
, v'r'V̂ í . ?(- ·>1 ; * ''••̂ *\ ·ί)ΰ' · '* · ^

ίώ Â Ci'"~Îİ <Ά 'ЗЬ-ώ·

■'*'“ ?,'.' ίΛ %,.)! ï / f ί-'ί; ·Γ' ’'Γ·Γ '^· ι>·. ·.■';
■"'· y ; , '-‘Ί ;■ У/, !,Ι 4 r W A ‘\

' C 5 5

Τ 8 Ψ

GLOBAL MEMORY
MANAGEMENT

IN
CLIENT-SERVER SYSTEMS

A THESIS

SU B M IT T E D TO TH E DEPA R TM EN T OF C O M P U T E R

EN G IN EER IN G A N D INFO RM ATION SC IENC E

A N D TH E IN ST IT U T E OF ENGINEERING A N D SC IENC E

OF BILKENT UN IV E R SITY

IN PARTIAL FULFILLM ENT OF TH E R E Q U IR E M E N T S

FO R TH E DEGREE OF

M A ST E R OF SCIENCE

by

Yasemin TÜRKAN

June, 1995

......
Ji / . ·

Ч-63
■с5Г

TS’f

m 31 s 5 в

11

I certify that I have read this thesis and that in my opinion it is fully adecpiate,
in scope and in quality, as a thesis for the degree of Master of Science.

Asst. {%-of. Özgür Ulusoy^4 Âdvisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,
in scope and in quality, as a thesis for the degree of Master of Science.

I certify that I have read this thesis and that in my opinion it is fully adec[uate,
in scope and in quality, as a thesis for the degree of Master of Science.

Asst. Prof. Tuğrul Dayar

Approved for the Institute of Engineering and Science:

Tof. Mehmet Baray^
Director of the Institme

ABSTRACT

GLOBAL MEMORY MANAGEMENT
IN

CLIENT-SERVER SYSTEMS

Yasemin TÜRKAN
M.S. in Computer Engineering and Information Science

Advisor: Asst. Prof. Özgür Ulusoy
.June, 1995

This thesis presents two techniques to iinpro\ e the performance of the global
memory management in client-server systems. The proposed memory manage
ment techniques, called “Dropping Sent Pages'’ and “Forwarding Sent Pages”,
extend the previously proposed techniciues called “Forwarding”, “Hate Hints”,
and “Sending Dropped Pages”. The aim of all these techniques is to increase
the portion of the database available in the global memory, and thus to reduce
disk I/O. The performance of the proposed techniques is experimented using
a basic page-server client-server simulation model. The results obtained under
different workloads show that the memory management algorithm applying the
proposed techniques can exhibit better performance than the algorithms that
are based on previous methods.

Keywords; Client-Server Systems, Global Memory Management, Cache Con
sistency.

Ill

ÖZET

ISTEMCI-SUNUCU SİSTEMLERDE GENEL BELLEK
YÖNETİMİ

Yasemin TÜRKAN
Bilgisayar ve Enformatik Mühendisliği, Yüksek Lisans

Danışman: Asst. Prof. Özgür Ulusoy
Haziran, 1995

Bu tezde istemci-sunııcu sistemlerin performansını arttırmak amacıyla iki tek
nik tanıtılmıştır. Önerilen teknikler, “Gönderilen Sayfaların Bellekten Atıl
ması” ve “Bellekten Atılan Sayfaların Di'^ger İstemcilere Gönderilmesi”, daha
önceden sunulmuş olan genel bellek yönetim tekniklerini (“Sayfa İsteklerinin
Di^'ger İstemcilere Yönlendirimesi”, “Gönderilen Sayfaların İşaretlenmesi” ve
“Bellekten Atılan Sayfaların Sunucuya Geri Gönderilmesi”) geliştirmektedir.

Tezde önerilen tekniklerin performansı isternci-sunucu özelliklerini sağlayan bir
benzetim modeli kullanılarak incelenmiştir. Değişik iş yükleri altında topla
nan sonuçlardan, önerilen tekniklerin bellekte bulunan veritabanı büyüklüğü
nü arttırdığı gözlenmektedir. Böylece bu teknikler kullanılarak isternci-sunucu
sistemlerde performans artışı sağlanmıştır.

Anahtar Sözcükler: Istemci-Sunucu Sistemler, Genel Bellek Yönetimini, Bellek
Tutarlılığı.

IV

ACKNOWLEDGMENTS

I would like to express my gratitude to my advisor Asst. Prof. Özgür Ulusoy for
his motivating support and endless help during my M.S. study. I would also like
to thank Prof. Erol Arkun and Asst. Prof. Tuğrul Dayar for their invaluable
comments on this thesis. I would not have managed to finish this study and
reach my goal without unfailing support and help of my family. I would also like
to thank my colleagues in ASELSAN and my friends in BILKENT for their
great support. Finally, special thanks to my husband, Gökhan TÜRKAN,
for his valuable comments, endless support and endless help throughout my
studies.

Contents

1 Inti'oduction 1

2 CLIENT-SERVER DATABASE SYSTEMS 3

2.1 The Query-Shipping A rchitecture.. 4

2.2 The Data-Shipping Architecture......................■............................ 4

2.2.1 The Object-Server A rchitecture.. 5

2.2.2 The Page-Server A rch itecture .. 6

2.2.3 Mixed A rch itec tu res... 7

3 CACHE CONSISTENCY ALGORITHMS 8

3.1 Detection-based P ro to c o ls .. 8

3.2 Avoidance-based Protocols.. 10

3.2.1 Callback Locking A lgorithm ... 11

4 DISTR IBUTED SHARED MEMORY SYSTEMS 13

4.1 Design C h o ic e s ... 14

4.2 Implementation C h o ic e s ... 17

vi

CONTENTS vn

4.2.1 Data location and access... 17

4.2.2 Data R ep lica tion 18

4.2.3 Cache Consistency 19

4.2.4 Replacement strategy... 19

5 GLOBAL MEMORY M ANAGEM ENT ALGORITHMS 21

5.1 Introduction... 21

5.2 The Basic A lgorithm ... 23

5.3 Franklin’s W ork ... 23

5.3.1 Forwarding 24

5.3.2 Hate H ints.. 24

5.3.3 Sending Dropped Pages 24

5.3.4 Forwarding with Hate Hints and Sending Dropped Pages
Algorithm (FWD-HS) 25

5.4 The Proposed Memory Management A lg o rith m 26

5.4.1 Forwarding Dropped Pages.. 26

5.4.2 Dropping Sent P a g e s ... 26

5.4.3 Forwarding with Sending Droppped Pages, Forwarding
Dropped Pages and Dropping Sent Pages Algorithm(FVVD-
S F D)... 27

5.5 Performance T radeoffs.. 31

6 THE CLIENT-SERVER DBMS SIMULATION MODEL 32

6.1 System Components 33

CONTENTS Vlll

6.1.1 Client Model 33

6.1.2 Server M o d e l .. 35

6.1.3 Network M o d e l.. 35

6.2 Execution M o d e l .. 36

6.2.1 CSIM: A C-Based, Process-Oriented Simulation Language 37

6.3 Database M odel... 38

6.4 Physical Resource M odel... 38

6.5 Workload M odels.. 40

7 Performance Experiments 43

7.1 HOTCOLD Workload 45

7.1.1 Portion of Database Available in Memory 45

7.1.2 Resource Requirements.. 49

7.1.3 Throughput Results 52

7.2 PRIVATE W o rk lo ad .. .58

7.3 UNIFORM W orkload.. 66

7.4 HICON W orkload.. 70

7.5 Summary of Results 74

8 CONCLUSION 76

List of Figures

4.1 Storage Hierarchy.. 14

5.1 How a client handles the page access request of a transaction. 27

5.2 Handling of a lock request issued by a client.................................. 28

5.3 How the page access request of a client is handled by the server. 29

5.4 How a forwarded PageRequest is handled by a client..................... 30

6.1 Client-Server A rch itecture.. 33

6.2 Client Model .34

6.3 Server M o d e l .. 35

7.1 % of DB Available in Memory (HOTCOLD, 50% Ser Bufs, 5%
Cli Bufs, Slow Net)... 47

7.2 Total Disk I/O per Commit (HOTCOLD, 50% Ser Bufs, 5% Cli
Bufs, Slow Net).............................. 47

7.3 Messages Sent per Commit (HOTCOLD, 50% Ser Bufs, 5% Cli
Bufs, Slow Net)... 47

7.4 Message Volume per Commit (HOTCOLD, 50% Ser Bufs, 5%
Cli Bufs, Slow Net)... 47

IX

LIST OF FIGURES

7.5 Server Buffer Hit Ratio (HOTCOLD. 50% Ser Bufs, 5% Cli Bufs,
Slow Net)... 43

7.6 Server Misses Forwarded (HOTCOLD, 50% Ser Bufs, 5% Cli
Bufs, Slow Net).. 43

7.7 Dropped Pages Kept in Memory per Commit (HOTCOLD, 50%
Ser Bufs, 5% Cli Bufs, Slow Net)... 48

7.8 Dropped Pages per Commit (HOTCOLD, 50% Ser Bufs, 5% Cli
Bufs, Slow Net).. 48

7.9 Throughput (HOTCOLD, 50% Ser Buf, 5% Cli Bufs, Slow Net). 54

7.10 Throughput, (HOTCOLD, 50% Ser Buf, 10% Cli Bufs, Slow Net). 54

7.11 Throughput (HOTCOLD, 50% Ser Buf, 25% Cli Bufs, Slow Net). 54

7.12 Throughput (HOTCOLD, 50% Ser Buf, 50% Cli Bufs, Slow Net). 54

7.13 Throughput (HOTCOLD, 50% Ser Buf, 5% Cli Bufs, Fast Net). 55

7.14 Throughput (HOTCOLD, 50% Ser Buf, 10% Cli Bufs, Fast Net). 55

7.15 Throughput (HOTCOLD, 50% Ser Buf, 25% Cli Bufs, Fast Net). 55

7.16 Throughput (HOTCOLD, 50% Ser Buf, 50% Cli Bufs, Fast Net). 55

7.17 Throughput (HOTCOLD, 10% Ser Buf, 10% Cli Bufs, Slow Net). 57

7.18 Throughput (HOTCOLD, 100% Ser Buf, 10% Cli Bufs, Slow Net). 57

7.19 Throughput (HOTCOLD, 10% Ser Buf, 10% Cli Bufs, Fast Net). 57

7.20 Throughput (HOTCOLD, 100% Ser Buf, 10% Cli Bufs, Fast Net). 57

7.21 Throughput (PRIVATE, 50% Ser Buf, 5% Cli Bufs, Slow Net). . 60

7.22 Throughput (PRIVATE, 50% Ser Buf, 10% Cli Bufs, Slow Net). 60

7.23 Throughput (PRIVATE, 50% Ser Buf, 25% Cli Bufs, Slow Net). 60

LIST OF FIGURES XI

7.24 Throughput (PRIVATE, 50% Ser Buf, 50% Cli Bufs, Slow Net). 60

7.25 Server Buffer Hit Ratio (PRIVATE, 50% Ser Bufs, 5% Cli Bufs,
Slow Net).. 61

7.26 Dropped Pages Kept in Memory per Commit (PRIVATE, 50%
Ser Bufs, 5% Cli Bufs, Slow Net).. 61

7.27 Message Volume per Commit (PRIVATE, 50% Ser Bufs, 5% Cli
Bufs, Slow Net)... 61

7.28 Dropped Pages per Commit (PRIVATE, 50% Ser Bufs, 5%i Cli
Bufs, Slow Net)... 61

7.29 Throughput (PRIVATE, 50% Ser Buf, 5% Cli Bufs, Fast Net). . 64

7.30 Throughput (PRIVATE, 50% Ser Buf, 10% Cli Bufs, Fast Net). 64

7.31 Throughput (PRIVATE, 50% Ser Buf, 25% Cli Bufs, Fast Net). 64

7.32 Throughput (PRIVATE, 50% Ser Buf, 50% Cli Bufs, Fast Net). 64

7.33 Throughput (PRIVATE, 10% Ser Buf, 10% Cli Bufs, Slow Net). 65

7.34 Throughput (PRIVATE, 100% Ser Buf, 10% Cli Bufs, Slow Net). 65

7.35 Throughput (PRIVATE, 10% Ser Buf, 10% Cli Bufs, Fast Net). 65

7.36 Throughput (PRIVATE, 100% Ser Buf, 10% Cli Bufs, Fast Net). 65

7.37 Throughput (UNIFORM, 50% Ser Buf, 5% Cli Bufs, Slow Net). 67

7.38 Throughput (UNIFORM, .50% Ser Buf, 10% Cli Bufs, Slow Net). 67

7.39 Throughput (UNIFORM, 50% Ser Buf, 25% Cli Bufs, Slow Net). 67

7.40 Throughput (UNIFORM, 50% Ser Buf, 50% Cli Bufs, Slow Net). 67

7.41 Throughput (UNIFORM, 50% Ser Buf, 5% Cli Bufs, Fast Net). 68

7.42 Throughput (UNIFORM, .50% Ser Buf, 10% Cli Bufs, Fast Net). 68

LIST OF FIGURES XU

7.43 Tliroughput (UNIFORM, 50% Ser Buf, 25%' Cli Bufs, Fast Net). 68

7.44 Throughput (UNIFORM, 50% Ser Buf, 50% Cli Bufs, Fast Net). 68

7.45 Throughput (UNIFORM, 10% Ser Buf. 10% Cli Bufs, Slow Net). 69

7.46 Throughput (UNIFORM, 100% Ser Buf, 10%. Cli Bufs, Slow Net). 69

7.47 Throughput (UNIFORM, 10% Ser Buf, 10% Cli Bufs, Fast Net). 69

7.48 Throughput (UNIFORM, 100% Ser Buf, 10% Cli Bufs, F"ast Net). 69

7.49 Throughput (HICON, 50%. Ser Buf, 5% Cli Bufs, Slow Net). . . 71

7.50 Throughput (HICON, 50% Ser Buf, 10% Cli Bufs, Slow Net). 71

7.51 Throughput (HICON, 50% Ser Buf, 25% Cli Bufs, Slow Net). 71

7.52 Throughput (HICON, 50% Ser Buf, 50% Cli Bufs, Slow Net). 71

7.53 Throughput (HICON, 50% Ser Buf, 5% Cli Bufs, .Fast Net). . . 72

7.54 Throughput (HICON, 50% Ser Buf, 10% Cli Bufs, Fast Net). . . 72

7.55 Throughput (HICON, 50% Ser Buf, 25% Cli Bufs, Fast Net). . . 72

7.56 Throughput (HICON, 50% Ser Buf, 50% Cli Bufs, Fast Net). . . 72

7.57 Throughput (HICON, 10% Ser Buf, 10% Cli Bufs, Slow Net). 73

7.58 Throughput (HICON, 100% Ser Buf, 10% Cli Bufs, Slow Net). . 73

7.59 Throughput (HICON, 10% Ser Buf, 10% Cli Bufs, Fast Net). . . 73

7.60 Throughput (HICON, 100% Ser Buf, 10% Cli Bufs, Fast Net). . 73

List o f Tables

5.1 Memory Hierarchy C o s ts .. 22

5.2 Memory Hierarchy C o s ts .. 23

6.1 Database Param eters.. 38

6.2 Physical Resource P aram eters... 39

6.3 Workload Param eters.. 40

6.4 Workload Parameter Settings for Client n 41

7.1 Simulation Parameter Settings.. 44

Xlll

Chapter 1

Introduction

Recent improvements in computer hardware technology have increased the
computing capabilities of the desktop machines. Therefore, within the last
years, client-server systems have become more popular than the larger com
puter systems. Client-server systems provide access to the shared resources
over a local communication network. In the past, there were no high per
formance workstations, and all the work was being done by a shared-server,
through the use of SQL queries. Now the tendency is to move the computing
functions from the servers to the clients. As the price/performance character
istics of the client-server systems are becoming very attractive, heavy research
is being conducted in this area to improve the performance of these systems.
Global memory management is one of the most active research areas in client-
server systems. The global memory of a client-server system is composed of
the server’s buffer^ and the clients’ buffers. The methods developed for global
memory management in client-server systems aim to reduce disk I/O by in
creasing the portion of the database available in the global memory.

Three global memory management techniques (Forwarding, Hate Hints,
Sending Dropped Pages) are proposed by Franklin in [-5]. These techniques
provide, respectively, that: 1) clients utilize the entire memory of the system
by obtaining pages from other clients, 2) page replacement policies at the server
are modified to reduce replication of the pages between the server’s and the

^We use the terms “buffer” and “cache” interchangeably in this thesis.

CHAPTER 1. INTRODUCTION

clients’ bufFers, 3) client caches are extended by migrating pages from clients’
buffer to the server’s buffer.

In this thesis, we propose two additional global memory management tech
niques (Dropping Sent Pages, Forwarding Dropped Pages) for client-server
systems. In these techniques: 1) a new extension is provided to the page re
placement policies at the serv'er to reduce the replication of pages in the global
memory, and 2) the client caches are further extended by migrating pages from
a client’s buffer to not only the server’s buffer, but also to the other clients’
buffers. The performance of the proposed techniques against a base algorithm
and the techniques proposed in [5] is examined under various workloads.

The next chapter describes the main architectural alternatives of the client-
server database systems. Chapter 3 describes the main cache consistency al
gorithms and a global memory management algorithm that is used as the base
algorithm in our experiments. As the client-server systems have adapted many
characteristics of the distributed shared memory systems. Chapter 4 discusses
the design and implementation choices of the distributed shared memory sys
tems. The global memory management algorithms in client-server systems,
and the techniques proposed to improve the performance of the algorithms are
described in Chapter 5. Chapter 6 presents the client-server DBMS simulation
model developed to test the proposed techniques. The performance results
under different workloads are discussed in Chapter 7. Finally, Chapter 8 sum
marizes the conclusions of the thesis and suggests some possible extensions for
the future work.

Chapter 2

CLIENT-SERVER DATABASE
SYSTEM S

A client-server system is a distributed software architecture that executes on
a network of interconnected desktop machines and shared server machines[5].
Client processes that interact with individual users, run on the desktop ma
chines, where server processes are the shared resources that give services to
the requesting clients. All the system is interconnected via a network. The
partitioning responsibility that is inherent in the client-server structure ac
commodates the needs of users while providing support for the management,
coordination, and control of the shared resources of the organization[5]. There
fore the client-server systems provide an efficient use of the shared resources in
a distributed system.

Concerning the unit of interaction between client and server processes, two
different architectural alternatives exist for the client-server database manage
ment systems: the query-shipping architecture and the data-shipping architec
ture. The following sections describe these architectural alternatives.

CHAPTER 2. CLIENT-SERVER DATABASE SYSTEMS

2.1 The Query-Shipping Architecture

In query-shipping systems, a client sends a query to the server; the server then
processes the query and sends the result back to the client [5]. Most commercial
relational database systems have adopted the query-shipping architecture, since
it is more suitable for these systems. Query-shipping systems were very popular
in the times where there were not many powerful desktop machines. In today’s
systems all the processing power is provided by big, powerful, and expensive
mainframes, and the interaction with the individual users is provided using
cheap and less powerful desktop machines. The interface between the server
and the client is provided by a data manipulation language such as SQL. The
advantages of the cpiery shipping architecture can be listed as follows:

• Communication costs and client buffer space requirements are reduced
since only the data items that satisfy a given query are transferred from
the server to the clients[14]. This is especially important in a wide area
network[18].

• Query-shipping provides a relatively easy migration pa.th from an existing
single-site system to the client-server environment since the database
engine (which resides solely on the server) can have a process structure
similar to that of a single-site database. Therefore, standard solutions
for issues such as concurrency control and recovery can be used[.5].

• Interaction at the query level facilitates interaction among heterogeneous
database systems using a standardized query language such as SQL[5].

• The cost of clients is less, because no high performance desktop machine
is needed for the data processing as all data processing is done on the
servers.

2.2 The Data-Shipping A rchitecture

Data-shipping systems perform the bulk of the work of query processing at
the clients, and as a result, much more DBMS functionality is placed at

CHAPTER 2. CLIENT-SERVER DATABASE SYSTEMS

the clients[5]. All commercial object oriented database management system
(OODBMS) products and recent research prototypes use the data-shipping ar
chitecture. As the technology is advancing, the CPU, memory, and disk capaci
ties of the desktop machines, and the network capacity and speed are increasing
rapidly. Also, the prices of these high technology products are decreasing at
a considerable rate. Therefore, the restrictions to use the data-shipping archi
tecture are being removed. The advantages of the data-shipping architecture
over the cjuery-shipping architecture are[5]:

• The data-shipping approach offloads functionality from the server to the
clients. This might be crucial for performance, as the majority of the
processing power and memory in a workstation-server environment is
likely to be at clients.

• Scalibility is improved because usable resources are added to the system
as more clients are added. This allows the system to grow incrementally.

• Responsiveness is improved by moving data closer to the application and
allowing the programmatic interface of OODBMSs to directly access that
data in the application’s address space.

According to the unit of data that is moved between the server and the
clients, the data-shipping architecture can be implemented in two different
ways; the system can involve either an object-server, or a page-server. Mixed
architectures that integrate the characteristics of these two system are also
possible.

2.2.1 The O bject-Server A rchitecture

The unit of data that is transferred between the client and the server is an
object. The locking protocol is also implemented in object-level. Object servers
provide many advantages, among which:

• They are very suitable for OODBMSs; i.e. they can be easily imple
mented on such systems.

CHAPrER. 2. CLIENT-SERVER DATABASE SYSTEMS

• Both the server and the workstation are able to run methods. A method
that selects a small subset ot a large collection can execute on the server,
avoiding the movement of the entire collection to the vvorkstation[4].

• The design of the concurrency control subsystem is simplified as the
server knows exactly which objects are accessed by each application[4, 5].

• Client buffer space can be used efficiently, since only requested objects
are brought into client’s buffer[5].

• Communication cost can be reduced by sending objects between clients
and servers rather than entire pages if the locality of reference is poor
with respect to the contents of pages[5].

• If the size of the objects changes during execution, this does not cause
any problem, since the unit of data that is transferred is an object, not
a fixed sized page.

2.2.2 T he Page-Server A rchitecture

The unit of data that is transferred between the client and the server is a page.
The locking is also performed in page-level. The advantages of the page-server
architecture over the object-server architecture are;

• The page-server architecture places more functionality on the clients,
which is where the majority of the processing power in a client-server
environment is expected. Therefore the server can spend most of its
CPU power to perform concurrency control and recovery[4, 5].

• .Since entire pages are transferred intact between the client and the server,
the overhead on the server is minimized[4].

• Effective clustering of objects into pages can result in fewer messages
between clients and servers, especially for scan queries[5] .

• The design of the overall system is simpler[5]. For example, page-oriented
recovery techniques can be efficiently supported in a page-server environ
ment. Also, in a page-server system, there is no need to support two
query processors: one for objects, and one for pages.

CHAPTER 2. CLIENT-SERVER DATABASE SYSTEMS

2.2.3 M ixed A rchitectures

Various research have attempted to integrate the object-locking and the page
locking architectures to improve the performance of the client-server systems.
An example of such systems is the NFS file-server architecture[19]. It is a
variation of the page-server design in which the client software uses a remote
file service to read and write database pages directly[4]. Although the file-server
architecture is slow, it has many advantages.

• It reduces the overhead placed on the server.

• Since NFS runs in the operating system kernel, using it to read and write
the database provides that user-level context switches can be avoided
completely. As a result, the rate at which data can be retrieved by a
remote workstation is improved.

Another mixed architecture, presented in [12], supports object-level locking
in a page-server context. The adaptive granularity approach based on that
architecture uses page-level locking for most pages, but switches to object level
locking when finer-grained sharing is demanding. The unit of data transferred
between the server and the clients is a page. The adaptive protocol was shown
to outperform the pure object-level locking and page-level locking protocols
under most of the conditions tested.

There are some other new systems based on mixed architectures. SHORE
(Scalable Heterogeneous Object Repository) is one example to these systems.
It is a persistent object system currently being developed at the University
of Wisconsin. SHORE integrates the concepts from object oriented database
systems and file systems. From the file system world, it draws object naming
services, support for lower (and cheaper) degrees of transaction-related services,
and an object access mechanism for use by legacy UNIX file-based tools. From
the object oriented database world, SHORE draws data modeling features and
support for associative access and performance features.

Chapter 3

CACHE CO NSISTENCY
ALGORITHM S

Cache consistency maintenance is one of the main problems in client-server
systems. There are many researches being done in this area. Since client-
server systems consist of distributed processes, cache consistency algorithms
that have been developed for distributed systems, can easily be implemented
in client-server systems. As an e.xample, different versions of the Distributed
Two Phase Locking Algorithm have been proposed for distributed database
systems[7], and the client-server systems have adapted many approaches used
w’ith these algorithms.

The traditional cache consistency algorithms are partitioned into two classes
[5, 8, 9] : detection-based protocols and avoidance-based protocols. These
protocols are described in the following subsections.

3.1 D etection-based Protocols

Detection-based protocols allow stalp^ data copies to reside in clients’ cache.
The server is responsible for maintaining the information that enables clients

Îf a copy of the data has been updated by another client, the copy residing in the client
cache becomes invalid. This invalid copy is called the “stale copy”.

CHAPTER 3. CACHE CONSISTENCY ALCORTTHMS

to perform the validity checking. Transactions must check the validity of each
cached page they access before they are allowed to commit. Transactions that
have ciccessed stale data are not allowed to commit. Therefore consistency
checks for the updated data should be completed during the execution of a
transaction. The consistency action initiation can'be done in three ways: [5].

• Synchronously, on each initial access to a page by a transaction.

• Asynchronously, on the initial access.

• Deferred, until a transaction enters its commit phase.

Stale data residing in caches increases the risk that a transaction will be
forced to abort as a result of accessing that copy. Therefore, to reduce this
risk, a change notification is sent to a remote client as a result of an update
that could impact the validity of an item cached at the client [5]. Notifications
can be sent either during the execution of the transaction or after the commit
time. Remote updates after the notification can be done in three ways:

• Propagation : the stale copy in the remote client is updated by the new
value.

• Invalidation : the stale copy in the remote client is removed from its
cache.

• Dynamic : based on the current workload, the stale copy is either prop
agated or invalidated.

The Caching Two-Phase Locking protocol presented in [8, 21] is an example
to detection- based protocols. In this protocol, the consistency action initiation
is performed synchronously on each initial access, and no change notification
hints are sent as a result of an update. Another example is No-VVait Lock
ing protocol [21]. No-Wait Locking protocol works the same as the caching
two-phase locking protocol, except that in this protocol the consistency ac
tion initiation is performed on initial access asynchronously. No-Wait Locking
w/Notification[21] is an advanced version of the no-wait locking protocol, in
which change notification hints are sent after commitment. The remote update

CHAPTER 3. CACHE CONSISTENCY ALGORITHMS 10

of the data is perfoniied by propagation. There are other optimistic detection-
based protocols, in which the consistency action initiation is deferred until
commitment. The Optimistic w/Notification [6] is an example to these proto
cols. In this protocol, the change notification hints are sent after commitment,
and the stale remote data is invalidated.

3.2 A voidance-based Protocols

Under the avoidance-based protocols, transactions never have the opportunity
to access stale data. Avoidance based protocols are based on the read one/write
all (ROW.\) replica management protocol. This protocol prevents transactions
to access stale data in their local caches. Even though this protocol increases
the complexity, it reduces the reliance on the server and thereby it is more
suitable for the client-server architecture. What is more, transactions do not
need to perform consistency maintenance operations during the commit phase,
since intentions are obtained during transaction execution. In avoidance-based
protocols the write intention declaration can be performed in three different
w'ays[5]:

• Synchronously, on write intention fault.

• Asynchronously, on write intention fault.

• Deferred until commit.

In addition to the time write intentions are declared, avoidance-based al
gorithms can also be differentiated according to how long write intentions are
retained for[5]. There are two alternatives:

• The write intentions can be retained for the duration of a particular
transaction.

• The obtained write intensions can last until the clients want to drop it.

CHAPTER 3. CACHE CONSISTENCY ALGORITHMS 11

In avoidance-based protocols, there are two different remote conflict actions:
wait and preempt. Under wait policy, if there e.xits any consistency action that
conflicts with the operation of an ongoing transaction, it must wait for the
transaction to complete. On the other hand, under a preempt policy, ongoing
transactions can be aborted as a result of an inco!,ming consistency action[5].

Similar to the detection-based protocols, remote updates can be imple
mented in three different ways: using invalidation, propagation, and dynamic.

Different versions of the Optimistic Two-Phase Locking Algorithm (02PL)
[8. 9] are examples to avoidance-based protocols. They all defer write inten
tions until commitment. The obtained write intentions last until the end of
transaction, and they use wait policy for the remote conflict action. Versions
of 02PL algorithms differ according to the remote update implementation.
Among these versions are 02PL-Invalidate, 02PL-Propagate, 02PL-Dynamic,
and 02PL-NewDynamic.

Notify Locks Algorithm [6], also defers the write intention declaration until
the commitment, and the intention lasts until the end of transaction. However,
under this algorithm preempt policy is used for the remote conflict action, and
the remote updates are propagated.

Callback locking algorithms declare write intentions synchronously, and re
mote updates are implemented by invalidation. There are two different callback
locking algorithms: Callback-Read[9, 21] and Callback-All[9j. In Callback-
Read algorithm write intentions last until the end of the transaction, while in
Callback-All write intentions are kept until they are revoked by the server or
dropped by the client. Most of the client-server systems use the callback lock
ing algorithm for the cache-consistency maintenance. Next subsection explains
the callback locking algorithm.

3.2.1 Callback Locking A lgorithm

In the callback locking a client must declare its intention to the server before
granting any lock to a transaction, if the client does not have an update in
tention registered for the requested page. When a client declares its intention

CHAPTER 3. CACHE CONSISTENCY ALGORITHMS 12

to update a page of which other clients also have the copies of the same [)age,
the server sends “call-back” messages for the conflicting copies. The write in
tention is registered at the server only once the server has determined that all
conflicting copies have been successfully called back. The write intentions are
not revoked at the end of a transaction. If a read request for a page arrives at
the server and a write intention for the page is currently registered for some
other clients, the server sends a downgrade request to those clients. A down
grade recjuest is similar to a callback request, but rather than removing the
page from its buffer, the client simply informs the server that it no longer has a
registered write intention on the page. At a remote client, a downgrade request
for a page copy must first obtain a read lock on the page. If a conflict arises,
the downgrade rec[uest blocks, and a message is sent to the server informing
the conflict.

Chapter 4

D ISTR IBU TED SHARED
M EM ORY SYSTEM S

Hardware technology develops with a high speed. The CPU power of the work
stations, the access time of the memories improve rapidly. However, memories
are still faster than disks, and disks are still faster than tapes. As the access
time of a storage medium increases, the cost of purchasing this medium also
increases. Figure 4.1 shows a hierarchy of the storage devices. [15].

Main memory has the smallest access time, while it has the most cost value.
The next levels in the hierarchy are formed by the extended memory, solid
state disk, and disk cache. The bottom levels consist of magnetic disk, disk
arrays, magnetic tape, and optical disk, which have maximum access time,
but minimum cost. Different memory management algorithms are proposed
to increase the access time, while maintaining low cost systems. Distributed
shared memory systems are the examples to these system.

Distributed shared memory systems implement the shared memory ab
straction on multicomputer architecture, combining the scalibility of network
based architecture with convenience of shared-memory systems [1]. Distributed
shared memory research goals and issues are similar to those of research in mul
tiprocessor caches or network file systems, memories for nonuniform memory
access multiprocessors, and management systems for distributed or replicated
databases [1]. Since client-server systems also consist of distributed processes,

13

CHAPTER 4. DISTRIBUTED SHARED MEMORY SYSTEMS 14

Figure 4.1. Storage Hierarchy

they have adapted many approaches used with these systems.

This chapter explains the design and implementation choices of distributed
shared memory systems[l]. These choices can also be applied to client-server
systems.

4.1 D esign Choices

Distributed shared memory systems can be designed in different ways according
to the choices of the network, the structure and the granularity of data, the
cache consistency algorithm used, the scalibility, and the heterogeneity of the
system.

Network

The systems can be designed on different network choices, which can be:

CHAPTER 4. DISTRIBUTED SHARED MEMORY SYSTEMS 15

• Common networks of workstations or minicomputers,

• Special-purpose message-passing machines (such as Intel iPC/2),

• Custom hardware,

• Heterogeneous systems.

Structure and Granularity

Structure refers to the layout of the shared data in memory[l].The layout can
be in two different ways:

• Unstructured memory: a linear array of words.

• Structured memory: objects, language types, etc.

Granularity refers to the size of the unit of sharing: byte, word, page or
complex data structure. Hardware implementations of distributed shared sys
tems support smaller grain sizes like byte, word, etc.[l]. When a complex data
is used for the size of the sharing, the size of the granularity changes according
to the application. If the size of unit of sharing is page, there are tradeoffs
between the larger and the smaller page sizes. Having a larger page size has
the following advantages over having smaller page size:

• When there is locality of reference, having a larger page size increases
the performance, and reduces the overhead.

• When there is a need to keep directory iriformation about pages in the
system, larger pages reduce the size of the directory.

Having a smaller page size has the following advantages over having a larger
page size:

• Having a smaller page size reduces the probability of sharing the same
page. This reduces the data contention.

• Smaller page sizes decrease the risk of false sharing that occurs when two
unrelated data are placed in the same page.

CHAPTER. 4. DISTRIBUTED SHARED MEMORY SYSTEMS 16

Cache Consistency

The data consistency in caches can be obtained vvjth the following consistency
choices[l]:

• Strict consistency: A read returns the most recently written value.

• Sequential consistency: The result of any execution appears as some
interleaving of the operations of the individual nodes when executed on
a multithreaded sequential machine.

• Processor consistency: Writes issued by each individual node are
never seen out of order, but the order of writes from two different nodes
can be observed differently.

• Weak consistency: The programmer enforces consistency using syn
chronization operators guarantied to be sequentially consistent.

• Release consistency: Weak consistency with two types of synchroniza
tion operators: acquire and release. Each type of operator is quaranteed
to be processor consistent.

Even though the strict consistency algorithms reduce ambiguity, relaxed
consistency algorithms increase the performance of the systems, as less syn
chronization messages are sent and less data movements are implemented.

Scalibility

Distributed shared memory systems scale better than tightly coupled shared-
memory multiprocessors[l]. Mainly two factors limit the scalibility:

• Central bottlenecks (i.e., network connecting processors, processors them
selves, etc.).

• Global knowledge operations and storage (i.e., broadcast messages, di
rectory information to keep track of the location of the pages, etc.).

CHAFTER 4. DISTRIBUTED SHARED MEMORY SYSTEMS 17

H eterogeneity

Heterogeneity is having different machines sharing'the same memory. Different
algorithms can run on different machines. Data has to be converted when it
is passed betw'een two different nodes, and this increases the overhead. The
performance of the system decreases.

4.2 Im plem entation Choices

In addition to the design choices in distributed shared memory systems, there
are different implementation choices. They are stated as follows:

4.2.1 D ata location and access

Data is either stored in a stated location or it is migrated throughout the
system[13]. It is easier to keep track of data if it is located, in a stated site.
Some systems distribute the data among nodes with a hashing algorithm. Al
though these system are simple and fast, they may cause bottleneck under the
condition that the data is not distributed properly. If the data is migrated
throughout the system, there are different ways of memory management:

• The server keeps track of the location of the data. Even though it is
easier to implement, the server becomes a bottleneck.

• Broadcast recpiests can be sent to all the sites for the rec[uired data. Send
ing broadcast messages increases the communication of the system and
the network becomes a bottleneck. Different algorithms using broadcast
messages are proposed in [3]. The algorithms apply dynamic policies for
remote caching.

— Passive-sender/Passive-receiver Algorithm: The strategy aims to
minimize the amount of communication. The sender does not ac
tively hand over any data. If it needs to replace any data, it just

CHAPTER 4. DISTRIBUTED SHARED MEMORY SYSTEMS 18

broadcasts it to the network. If any server is listening, the data
might be picked up.

— .-\ctive-sender/Passive-receiver Algorithm: A workstation trying to
get rid of some valuable data, takes the initiation to hand over the
data to another workstation. It sends a broadcast message asking
for an idle or a less loaded workstation. From the fast responding
workstations, the sender chooses one and hands over the data.

— Passive-sender/Active-receiver Algorithm: If a workstation becomes
idle, it takes the initiative to obtain globally valued data from the
data server or an overflowing workstation. When a workstation
becomes idle, it sends a broadcast message telling that it is idle to
receive data. Upon receiving this message other workstations start
sending dropped data to the idle workstation.

— Active-sender/Active-receiver Algorithm: This strategy combines
the active roles of sender and receiver, possibly combining the ben
efits of both. When a node is idle, it volunteers to store the data of
other nodes. When it becomes a bottleneck, it asks other nodes to
stoi'e its data.

Another memory management technique proposed to handle data migra
tion is called owner-based distributed. Each piece of data has an associate
owner; i.e., a node with the primary copy. The owners change as the data
migrates through the system[l]. If another node requests the data from
the owner, the owner checks for the data in its cache. If the node has the
data, it sends the data to the requesting client. Otherwise, it forwards
the request to the node that it had sent the data previously. If the data is
migrated many times from one node to another, the message also follows
this path and the communication increases, so that the network becomes
a bottleneck.

4.2.2 D ata R eplication

If the data is replicated, the replication protocol can be implemented in two
different ways[13]:

CHAPTER 4. DISTRIBUTED SHARED MEMORY' SYSTEMS 19

• Read-ieplication: Copies of the data exist in the system for read access.
However, if a write access is to be performed on the data, all the other
copies are invalidated.

• Full-replication: Copies of the data exist in the .system for both read and
write accesses. Even when a write access is to be performed on the data,
other copies are not invalidated, and the data is replicated.

4.2.3 Cache C onsistency

If the shared data is not replicated, then the cache consistency protocol is
trivial. The requests that come via network, are automatically serialized by the
network. If the shared data is replicated, a cache consistency algorithm must
be applied to serialize requests. Cache consistency algorithms are discussed in
Chapter 3.

4.2.4 R eplacem ent strategy

In systems that allow data migration, the available space for caching data
may fill up. Under this condition, replacement strategy determines which data
should be replaced to free space and where the replaced data should go. Two
different algorithms are used to determine which data should be replaced:

• Least Recently Used(LRU) data can be replaced.

• Values can be given to each data, and the least valuable ones can be
replaced [3].

Three different algorithms are used to determine where the replaced data
should go:

• Replaced data is just dropped out.

• Valuable replaced data are kept by other remote workstations in the
system[2, 3].

CHAPTER 4. DISTRIBUTED SHARED MEMORY SYSTEMS 20

• If the replaced data is the oidy copy in the system, it is transferred to
the home node [1, 5].

Chapter 5

GLOBAL MEMORY
M ANAG EM ENT
ALGORITHM S

The global memory management algorithm that we have developed is de
scribed in this chapter. The first section makes a brief introduction to the
global memory management in client-server systems. The following sections
describe a basic memory management algorithm, Franklin’s extension to the
basic algorithm[5], and finally the algorithm that we propose.

5.1 Introduction

The client-server systems have adapted many of the design and implementation
choices of the distributed shared memory systems discussed in Chapter 4. The
client-server systems in general, consist of the following components:

Clients: having main memory to cache a small part of the database for
faster access time.

• Server: having slow disks that hold the whole database, and fast main
memory that holds a large portion of the database.

21

CHAPTER 0 . GLOBAL MEMORY MANAGEMENT ALGORITHMS 22

• Network: to connect clients and the server to handle the communication
among them.

The global memory management algorithms apply different choices in the
memory hierarchy costs. The simplest algorithm works as follows: If a client
needs a database page, it first searches its local cache. Under the condition
that a miss occurs, it recjiiests the page from the server. The server searches its
main memory for the page. If it finds the page in its memory, it sends the page
to the client. Otherwise, it reads the page from its disk to its memory, and
then sends the page to the client. Data messages are large messages relative to
other kinds of messages. The global memory hierarchy costs in this algorithm
are shown in Table 5.1.

R ank Level Small
M essages

Large
Messages

Disk
I/O s

1 Local Memory 0 0 0
2 Server Memory 1 1 0
.3 Server Disk 1 1 . 1 or 2

Table 5.1. Memory Hierarchy Costs

Another algorithm that exploits the contents of remote client memory, re
sults in a four-level hierarchy[5] as shown in Table 5.2. If the requested page
does not reside in the server’s memory, the server looks for a remote client
which has the page. If it finds such a client, it forwards the page reciuest to
the remote client, so that the remote client sends the page to the requesting
client. If the page is not found in any of the clients, then the server reads the
page from its disk to its memory.

The local memory access has the minimum access time and cost, while
the server disk access has the maximum access time and cost, in terms of the
storage hierarchy and the number of messages sent. Therefore, the aim of the
global memory management algorithms is to move accesses from the highest
ranks to lower ranks as stated in Table 5.2.

CHAPTER 5. GLOBAL MEMORY MANAGEMENT ALGORITHMS 23

Rank Level Small
Messages

Large
Messages

Disk
I/O s

Local Memory 0 0 0
Server Memory 1 1 0

Remote Memory 0
Server Disk 1 or 2

Table 5.2. Memory Hierarchy Costs

5.2 The B asic A lgorithm

The basic algorithm that is used for performance analysis is the Callback-
A11(CB-.A.) Algorithm. This algorithm has been described in Section 3.2.1.
Recall that in CB-A, the server must keep track of the page copies that are
sent to the clients. The server is also responsible for maintaining the cache-
consistency. It keeps track of the locks that each client obtains for a database
page. If there exits a lock conflict, the serv êr calls back the locks from the
clients that owns a conflicting lock on the page. Before accessing a page clients
must obtain the specified READ or WRITE lock on that page. Dirty pages of
the committed transactions are copied back to the server. Both the server and
the clients use the LRU algorithm for the replacement of the pages in their
buffer.

5.3 Franklin’s Work

Three global memory techniques, called Forwarding. Hate Hints and Sending
Dropped Pages, are presented in [5, 11]. These techniques are originally based
on the CB-R algorithm (see Section 3.2.1). However in our work, they are
modified to be based on the CB-A algorithm that is explained in the previous
section. The following subsections describe these techniques and the algorithm
that has been developed by Franklin.

CH A P'TER 6. GL OB A L MEMORY MAN A GEMENT A L GORITHMS 24

5.3.1 Forwarding

The major aim of this technique is to minimize disk accesses by extending the
global memory. If a client requests a page from the server, the server first
searches the page in its cache. If the page does not exist in the server’s cache,
the page request message is forwarded to the client that has a local copy of the
page. Upon receipt of a forwarded request, the remote client sends the copy
of the page to the requesting client. Therefore, instead of having disk I/O, a
small message is sent from the server to the client who has a local copy of the
page. This technique has the highest effect for the performance improvement.

5.3.2 H ate H ints

This technique is used to keep a larger portion of the database available in
the global memory, when the forwarding technique is used. If the server sends
a page to a client, it marks the page as hatedU The page will be probably
replaced, when an empty buffer frame is needed for a new page. Therefore,
this technique reduces the replications of the pages in the global memory. When
a page is sent to a client, it is known that the page is in the global memory.

5.3.3 Sending Dropped Pages

This technique can also be used to increase the portion of the database in the
global memory, when forwarding technique is used. With this technique the
server buffer pool is used to prevent a page to be completely dropped out of
the global memory. If a client is going to drop a page, it informs the server
by piggybacking this information to the page request message. If the page is
the only local copy in the global memory, the server tells the client to send
the dropped page, by piggybacking this information to the requested page.
Otherwise, the page is dropped, because it has another copy that resides in the
global memory.

b.e., it marks page as the least recently u.sed one.

5.3.4 Forwarding w ith H ate Hints and Sending D ropped

Pages A lgorithm (FW D -H S)

CHAPTER 5. GLOBAL MEMORY MANACEMEST ALGORITHMS 25

The memory management algorithm proposed by TTankliii[5] combines the
three techniques described in the previous subsections. If a client needs a page
that is not in its memory, it requests the page from the server. Upon receiving
a page request, the server checks its buffer. If the page is in its buffer, the
server sends the page to the client and marks the page as hated. If the page
is not in the server’s buffer, then the server searches for a remote client that
has a local copy of the page. If such a client exists, the page request message
is forwarded to that client. Upon receiving the forwarded request, the client
sends the page to the client that has requested the page. Since the locks are
obtained before page request messages are sent, the client can directly send
the page to the requesting client.

There may not exist any local copy of the requested page in the global
memory. In this case, the server reads the page from its hard disk, and sends the
page to the client. Then the server marks that sent page as hated. Therefore,
the page will be probably replaced, when a free space in the'server buffer is
required.

The buffer pool of a client can be filled up during the execution of a trans
action. If the client has to replace a page, it sends this information by piggy
backing to the page request message. The server keeps track of the location of
the page copies that reside in the global memory. If the page that is going to
be dropped is not the only copy in the global memory, the server tells the client
to directly drop the page from its buffer. Otherwise, the client is requested to
send the page to the server. The server puts the page into its buffer, and marks
the page as the most recently used (MRU) page, so that it is not dropped when
an empty buffer location is needed. If the server’s buffer is full, the server uses
a page replacement policy (i.e., LRU) to receive the dropped page.

5.4 The Proposed M em ory M anagem ent A l
gorithm

The algorithm that we have developed extends the Franklin’s algorithm (FWD-
IIS). In addition to the three global memory management techniques used in
FWD-HS, we propose two more techniques to improve the performance of the
algorithm. We call these techniques Forwarding Dropped Pages and Dropping
Sent Pages.

5.4.1 Forwarding D ropped Pages

This technique is used together with the Sending Dropped Pages and Forward
ing techniques. It aims to increase the portion of the database in the global
memory, and to reduce the disk I/O. When a client is going to drop a page
thcit is the only copy in the global memory, the server tries to keep it in its
memory. However, if its buffer is full, the server finds a remote client that has
a free buffer space to receive the dropped page. Therefore, the bnly copy of the
page is not dropped out of the global memory and no disk I/O is performed
by the server to store that page into the disk.

5.4.2 Dropping Sent Pages

CHAPrER 5. GLOBAL MEMORY MANAGEMENT ALGORITHMS 26

This technique extends the Hate Hints techniciue. After sending a page to a
client, the server just drops the page from its memory instead of marking the
page as hated and waiting it to be replaced. As the sent page is not the only
copy in the global memory, this technique frees the server’s buffer to be able
to store more pages. Therefore, the portion of the database available in the
global memory is increased when this technic[ue is used with the Forwarding
and the Forwarding Dropped Pages techniques.

As explained above, the proposed two techniques increase the portion of the
database in the global memory. They are also expected to improve the perfor
mance of the other global memory management algorithms when the cost of

CHAPTER 5. GLOBAL MEMORY MANAGEMENT ALGORITHMS 27

disk I/O is greater lliati the cost of transmitting and processing messages. The
memory management algorithm proposed on the basis of these two techniques
is explained in more detail in the following subsection.

if the required READ or WRITE lock was not obtained before
Send LockRequest message to the server
Wait until the lock is granted

end if // The required lock is obtained
if the requested page (Page(n)) is not in the buffer

Search for free space in the buffer to place the page
If no free space exists in the buffer

Choose a Page(m) with the LRU value
Piggyback this information (that Page(m) will be dropped)
to PageRequest message

end if
Send PageRequest message to the server
Receive Page(n)
if Page(m) is going to be dropped

Obtain the piggyback information about Page(m)
According to this information if the option is

Drop.Page : drop the page
Send_Page_to_Server : send the page to the server
Send_Page_to_Client(x) : send the page to the client x

end if
end if //The page is brought into the client's buffer

Figure 5.1. How a client handles the page access request of a transaction.

5.4.3 Forwarding w ith Sending Droppped Pages, For

warding Dropped Pages and Dropping Sent Pages

A lgorithm (FW D -SFD)

FWD-SF’D algorithm basically uses the Forwarding Dropped Pages and Drop
ping Sent Pages techniques in addition to those defined in FWD-HS algorithm.

CHAPTER 5. GLOBAL MEMORY MANAGEMENT ALGORITHMS 28

Figure 5.1 provides a procedural description of how a page access request
of a transaction is handled at a client site. When a transaction e.xecuting at
client wants to access a page, it must first obtain READ or WRITE lock. If it
has already obtained the specified lock, it continues its execution. Otherwise,
the client requests the lock from the server. The e.Xecution of the transaction
is blocked until the lock is granted by the server.

Check for conflicting locks
if there exits any

for all of the conflicting locks
send callback message to the client that has the lock
wait for the lock to be downgraded

end for
end if
Send the lock to the requesting client

Figure 5.2. Handling of a lock request issued by a client.

The server keeps track of the locks obtained by the clients on all database
pages. When a lock request is received, if no conflicting lock exists in the sys
tem, the server immediately grants the lock to the reciuesting client. However,
if there exits any conflicting locks, the server sends a callback message to each
of the clients that have a conflicting lock. If a client is not using the lock for
its transaction, it downgrades the lock (see Section 3.2.1). Otherwise, it waits
until the commit time to downgrade the lock. The serv'er waits until all the
conflicting locks are called back. Then it grants the lock to the client. The
algorithmic description of this procedure is provided in Figure 5.2.

After obtaining the lock, the client can access the page in its buffer. If
the page does not reside in the client’s bulfer, the client has to request the
page from the server. Before sending the page recpiest, the client checks its
buffersize. If the client has to drop a page in order to receive a new one, it
piggybacks this information to the PageRequest message that is going to be
sent to the server.

Upon receiving a PageRequest message, the server searches its buffer. If

CHAPTER 5. GLOBAL MEMORY MANAGEMENT ALGORITHMS 29

initialize ForwardPage ajid SendPage to FALSE
if the requested page (i.e., Page(n)) is not in the server's buffer

if the page is in any of the other clients' (i.e., Client(y)'s) memory
set ForwardPage to TRUE

else //the page is not in the global memory
read Page(n) from the disk
set SendPage to TRUE

end if
else //the page is in the server's buffer

set SendPage to TRUE
end if
if there is a piggybacked drop information in the request message

if the page that will be dropped (i.e., Page(m)) is not
the only copy in the global memory

set Dropinfo to Drop-Page
else //Page(m) is the only copy in the global memory

if the server's buffer is not full
set Dropinfo to Send-Page-To-Server

else if there is a Client(x) available to tak:e the page
set Dropinfo to Send-Page-To-Client(x)

else
set Dropinfo to Send-Page-To-Server

end if
end if

end if
if SendPage is TRUE

if there is a drop information
Piggyback Dropinfo to Page(n)

end if
send Page(n) to the client
remove Page(n) from the buffer

else // ForwardPage is TRUE
if there is a drop information

Piggyback Dropinfo to the PageRequest message that is going to be forwarded
end if
forward PageRequest message to Client(y)

end if
if Dropinfo is Send-Page-To-Server

Receive dropped Page(m)
if the buffer is full

replace the LRU page in the buffer
end if
Mark the page as MRU

end if

F ig u r e 5 .3 . H ow th e p a g e a c c ess req u est o f a c lie n t is h a n d led by th e serv er .

CHAPTER .5 . GLOBAL MEMORY MANAGEMENT ALGORITHMS 30

the page is in its buffer, the server directly sends the page to the client and
drops that page out of its buffer. If a copy of the page does not exist in the
server's buffer, but resides in the global memory (in one of the clients’ cache),
the server forwards the PageRecpiest message to the remote client that has a
local copy of the page. Under the condition that no copy of the page resides
in the global memory, the server reads the page from its disk, and sends it to
the client. In the FWD-HS algorithm, the page that is sent to a client by the
server is marked as the LRU. The FWD-SFD algorithm modifies this technique
in the sense that the server drops the sent pages out of its buffer.

When there is a piggyback information in the PageRequest message, stating
that the client has to drop a page in order to receive a new one, the server checks
if that page is the only copy in the global memory. If so, the page should not be
dropped from the global memory. In the FWD-HS algorithm, the server tells
the client to send the page directly to itself. If the server’s buffer is full, the
server replaces the least recently used page with the dropped page. However,
in the FWD-SFD algorithm, the server tells the client to send the page to itself
only if its buffer has an empty space to receive the page. Otherwise, the server
searches for a client that can take the dropped page. If there exits any remote
client that can store the page in its buffer, the server tells the client to send the
page to that remote client. However, when the server can not find any remote
client to send the dropped page, it tells the client to send the page to itself.
The server then replaces that page with the one that has the LRU value. The
procedure presented in Figures .5.3 describes how a page access is handled by
the server.

if there is Dropinfo piggybacked to the forwarded PageRequest message
Piggyback the Dropinfo to the requested Page(n)

end if
send Page(n) to the requesting client

Figure 5.4. How a forwarded PageReciuest is handled by a client.

When the requested page is directly sent by the server, the drop information
is piggybacked to the sent page. However, when the PageRequest message is
forwarded, this information is pigg}'backed to the forwarded message, so that

CHAPrER 5. GLOBAL MEMORY MANAGEMENT ALGORITHMS 31

the client which receives the forwarded message can piggyback this information
to the page that is sent to the requesting client. This procedure is provided in
Figure 5.4

The client receives the page it needs from either the server or any of the
clients that has a local copy of the page. There might be a drop information
piggybacked to the received page. Based on this information, the client either
drops the page specified, or sends the page to the server, or it sends the page
to another client.

Clients can receive dropped pages asynchronously from other clients. They
insert the dropped pages into their buffers and mark them as the MRU pages.

5.5 Perform ance Tradeoffs

The previous sections describe the FWD-HS algorithm that extends the base
algorithm CB-A, and the FWD-SFD algorithm that extents the FWD-HS al
gorithm. The CB-A algorithm does not exploit remote client memory, and it
relies on the local client memory, server memory, and the disk. The FWD-HS
algorithm extends the global memory, and reduces the disk I/O by using more
.server CPU and messages. The major technique that affects the performance
is the forwarding technique [5, 11]. This algorithm increases the portion of the
database in the global memory. Therefore page hit ratio of the global memory
is increased. As the global memory hit ratio increases, disk I/O reduces.

The proposed algorithm FWD-SFD extends the FWD-HS algorithm. By
using the Forwarding Dropped Pages and Dropping Sent Pages techniques, the
algorithm increases the portion of the database in the global memory. Since
these techniques tend to use less disk I/O, the FWD-SFD algorithm is expected
to provide better performance than the other algorithms.

Chapter 6

TH E CLIENT-SERVER DBM S
SIM ULATION MODEL

A client-server DBMS simulation model has been involved in our performance
experiments. The simulation model is based on the client-server DBMS model
presented in [20], which was heavily influenced by the client-server architecture
described in [5]. The model in [20] has been extended to simulate the algorithms
discussed in the previous chapter.

The client-server DBMS model simulates a data-shipping page server, where
a number of clients are interacting via a local area network component. Clients
generate transactions and request pages to complete the execution of their
transactions. Their workload is derived from the.se transactions. Server’s
workload is generated by the requests coming from the clients. Concurrent
transaction execution is not allowed on client workstations.

The global memory hierarchy of the system consists of client buffers, server
buffer and server disks (where the database resides). Clients obtain page locks
from the server. /\11 concurrency control and consistency maintenance is im
plemented at a page granularity. Database pages witli corresponding locks are
cached in clients’ buffers. Concurrency control, consistency maintenance, and
buffer management are modeled in full detail, while database, network, and
workload are modeled more abstractly. The general structure of the client-
server architecture consisting of a single page server is depicted in Figure 6.1.

32

CHAPTER 6. THE CLIENT-SERVER DBMS SIMULATION MODEL 33

The following sections describe the simnlation model in detail.

Figure 6.1. Client-Server Architecture

6.1 System Com ponents

The basic components of the system are the client model, the server model,
and the network model. Clients are connected to the server via a local area
network. The following subsections describe the basic components that make
up the simulation model.

6.1.1 C lient M odel

Each client consists of several modules as depicted in Figure 6.2.

The modules are presented as follows:

CHAPTER 6. THE CLIENT-SERVER DBMS SIMULATION MODEL 34

Figure 6.2. Client Model

• Transaction Generator; Generates transactions according to the work
load model.

• Client Manager : Coordinates the operation of a client; e.xecutes trans
actions generated by the transaction generator, responds to messages
sent by the server, processes requests received from other clients and the
server.

• Concurrency Control Manager : Performs the concurrency-control oper
ations in client, according to the specified cache consistency protocol. It
is responsible for locking, unlocking and caching of pages.

• IdufFer Manager: Manages the client buffer pool by using a specified page
replacement policy.

The server model, depicted in Figure 6.3, is similar to the client model.

CHAPTFAi 6. ΠΙΕ CLIENT-SERVER DBMS SIMULATION MODEL 35

6.1.2 Server M odel

Figure 6.3. Server Model

The server model consists of the following modules:

• Server Manager; Coordinates the operation of the system. Handles the
data requests coming from the clients.

• Concurrency Control Manager: Stores information about the location of
page copies in the system, manages data replications, coordinates the
sharing of locks.

• Buffer Manager: Manages the server buffer using a specified page re
placement policy.

6.1.3 Network M odel

The network manager is a simple module which simulates a LAN connecting
the clients and the server. The network is modeled as a FIFO server with a
fixed service rate. A failure-free network is assumed, so that there is no message
losses.

Tlie transaction generator module in each client, generates a stream of ref
erence strings, that specify the transactions to execute. The client manager
module executes the transactions in reference strings, according to the cache
consistency algorithm Callback-All Locking (see Section 3.2.1). Before each
access to a database page, the concurrency control(CC) manager is called by
the client manager, The CC manager is responsible for obtaining the specified
lock. If the client does not have the lock, the CC manager blocks the exe
cution of the transaction and tries to obtain the lock from the server. While
waiting for a lock from the server, the server may send an abort message for
the transaction due to the deadlock detection mechanism used in the system.
In that case, the client aborts the transaction, removes the locks obtained so
far by the transaction, invalidates the pages updated by the transaction, and
restarts the transaction. If, on the other hand, the lock is obtained, the client
manager calls the buffer manager, which is responsible for the organization of
the client’s cache. If the page does not exist in the cache, the buffer manager
blocks the transaction and requests the page from the server. If the buffer is
full, the buffer manager uses a page replacement policy, to determine the page
to be replaced. At commit time, the client sends a commit message to the
server along with the list of pages updated by the transaction.

CHAPTER 6. THE CLIENT-SERVER DBMS SIMULATION MODEL 36

6.2 E x ecu tio n M od el

The workload of the server is determined by the reciuests coming from the
clients. The server controls the whole system. It keeps track of the informa
tion necessary for the concurrency control management, using the Callback-All
Locking algorithm. The server handles the requests of the clients in a FIFO
order. The server grants a lock when all conflicting locks on the requested page
are released. After granting the appropriate lock to the requesting client, the
server sends the page to the client according to the specified global memory
management algorithm.

All the messages are sent over a LAN. The network manager module simu
lates the message exchanges over the LAN among clients and the server. The
messages are sent in a FIFO order.

Deadlocks are dealt by detection and recovery. One of the transactions
involved in a deadlock is aborted. Deadlock detection frequency indicates the

CHAPTER 6. THE CLIENT-SERVER DBMS SIMULATION MODEL 37

frequency by which the server executes the global deadlock detection algorithm.
In order to detect a deadlock a wait-for-graph is formed. If a deadlock is
detected, one of the client transactions involved in the deadlock is aborted to
break the deadlock cycle.

The simulation program consists of approximately -5,000 lines of code and
it has been written in C, using CSIM: A C-Based, Process-Oriented Simulation
Language [16, 17]. Usage of CSIM has greatly reduced the amount of code to
be written. CSIM is explained briefly in the following subsection.

6.2.1 CSIM: A C -Based, Process-O riented S im ulation
Language

CSIM is a process-oriented simulation language which is implemented over the
C programming language. Therefore, programs written in GSIM are actually
C programs that call C procedures. This allows the user to have all the power
of C, with the additional features of creating process-oriented simulation mod
els. The simulation programmers can easily define, initiate, and synchronize
processes. In addition to these features, message passing, data collection and
debugging can easily be implemented using CSIM.

The programmer can define a process that use system resources in one of
three states;

• Active; i.e., currently being processed by the simulator.

• Holding; i.e., waiting for an interval of simulation time to pass.

• Waiting; i.e., waiting for an event to occur in a queue.

A system model can be defined by interacting processes as abstractions of
the active entities in the system. All active processes can be executed in a
pseudo-parallel fashion. CSIM takes care of the consistent execution of these
processes, since the program is actually executing on a single processor.

Each process has a private data area, and active processes are able to com
municate and synchronize with other active processes.

CHAPTER 6. THE CLIENT-SERVER DBMS SIMULATION MODEL 38

111 the simulation model that has been developed, the three active entities
of the system (i.e., the client module, the server module, and the network
module) are defined as CSIM processes. These processes are then executed in
a pseudo-parallel fashion. The mailbox facility of CSIM is used to exchange
messages among processes. Random number distribution functions of CSIM
(e.g., exponential, uniform, etc.) are used to generate the several workload
sets.

6.3 D atabase M odel

The database in our system consists of DatabaseSize number of pages of Page-
Size bytes each. As the model simulates a data-shipping page server, the unit
of transfer and the granularity of locking is a single page. Parameters used to
specify the database system are listed in Table 6.1

PA R A M E T E R M EA N IN G
DatabaseSize Size of the database in pages
PageSize Page size in bytes

Table 6.1. Database Parameters

6.4 P hysical Resource M odel

The client and server instruction execution rates are specified by ClientMIP
and ServerMIP, respectively. The FIFO policy is used in scheduling client and
server CPU. Buffer sizes for each client and the server are given by ClientBuf-
Size and ServerBufSize, respectively, and the buffers are managed using the
specified page replacement policy. The server has a disk, and the disk has an
access time that is uniformly distributed over the range from MinDiskTime to
MaxDiskTime. Disk accesses are scheduled on a FlFO-basis. The server CPU
processes DiskOverheadInst instructions for each I/O operation.

The network model uses a first-come-first-served policy in scheduling the

CHAPTER 6. THE CLIENT-SERVER DBMS SIMULATION MODEL 39

PARAM ETER M EANING
ClientBufSize Client buffer size in pages
ClientMip Instruction execution rate of each client (in MIPs)
ControlMsgSize Control message size in bytes
Deadlockinterval Time interval between two successive deadlock detection
DiskOverheadInst CPU overhead for performing disk I/O
FixedMsgInst Fixed number of instructions to process message
MinDiskTime Minimum time required to access disk (in msec.)
MaxDiskTime Maximum time required to access disk (in msec.)
Networks andwidth Network Bandwidth (in Mbps.)
PerByteMsgInst Number of instructions per message byte
ServerBufSize Buffer size of server in pages
Server MIPs Instruction execution rate of the server (in MIPs)
SysteinOverhead Number of instructions for certain system operations

Table 6.2. Physical Resource Parameters

network access requests of messages. The network is a shared resource and
only one message can be transmitted at a time. Other messages are blocked
until the current transmission is completed. The speed of the communication
is determined by the network bandwidth. There are some additional costs
of transmitting a message. One such cost is simulated using the parameter
FixedMsgInst which denotes the fixed number of instructions to be executed in
sending/receiving a message over the network. Besides this message processing
overhead, variable number of instructions depending on the message size is
modeled by the parameter PerByteMsgInt. The size of a control message, that
is a non-data message like commit, abort, lock-request, etc., is specified by
ControlMsgSize. The other possible overheads like lookup page copies, register
locks, etc., are modeled by a single parameter, for both the clients and the
server, which is SysternOverhead.

The physical resource model and overhead parameters are listed in Table
6.2.

6.5 W orkload M odels

The system workload is generated by client workstations. Client workstations
continuously generate a stream of transactions after each exponential think
time period with a mean of ThinkTime. The workload of the server is deter
mined by the requests coming from the clients. The server responds to these
requests in a FIFO order.

CHAPTER 6. THE CLIENT-SEFiVER DBMS SIMUI.ATION MODEL 40

P A R A M E T E R M EA N IN G
ColdAccessProb Probability of access to a page in the cold region
ColdBounds Page bounds in the cold region
Cold WriteProb Probability of writing to a page in the cold region
HotAccessProb Probability of access to a page in the hot region
HotBounds Page bounds in the hot region
Hot WriteProb Probability of writing to a page in the hot region
NoOfClients Number of clients
ReadPagelnst Number of instructions per page on read
TransactionSize Number of pages accessed per transaction
ThinkTime Mean think time between client transactions
WritePagelnst Number of instructions per page on write

Table 6.3. Workload Parameters

The number of pages accessed by a transaction is specified by Transaction-
Size. Each client spends an average CPU time of ReadPagelnst for reading a
page and WritePagelnst for updating a page. .According to the workload model
used, there exits a HotRegion in the database for each client, where most of
the references are made. The rest of the database is called the ColdRegion.
With a probability of FIotAccessProb, a page is chosen from the hot region of
the database, and this page is updated with a probability of HotWriteProb. If
the page is chosen from the ColdRegion with a probability of ColdAccessProb,
it will be updated with a probability of ColdWritel^rob. Table 6.3 presents the
parameters to model the workload of the system.

There are different workloads used in the simulation model. Their parame
ter settings are provided in Table 6.4. The same parameter settings were used
in the simulation experiments of [5]. The following subsections explain the
workloads used in the simulation model.

CHAPTER 6. THE CLIENT-SERVER DBMS SIMULATION MODEL 41

PA R A M E T E R H O TCO LD PRIVATE U N IFO RM H IC O N
TransactionSize 20 pages 16 pages 20 pages 20 pages
HotBounds p to p+49

p=50(n-l) + l
p to p+24

p=25(n-l) + l
1 to 250

ColdBounds rest of DB 626 to 1250 all DB rest of DB
HotAccessProb 0.8 0.8 0.8
Cold Access Prob 0.2 0.2 1.0 0.2
HotWriteProb 0.2 0.2 0.0 to 0.5
Cold WriteProb 0.2 0.2 0.2

Table 6.4. Workload Parameter Settings for Client n

H O TC O LD W orkload

HOTCOLD workload is used to examine the performance of the algorithms
when data accesses have high locality of reference* and there are moderate
level of data conflicts. There is a high locality at each client in HOTCOLD
workload, while there is a moderate read/write sharing among the clients.
Each client has a 50 page HotRegion, where their 80% of the page accesses are
directed. The remaining 20% of the accesses are directed to the rest of the
database. The write probability to the accessed page is 0.2. It is the same for
both of the database regions. ColdRegion of a client resides in the HotRegions
of other clients.

PR IV A TE W orkload

PRIVATE workload is used to model systems like CAD, where clients work
on their own set of data, while just reading the other parts of the database.
In PRIVATE workload each client has 25 pages, where their 80% of the page
accesses are directed. The remaining 20% of the accesses are directed to the
rest of the database, where no other client’s HotRegion resides. Clients can
modify the pages in their HotRegion with a pi'obability of 0.2, while they can
only make read accesses to their ColdRegion.
~ Hf a data is accessed in the database, the next data access location will be close to the
previous one (probably in the same page).

CHAPTER 6. THE CLIENT-SERVER DBMS SIMULATION MODEL 42

UNIFORM Workload

UNIF'ORM workload is used to examine the performance of the algorithms
in terms of low locality and moderate conflict resolution. Clients have no
HotRegions. They access all of the database with a uniform distribution. They
update 20% of the pages that they accessed.

HICON Workload

HICON is a workload with varying degrees of data contention. It is often used
to model shared-disk transaction processing systems. All of the clients have
only one HotRegion, where their 80% of the page accesses are directed. The
remaining 20% of the accesses are directed to the rest of the database. The
write probability to the accessed page in HotRegion is uniformly distributed
between 0.0 and 0.5, while the write probability to the accessed page in the
ColdRegion is 0.2.

Chapter 7

Performance Experiments

This chapter presents the simulation results for the performance of the global
memory management algorithms CB-A, FWD-HS, and FWD-SFD described
in Chapter 5. The client-server simulation model described in Chapter 6 is
used to test these algorithms. The performance of the algorithms is tested
in four different workloads: HOTCOLD, PRIVATE, UNIFORM and HICON.
The system parameters and the workloads are described in Section 6.5. Table
7.1 lists the simulation parameter settings used in these experiments and Table
6.4 lists the workload parameter settings used in these experiments.

Following is the list of performance metrics used for the analysis of experi
mental results.

T hroughput: is the number of the committed transactions per second.

P o rtion of the database available in the global m em ory: refers
to the portion of the database that each client in the system can access
without any disk I/O. It is calculated as the fraction of union size of the
database pages in the clients’ and the server’s buffers with respect to the
whole database size.

Total disk I /O per com m it: is the total number of the disk I/Os
performed in the system for each committed transaction.

M essages sent per comm it: is the total number of the control and

43

CHAPTER 7. PERFORMANCE EXPERIMENTS 44

PA R A M E T E R SE T TIN G
ClientBufSize 5%, 10%, 25%, or 50% of DB
ClientMip 50 MIPs
Coat rolMs gSize 256 bytes
DatabaseSize 1250
Deadlocklnterval 1 second
Disk Overh eadlnst 5,000 instructions
FixedMsgInst 20,000 instructions
MaxDisk T ime 30 milliseconds
MinDiskTime 10 milliseconds
NetworkDandwidth 8 or 80 Mbits/sec
NoOfClients 1 to 25
PageSize 4,096 bytes
PerByteMsgInst 10,000 inst. per 4Kb
ReadPagelnst 30,000 instructions
ServerBufSize 10%, 50% or 100% of DB
Server MIPs 100 MIPs
SystemOve rh ea d 300 instructions
ThinkTirne 0 milliseconds
WritePagelnst 60,000 instructions

Table 7.1. Simulation Parameter Settings

data messages sent for each committed transaction.

• M essage volum e per com m it: is the total number of the message
bytes sent through the network for each committed transaction.

• Server buffer h it ratio: is the ratio of the server buffer hits over the
total number of pages accessed by the server.

• Server misses forwarded: is the ratio of the page request messages
forwarded to other clients over the total number of server misses.

• D ropped pages per com m it: is the total number of pages dropped
for each committed transaction.

• Pages kept in m em ory per comm it: is the total number of the
dropped pages that should be kept in the global memory (either in
server’s buffer or in another client’s buffer), since they are the only copies.

CHAPTER 7. PERFORMANCE EXPERIMENTS 45

The following sections analyze the performance of the algorithms in different
workloads, with respect to the performance metrics described above.

7.1 HOTCOLD W orkload

The first set of performance results are obtained with the HOTCOLD Work
load. Recall that in the HOTCOLD workload (see Section 6.5), each client has
a 50 page HotRegion where 80% of the accesses are directed, and the rest of
the database is the ColdRegion where the remaining 20% of the accesses are
directed. The HotRegion of a client is in the ColdRegion of other clients. The
transactions update 20% of the accessed pages in both regions. The following
subsections explain the results of the experiments in terms of the portion of
the database available in global memory, the resource requirements, and the
throughput of the system. For the analysis of the portion of the database in
memory and the resource requirements, only one set of experimental results
are used (5% client buffer size, 50% server buffer size, and slow network speed).
Other results are not shown in this chapter, as they follow the same character
istics as the one used, except that they are scaled according to the buffer sizes
and the network speed. Therefore, the discussions of the results in the given
set of experiments can also be applied to the other set of experiments.

7.1.1 Portion o f D atabase A vailable in M em ory

Figure 7.1 shows the percentage of the database available in the global memory
for the algorithms running under the HOTCOLD workload. The highest por
tion of the database that can be available in the global memory is shown with
dotted lines. The database portion in the algorithms deviate from the ideal
condition because of the replicated data that reside in the global memory.
There can be two forms of data-replication in the global memory[5]:

• Server-client correlation: the data has a local copy both in the server,
and the client. Clients request pages from the server. The server reads
these pages from disk into its buffer and sends them to the clients. There
fore the data replications between the clients and the server occurs. The

CHAPTER 7. PERFORMANCE EXPERIMENTS 4 6

riuinber of the replicated pages in small systems is greater than the num
ber in large systems. As more clients are added to the system, the ratio
of the pages at the server to the pages at the clients becomes smaller,
and thus the number of the replicated pages in the server’s buffer and
the clients’ buffers decreases. Sending the updated pages to the server at
the end of the commit time also increases the server-client correlation.

• C lien t-clien t replication: the data has local copies in the different
clients. When the transactions running on different clients access the
same database page, the page is replicated in these clients. As the number
of clients increases the page conflicts increase and more callback messages
are sent to the clients reducing the number of the client-client replication.

As it can be seen in Figure 7.1, CB-A has the smallest portion of the
database in the global memory, because of the server-client correlation. The
server sends the page to the client, and the copy of that page is kept in server’s
buffer with the MRU value. As the number of the clients increases, the repli
cated pages that reside both in the client and the server decrease, and the
portion of database in the global memory increases. Client-client replication
does not effect CB-A, since each client accesses only its own buffer and the
server’s buffer. The algorithms CB-R and FWD-HS (with 30% server buffer
size) are compared in [5]. The performance of CB-R seems to be independent
of the number of the clients added to the system. However the database ra
tio increases with CB-A. This is because of the implementation differences in
CB-R and CB-A algorithms (see Section 3.2.1). Recall that at the end of each
transaction, the write intentions are dropped in CB-R, but they are kept in
CB-A until they are called back or the client decides to drop it. In CB-R when
a client receives a callback it drops the page out of its buffer, while the write
intention is downgraded to read intention in CB-A. The page is not dropped
in CB-A. Therefore, the portion of the database in CB-A is greater than the
portion in CB-R. However CB-A has still the least value when it is compared
with FWD-HS and FWD-SFD.

CHAPTER 7. PERFORMANCE EXPERIMENTS 47

CB-A
FW D-H S
FW D -SFD

10.0 20.0
C lients

Figure 7.1. % of DB Available in Figure 7.3. Messages Sent per Corn-
Memory (HOTCOLD, 50% Ser Bufs, mit (HOTCOLD, 50% Ser Bufs, 5%
5% Cli Bufs, Slow Net). Cli Bufs, Slow Net).

Ee
<3
p

Figure 7.2. Total Disk I/O per Com- Figure 7.4. Message Volume per Com
mit (HOTCOLD, 50% Ser Bufs, 5% mit (HOTCOLD, 50% Ser Bufs, 5%
Cli Bufs, Slow Net). Cli Bufs, Slow Net).

CHAPTER 7. PERFORMANCE EXPERIMENTS 48

Figure 7.5. Server Buffer Hit Ratio Figure 7.7. Dropped Pages Kept
(HOTCOLD, 50% Ser Bufs, 5% Cli in Memory per Commit (HOTCOLD,
Bufs, Slow Net). 50% Ser Bufs, 5% Cli Bufs, Slow Net).

F ig u r e 7 .6 . S erv er M isse s F o rw a rd ed F ig u re 7 .8 . D r o p p e d P a g es p er C o m -

(H O T C O L D , 50% S er B u fs , 5% C li m it (H O T C O L D , 50% Ser B u fs , 5%
B u fs , S lo w N e t) . C li B u fs , S lo w N e t) .

CHAPTER 7. PERFORMANCE EXPERIMENTS 49

FWD-HS and FWD-SFD are very close to the ideal case and they approach
the 100% ratio when the number of clients increases. This is caused by the
client-client replication and the server-client correlation. Because of the HOT-
COLD workload, clients share pages in the database. Overlapping transactions
in different clients may request the same page. In FVVD-HS, when a page is
sent to a client, the server marks the page as LRU. If a need for an empty
buffer location occurs in the server, the server just drops the sent page out
of its buffer. Then the replicated copy is removed out of the global memory.
Therefore the shared copies of the same page both in the client and the server
decreases, and the portion of the database in global memory increases. Sending
Dropped Pages technique also increases the portion of the database in global
memory, as when the only local copy of a page is dropped, it is sent to the
server.

FWD-SFD shows a little improvement in the portion of the database in
global memory, when compared with FWD-HS. There are two reasons why
FWD-SFD provides better results than FWD-HS. The first reason is that,
when the server sends a page to a client, it just drops the page out of its buffer,
reducing the number of copies that reside both in the client and the server.
The other reason is that, in FWD-HS, when a client is going to drop the only
local copy of a page, the page is sent to the server. However in FWD-SFD,
buffers of other clients can be exploited; i.e., the dropped pages can also be
sent to other clients. FWD-SFD utilizes the global memory better than the
other two algorithms, when the number of clients is small. As stated at the
beginning of the section when the number of clients increases, the server-client
correlation decreases and the results obtained for the portion of the database
available in FWD-HS and FWD-SFD become similar.

7.1.2 R esource R equirem ents

Recall that the major aim of the global memory management algorithms is
to reduce disk I/O while increasing the portion of the database in the global
memory. As the portion of the database increases, the probability that an
accessed page will be found in the global memory increases, and the total
number of disk I/Os decreases. Figure 7.2 shows the total number of disk
I/Os needed for a transaction to complete. The message requirements are

CHAPTER 7. PERFORMANCE EXPERIMENTS 50

shown in Figures 7.3 and 7.4. The message and disk I/O requirements for each
committed transaction heavily depend on the client buffer hit ratio, the server
buffer hit ratio, the percentage of the server misses forwarded to other clients,
total number of dropped pages, and finally the total number of dropped pages
kept in memory.

The client cache hit ratio is similar in all clients which is about 69%, since
all the algorithms are based on CB-A and the global memory management
techniques do not affect buffering at clients. The client hit ratio of FWD-HS
as obtained in [5]̂ is also constant (65%). As the hit ratio in client caches
increases, the disk I/O decreases. Server buffer hit ratio (shown in Figure 7.5)
is another parameter that affects the disk I/O. If the server hit ratio increases,
then the disk I/O decreases. CB-A algorithm has the smallest server hit ratio,
as the portion of the database in the global memory is low. In CB-A, the pages
that are sent to the clients are not marked as LRU. They are not dropped out of
the global memory for the first empty space requirements in the server’s buffer.
Also the page requests are not forwarded to other clients. Server hit ratio
follows the same pattern in both F’WD-HS and FWD-SFD when the number
of clients is less than 15 (i.e., before the portion of the database available
in the global memory reaches 100%). As the number of the clients increases
beyond that point, server hit ratio of FWD-SF'D decreases faster. Some of the
dropped pages are forwarded to the clients that have free space in their buffers.
Therefore, the server does not keep all the dropped pages in its buffer. It can
be seen in Figure 7.6 that the number of page requests forwarded in F’WD-SFD
is greater than that in FWD-HS. The difference increases when the number of
clients is greater than 15.

In all of the algorithms, clients send the same number of page requests to
the server. CB-A has the least number of messages sent for each committed
transaction, as it does not employ the Forwarding and Sending Dropped Pa.ges
techniques (see Chapter 5). F’WD-SFD has slightly more messages per commit
than FWD-HS. Forwarding Dropped Pages technique increases the number of
messages exchanged. There are two different types of messages exchanged in
the system. One is the control message that is small in size (e.g., PageRequest,
LockRequest messages, etc.), and the other one is the data message that is

^Recall that the server buffer size is 30% and the CB-R algorithm is used as the base
algorithm.

CHAI^TER 7. PERFORMANCE EXPERIMENTS 51

large in size (i.e., page message). The message volume is the message bytes
sent per committed transaction. If more page messages are sent, the message
volume becomes larger. When the number of clients is small, the portion of the
database available is small, and the probability that the dropped page is the
only local copy is high (see Figure 7.7). Therefore the page is not dropped, and
it is kept in the global memory with FWDTIS and FWD-SFD. As more dropped
pages are kept in the global memory, more database pages are exchanged and
the message volume is increased. When the number of clients is large, there
are more than one local copy of the dropped page either in any of the clients
or in the server. Therefore, most of the pages are dropped (see Figure 7.8) and
the message volume is decreased. When the server hit ratio decreases, the total
number of messages sent per commit increases with F'WDTIS and FWD-SFD,
since a portion of the page requests are forwarded to other clients.

If we compare the results obtained for the total number of messages ex
changed in FWD-HS with those obtained in [5], we see that the number of
messages transmitted is smaller in [5] when the number of clients is small. The
server buffer that we have used in our experiments (50% and 30%)is greater
than the one used in [5]. Therefore, less number of page requests is forwarded
as the server buffer hit ratio increases. Besides, CB-A keeps a larger portion of
the database in the global memory. On the other hand, CB-A requires more
messages to be sent, as the obtained write intentions are not released at the
end of a transaction. As a result, more conflicting lock requests occur, and
more callback messages are sent to the clients.

Total disk I/O (see Figure 7.2) results are similar to those obtained in [5].
At the end of each transaction, dirty pages are sent to the server increasing
the total disk I/O. As the number of clients increases, the number of dirtied
pages increases. The disk I/O has crucial effects on the performance of the
algorithms. If the page requested from the server is not in the global memory
the server reads the page from its disk. As the portion of the database in the
global memory increases, the disk I/Os due to page requests are decreased.
Recall that FWD-SFD has smaller number of disk I/Os than FWD-HS. FWD-
SFD does not have less disk writes, but the difference occurs due to disk reads.
Sending dropped pages to the server also increases the disk I/O. If there is no
space in the server’s buffer, the server has to replace a page with the newly
received one. These kinds of disk writes are also decreased in FWD-SFD, as

CHAPTER 7. PERFORMANCE EXPERIMENTS

the dropped pages are forwarded to empty clients, when the server buffer is
full.

7.1.3 Throughput R esu lts

Different system parameters that affect the throughput are experimented. These
parameters are:

• Client buffer size,

• Server buffer size,

• Network speed.

The results that are obtained under different conditions regarding those
parameters are discussed in the following subsections.

The effects of client buffer size under slow network:

Four different client cache sizes are experimented to investigate the effect of
the client cache size on the throughput of the algorithms. The performance
results are obtained under both the slow network and the fast network.

Buffer sizes range as 5% of the database size (shown in Figure 7.9), 10%
of the database size (shown in Figure 7.10), 25% of the database size (shown
in Figure 7.11), and 50% of the database size (shown in Figure 7.12) where
the server buffer size is fixed to 50% of the database size, and the network
is slow (i.e. , NetworkBandwidth is 8 Mbits/sec). FWD-HS and FWD-SFD
outperform CB-A, for all experimented client buffer sizes. This is because of
the high disk I/O. There is a small performance improvement in FWD-SFD
over FWD-HS, when the client buffer sizes is 5% and 10% of the database, as
the portion of the database available in the global memory is high with FWD-
SFD. If the client buffer size is 25%, FWD-HS and FWD-SFD give nearly
the same throughput results. The extreme case where the client buffer sizes
are ecjual to the server buffer size is also tested. In this experiment FWD-HS

CHAPTER 7. PERFORMANCE EXPERIMENTS 53

and FWD-SFD exhibit the same performance. As the buffer size increases,
larger portion of the hot data is put in the buffer, and the performance of the
algorithms becomes better. The throughput results show the same pattern in
FWD-HS, when compared with the results in [5].

The effects of client buffer size when the network is fast:

Figures 7.13 to 7.16 show the throughput results when the network is fast
(i.e., NetworkBandwidth is 80 Mbits/sec). Under speed network, FWD-HS
and FWD-SFD algorithms again outperform the CB-A algorithm. FWD-SFD
provides better performance than FWD-HS. When the network is fast, total
disk I/O more strongly affects the results in throughput. Having less disk I/O,
FWD-SFD performs better. When the client cache size increases, the difference
between the performances of FWD-HS and FWD-SFD decreases.

The effects of server buffer size when the network is slow:

The effects of server buffer size are experimented under the two extreme cases
where the server buffer size is 10% and 100% of the database size. The results
obtained using the slow network are shown in Figures 7.17 and 7.18, and they
are compared with the results that are obtained when the server buffer size is
50% (see Figure 7.10). In these experiments, the client buffer size is fixed to
1 0%.

FWD-SFD performs the best when the server buffer size is small. FWD-
SFD exploits the clients buffer for sending the dropped pages. If a server has
small buffer, in FWD-HS all the dropped pages received by the server causes
page replacement in the server’s buffer pool. Therefore, the performance of
FWD-HS becomes worst with increased disk I/O.

CHAPTER 7. PERFORMANCE EXPERIMENTS 54

Figure 7.9. Throughput (HOTCOLD, figure 7.11. Throughput (HOT-
50% Ser Buf, 5% Cli Bufs, Slow Net). COLD, 50% Ser Buf, 25% Cli Bufs,

Slow Net).

Figure 7.10. Throughput, (HOT- pig^^e 7.12. Throughput (HOT-
COLD, 50% Ser Buf, 10% Cli Bufs, COLD, 50% Ser Buf, 50% Cli Bufs,
Slow Net). Slow Net).

CHAPTER 7. PERFORMANCE EXPERiMENTS 00

)C B -A
> FW D-H S
- FW D -SFD

O ------------ O

10.0 20 .0
C lients

Figure 7.13. Throughput (HOT- Figure 7.15. Throughput (HOT-
COLD, 50% Ser Buf, 5% Cli Bufs, Fast COLD, 50% Ser Buf, 25% Cli Bufs,
Net). Fast Net).

3|£

F ig u r e 7 .1 4 . T h r o u g h p u t (H O T - F ig u r e 7 .1 6 . T h r o u g h p u t (H O T -
C O L D , 50% S er B u f, 10% C li B u fs , C O L D , 50% Ser B u f, 50% C li B u fs ,
F a st N e t) . F a st N e t) .

CHAPTER 7. PERFORMANCE EXPERIMENTS 56

When the server buffer is large (i.e., 100%), CB-A performs better than
the other two algorithms. The server has all the database in its buffer, and
none of the algorithms used to improve the portion of the database in the global
memory is needed. The performance of F'WD-SFD is very low compared to the
other two when the number of clients is small. The server drops the sent pages
out of its buffer in order to open space for the other dropped pages. However,
there is no need for this operation, as the server buffer is large enough to
hold the whole database. Applying global memory management techniques
is redundant. Even these techniques decrease the performance of the system.
When the number of clients increases, dropped pages out of server buffer do
not effect the performance of FWD-SFD. Dropping the pages also increases
the probability that a page that is going to be dropped by a client wilt be
the only copy in the global memory. When the number of clients is small,
this probability is higher. Therefore, redundant operations are done when
the server buffer size is large. When the number of clients increases, this
probability decreases, and the performance of FWD-SFD becomes better, but
it is still lower than that of the other two algorithms.

The effects of server buffer size when the network is fast:

With the fast network, the results shown in Figures 7.14, 7.19, and 7.20 are
obtained. The results show similar characteristics with the results obtained
with the slow network when the server buffer size is 10% or 50% of the database
size. Because of the fast network, the throughputs are higher with all three
algorithms. However, when the server buffer size is 100%, the improvement
in the performance of FWD-SFD is at a higher level compared to the other
algorithms. The effect of redundant messages sent over the network is reduced,
because of the high speed of the network. All three algorithms show similar
performance characteristics, however, the performance of CB-A is a little bit
better than the performance of other two algorithms.

CHAPTER 7. PERFORMANCE EXPERIMENTS 57

Figure 7.17. Throughput (HOT- Figure 7.19. Throughput (HOT-
COLD, 10% Ser Buf, 10% Cli Bufs, COLD, 10% Ser Buf, 10% Cli Bufs,
Slow Net). Fast Net).

COLD, 100% Ser Buf, 10% Cli Bufs, COLD, 100% Ser Buf, 10% Cli Bufs,
Slow Net). Fast Net).

CHAPTER 7. PERFORMANCE EXPERIMENTS 58

7.2 PRIVATE W orkload

This section discusses the performance results obtained under the PRIVATE
workload. Recall that in the PRIVATE workload (see Section 6.5), each client
has a 25 page HotRegion where 80% of the accesses are directed, and the re
maining 20% of the accesses are directed to the ColdRegion. The transactions
update 20% of the accessed pages that reside only in their HotRegions. There
fore, there is no read/write sharing of data and no data contention in this
workload. The experiments differ from [5] in the following:

• The basic algorithms is CB-A (not CB-R).

• Server buffer size is 50% (not 30%).

• HotAccessProb and ColdAccessProb are respectively 0.8 and 0.2 (not 0.5
for both regions).

As a result of these differences, the results of our performance experiments
are not similar to those obtained in [5]. Figures 7.21 to 7.24 display the perfor
mance results of the algorithms when the network is slow, and the server buffer
size is the 50% of the database size. In all of the figures, when the number of
clients is less than 10, the throughput increases as the number of clients in
creases (similar to the results obtained with the HOTCOLD workload). When
the client buffer size is small (i.e., 5% of the database size), CB-A exhibits
better performance than FWD-HS and FWD-SFD, since most of the pages in
the HotRegion are kept in clients’ buffers and the pages in the ColdRegion are
kept in the server’s buffer (50% of the database is the ColdRegion for all the
clients). As it can be seen in F'igure 7.25, the server buffer hit ratio of CB-A
is almost 1.

The server buffer hit ratio of FWD-HS and FWD-SFD are the same when
the number of clients is one, and, as the number of clients increases the hit
ratios of these algorithms decrease, because of the Hate Hints and the Dropping
Sent Pages techniques. Updated HotRegion pages are sent to the server at the
end of each transaction. These pages are marked as the MRU in the server.
Therefore, the ratio of the hot pages in the server increases. With CB-A, the
pages sent to the clients are marked as MRU which causes the hot pages to

CHAPTER 7. PERFORMANCE EXPERIMENTS 60

Figure 7.21. Throughput (PRIVATE, Figure 7.23. Throughput (PRIVATE,
50% Ser Buf, 5% Cli Bufs, Slow Net). 50% Ser Buf, 25% Cli Bufs, Slow Net).

F'igure 7 .2 2 . T h r o u g h p u t (P R IV A T E , F ig u re 7 .2 4 . T h r o u g h p u t (P R IV A T E ,
50% S er B u f, 10% C li B u fs , S low N e t) . 50% Ser B u f, 50% C li B u fs , S lo w N e t) .

CHAPTER 7. PERFORMANCE EXPERIMENTS 59

become the LRU and to be dropped out of the server buffer. However, with
FWD-HS and FWD-SFD, the hot pages are not dropped out of the server
buffer. In F'WD-HS, the pages sent are marked as the LRU, and in FWD-
SFD, these pages are just dropped. Figure 7.21 shows that FWD-HS exhibits
better performance than CB-A when there is only one client in the system, as
it does not allow the only copy of the pages to be dropped out of the global
memory. However, when there is more than one client in the system, the CB-A
provides better performance that of than FWD-HS, since the server hit ratio
of CB-A is higher than FWD-HS.

Continuing with Figure 7.21, it can be seen that FWD-HS provides an
increase in the performance as the number of clients increases until it becomes
5. This is due to the increase in the concurrency of the executing transactions.
However, when the number of clients increases beyond 5, there is a decrease
in the performance since the total number of dropped pages kept in the global
memory increases (see Figure 7.26). As the number of clients increases, more
updated pages are sent to the server and more cold pages are dropped out of
the server’s buffer, so that the probability that the dropped page is the only
local copy in the global memory is increased. This causes more dropped pages
to be sent to the server and the message volume (see Figure 7.27) is increased.
This is very important when the network is slow. The throughput of FWD-HS
is decreased because of the Sending Dropped Pages technique. As the number
of clients increases, the portion of the database in the global memory increases,
and fewer number of dropped pages are sent to the server. As it can be seen
in Figure 7.28, more pages are dropped. The message volume is decreased and
the throughput is increased.

FWD-SFD exhibits the worst performance, since it drops the sent pages out
of the server’s buffer. This is redundant, because there is no need to increase
the empty space in the server’s buffer since the server’s buffer size is large
enough to keep the all ColdRegion pages.

CHAPTER 7. PERFORMANCE EXPERIMENTS 61

F’igure 7.25. Server Buffer Hit Ra- Figure 7.27. Message Volume per
tio (PRIVATE, 50% Ser Bufs, 5% Cli Commit (PRIVATE, 50% Ser Bufs,
Bufs, Slow Net). 5% Cli Bufs, Slow Net).

Figure 7.26. Dropped Pages Kept in Figure 7.28. Dropped Pages per Corn-
Memory per Commit (PRIVATE, 50% mit (PRIVATE, 50% Ser Bufs, 5% Cli
Ser Bufs, 5% Cli Bufs, Slow Net). Bufs, Slow Net).

CHAPTER 7. PERFORMANCE EXPERIMENTS 62

When the client buffer size increases, the performances of the three algo
rithms become similar, since the portion of the database in the global memory
increases and less number of dropped pages are kept in the global memory. In
the extreme case where the client buffer size is 50% and the number of clients
is large, CB-A exhibits the same performance as FWD-HS until the number of
clients becomes 10. After that point, the performance of the CB-A degrades,
and it becomes the worst, since the server and the network become bottle
neck. In the extreme case, FWD-SFD perfoniis worse than FWD-HS, as the
forwarding dropped pages does not improve the performance. The portion of
the database available in the global memory is high enough such that no more
dropped pages are kept in the global memory and no more disk I/Os required.
Therefore with FWD-SFD, the Dropping Sent Pages out of the server’s buffer,
does no longer increase the performance, instead throughput of FWD-SFD de
creases as the server hit ratio decreases and more page requests are forwarded.
However, when the number of clients increases beyond 15 clients FWD-HS and
F’WD-SFD exhibit the same performance. After that value, their throughput
values start decreasing. The server and the network become bottleneck, and
more data conflicts occur.

Under the fast network (see Figures 7.29 to 7.32), the message volume
becomes less important, and the total disk I/Os determine the throughput.
When the number of clients is small, FWD-HS and CB-A exhibit better per
formance than FWD-SFD, since the portion of the database available in the
global memory is small. However, when the number of clients increases, FWD-
SFD provides better performance than the other two since higher portion of
the database becomes available in the global memory, and the disk I/O is de
creased. As expected, CB-A leads to the least throughput value under these
conditions.

Server buffer size is another important parameter for the performance re
sults. When the server buffer size is small, FWD-HS and F’WD-SFD outper
form CB-A, as they exploit the clients’ buffers for page requests. When the
fast network is used, FWD-SFD exhibits a little bit better performance than
FWD-HS, because although the message volume associated with FWD-SFD is
higher than that of FWD-HS, the disk I/O required for FWD-SFD is less than
that of FWD-HS. When the server buffer size is increased to the ideal case
(i.e., the buffer size becomes 100% of the database size), FWD-SFD has the

CHAPTER 7. PERFORMANCE EXPERIMENTS 63

worst performance under the slow network since it drops the sent messages out
of the server’s buffer. Again, this is redundant as the server’s buffer is large
enough to hold all the database pages. Although CB-A provides better perfor
mance than FWD-HS, both algorithms behave similarly. The throughput with
FWD-HS decreases because of the implementation of Hate Hints and Sending
Dropped Pages. When the network becomes faster and the number of clients
increases, the portion of the database available in the global memory increases
and the time spent for the transmission of network messages decreases, so that
FWD-SFD produces higher throughput values than the other two algorithms.

CHAPTER 7. PERFORMANCE EXPERIMENTS 64

Figure 7.29. Throughput (PRIVATE, Figure 7.31. Throughput (PRIVATE,
50% Ser Buf, 5% Cli Bufs, Fast Net). 50% Ser Buf, 25% Cli Bufs, Fast Net).

g* 200.0
o

10.0 20.0
C lien ts

30.0 0.0 10.0 20.0
C lien ts

F ig u r e 7 .3 0 . T h r o u g h p u t (P R IV A T E , F ig u r e 7..32. T h r o u g h p u t (P R IV A T E ,
50% S er B u f, 10% C li B u fs , F ast N e t) . 50% S er B u f, 50% C li B u fs , F ast N e t) .

CHAPTER 7. PERFORMANCE EXPERIMENTS 65

Figure 7.33. Throughput (PRIVATE, Figure 7.35. Throughput (PRIVATE,
10% Ser Buf, 10% Cli Bufs, Slow Net). 10% Ser Buf, 10% Cli Bufs, Fast Net).

F ig u r e 7 .3 4 . T h r o u g h p u t (P R IV A T E , F ig u re 7 .3 6 . T h r o u g h p u t (P R IV A T E ,

100% Ser B u f, 10% C li B u fs , S lo w 100% Ser B u f, 10% C li B u fs , F ast

N e t) . N e t) .

CHAPTER 7. PERFORMANCE EXPERIMENTS 66

7.3 U N IFO R M W orkload

UNIFORM workload is another workload used in our experiments. As stated
in Section 6.5, in UNIFORM workload all the database resides in the Cold-
Region and is accessed uniformly. Figures 7.37 to 7.40 show the throughput
results obtained under the slow network. As it can be seen from the figures,
FWD-SFD and FWD-HS produce the same performance results and they both
outperform CB-A. There is no HotRegion in this workload. Therefore, the
lack of locality reduces the importance of the Sending Dropped Pages and the
Forwarding Dropped Pages techniques, while the Hate Hints and the Dropping
Sent Pages are still important, since they increase the portion of the database
available in the global memory. The difference between the Hate Hints and the
Dropping Sent Pages techniques becomes less important, as there does not exist
any locality and it is more probable that with P"WD-HS the sent page will be
replaced in the next page request. However, as the number of clients increases,
the Forwarding and the Forwarding Dropped Pages techniques increase the
throughput results.

When a fast network is employed, with small client byffer sizes (see Fig
ures 7.41 to 7.44) F'WD-SFD exhibits better performance than FWD-PIS, as
observed with all other types of workload. However, when the client buffer
size increases, the difference becomes less, since larger portion of the database
becomes available in the global memory.

Server buffer size also affects the performance of the algorithms. FWD-SFD
provides better performance than FWD-HS when the server buffer is small (see
Figures 7.45 and 7.47). Increasing the network speed increases the performance
of FWD-SF’D a little bit, since more messages need to be exchanged with this
algorithm. On the other hand, when the buffer size becomes equal to the 100%
of the database size, FWD-SFD exhibits the worst performance under the slow
network, since the server drops all the sent pages out of its buffer. CB-A
exhibits the best performance as all database pages are kept in the server’s
buffer. However, under the fast network (see Figure 7.48), the performance
of FWD-SFD becomes better as the number of clients increases. CB-A still
provides better performance than FWD-HS.

CHAPTER 7. PERFORMANCE EXPERIMENTS 67

Figure 7.37. Throughput (UNIFORM, Figure 7.39. Throughput (UNIFORM,
50% Ser Buf, 5% Cli Bufs, Slow Net). 50% Ser Buf, 25% Cli Bufs, Slow Net).

j.
S’ 10.0 O----- O C B -A

FW D-HS
FW D-SFD

30.0 0.0 10.0 20.0
C lients

F ig u r e 7 .3 8 . T h r o u g h p u t (U N I F O R M , F ig u r e 7 .4 0 . T h r o u g h p u t (U N I F O R M ,
50% S er B u f, 10% C li B u fs , S low N e t) . 50% S er B u f, 50% C li B u fs , S lo w N e t) .

CHAPTER 7. PERFORMANCE EXPERIMENTS 68

Figure 7.41. Throughput (UNIFORM, Figure 7.43. Throughput (UNIFORM,
50% Ser Buf, 5% Cli Bufs, Fast Net). 50% Ser Buf, 25% Cli Bufs, Fast Net).

----- -------

10.0 20.0
C lien ts

F ig u r e 7 .4 2 . T h r o u g h p u t (U N I F O R M , F ig u re 7 .4 4 . T h r o u g h p u t (U N I F O R M ,
50% Ser B u f, 10% C li B u fs , F a st N e t) . 50% Ser B u f, 50% C li B u fs , F ast N e t) .

CHAPTER 7. PERFORMANCE EXPERIMENTS 69

s.

Figure 7.45. Throughput (UNIFORM, Figure 7.47. Throughput (UNIFORM,
10% Ser Buf, 10% Cli Bufs, Slow Net). 10% Ser Buf, 10% Cli Bufs, Fast Net).

F ig u r e 7 .4 6 . T h r o u g h p u t (U N I F O R M , F ig u r e 7 .4 8 . T h r o u g h p u t (U N I F O R M ,
100% S er B u f, 10% C li B u fs , S low 100% S er B u f, 10% C li B u fs , F a st
N e t) . N e t) .

CHAPTER 7. PERFORMANCE EXPERIMENTS 70

7.4 H IC O N W orkload

In FIICON workload, 80% of the accesses are directed to the same HotRegion
(i.e., pages 1 to 250), and the remaining accesses are directed to the rest of the
database (i.e., ColdRegion). Figures 7.49 to 7.52 show the throughput results
obtained under the slow network. FVVD-SFD and FWD-HS produce similar
performance results and both algorithms outperform CB-A. When the buffer
size becomes larger than the number of pages in the HotRegion, with CB-A the
throughput of the system with one client becomes greater than the throughput
of the system with two clients. This result can be explained by the fact that
when there is only one client in the system the whole HotRegion is kept in the
client’s buffer. When one more client is added to the system, the HotRegion
pages are shared among the clients (i.e., client-client replication) and the data
contention is increased. However, the same situation is observed with FWD-HS
and FWD-SFD when the client buffer size is equal to the 50% of the database
size. When there is only one client in the system no data contention occurs
and nearly 100% of the database is kept in the client’s and the server’s buffers,
so that the total disk I/O is reduced.

Each of the three of algorithms shows similar performance characteristics
under both the fast network and the slow network (for fast network results see
Figures 7.53 to 7.56). When the server buffer size is small, FWD-SFD exhibits
a little bit better performance than FWD-HS, as the network speed increases
(see Figures 7.57 and 7.59). However, when the server buffer size is increased,
because of the Dropping Sent Pages technique the performance of FWD-SFD
becomes the worst, even though there exits a little bit improvement in the
performance of FWD-SFD under the fast network (see Figures 7.58 and 7.60).

CHAPTER 7. PERFORMANCE EXPERIMENTS 71

Figure 7.49. Throughput (HICON, Figure 7.51. Throughput (HICON,
50% Ser Buf, 5% Cli Bufs, Slow Net). 50% Ser Buf, 25% Cli Bufs, Slow Net).

30.0 0.0

F ig u r e 7 .5 0 . T h r o u g h p u t (H IC O N , F ig u re 7 .5 2 . T h r o u g h p u t (H IC O N ,
50% Ser B u f, 10% C li B u fs , S lo w N e t) . 50% Ser B u f, 50% C li B u fs , S low N e t) .

CHAPTER 7. PERFORMANCE EXPERIMENTS 72

Figure 7.53. Throughput (HICON, Figure 7.55. Throughput (HICON,
50% Ser Buf, 5% Cli Bufs, Fast Net). 50% Ser Buf, 25% Cli Bufs, Fast Net).

F ig u r e 7 .5 4 . T h r o u g h p u t (H IC O N , F ig u re 7 .5 6 . T h ro u g h p u t (H IC O N ,
50% S er B u f, 10% C li B u fs , F ast N e t) . 50% S er B u f, 50% C li B u fs , F ast N e t) .

CHAPTER 7. PERFORMANCE EXPERIMENTS 73

Figure 7.57. Throughput (HICON, Figure 7.59. Throughput (HICON,
10% Ser Buf, 10% Cli Bufs, Slow Net). 10% Ser Buf, 10% Cli Bufs, Fast Net).

0 ----- O C B -A0 - 0 FW D-HS
1 ----- l· FW D-SFD

30.0 0.0 10.0 20.0
C lien ts

F ig u r e 7 .5 8 . T h ro u g h p u t (H I C O N , F ig u re 7 .60 . T h r o u g h p u t (H IC O N ,
100% S er B u f, 10% C li B u fs , S lo w 100% Ser B u f, 10% C li B u fs , F a st

N e t) . N e t) .

CHAPTER 7. PERFORMANCE EXPERIMENTS 74

7.5 Sum m ary of R esults

This section gives a brief summary of the performance results of the algorithms
obtained with the HOTCOLD, PRIVATE, UNIFORM and HICON workloads.

Summary of HOTCOLD Results

Two main factors affect the performance of the algorithms in the HOTCOLD
workload: the network speed and the disk I/O. With a slow network the perfor
mance of FWD-SFD becomes considerably worse since the message exchange
requirement of the algorithm is high. However, when the network speed is high,
the total number of disk I/Os determines the throughput results. Two of the
algorithms (F’WD-HS and FWD-SFD) decrease the amount of disk I/O while
increasing the portion of the database in the global memory. Therefore, they
outperform the basic algorithm CB-A, Although these two algorithms reduce
the disk I/O due to the page requests, they have no effect on the disk I/O due
to the dirty pages sent at commit times. FWD-SFD exhibits better perfor
mance than FWD-HS, as it exploits the clients’ caches for the dropped pages
reducing the disk I/O. FWD-HS receives all the dropped pages, and when its
buffer is full it has to perform disk I/O for the page replacement.

When the server buffer is small, the global memory management techniques
used to increase the portion of the database is really important. However
when the server buffer is large (the ideal case is 100% of the database size),
applying these techniques decreases the throughput as redundant operations
are done in the algorithms (e.g., sending dropped pages, dropping the sent
page out of server buffer, etc.). The global memory management algorithms
become more applicable when the network speed is high, so that the redundant
communication becomes less important.

The client buffer size is another factor that affects the performance of the
algorithms. When the client buffer size increases the client cache hits also
increases, as more of the HotRegion data is kept in the buffer, and the portion
of the database in the global memory is also increased. Therefore, the disk I/O
is decreased when the buffer size is increased. The client buffer size becomes
even more important when the network speed is slow.

CHAPTER 7. PERFORMANCE EXPERIMENTS 75

Sum m ary of PRIVATE Results

Network speed affects the performance of the algorithms in the PRIVATE
workload. Under a slow network CB-A provides the best performance while
FWD-SFD exhibits the worst performance. However, when the network speed
and the number of clients increase FWD-SFD starts to exhibit better perfor
mance. Server buffer size is another factor that affects the performance of the
algorithms. When the server buffer size is small (i.e., 10% of the database
size) FWD-SFD provides the best performance. However, as the server buffer
size increases the throughput of the FWD-SFW decreases with respect to the
CB-A and FWD-HS algorithms.

Sum m ary of UNIFORM Results

In the UNIFORM workload, both the network speed and the server buffer size
affect the performance of the algorithms. Under a slow network FWD-HS and
FWD-SFD show nearly the same performance while under a fast network the
performance of FWD-SFD becomes a little bit better than the performance of
FWD-HS. When the server buffer size is small, as expected, the performance of
FWD-SFD becomes better than that of FWD-HS. However, when the server
buffer size is large CB-A exhibits the best performance and FWD-SFD the
worst.

Sum m ary of HICON Results

Network speed does not affect much the performance of the algorithms in the
HICON workload. FWD-SFD and FWD-HS exhibit the similar performance
characteristics, and they both outperform CB-A under both the fast network
and the slow network. However the server buffer size considerably affect the
performance of the algorithms. When the server buffer size is small, FWD-
SFD provides a little bit better performance than FWD-HS. As the server
buffer size increases CB-A and FWD-SFD start to exhibit similar performance
while FWD-SFD exhibits the worst performance.

Chapter 8

CONCLUSION

There has been a great improvement in the price/performance of the worksta
tions, and the networking capabilities in recent years. Therefore, the client-
server system architecture has become a target for the new generation of
database systems. One of the research fields that aims to provide high perfor
mance client-server database systems involves in the development of efficient
techniques for global memory management. With today’s technology, access
ing data on the local memory or transferring remote data over the network is
faster than accessing the data stored on the disk. Therefore, designing efficient
global memory management algorithms aims to decrease the number of the
disk I/Os experienced by each committed transaction.

Franklin has proposed the Forwarding technique to increase the portion of
the database available in the global memory. This technique creates a global
memory hierarchy for an efficient memory management. For each page request
of a client, first the server’s buffer is searched; if it is not found, other clients’
buffers are searched, and if the page still can not be found, it is read from the
disk. Franklin has provided two other memory management techniques (i.e..
Hate Hints and Sending Dropped Pages) to improve the system performance.
With the Hate Hints technique if the server sends a page to a client, it marks
the page as hated (i.e., it marks the page as the least recently used one to
replace it as soon as possible), and with the Sending Dropped Pages technique
the server buffer pool is used to prevent a page to be completely dropped out
of the global memory.

76

CHAPTERS. CONCLUSION 7 7

In this thesis two new techniques are proposed for the purpose of increasing
the portion of the database available in the global memory, and thus reducing
the number of I/Os per commit. The first technique, called Dropping Sent
Pages, is an extension to the Hate Hints technique. With this technique, after
sending the page to a client, the server just drops the page from its memory
instead of marking the page as hated. The second technique, called Forwarding
Sent Pages, exploits the clients’ buffer that are free to receive the dropped
pages, so that the only copies of the pages can be kept in the global memory.

The results of the performance experiments conducted using a simula
tion model have led to the following conclusions. Forwarding technique pro
vides a significant performance improvement over the non-forwarding algorithm
Callback-All (CB-A) which was used as the base algorithm in our evaluations.
The proposed memory management techniques used to increase the portion
of the database available in the global memory provide further improvements
in the throughput performance under certain conditions. With the new tech
niques, the portion of the database available in the global memory increases,
the total disk I/Os decreases, and as a result, the performance becomes better.
On the other hand, these techniques lead to an increase in the total number
of messages exchanged and thus the message volume in the system. Under
fast networks this drawback is less important, as mainly disk I/Os affect the
performance.

Different extensions to the proposed memory management techniques are
possible. In the Sending Dropped Pages technique, the dropped pages are sent
under the control of the server. Instead of communicating with the server for
each dropped page, these pages can be broadcasted, and the idle clients listen
ing the network can pick the pages. Another extension is possible for the page
replacement policies of the clients and the server. The clients and the server
use the LRU protocol in deciding which page should be dropped. Other tech
niques can also be adapted, such as, values can be assigned to each page (e.g.,
higher values can be given to the pages in the HotRegion), and the valuable
pages are not dropped. There is only one server in the system that is inves
tigated in our work. However, systems having more than one server can also
be investigated. Instead of having one large server, employing many smaller
servers can be more efficient depending on the price/performance character
istics of these systems. The whole database can be partitioned among these

CHAPTERS. CONCLUSION 78

servers using a particular hashing function. The servers need not be dedicated
servers. Each client can also behave as a server to other clients by owning a
portion of the database. While it is requesting pages from other servers, it
can also serve the page requests coming from other clients. Another restriction
of our model is that only one transaction can be running at a time at each
client. It is also possible to implement clients as multiprocessing workstations.
The performance of the proposed techniques can also be tested under these
conditions. Finally, as discussed in [10], a new level of storage hierarchy can
be introduced by adding local disks to the clients, and the performance of the
memory management techniques can be evaluated under such an architecture.

Bibliography

[1] B. Nitzberg, V. Lo. Distributed shared memory: A survey of issues and
algorithms. IEEE Computer, 24(8):52-60, August 1991.

[2] C. Pu, A. Leff, F. Korz, S. Chen. Redundancy management in a symmet
ric distributed main-memory database. Technical Report CUCS-014-90,
Department of Computer Science, Columbia University, 1990.

[3] C. Pu, D. Florissi, P. Soares, K. Wu, P. S. Yu. Performance compari
son of dynamic policies for remote caching. Concurrency: Practice and
Experience, 5(4):239-256, June 1993.

[4] D. J. DeWitt, P. Futtersack, D. Maier, F. Velez. A study of three alterna
tive workstation-server architectures for object oriented database systems.
Technical Report #936, Department of Computer Science, University of
Wisconsin-Madison, 1990.

[5] M.J. Franklin. Caching and Memory Management in Client-Server
Database Systems. Ph.D. thesis. University of Wisconsin-Madison, 1993.

[6] K. Wilkinson, M. Neimat. Maintaining consistency of client-cached data.
Proceedings of the 16th VLDB Conference, pages 122-133, Bi'isbane, Aus
tralia, 1990.

[7] M. J. Carey, M. Livny. Conflict detection tradeoffs for replicated data.
ACM Transactions on Database Systems, 16(4):703-746, December 1991.

[8] M. J. Carey, M. J. Franklin, M. Livny, E. Shekita. Data caching tradeoffs
in client-server DBMS architectures. Technical Report #994 Computer
Sciences Department, University of Wisconsin-Madison, January 1991.

79

BIBLIOGRAPHY 80

[9] M. J. Franklin, M. J. Carey. Client-server caching revisited. Technical
Report #1089, Computer Sciences Department, University of Wisconsin-
Madison, May 1992.

[10] M. Livny. M. J. Franklin, M. J. Carey. Local disk caching for client-server
database systems. Proceedings of the 19th VLDB Conference., pages 641-
654, Dublin, Ireland, 1993.

[11] M. J. Franklin, M. J. Carey, M. Livny. Global memory management in
client-server DBMS architectures. Technical Report #1094, Computer
Sciences Department, University of Wisconsin-Madison, June 1992.

[12] M. J. Franklin, M. J. Carey, M. Zaharioudakis. Fine-grained sharing in
a page server OODBMS. Technical Report #1224, Computer Sciences
Department, University of Wisconsin-Madison, April 1994.

[13] M. Stumm, S. Zhou. Algorithms implementing distributed shared memory.
IEEE Computer, 23(5):54-64, May 1990.

[14] R. Hagmann, D. Ferrari. Performance analysis of several back-end
database architectures. ACM Transactions on Database Systems, 11(1):1-
26 ,March 1986.

[15] E. Rahm. Performance evaluation of extended storage architectures for
transaction processing. Proceedings of ACM SIGMOD Conference, pages
.308-317, 1992.

[16] H. Schvvetman. CSIM Reference Manual. Microelectronics and Computer
Corporation, 1986.

[17] H. Schwetman. CSIM: A C-based process-oriented simulation language.
Proceedings of Winter Simulation Conference, pages 387-396, 1986.

[18] M. Stonebraker. Architecture of future database systems. IEEE Data
Engineering, 13(4):37-65, December 1990.

[19] Sun Microsystems. Network Programming Guide.

[20] U. Çetintemel, A. Çınar, G. D. Tunah, 0 . Ulusoy A simulation model
for client-server database management systems. Proceedings of the Ninth
International Symposium on Computer and Information Sciences, pages
81-88, November 1994.

BIBLIOGRAPHY 81

[21] Y. Wang, L. A. Rowe. Cache consistency and concurrency control in a
client/server DBMS. Proceedings of ACM SIGMOD Conference., pages
367-376, 1991.

