
7 / / ' ¿

Г

5 < 9 5 *

. Г 3 6

/ S 3 S

;Г, ,1:. 'i f 3 Ψ |i t
ѴУ t , '̂*, ̂ ̂ -.̂ 'j

Mlî . V ■I ·' !■' Í; ! é
1 f'\ ' ‘'̂ '·
Ш

1 f ■'■’(■ H ' ■'“' ’"ΐ ΐ'-ΐ .·*--i .j < .■ > ■ ■ \.i ·. li i;.· ̂' J, , ,̂. ,̂ ·

f t
Í ψ η ^ f f , : l i t ; - : ' : : :

.'.■»% \ ' /4 · '·; : i ‘ V " r -■•»^ '· -i···:* '. “ ·
w / j - 2 c ; ; ; J . t ii u ■ -\ Ш b '

" ΐ ^ - Ι , Ή ϊ ’ υ ΐ ί ί ' ί ' ί · ' Χ ί ' ■
i¿,:-..4. О. 1>··;'·'' W iju ^ -fc v"-4’J '¿ ,; ’x2iP

» ·■ } . · ι . * ; . ί Η У і; » ,·%■;·· ·' - T ч ■
:. ; / -M ■ ' ' - f ' · ·· ‘ M•»•'•l U V iv -> J i. ;, -e- İ-» J .. V V £ Ù S

> f̂ ^ = ■. ,■ .■ l.
■W 4« ¿ ̂ Ш. y ^ 'jb ı b

' : . ; ? v Г· ; П . Г | ; ··* >1 V* ; ̂ ;<
>.’ ■' i.v - ; V.

ν' J ''y
V ·- ■ ■-> i‘.¿l

. J v j * i

і і І г і Й Ш І

COMPARISON OF IMAGE SPACE
SUBDIVISION ALGORITHMS FOR
PARALLEL VOLUME RENDERING

A THESIS

SU BM ITTE D TO THE DEPAR TM EN T OF C O M PU TER

EN G IN EER ING AN D INFO RM ATIO N SCIENCE

AND TH E IN ST IT U T E OF EN G INEERING A N D SCIENCE

OF BILKENT U N IV ER SITY

IN PARTIAL FULFILLM ENT OF TH E REQ UIREM ENTS

FOR THE DEGREE OF

M ASTER OF SCIENCE

By

Egemen Tanin

July, 1995

___.•¿ŞîÖM©2......

•Т2Ь
1335

¿ 8 5 "

a i ; ä 'i. i. û 1

n

I certify that I have read this thesis and that in my opinion it is fully adequate,
in scope and in quality, as a thesis for the degree of Master of Science.

Assoc. Prof.-'^vdet Aykanat (Advisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,
in scope and in quality, as a thesis for the degree of Master of Science.

Prof. Bülent Ozgüç (Co-advisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,
in scope and in quality, as a thesis for the degree of Master of Science.

Asst. Prof. Özgür UluİD'y

Approved for the Institute of Engineering and Science:

Prof. Mehmet Q̂ aray
Director of the Institute

ABSTRACT

COMPARISON OF IMAGE SPACE SUBDIVISION
ALGORITHMS FOR PARALLEL VOLUME

RENDERING

Egemen Tanin
M .S. in Computer Engineering and Information Science

Advisor: Assoc. Prof. Cevdet Aykanat
July, 1995

In many scientific applications, results are presented as unstructured volumet
ric data sets. Direct Volume Rendering (DVR) is a powerful way of visualizing
these volumetric data sets. However, it involves intensive computations. In
addition, most of the volumetric data sets also require huge memories. Hence,
DVR is a good candidate for parallelization on distributed memory multicom
puters. Also most of the engineering simulations are done on multicomputers.
Therefore, visualization of these results on the same architectures where simu
lations are done avoids the overhead of transporting large amount of data. In
order to visualize unstructured volumetric data sets, the underlying algorithms
should resolve the point location and the view sort problems of the 3D grid
points. In this thesis, these problems are solved by using the well-known Scan
line Z-Buffer algorithm. Three image space subdivision algorithms, namely
horizontal, rectangular, and recursive subdivisions, are utilized to distribute
the computations evenly among the processors in the rendering phase. The
main parallel algorithm uses Raycasting approach of DVR to visualize the data
sets, which is also an image space method. Therefore, the divisions are made
in order to obtain a set of sub-images. Static task decomposition is used where
each processor is assigned to a single sub-image. The load balance among the
processors is achieved by defining the overall work load with in a sub-image by
using the milestone operations done in the Scanline Z-Buffer algorithm. The
algorithms are developed in a way that they can handle any kind of polygonal,
volumetric, and etc. data set where the underlying architecture is also kept

111

IV

flexible in many aspects for the sake of generality and portability. The exper
imental performance evaluation of the horizontal, rectangular, and recursive
subdivision algorithms on an IBM-SP2 system are presented and discussed in
a comparative way.

Keywords: Direct volume rendering, computer graphics, parallel algorithms,
distributed memory multicomputers.

ÖZET

E K R A N U ZAYIN D A BÖLM E YÖ N TE M LE R İN İN PARALEL
H ACİM G Ö R Ü N TÜ LEM E A M A C IY L A K AR ŞILA ŞTIR M A LI

İNCELENMESİ

Egemen Tanın
Bilgisayar ve Enformatik Mühendisliği, Yüksek Lisans

Danışman: Doç. Dr. Cevdet Aykanat
Temmuz, 1995

Birçok mühendislik uygulamalarında, elde edilen sonuçlar yapısal olmayan
hacimsel veri kümeleri olarak saklanmaktadır. Doğrudan Hacim Görüntüleme
(DHG) yöntemleri bu amaçla kullanılan en etkin görüntüleme tekniklerinden
biridir. Ancak bu yöntemler oldukça yoğun işlemler sonucunda istenilen
görüntüyü elde edebilmekte ve dolayısıyla animasyon ve benzeri uygulamalar
için oldukça yavaş yöntemler olarak kabul edilmektedirler. Ayrıca hacim
sel veriler çok büyük bilgisayar bellekleri kullanılarak saklanabilmekte ve
bu açıdanda görüntüleme işlemini oldukça zorlaştırmaktadırlar. Bunlara ek
olarak uygulamaların çoğunluğu çok işlemcili dağıtık hafızalı bilgisayarlarda
yapılmaktadır. Dolayısıyla büyük veri kümelerinin görüntüleme amaçlı bil
gisayarlara taşınması büyük sorunlar doğurabilmektedir. İşte bütün bu ne
denlerden dolayıdır ki Paralel-DHG (P-DHG) önemli bir araştırma konusu
olmuştur. Fakat DHG yöntemlerinin yapısal olmayan hacimlerde uygulan
ması nokta yeri tespiti ve bakış açısı sıralaması adı verilen iki problemin
çözümünü gerektirmektedir. Bu tezde standart poligon boyama yöntemleri
kullanılarak bu problemlere çözüm aranmış ve paralelleştirmek amacıyla üç
yöntem ileri sürülmüştür. Önerilen ana paralel algoritma Işın Düşürme
yönteminin kullanılması yoluyla görüntüleme yapılması esasını kullanmakta ve
ileri sürülen bu üç yöntem gibi ekran uzayını baz olarak almaktadır. Dolayısıyla
iş bölümü ekran uzayının daha küçük ekran parçacıklarına bölünmesi ile
gerçekleştirilmektedir. İş dağılımı herbir paralel işlemci başına tek bir ekran

VI

bölümü düşecek şekilde statik dağılım yapılarak gerçekleştirilmiştir. Kul
lanılan poligon boyama yönteminin ana bölümleri göz önüne alınarak bir ekran
bölümündeki iş hesaplanmış ve mümkün olduğunca işlemcilere eşit i§ dağılımı
yapılmaya çalışılmıştır. Geliştirilen programlar her türlü sistem ve veri kümesi
kullanabilecek şekilde genelleştirilmiş ve bu şekilde gerçekleştirilmişlerdir.
Yatay, dikdörtgenel, ve özyindi adı verilen bölme yöntemlerinin IBM-SP2 sis
teminde karşılaştırmalı incelenmesi yapılmış ve bu tezle birlikte sunulmuştur.

Anahtar Sözcükler: Doğrudan hacim görüntüleme, bilgisayar grafikleri, paralel
algoritmalar, dağıtık hafızalı çok işlemcili bilgisayarlar.

ACKNOWLEDGEMENTS

I am very grateful to my advisor Assoc. Prof. Cevdet Aykanat for his guidance,
suggestions, and encouragement throughout the development of this thesis. I
would like to thank Prof. Bülent Özgûç for reading and commenting on the
thesis. I would also like to thank Asst. Prof. Özgür Ulusoy for reading and
commenting on this thesis. Finally, thanks to Tahsin M. Kurç for his invaluable
effort in the development of the thesis.

Vll

Bu çalışmamı,
herşeyimi borçlu olduğum anneme, babama,

ve
kardeşime
adıyorum.

vııı

Contents

1 Introduction 1

1.1 Overview of the Visualization Process... 1

1.2 Related W o r k ... 3

1.3 Motivation and Overview of the T h es is ... 4

2 Sequential Direct Volume Rendering 6

2.1 Direct Volume Rendering in General .. 6

2.2 The Proposed Sequential A pproach .. 15

3 Parallel Direct Volume Rendering 22

3.1 Our Parallel Implementations in G eneral...................................... 22

3.2 Subdivision Heuristics .. 24

3.2.1 Horizontal Heuristic .. 25

3.2.2 Rectangular Heuristic.. 29

3.2.3 Recursive Heuristic... 31

3.3 Load Balancing Metrics 33

3.4 Refining the A lgorithm s.. 35

IX

CONTENTS

4 Results 38

4.1 Introduction to the Experimental Results...................................... .38

4.2 Experimental Results.. 44

5 Conclusion 50

A Tables of the Sample Runs 53

List of Figures

2.1 Data types used in volume rendering.. 7

2.2 Flow chart of the sampling process.. 8

2.3 Volume rendering overview... 9

2.4 Overview of the volume rendering for unstructured data sets (2D
illustration).. 11

2.5 The general DVR algorithm.. 12

2.6 The interpolation process for different dimensions......................... 13

2.7 Flow chart of our sequential algorithm... 17

2.8 Overview of our sequential process.. 18

2.9 Data from University of North Carolina Chapel Hill. A Com
puter Tomography image of a cadaver head.................................... 20

2.10 Data from NASA-Ames Research Center. An airflow analysis
workshop on a blunt fin rising from a plate. 21

3.1 Fundamental Parallel Algorithm. 23

3.2 The pseudo-code for the triangle exchange operation.........................25

3.3 Parallel algorithm for horizontal division scheme................................26

3.4 An example of horizontal division for eight processors. The re
gions are separated by dotted lines... 27

XI

LIST OF FIGURES xn

3.5 Pseudo-code for FIND_DIVISION procedure. The input param
eter R represents the number of horizontal regions and W LA
represents the work load array.. 29

3.6 Parallel algorithm for rectangular division scheme......................... 31

3.7 An example of rectangular division for eight processors orga
nized into four clusters and two processors in each cluster. Dot
ted lines represent the boundaries of each region. 32

3.8 Parallel algorithm for the recursive subdivision scheme................ 33

3.9 An example of recursive subdivision for eight processors. Dotted
lines represent the boundaries of each region.................................. 34

4.1 Input data BLUNT in hexahedral grid form................................... 39

4.2 Input data POST in hexahedral grid form...................................... 40

4.3 Input data DELTA in hexahedral grid form.................................... 41

4.4 Interconnection network of the IBM-SP2 Architecture......................43

4.5 Speedup graph of the horizontal, rectangular, and recursive di
vision schemes where bounding box approximation is used and
obtained by using the rendering times... 45

4.6 Speedup graph of the horizontal and recursive division schemes
where rasterization algorithm is used and obtained by using the
rendering times... 46

4.7 Speedup graph of the horizontal division scheme where bounding
box approximation is used and obtained by using the overall
execution times... 46

4.8 Efficiency graph of the horizontal, rectangular, and recursive
division schemes where bounding box approximation is used and
obtained by using the rendering times... 47

4.9 Efficiency graph of the horizontal and recursive division schemes
where rasterization algorithm is used and obtained by using the
rendering times... 47

LIST OF FIGURES Xlll

4.10 Efficiency graph of the horizontal division scheme where bound
ing box approximation is used and obtained by using the ov'erall
execution times... 48

4.11 Load-balance graph of the horizontal, rectangular, and recursive
division schemes where bounding box approximation is used and
obtained by using the rendering times.. 48

4.12 Load-balance graph of the horizontal and recursive division
schemes where rasterization algorithm is used and obtained by
using the rendering times... 49

4.13 Load-balance graph of the horizontal division scheme where
bounding box approximation is used and obtained by using the
overall execution times.. 49

List of Tables

A.l Horizontal division results using hounding box with blunt data. . 55

A.2 Horizontal division results using bounding box with post data. . . 56

A.3 Horizontal division results using hounding box with delta data. . 57

A.4 Rectangular division results using bounding box with blunt data. 58

A.5 Rectangular division results using hounding box with post data. . 59

A.6 Rectangular division results using hounding box with delta data. 60

A .7 Recursive division results using bounding box with blunt data. . . 61

A.8 Recursive division results using bounding box with post data. . . 62

A.9 Recursive division results using bounding box with delta data. . . 63

A. 10 Horizontal division results using rasterization with blunt data. . 64

A. 11 Recursive division results using rasterization with blunt data. . . 65

XIV

Chapter 1

Introduction

In this chapter, a brief introduction to the concepts of Scientific Visualization,
Volume Rendering, Raycasting, Parallel Volume Rendering, and Distributed
Memory Multicomputers will be given. In the first section, a general introduc
tion will be presented. In the second section, a short overview of the related
work will be introduced with some citations to some base papers for this thesis.
In the third section we will give the motivation for this research, very briefly,
along with the general organization of this document.

1.1 Overview of the Visualization Process

Scientific Visualization [20] is a developing field of research. As scientists try
to develop more complex structures and models they feel the need to visualize
their results on more understandable domains. At this point Scientific Visu
alization algorithms are utilized for detailed interpretation purposes of these
complex data sets. Volume Rendering or Volume Visualization [7, 13], as a
branch of Scientific Visualization, is a powerful approach to visualize 3 Di
mensional (3D) scientific data. It uses either standard computer graphics
techniques like surface rendering [10, 18] or direct rendering techniques like
ray shooting [17, 27] to visualize 3D scientific data. Direct Volume Rendering
(DVR) [7, 13] is a technique that creates an image from the three-dimensional
volumetric data set without generating an intermediate geometrical represen
tation.

Three dimensional volumetric data sets are usually given as a set of data

CHAPTER 1. INTRODUCTION

points defined on 3D real Cartesian space where each data point represents a
scalar, vectorial, etc. value about an entity like brain, plane, etc. These data
points are called the sampling points as they give some sample results about
the entity to be visualized, like heat, density, etc. The sample points of the vol
ume data may be distributed in two major ways depending on the application.
In the first way, the sample points are distributed over a structured grid with
equal or variable spacing along each axis where an implicit interconnectivity
between the grid points can be found. That is to say they can be given as a
3D computational virtual array where each neighbor in this array represents
the same neighbor-ship relation in the 3D Cartesian space. This kind of dis
tribution is common to medical imaging such as CT (Computer Tomography),
MR (Magnetic Resonance), etc. In the second way. the samples are on an
unstructured grid where connectivity is given explicitly. That is to say they are
given as a ID array in computational space and need an explicit information to
be defined as a 3D array in real Cartesian space. The neighbor-ship relations
among the data points can only be driven by using this explicit connectivity
information. This type is common in Computational Fluid Dynamics (CFD)
and Finite Volume Analysis (FVA) [20].

Usually, volume data is represented by 3D voxels which constitute the
atomic pieces of the overall data structure in the context of domain mapping.
These atomic pieces are usually assumed as cubes (e.g. in CT) or tetrahedrals
(e.g. in FVA) where the corner points are the data (sample) points that repre
sent the entity value at that 3D point. Note that some authors use cell versus
voxel or sample versus vo.xel interchangeably but we will use them as they are
defined in this chapter to avoid confusions and inconsistencies.

DVR is a desirable technique to visualize these kind of data sets because of
the amount of information about the volume contents that can be presented
in one image. DVR techniques have their drawbacks, however. DVR operates
on volume data representation that requires a large amount of memory. DVR
is also very slow since it requires massive computations for each image. So
interactive speed rates are very hard to achieve.

An important approach to solve the speed and memory problems of volume
rendering is to employ parallel processing. Furthermore, CFD and FVA simu
lations are usually run on parallel architectures because of simulation time and
memory constraints. Hence, scientists want to visualize the simulation results
on the same parallel architectures to avoid the migration of large amount of

CHAPTER 1. INTRODUCTION

volume data produced as a result of the simulations. Although parallel volume
rendering of structured grids has been accomplished to a great degree, domain
mapping problem for unstructured grids is a crucial problem to be solved. This
thesis investigates the parallelization of rendering of volume data defined on
unstructured grids.

Volume rendering algorithms can be classified in two main groups. First
one is the image-space approach and second one is the object-space approach.
Raycasting which is the basis of this research is an image-space approach and
mainly uses ray shooting from each pixel of the image plane and sampling
along its way [15, 17, 22, 25]. Splatting is an example of the object-space
approach where each sub-element of data is projected onto the image plane
with some order [23, 25, 28, 30]. In fact both of these approaches use the
same underlying paradigms where only the information retrieval steps of the
algorithms differ in terms of execution space (image versus object). Hence,
from now on we will use DVR instead of Raycasting DVR without loosing
anything from accuracy and this thesis deals with the parallelization of the
Raycasting type DVR algorithms [3].

The DVR algorithms use heavy computations and hence require image qual
ity versus speed type optimizations to be advanced in sequential processing,
while parallel algorithms maintain the image quality in gaining computational
speed. The algorithms presented with the volume rendering paradigm are too
compute intensive to be used for real-time or animation applications. Also the
data sets used in this process are so huge that they can only be represented
with many megabytes of storage space. Furthermore, scientists usually want
to see the results of their simulations on the environment that the simulations
are made (which are typically very powerful parallel architectures), because of
the large data sizes that can be extremely painful to be ported to other envi
ronment. Especially time-varying datasets need to be visualized, in real-time,
on a parallel work station where the simulations take place.

1.2 Related Work

Most of the previous work on sequential volume rendering dealt with structured
grids where computations are carried on regularly distributed three dimensional
computational structures [15, 17, 22, 25, 28, 30]. Some initial work on other

CHAPTER 1. INTRODUCTION

types of grids have also recently been introduced for sequential computing
[8, 9, 14, 23, 26, 29, 31]. In addition to these works, there exists recent parallel
research mainly concentrated on structured grids [4, 6, 11, 16, 19].

Very recently some parallel methods have been developed for unstructured
grids [1, 2] which form a basis for this research. On the other hand these
recent approaches are done on shared memory architectures which does not
solve many of the problems of volume rendering on distributed memory ar
chitectures. Also although they maintain their scalability with the processor
size they gradually deviate from the load balance parameters as the number of
divisions increase.

The usage of polygon rendering algorithms in volumetric domain is intro
duced by [1, 2] and parallel methods for fast rendering algorithms are tried to
be searched in polygonal spaces. The reason for this is to solve the problem of
fast sampling point location determination process and view sorting, that is used
to find the order of polygons to be traversed. These approaches use scattered
task distribution and hence can only easily be used in shared memory architec
tures. Otherwise huge communication costs will be introduced in distributed
memory multicomputers along with the great overhead of data duplications.

In addition to these works, some other parallel work has been carried out
for only restricted topologies like curvilinear grids [5]. Therefore this type of
approaches loose much from the data type restrictions and hence can not be
used for general rendering purposes.

1.3 Motivation and Overview of the Thesis

This research presents tools for visualizing volumetric datasets on parallel ar
chitectures where huge memories, high computational capability, and power
lies. This approach introduces algorithms for MIMD type distributed mem
ory parallel architectures and gives some results on an IBM-SP2 architecture.
Although initially the algorithms developed are designed for volume rendering
purposes, then, this parallel volume rendering approach is extended in such a
way that any kind of data set, structured, unstructured, polygonal, or even hy
brid (computational grids) can be visualized. It makes use of standard polygon
rendering algorithms like Scanline Z-Buffer Polygon Rendering algorithm and
tries to distribute the process of volume rendering evenly to all computational

CHAPTER 1. INTRODUCTION

nodes. The algorithms are mainly developed for real-time animation purposes
where data flow over the network can be controlled. That is, the incremental
movement of a view point will gradually change the local data within a pro
cessing element and hence prevent communicating nodes from congestion and
from any other communication problems. The current results are promising
and show us that some future work can hopefully give us a better solution.
Three algorithms are developed that make use of image space subdivision that
can lead to probable future algorithms for further improvements.

This thesis investigates and compares the parallelization of image-space
based DVR algorithms on message-passing distributed-memory architectures,
multicomputers. Multicomputers are very promising architectures for massive
parallelism because of the nice scalability, fast access by processors to their local
memories, and simultaneous local communication capability. Parallelization
on such architectures necessitates the distribution of both computation and
data to the processors with local memories in such a way that computational
tasks can be run in parallel, balancing the computational loads of processors
as much as possible. Communication between processors to exchange partial
results must also be considered as a crucial part of the parallel algorithm and
must match the constraints imposed by the interconnection and communication
structure of the architecture by reducing the extra parallelization overhead of
the rendering algorithm.

At the first step, a general overview of sequential volume rendering algo
rithms will be presented in the first section of the second chapter. Then our
sequential approach will be given as a second section in the same chapter. Af
ter this, as a third chapter, we will analyze the parallel algorithm in general,
deal with the three division heuristics, define the load balancing metrics, and
finally refine our algorithms for implementation purposes, in this given order.
As a fourth chapter the experimental results will be given. The first section of
the fourth chapter will give the general overview of the data sets used and the
architectures selected. Then as a second section the results will be presented
in table and graph formats. Finally as our last chapter conclusions about the
results and this research will be presented.

Chapter 2

Sequential Direct Volume Rendering

In this chapter, a general overview of the DVR approaches will be given along
with our approach to DVR. In the first section, a general introduction to se
quential DVR can be found. Then in the second section our approach (used in
the implementations) to sequential DVR will be given.

2.1 Direct Volume Rendering in General

Data type of the input data sets is an important property of the visualiza
tion process. The presentation of the whole type set will be very helpful in
deeper understanding of the overall process. There are two main types of data,
structured and unstructured data types. These two main types are divided into
several other subgroups.

These different data types [13], used in DVR, are given thoroughly in
Fig. 2.1. Structured data types can be Cartesian, Regular, Rectilinear, or
Curvilinear. All of these subgroups share the property of having implicit in
terconnectivity information. The first three types are self explanatory but the
Curvilinear one shows a different property then the others. It may seem curved
in 3D real Cartesian space but in fact it can easily be represented as a 3D com
putational grid (which is regular in this case) in computational space, this is
obviously because of the implicit interconnectivity information property. Un
structured data types can be Standard, Irregular, Hybrid, etc. (e.g., B-Spline
Curves and are beyond the scope of this thesis). These subgroups share the

CHAPTER 2. SEQUENTIAL DIRECT VOLUME RENDERING

Cartesian Regular Rectilinear

STRUCTURED

UNSTRUCTURED

Figure 2.1. Data types used in volume rendering.

property of having explicit interconnectivity. The Hybrid type can be any mix
ture of the above. The Standard type uses tetrahedrals as its atomic particles.
Irregular type uses polyhedrals as its atomic particles. This thesis deals with
all of them except the very last type the curved types which is named as Oth
ers. In addition to these, we will try to render all other polygonal data sets
with our basic algorithm for the sake of generality. This will bring us a great
flexibility over the other approaches used in DVR media.

A basic Raycasting DVR algorithm shoots rays into the 3D data set, from
each pixel of the image plane, and tries to extract information from the input
data. While each ray intersects the data and the atomic particles (voxels) of
the data it gathers information about the surrounding data grid points (sample
points). So at the end, this gathered information somehow can be reflected as
a pixel color, forming the overall image.

When the ray passes through the data, we take samples from the sample
points (data points) of the data set which is called the (re-)sampling process.
So by means of this we form a second 3D grid where the connectivity is now
defined by the rays shot from the screen and the intersections with the voxels.
Unfortunately these intersections are (again) called sampling points. In fact
this paradoxal definition hides the main fact, analogy, in the process. When
scientists try to obtain information from their research subjects they use the
same process of sampling, like Computer Tomography, they send e.g., ultra
violet rays into their data set (the brain) and take samples from the data set
forming the input data for the DVR process.

CHAPTER 2. SEQUENTIAL DIRECT VOLUME RENDERING

Figure 2.2. Flow chart of the sampling process.

In general, whatever the underlying data type is, the brute force DVR
sampling algorithm works as follows as described in Fig. 2.2. From the voxel
intersections we some how get the colors and the opacity values of the inter
section points (sample points) and then by means of a composition process we
try to find the pixel color that is to be displayed. The opacity of a sample
point defines the continuity of the ray, e.g., whether we hit to an opaque or
transparent object or not. As the data is not defined with faces and polygons,
but with only corner data points, the opacity combined with sample color plays
a crucial role in the algorithm. So now we are ready to give the general Ray
casting DVR algorithm for structured grids as it is shown in Fig. 2.3. As it can
be seen from this figure the overall process is very similar to the Raytracing
[27] algorithm which is well defined in the domain of computer graphics, except
that the Raycasting approach uses grid points instead of the polygons.

So the question of how composition of simultaneous intersection (sampling)
point values (color and opacities) remains still undefined. We take simultaneous
samples from the data and try to explain the overall result as a simple pixel
color so we should define a mathematical formula to sum up this array of
intersection values (in fact two arrays one for opacity and one for color). This
is explained by a set of formulas as in Eq. 2.1 [17].

CHAPTER 2. SEQUENTIAL DIRECT VOLUME RENDERING

VO XEL

while in DATA do

among the NEIGHBOR VOXELS \

find NEXT VOXEL to VISIT /

SAMPLE

COMPOSE

end while

plot PIXEL

end for

Just Type Casting in Structured Data Sets

Equi-distant Samplings are Done in Structured Data Sets

Figure 2.3. Volume rendering overview.

CHAPTER 2. SEQUENTIAL DIRECT VOLUME RENDERING 10

Cout — (Cin X Oin) + {C s X O s X (1 — O in))

Oout = Oin + (O s X (1 — O in))

Cout = Ray Color after sampling in that voxel

Oout = Ray Opacity after sampling in that voxel

Cin = Ray Color before sampling in that voxel

Oin = Ray Opacity before sampling in that voxel

Cs = Sampling point Color

Os = Sampling point Opacity

The set of formulas defining the Composition process. (2 .1)

Initially the color value is set to background and opacity is set to the trans
parency value of that data set and this composition is done from the first to
the last (or visa versa) intersection of the ray with data (by preserving the
intersection order). Note that opacity changes between zero and one (floating
point data) values where one means opaque intersection (e.g., skull) and zero
means transparent intersection (e.g., glass). The opacity value of the data can
be varied in order to find the area of interest in the data set. For example,
a doctor can set the opacity of a skull to zero to make the skull transparent
to the eye and see the brain inside it. This property in fact brings high-level
of flexibility to the DVR algorithms in the visualization domain. Also color
values should be selected carefully to keep a good diversity along the ray so
that brain e.g., can be seen as gray and skull e.g., can be seen as white. The
choice of these values is beyond the scope of this thesis that also needs further
explanation to be understood thoroughly. But at least we can close one gap
in this explanation, how do we obtain the color or the opacity of a data point
from its data value (e.g., heat). This is another topic of research that is called
the mapping function problem. There are various algorithms for this problem
but (again) they are beyond the scope of this thesis. We will just state that a
user defined function can be used, e.g., to obtain bright red from a high value
of heat defined on a point or dark blue from a low value of heat defined on a
grid point. After the whole data set is traversed the final ray color is equal to
the pixel color itself. Then, this process is repeated for all of the pixels in the
image.

Whatever the data type is, the underlying algorithm is similar. The only

CHAPTER 2. SEQUENTIAL DIRECT VOLUME RENDERING 11

for each PIXEL

Figure 2.4. Overview of the volume rendering for unstructured data sets (2D
illustration).

difference is in the traversal step. A similar algorithm for unstructured data
types is given in Fig. 2.4.

Note that finding the next intersected voxel in unstructured data sets is
more complex. The connectivity of the data is not implicit and an exhaustive
search is need to be done. The next sampling point and the preceding sampling
points should be found after various floating point operations. This problem
is formally called the point location problem. Similarly the operation should
be done with respect to depth which is a non-commutative but an associative
process, this is called the view sort problem. These two problems are solved
easily in structured domains as the real 3D space and the virtual computational
space (where the floating operations done) overlaps (so the overall algorithm
is easily stated for the structured domains as it is shown in Fig. 2.3). The only
operation done in structured domains is type casting from floating 3D space
to 3D array of voxels.

CHAPTER 2. SEQUENTIAL DIRECT VOLUME RENDERING 12

for each PIXEL

find FIRST VOXEL

while in DATA do

among the NEIGHBOR VOXELS

find NEXT VOXEL to VISIT

SAMPLE

COMPOSE
end while

plot PDCEL

end for

Figure 2.5. The general DVR algorithm.

However the overall algorithm is similar in both domains and can be sim
plified to one main algorithm. If we generalize the algorithm for all data types
a general Raycasting DVR looks like Fig. 2.5.

Finally we should know how the samples are taken from the data set. It
is defined just as an array of inverse distance interpolations. Some other ap
proaches like tri-linear, constant, etc. can be used but all of these approaches
use the same analogy used in inverse distance one. That is to say if a tetra
hedral (simple four sided) is used as our input atomic data type (note that
all type of data can be tetrahedralized) we just take four corner points of the
tetrahedral and find the contributions of the corner values with respect to their
distances (inversely) to the sampling point. So if we take a sample on one of
the corners we will have zero effect from all the other corner points but the
corner point that we are on itself. Or if we take samples in the mid-point of a
voxel we will have equal contributions from the corner points. So the formulas
for inverse distance interpolation between two corner points and a sampling
point are given in Eq. 2.2, that is to say just for ID. The same equations, can
be found easily, in a similar way, for 2D and 3D cases as it is shown in Eq. 2.3
and in Eq. 2.4, respectively. These equations for ID, 2D, and 3D interpolations
are explained in Fig. 2.6 in more detail as A, B, and C, respectively.

CHAPTER 2. SEQUENTIAL DIRECT VOLUME RENDERING 13

Dp 1 Dp2
■c----------------------------> - -c -------- >·

Vpl Vs Vp2
ID

2D

3D

Figure 2.6. The interpolation process for different dimensions.

K = ((D,i X Vp2) + (D,2 X V,гMDpı + Dp2)
Vs = Sampled Value

Vpl = Value at corner 1

Vp2 = Value at corner 2

Dpi — Distance of corner 1 to the sampling point

Dp2 = Distance of corner 2 to the sampling point

The inverse distance Interpolation process for ID. (2.2)

CHAPTER 2. SEQUENTIAL DIRECT VOLUME RENDERING 1 4

Dpi =

Dp2 =
Dpz =

K — {{Dpi X Dp2 X VpT) +
{ D p i X Z)p3 X Vp2) +

{Dp2 X Dpz X V p i)) l

{ { D p i X /)p2) +

{D p i X Zips) +

{Dp2 X Dps))

Vpi = Value at corner 1

l-p2 = Value at corner 2

1̂ 3 = Value at corner 3

Distance of corner 1 to the sampling point

Distance of corner 2 to the sampling point

Distance of corner 3 to the sampling point

The inverse distance Interpolation process for 2D. (2.3)

Dpi

Dp2

Dp3

Vs = ((Dpi X Dp2 X Dp3 X Vpi) +

{Dpi X Dp2 X Dpi X Vp3̂ T

(Dpi X Dp3 X Dpi X Vp2) +

(Dp2 X Dp3 X Dpi X Vpi))l

{{Dpi X Dp2 X Dp3) +

(Dpi X Dp2 X Dpi) +

(Dpi X Dp3 X D p i) +

(Dp2 X Dp3 X Dp4))

Vpi = Value at corner 1

Vp2 = Value at corner 2

Vp3 = Value at corner 3

Vpi = Value at corner 4

Distance of corner 1 to the sampling point

Distance of corner 2 to the sampling point

Distance of corner 3 to the sampling point

CHAPTER 2. SEQUENTIAL DIRECT VOLUME RENDERING 15

Dp4 = Distance of corner 4 to the sampling point

The inverse distance Interpolation process for 3D. (2.4)

The corner points of a voxel in general represents a density, heat, or any
other scalar value. Vectorial or multi-dimensional corner values are beyond the
scope of this thesis where thoroughly different approaches are used.

In general samples are taken in the middle of the voxel for unstructured
grids. But for structured ones equi-distant samplings can be taken. In addition
to these double sampling, multiple ray shooting and other heuristics can be
used to refine the images obtained. But all of these approaches use the same
underlying paradigms. So if we use mid-point interpolation scheme we find
the entrance and exit points of the ray to the voxel, find its mid-point, and do
the sampling at that point. If equi-distant one is used samples are taken at
regular distances whatever the intersections with voxels of the data are. The
crucial point here is to identify the voxel that we are in, in order to find the
right corner points for interpolation. If e.g. densities are interpolated then
we should convert these sampling values to color and opacities (on the fly) by
using some mapping function. But if color and opacity values are interpolated
then a preprocessing is needed to find the color and the opacity of each grid
point. The explanation for this process can be derived from Fig. 2.2. There are
various different approaches used at this point by the authors in this field but
they only effect the image quality with out effecting the underlying rendering
algorithm. The processing time versus memory trade off always makes one
method preferable to other in sequential type of optimizations. So now we are
ready to introduce our approach with this amount of initial knowledge in the
proceeding sections.

2.2 The Proposed Sequential Approach

The high quality of the images produced by the Raycasting approach makes it
a desirable choice for DVR. Although many projection algorithms run faster
than the Raycasting algorithm they show us various difficulties especially in
the parallelization step because of the nature of the algorithms. For example
in the projection type algorithms (object-space approaches) the projections
should be done in either back to front or front to back order to preserve the

CHAPTER 2. SEQUENTIAL DIRECT VOLUME RENDERING 16

data integrity in the final image. .Also object space divisions of these algorithms
might need intensive pixel merging operations as a post processing. But nev
ertheless some ideas can be borrowed and inserted into Raycasting from the
projection methods.

In this approach a ray is shot from each pixel and traversed throughout
the whole volume to determine the list of voxel intersections. Each voxel in
tersection means an entry/exit point of the ray with the voxel. For each voxel
intersection, a sampling is computed at the midpoint of the ray between its
entry and exit points by interpolating the scalar values at the grid points of
the intersected voxel. The voxel intersections should be determined in a prede
termined order (front-to-back in our case) for the composition of the sampled
color and the opacity values. Ray shooting, sampling, and finally composi
tion steps require the detection of the position of the sampling point in the
whole data and finding the next (therefore previous) voxels (sub-volumes) to
be intersected with the ray for composition, in the well-known Raycasting al
gorithm [17]. These two operations, in addition to the heavy computations
introduced by the samplings and compositions, bring tremendous amount of
computation to the process of Raycasting. Therefore finding the consecutive
intersections and the locations of the sampling points should be done efficiently,
which we refer as efficient point location operation and view sorting.

In this work, we adopt the basic ideas in the standard polygon rendering
algorithms to resolve the point location and the view sorting problems. This
idea which is introduced previously by [1] if cleverly used can be very useful
in the parallelization of the overall process. For example, well-known parallel
polygon rendering [24] approaches can be applied to the volume rendering
domain. Therefore, the overall algorithm needs polygons to be rendered. This
is easily done by just converting the data set into a polygonal form. That is to
say connecting data points in a way that we will have a set of polygons in the
final data set. This operation once completed can be saved and used forever.
For example any kind of tetrahedral or hexahedral sub-volume can easily be
converted to a set of triangles where any three points define a single triangle
which is obviously planar, more advanced algorithms also exist for triangulating
a given volumetric data set [23]. Hence, from now on we will mainly assume
triangles as our inputs for the sake of simplicity. Moreover, this give us the
power of dealing with any kind of data sets whatever the underlying type is.

CHAPTER 2. SEQUENTIAL DIRECT VOLUME RENDERING 17

(Start)

Figure 2.7. Flow chart of our sequential algorithm.

So we can define our algorithm, as a sequential process, Scanline-Based V-
Buffer algorithm. The proposed algorithm is similar to the standard Scanline
Z-Buffer algorithm in the rasterization phase. It differs in the rendering phase
as follows. In our algorithm, each pixel keeps a linked list of polygons for
compositing and finding a final pixel color value. The flowchart for the proposed
algorithm is given in Fig. 2.7.

As seen in Fig. 2.8, through out the algorithm we move from scanline to
scanline and from pixel to pixel incrementally by updating a single linked list
of polygons, and therefore saving from storage space. When a new pixel is
entered the current linked list is updated in an incremental fashion and some
deletion and insertions to the linked list of active polygons occur. As we know

CHAPTER 2. SEQUENTIAL DIRECT VOLUME RENDERING 18

Figure 2.8. Overview of our sequential process.

the location of each intersection of the active polygon with the ray and as the
list is built in an incremental fashion we can say that we just have an array
of sorted intersections with a three dimensional line and a set of planes. So
for a single pixel, after the intersections are found we can go through the list
and take samples between each pair of triangles and composite it into the pixel
color. At this point, color and opacity calculations are just done as defined in
[8]. Here the corner points of the triangles give us the necessary information,
e.g. speed, and these values are used in interpolations.

Here, and hereafter, we assume that the data sets used are described as a
set of distinct triangles which are converted from a set of tetrahedrals or any
other data set type. So we can see that many of our problems like sorting and
point location are solved by this approach. Here, the two consecutive triangles
in the list define a set of points that can range from .3 to 6. If the two triangles
share an edge this number is obviously 4, else if two (apart) external faces of
the whole data set are used this is 6 and the sampling is prohibited. If this
number is 5, only a point is shared by the two triangles. So as a result, except
external faces, two consecutive triangles can be used for the determination of
the sampling value. This is just done by taking the end points of the triangle,
finding the midpoint of the two intersections and taking the inverse distance

CHAPTER 2. SEQUENTIAL DIRECT VOLUME RENDERING 19

interpolation of the end point data values (at this point tri-linear interpolation
can also be used). Finally via any mapping function the sampling point color
and opacity can be derived from this interpolated data value [15]. But note
that all intersection tests and interpolations use the coherency introduced by
the Scanline Z-Buffer algorithm.

In fact many other polygon rendering algorithms can be used for this pur
pose where this one seems to be the best because of its storage and coherence
advantages. This algorithm although needs repetitive renderings for different
viewing parameters, can be very useful, if we consider the fact that after each
rendering operation many transfer (mapping) functions can be tried on the
same view of the data set, or different properties can be viewed for the same
viewing values of the data. Also some time-varying data sets can be animated
using the same view of the data but by just interpolating different data values.
In addition to these all of the remaining methods (as it is the case in projec
tion methods) have the same problem of view parameter dependency. Apart
from these view point changes, if done incrementally, as it is the case in many
animations, will be less effective on the position of the data with respect to
eye.

So we are ready to see two outputs of two sample runs of two volume ren-
derers in the following two pages to increase our knowledge about the outcome
of a volume rendering program. The first one is a CT (Computer Tomography)
output shown in Fig. 2.9. The second one is a CFD (Computational Fluid Dy
namics) output displayed in Fig. 2.10. So now, we are ready to go on with the
parallel algorithms keeping in mind these two images for the parallel versions.
It would be useful to replace generic volumes in the following chapters with
these images to increase understandability.

CHAPTER 2. SEQUENTIAL DIRECT VOLUME RENDERING 20

Figure 2.9. Data from University of North Carolina Chapel Hill. A Computer
Tomography image of a cadaver head.

CHAPTER 2. SEQUENTIAL DIRECT VOLUME RENDERING 21

Figure 2.10. Data from NAS A-Ames Research Center. An airflow analysis
workshop on a blunt fin rising from a plate.

Chapter 3

Parallel Direct Volume Rendering

In this chapter, our parallel approaches to DVR will be given. In the first
section our parallel algorithm, in general, will be introduced. In the second
section three different subdivision heuristics will be given. Then, load balancing
metrics will be analyzed in detail in the third section. Finally, in the last
section, some refinements about the algorithms developed will be introduced.

3.1 Our Parallel Implementations in General

The parallel implementation of volume rendering on MIMD distributed mem
ory parallel machines requires the partitioning and mapping of data and com
putations to the processors of the parallel architecture. The partitioning and
mapping should be done in a way to achieve maximum processor utilization.
Computational load balancing is a crucial issue in parallel processing to achieve
maximum processor utilization. The computational work load should be dis
tributed as evenly as possible among the processors. Three load balancing
heuristics are described and discussed to achieve better distribution of load
among the processors in this chapter.

The parallel algorithm presented in this section is an image-space parallel
algorithm. In image-space parallelism, the image plane is partitioned among
the processors. After this partitioning step, each processors runs a sequential
volume rendering algorithm to generate the image for its local image plane
sections. Each processor needs the volume data which is covered by the view

22

CHAPTER 3. PARALLEL DIRECT VOLUME RENDERING 23

1. Receive a portion of global volume data and perform viewing trans
formations.

2. Partition the image-space and find the assigned image partition.
3. Exchange some of the local volume data according to the image-

space partition among the processors.

4. Perform volume rendering on the local image partition using the
new local volume data.

Figure 3.1. Fundamental Parallel Algorithm.

volume of the local image plane sections. Therefore, the volume data is parti
tioned and distributed to the processors according to partitioning of the image
plane as well. The main steps of the parallel algorithm is given in Fig. 3.1.

At the first step of the algorithm, the global volume data is partitioned and
distributed among the processors. Each processor receives an equal amount of
volume data and performs viewing transformations. Note that the volume data
for unstructured volumes is composed of tetrahedral voxels and each tetrahe
dral voxel data is made up of a four triangles. Also note that all the data types
presented in the preceding sections can be tetrahedralized and every tetrahe
dral data set can be triangularized. So we can have a set of triangles at the
end of these conversions which can be saved and used forever instead of the
original data, after it has been created. There are various algorithms for this
process which can be used as an early-pre-processing for the main algorithm
[23]. Hence, we can generalize our algorithm to all data sets that are given as
a set of polygons. Besides, no connectivity information is needed as the under
lying sequential algorithm is the Scanline Z-Buffer algorithm which makes the
parallelization operation much easier than expected as it just needs a set of
unconnected polygons to be rendered. These assumptions and generalizations
makes the algorithm a much more flexible one among its rivals. Therefore,
each processor receives a distinct set of T/P triangles, where T is the number
of triangles and P is the number of processors.

At step 2, the image space is partitioned into P rectangular regions and
each region is assigned to a processor. The partitioning of the image space
should be done adequately in order to achieve an even distribution of load
among the processors. So we can say that our parallelization approach is a

CHAPTER 3. PARALLEL DIRECT VOLUME RENDERING 24

static one which maps every generated subtask to a single processor and each
processor takes only a single subtask, all of which forms the overall job to be
done. Hence, as it can also be seen from the fundamental algorithm only a
preprocessing step for job distribution is needed (introduced as an overhead to
the rendering process with the data exchange operation) but not a post-one
as the partition does not divide the 3rd dimension of the volumetric data set.
Three strategies to achieve this goal is presented and discussed in the following
sections. The triangle set received at the first step is utilized to perform an
adaptive division of image plane.

After the partitioning and assignment of the image plane, each processor
needs triangles which fall into the view volume of the local image plane par
tition. The local triangle data set may contain triangles that belong to image
plane partitions assigned to other processors. Similarly, some of the triangles
that are covered by the view volume of local image plane section may reside
in the local memories of other processors. Therefore, at step 3, some of the
triangles - hence, volume data - should be exchanged among the processors.
Each processor finds the image plane region a triangle belongs to by performing
projection and clipping operations and sends the triangle to the corresponding
processor and receives triangles that fall into its local image plane region. The
pseudo-code for this exchange operation is given in Fig. 3.2. Note that, the
triangles at the boundaries of image plane partitions will be shared by two or
more processors. Hence, such triangles may be transmitted more than once
and will be duplicated after each exchange operation.

At step 4, each processor runs the sequential volume rendering algorithm
for its local image plane section using new local volume data (triangle data).
Also no post-processing is needed in this type of parallelizations as the final
sub-images can directly be concatenated to obtain the overall final image.

3.2 Subdivision Heuristics

In this section, three different subdivision heuristics will be introduced. In
the first subsection, the horizontal, in the second subsection the rectangular,
and in the third subsection the recursive heuristics will be given. The exact
definition of the division metrics will be delayed until the next section for
the sake of abstraction and then after the development of these heuristics a

CHAPTER 3. PARALLEL DIRECT VOLUME RENDERING 25

EXCHANGE_DATA
for each processor p do

for each local triangle t do
Project and clip triangle to the image plane assigned to p
if triangle is in the image plane of p then

Put triangle into send array
endfor
Transmit send array to processor p
Receive triangle information from some other processor
Store the received triangle information to the local array

endfor
END_EXCHANGE_DATA

Figure 3.2. The pseudo-code for the triangle exchange operation.

compact formalization of the metrics will be given as a separate main section.
Similar methods for parallel Raytracing is used in [12].

3.2.1 Horizontal Heuristic

We have stated that there are three different heuristics for the division scheme.
All of these three heuristics divide the image plane into smaller rectangular
regions first of which is named as the horizontal subdivision heuristic. In this
scheme, the image plane is divided into P horizontal bands which are composed
of consecutive scanlines on the image plane. In this way, intra-scanline coher
ence is preserved to some extent while disturbing the inter-scanline coherency.
The amount of work load in each region is given by the sum of the work load at
each scanline in that region. Hence, the atomic process for this type of subdi
vision scheme is a single scanline which can not be divided into smaller tasks.
So the division alternatives for a given image plane is the number of scanlines
for that plane which obviously restricts the division flexibility. However, this
scheme suffers from unscalability since the nymber of atomic tasks is limited
by the number of scanlines in the image plane. The algorithm for horizontal
division scheme is given in Fig. 3.3. An example of horizontal division scheme
for eight processors is given in Fig. 3.4.

In steps 1-3 of the algorithm, each processor calculates the local work load

CHAPTER 3. PARALLEL DIRECT VOLUME RENDERING 26

1. Take a local triangle.

2. Project the bounding box of the triangle onto the image plane and
find the y-span of the projected bounding box.

3. Update the work load at each scanline covered by the y-span of the
projected bounding box by updating the corresponding entries of
SW LA.

4. Repeat steps 1-3 for all local triangles.
5. Perform a global sum operation on SWLA to find the global work

load at each scanline.

6. Perform a prefix sum on SWLA. After the prefix sum operation
SWLA[s] gives the work load of region between scanlines 1 and s,
including s.

7. Last entry of the SW LA gives the total work load on the im
age plane. Divide this value to the number of processors to find
the average amount of work for each processor. Set AvrgLd =
SW LA[N]IP, where N is the number of scanlines and P is the
number of processors.

8. Call FIND J)IVISI0N(P,5'lTi/A) procedure (given in Fig. 3.5).

Figure 3.3. Parallel algorithm for horizontal division scheme.

at each scanline using local triangle information, and stores the values in an
array, called Scanline Work Load Array {SWLA)., of size equal to the number
of scanlines on the image plane. Each entry of this array corresponds to a
scanline on the image plane. The work load metrics used for each scanline
are the total number of triangles intersected by the scanline, the total length
of x-spans generated for each triangle on this scanline, and the total number
of x-spans for that scanline (each constitutes an atomic job that has relative
work load proportions with respect to each other in the sequential rendering
process, e.g., initialization of a tringle might be two times expensive than a
single span). Each of these metrics and the overall load balancing metric logic
will be discussed in the following sections in more detail. The y-span of each
triangle gives the number of scanlines covered by the triangle. Hence, the
number of triangles at each scanline can easily be calculated using y-span of
each triangle. Similarly the number of x-spans for a scanline can be found
easily. However, the length of the x-span at each individual scanline requires
rasterizing edges of the triangle. This computational overhead can be decreased

CHAPTER 3. PARALLEL DIRECT VOLUME RENDERING 27

Figure 3.4. An example of horizontal division for eight processors. The regions
are separated by dotted lines.

by using the bounding box of the triangle instead of triangle itself. The x-span
length at each scanline is approximated by the x-span of the bounding box.
Since the bounding box of a triangle is a rectangle, the x-span lengths will be
the same at each scanline. Therefore, the computational overhead of rasterizing
edges of the triangle is avoided. The area of the bounding box is a close
approximation to the actual projection area of small triangles. Hence, the x-
span of the bounding box is a good approximation to the actual x-span lengths
of such triangles. However, for large triangles, the actual areas of two triangles
that have the same bounding box area and the same y-span length may be
substantially different. Hence, for such triangles, bounding box approximation
may introduce large errors. These errors can be decreased by calculating the
actual area of triangles whose area is larger than a predefined threshold value.
Then, the actual area calculated is used to create a new bounding box of area
equal to actual area of the triangle and of the same y-span. The x-span of new
bounding box is calculated as x-span = Area / y-span, and this new x-span
length is used to update work load at each scanline.

After step 4, entries of SWLA contain the local work load at each scanline.
Since the global work load is required to obtain the partitioning, a global sum
operation is performed at step 5. This global sum operation can be done in

CHAPTER 3. PARALLEL DIRFJCT VOLUME RENDERING 28

Ioq2 {P) steps using the communication structure of the IBM-SP2. At the end
of this step, each processor has global work load distribution in y-dimension of
the image plane.

At step 6, a prefix sum is performed on the SWLA so that SWLA[s] —
SWLA[i\ gives the work load of horizontal band bounded by scanlines / + 1 and
s. Note that, SWLA[N] gives the total work load on the image plane, where
N is the total number of scanlines. Average work load (AvrgLd) is calculated
by dividing this value to the number of processors at step 7.

At step 8, the partitioning of the image plane is performed in procedure
FINDJDIVISION. The pseudo-code algorithm for this procedure is given in
Fig. 3.5. This procedure finds the partitioning of image plane using the work
load values stored in WLA. Two arrays of size R is allocated, where R is
the number of regions to be generated. Note that, the value of R is equal
to the number of processors in horizontal division scheme. The array called
region.start stores the starting scanline (lower boundary) of the image plane
region and the array called region-end stores the ending scanline (upper bound
ary) of the same region. The algorithm starts from first scanline setting s = 1
and e = 1 forming a region of one scanline, where s represents the lower bound
ary of a region, and e represents the upper boundary of a region. Then, this
region is expanded by incrementing e until WLA[e] is larger than average load.
The upper boundary of the region is determined by comparing the work load
values at entries e — 1 and e to the average load and choosing the one closest
to the average load as the upper boundary of the horizontal band. After this
region is formed, algorithm repeats the same process for a new region until im
age plane is divided into R horizontal sections. Note that, the lower boundary
of the new region is set to s = e -f 1.

So we have found the necessary regions for sequential rendering where after
the data exchange operation each processor runs a sequential rendering on its
local data set. This division scheme is refined gradually for the sake of efficiency
and good load balance purposes where these refinements along with the toad
balancing metrics will be more precisely defined in the following sections.

CHAPTER 3. PARALLEL DIRECT VOLUME RENDERING 29

FIND_DIVISION(/?,iy¿/4)

e = 1
p = 1
k = AvrgLd
for p = 1 to do

while AvrgLd < WLA[e] do
e = e + 1

endwhile
if {{AvrgLd — WLA[e — 1]) < {WLA[e] — AvrgLd)) then

rtgion.start[p] = 5
region-end[p] = e — 1
5 = e

else
region-start\p] — s
region-end[p] = e
e = e + 1
5 = e

endif
AvrgLd = k + WLA[s — 1]

endfor
END_FIND_DIVISION

Figure 3.5. Pseudo-code for FIND JDIVISION procedure. The input parameter
R represents the number of horizontal regions and W LA represents the work
load array.

3.2.2 Rectangular Heuristic

In the horizontal division scheme, the image plane is divided into horizon
tal bands of consecutive scanlines by using the work load distribution in y-
dimension of the image plane. Therefore, horizontal division scheme partitions
the image plane in one dimension only, namely y-dimension. Due to this re
striction, the scalability of horizontal division scheme is limited by the number
of scanlines. In addition, if there are large differences in the work loads of
scanlines, the load imbalance between regions may still be large. These dis
advantages can be avoided to some extent by partitioning the image plane in
both dimensions into rectangular regions.

CHAPTER 3. PARALLEL DIRECT VOLUME RENDERING 30

In rectangular division scheme, processors are organized into a two dimen
sional M xK mesh, thus forming M clusters of K processors in each cluster.
Then, the image plane is divided into M horizontal bands. After partitioning
image plane into M regions, each processors calculates the work load distribu
tion in .x-dimension of each region. Then, each region is divided into K vertical
bands of consecutive vertical scanlines in x-dimension. The algorithm for rect
angular division scheme is given in Fig. 3.6. Each processor keeps a scanline
work load array {SW LA) similar to the one in horizontal division scheme to
find M horizontal bands. In addition, each processor allocates M x-dimension
work load arrays {X W L A) to find K vertical divisions in each horizontal sec
tion of the image plane. Each XWLA[v]^ for u = 1, ...M, is of size equal to the
number of vertical scanlines in the x-dimension of the image plane. Each entry
XWLA\v][j]^ for V = 1,...M and j = l,...,a: — dimension, corresponds to a
vertical scanline j in region belonging to cluster v. An example of rectangular
division scheme for eight processors is illustrated in Fig. 3.7.

In this scheme, after M horizontal partitions are found, each processor
treats each horizontal region as a new image plane rotated 90 degrees. Hence,
the number of scanlines in each new image plane is equal to the number of
vertical scanlines in x-dimension of the global image plane. Each processor
projects the bounding boxes of local triangles to find the work load distribution
in each horizontal band. If a bounding boxes spans two or more horizontal
regions it is divided into segments and work load distribution of each region
is updated according to the corresponding segment. After this step, a global
sum operation is performed to obtain the global work load distribution in x-
dimension in each region. Afterwards, each processor finds vertical partitioning
in the horizontal region of its cluster using FIND-DIVISION procedure with
input parameters R = K and W LA = XW LA[m yjduster].

Each processor needs the vertical division information in other clusters so
that it can find the rectangular region that the projection of a local triangle
overlaps. Therefore, at the last step, a global concatenate operation, on the
vertical divisions in each cluster, is performed so that each processor has the
information about vertical divisions in other clusters. This global operation
can be done in log2 {M) steps.

CHAPTER 3. PARALLEL DIRECT VOLUME RENDERING 31

1. Partition image plane into M regions using horizontal division
scheme.

2. Calculate the work load distribution at each horizontal region using
local triangle information.

(a) Project bounding boxes of each triangle.
(b) Partition the bounding box of the triangle if it covers two

or more horizontal regions.
(c) Update the corresponding entries of X W L A for each re

gion covered by the bounding box. Use the partitions of
the bounding box data to update entries as in the previous
scheme.

3. Perform global sum operation on the X W LA for each region.
4. Perform prefix sum operation on the XW LA[m yjdusttr], where

my -duster is the cluster that processor belongs.
5. Last entry of the XW LA[m y-duster] gives the total work load in

the horizontal region of cluster my-duster. Divide this value to the
number of processors in my -duster to find the average amount of
work load. Set AvrgLd = X W LA [m y-duster][L\lPwhere L is the
number of vertical scanlines in x-dimension.

6. Call FIND_DIVISI0N(A',A"kULy4[myx/uster]) procedure (given in
Fig. 3.5) with the number of regions equal to number of processors
in each cluster {K).

7. Perform global concatenate operation to obtain the vertical parti
tions in other clusters.

Figure 3.6. Parallel algorithm for rectangular division scheme.

3.2.3 Recursive Heuristic

Recursive approach is the superset of the two initial algorithms and introduces
a very general subdivision heuristic to the area. It divides the image plane into
smaller rectangular regions gradually and uses the similar ideas presented in
the previous two sections. The main algorithm for this heuristic can be found
in Fig. 3.8 and an example division can be found in Fig. 3.9.

As it can be seen from the algorithm, initially we set the local image plane
to our screen and then continue to divide it into subregions recursively into two,
at each loop of the process. When we reach to one processor per plane limit we

CHAPTER 3. PARALLEL DIRECT VOLUME RENDERING 32

Figure 3.7. An example of rectangular division for eight processors organized
into four clusters and two processors in each cluster. Dotted lines represent
the boundaries of each region.

terminate and run the sequential rendering algorithm with our local data set.
Note that, at each pass, the local image plane is divided into two, vertically or
horizontally, which ever gives the best load balance. Also the local data within
a region is found gradually as the data migrates from processor to processor at
each pass of the algorithm. As one half of the processors are dealing with one
region the other half deals with the other region. Hence, the total number of
passes is equal to log2 {P) where P is the total number of processors.

Note that in rectangular and recursive subdivision schemes intra-scanline
coherency is disturbed along with the inter-scanline one which causes extra
processing time, to be overcomed, generated because of the loss of active list
information at the end of each region. This extra work versus the two dimen
sional scalable division flexibility should be compared for better understanding
of the heuristics. The disturbance of coherencies causes job approximations
within a region drastically deviated while increasing the scalability of the algo
rithm. The outcomes of these problems and advantages versus disadvantages
between the three heuristics will be discussed in the following chapters along
with the results obtained from the sample runs of the programs developed using
these algorithms.

CHAPTER 3. PARALLEL DIRECT VOLUME RENDERING 33

1. Find the overall load in the local image plane.

2. Divide this load into two horizontally.

3. Divide this load into two vertically.

4. Compare these two division and choose the best one.
5. Exchange local data, with respect to this new division.
6. Set half of the processors to one region and other half to the other

region.

7. Repeat this until one region per processor is reached.

Figure 3.8. Parallel algorithm for the recursive subdivision scheme.

Inter-scanline coherency can be disturbed by dividing a region horizontally.
This causes the active polygon information introduced in one scanline to be
lost and hence recreated. While intra-scanline coherency can be disturbed by
dividing a region vertically which causes the active polygon, edge, x-bucket,
and finally z-list information (formed incrementally by insertions which causes
an overall insertion sort if repeated) in one pixel to be lost and hence recreated.
This can be clearly seen from the sequential algorithm because the Scanline
Z-Buffer algorithm is used as the underlying paradigm which obviously takes a
single scanline as its atomic process. Hence, makes the intra-scanline coherency
as a crucial paradigm to be preserved through out the algorithm.

3.3 Load Balancing Metrics

In many scientific applications, the volume data to be visualized is not regularly
sampled and distributed in three dimensional space like in all of the non-
Cartesian cases. Hence, the computational work load on the image space will
also be irregularly distributed. In addition, different viewing locations will
result in different work load distributions on the image space. Hence, a straight
forward division of image plane into equal rectangular regions may result in
very poor load balances among the processors due to the nature of the volume
data. Therefore, an adaptive division of image plane into rectangular regions
will generate better work load distributions and better processor utilizations.
In this section you will find the necessary metrics to approximate the overall

CHAPTER 3. PARALLEL DIRECT VOLUME RENDERING 34

Figure 3.9. An example of recursive subdivision for eight processors. Dotted
lines represent the boundaries of each region.

work load within a rectangular subregion.

There are three parameters that affect the computational work load in an
image plane section. First one is the number of triangles, because the total
work load due to clipping of a triangle to boundaries and insertion operations
into y-bucket and active polygon lists are proportional to the number of tri
angles in a region. Second parameter is the number of scanlines each triangle
spans. This parameter represents the computational work load associated with
creation of x-spans, and insertion of these spans into x-bucket lists. The total
number of pixels generated by rasterization of x-spans of a triangle is the third
parameter affecting the computational load in a region. Each pixel generated
adds computations required for interpolation and composition operations. By
some sample runs of the systems developed the relative proportions for these
metrics can be found and used in the calculation of the overall work load in a
rectangular subregion for the future use of the same implementations. So the
overall work will be defined as in Eq. 3.1. Using these formulas the divisions for
an image plane can be approximated where each subregion introduces nearly
same amount of work to its related processor. So better these formulas are
better our division schemes are. The necessary thing to do here is to approxi
mate the work load within a region as close as possible to its real value so that

CHAPTER 3. PARALLEL DIRECT VOLUME RENDERING 35

a better load balance can be reached.

W = (a X T) + {b X S) + {c X P) + E

A = II' - E

W = Total real Work load

A = Total Approximated work load

E = Error introduced by approximations

T = Total number of Triangles

S = Total number of Spans

P = Total number of Pixels

a = Task done per triangle

b = Task done per span

c = Task done per pixel

The set of formulas defining the load metric. (3.1)

3.4 Refining the Algorithms

The heuristics and algorithms presented in this chapter can be refined by using
the following refinements. First of all the load metric can be refined by intro
ducing extra fields like clipped polygons and clipped spans. This is necessary
as we are disturbing the coherencies in the sequential algorithms and adding
extra processing time to subtasks by introducing new clipped structures into
the data sets. So the new formulas will look like in Eq. 3.2. Note that further
fields to this new set of formulas can be added if the sequential algorithm is
analyzed in more detail. But this can increase the total division time while
defining a better approximation for the real work done for a subregion. In the
implementations of the algorithms only this many fields are used.

W = { a x T) + (bx S) + (c x P) + (d x CT) + { e x C S) + E

A = W - E

W = Total real Work load

CHAPTER 3. PARALLEL DIRECT VOLUME RENDERING 36

A = Total Approximated work load

E = Error introduced by approximations

T = Total number of Triangles

S = Total number of Spans

P = Total number of Pixels

CT = Total number of Clipped Triangles

CS = Total number of Clipped Spans
a = Task done per triangle

b = Task done per span

c = Task done per pixel

d = Task done per clipped triangle

e = Task done per clipped span

The set of formulas defining the new refined load metric. (3.2)

Also a simple rasterization process can be used instead of the bounding box
approximation in the algorithms which solves the problems coming from the
approximations of the bounding box. The well-known Z-Buffer [21] algorithm
is used for this simple rasterization process and each pixel covered by each
triangle is found by using this algorithm. This especially reduces the errors
coming from the vertical divisions as the vertical divisions create new spans
and hence new edges to be rendered for the main algorithm. The distribution
of this extra work introduced can only be done by finding the exact span
values for a triangle which is the informal definition of rasterization. Another
approach might be to make some initial runs for the data set introduced and
then doing some re-load balancing scheme for further visualizations. This can
only be done if multiple runs from a single view is needed, e.g. time-varying
data sets.

Finally some minor refinements on the division heuristics can be made
like, dividing the region by using a binary search to speed up the division
process, re-calculating the work load for each region after each division is done
in order to reduce the approximation errors, using multiple arrays for work load
contributions of each item (like triangles) for better approximations, and using
recursion in FIND-DIVISION procedure in order to avoid cumulative errors
introduced by the linear division, all of which do not effect the overall run and

CHAPTER 3. PARALLEL DIRECT VOLUME RENDERING 37

results of the algorithm as much as the previous refinements. So we are now
ready to see some results about the sample runs of the programs developed for
this thesis and then we can discuss these results using the algorithms and key
points given in this chapter.

Chapter 4

Results

In this chapter, the results of the implementations done will be presented along
with some auxiliary tools used (like data sets, architectures, etc.). In the first
section of this chapter, you can find the definitions of the data sets and the
architectures used. Then, the experimental results themselves will be given
as another separate section. Various graphs are used to present the results
obtained at the end of this chapter and some tables are given as Appendix. A.

4.1 Introduction to the Experimental Results

In this thesis, three basic data sets are used. These are namely the 6/wnf, the
post, and the delta data sets. These data sets are taken from the NASA-Ames
Research Center obtained for the sake of visualization of the CFD (Computa
tional Fluid Dynamics) simulation results. Both structured and unstructured
versions of these sets are available at NASA-Ames Research Center. We have
obtained the curvilinear form of these data sets and hence there exists an im
plicit connectivity in each of them defined by a .3D array structure. Therefore,
the data sets were originally given as 3D hexahedral arrays where each grid
point defines the density, heat, etc. values of the object to be visualized.

After obtaining these data sets we have converted them into unstructured
standard tetrahedral (connectivity is explicit) ID computational arrays. And
then we have extracted the distinct triangles of the tetrahedrals from these
data sets. Hence, as a final data set we have had a set of triangles for each
data set where no connectivity is defined but each corner point points to a data

38

CHAPTER 4. RESULTS 39

v'"'

jSSSSS^SSlS3 :^S№ ^m m ¥ tfi(

^jmm f.m'WiTm''mr t " ·

------------ i T J C T iS a r “ * " '

Figure 4.1. Input data BLIJNT in hexahedral grid form.

CHAPTER 4. RESULTS 40

Figure 4.2. Input data PQST in hexahedral grid form.

CHAPTER 4. RESULTS 41

■ ’.̂ '. ^ v ,t frC ^

| i ’f

VimmT.

X -*’« “it -* -* r V«»*. Vi»t5i is »̂►'·
V v»"<n>ii».v «(«r·;-... ‘: «w*«. ^ t * ' } j ■ ' \
^ » »Ks -A N i ' i ^r . »mw<vt

3Sf4>'·' . ··vl'̂ . i,-, '

.' . 'M: //r;; /?!: ̂ »b ;i: TÂ ; .: ̂/,//#·</'A /..A'";"
-'.A», 'vvi-5'. . ' ' ' ' 'V .^ " '■', ', a ,'?;̂ >̂ , ̂ ̂'\ '> v'

' ' '̂ >̂ i a x \

</.' 'V; ' ' ' '.--'V
№ a, a ^ : < ^ ^ :1 ''': ' ,.5:'"· Ifcii A. 'i.^vSS 3'.. ■■ '■

Figure 4.3. Input data DELTA in hexahedral grid form.

CHAPTER 4. RESULTS 42

value to be visualized. So we now have a standard polygonal data set where
the polygon corners are given in an indexed manner, pointers to data values
for visualization.

Many runs of the programs developed are done using these data sets and
the results are given in the following sections. As a final chapter the conclusions
on the algorithms developed are given with respect to these runs. Now as a
brief introduction for these data sets we w’ill give some information about some
of their interesting features.

The first data set Fig. 4.1 is named as blunt data set and defines the airflow
over a flat plate with a blunt fin rising from the plate. Free stream flow is
parallel to the plate and to the flat part of the fin, entirely in the x-component
direction. The flow is assumed to be symmetrical about a plane through the
center of the fin, so only one half of the real geometry is present in the data
set and used in computations. The dimensions of this data set defined in its
curvilinear format is 40 x 32 x 32 grid points.

The second data set Fig. 4.2 is named as post data set and defines the liquid
oxygen flow across a flat plate with a cylindrical post rising perpendicular to the
plate (and therefore the flow). The simulation is modeling a flow internal to a
rocket engine. A space shuttle launch vehicle engine has a region in which many
such posts obstruct flow of liquid oxygen to promote better mixing. Since the
fluid is incompressible, pressure is constant, and visualizations of these values
are very well-defined and hence boring. Note that the areas of interest are the
grid points closer to the post where much smaller and high quantized grids are
defined. The dimensions of this data set defined in its curvilinear format is
38 X 76 X 38 grid points.

The last data set Fig. 4.3 is named as delta data set and defines the flow
past over a very simplified geometry representing a delta wing aircraft, at a
moderately high angle of attack. Features of interest are vortices and vortex
breakdowns. The grid is particularly twisted and scaled, and therefore makes
a good test of certain features and capabilities of visualization systems used.
The dimensions of this data set defined in its curvilinear format is 56 x 54 x 70
grid points.

Implementations done for benchmarking results are made on an IBM-SP2
parallel computer with eight equivalent computational nodes and two power
ful server nodes. This is a distributed memory MIMD architecture where the

CHAPTER 4. RESULTS 43

P16 PI7 PIS P19 P20 P21 P22 P23 P24 P25 P26 P27 P28 P29 P30 P31

32x32

Network

Scheme

V V I

PO PI P2 P3 P4 P5 P6 P7 PS P 9 P I 0 P 1 I PI2 P13 PI4 P15

Figure 4.4. Interconnection network of the IBM-SP2 Architecture.

thin (parallel) nodes have two means of interprocessor communication. The
eight nodes have a High Performance Interconnection Network (HPIN) used
for high bandwidth, real-time communications, and also an Ethernet (E) con
nection for regular PVM purposes or independent usage purposes. Each node
is a 64Mbyte main memoried RISC/6000 processor with direct connections to
the HPIN switches. Wide (server) nodes are powerful 512Mbyte memoried
general purpose nodes having the same architecture with thin nodes except
their parallel usages. These wide nodes are not directly used in this work but
only the thin nodes are used in the benchmarking results.

The interconnection networking Fig. 4.4 scheme is very helpful in the data
swap steps of the algorithms used, if and only if it is used cleverly in the algo
rithms developed. That is to say the programmer of these switches should check
the communicating routines of his/her programs carefully in order to prevent
switch congestions. In our implementations congestions are prevented by using
a communication scheme where each processor communicates with another by
defining and then using an empty link and hence avoiding the switch conges
tions. The routines represented for this scheme can easily be changed by just
changing the formula defining the two communicating nodes at a time. Hence,
the programs developed are quite portable to other multicomputer architec
tures. Now, we think that we are ready to see some experimental results along
with some deeper comments and explanations on the runs of the programs used
in the following sections.

CHAPTER 4. RESULTS 44

4.2 Experimental Results

In this section, we will present the experimental results of the various runs of
the implementations of our algorithms. There are five main test programs each
of which is used to identify some features about the paradigms proposed. There
are eleven different tables defining the sample runs of these implementations.
And in each table you can find the runtime behaviors, in terms of seconds, of
our programs given as Appendix. A.

The first implementation interprets the behavior of horizontal division
scheme using the bounding box approximation as its projection approach.
The second one is the rectangular division scheme using, again, the bound
ing box projection paradigm. The third is the recursive one given with the
similar projection approximation. Each of these implementations are run on
three different data sets named as blunt, post, and delta data sets. The first
nine tables are the sample runs of these three implementations on these three
different data sets. The last two tables are the runs of the final two implemen
tations on blunt data set which use horizontal and recursive division schemes
(respectively) along with the rasterization heuristic. These eleven tables given
in Appendix. A can be used for further deductions about the sample runs of
the implementations. The overall behavior of the algorithms and the general
deductions about the paradigms proposed are represented as a set of graphs as
follows.

Nine graphs which show the general behavior of the algorithms are given
using these tables. First three are the speedup, the second three are the ef
ficiency and the last three are the load-balance graphs. The Fig. 4.5 is the
speedup graph of the rendering process of the bounding box approximations.
This graph includes ideal, horizontal, rectangular, and recursive division cases.
The Fig. 4.6 shows speedups of the rasterized versions of the horizontal and
recursive schemes along with the ideal case, using the rendering times. The
Fig. 4.7 shows the total execution time behavior of the horizontal scheme with
bounding box approximation, represented as a speedup graph. The Fig. 4.8,
the Fig. 4.9, and the Fig. 4.10 are the efficiency versions of the speedup graphs,
respectively, showing how efficiently the processors are used. The Fig. 4.11,
the Fig. 4.12, and the Fig. 4.13 are the load-balance graphs showing the load
distributions of the same speedup graphs, respectively. Note that speedups are
defined as the times of the single processor runs over the times of the latest

CHAPTER 4. RESULTS 45

SPEEDUP GRAPH
R E N D E R I N G W I T H B O U N D I N G B O X

Figure 4.5. Speedup graph of the horizontal, rectangular, and recursive division
schemes where bounding box approximation is used and obtained by using the
rendering times.

completed sub-tasks of the related runs. The efficiency is the speedup value
over the number of processors used for that run which is then converted into the
percent format. And load-balance is found by first finding the load-imbalance
and then subtracting this value from one hundred where load-imbalance can
be found in various ways. The version used in this thesis is represented as
Eq. 4.1. All of these values are found by averaging the related run-tables of
the implementations used. Now we are ready for some deductions about these
graphs which are given in the last chapter as a set of conclusions.

Lb — ((^mai ̂ 100
Lb = Load-imbalance

i-max = execution time of the processor that completes the latest

imin — execution time of the processor that completes the earliest

The formula defining the load-imbalance. (4.1)

CHAPTER 4. RESULTS 46

SPEEDUP GRAPH
R E N D E R I N G W I T H R A S T E R I Z A T I O N

Figure 4.6. Speedup graph of the horizontal and recursive division schemes
where rasterization algorithm is used and obtained by using the rendering
times.

SPEEDUP GRAPH
TOTAL· TIME WITH BOUNDING BOX

Figure 4.7. Speedup graph of the horizontal division scheme where bounding
box approximation is used and obtained by using the overall execution times.

CHAPTER 4. RESULTS 47

EFFICIENCY GRAPH
R E N D E R I N O W I T H B O U N D t N O B O X

Figure 4.8. Efficiency graph of the horizontal, rectangular, and recursive divi
sion schemes where bounding box approximation is used and obtained by using
the rendering times.

*C5

EFFICIENCY GRAPH
RENDERING WITH RASTERIZATION

100.0

80.0

60.0

40.0

— © —

\CD..<Ŝ .\
\

\

O-----O ideal
CI3......ED horizontal
O----- O recursive

•a
o

20.0

0.0
10 20 30

processors

Figure 4.9. Efficiency graph of the horizontal and recursive division schemes
where rasterization algorithm is used and obtained by using the rendering
times.

CHAPTER 4. RESULTS 48

EFFICIENCY GRAPH
TOTAL TIME WITH BOUNDIN3 BOX

Figure 4.10. Efficiency graph of the horizontal division scheme where bounding
box approximation is used and obtained by using the overall execution times.

LOAD-BALANCE GRAPH
BENDERINO WITH BOUNDIN3 BOX

Figure 4.11. Load-balance graph of the horizontal, rectangular, and recursive
division schemes where bounding box approximation is used and obtained by
using the rendering times.

CHAPTER 4. RESULTS 49

s

LOAD-BALANCE GRAPH
R E N D E R I N G W I T H R A S T E R I Z A T I O N

100.0

80.0

60.0

40.0

20.0 -

- — o -

0.0

\

■••EID-·............

.

o
O----- O ideal
G3......EH horizontal
O---- o recursive

10 20 30
processors

Figure 4.12. Load-balance graph of the horizontal and recursive division
schemes where rasterization algorithm is used and obtained by using the ren
dering times.

LOAD-BALANCE GRAPH
TOTAL· TIME WITH BOUNDING BOX

Figure 4.13. Load-balance graph of the horizontal division scheme where
bounding box approximation is used and obtained by using the overall exe
cution times.

Chapter 5

Conclusion

In this thesis, we have investigated various image space subdivision algorithms
for parallel direct volume rendering of volumetric data sets on distributed mem
ory multicomputers using the ray shooting paradigm. We have used a standard
polygon rendering algorithm as our underlying sequential schema and obtained
results on three different data sets using an IBM-SP2 architecture. Now, we
are ready to give our conclusions, discuss in general our results, and assign
some future solutions to our problems. We hope that this comparative work
would be a good starting point for various other works on this topic.

We have seen that our subdivision heuristics do not give very good load
balancing and speedup results with respect to [1, 2]. In fact these two papers
study the shared memory approach of the same parallel algorithm and hence
can not directly be compared with this work. But as there is no other pub
lications done specifically in this field we can only compare our results with
our initial expectations, theoretical possible results, and with [1, 2]. Although
our test data sets are of restricted type we think that most of the results for
other data types will be the same. Although the algorithms developed in this
thesis are generalized for all of the data types known to us, this generalization,
which uses the standard polygon rendering algorithms as their base, causes
some problems in the parallelization steps of the algorithms because of their
low scalability on volumetric data sets. Therefore the assumption of ease at
parallel polygon rendering and load balancing was not correct.

The reasons for these results are the low scalability of the image space sub
divisions which can be solved by using further division schemes on the 3rd
dimension that can introduce some overheads like pixel merging, difficulties in

50

CHAPTERS. CONCLUSION 51

defining a good load balancing metric in the static decompositions which can
be solved by using a dynamic strategy where probably there are lots of sub
tasks to be completed while the number of processors used is much smaller than
this number of tasks (increases duplications and communications) or using a
re-balancing scheme in the rendering process that can increase the completion
time while introducing a better load balance to the runs of the algorithms, lack
of information about the geometry to be divided, causing scalability to be dis
turbed which can be solved by using the number of sampling points with in a
region (e.g. avoiding many small triangles from going to a single processor and
other normal or big ones, relatively, to another processor), and the difficulty
of defining a good metric for a region because of the extra tasks introduced
especially at vertical divisions which can be solved by taking more well defined
ratios for atomic means of task decomposition (like spans) by taking exhaus
tive sample runs of the algorithms for ratio determination (currently nearly
impossible because of lack of data types and computer hardware usage).

Also we have observed that although the first heuristic is a very naive one it
beats the others in most of the runs that we have done in terms of load balances
and speedups. The reason for this is that the vertical divisions introduce much
more expensive extra tasks to do after the division, than the horizontal ones,
that are also very difficult to estimate and distribute (because of the memory
allocation problems of huge data groups and extra sorting used in the compo
sition steps). But note that for very large number of processors or where the
image height is less than or nearly equal to the number of processors that we
are using, we can use the 2nd and especially the 3rd heuristics because of their
higher scalability (compared to ID horizontal one) and their flexibility intro
duced in the division schemes although it can introduce huge extra overheads.
For example, you can not divide a 32 x 32 image to 64 processors horizontally
adequately because of the definition of an atomic task in horizontal scheme
which is a single scanline (therefore causing some processors to stay idle while
others are working hard to finish their assigned subtasks). But on the other
hand the recursive scheme has 32 x 32 = 1024 different division possibilities
for the same image which can beat the overheads introduced and even give
better results than the horizontal one. This is true especially if the data to be
visualized is longer in its width than its height and the number of pi’ocessors is
nearly equal to this height. So we can say that in general (for practical usages)
horizontal scheme beats the others except some of the cases defined as above.
Therefore, usage of the horizontal scheme, besides its division results, by also
introducing a smaller division pre-processing overhead, smaller communication

CHAPTERS. CONCLUSION 52

times, and simplicity can be selected for various visualization schemes.

In addition to these we can say that we can use rasterization type optimiza
tions in the division schemes which introduces a huge overhead while giving
a slightly better load balance or speedup (in terms of the rendering process
but not the overall time). These type of divisions can be used especially with
time-varying data sets where more than one visualization of the same view is
possible. Also load re-balancing after each run can be done as a future work.
Besides animation type visualizations can be very adequate for the algorithms
developed with in this thesis because of their incremental view point changes,
etc. (e.g., controlling the data flow after each run). Some extensions to this
methodology could be made but we advise that the underlying schemata should
be changed (for example to shared memory architectures or etc.) for more in
novative results and solutions. Finally, we can say that this work can be named
as a good initial work for future works on this field of research. The presenta
tion of this thesis along with its results will hopefully be very helpful to all the
other researchers in this area.

Appendix A

Tables of the Sample Runs

This appendix gives the tables of the sample runs of the implementations made.
Each table includes runs, on the defined data set, of three different views of
the data set, three different screen resolutions, and some different number
of processors (from up to 8 to up to 32). Tables include the total, rendering,
swapping, and the division times of the programs. They also give the maximum
and minimum values for each time. Due to usage restrictions of the IBM-SP2
architecture that we are using some runs are limited with only one data set and
some are only given up to 8 processors. But all runs give information about
the 1, 2, 4, and 8 processor tests of the programs.

The Table. A.l is the first table. It is generated using the blunt data
set. There are three different views of the data which are taken randomly to
obtain a general feeling about the test programs. Three different image plane
sizes, namely 256 x 256, 512 x 512, and 1024 x 1024, are used. This table uses
horizontal division scheme and shows this behavior by using up to 8 processors.
The Table. A.2 and the Table. A.3 use post and delta data sets respectively
where the other properties are the same with the first table.

The Table. A.4 is the fourth table. It is generated using the blunt data
set. There are three different views of the data which are taken randomly to
obtain a general feeling about the test programs. Three different image plane
sizes, namely 256 x 256, 512 x 512, and 1024 x 1024, are used. This table
uses rectangular division scheme and shows this behavior by using up to 8
processors. The Table. A .5 and the Table. A.6 use post and delta data sets
respectively where the other properties are the same with the fourth table.

53

APPENDIX A. TABLES OF THE SAMPLE RUNS 54

The Table. A .7 is the seventh table. It is generated using the blunt data
set. There are three different views of the data which are taken randomly to
obtain a general feeling about the test programs. Three different image plane
sizes, namely 256 x 256, 512 x 512, and 1024 x 1024, are used. This table uses
recursive division scheme and shows this behavior by using up to 8 processors.
The Table. A.8 and the Table. A .9 use post and delta data sets respectively
where the other properties are the same with the seventh table. Note that these
last three tables show division times (the time used to distribute the process
into sub-processes) and the swapping times (the time used to exchange the local
data of the processors) differently then the first six tables. As this version of
the implementations use recursion, the division time is in fact equivalent to the
time of dividing plus swapping where pure division time is equal to the one in
the table minus the swapping time. But also note that the intermediate swaps
are in fact crucial for the division process to be complete which can also be
seen as a part of the division time except the last swap operation.

The last two tables show us the behavior of the rasterized versions of the
heuristics, named as horizontal and recursive, given as Table. A. 10 and Ta
ble. A .11 respectively. Note that these tables use up to 32 processors for the
sake of completeness of the deductions about these runs. The division and
swap (and hence the total) times given are not that much accurate, as the
division process for rasterization is much longer than the bounding box ap
proach and causes various errors for these two tables. You must have noticed
that there are some fluctuating outputs in the first nine tables which are much
more drastical in these last two tables. The reason for this is the non-dedicated
usage of the IBM-SP2 computer which causes swaps in some sample runs. Al
though we have used the user time for executions, the communicating steps of
the algorithms suffers from system swaps where one processor might be wait
ing for the other (hence causing some CPU time bursts). As the rasterized
versions of the algorithms developed need more communications the times for
these are faultier than the others, so a careful reader should mainly consider
the rendering times for the last two tables for further deductions. Also note
that the rasterized versions can (if used in dedicated modes) only be used if
the input data sets are time-varying. The reason for this is these type of data
sets are used for multiple visualizations of the same view of an input data set
and hence causing the division overheads negligible for about e.g. twenty runs
of the same view. Also you must have noticed that the 16 and 32 processor
runs are simulations by 8 processors as the original computer have only 8 real
processors. So the communications are made by the ethernet protocol (but

APPENDIX A. TABLES OF THE SAMPLE RUNS 55

RESULTS IN SECONDS BLUNT DATA SET
EXECUTION TIMES TOTAL RENDERING SWAPPING DIVIDING

VIEW RESOLUTION P MIN MAX MIN MAX MIN MAX MIN MAX
1st 256 X 256 1 40.79 40.79 40.79 40.79 0.00 0.00 0.00 0.00
1st 256 X 256 2 26.68 29.57 20.05 23.02 2.48 2.54 3.69 3.80
1st 256 X 256 4 15.16 17.59 10.22 12.54 2.77 2.81 1.94 2.10
1st 256 X 256 8 10.30 12.07 5.60 7.11 3.15 3.31 1.23 1.56
2nd 256 X 256 1 22.50 22.50 22.50 22.50 0.00 0.00 0.00 0.00
2nd 256 X 256 2 16.95 17.16 12.01 12.20 1.80 1.83 2.84 2.94
2nd 256 X 256 4 10.26 11.25 6.19 7.08 2.25 2.28 1.61 1.78
2nd 256 X 256 8 7.09 8.28 3.37 4.21 2.61 2.89 0.99 1.22
3rd 256 X 256 1 26.92 26.92 26.92 26.92 0.00 0.00 0.00 0.00
3rd 256 X 256 2 18.03 19.63 13.33 15.05 1.57 1.61 2.83 2.85
3rd 256 X 256 4 10.19 12.18 6.54 8.43 1.98 2.02 1.51 1.67
3rd 256 X 256 8 6.67 8.32 3.59 4.87 2.13 2.33 0.88 1.11
1st 512 X 512 1 115.39 115.39 115.39 115.39 0.00 0.00 0.00 0.00
1st 512 X 512 2 66.97 67.45 59.50 59.71 2.85 2.92 4.02 4.63
1st 512 X 512 4 34.97 37.71 29.46 32.11 3.05 3.10 2.17 2.78
1st 512 X 512 8 18.84 22.69 14.23 17.85 3.23 3.31 1.21 1.64
2nd 512 X 512 1 65.01 65.01 65.01 65.01 0.00 0.00 0.00 0.00
2nd 512 X 512 2 38.60 40.92 32.43 34.63 2.34 2.40 3.50 3.57
2nd 512 X 512 4 21.38 24.40 16.24 19.35 2.82 2.92 1.98 2.13
2nd 512 X 512 8 12.93 15.66 8.14 11.03 3.14 3.45 1.30 1.64
3rd 512 X 512 1 81.76 81.76 81.76 81.76 0.00 0.00 0.00 0.00
3rd 512 X 512 2 46.92 48.59 40.91 42.76 2.19 2.19 3.40 3.50
3rd 512 X 512 4 24.87 27.35 20.21 22.69 2.55 2.58 1.87 2.02
3rd 512 X 512 8 14.15 16.41 10.38 12.44 2.51 2.68 1.02 1.25
1st 1024 X 1024 1 353.49 353.49 353.49 353.49 0.00 0.00 0.00 0.00
1st 1024 X 1024 2 183.18 191.95 175.34 183.66 3.07 3.16 4.50 4.51
1st 1024 X 1024 4 92.98 102.91 87.25 96.90 3.21 3.25 2.40 2.40
1st 1024 X 1024 8 46.99 56.85 42.18 51.98 3.26 3.33 1.31 1.69
2nd 1024 X 1024 1 202.79 202.79 202.79 202.79 0.00 0.00 0.00 0.00
2nd 1024 X 1024 2 106.82 113.90 99.75 106.46 2.78 2.82 4.05 4.09
2nd 1024 X 1024 4 54.57 62.47 48.81 56.62 3.24 3.30 2.36 2.38
2nd 1024 X 1024 8 29.28 34.91 24.01 30.00 3.38 3.68 1.31 1.54
3rd 1024 X 1024 1 257.06 257.06 257.06 257.06 0.00 0.00 0.00 0.00
3rd 1024 X 1024 2 136.68 139.30 129.52 132.45 2.56 2.67 4.03 4.06
3rd 1024 X 1024 4 68.54 73.91 63.23 68.59 2.90 2.96 2.10 2.26
3rd 1024 X 1024 8 36.01 41.04 31.81 36.86 2.80 2.94 1.18 1.46

Table A .l. Horizontal division results using hounding box with blunt data.

not with high performance switches) causing an extra error in communication
times, because of this simulation restriction. Finally note that the last two
versions of the implementations are run only on the blunt data set as they
took very long execution times (in dedicated mode about a month with 16 and
32 processor simulations and more than three months in non-dedicated mode)
in the IBM-SP2 computer that we are using.

APPENDIX A. TABLES OF THE SAMPLE RUNS 56

RESULTS IN SECONDS POST DATA SET
EXECUTION TIMES TOTAL RENDERING SWAPPING DIVIDING

VIEW RESOLUTION P MIN MAX MIN MAX MIN MAX MIN MAX
1st 256 X 256 1 61.40 61.40 61.40 61.40 0.00 0.00 0.00 0.00
1st 256 X 256 2 42.53 43.61 31.40 32.08 3.43 3.45 6.48 8.26
1st 256 X 256 4 23.60 24.45 16.46 17.07 3.61 3.65 3.33 3.56
1st 256 X 256 8 14.26 15.98 8.18 9.81 3.99 4.02 1.99 2.22
2nd 256 X 256 1 31.01 31.01 31.01 31.01 0.00 0.00 0.00 0.00
2nd 256 X 256 2 26.74 27.21 15.85 16.89 3.20 3.21 6.17 7.70
2nd 256 X 256 4 15.99 17.23 8.38 9.35 3.93 3.95 3.48 3.63
2nd 256 X 256 8 10.55 11.70 4.49 5.39 3.81 4.04 1.94 2.18
3rd 256 X 256 1 22.53 22.53 22.53 22.53 0.00 0.00 0.00 0.00
3rd 256 X 256 2 21.74 22.78 11.61 12.45 2.86 2.88 6.01 7.88
3rd 256 X 256 4 13.60 14.99 6.07 7.47 3.76 3.78 3.52 3.71
3rd 256 X 256 8 8.86 10.84 2.93 4.60 3.76 4.02 1.86 2.12
1st 512 X 512 1 175.11 175.11 175.11 175.11 0.00 0.00 0.00 0.00
1st 512 X 512 2 101.63 109.58 88.77 88.98 4.29 11.88 7.76 8.04
1st 512 X 512 4 54.28 58.47 44.03 47.81 4.98 5.07 4.16 6.19
1st 512 X 512 8 29.28 33.40 21.79 25.15 4.98 5.15 2.35 2.97
2nd 512 X 512 1 89.68 89.68 89.68 89.68 0.00 0.00 0.00 0.00
2nd 512 X 512 2 59.11 60.40 45.15 46.86 4.86 4.87 8.02 8.39
2nd 512 X 512 4 33.67 36.74 22.94 25.59 5.80 5.86 4.69 4.85
2nd 512 X 512 8 20.03 23.16 11.44 14.22 5.62 5.95 2.55 2.74
3rd 512 X 512 1 61.91 61.91 61.91 61.91 0.00 0.00 0.00 0.00
3rd 512 X 512 2 45.44 45.60 31.13 33.11 4.25 4.28 7.67 9.42
3rd 512 X 512 4 25.72 29.65 14.93 18.76 5.57 5.62 4.84 5.03
3rd 512 X 512 8 15.09 19.34 6.93 10.69 5.52 5.82 2.48 2.72
1st 1024 X 1024 1 546.84 546.84 546.84 546.84 0.00 0.00 0.00 0.00
1st 1024 X 1024 2 294.08 294.13 274.68 276.60 6.47 6.49 10.07 12.03
1st 1024 X 1024 4 144.06 160.70 131.38 147.42 6.75 6.93 5.58 5.66
1st 1024 X 1024 8 75.67 87.83 65.35 77.21 6.66 6.93 3.00 3.62
2nd 1024 X 1024 1 261.28 261.28 261.28 261.28 0.00 0.00 0.00 0.00
2nd 1024 X 1024 2 150.15 153.10 132.78 133.69 6.47 6.48 10.06 12.02
2nd 1024 X 1024 4 77.34 89.34 63.36 75.03 7.65 7.71 5.91 6.25
2nd 1024 X 1024 8 41.57 52.37 30.70 40.67 7.30 7.70 3.28 3.56
3rd 1024 X 1024 1 184.77 184.77 184.77 184.77 0.00 0.00 0.00 0.00
3rd 1024 X 1024 2 110.80 112.69 92.46 96.46 5.94 5.96 9.58 11.50
3rd 1024 X 1024 4 57.43 67.85 43.31 53.84 7.55 7.61 5.97 6.10
3rd 1024 X 1024 8 29.51 40.61 18.65 29.32 7.42 7.70 3.19 3.42

Table A.2 . Horizontal division results using bounding box with post data.

APPENDIX A. TABLES OF THE SAMPLE RUNS 57

RESULTS IN SECONDS DELTA DATA SET
EXECUTION TIMES TOTAL RENDERING SWAPPING DIVIDING

VIEW RESOLUTION P MIN MAX MIN MAX .MIN MAX MIN MAX
1st 256 X 256 1 75.72 75.72 75.72 75.72 0.00 0.00 0.00 0.00
1st 256 X 256 2 60.78 61.21 34.89 42.42 6.32 13.78 10.53 11.79
1st 256 X 256 4 31.76 41.65 16.29 24.16 8.00 8.07 6.40 8.81
1st 256 X 256 8 26.60 32.41 7.77 14.37 12.19 13.28 4.59 5.45
2nd 256 X 256 1 60.89 60.89 60.89 60.89 0.00 0.00 0.00 0.00
2nd 256 X 256 2 47.84 62.59 31.04 33.19 4.61 18.81 9.98 10.92
2nd 256 X 256 4 30.34 33.08 15.70 18.03 6.75 6.84 6.44 8.09
2nd 256 X 256 8 25.48 27.82 8.55 10.29 11.20 12.16 4.32 5.20
3rd 256 X 256 1 35.52 35.52 35.52 35.52 0.00 0.00 0.00 0.00
3rd 256 X 256 2 37.92 55.10 18.36 19.27 7.69 25.57 9.16 10.98
3rd 256 X 256 4 22.06 25.70 8.54 11.27 6.75 6.79 5.23 7.20
3rd 256 X 256 8 20.01 22.49 4.36 7.15 10.33 11.33 4.30 4.96
1st 512 X 512 1 219.86 219.86 219.86 219.86 0.00 0.00 0.00 0.00
1st 512 X 512 2 150.83 186.68 93.83 127.40 7.36 76.10 13.67 16.08
1st 512 X 512 4 62.93 89.83 42.45 67.20 10.40 11.19 8.86 10.88
1st 512 X 512 8 42.00 60.55 18.81 37.91 14.66 15.89 5.04 7.20
2nd 512 X 512 1 177.38 177.38 177.38 177.38 0.00 0.00 0.00 0.00
2nd 512 X 512 2 114.46 144.34 88.86 93.32 6.19 42.50 12.15 13.06
2nd 512 X 512 4 59.76 71.04 42.06 51.35 9.16 9.25 7.96 10.00
2nd 512 X 512 8 41.54 48.41 20.15 27.94 14.05 15.20 5.21 6.08
3rd 512 X 512 1 96.82 96.82 96.82 96.82 0.00 0.00 0.00 0.00
3rd 512 X 512 2 71.19 91.34 47.20 52.01 5.36 31.73 11.55 12.49
3rd 512 X 512 4 39.17 51.12 21.50 31.08 9.22 9.32 7.80 10.04
3rd 512 X 512 8 30.38 37.30 10.45 17.93 13.11 14.35 5.41 6.07
1st 1024 X 1024 1 650.86 650.86 650.86 650.86 0.00 0.00 0.00 0.00
1st 1024 X 1024 2 399.96 414.99 272.74 380.83 10.38 108.31 18.25 19.68
1st 1024 X 1024 4 167.75 233.65 121.88 204.25 10.91 35.78 10.73 12.94
1st 1024 X 1024 8 78.98 135.72 55.29 111.87 15.86 16.81 5.62 7.03
2nd 1024 X 1024 1 532.26 532.26 532.26 532.26 0.00 0.00 0.00 0.00
2nd 1024 X 1024 2 317.37 329.49 250.79 291.90 7.83 63.71 14.40 15.22
2nd 1024 X 1024 4 138.07 174.96 116.27 150.83 11.64 11.83 9.64 11.81
2nd 1024 X 1024 8 78.38 104.66 55.06 81.57 15.51 16.68 5.57 6.81
3rd 1024 X 1024 1 285.92 285.92 285.92 285.92 0.00 0.00 0.00 0.00
3rd 1024 X 1024 2 176.17 203.28 138.05 152.88 7.10 50.87 13.44 14.35
3rd 1024 X 1024 4 84.26 113.85 62.88 89.64 11.34 11.53 9.54 11.73
3rd 1024 X 1024 8 52.97 72.94 30.38 51.17 14.51 15.83 5.99 6.66

Table A.3. Horizontal division results using bounding box with delta data.

APPENDIX A. TABLES OF THE SAMPLE RUNS 58

RESULTS IN SECONDS BLUNT DATA SET
EXECUTION TIMES TOTAL RENDERING SWAPPING DIVIDING

VIEW RESOLUTION P MIN MAX MIN MAX MIN MAX MIN MAX
1st 256 X 256 1 40.79 40.79 40.79 40.79 0.00 0.00 0.00 0.00
1st 256 X 256 2 26.65 29.56 20.06 23.02 2.47 2.54 3.65 3.79
1st 256 X 256 4 15.13 18.18 10.06 12.96 2.78 2.80 2.02 2.25
1st 256 X 256 8 9.69 12.08 5.31 7.57 3.06 3.22 1.06 1.34
2nd 256 X 256 1 22.50 22.50 22.50 22.50 0.00 0.00 0.00 0.00
2nd 256 X 256 2 16.96 17.19 12.03 12.23 1.81 1.83 2.82 2.95
2nd 256 X 256 4 9.32 11.16 5.39 7.40 2.08 2.12 1.51 1.75
2nd 256 X 256 8 6.58 8.00 2.76 4.32 2.29 2.62 0.89 1.18
3rd 256 X 256 1 26.92 26.92 26.92 26.92 0.00 0.00 0.00 0.00
3rd 256 X 256 2 17.93 19.65 13.31 15.03 1.58 1.63 2.74 2.87
3rd 256 X 256 4 9.83 13.03 6.19 9.31 1.97 2.01 1.47 1.65
3rd 256 X 256 8 6.03 8.73 2.99 5.27 2.03 2.32 0.84 1.11
1st 512 X 512 1 115.39 115.39 115.39 115.39 0.00 0.00 0.00 0.00
1st 512 X 512 2 66.85 66.87 59.34 59.56 2.80 2.91 4.11 4.21
1st 512 X 512 4 33.95 39.18 28.43 33.82 3.02 3.10 2.10 2.35
1st 512 X 512 8 18.55 24.30 13.96 19.62 3.11 3.21 1.13 1.41
2nd 512 X 512 1 65.01 65.01 65.01 65.01 0.00 0.00 0.00 0.00
2nd 512 X 512 2 38.52 40.78 32.37 34.56 2.34 2.40 3.43 3.56
2nd 512 X 512 4 18.18 25.73 13.35 20.86 2.63 2.71 1.88 2.07
2nd 512 X 512 8 11.06 16.46 6.77 12.22 2.78 3.11 1.18 1.61
3rd 512 X 512 1 81.76 81.76 81.76 81.76 0.00 0.00 0.00 0.00
3rd 512 X 512 2 46.82 48.62 40.90 42.78 2.13 2.20 3.37 3.51
3rd 512 X 512 4 20.97 31.82 16.54 27.22 2.49 2.57 1.77 1.95
3rd 512 X 512 8 11.83 18.42 8.26 14.54 2.43 2.68 0.96 1.25
1st 1024 X 1024 1 353.49 353.49 353.49 353.49 0.00 0.00 0.00 0.00
1st 1024 X 1024 2 183.37 191.85 175.50 183.57 3.07 3.16 4.51 4.51
1st 1024 X 1024 4 89.25 104.63 83.59 98.59 3.18 3.26 2.33 2.34
1st 1024 X 1024 8 44.39 64.05 39.47 59.27 3.16 3.26 1.24 1.66
2nd 1024 X 1024 1 202.79 202.79 202.79 202.79 0.00 0.00 0.00 0.00
2nd 1024 X 1024 2 106.86 113.74 99.76 106.47 2.76 2.84 3.94 4.06
2nd 1024 X 1024 4 47.60 69.85 42.14 64.12 2.99 3.10 2.26 2.51
2nd 1024 X 1024 8 26.15 39.82 21.23 35.22 3.04 3.31 1.26 1.60
3rd 1024 X 1024 1 257.06 257.06 257.06 257.06 0.00 0.00 0.00 0.00
3rd 1024 X 1024 2 136.71 139.09 129.62 132.27 2.57 2.66 3.97 4.01
3rd 1024 X 1024 4 55.12 89.98 50.07 84.73 2.86 2.94 2.01 2.21
3rd 1024 X 1024 8 29.39 47.79 25.38 43.38 2.72 2.94 1.09 1.46

Table A.4. Rectangular division results using hounding box with blunt data.

APPENDIX A. TABLES OF THE SAMPLE RUNS 59

RESULTS IN SECONDS POST DATA SET
EXECUTION TIMES TOTAL RENDERING SWAPPING DIVIDING

VIEW RESOLUTION P MIN MAX MIN MAX MIN MAX MIN MAX
1st 256 X 256 1 61.40 61.40 61.40 61.40 0.00 0.00 0.00 0.00
1st 256 X 256 2 42.44 43.61 31.37 32.01 3.42 3.45 6.46 8.29
1st 256 X 256 4 23.34 23.58 16.14 16.37 3.54 3.56 3.22 3.41
1st 256 X 256 8 14.01 14.95 8.26 8.98 3.78 3.83 1.85 2.18
2nd 256 X 256 1 31.01 31.01 31.01 31.01 0.00 0.00 0.00 0.00
2nd 256 X 256 2 26.76 27.06 15.81 16.86 3.20 3.20 6.22 7.61
2nd 256 X 256 4 16.23 16.94 8.51 9.24 3.87 3.94 3.45 3.58
2nd 256 X 256 8 10.21 11.38 4.46 5.20 3.75 4.08 1.83 2.19
3rd 256 X 256 1 22.53 22.53 22.53 22.53 0.00 0.00 0.00 0.00
3rd 256 X 256 2 21.73 22.74 11.52 12.43 2.85 2.87 6.01 7.94
3rd 256 X 256 4 13.22 13.95 6.03 6.63 3.53 3.62 3.42 3.61
3rd 256 X 256 8 8.58 10.13 3.20 4.19 3.52 3.82 1.73 2.03
1st 512 X 512 1 175.11 175.11 175.11 175.11 0.00 0.00 0.00 0.00
1st 512 X 512 2 101.93 106.55 88.77 89.08 4.28 8.81 7.97 8.13
1st 512 X 512 4 54.31 56.24 44.84 45.79 4.89 4.95 4.05 5.20
1st 512 X 512 8 29.70 32.82 22.14 24.78 4.78 4.96 2.20 3.21
2nd 512 X 512 1 89.68 89.68 89.68 89.68 0.00 0.00 0.00 0.00
2nd 512 X 512 2 59.74 60.34 45.33 46.88 4.76 4.77 8.03 8.99
2nd 512 X 512 4 32.79 37.22 22.19 26.40 5.83 5.93 4.48 4.70
2nd 512 X 512 8 19.24 23.14 11.09 14.55 5.62 5.99 2.38 2.73
3rd 512 X 512 1 61.91 61.91 61.91 61.91 0.00 0.00 0.00 0.00
3rd 512 X 512 2 45.53 45.70 31.08 33.18 4.22 4.27 7.70 9.60
3rd 512 X 512 4 25.85 27.61 15.77 17.29 5.34 5.36 4.43 4.67
3rd 512 X 512 8 15.49 18.59 7.71 10.30 5.27 5.61 2.30 2.57
1st 1024 X 1024 1 546.84 546.84 546.84 546.84 0.00 0.00 0.00 0.00
1st 1024 X 1024 2 293.99 294.53 274.65 277.05 6.47 6.47 10.07 11.94
1st 1024 X 1024 4 151.95 155.95 139.08 143.12 6.92 6.97 5.40 5.49
1st 1024 X 1024 8 76.25 87.23 66.68 77.23 6.57 6.85 2.81 3.26
2nd 1024 X 1024 1 261.28 261.28 261.28 261.28 0.00 0.00 0.00 0.00
2nd 1024 X 1024 2 149.98 152.97 132.64 133.57 6.45 6.46 10.05 12.02
2nd 1024 X 1024 4 75.24 93.19 61.44 79.23 7.69 7.75 5.68 5.84
2nd 1024 X 1024 8 38.90 54.81 28.43 44.00 7.31 7.74 2.90 3.18
3rd 1024 X 1024 1 184.77 184.77 184.77 184.77 0.00 0.00 0.00 0.00
3rd 1024 X 1024 2 110.52 112.69 92.28 96.51 5.88 5.92 9.54 11.47
3rd 1024 X 1024 4 58.53 63.24 45.16 49.85 7.20 7.26 5.75 5.76
3rd 1024 X 1024 8 33.05 39.73 21.49 29.00 6.80 8.75 2.86 3.22

Table A.5. Rectangular division results using hounding box with post data.

APPENDIX A. TABLES OF THE SAMPLE RUNS 60

RESULTS IN SECONDS DELTA DATA SET
EXECUTION TIMES TOTAL RENDERING SWAPPING DIVIDING

VIEW RESOLUTION P MIN MAX MIN MAX MIN MAX MIN MAX
1st 256 X 256 1 75.72 75.72 75.72 75.72 0.00 0.00 0.00 0.00
1st 256 X 256 2 59.70 87.08 34.81 42.33 5.15 39.80 10.56 11.76
1st 256 X 256 4 29.81 38.53 14.86 21.79 7.71 7.75 6.42 8.50
1st 256 X 256 8 25.19 30.56 7.26 13.54 11.57 12.65 4.57 5.20
2nd 256 X 256 1 60.89 60.39 60.89 60.89 0.00 0.00 0.00 0.00
2nd 256 X 256 2 51.01 52.74 31.11 33.24 7.81 8.81 9.98 10.90
2nd 256 X 256 4 28.79 31.76 15.70 16.76 6.60 6.67 6.04 8.23
2nd 256 X 256 8 23.74 25.64 7.91 9.53 10.27 11.58 4.36 4.94
3rd 256 X 256 1 35.52 35.52 35.52 35.52 0.00 0.00 0.00 0.00
3rd 256 X 256 2 35.38 38.25 18.32 18.97 4.35 9.64 9.50 11.11
3rd 256 X 256 4 21.22 25.09 8.57 10.52 6.69 6.74 5.63 7.80
3rd 256 X 256 8 19.04 21.70 3.96 5.86 10.16 11.02 4.08 4.74
1st 512 X 512 1 219.86 219.86 219.86 219.86 0.00 0.00 0.00 0.00
1st 512 X 512 2 150.45 162.29 93.64 127.42 7.00 52.92 13.67 15.08
1st 512 X 512 4 63.60 90.65 36.60 69.58 9.26 17.94 8.31 10.68
1st 512 X 512 8 38.66 57.80 17.06 36.73 14.00 15.20 4.84 6.34
2nd 512 X 512 1 177.38 177.38 177.38 177.38 0.00 0.00 0.00 0.00
2nd 512 X 512 2 114.36 147.38 88.88 93.26 6.27 45.75 12.15 13.15
2nd 512 X 512 4 62.08 66.39 45.05 48.04 8.95 9.09 7.57 8.97
2nd 512 X 512 8 41.94 46.50 21.55 27.02 12.91 14.54 5.14 5.79
3rd 512 X 512 1 96.82 96.82 96.82 96.82 0.00 0.00 0.00 0.00
3rd 512 X 512 2 71.48 102.75 47.13 52.06 5.57 43.27 11.49 12.50
3rd 512 X 512 4 37.19 48.57 20.15 29.23 9.15 9.23 7.54 9.59
3rd 512 X 512 8 28.40 35.50 9.18 16.06 12.99 14.02 5.11 5.74
1st 1024 X 1024 1 650.86 650.86 650.86 650.86 0.00 0.00 0.00 0.00
1st 1024 X 1024 2 368.90 413.27 273.29 382.10 10.12 76.43 17.19 18.33
1st 1024 X 1024 4 132.77 244.78 106.72 219.21 12.34 15.30 9.42 11.61
1st 1024 X 1024 8 74.20 141.11 51.23 117.69 15.13 16.03 5.26 7.13
2nd 1024 X 1024 1 532.26 532.26 532.26 532.26 0.00 0.00 0.00 0.00
2nd 1024 X 1024 2 316.65 324.57 249.99 290.99 7.83 59.60 14.39 15.52
2nd 1024 X 1024 4 149.54 173.00 128.02 149.24 11.55 11.65 9.61 12.01
2nd 1024 X 1024 8 82.42 99.08 60.21 77.80 14.18 15.99 5.35 6.21
3rd 1024 X 1024 1 285.92 285.92 285.92 285.92 0.00 0.00 0.00 0.00
3rd 1024 X 1024 2 175.93 198.45 138.07 152.71 6.95 46.05 13.40 14.33
3rd 1024 X 1024 4 78.91 112.69 57.82 88.98 11.34 11.51 9.27 11.42
3rd 1024 X 1024 8 48.59 69.48 27.81 48.29 14.33 15.42 5.30 6.27

Table A.6 . Rectangular division results using bounding box with delta data.

APPENDIX A. TABLES OF THE SAMPLE RUNS 61

RESULTS IN SECONDS BLUNT DATA SET
EXECUTION TIMES TOTAL RENDERING SWAPPING DIVIDING

VIEW RESOLUTION P MIN MAX MIN MAX MIN MAX MIN MAX
1st 256 X 256 1 40.79 40.79 40.79 40.79 0.00 0.00 0.00 0.00
1st 256 X 256 2 27.39 28.12 21.84 22.77 2.64 2.67 5.19 5.22
1st 256 X 256 4 15.47 19.08 10.69 12.63 1.97 3.52 4.11 6.51
1st 256 X 256 8 8.55 15.29 5.18 7.25 1.45 4.44 3.29 8.07
2nd 256 X 256 1 22.50 22.50 22.50 22.50 0.00 0.00 0.00 0.00
2nd 256 X 256 2 14.55 17.12 10.54 13.04 1.79 1.80 3.86 3.93
2nd 256 X 256 4 8.13 12.39 4.90 7.44 1.20 2.44 3.20 4.82
2nd 256 X 256 8 5.37 9.31 2.71 4.29 0.94 2.49 2.64 4.96
3rd 256 X 256 1 26.92 26.92 26.92 26.92 0.00 0.00 0.00 0.00
3rd 256 X 256 2 17.38 18.86 13.30 15.02 1.65 1.71 3.79 3.89
3rd 256 X 256 4 8.91 12.22 6.15 9.53 0.97 2.19 2.65 4.28
3rd 256 X 256 8 6.28 9.17 3.27 5.04 0.83 2.23 2.33 4.67
1st 512 X 512 1 115.39 115.39 115.39 115.39 0.00 0.00 0.00 0.00
1st 512 X 512 2 65.34 65.67 59.20 59.80 2.95 2.96 5.71 5.75
1st 512 X 512 4 32.34 38.63 28.01 33.81 2.20 4.07 4.14 7.55
1st 512 X 512 8 16.26 24.04 12.88 18.05 1.58 5.07 3.35 9.65
2nd 512 X 512 1 65.01 65.01 65.01 65.01 0.00 0.00 0.00 0.00
2nd 512 X 512 2 31.36 44.42 26.53 39.37 2.35 2.35 4.72 4.76
2nd 512 X 512 4 16.48 29.58 12.68 22.84 1.38 3.53 3.63 6.55
2nd 512 X 512 8 9.25 19.55 6.46 12.01 1.11 3.59 2.75 7.65
3rd 512 X 512 1 81.76 81.76 81.76 81.76 0.00 0.00 0.00 0.00
3rd 512 X 512 2 45.73 47.06 40.82 42.31 2.22 2.22 4.61 4.69
3rd 512 X 512 4 25.69 29.37 20.24 22.98 1.33 3.20 3.35 6.21
3rd 512 X 512 8 14.19 18.10 10.22 12.26 1.16 3.03 2.38 6.29
1st 1024 X 1024 1 353.49 353.49 353.49 353.49 0.00 0.00 0.00 0.00
1st 1024 X 1024 2 183.20 191.00 176.70 184.10 3.27 3.29 6.41 6.42
1st 1024 X 1024 4 87.43 107.20 83.04 98.32 2.28 4.60 4.33 8.52
1st 1024 X 1024 8 40.21 66.55 36.67 59.58 1.51 6.17 3.52 12.11
2nd 1024 X 1024 1 202.79 202.79 202.79 202.79 0.00 0.00 0.00 0.00
2nd 1024 X 1024 2 90.17 127.70 84.25 121.50 3.05 3.08 5.72 5.85
2nd 1024 X 1024 4 44.63 74.83 40.59 66.91 1.74 4.03 3.98 7.70
2nd 1024 X 1024 8 23.66 46.55 20.67 40.42 1.30 4.71 2.93 9.13
3rd 1024 X 1024 1 257.06 257.06 257.06 257.06 0.00 0.00 0.00 0.00
3rd 1024 X 1024 2 103.50 167.10 97.96 161.20 2.73 2.74 5.47 5.50
3rd 1024 X 1024 4 54.49 90.48 50.14 83.37 1.89 3.75 4.27 7.29
3rd 1024 X 1024 8 30.06 60.61 25.14 50.45 1.57 5.07 3.76 9.89

Table A.7. Recursive division results using bounding 60a: with blunt data.

APPENDIX A. TABLES OF THE SAMPLE RUNS 62

RESULTS IN SECONDS POST DATA SET
EXECUTION TIMES TOTAL RENDERING SWAPPING DIVIDING

VIEW RESOLUTION P MIN MAX MIN MAX MIN MAX MIN MAX
1st 256 X 256 1 61.40 61.40 61.40 61.40 0.00 0.00 0.00 0.00
1st 256 X 256 2 39.99 40.72 31.11 31.92 3.56 3.56 8.50 8.57
1st 256 X 256 4 24.02 25.21 16.01 17.10 3.60 3.84 7.82 8.09
1st 256 X 256 8 13.73 16.65 7.96 9.58 2.17 3.80 4.69 7.91
2nd 256 X 256 1 31.01 31.01 31.01 31.01 0.00 0.00 0.00 0.00
2nd 256 X 256 2 24.20 25.58 15.88 17.19 3.26 3.29 8.06 8.10
2nd 256 X 256 4 16.82 17.06 8.31 9.32 2.80 4.01 7.63 8.41
2nd 256 X 256 8 10.58 13.58 4.48 5.34 1.87 3.80 5.17 8.69
3rd 256 X 256 1 22.53 22.53 22.53 22.53 0.00 0.00 0.00 0.00
3rd 256 X 256 2 19.52 19.66 11.56 11.81 2.88 2.89 7.62 7.74
3rd 256 X 256 4 12.78 14.98 5.36 7.34 2.53 3.47 7.33 7.67
3rd 256 X 256 8 7.10 10.63 2.81 4.59 1.50 2.67 3.99 6.48
1st 512 X 512 1 175.11 175.11 175.11 175.11 0.00 0.00 0.00 0.00
1st 512 X 512 2 100.40 101.20 89.04 89.35 4.78 5.73 10.62 11.67
1st 512 X 512 4 55.43 57.02 45.29 46.10 4.64 5.28 9.83 10.69
1st 512 X 512 8 29.02 35.57 22.03 25.54 3.21 5.08 6.58 10.89
2nd 512 X 512 1 89.68 89.68 89.68 89.68 0.00 0.00 0.00 0.00
2nd 512 X 512 2 56.04 60.45 45.06 49.37 4.82 4.84 10.58 10.62
2nd 512 X 512 4 34.91 38.03 22.34 26.60 4.53 6.42 11.27 12.32
2nd 512 X 512 8 21.41 27.17 10.87 14.25 3.19 6.44 7.38 13.67
3rd 512 X 512 1 61.91 61.91 61.91 61.91 0.00 0.00 0.00 0.00
3rd 512 X 512 2 41.05 43.33 30.65 32.85 4.35 4.37 10.06 10.12
3rd 512 X 512 4 22.88 32.92 12.28 21.71 3.96 5.39 10.52 10.93
3rd 512 X 512 8 12.93 22.05 6.05 11.67 2.01 4.95 5.14 10.92
1st 1024 X 1024 1 546.84 546.84 546.84 546.84 0.00 0.00 0.00 0.00
1st 1024 X 1024 2 289.50 289.60 275.40 275.50 6.56 6.62 13.46 13.53
1st 1024 X 1024 4 137.00 176.20 123.10 161.90 6.46 7.29 13.78 14.18
1st 1024 X 1024 8 70.21 101.40 61.84 81.75 3.50 9.06 7.30 19.37
2nd 1024 X 1024 1 261.28 261.28 261.28 261.28 0.00 0.00 0.00 0.00
2nd 1024 X 1024 2 137.60 162.20 123.60 148.20 6.55 6.57 13.36 13.40
2nd 1024 X 1024 4 76.27 94.26 60.51 78.80 6.21 8.12 14.86 15.64
2nd 1024 X 1024 8 41.16 61.15 29.69 42.95 3.57 9.83 10.24 20.93
3rd 1024 X 1024 1 184.77 184.77 184.77 184.77 0.00 0.00 0.00 0.00
3rd 1024 X 1024 2 104.90 109.50 91.67 96.38 6.11 6.14 12.62 12.62
3rd 1024 X 1024 4 58.99 64.14 44.66 49.49 5.71 7.52 14.09 14.49
3rd 1024 X 1024 8 30.27 46.00 17.92 33.50 3.51 7.52 10.15 19.13

Table A.8 . Recursive division results using bounding box with post data.

APPENDIX A. TABLES OF THE SAMPLE RUNS 63

RESULTS IN SECONDS DELTA DATA SET
EXECUTION TIMES TOTAL RENDERING SWAPPING DIVIDING

VIEW RESOLUTION P MIN MAX MIN MAX MIN MAX MIN MAX
1st 256 X 256 1 75.72 75.72 75.72 75.72 0.00 0.00 0.00 0.00
1st 256 X 256 2 56.86 65.51 36.56 41.30 10.91 14.96 19.97 23.57
1st 256 X 256 4 28.83 40.62 15.87 22.91 4.22 7.93 12.89 17.42
1st 256 X 256 8 18.79 29.86 7.61 12.81 2.78 9.01 10.89 18.43
2nd 256 X 256 1 60.89 60.89 60.89 60.89 0.00 0.00 0.00 0.00
2nd 256 X 256 2 46.91 62.76 31.07 32.00 6.23 22.48 14.54 31.33
2nd 256 X 256 4 29.91 31.25 15.82 16.65 4.01 6.56 13.84 14.37
2nd 256 X 256 8 15.71 25.16 8.19 9.74 2.57 7.01 7.47 15.79
3rd 256 X 256 1 35.52 35.52 35.52 35.52 0.00 0.00 0.00 0.00
3rd 256 X 256 2 31.63 40.59 18.23 18.83 4.62 13.73 12.40 22.04
3rd 256 X 256 4 21.88 24.01 8.51 10.37 4.11 6.15 13.24 13.61
3rd 256 X 256 8 14.26 20.03 3.89 6.09 2.48 6.94 8.10 14.11
1st 512 X 512 1 219.86 219.86 219.86 219.86 0.00 0.00 0.00 0.00
1st 512 X 512 2 118.50 158.50 89.72 133.90 13.35 17.43 23.48 28.40
1st 512 X 512 4 55.31 96.89 37.44 69.79 6.88 10.42 17.82 26.20
1st 512 X 512 8 28.30 63.67 16.52 39.01 3.23 13.01 11.46 31.54
2nd 512 X 512 1 177.38 177.38 177.38 177.38 0.00 0.00 0.00 0.00
2nd 512 X 512 2 111.90 124.90 89.35 93.30 8.15 25.40 17.76 35.34
2nd 512 X 512 4 56.43 73.19 42.37 49.82 4.37 11.22 13.97 23.37
2nd 512 X 512 8 32.66 52.60 20.17 26.98 2.91 11.27 12.29 27.90
3rd 512 X 512 1 96.82 96.82 96.82 96.82 0.00 0.00 0.00 0.00
3rd 512 X 512 2 62.35 77.11 42.85 56.14 10.49 11.18 19.16 20.28
3rd 512 X 512 4 34.32 52.91. 18.36 33.05 4.95 9.72 15.64 19.48
3rd 512 X 512 8 16.91 38.82 8.71 17.81 3.21 10.00 8.18 20.75
1st 1024 X 1024 1 650.86 650.86 650.86 650.86 0.00 0.00 0.00 0.00
1st 1024 X 1024 2 343.60 407.70 272.00 380.20 13.11 58.33 25.63 71.29
1st 1024 X 1024 4 140.80 254.20 122.90 219.90 7.57 17.85 17.59 33.81
1st 1024 X 1024 8 68.49 165.20 55.11 136.00 4.17 20.48 13.24 44.31
2nd 1024 X 1024 1 532.26 532.26 532.26 532.26 0.00 0.00 0.00 0.00
2nd 1024 X 1024 2 290.70 311.40 250.10 289.90 9.34 29.08 20.27 40.36
2nd 1024 X 1024 4 133.40 178.80 116.20 147.20 4.55 14.74 17.13 31.30
2nd 1024 X 1024 8 69.83 113.60 55.35 94.39 2.98 14.10 14.37 30.05
3rd 1024 X 1024 1 285.92 285.92 285.92 285.92 0.00 0.00 0.00 0.00
3rd 1024 X 1024 2 174.20 176.70 137.80 152.00 11.54 28.09 21.21 38.38
3rd 1024 X 1024 4 78.08 115.20 56.84 88.68 6.72 11.75 21.14 25.98
3rd 1024 X 1024 8 35.08 79.85 26.30 54.46 2.81 12.46 8.75 24.86

Table A.9. Recursive division results using bounding box with delta data.

APPENDIX A. TABLES OF THE SAMPLE RUNS 64

RESULTS IN SECONDS BLUNT DATA SET
EXECUTION TIMES TOTAL RENDERING SWAPPING DIVIDING

VIEW RESOLUTION MIN MAX MIN MAX MIN MAX I MIN I MAX
1st 256 X 256 40.79 40.79 40.79 40.' 0.00 0.00 0.00 0.00
1st 256 X 256 30.12 33.08 20.24 22.86 3.36 3.45 9.55 10.11
1st 256 X 256 21.17 22.96 10.82 12.56 3.20 4.68 10.00 10,99
1st 256 X 256 13.61 24.86 5.94 7.14 2.18 7.96 7.00 18.23
1st 256 X 256 16 9.29 42.08 3.31 4.38 1.28 15.72 5.09 38.02
1st 256 X 256 32 6.67 277.80 2.10 2.95 0.S2 267.30 4.25 275.30
2nd 256 X 256 22.50 22.50 22.50 22.50 0.00 0.00 0.00 0.00
2nd 256 X 256 18.55 24.08 12.25 12.29 2.7 5.65 6.11 11.69
2nd 256 X 256 12.51 20.36 6.09 7.01 2.16 3.85 6.29 13.40
2nd 256 X 256 9.24 19.10 3.17 4.40 1.5 5.16 4.78 15.05
2nd 256 X 256 16 6.07 12.04 1.81 2.9: 1.03 3.12 3.70 9.36
2nd 256 X 256 32 28.63 242.20 0.35 2.93 1.08 38.61 26.68 240.30
3rd 256 X 256 26.92 26.92 26.92 26.92 0.00 0.00 0.00 0.00
3rd 256 X 256 24.08 88.01 12.95 15.72 2.62 11.90 8.32 74.85
3rd 256 X 256 14.84 18.83 6.80 9.08 1.75 3.00 6.41 10.76
3rd 256 X 256 12.07 1426.00 3.72 5.4: 1.17 667.20 8.28 1422.00
3rd 256 X 256 16 6.03 10.67 1.98 3.13 0.71 2.66 3.45 8.02
3rd 256 X 256 32 3.69 6.88 1.27 2.10 0.60 1.78 2.06 5.22
1st 512 X 512 115.39 115.39 115.39 115.39 0.00 0.00 0.00 0.00
1st 512 X 512 74.39 74.74 59.27 59.62 4.23 4.35 14.66 15.02
1st 512 X 512 44.07 52.03 30.01 31.62 3.20 6.32 13.84 20.62
1st 512 X 512 26.17 58.66 15.25 17.71 2.22 10.66 9.42 40.84
1st 512 X 512 16 14.91 28.19 7.08 10.06 1.23 5.24 6.14 19.43
1st 512 X 512 32 8.73 18.83 3.87 5.85 0.79 4.22 4.06 13.21
2nd 512 X 512 65.01 65.01 65.01 65.01 0.00 0.00 0.00 0.00
2nd 512 X 512 42.13 43.62 33.66 34.42 2.55 3.32 7.40 9.82
2nd 512 X 512 26.03 31.54 17.40 18.51 2.80 4.79 8.01 12.91
2nd 512 X 512 17.49 35.19 8.99 10.24 2.12 6.32 7.20 25.09
2nd 512 X 512 16 10.85 19.56 4.86 6.63 1.21 4.43 4.80 14.06
2nd 512 X 512 32 8.12 15.56 2.65 4.20 1.08 5.96 4.41 11.36
3rd 512 X 512 81.76 81.76 81.76 81.76 0.00 0.00 0.00 0.00
3rd 512 X 512 52.95 56.19 40.08 43.66 3.05 3.12 12.45 12.58
3rd 512 X 512 31.82 37.17 20.75 23.44 2.22 4.31 10.90 15.60
3rd 512 X 512 19.16 40.27 10.68 13.80 1.51 7.25 7.39 28.78
3rd 512 X 512 16 11.86 20.40 5.58 7.36 0.94 3.63 4.86 14.53
3rd 512 X 512 32 7.55 17.12 3.24 4.25 0.76 9.10 3.82 13.51
1st 1024 X 1024 353.49 353.49 353.49 353.49 0.00 0.00 0.00 0.00
1st 1024 X 1024 200.40 218.40 176.60 185.50 5.52 6.17 23.72 32.46
1st 1024 X 1024 107.70 123.90 88.91 97.85 3.29 6.00 18.70 29.37
1st 1024 X 1024 58.44 99.00 43.25 51.94 2.45 12.03 15.16 54.63
1st 1024 X 1024 16 31.11 51.16 20.38 28.31 .09 5.94 9.87 28.43
1st 1024 X 1024 32 71.40 534.90 10.09 15.98 0.98 16.97 56.96 524.80
2nd 1024 X 1024 202.79 202.79 202.79 202.79 .00 0.00 0.00 0.00
2nd 1024 X 1024 15.50 135.90 100.20 106.80 ,55 7.88 15.25 28.73
2nd 1024 X 1024 65.70 75.40 50.11 57.24 .46 5.43 15.53 21.85
2nd 1024 X 1024 41.75 93.73 25.71 29.70 10.89 16.00 65.84
2nd 1024 X 1024 16 23.46 37.85 12.39 16.75 .33 6.76 7.81 22.66
2nd 1024 X 1024 32 16.37 26.18 6.77 10.43 14 5.62 7.16 16.62
3rd 1024 X 1024 257.06 257.06 257.06 257.06 .00 0.00 0.00 0.00
3rd 1024 X 1024 155.90 158.60 125.90 134.20 .58 5.48 21.61 32.36
3rd 1024 X 1024 88.11 97.61 64.96 70.16 .66 6.33 18.31 31.24
3rd 1024 X 1024 50.81 60.91 31.86 38.12 6.18 14.52 29.02
3rd 1024 X 1024 16 29.48 34.76 16.39 19.74 08 3.80 10.21 17.97
3rd 1024 X 1024 32 18.87 107.60 9.35 11.36 0.90 4.96 7.75 97.63

Table A. 10. Horizontal division results using rasterization with blunt data.

APPENDIX A. TABLES OF THE SAMPLE RUNS 65

RESULTS IN SECONDS BLUNT DATA SET
EXECUTION TIMES TOTAL RENDERING SWAPPING DIVIDING

VIEW RESOLUTION P MIN MAX MIN MAX MIN MAX MIN MAX
1st 256 X 256 1 40.79 40.79 40.79 40.79 0.00 0.00 0.00 0.00
1st 256 X 256 2 30.11 33.73 20.22 23.22 2.96 3.79 9.58 10.39
1st 256 X 256 4 19.78 23.47 10.43 12.52 2.95 4.74 9.17 12.44
1st 256 X 256 8 13.60 23.94 5.51 7.34 2.21 9.13 7.61 18.39
1st 256 X 256 16 7.25 17.95 3.00 4.40 1.14 4.23 4.23 14.31
1st 256 X 256 32 10.56 144.00 1.52 2.78 0.90 8.83 8.33 142.20
2nd 256 X 256 1 22.50 22.50 22.50 22.50 0.00 0.00 0.00 0.00
2nd 256 X 256 2 19.73 20.33 10.13 13.80 2.39 4.00 5.72 10.14
2nd 256 X 256 4 11.18 15.98 5.30 7.91 1.98 3.05 5.34 10.29
2nd 256 X 256 8 9.74 80.77 2.83 4.76 1.20 6.01 4.93 76.67
2nd 256 X 256 16 56.42 257.10 1.59 2.86 0.56 6.50 54.68 255.20
2nd 256 X 256 32 3.09 8.97 0.96 2.04 0.43 2.16 1.81 7.60
3rd 256 X 256 1 26.92 26.92 26.92 26.92 0.00 0.00 0.00 0.00
3rd 256 X 256 2 19.48 25.71 13.47 15.31 2.13 4.01 5.82 10.35
3rd 256 X 256 4 14.40 20.90 6.60 9.12 1.90 2.73 6.56 12.87
3rd 256 X 256 8 8.39 18.53 3.49 5.79 1.06 4.29 4.67 12.72
3rd 256 X 256 16 5.96 61.62 1.86 3.65 0.67 2.52 3.95 58.87
3rd 256 X 256 32 7.60 320.80 1.01 3.04 0.39 150.00 6.59 318.70
1st 512 X 512 1 115.39 115.39 115.39 115.39 0.00 0.00 0.00 0.00
1st 512 X 512 2 75.11 75.57 59.71 60.92 4.09 4.18 14.53 14.95
1st 512 X 512 4 43.88 51.58 29.81 31.69 3.31 6.35 13.67 20.32
1st 512 X 512 8 26.92 54.02 13.45 20.01 2.19 10.68 9.43 39.60
1st 512 X 512 16 11.97 26.80 6.35 10.81 1.29 4.59 5.61 17.92
1st 512 X 512 32 7.84 20.80 3.41 6.24 0.67 7.28 3.88 15.70
2nd 512 X 512 1 65.01 65.01 65.01 65.01 0.00 0.00 0.00 0.00
2nd 512 X 512 2 35.30 50.48 25.74 40.40 3.27 3.32 9.51 9.74
2nd 512 X 512 4 21.48 36.00 13.54 21.50 2.41 5.07 7.92 14.40
2nd 512 X 512 8 12.19 38.50 6.83 11.50 1.37 6.34 5.32 26.96
2nd 512 X 512 16 7.30 26.65 3.67 6.91 0.76 5.81 3.04 19.68
2nd 512 X 512 32 4.81 15.77 2.15 4.19 0.50 3.10 2.24 12.33
3rd 512 X 512 1 81.76 81.76 81.76 81.76 0.00 0.00 0.00 0.00
3rd 512 X 512 2 54.23 56.34 40.97 43.57 3.14 3.20 12.71 12.95
3rd 512 X 512 4 30.70 36.12 20.33 23.42 2.08 4.25 10.20 14.60
3rd 512 X 512 8 18.59 40.10 8.64 15.44 1.45 7.30 7.25 28.59
3rd 512 X 512 16 8.72 20.09 4.24 9.22 0.72 4.11 4.08 15.26
3rd 512 X 512 32 5.87 15.62 2.48 5.37 0.46 3.14 3.35 11.16
1st 1024 X 1024 1 353.49 353.49 353.49 353.49 0.00 0.00 0.00 0.00
1st 1024 X 1024 2 201.50 236.60 178.40 185.60 5.18 5.87 22.99 50.52
1st 1024 X 1024 4 108.10 132.40 89.25 97.03 3.55 5.98 18.84 39.01
1st 1024 X 1024 8 52.80 99.94 39.00 60.36 2.11 11.74 13.77 55.43
1st 1024 X 1024 16 44.00 135.20 18.97 33.84 1.24 27.30 14.57 106.50
1st 1024 X 1024 32 63.62 675.40 10.02 19.33 0.89 161.70 51.77 660.40
2nd 1024 X 1024 1 202.79 202.79 202.79 202.79 0.00 0.00 0.00 0.00
2nd 1024 X 1024 2 98.23 145.70 83.73 123.10 3.85 6.01 14.43 22.20
2nd 1024 X 1024 4 53.95 86.24 42.32 63.94 2.96 6.42 11.61 23.05
2nd 1024 X 1024 8 53.24 311.50 21.46 35.84 1.43 226.90 18.76 280.20
2nd 1024 X 1024 16 15.16 45.14 11.48 21.05 0.82 7.04 3.37 28.66
2nd 1024 X 1024 32 10.34 147.50 6.55 12.26 0.56 44.95 3.45 136.70
3rd 1024 X 1024 1 257.06 257.06 257.06 257.06 0.00 0.00 0.00 0.00
3rd 1024 X 1024 2 156.70 158.50 126.20 135.00 3.76 5.64 21.55 31.95
3rd 1024 X 1024 4 86.30 124.30 64.99 69.90 2.60 6.41 21.09 57.82
3rd 1024 X 1024 8 50.82 62.84 31.41 38.28 1.98 5.74 14.83 31.39
3rd 1024 X 1024 16 24.69 40.27 14.05 24.34 1.01 3.98 10.00 20.19
3rd 1024 X 1024 32 22.98 101.10 7.25 13.77 0.57 48.18 11.49 93.07

Table A .11. Recursive division results using rasterization with blunt data.

Bibliography

[1] Challinger, J. Parallel Volume Rendering for Curvilinear Volumes. In Pro
ceedings of the Scalable High Performance Computing Conference (1992),
IEEE Computer Society Press, pp. 14-21.

[2] Challinger, J. Scalable Parallel Volume Raycasting for Nonrectilinear
Computational Grids. In Proceedings of the Parallel Rendering Sympo
sium (1993), IEEE Computer Society Press, pp. 81-88.

[3] Committee, 1993 Parallel Rendering Symposium Proceedings. ACM Press,
(1993).

[4] Corrie, B., and Mackerras, P. Parallel Volume Rendering and Data Coher
ence. In Proceedings of the Parallel Rendering Symposium (1993), IEEE
Computer Society Press, pp. 23-26.

[5] Dani, S., Tohline, J. E., Waggenspack, W. N., and Thompson, D. E.
Parallel Rendering of Curvilinear Volume Data. Computers and Graphics
18, 3 (1994), pp. 363-372.

[6] Elvins, T. T. Volume Rendering on a Distributed Memory Parallel Com
puter. In Visualization ’92 (1992), IEEE, pp. 93-98.

[7] Elvins, T. T. A Survey of Algorithms for Volume Visualization. Computer
Graphics 26, 3 (1992), pp. 194-201.

[8] Garrity, M. P. Raytracing Irregular Volume Data. Computer Graphics 24,
5 (1990), pp. 35-40. In Proceedings of San Diego Workshop on Volume
Visualization.

[9] Giertsen, C. Volume Visualization of Sparse Irregular Meshes. IEEE Com
puter Graphics and Applications 12, 2 (1992), pp. 40-48.

[10] Hearn, D., and Baker, M. P. Computer Graphics. Prentice-Hall Interna
tional, (1986).

66

BIBLIOGRAPHY 67

[11] Hsu, W. M. Segmented Ray Casting For Data Parallel Volume Render
ing. In Proceedings of the Parallel Rendering Symposium (1993), IEEE
Computer Society Press, pp. 7-14.

[12] İşler, V., Aykanat, C., and Özgüç, B. An Efficient Parallel Spatial Subdi
vision Algorithm for Parallel Ray Tracing Complex Scenes. In Proceedings
of the 1st Bilkent Computer Graphics Conference on Advanced Techniques
in Animation, Rendering, and Visualization (1993), IEEE, pp. 121-135.

[13] Kaufman, A. E., Lorensen, W. E., and Yagel, R. Volume Visualization
Algorithms and Applications. Visualization 1993, Tutorial 9, (1993).

[11] Koyamada, K. Fast Traversal of Irregular Volumes. In Visual Computing
- Integrated Computer Graphics and Computer Vision, T. L. Kunii, Ed.
Springer Verlag, (1992), pp. 295-312.

[15] Levoy, M. Display of Surfaces From Volume Data. IEEE Computer Graph
ics and Applications 8, 3 (1988), pp. 29-37.

[16] Levoy, M. Design for a Real-Time High-Quality Volume Rendering Work
station. In Proceedings of the Chapel Hill Workshop on Volume Visu
alization (1989), Department of Computer Science, University of North
Carolina at Chapel Hill, pp. 85-92.

[17] Levoy, M. Efficient Ray Tracing of Volume Data. ACM Transactions on
Graphics 9, 3 (1990), pp. 245-261.

[18] Lorensen, W. E., and Cline, H. E. Marching Cubes: A High Resolution
3D Surface Construction Algorithm. Computer Graphics 21, 4 (1987), pp.
163-169.

[19] Ma, K., and Painter, J. S. Parallel Volume Visualization on Workstations.
Computers and Graphics 17, 1 (1993), pp. 31-37.

[20] Palamidese, P. Scientific Visualization (Advanced Software Techniques).
Ellis Horwood Workshop Series, (1993).

[21] Rogers, D. F. Procedural Elements for Computer Graphics. McGraw-Hill
Book Company, (1985).

[22] Sabella, P. A Rendering Algorithm for Visualizing 3D Scalar Fields. Com
puter Graphics 22, 4 (1988), pp. 51-58. Proceedings of SIGGRAPH’88.

BIBLIOGRAPHY 68

[23] Shirley, R , and Tuchman, A. A Polygonal Approximation to Direct Scalar
Volume Rendering. Computer Graphics 24, 5 (1990), pp. 63-70. Proceed
ings of San Diego Workshop on Volume Visualization.

[24] Theoharis, T. Algorithms for Parallel Polygon Rendering. Springer-Verlag,
(1989).

[25] Upson, C., and Keeler, M. VBUFFER: Visible Volume Rendering. Com
puter Graphics 22, 4 (1988), pp. 59-64. Proceedings of SIGGRAPH ’88.

[26] Van Gelder, A., and Wilhelms, J. Rapid Exploration of Curvilinear Grids
Using Direct Volume Rendering, pp. 70-77. In Proceedings of Visualization
’93 (1993), IEEE.

[27] Watt, A. Fundamentals of Three-Dimensional Computer Graphics.
Addison-Wesley Publishers, (1989).

[28] Westover, L. Footprint Evaluation for Volume Rendering. Computer
Graphics 24, 4 (1990), pp. 367-376. Proceedings of SIGGRAPH ’90.

[29] Wilhelms, J., Challinger, J., Alper, N., Ramamoorthy, S. and Vaziri, A.
Direct Volume Rendering of Curvilinear Volumes. Computer Graphics 24,
5 (1990), pp. 41-47. Proceedings of San Diego Workshop on Volume Visu
alization.

[30] Wilhelms, J. and Van Gelder, A. A Coherent Projection Approach for
Direct Volume Rendering. Computer Graphics 25, 4 (1991), pp. 275-284.
Proceedings of SIGGRAPH ’91.

[31] Williams, P. L. Visibility Ordering Meshed Polyhedra. ACM Transactions
on Graphics 11, 2 (1992), pp. 103-126.

