considerably low probability.

Implementation of the heuristic in terms of primitive logic operations AND,
OR, NOT, and Rotate makes it possible to implement the heuristic algorithm in
switch hardware unlike the algorithms for solving maximum matching problem
which require sophisticated data structures.

Switch Size 4 x 4 8 x 8 16 X 16
Matching 1 pass 2 pass 1 pass 2 pass 1 pass 2 pass
maximum 0.88 0.98 0.59 0.86 0.59 0.87
maximum—1 0.12 0.02 0.39 0.14 0.39 0.13
maximum—2 0.0 0.0 0.02 0.0 0.02 0.0

Table 2.1. Performance of the matching heuristic. Percentage of the time a
maximum, or a maximum—1, or a maximum—2 matching is found.

Chapter 3

Simulation of Adaptive Source
Routing

In Section 2.1 we described the adaptive source routing (ASR) scheme. We
developed a network simulator for evaluating the performance of the ASR
scheme and we present the simulation results. In this chapter we introduce the
switch architecture used in the network simulator. We present the algorithm
for the simulator and describe how packets are generated to be able to simulate
different message traffic and load in the network. Simulation results are given
at the end of the chapter.

3.1 The Switch Architecture

In the simulations we used 2 x 2 switches. The switch consists of a buffer at
each input and output port, and a 2 x 2 crossbar interconnecting input buffers
to output buffers. The main operation of the switch is to forward the packets
in the input buffers to the output buffers in a profitable manner. The unit of
transfer between the buffers is a packet. A cycle is defined here as the time
required for a packet to move from one buffer to another. In each cycle, either
a forwarding or a blocking operation takes place. In forwarding, a packet moves
forward entirely from an input buffer to the assigned output buffer in a switch
or through the links between the switches i.e., from an output buffer of a switch
to the input buffer of the connected one. In blocking, a packet is blocked in
the buffers waiting for the availability of the buffer it is assigned to. The 2 x 2
size of the crossbar in the switch simplifies the matching heuristic described in

13

CHAPTER 3. SIMULATION OF ADAPTIVE SOURCE ROUTING 14

(a)

0 1

(b)

0 1

(C)

0 1

(d)

0 1
0 0 0 0 0 0 0 0 (l) 0 ® T
1 0 ® 1 ® 0 1 0 0 1 0 0

(e) (f) (g) (h)

0 1 0 1 0 1 0 1
0 ® 1 0 0

A ®
0

1 0 ® 1 ® 0 1 1 1 ®

(i) (j)

0 1 0 1
0 0 : i) o
1 : 1) 0 1 0 ®

Figure 3.1. Maximum matchings for some of the possible request matrices for
2 x 2 switches

Section 2.2.2 considerably; routing decision is made by a table lookup since the
number of possible cases is small, and the matchings are always the maximum.
The set of packets waiting for an assignment is represented by a 2 x 2 binary
request matrix (see Fig. 3.1). Each row of the request matrix corresponds to a
packet, and each column corresponds to an output. One bits in a row indicate
the set of outputs that the respective packet may be routed through. The
assignment matrices are superimposed over the request matrices in Fig. 3.1,
indicated by circled one bits. Some entries of the table used to make the
assignment of outputs to packets are in Fig. 3.1. In these request matrices,
the packets’ permitted set of outputs make it possible to make a maximum
matching of outputs to packets in a deterministic way. The assignment for
each case for obtaining a maximum matching of outputs to packets is unique
and straight forward. However, assignments in the remaining entries of the
table are not unique. The switch must make a decision considering the local
traffic and the starvation problem of some packets. These entries are in Fig. 3.2.
When only one packet is waiting for an eissignment, as in Fig. 3.2(a)-(b), two

CHAPTER 3. SIMULATION OF ADAPTIVE SOURCE ROUTING 15

(a) (b) (c)

0
1

1 0 1 0 1
0 0 1 1 0 1 1
1 1 0 0 1 1 1

(d) (e)
0 1 0 1

0 0 1 0 1 0
1 0 1 1 1 0

Figure 3.2. Request matrices for 2 x 2 switches for which the maximum match
ings may change

different assignments can be made. The switch decides which output to assign
to the packet according to the local traffic i.e., the available output buffer is
assigned to the packet. In case both output buffers are available, the output
buffer is chosen in a round robin fashion for uniform distribution of packets
to all links and switches in the network. There may be conflicting requests of
output buffers. More than one packet may demand the same output buffer as in
Fig. 3.2(d)-(e). These conflicts are resolved in a round robin fashion to prevent
starvation of some packets. Fig. 3.2(c) shows the case that all the packets are
permitted to use all output buffers. In this case, a maximum matching is
found according to the available output buffers resolving the conflicts among
the packets in a round robin fashion.

3.2 The Network

In the simulations, we used the Benes interconnection network since it has been
extensively studied for synchronous and asynchronous communication [7], and
since it is a multistage network which provides multiple paths between source-
destination pairs as in the SP2 interconnection network. Although, Benes
networks are generally considered for synchronous communication in SIMD
machines with a centralized network control [2], here we will consider it for
asynchronous communication in MIMD machines with a distributed network

CHAPTER 3. SIMULATION OF ADAPTIVE SOURCE ROUTING 16

0

Figure 3.3. 8 x 8 Benes network

control, such that each switch makes its own routing decisions, as described in
Section 2.1. An A'’ input N output Benes network consists of 2(Iog Â) —1 stages
of switches interconnected as shown in Fig. 3.3 for N — 8. The Benes network
may be viewed as concatenation of a baseline network B(N) that consists of
stages 0,1,2 in Fig. 3.3, and its mirror image B~^{N) that consists of stages
2,3,4 in Fig. 3.3, with the middle stage (stage 2) shared between B{N) and
B~^(N). This construction is well known. The N x N Benes network provides
N/2 different paths between any given input-output port pair as explained
in the following. In the baseline network B{N), there is a single path from
a given input to a given output. From a given input of the Benes network,
N/2 different switch inputs in the middle stage of the Benes network may be
reached, and from that point there exists a single path to reach the required
network output. Therefore, there exists N/2 different paths between any given
input-output port pair in the Benes network.

3.3 The Simulator

We implemented a network simulator which simulates the behavior of adaptive
source routing and non-adaptive random routing schemes under different loads
using a number of communication patterns. The simulator has two major
components which are the component for controlling the insertion of packets
into the network and the component for controlling the flow of packets in the

network. These two major components, their functions, and algorithms are
given in the following sections. The main algorithm used in the simulator is
defined just after the following two sections.

3.3.1 Packet Generator

CHAPTERS. SIMULATION OF ADAPTIVE SOURCE ROUTING 17

In order to be able to evaluate the performance of a routing scheme, we must
provide different communication patterns and different loads to the network.
These are the functions of the packet generator.

Packet destinations for uniform communication pattern are randomly gen
erated at each input port to reach to every output with a uniform distribu
tion. The packet generator also allows generating packet destinations for a
number of structured communication patterns like cyclic-shifi-left communi
cation, cyclic-shift-right communication, and reverse communication patterns.
In cyclic-shift-left communication pattern, the destination for the packet is cal
culated by shifting the binary representation of the source processor sending
the packet one bit position to the left in a cyclic manner. For example, in
an 8 X 8 Benes network, processor 6 (110 in binary) sends packets to proces
sor 5 (101 in binary). The cyclic-shift-right communication pattern is similar.
For the preceding example, processor 6 (110 in binary) sends packets to pro
cessor 3 (Oil in binary). In reverse communication pattern, the sum of the
source and destination processors must sum up to — 1 in an iV x TV net
work. For the 8 x 8 Benes network example, processor 6 sends packets to 1
and processor 1 sends packets to 6. These are the uniform and some examples
of the structured communication patterns implemented. Packet generator also
permits implementation of packet destination calculations for other structured
communications in a very modular way, by just describing the relationship
between the source processor sending the packet and the receiving processor.

In addition to providing different communication patterns, the packet gen
erator must also provide a way to generate packets at random time instants
such that the inter-arrival times between successive packets are in control of
the user to provide different loads to the network in simulations. We gener
ate packets at random instants with geometric inter-arrival times using the
probability density function (pdf)

1 — a
X a

a
(3.1)

CHAPTER 3. SIMULATION OF ADAPTIVE SOURCE ROUTING 18

POISSON(a)
1 Let random{) return a real number

between 0.0 and 1.0 with uniform distribution
2 r ^ (l — a)x random{)
3 i < - (logr - log((l - a)/a)) / logo
4 return (int)i

Figure 3.4. Function defined for generating an inter-arrival time between two
successive packets using Poisson distribution

where 0 < a < 1. This function satisfies the property that all probabilities
sum up to 1, i.e.,

A 1 - aX ; ------- x o ‘ = l (3.2)
t=i ^

a is the parameter for the distribution function which determines the inter
arrival times of the randomly generated packets. This distribution is known as
the Poisson distribution [24]. The algorithm used to generate a time interval
for the next packet to be inserted in to the network is in Fig. 3.4. Note that a
simpler exponential random number generator [20] can also be used.

The relationship between the poisson distribution function parameter a and
the average inter-arrival time between successive packet generation, t, is given
by the equality

t =
1

1 — a (3.3)

For example, for a = 0.5, the average inter-arrival time between two successive
packets is 2 time units. In fact this means that if function POISSON(0.5) is
repeated enough number of times, the average of the values returned by the
function equals 2.

We described how to determine the time instants to generate the next
packet arrival into the network. All the processors must insert packets into
the network at random instants using the defined algorithm. This is achieved
by keeping the time to generate the next packet in each processor, which we
call Packet JssueTTime. Our simulator is clock driven and a global clock is
used. Packet JssueJTime for each processor is initialized at time 0 by using
poisson distribution function in Fig. 3.4 which determines the time for the first

CHAPTERS. SIMULATION OF ADAPTIVE SOURCE ROUTING 19

PACKET_GENERATION_PROCESS(A^, a)
1 for I = 0 to — 1
2 if C L O C K = PacketJssueJTime[i]
3 Insert-Packet JntoJVetwork(i)
4 Collect-Statistic${)
5 Packet JssueTTime[i] <— Packet JssueJrim e[i]+ POISSON(a)
6 endif
7 endfor

Figure 3.5. Algorithm used for generating packets into the network at an
arbitrary time

packet to be generated for each processor. The algorithm used for determin
ing which processors will inject packets into the network at an arbitrary time
is given in Fig 3.5. The function Insert-PacketJnto.Network(i) creates a
packet at the source processor i, determines the destination processor accord
ing to one of the communication patterns used as described at the beginning
of Section 3.3.1, and places the generated packet into the source processor’s
buffer to be delivered to the destination processor. CollectjStatisticsQ is the
function used for collecting statistics like the number of packets generated at
each input processor, the average inter-arrival times of packets, and current
load in the network.

3.3.2 Control of Packet Flow in the Network

Our network simulator is derived by a global clock. The packets in the network
are forwarded towards destination or blocked waiting for the needed buffers to
be available during each clock cycle. The operations of packet propagation
or blocking during one clock cycle are controlled by the algorithm given in
Fig. 3.6. MoveJPacket{) moves the packet from one buffer to the destination
buffer. Whenever a movement of a packet occurs denoted by the variable
CHANGE, the loop is iterated since the buffer emptied by the packet may
accept a packet waiting for it. The loop terminates when there are no more
possible moves of packets in the network. The order of the processors or the
switches processed does not affect the result of this algorithm.

CHAPTER 3. SIMULATION OF ADAPTIVE SOURCE ROUTING 20

PACKET-FLOW.CONTROL_PROCESS()
1 repeat
2 CHANGE FALSE
3 for all destination processors i
4 if processor i can accept a packet AND

there is a packet waiting for processor i
5 M ovt-PacketQ
6 CHANGE TRUE
7 endif
8 endfor
9 for all switches i in the network
10 Perform output to packet assignment for switch i
11 for each packet p in the switch
12 if assigned buffer for p is available
13 M ove.Packet{)
14 CHANGE ^ TRUE
15 endif
16 endfor
17 for each packet p in output buffers of switches
18 if connected input buffer is available
19 M ove-Packet{)
20 CHANGE <- TRUE
21 endif
22 endfor
23 endfor
24 until CHANGE = FALSE

Figure 3.6. Algorithm of packet flow control during one clock cycle. Movements
of all packets in the network during one clock cycle is handled by this algorithm.

CHAPTERS. SIMULATION OF ADAPTIVE SOURCE ROUTING 21

NETWORK_SIMULATOR(A^, M A X .P A C K E T S , a)
1 Let M A X -P A C K E T S be the total number of packets to

be inserted into the network for simulation
Let a be the Poisson distribution parameter for network load

2 Initialize processor and switches using the network
topology description file {N x N network)

3 for i = 0 to — 1
4 Packet JssueLrime[i] <— POISSON(a)
5 endfor
6 C L O C K ^ 0
7 repeat
8 if P A C K E T S J N -N E T W O R K < M A X -P A C K E T S
9 PACKET.GENERATIONJ"ROCESS(A^, a)
10 PACKET_FLOW.CONTROL_PROCESS()
11 C L O C K ^ C LO C K V l
12 en d if
13 until P A C K E T S J N -N E T W O R K = M A X -P A C K E T S

AND all packets are delivered to their destinations

Figure 3.7. Algorithm for the network simulator

We described how the packets are inserted into the network and how the
packet moves are controlled in the simulator. The main algorithm of the sim
ulator is as in Fig. 3.7 using the defined algorithms. Initialization of the in
stants of first packet generation for each processor are performed in lines 3-5
of Fig. 3.7. Generation of packets into the network and the control of the
packet moves are iterated until a given number of packets are inserted in
the network and all packets in the network are delivered to their destina
tions. When the number of packets generated reaches the given constant,
PACKET_GENERATIONJPROCESS() stops generating new packets. Deliv
ery of all packets in the network to their destinations is signaled by the avail
ability of all input and output buffers of all switches in the network.

CHAPTER 3. SIMULATION OF ADAPTIVE SOURCE ROUTING 22

3.4 The Routing Schemes in the Simulator

3.4.1 Random Routing

We implemented a random routing scheme based on the ideas described in [6]
for comparison with ASR. Random routing has been devised to reduce conges
tion that may occur in the network when communication patterns are highly
structured. In this scheme, the packet is first routed to a randomly chosen
intermediate destination, and from that destination the packet is routed to
its final destination. Here, we use this idea in the following way: suppose a
packet is to be routed from input a to output b of the Benes network. We first
route the packet from a to a randomly chosen middle stage input of the Benes
network. From that middle stage input we route the packet to 6. There exists
a single path to accomplish this task and therefore the random routing scheme
is non-adaptive.

3.4.2 Adaptive Routing

In the ASR scheme, we encode routing headers such that packets are routed in
a fully-adaptive manner in the first (log Â) — 1 stages of the network (stages
0 and 1 in Fig. 3.3). That is the first (log Â) — 1 bytes of the packet’s routing
header consists of all ones indicating all output ports in the first (logA^) — 1
stages lead the packet to its destination. Once the packet reaches an input of
the middle stage (stage 2 in Fig. 3.3), there exists a single path to reach to
the required network output. Therefore, the packet will be routed in a non-
adaptive manner in the last log N stages of the network. For computing routing
bytes in the last logA^ stages, the destination-tag method is used [2]. In this
method, the destination port number in binary, 6„_ i6„_2 . . . ¿»oj indicates the
switch ports that should be used to reach to the required network output. The
first switch routes the packet through its port numbered 6„_i, the next switch
through bn- 2 and so on. For example in Fig. 3.3, to reach from any input of
stage 2 to network output 6 (110 in binary), the packet must be routed through
port 1 of a switch in stage 2, then through port 1 of a switch in stage 3, then
through port 0 of the switch connected to output 6 in stage 4.

CHAPTER 3. SIMULATION OF ADAPTIVE SOURCE ROUTING 23

3.5 Simulation Results

Simulation results of the adaptive source routing scheme and the non-adaptive
random routing scheme for different network loads and communication patterns
are presented, giving the average latency as a function of the average load.
Latency is defined as the number of cycles that takes a packet to cross the
network. Latency includes queuing delays at the source processor. Load is
defined as the average number of packets injected to an input port of the
network per cycle. 1.0 packet/cycle (100% load) is the upper bound for the
Benes network. For both routing schemes, we used identical seeds for the
pseudo-random number generators. We ran simulations until at least 1500
packets were generated at each input port. The latency of the delivered packets
in a network having only a small population (packets currently in the network),
do not reflect the exact behavior of latency in terms of load. Packets are
deli vered to their destinations without queuing delays and blocking when the
network is initially clear of packets. For this reason, various statistics were
gathered starting from the time the network population has reached a steady
state. The number of packets that reached their destinations and that are
currently in the network are controlled at each clock cycle to determine whether
the network population is in a steady state or not. Whenever the packets in
the network reach a predetermined amount, the network population is said to
be in a steady state.

Network
UNIFORM NON-UNIFORM

Adaptive Non-adaptive Adaptive Non-adaptive
16 X 16 0.48 0.40 0.58 0.40
32 X 32 0.46 0.38 0.53 0.37
64 X 64 0.44 0.37 0.55 0.36

128 X 128 0.43 0.37 0.51 0.34
512 X 512 0.41 0.35 0.50 0.34

Table 3.1. Throughput under uniform and non-uniform packet traffic

In the simulations, uniform loads were used; equal loads were applied to
every network input. Figures A .l through A.5 in Appendix A show the simu
lation results under uniform packet traffic. Packet destinations were randomly
generated at each input port to reach to every output with a uniform distribu
tion. Figures A .6 through A. 10 show the simulation results using a structured

CHAPTERS. SIMULATION OF ADAPTIVE SOURCE ROUTING 24

communication pattern, cyclic-shift-right communication. This communica
tion pattern introduces a non-uniform packet traffic in the network. Packet
destinations were generated as described in Section 3.3.1. Table. 3.1 gives the
throughput of random routing scheme and the adaptive source routing scheme
under uniform and non-uniform packet traffic in the network. The adaptive
routing scheme increases the throughput by a factor of 18% on the average un
der uniform packet traffic. When the packet traffic is non-uniform, the increase
in the throughput that adaptive source routing provides is about 45% on the
average as expected. Another noteworthy observation is that the throughput
decreases with increasing network size.

Chapter 4

Route Generation in Multicomputers

Scalable multicomputers are based upon interconnection networks that typi
cally provide multiple communication routes between any given pair of proces
sor nodes. Multiple routes provide low latency, high bandwidth, and reliable
interprocessor communication. There are multistage interconnection networks
(MIN’s) [18, 25] which have a regular structure, such as Omega [15], Banyan [9],
and indirect binary n-cube [21] networks. Using the inherent knowledge of the
interconnection topology, each switch in the network knows which output ports
lead a packet to its destination at each stage. Route generation for such net
works makes use of the structure in the topology to determine possible output
ports to reach to the destination at each stage of the network. An example
is the Benes network given in Section 3.2. In an x Benes network, all
output ports in the first (log A) — 1 stages lead the packet to its destination.
For the last log A stages, the network provides a deterministic route for each
destination processor, determined by the destination-tag method.

Regular structure in the interconnection topology of the network provides
easy route generation. However a common restriction for such networks is
the number of processors that can be connected. Number of processors must
generally be a power of 2. This requirement restricts the scalability of the mul
ticomputer in terms of the processors and the interconnection network. The
only possible amount of increase in the number of processors in an A proces
sor network is N. Besides, the interconnection network must also be scaled
according to the structure in the interconnection topology. Thus, any upgrade
in the size of the parallel system will necessitate large amount of funding.
These disadvantages have given rise to research on interconnection networks

25

CHAPTER 4. ROUTE GENERATION IN MULTICOMPUTERS 26

that provide a wide flexibility in the number of processors and the connections
between these processors. Any number of processors may be connected with
such interconnection networks and different interconnection topologies may be
provided for a given number of processors. The topology used depends on
many factors like the communication structure in the applications, number of
different routes that must be provided by the network for all source-destination
processor pairs, and the possible future increases in the number of processors
connected to the network. Flexibility in the number of processors and the inter
connection topology addresses the problem of route generation for the packets
to reach their destinations. The interconnection network need not have any
structure which complicates the decision of which output ports lead a packet
to its destination in each stage. Common approach for route generation for
such interconnection networks is selecting a single shortest path between each
pair of processor nodes, although multiple shortest paths may exist [1]. The
routes are stored in a route table in each processor’s memory.

We propose a new approach for route generation in any interconnection
network. We give an algorithm that generates adaptive routes for all pairs
of processors. Generated routes for each source-destination processor node
pair determine the maximum adaptivity possible and are stored in a route
table in each processor’s local memory. The route table approach enables the
routing to be done in a topology independent fashion. Our approach also
enables the applicability of the adaptive source routing scheme regardless of
the interconnection network topology.

4.1 Route Table Generator

We propose an algorithm which generates route tables containing adaptive
routes for each pair of processor nodes in any interconnection network. The
topology of the network is given by the connections between the ports of the
switching nodes and processor nodes. Switching nodes have p ports indexed
from 0 to p — 1. For example, a 2 x 2 switch is denoted by a 4 ports {p = 4)
switching node. Processor nodes have just one port used to be attached to the
network. Any interconnection network can be defined in terms of the defined
switching nodes, processor nodes, and the connections in between. The inter
connection topology of the network can also be represented by an undirected
graph T = (Vt , Et), which is referred here as the topology graph. The vertex

CHAPTER 4. ROUTE GENERATION IN MULTICOMPUTERS 27

set Vt [T] contains two types of nodes, namely processor nodes and switching
nodes. The edge set Et ^\ represents the interconnections between the switch
ing nodes and between the processor and switching nodes. In general, each
processor is connected to a single switching node.

ROUTE.TABLE_GENERATOR(T)
1 Let r = (Vr, Et) be the topology graph of the network
2 for each processor node u € Vt[T]
3 GENERATE_ROUTES(T,u)
4 endfor

Figure 4.1. Route Table Generator

The main algorithm for the route table generator is illustrated in Fig. 4.1.
As is seen in the algorithm, the function GENERATE_R0UTES(7', u) deter
mines the set of adaptive routes from processor u to all other processors, and
stores these routes in the local memory of processor u. For an N node network,
each processor keeps route tables with — 1 entries.

Each processor’s route table holds routing information for all destination
processors which provide a set of possible output ports, rather than a specific
output port, at each stage of the interconnection network that leads the packets
to the correct destination. The number of distinct paths between a source and
a destination processor is determined by the routing information kept in the
route table and is given by

Apath = 1^11 X 1-^21 X X |Rn-l| X \Rn\ (4.1)

where |i?,| is defined as the number of ones in routing byte R, which determine
the set of possible output ports at stage i that lead packets to the destination.
Here, n is the number of stages in the shortest paths from the source to the
destination processor.

At each stage of the interconnection network, a set of output ports that lead
packets to the destination correctly can be determined. However, the problem
is that if there are m such output ports at stage i, there are 2”* — 1 possible
subsets of output ports at stage i, all of which are meaningful adaptive routes.

CHAPTER 4. ROUTE GENERATION IN MULTICOMPUTERS 28

The decision of which subset to choose seems to be obvious at first sight:
choosing the maximal set, but in fact this is not the case. The choice of the
set of output ports at stage i affects the possible routes that can be found at
stage ¿ + 1. The problem is to maximize the number of distinct paths which is
an optimization problem because the choice of a subset of possible output ports
at any stage i for maximizing Â path depends on the other stages. We seek to
maximize Wpath in «i·!! routes for all pairs of source destination processor pairs.

The process of generating routes from a processor node (line 3 in Fig. 4.1)
has three major steps. The first step is to find all possible shortest paths
to destination processor nodes. The second step is to enumerate all possible
adaptive routes that lead packets to their destinations. The last step is to
select one of the enumerated routes which satisfy the maximum adaptivity
criteria. The algorithm of the process is given in Fig. 4.2 and the three main
steps of the algorithm are described in the following sections. We used IBM SP2
interconnection networks as sample network which are described in Section 4.2.
After introducing the general properties of SP2 networks, we will present an
example route generation for a source-destination processor pair on a sample
network implementation in Section 4.3.1 which gives the results of each stage
in the process.

GENERATE JlO U TES(r, u)
1 MODIFIED_BFS(T, u)

/ / Generate all shortest paths from u to u € Vt [T\ s.t. u 7̂ u / /
2 for each processor node u € Vt [T] s.t. v ^ u
3 Create a routability graph R = {Vr ^Eb) from u to u
4 Create a solution graph S — {Vs,Es)
5 MAX-ADAPTIVE_PATH(5)

/ / Find the route that provides maximum adaptivity / /
6 Store route for (u,v) pair in RouteITable[u,v]
7 endfor

Figure 4.2. Generating routes from a processor to other processors

CHAPTER 4. ROUTE GENERATION IN MULTICOMPUTERS 29

4.1.1 Routability between Processors

In this section, we address the problem of finding all possible shortest paths
between all processor pairs. We define a routability graph R = {Vr ,E ii) for
a source-destination processor pair to be a multistage graph [10] as follows:
R = (Vr ^Er) is a directed graph in which the vertices are partitioned into
k > 2 disjoint sets for 0 < i < k. Each vertex v E Vr represents a switching
node or a processor in the topology graph and vertices at each stage are
indexed from 0 to jV̂ | — 1. If < > is an edge in Er then u E and
V E for some 0 < e < ̂ — 1 and the label of the edge represents the
output port of switch u at stage i which is connected to switch or processor v
at stage i + 1. The sets Vr and Vr ~̂ are such that (V̂ | = = 1. Let
s and d respectively be the vertices in and Vr ~ ,̂ s is the source and d
the destination. The number of stages in the routability graph denotes the
number of stages in the shortest paths between the source and the destination
processors.

The routability graph for a given pair of source-destination processor nodes
is created in two steps. In the first step, we use a modified version of the
breadth first search algorithm in [17] to find all shortest paths from the source
processor, src, to all other processors. We apply the modified breadth first
search algorithm given in Fig. 4.3 on the topology graph T, rooted at the
source processor, src. The resulting breadth first tree has all shortest paths
from the source processor to all other processors. In a routability graph for
a source-destination processor pair what we need is a multistage graph which
contains all shortest paths from the source to the destination. The second
step uses the resulting breadth first tree of the modified breadth first search
and creates a routability graph as follows: for creating the routability graph
for source-destination processor pair (src,dst), we run a breadth first search
algorithm rooted at the destination node dst on the created breadth first tree.
When discovering the nodes of the graph during the search, new edges are
created such that each node in the multistage graph keeps outgoing edges to
the vertices in the next stage. The resulting graph is a multistage graph which
contains all shortest paths between {src, dst) processor pair.

The first step which is the application of the modified breadth first search
(Fig. 4.3) is executed only once when generating routes from a source processor
to all other processors (line 1 in Fig. 4.2). The resulting breadth first tree
contains information about all shortest paths from the source processor to all

CHAPTER 4. ROUTE GENERATION IN MULTICOMPUTERS 30

MODIFIED _BFS(T,5rc)
1 for each vertex v € Vt[T] — {¿re}
2 V.visit W H IT E
3 v.depth <— oo
4 V.parent <— NULL
5 endfor
6 src.visit <— GRAY
7 src.depth <— 0
8 src.parent <—
9 FIFO-ENQUEUE(g,5rc)
10 while Q ^ ^
11 u <— head[Q]
12 for г = 0 to p — 1 / / p is the number of ports / /
13 Let u € V2’ [T'] be the vertex connected to the ¿-th port of u
14 if V.visit = W H IT E
15 v.visit ^ GRAY
16 v.depth i— u.depth + 1
17 v.parent <— {< > | l{v,u) —
18 i f V.type = S W IT C H
19 FIFO-ENQUEUE(g,u)
20 endif
21 elseif v.visit = GRAY AND v.depth = u.depth + 1
22 v.parent ^ v.parent U {< v,u > |/(u,u) = i}
23 endif
24 endfor
25 FIFO-DEQUEUE(Q)
26 u.visit <— B LA C K
27 endwhile

Figure 4.3. Modified Breadth First Search algorithm. The algorithm finds
all shortest paths from a source processor node to other processor nodes in a
topology graph.

CHAPTER 4. ROUTE GENERATION IN MULTICOMPUTERS 31

other processors. All routability graphs from the source processor to the others
are generated using this breadth first tree. Thus, the breadth first tree created
at the first step is kept unchanged throughout the process.

4.1.2 Generating All Adaptive Routes

In this section, we describe how to generate all possible adaptive routes between
a source and a destination processor using the routability graph of the processor
pair. We define a solution graph for all possible adaptive routes as follows:
a solution graph S = (Vs, Es) for a source-destination processor pair is a
multistage graph with the same number of stages as in the routability graph,
R, for the same processor pair. Each vertex in the ¿-th stage, v G V5, represents
a subset of the vertices in the ¿-th stage in the routability graph R except the
empty set i.e., v E Vg represents a set x s.t. x Q and a: 0. So the
partitions of the vertex set 1^(5'] are such that IV5I = — 1, for 0 < i < k.
Vertices at each stage i, v EVg, are indexed starting from 1 to IV5I and the ones
in the binary representation of each vertex v determines the set of vertices at
stage i in routability graph R that it represents. This encoding provides direct
access to all subset of vertices and an easy way to determine the set members.
For example, if the number of vertices at stage i of a routability graph R is
4, the number of vertices at stage i of the corresponding solution graph S will
be 15. Each vertex at stage i has an index between 1 and 15. The vertex
indexed 13 (1101 in binary) represents the set of vertices { uq, « 3} C V ̂ at
the ¿-th stage of the routability graph R. Each edge e E F̂ s[*5'] has a label I
associated with it. The meaning of each edge and its label is as follows: let
< u,v > E be an edge from stage i to z + 1, u € V5 and v E V̂ ''’^ Let
X Q he the set of vertices at stage i in R which is represented by u and
similarly y C be the set of vertices at stage z + 1 in i? represented by v.
Label /(zz, v) is the routing byte at stage i such that the vertices in set y are the
ones those of which are reached in the routability graph R, from the vertices
in set X using the allowed ports in the routing byte.

The algorithm for creating the solution graph S = (Vs, Es) from a routabil
ity graph R = (Vr , Er) is given in Fig. 4.4. The vertices of the solution graph
are created first. The next job is to create edges in the solution graph. The
edges are created stage by stage starting from the first one. The only vertex in
the first stage is marked as active. For each active vertex in the current stage.

CHAPTER 4. ROUTE GENERATION IN MULTICOMPUTERS 32

1 Let R = {Vr , Er) be a routahility graph with Vr = Ufjo
2 Let S = {Vs,E s) be the solution graph for R, Vs = (jf=o ^
3 Create vertex set Vs s.t. — 1, 0 < i < A: — 1

/ / Create edges in £̂ 5 / /
4 Mark the vertex in Kj* as ACTIVE
5 for i = 0 to k — 2 / / f o r all stages / /
6 for all ACTIVE vertex u € V5
7 Let V represent the set of vertices x C V ̂ in R
8 for RB = 1 to 2'' / / for all possible routing bytes / /
9 if yxkE X, < Xk.Vk > ^ E'r a n d l{xk,yk) = RB
10 Let vertex u represent the set of vertices y = \Jyk
11 Add edge < v,u > with label RB to v.edgeJist
12 Mark u e as ACTIVE
13 endif
14 endfor
15 endfor
16 endfor

Figure 4.4. The algorithm for generating the solution graph S = (Vs, Es) for
a routability graph R = {Vr , Er)

we check whether an edge exists or not for all possible labels which are in fact
all possible routing bytes. The existence of edges from a vertex v with label
/ is examined as follows: remember that a vertex in the solution graph repre
sents a subset of the vertices at the same stage in the corresponding routability
graph. For the subset of the vertices of the routability graph represented by
the vertex v, we find the vertices reachable in R using the permitted ports in
label I, and if none of them fail to reach somewhere using the permitted set
of ports, we add an edge < v,u > with label I where u is the set of vertices
in the routability graph reached by the set of vertices in v. Whenever an edge
< > is added to the solution graph S, the vertex u is marked as active.
The active vertices in the solution graph are in fact the sets of switches that
can be reached using the routing bytes so far. This is the reason why we only
check for the active vertices at each stage. The vertices which are not marked
as active can never be reached so there is no need to check edges from those
vertices.

CHAPTER 4. ROUTE GENERATION IN MULTICOMPUTERS 33

Figure 4.5. Example digital search tree

A limitation of the given algorithm to create a solution graph is the re
quirement that all the vertices must be created first. The number of vertices in
each stage is a power of 2 which may be impossible to handle both in terms of
memory and algorithmic complexity for large powers of 2. When the routabil-
ity graph R is created for a source-destination pair, the number of vertices in
each stage is determined. For stages in R which have up to 16 vertices, the
vertices at the same stage in the solution graph S = {Vs,E s) are created and
edges for those vertices are found as explained above. Stages in R which have
more than 16 vertices are handled in a different way. For those stages in the
solution graph S, we use digital search trees [11].

A digital search tree is a binary tree in which each node contains one el
ement. The element to node assignment is determined by the binary rep
resentation of the element keys. Suppose we number the bits in the binary
representation of a key right to left beginning at zero. All keys in the left
subtree of a node at level ¿ 4-1 have bit i equal to zero while those in the right
subtree of nodes at this level have bit f = 1. Fig. 4.5 shows an example digital
search tree. A search in a digital search tree is performed in the following way.
If we are to search for the key k, k is first compared with the key in the root. If
there is no match, the subtree to move is determined by the value of bit in the
zero bit position, which is the level of the current node of the tree. If the bit
equals zero, search is continued in the left subtree, else the search proceeds on
the right subtree recursively. Insertion and deletion operations are also similar
to the ones for binary search trees. The essential difference is that the subtree
to move is determined by a bit in the search key rather than by the result of

CHAPTER 4. ROUTE GENERATION IN MULTICOMPUTERS 34

the comparison of the search key and the key in the current node. Search and
insertion operations can be performed in 0 (h) time where h is the height of
the digital search tree. If each key in a digital search tree has K ey Size bits,
then the height of the digital search tree is at most K ey Size + 1.

For those stages in routability graph R which have more than 16 vertices, a
digital search tree is used in the solution graph S. The key of the digital search
tree is a binary number where the one bit positions represent a set of vertices
at the same stage in R. Each node of the tree also keeps a list of outgoing
edges to the next stage in the graph. When an edge to a vertex in a stage
using digital search tree is created, the vertex index is searched in the tree, if
it does not exist, a new node with that key is inserted. When creating edges
from a stage using digital search tree, the tree is traversed and for each vertex
represented by the key of the nodes in the tree, the edge calculations to the
next stage are carried on similarly. The use of digital search trees provide an
eflBcient use of memory. In addition, the experimental results show that the
number of elements in the digital search trees constitute a small percentage of
the total number vertices that would be created otherwise. The only overhead
introduced by the use of digital search trees is the search time when a vertex
is to be reached or to be created. However the height of a digital search tree
for stage i in 5” = (V5, Es) is at most |V̂ | + 1 because of the encoding used for
vertex indices. This adds only a constant complexity.

4.1.3 Selection of an Optimal Route

The solution graph S = (Vs, Es) contains all possible adaptive routes for a
pair of source-destination processors. Each route has a value which is the
adaptivity defined as the number of distinct paths provided by the route. We
wish to find a route with optimal value, i.e., with maximum adaptivity. This
problem is an optimization problem which is well suited for the application of
the dynamic programming [10, 17] paradigm. The development of a dynamic
programming algorithm can be broken into a sequence of four steps.

1. Characterize the structure of an optimal solution.
2. Recursively define the value of an optimal solution.
3. Compute the value of an optimal solution in a bottom-up fashion.
4. Construct an optimal solution from computed information.

CHAPTER 4. ROUTE GENERATION IN MULTICOMPUTERS 35

We call a solution with the optimal value an optimal solution, since there may
be several solutions that achieve the optimal value. Steps 1-3 form the basis of
a dynamic programming solution to a problem. Step 4 can be omitted if only
the value of an optimal solution is required.

The solution graph S = (Vs, Es) is a ¿-stage graph. V5 and V̂ *~̂ are such
that IV5 I = |V̂ ~̂ | = 1· Let s and d respectively be the vertex in and
V^·*. s is the source and d the destination. We define c(u, u) to be the cost
of an edge < u, u > as the number of ones in the label /(u, v) of the edge, i.e.,
c(u, v) = |/(u, u)|. The adaptivity of a path from s to d is the multiplication of
the costs of edges on the path, which is the number of distinct paths provided
by the route. A dynamic programming formulation for a ¿-stage solution graph
S is obtained by first noticing that every s to d path is a result of a sequence
of ¿ — 2 decisions. The ¿-th decision involves determining which vertex in
0 ^ ^ ̂ — 3, is to be on the path. It is easy to see that the principle of
optimality holds. Let P (i ,j) be a maximum adaptive path from vertex j at
stage i to vertex d. Let A D P (i,j) be the adaptivity of this path. Then, using
the forward approach [10], we obtain

A D P {i,j) = max {c (j,m) x AD P{i -|- l ,m) } (4.2)
A <j,m>e-Bs[5]

Since

A D P { k - 2 J) = c{hd) < >,d > G
0 < j , d > i E s [S]

(4.2) may be solved for AZ)P(0, s) by first computing ADP{k — 2,7) for all
j € then AD P{k — Z ,j) for all j G V^~ ,̂ etc., and finally A D P{0,s).

Before giving the algorithm to solve (4.2) for a general ¿-stage graph, let us
impose an ordering on the vertices in VsfS'j. This ordering will make it easier to
write the algorithm. We shall require that the n vertices in V̂ fS"] are indexed
1 through n. Indices are assigned in order of stages. First, s is assigned index
1, then vertices in Vg are assigned indices, then vertices from Vg and so on. d
has index n. Hence, indices assigned to vertices in are bigger than those
assigned to vertices in Vg. As a result of this indexing scheme, AD P may be
computed in the order n — l,n — 2, . . . , 1. The first subscript in AD P and P
identifies only the stage number and is omitted in the algorithm. The resulting
algorithm is given in Fig. 4.6. D is used to record the decision made at each
stage (vertex) so that the maximum adaptive path can be determined easily.

CHAPTER 4. ROUTE GENERATION IN MULTICOMPUTERS 36

MAXJVDAPTIVE_PATH(5)
f i s = (V5, Es) is a A:-stage graph with n vertices indexed in order of stages. / /
/ / is the cost of edge < i , j >. f I
II P (1 : A:) is a maximum adaptive path. / /
1 A D P{n) ^ 1
2 for j — n — I down to 1 / / compute A D P {j) / /
3 Let r be a vertex s.t. < j , r > 6 p 5[5'] AND

c{ji r) X A D P(r) is m ax im u m
4 A D P (j) c {j,r) X AD P{r)
5 D{j) ^ r
6 endfor
7 / / find a maximum adaptive path / /
8 P{\) ^ l - , P { k) * -n
9 for j = 2 to A; — 1 / / find f-th vertex on path / /
10 P (i) D(P (j - 1))
11 endfor
12 return P

Figure 4.6. Algorithm for determining maximum adaptive path in a A:-stage
multistage graph S = (Vs>Ps)· It also constructs and returns the maximum
adaptive path.

We have implemented the route table generator for any interconnection
network provided that the topology of the network is given. We used multistage
interconnection networks of IBM SP2 multicomputer, which is commercially
available, for performance evaluations. In the next section we describe the
SP2 network architecture, the switch chip used, and topologies in the network
implementations. The experimental results on SP2 networks are presented in
the following section.

4.2 IBM SP2 Network Architecture

The IBM SP2 [26] is a commercially available multicomputer whose communi
cation architecture is based upon the Vulcan architecture. The SP2 processor
nodes attach to a multistage interconnection network consisting of 8 input 8
output non-blocking switches [27].

CHAPTER 4. ROUTE GENERATION IN MULTICOMPUTERS 37

Figure 4.7. The Switch chip organization. Courtesy Dr. Craig. B. Stunkel,
IBM T.J. Watson Research Center.

4.2.1 The Switch Chip

The Switch chip, illustrated in Fig. 4.7, contains 8 receiver modules and 8
transmitter modules, an unbuffered crossbar, and a central queue. All ports
are one byte wide. In the absence of contention, packet bytes incur 5 cycles of
latency cutting through the chip via the crossbar path.

R eceivers: The switch chip contains eight identical receiver modules, one
associated with each of the eight input ports. The receiver module performs
five major functions: (1) administrating the link flow-control protocol, (2)
checking the link CRC codes, (3) buffering incoming data, (4) decoding packet
routing information, and (5) deserializing incoming packets into 8-byte chunks
when the packet is blocked. Buffering is accomplished with a flrst-in-first-out
(FIFO) queue. When an incoming packet encounters no contention for the
selected output port, packets are immediately forwarded via the Switch chip’s
crossbar. When the packet is blocked, 8-byte packet chunks are sent to the
central queue for temporary buffering.

CHAPTER 4. ROUTE GENERATION IN MULTICOMPUTERS 38

C rossbar R outing : The switch chip incorporates an unbuffered logical
crossbar that allows packets to pass directly from the receivers to the trans
mitters. These byte-serial crossbar paths permit packets to pass through the
chip with low latency whenever there is no contention for the output port.
As soon as a receiver decodes the routing information carried by an incom
ing packet, it asserts a crossbar request to the appropriate transmitter. If the
crossbar request is not granted by the time the entire first chunk of the packet
has been received, the crossbar request is dropped (and hence the packet will
go to the central queue). Each transmitter arbitrates crossbar requests on a
least-recently-served basis. A transmitter will honor no crossbar request if it
is already transmitting a packet or if it has packet chunks stored in the central
queue.

Transm itters : There are eight transmitter modules, one corresponding to
each output port. When the central queue contains packet chunks destined for
a transmitter, that transmitter requests the next packet chunk. Transmitter
modules are served by the central queue in a least-recently-served fashion. As
long as data is available, one transmitter is served each clock cycle. The trans
mitter accepts packet chunks from the central queue, serialize them, buffers
them in a 7-byte output FIFO, and transmits them to the link in accordance
with the link flow-control protocol. The transmitter is also responsible for
computing and transmitting the CRC codes.

Central Queue : The central queue implements a buffered, time-
multiplexed 8-way router. It accepts packet chunks from the receivers, stores
them, and eventually passes them to the appropriate transmitters. The central
queue stores packets until they can be transmitted. The storage, a 128 by 64-
bit dual-port RAM, holds up to 128 eight-byte packet chunks. The queue does
not reserve a fixed amount of space for each output port; storage is allocated
dynamically according to demand.

Stored packets are queued in FIFO order on eight linked lists, one list
corresponding to each of the eight switch output ports. As long as queue space
is available, one receiver can be served every cycle. As long as data is available,
one transmitter is also served every cycle. Thus the bandwidth through the
central queue matches the bandwidth into and out of the switch chip: eight
bytes per cycle.

CHAPTER 4. ROUTE GENERATION IN MULTICOMPUTERS 39

Figure 4.8. The Switch Board consisting of 8 Switch Chips (an SP2 frame)

4.2.2 IBM SP2 Network Topology

In the network implementations, the switch chip input port i and output port
i are paired together to form a full duplex bidirectional channel. The result
ing 4 x 4 bidirectional switch element can forward a packet to any of the 8
output ports, including the output ports on the same side with the input port
(called “turn-around routing”). In that respect, the SP2 network topologies
differ from more commonly known unidirectional multistage interconnection
networks such as Omega [15] and indirect binary n-cube [21]. Bidirection
ality enhances the modularity, fault-tolerance, and diagnosis of the network.
Eight switches placed in a 2-stage configuration interconnected with a shuffle
form the switch hoard as shown in Fig. 4.8. The switch board provides full
connectivity; it can route a packet from any 32 input ports to any 32 output
ports.

Switch boards may be interconnected in various ways to construct larger
networks. A 16 node network is constructed using only one switch board with
the 16 processor nodes attached to the left hand side of the board and the 16

CHAPTER 4. ROUTE GENERATION IN MULTICOMPUTERS 40

ports on the right hand side unused. A 32 node network is constructed using
two switch boards interconnected as seen in Fig. 4.10. 128 node and 256 node
network examples are shown in Appendix B. Custom network topologies of any
size can be constructed very easily due to the interconnect technology used.
An example of a custom network is a 48 node network as shown in Fig. 4.9.

4.3 Route Generation in SP2 Networks

In Section 4.1, we have proposed an algorithm for generating route tables for
any multistage interconnection network. We have used the IBM SP2 intercon
nection networks for test and performance evaluations of our algorithm. In
the following sections we will present how the route table generation process
works on a sample SP2 network implementation, adaptation of the proposed
algorithm to SP2 networks, and experimental results on SP2 network examples.

4.3.1 An Example Route Generation

We will present the route generation for a source-destination processor pair
using a 32 node SP2 network which is given in Fig 4.10. In the topology

CHAPTER 4. ROUTE GENERATION IN MULTICOMPUTERS 41

Figure 4.10. A 32 node SP2 network

graph T = {Vt i Et) for this network, there are a total of 48 vertices which
represent the switching and the processor nodes in the network. The processor
nodes are represented by the vertices with the index same as the processor
number i.e., processor 5 is represented by a vertex indexed 5. The switching
nodes are indexed as shown in the network implementation. Topology graph is
implemented by keeping edge lists for all vertices in the graph. Each vertex in
the graph keeps undirected outgoing edges from the vertex whose labels denote
the port number of the vertex that the edge goes out from. For example, the
vertex representing the switching node 32 has 8 outgoing edges and an example
of them is the edge to the vertex representing the switching node 38 with
label 6. For the sake of simplicity, we will not give the topology graph because
the network implementation is easier to follow when we keep the meaning of
the edges and the vertices in mind.

The route generation for the processor pair (4,30) in the given network will
be demonstrated by giving the results at each stage of the algorithm. The
first step of the algorithm is to generate the routability graph R = {Vr , Ep)
which contains all possible shortest paths between the processor pair. As seen

CHAPTER 4. ROUTE GENERATION IN MULTICOMPUTERS 42

in Fig. 4.11, vertices at each stage are indexed starting from 0. Each vertex
has also the index of the node in the network that it represents. For example,
vertex 0 at stage 0 represents the switching node 33 in the network.

STAGE: 0

Figure 4.11. R = {Vr^Ep) for processor pair (4,30)

The next step is to generate a solution graph S = (Vs) Es) for the processor
pair (4,30) which is is given in Fig. 4.12. Vertices at each stage i have n-bit
indices where n is the number of vertices at stage i in R. For example, vertices
at stage 1 have 4-bit indices. One bit positions in the indices represent a
subset of vertices at the same stage in R. For example, vertex with index 1101
at stage 1 represents the set of vertices {0 ,2 ,3 } at stage 1 in R. The labels are
routing bytes such that the one bit positions determine the allowed ports to
be used. For example, the vertex 0101 at stage 1 has an edge to vertex 0101
at stage 2 with label 11110000. The vertex 0101 at stage 1 represents the set
of vertices { 0, 2} at stage 1 in R. We can reach to the set of vertices {0} from
vertex 0 and to { 2} from vertex 2 by the routing byte 11110000 as seen in the
routability graph R. So the set of vertices reached from the set (0, 2) by the
routing byte 11110000 is the union of the sets reached from all members, which
is the set (0, 2). The maximum adaptive path in S is given by the bold edges
in Fig. 4.12 where the labels of the edges on the path determine the route.

CHAPTER 4. RO UTE GENERATION IN M ULTICOMPUTERS 43

STAGE: 0

Figure 4.12. S = (Vs,Es) for processor pair (4,30)

CHAPTER 4. ROUTE GENERATION IN MULTICOMPUTERS 44

4.3.2 Adapting the Algorithm to SP2 Networks

As seen in Fig. 4.8, 4 processors are connected to a switch in the switch board
in SP2 networks. The algorithm we proposed is given in terms of source-
destination processor pairs. However, the route tables for all processors con
nected to the same switch in a switch board are same. The algorithm can be
executed for source-destination switch pairs for the switches which are con
nected to processors for SP2 networks. The routes generated determine the
routes to reach to the destination switch from the the source switch. To com
plete the routes to all processors connected to the destination switch, we use
the port of the switch the destination processors are connected to. For example,
in the 32 processor network given in Fig. 4.10, we can execute the algorithm
to generate routes between switching node pairs (32,47) which can be used to
generate routes from the set of processor { 0, 1, 2,3 } to the set of processors
{28,29,30,31}. Note that the algorithm given in Fig. 4.1 is for one processor
to generate all route tables in the system just to give the idea.

4.3.3 Experimental Results

We evaluated the performance of the route table generator in terms of the
percentage of the physically existing paths those of which can be used by the
generated adaptive routes and the running times for different sized networks.
Table 4.1 gives the average ratio of the distinct paths usable by the generated
adaptive routes to the total number of physically existing paths in the network
for all pairs of source-destination processors. This is in fact the average of the
maximum adaptivity of the routes provided by the route table generator for
each pair of processor nodes in the network. Generated adaptive routes make
use of all the physically existing paths in all networks except the 64 processor
network. In 64 processor network, routes for source-destination processor pairs,
where the source and the destination processors are on the same switch board,
make use of all physical paths. Processor pairs those of which are on different

Network Size 16 32 48 64 128 256 512
Average Adaptivity 1.0 1.0 1.0 0.53 1.0 1.0 1.0

Table 4.1. Average adaptivity for different sized networks

CHAPTER 4. RO UTE GENERATION IN MULTICOMPUTERS 45

switch boards can not make use of much of the physical paths because of the
interconnection of the switch boards in the network implementation. So, on
the average generated routes make use of more than half of the underlying
physical paths, which is better than using only one or a few of them.

Network Size
Sun

Sparc 5
16
32
48
64
128
256
512

0.066
0.366
0.516
0.533

33.190
663.74

3209.90

IBM SP2
Host Processor Node Processor

0.06
0.28
0.37
0.39

24.98
498.43

2394.87

0.06
0.28
0.37
0.39

24.52
479.22

2298.28

Table 4.2. Average route table generation times for one processor

Table 4.2 shows the average time to create route table for one processor in
different size networks. The table contains timings on Sun Sparc 5 worksta
tions, IBM SP2 host and node processors. Times are given in seconds.

4.3.4 An Improvement in the Algorithm

An observation about the routes between processor pairs is that the routes in
the first [n /2] stages are adaptive while the routes in the remaining stages are
not in an n stage network. This is also a characteristics of other multistage
interconnection networks. We used this fact to improve our algorithms.

Packets reach the middle stage of the network by adaptive routes and in
the remaining stages there is only one path to reach their destinations which
is determined by the destination processor. Remember that the solution graph
S = (V5, Es) contains all possible routes between a source -destination proces
sor pair. Edges e ^ Es represent the possible routing bytes between stages of
the network. The fact that there is a unique path from the middle stage to the
destination implies that all the edges from the middle stage to the next stage
have the same label, and the edges in the later stages have the same property.
That is, in an n stage solution graph S, all edges < u,v > € Es, u e Vs and
V e Vs'^\ have same labels /(u,v) for fn/2] < i < n. Using this property we

CHAPTER 4. ROUTE GENERATION IN MULTICOMPUTERS 46

Network Size
Sun

Sparc 5
IBM SP2

Host Processor Node Processor
16 0.016 0.01 0.01
32 0.233 0.19 0.18
48 0.283 0.21 0.21
64 0.366 0.32 0.27
128 20.699 15.57 14.88
256 101.645 47.43 47.13
512 1846.276 1347.19 1304.23

Table 4.3. Average route table generation times for one processor for the
improved algorithm

can improve the algorithm for creating the solution graph as follows: the edges
up to the middle stage are created as before. The edges in the stages starting
from the middle stage are created using the fact that edges in the same stage
have the same labels. The first active vertex v is considered first in the middle
stage. An edge from vertex v exists with label /, and in addition this edge is
the only one from v to the next stage. We find this edge < u, u > with label I
and add it to the outgoing edges of vertex v. All edges in the same stage will
have the same label / since it defines the unique routing byte at that stage. So
we just add an edge from all active vertices in the same stage with label I to
vertex u in the next stage. For the next stages, there should only be one active
vertex and for this vertex we find only one edge with the label being the only
routing byte possible in the unique path to the destination. This prevents the
overhead of finding the same edges over and over again and decreases the time
spent in the solution graph generation process, because creating the edges in
the solution graph S dominates overall execution time (since all possible adap
tive routes are enumerated). The execution time for finding the maximum
adaptive path in S is also reduced since the number of edges created in the last
Lra/2J stages are reduced compared to the unimproved version. Table 4.3 shows
route table generation times for one processor using the improved version of
the algorithm.

CHAPTER 4. ROUTE GENERATION IN MULTICOMPUTERS 47

4.4 Parallel Route Table Generator

The algorithm we experimented on SP2 networks did not make use of the par
allelism in the process. Every processor executed the same algorithm on its
own to fill in its route table. The common jobs for the processors connected
to the same switch are not distributed but repeated by each processor. The
inherent parallelism in the process is that the routes are created for source-
destination switch pairs and 4 processors are connected to each switch in the
network. The processors connected to the same switch have the same route
tables so instead of repeating the same processes on all 4 processors connected
to the same switch, we can distribute the job to the processors. Upon comple
tion of the jobs each processor is assigned to, processors send each other the
partial route tables to form the complete route table. The main steps in the
parallelized route table generation are as follows:

1. Make job assignments for 4 processors connected to a switch
such that each processor is responsible for a portion of the
entries in the route table.

2. Let each processor complete its job.
3. Processors connected to the same switch send their results

to each other to fill in their route tables.

We could not implement the proposed parallel route table generator since the
only available SP2 multicomputer we can use had 8 processors. Instead of
implementing it as a parallel program on the SP2 multicomputer, we imple
mented an algorithm which distributes jobs to the processors connected to a
switch and collects the statistics about the times spent at each processor. These
statistics allow us to give the behavior of the proposed parallel algorithm for
any number of processors without the need to run it on a real implementation
of the network. We neglect the times for the processors to send the partial
tables to each other since the amount of data exchanged is considerably small.
The algorithm for each processor is as seen in Fig. 4.13. The assignment of
destination switches to the processors connected to a source switch is achieved
as follows: the 4 processors connected to the source switch generates all short
est paths from the switch to other switches in the network those of which are
connected to processors by using the modified breadth first search algorithm
given in Fig. 4.3. The algorithm is deterministic and creates the same breadth

CHAPTER 4. ROUTE GENERATION IN MULTICOMPUTERS 48

PARALLEL.GENERATE.ROUTES(r, u)
Let src be the switch that processor u is connected to

1 MODIFIED _BFS(T,u)
/ / Generate all shortest paths from u io v £ Vt\T] — {u] j j

2 Distribute processors v G Vt[T] — {u } among the 4 processors
connected to switch src in a scattered manner
Let the set contain the processors assigned to processor u

3 for all V G
4 Create a routability graph R = (Vn, Er) from u to u
5 Create a solution graph S = (Vs,Es)
6 MAX-ADAPTIVE_PATH(5’)

/ / Find the route that provides maximum adaptivity / /
7 Store route for (u,v) pair in RouteJTable[u,v]
8 Collect timing statistics
9 endfor
10 send RouteTTable to other processors connected to switch src
11 receive Route JTables from other processors
12 com bine the received tables to complete the Route-Table

Figure 4,13. A parallel algorithm for generating routes at a processor to other
processors in the network

first tree in all 4 processors. The processors seem to do redundant work at
this step but if we were to parallelize this step, the overhead of communica
tion between processors should be a great percentage of the overall execution
of the algorithm. We introduce a global ordering on the destination switches
discovered by the breadth first search algorithm which is known by all proces
sors. The global ordering indexes the destination switches starting from 1 to
W/4 — 1 in an processor network. The processors are assigned destination
switches in a scattered manner. The processors connected to the source switch
are also indexed starting from 1 to 4. The first switch is assigned to the first
processor, the second switch to the second processor, and so on. The next as
signment after the last processor is done to the first processor and the cycle is
repeated. This distribution will distribute nearly equal work to all processors.
Each processor has a set of assigned destination switches. All processors create
the route table entries for the set of destinations they are responsible of. Upon
completion of route generation at each processor, partial route tables are sent

CHAPTER 4. ROUTE GENERATION IN MULTICOMPUTERS 49

to other processors. As soon as the processors receive all table entries, they
compose their route tables.

4.4.1 Experimental Results

In this section, we give the experimental results of the proposed parallel al
gorithm for route table generation. The algorithm is experimented on a
Sun Sparc 5 workstation neglecting the communication times needed at the
end since the data to be exchanged are small in size. In order to evaluate
the performance of the parallel algorithm, we first generate all route tables in
the system using only one processor and measure the time on one processor,
namely 7j. Next, we run the parallel algorithm such that a processor only fills
in its own route table according to the job distribution and we collect statistics
of the times spent at each processor neglecting the communications. If is the
completion time for processor i in a, V processor network, then

T̂nax — max tj",0<i<T

tmin ‘ L ·
0<t<7>

Table 4.4 gives tmax and tmin in seconds. We evaluated the speedup (S) by the
formula

S = ^ (4.3)
^max

where T\ is the time spent on one processor. We evaluated the efficiency (?/)
of the parallel algorithm which is equal to the ratio of speedup achieved on V
processors to V, i.e.,

(4.4)

We measured the degree of work evenly distributed amongst available proces
sors by load imbalance (£), which is the ratio of the difference between the
finishing times of the last and first processors to complete their portion of the
computation to the time taken by the last processor given by the formula

C = ^max İmin (4.5)

Speedup, efficiency, and load imbalance in the SP2 network experiments are
given in Table 4.4. The speedup and efficiency are also plotted as graphs in
Fig. 4.14 and Fig. 4.15 respectively.

CHAPTER 4. ROUTE GENERATION IN MULTICOMPUTERS 50

Network Size imin tmax <5 n C
16 0.0 0.016 3.0 0.187 1.0
32 0.05 0.083 22.8 0.228 0.40
48 0.066 0.083 38.4 0.800 0.20
64 0.1 0.133 41.75 0.652 0.25
128 5.233 5.566 120.072 0.938 0.059
256 26.565 27.248 222.913 0.871 0.025
512 482.597 501.713 477.675 0.933 0.038

Table 4.4. Statistics for parallel route table generator

The maximum time of the execution times of the processors, tmax, also de
termines the overall execution time to fill all route tables in the multicomputer.
The route tables are created just once at the startup time and stored in each
processor’s memory. Hence, time spent in route table generation is acceptable.

Figure 4.14. Speedup graph for parallel route table generator

CHAPTER 4. ROUTE GENERATION IN MULTICOMPUTERS 51

1.0 - A A A - A -

0.8

>-
U
'Z 0.6
Bu
PQ

G)l\(\
/ \• ' /
;

■--o----

--------------- A
_________ O

0.4

0.2 -
.O

o G - -O Experimental Efficiency
A ----A Ideal Efficiency_______

0.0
16 32 48 64 128 256

PROCESSOR
512

Figure 4.15. Efficiency graph for parallel route table generator

Chapter 5

Conclusion

Scalable multicomputers are based upon interconnection networks that typi
cally provide multiple communication routes between any given pair of proces
sor nodes. Multiple routes provide low latency, high bandwidth, and reliable
interprocessor communication. In such networks, the selection of the routes
is an important problem because of its impact on the communication perfor
mance.

In adaptive routing networks, messages make use of multiple paths between
source-destination processor pairs. Switches alleviate the congestion problem
by sending packets from less busy alternate routes. In the source routing
scheme, the packet route is deterministic and it is completely determined at
the source processor sending the packet. In the first part of this thesis, we
proposed the adaptive source routing (ASR) scheme which combines adaptive
routing and the source routing into one. ASR has the advantages of both
schemes. The degree of adaptivity of each packet is determined at the source
processor. Every packet can be routed in a fully adaptive, or partially adaptive,
or non-adaptive manner, all within the same network at the same time.

When we make use of adaptivity, we have the problem of assignment of
output ports to the packets in the switches. Each packet in a switch has a
permitted set of output ports and the switch must adaptively and in a conflict
free manner assign an output to each packet. We formulated this as a maxi
mum matching problem in a bipartite graph. Polynomial time algorithms for
solving the maximum matching problem exist but they require sophisticated
data structures which makes them impractical to implement in switch hard
ware. We described a heuristic that can be implemented in terms of primitive

52

CHAPTERS. CONCLUSION 53

logic operations. The experimental results showed that the matching heuristic
performs well in practice and it can be implemented easily in switch hardware.

We implemented a network simulator for performance comparisons of the
ASR scheme and the non-adaptive random routing scheme. Simulations of a
sample network showed that the adaptive source routing performs well under
uniform and non-uniform message traffic as expected.

In this thesis we also proposed a route generation algorithm for any inter
connection network. Route generation in regular structured networks is easy
since each packet makes use of the inherent knowledge of the network topology
to reach a destination. However, the main disadvantage of such regular net
works is the restriction on the number of processors connected to the network.
Generally the number of processors are required to be a power of 2. There are
examples of interconnection networks which provide a flexibility in the number
of processors connected to the network and the used interconnection topology.
Such networks need not have any regular structure in topology which compli
cates the route generation. We proposed an algorithm which generates routes
for all pairs of source-destination processors in any interconnection network.
The generated routes are stored in a route table in each processor’s memory.
We implemented the algorithm and evaluated the performance on SP2 network
examples. We give the performance in terms of the distinct paths provided by
the generated adaptive routes compared with the physically existing paths and
the execution times for different sized networks.

To improve the performance of the algorithm, we also proposed a parallel
route table generation algorithm. We implemented a job distribution algorithm
to be able to evaluate the performance of the parallel algorithm that makes the
job assignments to processors and collects statistics for each processor. This
allows us to give the performance without the need to execute the algorithm on
a real implementation of the network. The experimental results show that the
efficiency increases as the size of the network increases. The job distribution
algorithm also provides good load balance for large networks.

The advantages provided by the proposed algorithms are that they can be
used for any interconnection network regardless of the interconnection topology.
In addition, for the case of faulty links or switches in the network, new routes
that take care of the faults can be generated at any time updating the route
table.

Appendix A

Simulation Results of ASR

54

APPENDIX A. SIMULATION RESULTS OF ASR 55

Figure A .l. Performance of adaptive source routing and non-adaptive random
routing on a 16 X 16 network with uniform communication pattern

Figure A.2. Performance of adaptive source routing and non-adaptive random
routing on a 32 x 32 network with uniform communication pattern

APPENDIX A. SIMULATION RESULTS OF ASR 56

Figure A.3. Performance of adaptive source routing and non-adaptive random
routing on a 64 X 64 network with uniform communication pattern

Figure A.4. Performance of adaptive source routing and non-adaptive random
routing on a 128 x 128 network with uniform communication pattern

APPENDIX A. SIMULATION RESULTS OF ASR 57

Figure A.5. Performance of adaptive source routing and non-adaptive random
routing on a 512 x 512 network with uniform communication pattern

Figure A.6. Performance of adaptive source routing and non-adaptive random
routing on a 16 X 16 network with shift-right communication pattern

APPENDIX A. SIMULATION RESULTS OF ASR 58

Figure A .7. Performance of adaptive source routing and non-adaptive random
routing on a 32 X 32 network with shift-right communication pattern

Figure A.8. Performance of adaptive source routing and non-adaptive random
routing on a 64 X 64 network with shift-right communication pattern

APPENDIX A. SIMULATION RESULTS OF ASR 59

Figure A.9. Performance of adaptive source routing and non-adaptive random
routing on a 128 X 128 network with shift-right communication pattern

Figure A. 10. Performance of adaptive source routing and non-adaptive random
routing on a 512 x 512 network with shift-right communication pattern

Appendix B

IBM SP2 Network Examples

60

APPENDIX B. IBM SP2 NETWORK EXAMPLES 6 1

Figure B .l. A 128 node network consisting of 8 first stage and 4 second stage
switch boards. Courtesy Dr. Craig. B. Stunkel, IBM T.J. Watson Research
Center.

Figure B.2. A 256 node network consisting of 16 first stage and 16 second stage
switch boards. Courtesy Dr. Craig. B. Stunkel, IBM T.J. Watson Research
Center.

Bibliography

[1] B. Abalı and C. Aykanat. Routing algorithms for IBM SPl. Lecture Notes
in Computer Science, Springer-Verlag, 853:161-175, 1994.

[2] G. S. Almasi and A. Gottlieb. Highly Parallel Computing. The Ben-
jamin/Cummings Publishing, CA, 1989.

[3] R. V. Boppana and S. Chalasani. A comparison of adaptive wormhole
routing algorithms. In Proc. 20th. Ann. Int. Symp. on Computer Archi
tecture, pages 351-360, May 1993.

[4] Thinking Machines Corporation. Connection Machine CM-5 Technical
Summary, November 1993.

[5] W. J. Dally and C. L. Seitz. Deadlock-free message routing in multiproces
sor interconnection networks. IEEE Trans, on Computers, C-36(5):547-
553, May 1987.

[6] S. A. Felperin, L. Gravano, G. D. Pifarre, and L. C. Sanz. Routing tech
niques for massively parallel communication. Proc. IEEE, 79(4):488-503,
April 1991.

[7] T. Y. Feng. A survey of interconnection networks. IEEE Computer, pages
12-27, Dec. 1981.

[8] R. P. Garimaldi. Discrete and Combinatorial Mathematics. Addison-
Wesley, NY, 1989.

[9] L. R. Goke and G. J. Lipovski. Banyan networks for partitioning multi
processor systems. In Proc. 1st Ann. Symp. on Computer Architecture,
pages 21-28, 1973.

[10] E. Horowitz and S. Sahni. Fundamentals of Computer Algorithms. Com
puter Science Press, Maryland, 1989.

62

BIBLIOGRAPHY 63

[11] E. Horowitz and S. Sahni. Data Structures in Pascal. Computer Science
Press, NY, 1990.

[12] Cray Research Inc. Cray T3D System Architecture Overview, 1993.

[13] S. Konstantinidou and L. Snyder. Chaos router: architecture and perfor
mance. In Proc. 18th Ann. Int. Symp. on Computer Architecture, pages
212-221, 1991.

[14] S. Konstantinidou and L. Snyder. The Chaos Router. IEEE Trans. Com-
pxders, 43(12):1386-1397, December 1994.

[15] D. H. Lawrie. Access and alignment of data in an array processor. IEEE
Trans, on Computers, C-24(12).T145-1155, Dec. 1975.

[16] C. E. Leiserson. Fat-trees: Universal networks for hardware-efficient su
percomputing. IEEE Trans, on Computers, C-34(10):892-901, Oct. 1985.

[17] T. H. Cormen C. E. Leiserson and R. L. Rivest. Introduction to Algo
rithms. The MIT Press, NY, 1991.

[18] G. J. Lipovski and M. Malek. Parallel Computing: Theory and Compar
isons. Wiley & Sons, New York, NY, 1987.

[19] J. A. McHugh. Algorithmic Graph Theory. Prentice Hall, New Jersey,
1990.

[20] M. K. Molloy. Fundamentals of Performance Modeling. Macmillan Pub
lishing Company, NY, 1989.

[21] M. C. Pease, HI. The indirect binary n-cube microprocessor array. IEEE
Trans, on Computers, C-26(5):458-473, May 1977.

[22] G. D. Pifarre, L. Gravano, S. A. Felperin, and L. C. Sanz. Fully adaptive
minimal deadlock-free packet routing in hypercubes, meshes, and other
networks: Algorithms and simulations. IEEE Trans, on Parallel and Dis
tributed Systems, 5(3):247-263, March 1994.

[23] F. S. Roberts. Applied Combinatorics. Prentice-Hall, NJ, 1984.

[24] D. H. Sanders. Statistics. McGraw-Hill, NY, 1990.

[25] I. D. Scherson and C. H. Chien. Least common ancestor networks. In
Proc. 7th Int. Parallel Processing Symp., pages 507-513, 1993.

BIBLIOGRAPHY 64

[26] C. B. Stunkel, D. G. Shea, B. Abali, M. G. Atkins, C. A. Bender, D. G.
Grice, P. Hochschild, D. J. Joseph, B. J. Nathanson, R. A. Swets, R. F.
Stucke, M. Tsao, and P. R. Varker. The SP2 high-performance switch.
IBM Systems Journal, 34(2): 185-204, 1995.

[27] C. B. Stunkel, D. G. Shea, B. Abali, M. M. Denneau, P. H. Hochschild,
D. J. Joseph, B. J. Nathanson, M. Tsao, and P. R. Varker. Architec
ture and implementation of Vulcan. In Proc. 8th Int. Parallel Processing
Symp., pages 268-274, April 1994.

[28] K. Thulasiraman and M. N. S. Swamy. Graphs: Theory and Algorithms.
Wiley-Interscience Publication, NY, 1992.

