
7 / / ' ¿

Г

5 < 9 5 *

. Г 3 6  

/ S 3 S

;Г, ,1:. 'i f  3 Ψ  |i t
ѴУ t , '̂*,  ̂  ̂ -.̂  'j
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ABSTRACT

COMPARISON OF IMAGE SPACE SUBDIVISION 
ALGORITHMS FOR PARALLEL VOLUME

RENDERING

Egemen Tanin
M .S. in Computer Engineering and Information Science 

Advisor: Assoc. Prof. Cevdet Aykanat 
July, 1995

In many scientific applications, results are presented as unstructured volumet
ric data sets. Direct Volume Rendering (DVR) is a powerful way of visualizing 
these volumetric data sets. However, it involves intensive computations. In 
addition, most of the volumetric data sets also require huge memories. Hence, 
DVR is a good candidate for parallelization on distributed memory multicom
puters. Also most of the engineering simulations are done on multicomputers. 
Therefore, visualization of these results on the same architectures where simu
lations are done avoids the overhead of transporting large amount of data. In 
order to visualize unstructured volumetric data sets, the underlying algorithms 
should resolve the point location and the view sort problems of the 3D grid 
points. In this thesis, these problems are solved by using the well-known Scan
line Z-Buffer algorithm. Three image space subdivision algorithms, namely 
horizontal, rectangular, and recursive subdivisions, are utilized to distribute 
the computations evenly among the processors in the rendering phase. The 
main parallel algorithm uses Raycasting approach of DVR to visualize the data 
sets, which is also an image space method. Therefore, the divisions are made 
in order to obtain a set of sub-images. Static task decomposition is used where 
each processor is assigned to a single sub-image. The load balance among the 
processors is achieved by defining the overall work load with in a sub-image by 
using the milestone operations done in the Scanline Z-Buffer algorithm. The 
algorithms are developed in a way that they can handle any kind of polygonal, 
volumetric, and etc. data set where the underlying architecture is also kept
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flexible in many aspects for the sake of generality and portability. The exper
imental performance evaluation of the horizontal, rectangular, and recursive 
subdivision algorithms on an IBM-SP2 system are presented and discussed in 
a comparative way.

Keywords: Direct volume rendering, computer graphics, parallel algorithms, 
distributed memory multicomputers.



ÖZET

E K R A N  U ZAYIN D A BÖLM E YÖ N TE M LE R İN İN  PARALEL  
H ACİM  G Ö R Ü N TÜ LEM E A M A C IY L A  K AR ŞILA ŞTIR M A LI

İNCELENMESİ

Egemen Tanın
Bilgisayar ve Enformatik Mühendisliği, Yüksek Lisans 

Danışman: Doç. Dr. Cevdet Aykanat 
Temmuz, 1995

Birçok mühendislik uygulamalarında, elde edilen sonuçlar yapısal olmayan 
hacimsel veri kümeleri olarak saklanmaktadır. Doğrudan Hacim Görüntüleme 
(DHG) yöntemleri bu amaçla kullanılan en etkin görüntüleme tekniklerinden 
biridir. Ancak bu yöntemler oldukça yoğun işlemler sonucunda istenilen 
görüntüyü elde edebilmekte ve dolayısıyla animasyon ve benzeri uygulamalar 
için oldukça yavaş yöntemler olarak kabul edilmektedirler. Ayrıca hacim
sel veriler çok büyük bilgisayar bellekleri kullanılarak saklanabilmekte ve 
bu açıdanda görüntüleme işlemini oldukça zorlaştırmaktadırlar. Bunlara ek 
olarak uygulamaların çoğunluğu çok işlemcili dağıtık hafızalı bilgisayarlarda 
yapılmaktadır. Dolayısıyla büyük veri kümelerinin görüntüleme amaçlı bil
gisayarlara taşınması büyük sorunlar doğurabilmektedir. İşte bütün bu ne
denlerden dolayıdır ki Paralel-DHG (P-DHG) önemli bir araştırma konusu 
olmuştur. Fakat DHG yöntemlerinin yapısal olmayan hacimlerde uygulan
ması nokta yeri tespiti ve bakış açısı sıralaması adı verilen iki problemin 
çözümünü gerektirmektedir. Bu tezde standart poligon boyama yöntemleri 
kullanılarak bu problemlere çözüm aranmış ve paralelleştirmek amacıyla üç 
yöntem ileri sürülmüştür. Önerilen ana paralel algoritma Işın Düşürme 
yönteminin kullanılması yoluyla görüntüleme yapılması esasını kullanmakta ve 
ileri sürülen bu üç yöntem gibi ekran uzayını baz olarak almaktadır. Dolayısıyla 
iş bölümü ekran uzayının daha küçük ekran parçacıklarına bölünmesi ile 
gerçekleştirilmektedir. İş dağılımı herbir paralel işlemci başına tek bir ekran
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bölümü düşecek şekilde statik dağılım yapılarak gerçekleştirilmiştir. Kul
lanılan poligon boyama yönteminin ana bölümleri göz önüne alınarak bir ekran 
bölümündeki iş hesaplanmış ve mümkün olduğunca işlemcilere eşit i§ dağılımı 
yapılmaya çalışılmıştır. Geliştirilen programlar her türlü sistem ve veri kümesi 
kullanabilecek şekilde genelleştirilmiş ve bu şekilde gerçekleştirilmişlerdir. 
Yatay, dikdörtgenel, ve özyindi adı verilen bölme yöntemlerinin IBM-SP2 sis
teminde karşılaştırmalı incelenmesi yapılmış ve bu tezle birlikte sunulmuştur.

Anahtar Sözcükler: Doğrudan hacim görüntüleme, bilgisayar grafikleri, paralel 
algoritmalar, dağıtık hafızalı çok işlemcili bilgisayarlar.
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Chapter 1

Introduction

In this chapter, a brief introduction to the concepts of Scientific Visualization, 
Volume Rendering, Raycasting, Parallel Volume Rendering, and Distributed 
Memory Multicomputers will be given. In the first section, a general introduc
tion will be presented. In the second section, a short overview of the related 
work will be introduced with some citations to some base papers for this thesis. 
In the third section we will give the motivation for this research, very briefly, 
along with the general organization of this document.

1.1 Overview of the Visualization Process

Scientific Visualization [20] is a developing field of research. As scientists try 
to develop more complex structures and models they feel the need to visualize 
their results on more understandable domains. At this point Scientific Visu
alization algorithms are utilized for detailed interpretation purposes of these 
complex data sets. Volume Rendering or Volume Visualization [7, 13], as a 
branch of Scientific Visualization, is a powerful approach to visualize 3 Di
mensional (3D) scientific data. It uses either standard computer graphics 
techniques like surface rendering [10, 18] or direct rendering techniques like 
ray shooting [17, 27] to visualize 3D scientific data. Direct Volume Rendering 
(DVR) [7, 13] is a technique that creates an image from the three-dimensional 
volumetric data set without generating an intermediate geometrical represen
tation.

Three dimensional volumetric data sets are usually given as a set of data
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points defined on 3D real Cartesian space where each data point represents a 
scalar, vectorial, etc. value about an entity like brain, plane, etc. These data 
points are called the sampling points as they give some sample results about 
the entity to be visualized, like heat, density, etc. The sample points of the vol
ume data may be distributed in two major ways depending on the application. 
In the first way, the sample points are distributed over a structured grid with 
equal or variable spacing along each axis where an implicit interconnectivity 
between the grid points can be found. That is to say they can be given as a 
3D computational virtual array where each neighbor in this array represents 
the same neighbor-ship relation in the 3D Cartesian space. This kind of dis
tribution is common to medical imaging such as CT (Computer Tomography), 
MR (Magnetic Resonance), etc. In the second way. the samples are on an 
unstructured grid where connectivity is given explicitly. That is to say they are 
given as a ID array in computational space and need an explicit information to 
be defined as a 3D array in real Cartesian space. The neighbor-ship relations 
among the data points can only be driven by using this explicit connectivity 
information. This type is common in Computational Fluid Dynamics (CFD) 
and Finite Volume Analysis (FVA) [20].

Usually, volume data is represented by 3D voxels which constitute the 
atomic pieces of the overall data structure in the context of domain mapping. 
These atomic pieces are usually assumed as cubes (e.g. in CT) or tetrahedrals 
(e.g. in FVA) where the corner points are the data (sample) points that repre
sent the entity value at that 3D point. Note that some authors use cell versus 
voxel or sample versus vo.xel interchangeably but we will use them as they are 
defined in this chapter to avoid confusions and inconsistencies.

DVR is a desirable technique to visualize these kind of data sets because of 
the amount of information about the volume contents that can be presented 
in one image. DVR techniques have their drawbacks, however. DVR operates 
on volume data representation that requires a large amount of memory. DVR 
is also very slow since it requires massive computations for each image. So 
interactive speed rates are very hard to achieve.

An important approach to solve the speed and memory problems of volume 
rendering is to employ parallel processing. Furthermore, CFD and FVA simu
lations are usually run on parallel architectures because of simulation time and 
memory constraints. Hence, scientists want to visualize the simulation results 
on the same parallel architectures to avoid the migration of large amount of
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volume data produced as a result of the simulations. Although parallel volume 
rendering of structured grids has been accomplished to a great degree, domain 
mapping problem for unstructured grids is a crucial problem to be solved. This 
thesis investigates the parallelization of rendering of volume data defined on 
unstructured grids.

Volume rendering algorithms can be classified in two main groups. First 
one is the image-space approach and second one is the object-space approach. 
Raycasting which is the basis of this research is an image-space approach and 
mainly uses ray shooting from each pixel of the image plane and sampling 
along its way [15, 17, 22, 25]. Splatting is an example of the object-space 
approach where each sub-element of data is projected onto the image plane 
with some order [23, 25, 28, 30]. In fact both of these approaches use the 
same underlying paradigms where only the information retrieval steps of the 
algorithms differ in terms of execution space (image versus object). Hence, 
from now on we will use DVR instead of Raycasting DVR without loosing 
anything from accuracy and this thesis deals with the parallelization of the 
Raycasting type DVR algorithms [3].

The DVR algorithms use heavy computations and hence require image qual
ity versus speed type optimizations to be advanced in sequential processing, 
while parallel algorithms maintain the image quality in gaining computational 
speed. The algorithms presented with the volume rendering paradigm are too 
compute intensive to be used for real-time or animation applications. Also the 
data sets used in this process are so huge that they can only be represented 
with many megabytes of storage space. Furthermore, scientists usually want 
to see the results of their simulations on the environment that the simulations 
are made (which are typically very powerful parallel architectures), because of 
the large data sizes that can be extremely painful to be ported to other envi
ronment. Especially time-varying datasets need to be visualized, in real-time, 
on a parallel work station where the simulations take place.

1.2 Related Work

Most of the previous work on sequential volume rendering dealt with structured 
grids where computations are carried on regularly distributed three dimensional 
computational structures [15, 17, 22, 25, 28, 30]. Some initial work on other
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types of grids have also recently been introduced for sequential computing 
[8, 9, 14, 23, 26, 29, 31]. In addition to these works, there exists recent parallel 
research mainly concentrated on structured grids [4, 6, 11, 16, 19].

Very recently some parallel methods have been developed for unstructured 
grids [1, 2] which form a basis for this research. On the other hand these 
recent approaches are done on shared memory architectures which does not 
solve many of the problems of volume rendering on distributed memory ar
chitectures. Also although they maintain their scalability with the processor 
size they gradually deviate from the load balance parameters as the number of 
divisions increase.

The usage of polygon rendering algorithms in volumetric domain is intro
duced by [1, 2] and parallel methods for fast rendering algorithms are tried to 
be searched in polygonal spaces. The reason for this is to solve the problem of 
fast sampling point location determination process and view sorting, that is used 
to find the order of polygons to be traversed. These approaches use scattered 
task distribution and hence can only easily be used in shared memory architec
tures. Otherwise huge communication costs will be introduced in distributed 
memory multicomputers along with the great overhead of data duplications.

In addition to these works, some other parallel work has been carried out 
for only restricted topologies like curvilinear grids [5]. Therefore this type of 
approaches loose much from the data type restrictions and hence can not be 
used for general rendering purposes.

1.3 Motivation and Overview of the Thesis

This research presents tools for visualizing volumetric datasets on parallel ar
chitectures where huge memories, high computational capability, and power 
lies. This approach introduces algorithms for MIMD type distributed mem
ory parallel architectures and gives some results on an IBM-SP2 architecture. 
Although initially the algorithms developed are designed for volume rendering 
purposes, then, this parallel volume rendering approach is extended in such a 
way that any kind of data set, structured, unstructured, polygonal, or even hy
brid (computational grids) can be visualized. It makes use of standard polygon 
rendering algorithms like Scanline Z-Buffer Polygon Rendering algorithm and 
tries to distribute the process of volume rendering evenly to all computational
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nodes. The algorithms are mainly developed for real-time animation purposes 
where data flow over the network can be controlled. That is, the incremental 
movement of a view point will gradually change the local data within a pro
cessing element and hence prevent communicating nodes from congestion and 
from any other communication problems. The current results are promising 
and show us that some future work can hopefully give us a better solution. 
Three algorithms are developed that make use of image space subdivision that 
can lead to probable future algorithms for further improvements.

This thesis investigates and compares the parallelization of image-space 
based DVR algorithms on message-passing distributed-memory architectures, 
multicomputers. Multicomputers are very promising architectures for massive 
parallelism because of the nice scalability, fast access by processors to their local 
memories, and simultaneous local communication capability. Parallelization 
on such architectures necessitates the distribution of both computation and 
data to the processors with local memories in such a way that computational 
tasks can be run in parallel, balancing the computational loads of processors 
as much as possible. Communication between processors to exchange partial 
results must also be considered as a crucial part of the parallel algorithm and 
must match the constraints imposed by the interconnection and communication 
structure of the architecture by reducing the extra parallelization overhead of 
the rendering algorithm.

At the first step, a general overview of sequential volume rendering algo
rithms will be presented in the first section of the second chapter. Then our 
sequential approach will be given as a second section in the same chapter. Af
ter this, as a third chapter, we will analyze the parallel algorithm in general, 
deal with the three division heuristics, define the load balancing metrics, and 
finally refine our algorithms for implementation purposes, in this given order. 
As a fourth chapter the experimental results will be given. The first section of 
the fourth chapter will give the general overview of the data sets used and the 
architectures selected. Then as a second section the results will be presented 
in table and graph formats. Finally as our last chapter conclusions about the 
results and this research will be presented.



Chapter 2

Sequential Direct Volume Rendering

In this chapter, a general overview of the DVR approaches will be given along 
with our approach to DVR. In the first section, a general introduction to se
quential DVR can be found. Then in the second section our approach (used in 
the implementations) to sequential DVR will be given.

2.1 Direct Volume Rendering in General

Data type of the input data sets is an important property of the visualiza
tion process. The presentation of the whole type set will be very helpful in 
deeper understanding of the overall process. There are two main types of data, 
structured and unstructured data types. These two main types are divided into 
several other subgroups.

These different data types [13], used in DVR, are given thoroughly in 
Fig. 2.1. Structured data types can be Cartesian, Regular, Rectilinear, or 
Curvilinear. All of these subgroups share the property of having implicit in
terconnectivity information. The first three types are self explanatory but the 
Curvilinear one shows a different property then the others. It may seem curved 
in 3D real Cartesian space but in fact it can easily be represented as a 3D com
putational grid (which is regular in this case) in computational space, this is 
obviously because of the implicit interconnectivity information property. Un
structured data types can be Standard, Irregular, Hybrid, etc. (e.g., B-Spline 
Curves and are beyond the scope of this thesis). These subgroups share the
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Cartesian Regular Rectilinear

STRUCTURED

UNSTRUCTURED

Figure 2.1. Data types used in volume rendering.

property of having explicit interconnectivity. The Hybrid type can be any mix
ture of the above. The Standard type uses tetrahedrals as its atomic particles. 
Irregular type uses polyhedrals as its atomic particles. This thesis deals with 
all of them except the very last type the curved types which is named as Oth
ers. In addition to these, we will try to render all other polygonal data sets 
with our basic algorithm for the sake of generality. This will bring us a great 
flexibility over the other approaches used in DVR media.

A basic Raycasting DVR algorithm shoots rays into the 3D data set, from 
each pixel of the image plane, and tries to extract information from the input 
data. While each ray intersects the data and the atomic particles (voxels) of 
the data it gathers information about the surrounding data grid points (sample 
points). So at the end, this gathered information somehow can be reflected as 
a pixel color, forming the overall image.

When the ray passes through the data, we take samples from the sample 
points (data points) of the data set which is called the (re-)sampling process. 
So by means of this we form a second 3D grid where the connectivity is now 
defined by the rays shot from the screen and the intersections with the voxels. 
Unfortunately these intersections are (again) called sampling points. In fact 
this paradoxal definition hides the main fact, analogy, in the process. When 
scientists try to obtain information from their research subjects they use the 
same process of sampling, like Computer Tomography, they send e.g., ultra
violet rays into their data set (the brain) and take samples from the data set 
forming the input data for the DVR process.
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Figure 2.2. Flow chart of the sampling process.

In general, whatever the underlying data type is, the brute force DVR 
sampling algorithm works as follows as described in Fig. 2.2. From the voxel 
intersections we some how get the colors and the opacity values of the inter
section points (sample points) and then by means of a composition process we 
try to find the pixel color that is to be displayed. The opacity of a sample 
point defines the continuity of the ray, e.g., whether we hit to an opaque or 
transparent object or not. As the data is not defined with faces and polygons, 
but with only corner data points, the opacity combined with sample color plays 
a crucial role in the algorithm. So now we are ready to give the general Ray
casting DVR algorithm for structured grids as it is shown in Fig. 2.3. As it can 
be seen from this figure the overall process is very similar to the Raytracing 
[27] algorithm which is well defined in the domain of computer graphics, except 
that the Raycasting approach uses grid points instead of the polygons.

So the question of how composition of simultaneous intersection (sampling) 
point values (color and opacities) remains still undefined. We take simultaneous 
samples from the data and try to explain the overall result as a simple pixel 
color so we should define a mathematical formula to sum up this array of 
intersection values (in fact two arrays one for opacity and one for color). This 
is explained by a set of formulas as in Eq. 2.1 [17].
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VO XEL

while in DATA do

among the NEIGHBOR VOXELS \

find NEXT VOXEL to VISIT /  

SAMPLE 

COMPOSE 

end while 

plot PIXEL 

end for

Just Type Casting in Structured Data Sets 

Equi-distant Samplings are Done in Structured Data Sets

Figure 2.3. Volume rendering overview.
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Cout — (Cin X Oin) + {C s  X O s X (1 — O in ))  

Oout =  Oin + (O s  X (1 — O in))  

Cout =  Ray Color after sampling in that voxel 

Oout =  Ray Opacity after sampling in that voxel 

Cin =  Ray Color before sampling in that voxel 

Oin =  Ray Opacity before sampling in that voxel

Cs =  Sampling point Color 

Os =  Sampling point Opacity

The set of formulas defining the Composition process. (2 .1)

Initially the color value is set to background and opacity is set to the trans
parency value of that data set and this composition is done from the first to 
the last (or visa versa) intersection of the ray with data (by preserving the 
intersection order). Note that opacity changes between zero and one (floating 
point data) values where one means opaque intersection (e.g., skull) and zero 
means transparent intersection (e.g., glass). The opacity value of the data can 
be varied in order to find the area of interest in the data set. For example, 
a doctor can set the opacity of a skull to zero to make the skull transparent 
to the eye and see the brain inside it. This property in fact brings high-level 
of flexibility to the DVR algorithms in the visualization domain. Also color 
values should be selected carefully to keep a good diversity along the ray so 
that brain e.g., can be seen as gray and skull e.g., can be seen as white. The 
choice of these values is beyond the scope of this thesis that also needs further 
explanation to be understood thoroughly. But at least we can close one gap 
in this explanation, how do we obtain the color or the opacity of a data point 
from its data value (e.g., heat). This is another topic of research that is called 
the mapping function problem. There are various algorithms for this problem 
but (again) they are beyond the scope of this thesis. We will just state that a 
user defined function can be used, e.g., to obtain bright red from a high value 
of heat defined on a point or dark blue from a low value of heat defined on a 
grid point. After the whole data set is traversed the final ray color is equal to 
the pixel color itself. Then, this process is repeated for all of the pixels in the 
image.

Whatever the data type is, the underlying algorithm is similar. The only
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for each PIXEL

Figure 2.4. Overview of the volume rendering for unstructured data sets (2D 
illustration).

difference is in the traversal step. A similar algorithm for unstructured data 
types is given in Fig. 2.4.

Note that finding the next intersected voxel in unstructured data sets is 
more complex. The connectivity of the data is not implicit and an exhaustive 
search is need to be done. The next sampling point and the preceding sampling 
points should be found after various floating point operations. This problem 
is formally called the point location problem. Similarly the operation should 
be done with respect to depth which is a non-commutative but an associative 
process, this is called the view sort problem. These two problems are solved 
easily in structured domains as the real 3D space and the virtual computational 
space (where the floating operations done) overlaps (so the overall algorithm 
is easily stated for the structured domains as it is shown in Fig. 2.3). The only 
operation done in structured domains is type casting from floating 3D space 
to 3D array of voxels.
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for each PIXEL

find FIRST VOXEL 

while in DATA do

among the NEIGHBOR VOXELS 

find NEXT VOXEL to VISIT 

SAMPLE

COMPOSE 
end while 

plot PDCEL 

end for

Figure 2.5. The general DVR algorithm.

However the overall algorithm is similar in both domains and can be sim
plified to one main algorithm. If we generalize the algorithm for all data types 
a general Raycasting DVR looks like Fig. 2.5.

Finally we should know how the samples are taken from the data set. It 
is defined just as an array of inverse distance interpolations. Some other ap
proaches like tri-linear, constant, etc. can be used but all of these approaches 
use the same analogy used in inverse distance one. That is to say if a tetra
hedral (simple four sided) is used as our input atomic data type (note that 
all type of data can be tetrahedralized) we just take four corner points of the 
tetrahedral and find the contributions of the corner values with respect to their 
distances (inversely) to the sampling point. So if we take a sample on one of 
the corners we will have zero effect from all the other corner points but the 
corner point that we are on itself. Or if we take samples in the mid-point of a 
voxel we will have equal contributions from the corner points. So the formulas 
for inverse distance interpolation between two corner points and a sampling 
point are given in Eq. 2.2, that is to say just for ID. The same equations, can 
be found easily, in a similar way, for 2D and 3D cases as it is shown in Eq. 2.3 
and in Eq. 2.4, respectively. These equations for ID, 2D, and 3D interpolations 
are explained in Fig. 2.6 in more detail as A, B, and C, respectively.
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Dp 1 Dp2
■c----------------------------> - -c -------- >·

Vpl Vs Vp2
ID

2D

3D

Figure 2.6. The interpolation process for different dimensions.

K = ((D,i X Vp2) + (D,2 X V,гMDpı + Dp2)
Vs =  Sampled Value 

Vpl =  Value at corner 1 

Vp2 =  Value at corner 2 

Dpi — Distance of corner 1 to the sampling point 

Dp2 =  Distance of corner 2 to the sampling point

The inverse distance Interpolation process for ID. (2.2)
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Dpi =

Dp2 =
Dpz =

K — {{Dpi X Dp2 X VpT) + 
{ D p i  X Z)p3 X Vp2) +

{Dp2 X Dpz X V p i) ) l

{ { D p i  X /)p2) +  

{D p i  X Zips) +  

{Dp2 X Dps))

Vpi =  Value at corner 1 

l-p2 =  Value at corner 2 

1̂ 3 = Value at corner 3 

Distance of corner 1 to the sampling point 

Distance of corner 2 to the sampling point 

Distance of corner 3 to the sampling point

The inverse distance Interpolation process for 2D. (2.3)

Dpi

Dp2

Dp3

Vs = ((Dpi X Dp2 X Dp3 X Vpi) + 

{Dpi X Dp2 X Dpi X Vp3̂  T 

(Dpi X Dp3 X Dpi X Vp2) + 

(Dp2 X Dp3 X Dpi X Vpi))l

{{Dpi X Dp2 X Dp3) +

(Dpi X Dp2 X Dpi) + 

(Dpi X Dp3 X D p i )  +  

(Dp2 X Dp3 X Dp4)) 

Vpi =  Value at corner 1 

Vp2 =  Value at corner 2 

Vp3 =  Value at corner 3 

Vpi =  Value at corner 4 

Distance of corner 1 to the sampling point 

Distance of corner 2 to the sampling point 

Distance of corner 3 to the sampling point
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Dp4 =  Distance of corner 4 to the sampling point

The inverse distance Interpolation process for 3D. (2.4)

The corner points of a voxel in general represents a density, heat, or any 
other scalar value. Vectorial or multi-dimensional corner values are beyond the 
scope of this thesis where thoroughly different approaches are used.

In general samples are taken in the middle of the voxel for unstructured 
grids. But for structured ones equi-distant samplings can be taken. In addition 
to these double sampling, multiple ray shooting and other heuristics can be 
used to refine the images obtained. But all of these approaches use the same 
underlying paradigms. So if we use mid-point interpolation scheme we find 
the entrance and exit points of the ray to the voxel, find its mid-point, and do 
the sampling at that point. If equi-distant one is used samples are taken at 
regular distances whatever the intersections with voxels of the data are. The 
crucial point here is to identify the voxel that we are in, in order to find the 
right corner points for interpolation. If e.g. densities are interpolated then 
we should convert these sampling values to color and opacities (on the fly) by 
using some mapping function. But if color and opacity values are interpolated 
then a preprocessing is needed to find the color and the opacity of each grid 
point. The explanation for this process can be derived from Fig. 2.2. There are 
various different approaches used at this point by the authors in this field but 
they only effect the image quality with out effecting the underlying rendering 
algorithm. The processing time versus memory trade off always makes one 
method preferable to other in sequential type of optimizations. So now we are 
ready to introduce our approach with this amount of initial knowledge in the 
proceeding sections.

2.2 The Proposed Sequential Approach

The high quality of the images produced by the Raycasting approach makes it 
a desirable choice for DVR. Although many projection algorithms run faster 
than the Raycasting algorithm they show us various difficulties especially in 
the parallelization step because of the nature of the algorithms. For example 
in the projection type algorithms (object-space approaches) the projections 
should be done in either back to front or front to back order to preserve the
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data integrity in the final image. .Also object space divisions of these algorithms 
might need intensive pixel merging operations as a post processing. But nev
ertheless some ideas can be borrowed and inserted into Raycasting from the 
projection methods.

In this approach a ray is shot from each pixel and traversed throughout 
the whole volume to determine the list of voxel intersections. Each voxel in
tersection means an entry/exit point of the ray with the voxel. For each voxel 
intersection, a sampling is computed at the midpoint of the ray between its 
entry and exit points by interpolating the scalar values at the grid points of 
the intersected voxel. The voxel intersections should be determined in a prede
termined order (front-to-back in our case) for the composition of the sampled 
color and the opacity values. Ray shooting, sampling, and finally composi
tion steps require the detection of the position of the sampling point in the 
whole data and finding the next (therefore previous) voxels (sub-volumes) to 
be intersected with the ray for composition, in the well-known Raycasting al
gorithm [17]. These two operations, in addition to the heavy computations 
introduced by the samplings and compositions, bring tremendous amount of 
computation to the process of Raycasting. Therefore finding the consecutive 
intersections and the locations of the sampling points should be done efficiently, 
which we refer as efficient point location operation and view sorting.

In this work, we adopt the basic ideas in the standard polygon rendering 
algorithms to resolve the point location and the view sorting problems. This 
idea which is introduced previously by [1] if cleverly used can be very useful 
in the parallelization of the overall process. For example, well-known parallel 
polygon rendering [24] approaches can be applied to the volume rendering 
domain. Therefore, the overall algorithm needs polygons to be rendered. This 
is easily done by just converting the data set into a polygonal form. That is to 
say connecting data points in a way that we will have a set of polygons in the 
final data set. This operation once completed can be saved and used forever. 
For example any kind of tetrahedral or hexahedral sub-volume can easily be 
converted to a set of triangles where any three points define a single triangle 
which is obviously planar, more advanced algorithms also exist for triangulating 
a given volumetric data set [23]. Hence, from now on we will mainly assume 
triangles as our inputs for the sake of simplicity. Moreover, this give us the 
power of dealing with any kind of data sets whatever the underlying type is.
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(Start)

Figure 2.7. Flow chart of our sequential algorithm.

So we can define our algorithm, as a sequential process, Scanline-Based V- 
Buffer algorithm. The proposed algorithm is similar to the standard Scanline 
Z-Buffer algorithm in the rasterization phase. It differs in the rendering phase 
as follows. In our algorithm, each pixel keeps a linked list of polygons for 
compositing and finding a final pixel color value. The flowchart for the proposed 
algorithm is given in Fig. 2.7.

As seen in Fig. 2.8, through out the algorithm we move from scanline to 
scanline and from pixel to pixel incrementally by updating a single linked list 
of polygons, and therefore saving from storage space. When a new pixel is 
entered the current linked list is updated in an incremental fashion and some 
deletion and insertions to the linked list of active polygons occur. As we know
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Figure 2.8. Overview of our sequential process.

the location of each intersection of the active polygon with the ray and as the 
list is built in an incremental fashion we can say that we just have an array 
of sorted intersections with a three dimensional line and a set of planes. So 
for a single pixel, after the intersections are found we can go through the list 
and take samples between each pair of triangles and composite it into the pixel 
color. At this point, color and opacity calculations are just done as defined in 
[8]. Here the corner points of the triangles give us the necessary information, 
e.g. speed, and these values are used in interpolations.

Here, and hereafter, we assume that the data sets used are described as a 
set of distinct triangles which are converted from a set of tetrahedrals or any 
other data set type. So we can see that many of our problems like sorting and 
point location are solved by this approach. Here, the two consecutive triangles 
in the list define a set of points that can range from .3 to 6. If the two triangles 
share an edge this number is obviously 4, else if two (apart) external faces of 
the whole data set are used this is 6 and the sampling is prohibited. If this 
number is 5, only a point is shared by the two triangles. So as a result, except 
external faces, two consecutive triangles can be used for the determination of 
the sampling value. This is just done by taking the end points of the triangle, 
finding the midpoint of the two intersections and taking the inverse distance
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interpolation of the end point data values (at this point tri-linear interpolation 
can also be used). Finally via any mapping function the sampling point color 
and opacity can be derived from this interpolated data value [15]. But note 
that all intersection tests and interpolations use the coherency introduced by 
the Scanline Z-Buffer algorithm.

In fact many other polygon rendering algorithms can be used for this pur
pose where this one seems to be the best because of its storage and coherence 
advantages. This algorithm although needs repetitive renderings for different 
viewing parameters, can be very useful, if we consider the fact that after each 
rendering operation many transfer (mapping) functions can be tried on the 
same view of the data set, or different properties can be viewed for the same 
viewing values of the data. Also some time-varying data sets can be animated 
using the same view of the data but by just interpolating different data values. 
In addition to these all of the remaining methods (as it is the case in projec
tion methods) have the same problem of view parameter dependency. Apart 
from these view point changes, if done incrementally, as it is the case in many 
animations, will be less effective on the position of the data with respect to 
eye.

So we are ready to see two outputs of two sample runs of two volume ren- 
derers in the following two pages to increase our knowledge about the outcome 
of a volume rendering program. The first one is a CT (Computer Tomography) 
output shown in Fig. 2.9. The second one is a CFD (Computational Fluid Dy
namics) output displayed in Fig. 2.10. So now, we are ready to go on with the 
parallel algorithms keeping in mind these two images for the parallel versions.
It would be useful to replace generic volumes in the following chapters with 
these images to increase understandability.
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Figure 2.9. Data from University of North Carolina Chapel Hill. A Computer 
Tomography image of a cadaver head.
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Figure 2.10. Data from NAS A-Ames Research Center. An airflow analysis 
workshop on a blunt fin rising from a plate.



Chapter 3

Parallel Direct Volume Rendering

In this chapter, our parallel approaches to DVR will be given. In the first 
section our parallel algorithm, in general, will be introduced. In the second 
section three different subdivision heuristics will be given. Then, load balancing 
metrics will be analyzed in detail in the third section. Finally, in the last 
section, some refinements about the algorithms developed will be introduced.

3.1 Our Parallel Implementations in General

The parallel implementation of volume rendering on MIMD distributed mem
ory parallel machines requires the partitioning and mapping of data and com
putations to the processors of the parallel architecture. The partitioning and 
mapping should be done in a way to achieve maximum processor utilization. 
Computational load balancing is a crucial issue in parallel processing to achieve 
maximum processor utilization. The computational work load should be dis
tributed as evenly as possible among the processors. Three load balancing 
heuristics are described and discussed to achieve better distribution of load 
among the processors in this chapter.

The parallel algorithm presented in this section is an image-space parallel 
algorithm. In image-space parallelism, the image plane is partitioned among 
the processors. After this partitioning step, each processors runs a sequential 
volume rendering algorithm to generate the image for its local image plane 
sections. Each processor needs the volume data which is covered by the view

22
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1. Receive a portion of global volume data and perform viewing trans
formations.

2. Partition the image-space and find the assigned image partition.
3. Exchange some of the local volume data according to the image- 

space partition among the processors.

4. Perform volume rendering on the local image partition using the 
new local volume data.

Figure 3.1. Fundamental Parallel Algorithm.

volume of the local image plane sections. Therefore, the volume data is parti
tioned and distributed to the processors according to partitioning of the image 
plane as well. The main steps of the parallel algorithm is given in Fig. 3.1.

At the first step of the algorithm, the global volume data is partitioned and 
distributed among the processors. Each processor receives an equal amount of 
volume data and performs viewing transformations. Note that the volume data 
for unstructured volumes is composed of tetrahedral voxels and each tetrahe
dral voxel data is made up of a four triangles. Also note that all the data types 
presented in the preceding sections can be tetrahedralized and every tetrahe
dral data set can be triangularized. So we can have a set of triangles at the 
end of these conversions which can be saved and used forever instead of the 
original data, after it has been created. There are various algorithms for this 
process which can be used as an early-pre-processing for the main algorithm 
[23]. Hence, we can generalize our algorithm to all data sets that are given as 
a set of polygons. Besides, no connectivity information is needed as the under
lying sequential algorithm is the Scanline Z-Buffer algorithm which makes the 
parallelization operation much easier than expected as it just needs a set of 
unconnected polygons to be rendered. These assumptions and generalizations 
makes the algorithm a much more flexible one among its rivals. Therefore, 
each processor receives a distinct set of T/P triangles, where T is the number 
of triangles and P  is the number of processors.

At step 2, the image space is partitioned into P  rectangular regions and 
each region is assigned to a processor. The partitioning of the image space 
should be done adequately in order to achieve an even distribution of load 
among the processors. So we can say that our parallelization approach is a
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static one which maps every generated subtask to a single processor and each 
processor takes only a single subtask, all of which forms the overall job to be 
done. Hence, as it can also be seen from the fundamental algorithm only a 
preprocessing step for job distribution is needed (introduced as an overhead to 
the rendering process with the data exchange operation) but not a post-one 
as the partition does not divide the 3rd dimension of the volumetric data set. 
Three strategies to achieve this goal is presented and discussed in the following 
sections. The triangle set received at the first step is utilized to perform an 
adaptive division of image plane.

After the partitioning and assignment of the image plane, each processor 
needs triangles which fall into the view volume of the local image plane par
tition. The local triangle data set may contain triangles that belong to image 
plane partitions assigned to other processors. Similarly, some of the triangles 
that are covered by the view volume of local image plane section may reside 
in the local memories of other processors. Therefore, at step 3, some of the 
triangles -  hence, volume data -  should be exchanged among the processors. 
Each processor finds the image plane region a triangle belongs to by performing 
projection and clipping operations and sends the triangle to the corresponding 
processor and receives triangles that fall into its local image plane region. The 
pseudo-code for this exchange operation is given in Fig. 3.2. Note that, the 
triangles at the boundaries of image plane partitions will be shared by two or 
more processors. Hence, such triangles may be transmitted more than once 
and will be duplicated after each exchange operation.

At step 4, each processor runs the sequential volume rendering algorithm 
for its local image plane section using new local volume data (triangle data). 
Also no post-processing is needed in this type of parallelizations as the final 
sub-images can directly be concatenated to obtain the overall final image.

3.2 Subdivision Heuristics

In this section, three different subdivision heuristics will be introduced. In 
the first subsection, the horizontal, in the second subsection the rectangular, 
and in the third subsection the recursive heuristics will be given. The exact 
definition of the division metrics will be delayed until the next section for 
the sake of abstraction and then after the development of these heuristics a
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EXCHANGE_DATA
for each processor p do

for each local triangle t do
Project and clip triangle to the image plane assigned to p 
if triangle is in the image plane of p then 

Put triangle into send array 
endfor
Transmit send array to processor p 
Receive triangle information from some other processor 
Store the received triangle information to the local array 

endfor
END_EXCHANGE_DATA

Figure 3.2. The pseudo-code for the triangle exchange operation.

compact formalization of the metrics will be given as a separate main section. 
Similar methods for parallel Raytracing is used in [12].

3.2.1 Horizontal Heuristic

We have stated that there are three different heuristics for the division scheme. 
All of these three heuristics divide the image plane into smaller rectangular 
regions first of which is named as the horizontal subdivision heuristic. In this 
scheme, the image plane is divided into P  horizontal bands which are composed 
of consecutive scanlines on the image plane. In this way, intra-scanline coher
ence is preserved to some extent while disturbing the inter-scanline coherency. 
The amount of work load in each region is given by the sum of the work load at 
each scanline in that region. Hence, the atomic process for this type of subdi
vision scheme is a single scanline which can not be divided into smaller tasks. 
So the division alternatives for a given image plane is the number of scanlines 
for that plane which obviously restricts the division flexibility. However, this 
scheme suffers from unscalability since the nymber of atomic tasks is limited 
by the number of scanlines in the image plane. The algorithm for horizontal 
division scheme is given in Fig. 3.3. An example of horizontal division scheme 
for eight processors is given in Fig. 3.4.

In steps 1-3 of the algorithm, each processor calculates the local work load
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1. Take a local triangle.

2. Project the bounding box of the triangle onto the image plane and 
find the y-span of the projected bounding box.

3. Update the work load at each scanline covered by the y-span of the 
projected bounding box by updating the corresponding entries of 
SW LA.

4. Repeat steps 1-3 for all local triangles.
5. Perform a global sum operation on SWLA  to find the global work 

load at each scanline.

6. Perform a prefix sum on SWLA. After the prefix sum operation 
SWLA[s] gives the work load of region between scanlines 1 and s, 
including s.

7. Last entry of the SW LA  gives the total work load on the im
age plane. Divide this value to the number of processors to find 
the average amount of work for each processor. Set AvrgLd =  
SW LA[N ]IP, where N  is the number of scanlines and P  is the 
number of processors.

8. Call FIND J)IVISI0N(P,5'lTi/A) procedure (given in Fig. 3.5).

Figure 3.3. Parallel algorithm for horizontal division scheme.

at each scanline using local triangle information, and stores the values in an 
array, called Scanline Work Load Array {SWLA)., of size equal to the number 
of scanlines on the image plane. Each entry of this array corresponds to a 
scanline on the image plane. The work load metrics used for each scanline 
are the total number of triangles intersected by the scanline, the total length 
of x-spans generated for each triangle on this scanline, and the total number 
of x-spans for that scanline (each constitutes an atomic job that has relative 
work load proportions with respect to each other in the sequential rendering 
process, e.g., initialization of a tringle might be two times expensive than a 
single span). Each of these metrics and the overall load balancing metric logic 
will be discussed in the following sections in more detail. The y-span of each 
triangle gives the number of scanlines covered by the triangle. Hence, the 
number of triangles at each scanline can easily be calculated using y-span of 
each triangle. Similarly the number of x-spans for a scanline can be found 
easily. However, the length of the x-span at each individual scanline requires 
rasterizing edges of the triangle. This computational overhead can be decreased
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Figure 3.4. An example of horizontal division for eight processors. The regions 
are separated by dotted lines.

by using the bounding box of the triangle instead of triangle itself. The x-span 
length at each scanline is approximated by the x-span of the bounding box. 
Since the bounding box of a triangle is a rectangle, the x-span lengths will be 
the same at each scanline. Therefore, the computational overhead of rasterizing 
edges of the triangle is avoided. The area of the bounding box is a close 
approximation to the actual projection area of small triangles. Hence, the x- 
span of the bounding box is a good approximation to the actual x-span lengths 
of such triangles. However, for large triangles, the actual areas of two triangles 
that have the same bounding box area and the same y-span length may be 
substantially different. Hence, for such triangles, bounding box approximation 
may introduce large errors. These errors can be decreased by calculating the 
actual area of triangles whose area is larger than a predefined threshold value. 
Then, the actual area calculated is used to create a new bounding box of area 
equal to actual area of the triangle and of the same y-span. The x-span of new 
bounding box is calculated as x-span =  Area / y-span, and this new x-span 
length is used to update work load at each scanline.

After step 4, entries of SWLA  contain the local work load at each scanline. 
Since the global work load is required to obtain the partitioning, a global sum 
operation is performed at step 5. This global sum operation can be done in
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Ioq2 {P) steps using the communication structure of the IBM-SP2. At the end 
of this step, each processor has global work load distribution in y-dimension of 
the image plane.

At step 6, a prefix sum is performed on the SWLA  so that SWLA[s] — 
SWLA[i\ gives the work load of horizontal band bounded by scanlines / +  1 and 
s. Note that, SWLA[N] gives the total work load on the image plane, where 
N is the total number of scanlines. Average work load (AvrgLd) is calculated 
by dividing this value to the number of processors at step 7.

At step 8, the partitioning of the image plane is performed in procedure 
FINDJDIVISION. The pseudo-code algorithm for this procedure is given in 
Fig. 3.5. This procedure finds the partitioning of image plane using the work 
load values stored in WLA. Two arrays of size R is allocated, where R  is 
the number of regions to be generated. Note that, the value of R is equal 
to the number of processors in horizontal division scheme. The array called 
region.start stores the starting scanline (lower boundary) of the image plane 
region and the array called region-end stores the ending scanline (upper bound
ary) of the same region. The algorithm starts from first scanline setting s =  1 
and e =  1 forming a region of one scanline, where s represents the lower bound
ary of a region, and e represents the upper boundary of a region. Then, this 
region is expanded by incrementing e until WLA[e] is larger than average load. 
The upper boundary of the region is determined by comparing the work load 
values at entries e — 1 and e to the average load and choosing the one closest 
to the average load as the upper boundary of the horizontal band. After this 
region is formed, algorithm repeats the same process for a new region until im
age plane is divided into R horizontal sections. Note that, the lower boundary 
of the new region is set to s =  e -f 1.

So we have found the necessary regions for sequential rendering where after 
the data exchange operation each processor runs a sequential rendering on its 
local data set. This division scheme is refined gradually for the sake of efficiency 
and good load balance purposes where these refinements along with the toad 
balancing metrics will be more precisely defined in the following sections.
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FIND_DIVISION(/?,iy¿/4)

e =  1
p =  1
k =  AvrgLd 
for p = 1 to do

while AvrgLd < WLA[e] do 
e =  e +  1 

endwhile
if {{AvrgLd — WLA[e — 1]) < {WLA[e] — AvrgLd)) then 

rtgion.start[p] =  5 
region-end[p] =  e — 1 
5 = e 

else
region-start\p] — s 
region-end[p] =  e 
e =  e + 1 
5 =  e 

endif
AvrgLd = k + WLA[s — 1] 

endfor
END_FIND_DIVISION

Figure 3.5. Pseudo-code for FIND JDIVISION procedure. The input parameter 
R represents the number of horizontal regions and W LA  represents the work 
load array.

3.2.2 Rectangular Heuristic

In the horizontal division scheme, the image plane is divided into horizon
tal bands of consecutive scanlines by using the work load distribution in y- 
dimension of the image plane. Therefore, horizontal division scheme partitions 
the image plane in one dimension only, namely y-dimension. Due to this re
striction, the scalability of horizontal division scheme is limited by the number 
of scanlines. In addition, if there are large differences in the work loads of 
scanlines, the load imbalance between regions may still be large. These dis
advantages can be avoided to some extent by partitioning the image plane in 
both dimensions into rectangular regions.
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In rectangular division scheme, processors are organized into a two dimen
sional M xK  mesh, thus forming M  clusters of K  processors in each cluster. 
Then, the image plane is divided into M  horizontal bands. After partitioning 
image plane into M  regions, each processors calculates the work load distribu
tion in .x-dimension of each region. Then, each region is divided into K  vertical 
bands of consecutive vertical scanlines in x-dimension. The algorithm for rect
angular division scheme is given in Fig. 3.6. Each processor keeps a scanline 
work load array {SW LA) similar to the one in horizontal division scheme to 
find M  horizontal bands. In addition, each processor allocates M  x-dimension 
work load arrays {X W L A ) to find K  vertical divisions in each horizontal sec
tion of the image plane. Each XWLA[v]^ for u =  1, ...M, is of size equal to the 
number of vertical scanlines in the x-dimension of the image plane. Each entry 
XWLA\v][j]^ for V =  1,...M  and j  =  l,...,a: — dimension, corresponds to a 
vertical scanline j  in region belonging to cluster v. An example of rectangular 
division scheme for eight processors is illustrated in Fig. 3.7.

In this scheme, after M  horizontal partitions are found, each processor 
treats each horizontal region as a new image plane rotated 90 degrees. Hence, 
the number of scanlines in each new image plane is equal to the number of 
vertical scanlines in x-dimension of the global image plane. Each processor 
projects the bounding boxes of local triangles to find the work load distribution 
in each horizontal band. If a bounding boxes spans two or more horizontal 
regions it is divided into segments and work load distribution of each region 
is updated according to the corresponding segment. After this step, a global 
sum operation is performed to obtain the global work load distribution in x- 
dimension in each region. Afterwards, each processor finds vertical partitioning 
in the horizontal region of its cluster using FIND-DIVISION procedure with 
input parameters R =  K  and W LA  =  XW LA[m yjduster].

Each processor needs the vertical division information in other clusters so 
that it can find the rectangular region that the projection of a local triangle 
overlaps. Therefore, at the last step, a global concatenate operation, on the 
vertical divisions in each cluster, is performed so that each processor has the 
information about vertical divisions in other clusters. This global operation 
can be done in log2 {M ) steps.
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1. Partition image plane into M  regions using horizontal division 
scheme.

2. Calculate the work load distribution at each horizontal region using 
local triangle information.

(a) Project bounding boxes of each triangle.
(b) Partition the bounding box of the triangle if it covers two 

or more horizontal regions.
(c) Update the corresponding entries of X W L A  for each re

gion covered by the bounding box. Use the partitions of 
the bounding box data to update entries as in the previous 
scheme.

3. Perform global sum operation on the X W  LA for each region.
4. Perform prefix sum operation on the XW LA[m yjdusttr], where 

my -duster is the cluster that processor belongs.
5. Last entry of the XW LA[m y-duster] gives the total work load in 

the horizontal region of cluster my-duster. Divide this value to the 
number of processors in my -duster to find the average amount of 
work load. Set AvrgLd =  X W LA [m y-duster][L\lPwhere L is the 
number of vertical scanlines in x-dimension.

6. Call FIND_DIVISI0N(A',A"kULy4[myx/uster]) procedure (given in 
Fig. 3.5) with the number of regions equal to number of processors 
in each cluster {K).

7. Perform global concatenate operation to obtain the vertical parti
tions in other clusters.

Figure 3.6. Parallel algorithm for rectangular division scheme.

3.2.3 Recursive Heuristic

Recursive approach is the superset of the two initial algorithms and introduces 
a very general subdivision heuristic to the area. It divides the image plane into 
smaller rectangular regions gradually and uses the similar ideas presented in 
the previous two sections. The main algorithm for this heuristic can be found 
in Fig. 3.8 and an example division can be found in Fig. 3.9.

As it can be seen from the algorithm, initially we set the local image plane 
to our screen and then continue to divide it into subregions recursively into two, 
at each loop of the process. When we reach to one processor per plane limit we
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Figure 3.7. An example of rectangular division for eight processors organized 
into four clusters and two processors in each cluster. Dotted lines represent 
the boundaries of each region.

terminate and run the sequential rendering algorithm with our local data set. 
Note that, at each pass, the local image plane is divided into two, vertically or 
horizontally, which ever gives the best load balance. Also the local data within 
a region is found gradually as the data migrates from processor to processor at 
each pass of the algorithm. As one half of the processors are dealing with one 
region the other half deals with the other region. Hence, the total number of 
passes is equal to log2 {P)  where P is the total number of processors.

Note that in rectangular and recursive subdivision schemes intra-scanline 
coherency is disturbed along with the inter-scanline one which causes extra 
processing time, to be overcomed, generated because of the loss of active list 
information at the end of each region. This extra work versus the two dimen
sional scalable division flexibility should be compared for better understanding 
of the heuristics. The disturbance of coherencies causes job approximations 
within a region drastically deviated while increasing the scalability of the algo
rithm. The outcomes of these problems and advantages versus disadvantages 
between the three heuristics will be discussed in the following chapters along 
with the results obtained from the sample runs of the programs developed using 
these algorithms.
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1. Find the overall load in the local image plane.

2. Divide this load into two horizontally.

3. Divide this load into two vertically.

4. Compare these two division and choose the best one.
5. Exchange local data, with respect to this new division.
6. Set half of the processors to one region and other half to the other 

region.

7. Repeat this until one region per processor is reached.

Figure 3.8. Parallel algorithm for the recursive subdivision scheme.

Inter-scanline coherency can be disturbed by dividing a region horizontally. 
This causes the active polygon information introduced in one scanline to be 
lost and hence recreated. While intra-scanline coherency can be disturbed by 
dividing a region vertically which causes the active polygon, edge, x-bucket, 
and finally z-list information (formed incrementally by insertions which causes 
an overall insertion sort if repeated) in one pixel to be lost and hence recreated. 
This can be clearly seen from the sequential algorithm because the Scanline 
Z-Buffer algorithm is used as the underlying paradigm which obviously takes a 
single scanline as its atomic process. Hence, makes the intra-scanline coherency 
as a crucial paradigm to be preserved through out the algorithm.

3.3 Load Balancing Metrics

In many scientific applications, the volume data to be visualized is not regularly 
sampled and distributed in three dimensional space like in all of the non- 
Cartesian cases. Hence, the computational work load on the image space will 
also be irregularly distributed. In addition, different viewing locations will 
result in different work load distributions on the image space. Hence, a straight 
forward division of image plane into equal rectangular regions may result in 
very poor load balances among the processors due to the nature of the volume 
data. Therefore, an adaptive division of image plane into rectangular regions 
will generate better work load distributions and better processor utilizations. 
In this section you will find the necessary metrics to approximate the overall
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Figure 3.9. An example of recursive subdivision for eight processors. Dotted 
lines represent the boundaries of each region.

work load within a rectangular subregion.

There are three parameters that affect the computational work load in an 
image plane section. First one is the number of triangles, because the total 
work load due to clipping of a triangle to boundaries and insertion operations 
into y-bucket and active polygon lists are proportional to the number of tri
angles in a region. Second parameter is the number of scanlines each triangle 
spans. This parameter represents the computational work load associated with 
creation of x-spans, and insertion of these spans into x-bucket lists. The total 
number of pixels generated by rasterization of x-spans of a triangle is the third 
parameter affecting the computational load in a region. Each pixel generated 
adds computations required for interpolation and composition operations. By 
some sample runs of the systems developed the relative proportions for these 
metrics can be found and used in the calculation of the overall work load in a 
rectangular subregion for the future use of the same implementations. So the 
overall work will be defined as in Eq. 3.1. Using these formulas the divisions for 
an image plane can be approximated where each subregion introduces nearly 
same amount of work to its related processor. So better these formulas are 
better our division schemes are. The necessary thing to do here is to approxi
mate the work load within a region as close as possible to its real value so that
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a better load balance can be reached.

W  = (a X  T) + {b X  S) + {c X  P) + E

A =  II' -  E 

W = Total real Work load 

A =  Total Approximated work load 

E = Error introduced by approximations 

T =  Total number of Triangles 

S = Total number of Spans 

P = Total number of Pixels 

a =  Task done per triangle 

b = Task done per span 

c =  Task done per pixel

The set of formulas defining the load metric. (3.1)

3.4 Refining the Algorithms

The heuristics and algorithms presented in this chapter can be refined by using 
the following refinements. First of all the load metric can be refined by intro
ducing extra fields like clipped polygons and clipped spans. This is necessary 
as we are disturbing the coherencies in the sequential algorithms and adding 
extra processing time to subtasks by introducing new clipped structures into 
the data sets. So the new formulas will look like in Eq. 3.2. Note that further 
fields to this new set of formulas can be added if the sequential algorithm is 
analyzed in more detail. But this can increase the total division time while 
defining a better approximation for the real work done for a subregion. In the 
implementations of the algorithms only this many fields are used.

W = { a x T )  + ( bx  S) + ( c x  P)  +  ( d x  CT)  +  { e x C S )  +  E

A = W  - E

W = Total real Work load
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A = Total Approximated work load 

E = Error introduced by approximations 

T =  Total number of Triangles 

S = Total number of Spans 

P = Total number of Pixels 

CT = Total number of Clipped Triangles 

CS = Total number of Clipped Spans 
a =  Task done per triangle 

b = Task done per span 

c = Task done per pixel 

d = Task done per clipped triangle 

e = Task done per clipped span

The set of formulas defining the new refined load metric. (3.2)

Also a simple rasterization process can be used instead of the bounding box 
approximation in the algorithms which solves the problems coming from the 
approximations of the bounding box. The well-known Z-Buffer [21] algorithm 
is used for this simple rasterization process and each pixel covered by each 
triangle is found by using this algorithm. This especially reduces the errors 
coming from the vertical divisions as the vertical divisions create new spans 
and hence new edges to be rendered for the main algorithm. The distribution 
of this extra work introduced can only be done by finding the exact span 
values for a triangle which is the informal definition of rasterization. Another 
approach might be to make some initial runs for the data set introduced and 
then doing some re-load balancing scheme for further visualizations. This can 
only be done if multiple runs from a single view is needed, e.g. time-varying 
data sets.

Finally some minor refinements on the division heuristics can be made 
like, dividing the region by using a binary search to speed up the division 
process, re-calculating the work load for each region after each division is done 
in order to reduce the approximation errors, using multiple arrays for work load 
contributions of each item (like triangles) for better approximations, and using 
recursion in FIND-DIVISION procedure in order to avoid cumulative errors 
introduced by the linear division, all of which do not effect the overall run and



CHAPTER 3. PARALLEL DIRECT VOLUME RENDERING 37

results of the algorithm as much as the previous refinements. So we are now 
ready to see some results about the sample runs of the programs developed for 
this thesis and then we can discuss these results using the algorithms and key 
points given in this chapter.



Chapter 4

Results

In this chapter, the results of the implementations done will be presented along 
with some auxiliary tools used (like data sets, architectures, etc.). In the first 
section of this chapter, you can find the definitions of the data sets and the 
architectures used. Then, the experimental results themselves will be given 
as another separate section. Various graphs are used to present the results 
obtained at the end of this chapter and some tables are given as Appendix. A.

4.1 Introduction to the Experimental Results

In this thesis, three basic data sets are used. These are namely the 6/wnf, the 
post, and the delta data sets. These data sets are taken from the NASA-Ames 
Research Center obtained for the sake of visualization of the CFD (Computa
tional Fluid Dynamics) simulation results. Both structured and unstructured 
versions of these sets are available at NASA-Ames Research Center. We have 
obtained the curvilinear form of these data sets and hence there exists an im
plicit connectivity in each of them defined by a .3D array structure. Therefore, 
the data sets were originally given as 3D hexahedral arrays where each grid 
point defines the density, heat, etc. values of the object to be visualized.

After obtaining these data sets we have converted them into unstructured 
standard tetrahedral (connectivity is explicit) ID computational arrays. And 
then we have extracted the distinct triangles of the tetrahedrals from these 
data sets. Hence, as a final data set we have had a set of triangles for each 
data set where no connectivity is defined but each corner point points to a data

38
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Figure 4.1. Input data BLIJNT in hexahedral grid form.
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Figure 4.2. Input data PQST in hexahedral grid form.
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Figure 4.3. Input data DELTA in hexahedral grid form.
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value to be visualized. So we now have a standard polygonal data set where 
the polygon corners are given in an indexed manner, pointers to data values 
for visualization.

Many runs of the programs developed are done using these data sets and 
the results are given in the following sections. As a final chapter the conclusions 
on the algorithms developed are given with respect to these runs. Now as a 
brief introduction for these data sets we w’ill give some information about some 
of their interesting features.

The first data set Fig. 4.1 is named as blunt data set and defines the airflow 
over a flat plate with a blunt fin rising from the plate. Free stream flow is 
parallel to the plate and to the flat part of the fin, entirely in the x-component 
direction. The flow is assumed to be symmetrical about a plane through the 
center of the fin, so only one half of the real geometry is present in the data 
set and used in computations. The dimensions of this data set defined in its 
curvilinear format is 40 x 32 x 32 grid points.

The second data set Fig. 4.2 is named as post data set and defines the liquid 
oxygen flow across a flat plate with a cylindrical post rising perpendicular to the 
plate (and therefore the flow). The simulation is modeling a flow internal to a 
rocket engine. A space shuttle launch vehicle engine has a region in which many 
such posts obstruct flow of liquid oxygen to promote better mixing. Since the 
fluid is incompressible, pressure is constant, and visualizations of these values 
are very well-defined and hence boring. Note that the areas of interest are the 
grid points closer to the post where much smaller and high quantized grids are 
defined. The dimensions of this data set defined in its curvilinear format is 
38 X 76 X 38 grid points.

The last data set Fig. 4.3 is named as delta data set and defines the flow 
past over a very simplified geometry representing a delta wing aircraft, at a 
moderately high angle of attack. Features of interest are vortices and vortex 
breakdowns. The grid is particularly twisted and scaled, and therefore makes 
a good test of certain features and capabilities of visualization systems used. 
The dimensions of this data set defined in its curvilinear format is 56 x 54 x 70 
grid points.

Implementations done for benchmarking results are made on an IBM-SP2
parallel computer with eight equivalent computational nodes and two power
ful server nodes. This is a distributed memory MIMD architecture where the
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Figure 4.4. Interconnection network of the IBM-SP2 Architecture.

thin (parallel) nodes have two means of interprocessor communication. The 
eight nodes have a High Performance Interconnection Network (HPIN) used 
for high bandwidth, real-time communications, and also an Ethernet (E) con
nection for regular PVM purposes or independent usage purposes. Each node 
is a 64Mbyte main memoried RISC/6000 processor with direct connections to 
the HPIN switches. Wide (server) nodes are powerful 512Mbyte memoried 
general purpose nodes having the same architecture with thin nodes except 
their parallel usages. These wide nodes are not directly used in this work but 
only the thin nodes are used in the benchmarking results.

The interconnection networking Fig. 4.4 scheme is very helpful in the data 
swap steps of the algorithms used, if and only if it is used cleverly in the algo
rithms developed. That is to say the programmer of these switches should check 
the communicating routines of his/her programs carefully in order to prevent 
switch congestions. In our implementations congestions are prevented by using 
a communication scheme where each processor communicates with another by 
defining and then using an empty link and hence avoiding the switch conges
tions. The routines represented for this scheme can easily be changed by just 
changing the formula defining the two communicating nodes at a time. Hence, 
the programs developed are quite portable to other multicomputer architec
tures. Now, we think that we are ready to see some experimental results along 
with some deeper comments and explanations on the runs of the programs used 
in the following sections.
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4.2 Experimental Results

In this section, we will present the experimental results of the various runs of 
the implementations of our algorithms. There are five main test programs each 
of which is used to identify some features about the paradigms proposed. There 
are eleven different tables defining the sample runs of these implementations. 
And in each table you can find the runtime behaviors, in terms of seconds, of 
our programs given as Appendix. A.

The first implementation interprets the behavior of horizontal division 
scheme using the bounding box approximation as its projection approach. 
The second one is the rectangular division scheme using, again, the bound
ing box projection paradigm. The third is the recursive one given with the 
similar projection approximation. Each of these implementations are run on 
three different data sets named as blunt, post, and delta data sets. The first 
nine tables are the sample runs of these three implementations on these three 
different data sets. The last two tables are the runs of the final two implemen
tations on blunt data set which use horizontal and recursive division schemes 
(respectively) along with the rasterization heuristic. These eleven tables given 
in Appendix. A can be used for further deductions about the sample runs of 
the implementations. The overall behavior of the algorithms and the general 
deductions about the paradigms proposed are represented as a set of graphs as 
follows.

Nine graphs which show the general behavior of the algorithms are given 
using these tables. First three are the speedup, the second three are the ef
ficiency and the last three are the load-balance graphs. The Fig. 4.5 is the 
speedup graph of the rendering process of the bounding box approximations. 
This graph includes ideal, horizontal, rectangular, and recursive division cases. 
The Fig. 4.6 shows speedups of the rasterized versions of the horizontal and 
recursive schemes along with the ideal case, using the rendering times. The 
Fig. 4.7 shows the total execution time behavior of the horizontal scheme with 
bounding box approximation, represented as a speedup graph. The Fig. 4.8, 
the Fig. 4.9, and the Fig. 4.10 are the efficiency versions of the speedup graphs, 
respectively, showing how efficiently the processors are used. The Fig. 4.11, 
the Fig. 4.12, and the Fig. 4.13 are the load-balance graphs showing the load 
distributions of the same speedup graphs, respectively. Note that speedups are 
defined as the times of the single processor runs over the times of the latest
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SPEEDUP GRAPH
R E N D E R I N G  W I T H  B O U N D I N G  B O X

Figure 4.5. Speedup graph of the horizontal, rectangular, and recursive division 
schemes where bounding box approximation is used and obtained by using the 
rendering times.

completed sub-tasks of the related runs. The efficiency is the speedup value 
over the number of processors used for that run which is then converted into the 
percent format. And load-balance is found by first finding the load-imbalance 
and then subtracting this value from one hundred where load-imbalance can 
be found in various ways. The version used in this thesis is represented as 
Eq. 4.1. All of these values are found by averaging the related run-tables of 
the implementations used. Now we are ready for some deductions about these 
graphs which are given in the last chapter as a set of conclusions.

Lb — ((^mai  ̂ 100
Lb =  Load-imbalance

i-max =  execution time of the processor that completes the latest 

imin — execution time of the processor that completes the earliest

The formula defining the load-imbalance. (4.1)
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SPEEDUP GRAPH
R E N D E R I N G  W I T H  R A S T E R I Z A T I O N

Figure 4.6. Speedup graph of the horizontal and recursive division schemes 
where rasterization algorithm is used and obtained by using the rendering 
times.

SPEEDUP GRAPH
TOTAL· TIME WITH BOUNDING BOX

Figure 4.7. Speedup graph of the horizontal division scheme where bounding
box approximation is used and obtained by using the overall execution times.
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EFFICIENCY GRAPH
R E N D E R I N O  W I T H  B O U N D t N O  B O X

Figure 4.8. Efficiency graph of the horizontal, rectangular, and recursive divi
sion schemes where bounding box approximation is used and obtained by using 
the rendering times.
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Figure 4.9. Efficiency graph of the horizontal and recursive division schemes
where rasterization algorithm is used and obtained by using the rendering
times.
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EFFICIENCY GRAPH
TOTAL TIME WITH BOUNDIN3 BOX

Figure 4.10. Efficiency graph of the horizontal division scheme where bounding 
box approximation is used and obtained by using the overall execution times.

LOAD-BALANCE GRAPH
BENDERINO WITH BOUNDIN3 BOX

Figure 4.11. Load-balance graph of the horizontal, rectangular, and recursive
division schemes where bounding box approximation is used and obtained by
using the rendering times.
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LOAD-BALANCE GRAPH
R E N D E R I N G  W I T H  R A S T E R I Z A T I O N
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Figure 4.12. Load-balance graph of the horizontal and recursive division 
schemes where rasterization algorithm is used and obtained by using the ren
dering times.

LOAD-BALANCE GRAPH
TOTAL· TIME WITH BOUNDING BOX

Figure 4.13. Load-balance graph of the horizontal division scheme where
bounding box approximation is used and obtained by using the overall exe
cution times.



Chapter 5

Conclusion

In this thesis, we have investigated various image space subdivision algorithms 
for parallel direct volume rendering of volumetric data sets on distributed mem
ory multicomputers using the ray shooting paradigm. We have used a standard 
polygon rendering algorithm as our underlying sequential schema and obtained 
results on three different data sets using an IBM-SP2 architecture. Now, we 
are ready to give our conclusions, discuss in general our results, and assign 
some future solutions to our problems. We hope that this comparative work 
would be a good starting point for various other works on this topic.

We have seen that our subdivision heuristics do not give very good load 
balancing and speedup results with respect to [1, 2]. In fact these two papers 
study the shared memory approach of the same parallel algorithm and hence 
can not directly be compared with this work. But as there is no other pub
lications done specifically in this field we can only compare our results with 
our initial expectations, theoretical possible results, and with [1, 2]. Although 
our test data sets are of restricted type we think that most of the results for 
other data types will be the same. Although the algorithms developed in this 
thesis are generalized for all of the data types known to us, this generalization, 
which uses the standard polygon rendering algorithms as their base, causes 
some problems in the parallelization steps of the algorithms because of their 
low scalability on volumetric data sets. Therefore the assumption of ease at 
parallel polygon rendering and load balancing was not correct.

The reasons for these results are the low scalability of the image space sub
divisions which can be solved by using further division schemes on the 3rd 
dimension that can introduce some overheads like pixel merging, difficulties in

50
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defining a good load balancing metric in the static decompositions which can 
be solved by using a dynamic strategy where probably there are lots of sub
tasks to be completed while the number of processors used is much smaller than 
this number of tasks (increases duplications and communications) or using a 
re-balancing scheme in the rendering process that can increase the completion 
time while introducing a better load balance to the runs of the algorithms, lack 
of information about the geometry to be divided, causing scalability to be dis
turbed which can be solved by using the number of sampling points with in a 
region (e.g. avoiding many small triangles from going to a single processor and 
other normal or big ones, relatively, to another processor), and the difficulty 
of defining a good metric for a region because of the extra tasks introduced 
especially at vertical divisions which can be solved by taking more well defined 
ratios for atomic means of task decomposition (like spans) by taking exhaus
tive sample runs of the algorithms for ratio determination (currently nearly 
impossible because of lack of data types and computer hardware usage).

Also we have observed that although the first heuristic is a very naive one it 
beats the others in most of the runs that we have done in terms of load balances 
and speedups. The reason for this is that the vertical divisions introduce much 
more expensive extra tasks to do after the division, than the horizontal ones, 
that are also very difficult to estimate and distribute (because of the memory 
allocation problems of huge data groups and extra sorting used in the compo
sition steps). But note that for very large number of processors or where the 
image height is less than or nearly equal to the number of processors that we 
are using, we can use the 2nd and especially the 3rd heuristics because of their 
higher scalability (compared to ID horizontal one) and their flexibility intro
duced in the division schemes although it can introduce huge extra overheads. 
For example, you can not divide a 32 x 32 image to 64 processors horizontally 
adequately because of the definition of an atomic task in horizontal scheme 
which is a single scanline (therefore causing some processors to stay idle while 
others are working hard to finish their assigned subtasks). But on the other 
hand the recursive scheme has 32 x 32 = 1024 different division possibilities 
for the same image which can beat the overheads introduced and even give 
better results than the horizontal one. This is true especially if the data to be 
visualized is longer in its width than its height and the number of pi’ocessors is 
nearly equal to this height. So we can say that in general (for practical usages) 
horizontal scheme beats the others except some of the cases defined as above. 
Therefore, usage of the horizontal scheme, besides its division results, by also 
introducing a smaller division pre-processing overhead, smaller communication
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times, and simplicity can be selected for various visualization schemes.

In addition to these we can say that we can use rasterization type optimiza
tions in the division schemes which introduces a huge overhead while giving 
a slightly better load balance or speedup (in terms of the rendering process 
but not the overall time). These type of divisions can be used especially with 
time-varying data sets where more than one visualization of the same view is 
possible. Also load re-balancing after each run can be done as a future work. 
Besides animation type visualizations can be very adequate for the algorithms 
developed with in this thesis because of their incremental view point changes, 
etc. (e.g., controlling the data flow after each run). Some extensions to this 
methodology could be made but we advise that the underlying schemata should 
be changed (for example to shared memory architectures or etc.) for more in
novative results and solutions. Finally, we can say that this work can be named 
as a good initial work for future works on this field of research. The presenta
tion of this thesis along with its results will hopefully be very helpful to all the 
other researchers in this area.



Appendix A

Tables of the Sample Runs

This appendix gives the tables of the sample runs of the implementations made. 
Each table includes runs, on the defined data set, of three different views of 
the data set, three different screen resolutions, and some different number 
of processors (from up to 8 to up to 32). Tables include the total, rendering, 
swapping, and the division times of the programs. They also give the maximum 
and minimum values for each time. Due to usage restrictions of the IBM-SP2 
architecture that we are using some runs are limited with only one data set and 
some are only given up to 8 processors. But all runs give information about 
the 1, 2, 4, and 8 processor tests of the programs.

The Table. A.l is the first table. It is generated using the blunt data 
set. There are three different views of the data which are taken randomly to 
obtain a general feeling about the test programs. Three different image plane 
sizes, namely 256 x 256, 512 x 512, and 1024 x 1024, are used. This table uses 
horizontal division scheme and shows this behavior by using up to 8 processors. 
The Table. A.2 and the Table. A.3 use post and delta data sets respectively 
where the other properties are the same with the first table.

The Table. A.4 is the fourth table. It is generated using the blunt data 
set. There are three different views of the data which are taken randomly to 
obtain a general feeling about the test programs. Three different image plane 
sizes, namely 256 x 256, 512 x 512, and 1024 x 1024, are used. This table 
uses rectangular division scheme and shows this behavior by using up to 8 
processors. The Table. A .5 and the Table. A.6 use post and delta data sets 
respectively where the other properties are the same with the fourth table.
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The Table. A .7 is the seventh table. It is generated using the blunt data 
set. There are three different views of the data which are taken randomly to 
obtain a general feeling about the test programs. Three different image plane 
sizes, namely 256 x 256, 512 x 512, and 1024 x 1024, are used. This table uses 
recursive division scheme and shows this behavior by using up to 8 processors. 
The Table. A.8 and the Table. A .9 use post and delta data sets respectively 
where the other properties are the same with the seventh table. Note that these 
last three tables show division times (the time used to distribute the process 
into sub-processes) and the swapping times (the time used to exchange the local 
data of the processors) differently then the first six tables. As this version of 
the implementations use recursion, the division time is in fact equivalent to the 
time of dividing plus swapping where pure division time is equal to the one in 
the table minus the swapping time. But also note that the intermediate swaps 
are in fact crucial for the division process to be complete which can also be 
seen as a part of the division time except the last swap operation.

The last two tables show us the behavior of the rasterized versions of the 
heuristics, named as horizontal and recursive, given as Table. A. 10 and Ta
ble. A .11 respectively. Note that these tables use up to 32 processors for the 
sake of completeness of the deductions about these runs. The division and 
swap (and hence the total) times given are not that much accurate, as the 
division process for rasterization is much longer than the bounding box ap
proach and causes various errors for these two tables. You must have noticed 
that there are some fluctuating outputs in the first nine tables which are much 
more drastical in these last two tables. The reason for this is the non-dedicated 
usage of the IBM-SP2 computer which causes swaps in some sample runs. Al
though we have used the user time for executions, the communicating steps of 
the algorithms suffers from system swaps where one processor might be wait
ing for the other (hence causing some CPU time bursts). As the rasterized 
versions of the algorithms developed need more communications the times for 
these are faultier than the others, so a careful reader should mainly consider 
the rendering times for the last two tables for further deductions. Also note 
that the rasterized versions can (if used in dedicated modes) only be used if 
the input data sets are time-varying. The reason for this is these type of data 
sets are used for multiple visualizations of the same view of an input data set 
and hence causing the division overheads negligible for about e.g. twenty runs 
of the same view. Also you must have noticed that the 16 and 32 processor 
runs are simulations by 8 processors as the original computer have only 8 real 
processors. So the communications are made by the ethernet protocol (but
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RESULTS IN SECONDS BLUNT DATA SET
EXECUTION TIMES TOTAL RENDERING SWAPPING DIVIDING

VIEW RESOLUTION P MIN MAX MIN MAX MIN MAX MIN MAX
1st 256 X 256 1 40.79 40.79 40.79 40.79 0.00 0.00 0.00 0.00
1st 256 X 256 2 26.68 29.57 20.05 23.02 2.48 2.54 3.69 3.80
1st 256 X 256 4 15.16 17.59 10.22 12.54 2.77 2.81 1.94 2.10
1st 256 X 256 8 10.30 12.07 5.60 7.11 3.15 3.31 1.23 1.56
2nd 256 X 256 1 22.50 22.50 22.50 22.50 0.00 0.00 0.00 0.00
2nd 256 X 256 2 16.95 17.16 12.01 12.20 1.80 1.83 2.84 2.94
2nd 256 X 256 4 10.26 11.25 6.19 7.08 2.25 2.28 1.61 1.78
2nd 256 X 256 8 7.09 8.28 3.37 4.21 2.61 2.89 0.99 1.22
3rd 256 X 256 1 26.92 26.92 26.92 26.92 0.00 0.00 0.00 0.00
3rd 256 X 256 2 18.03 19.63 13.33 15.05 1.57 1.61 2.83 2.85
3rd 256 X 256 4 10.19 12.18 6.54 8.43 1.98 2.02 1.51 1.67
3rd 256 X 256 8 6.67 8.32 3.59 4.87 2.13 2.33 0.88 1.11
1st 512 X 512 1 115.39 115.39 115.39 115.39 0.00 0.00 0.00 0.00
1st 512 X 512 2 66.97 67.45 59.50 59.71 2.85 2.92 4.02 4.63
1st 512 X 512 4 34.97 37.71 29.46 32.11 3.05 3.10 2.17 2.78
1st 512 X 512 8 18.84 22.69 14.23 17.85 3.23 3.31 1.21 1.64
2nd 512 X 512 1 65.01 65.01 65.01 65.01 0.00 0.00 0.00 0.00
2nd 512 X 512 2 38.60 40.92 32.43 34.63 2.34 2.40 3.50 3.57
2nd 512 X 512 4 21.38 24.40 16.24 19.35 2.82 2.92 1.98 2.13
2nd 512 X 512 8 12.93 15.66 8.14 11.03 3.14 3.45 1.30 1.64
3rd 512 X 512 1 81.76 81.76 81.76 81.76 0.00 0.00 0.00 0.00
3rd 512 X 512 2 46.92 48.59 40.91 42.76 2.19 2.19 3.40 3.50
3rd 512 X 512 4 24.87 27.35 20.21 22.69 2.55 2.58 1.87 2.02
3rd 512 X 512 8 14.15 16.41 10.38 12.44 2.51 2.68 1.02 1.25
1st 1024 X 1024 1 353.49 353.49 353.49 353.49 0.00 0.00 0.00 0.00
1st 1024 X 1024 2 183.18 191.95 175.34 183.66 3.07 3.16 4.50 4.51
1st 1024 X 1024 4 92.98 102.91 87.25 96.90 3.21 3.25 2.40 2.40
1st 1024 X 1024 8 46.99 56.85 42.18 51.98 3.26 3.33 1.31 1.69
2nd 1024 X 1024 1 202.79 202.79 202.79 202.79 0.00 0.00 0.00 0.00
2nd 1024 X 1024 2 106.82 113.90 99.75 106.46 2.78 2.82 4.05 4.09
2nd 1024 X 1024 4 54.57 62.47 48.81 56.62 3.24 3.30 2.36 2.38
2nd 1024 X 1024 8 29.28 34.91 24.01 30.00 3.38 3.68 1.31 1.54
3rd 1024 X 1024 1 257.06 257.06 257.06 257.06 0.00 0.00 0.00 0.00
3rd 1024 X 1024 2 136.68 139.30 129.52 132.45 2.56 2.67 4.03 4.06
3rd 1024 X 1024 4 68.54 73.91 63.23 68.59 2.90 2.96 2.10 2.26
3rd 1024 X 1024 8 36.01 41.04 31.81 36.86 2.80 2.94 1.18 1.46

Table A .l. Horizontal division results using hounding box with blunt data.

not with high performance switches) causing an extra error in communication 
times, because of this simulation restriction. Finally note that the last two 
versions of the implementations are run only on the blunt data set as they 
took very long execution times (in dedicated mode about a month with 16 and 
32 processor simulations and more than three months in non-dedicated mode) 
in the IBM-SP2 computer that we are using.
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RESULTS IN SECONDS POST DATA SET
EXECUTION TIMES TOTAL RENDERING SWAPPING DIVIDING

VIEW RESOLUTION P MIN MAX MIN MAX MIN MAX MIN MAX
1st 256 X 256 1 61.40 61.40 61.40 61.40 0.00 0.00 0.00 0.00
1st 256 X 256 2 42.53 43.61 31.40 32.08 3.43 3.45 6.48 8.26
1st 256 X 256 4 23.60 24.45 16.46 17.07 3.61 3.65 3.33 3.56
1st 256 X 256 8 14.26 15.98 8.18 9.81 3.99 4.02 1.99 2.22
2nd 256 X 256 1 31.01 31.01 31.01 31.01 0.00 0.00 0.00 0.00
2nd 256 X 256 2 26.74 27.21 15.85 16.89 3.20 3.21 6.17 7.70
2nd 256 X 256 4 15.99 17.23 8.38 9.35 3.93 3.95 3.48 3.63
2nd 256 X 256 8 10.55 11.70 4.49 5.39 3.81 4.04 1.94 2.18
3rd 256 X 256 1 22.53 22.53 22.53 22.53 0.00 0.00 0.00 0.00
3rd 256 X 256 2 21.74 22.78 11.61 12.45 2.86 2.88 6.01 7.88
3rd 256 X 256 4 13.60 14.99 6.07 7.47 3.76 3.78 3.52 3.71
3rd 256 X 256 8 8.86 10.84 2.93 4.60 3.76 4.02 1.86 2.12
1st 512 X 512 1 175.11 175.11 175.11 175.11 0.00 0.00 0.00 0.00
1st 512 X 512 2 101.63 109.58 88.77 88.98 4.29 11.88 7.76 8.04
1st 512 X 512 4 54.28 58.47 44.03 47.81 4.98 5.07 4.16 6.19
1st 512 X 512 8 29.28 33.40 21.79 25.15 4.98 5.15 2.35 2.97
2nd 512 X 512 1 89.68 89.68 89.68 89.68 0.00 0.00 0.00 0.00
2nd 512 X 512 2 59.11 60.40 45.15 46.86 4.86 4.87 8.02 8.39
2nd 512 X 512 4 33.67 36.74 22.94 25.59 5.80 5.86 4.69 4.85
2nd 512 X 512 8 20.03 23.16 11.44 14.22 5.62 5.95 2.55 2.74
3rd 512 X 512 1 61.91 61.91 61.91 61.91 0.00 0.00 0.00 0.00
3rd 512 X 512 2 45.44 45.60 31.13 33.11 4.25 4.28 7.67 9.42
3rd 512 X 512 4 25.72 29.65 14.93 18.76 5.57 5.62 4.84 5.03
3rd 512 X 512 8 15.09 19.34 6.93 10.69 5.52 5.82 2.48 2.72
1st 1024 X 1024 1 546.84 546.84 546.84 546.84 0.00 0.00 0.00 0.00
1st 1024 X 1024 2 294.08 294.13 274.68 276.60 6.47 6.49 10.07 12.03
1st 1024 X 1024 4 144.06 160.70 131.38 147.42 6.75 6.93 5.58 5.66
1st 1024 X 1024 8 75.67 87.83 65.35 77.21 6.66 6.93 3.00 3.62
2nd 1024 X 1024 1 261.28 261.28 261.28 261.28 0.00 0.00 0.00 0.00
2nd 1024 X 1024 2 150.15 153.10 132.78 133.69 6.47 6.48 10.06 12.02
2nd 1024 X 1024 4 77.34 89.34 63.36 75.03 7.65 7.71 5.91 6.25
2nd 1024 X 1024 8 41.57 52.37 30.70 40.67 7.30 7.70 3.28 3.56
3rd 1024 X 1024 1 184.77 184.77 184.77 184.77 0.00 0.00 0.00 0.00
3rd 1024 X 1024 2 110.80 112.69 92.46 96.46 5.94 5.96 9.58 11.50
3rd 1024 X 1024 4 57.43 67.85 43.31 53.84 7.55 7.61 5.97 6.10
3rd 1024 X 1024 8 29.51 40.61 18.65 29.32 7.42 7.70 3.19 3.42

Table A.2 . Horizontal division results using bounding box with post data.
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RESULTS IN SECONDS DELTA DATA SET
EXECUTION TIMES TOTAL RENDERING SWAPPING DIVIDING

VIEW RESOLUTION P MIN MAX MIN MAX .MIN MAX MIN MAX
1st 256 X 256 1 75.72 75.72 75.72 75.72 0.00 0.00 0.00 0.00
1st 256 X 256 2 60.78 61.21 34.89 42.42 6.32 13.78 10.53 11.79
1st 256 X 256 4 31.76 41.65 16.29 24.16 8.00 8.07 6.40 8.81
1st 256 X 256 8 26.60 32.41 7.77 14.37 12.19 13.28 4.59 5.45
2nd 256 X 256 1 60.89 60.89 60.89 60.89 0.00 0.00 0.00 0.00
2nd 256 X 256 2 47.84 62.59 31.04 33.19 4.61 18.81 9.98 10.92
2nd 256 X 256 4 30.34 33.08 15.70 18.03 6.75 6.84 6.44 8.09
2nd 256 X 256 8 25.48 27.82 8.55 10.29 11.20 12.16 4.32 5.20
3rd 256 X 256 1 35.52 35.52 35.52 35.52 0.00 0.00 0.00 0.00
3rd 256 X 256 2 37.92 55.10 18.36 19.27 7.69 25.57 9.16 10.98
3rd 256 X 256 4 22.06 25.70 8.54 11.27 6.75 6.79 5.23 7.20
3rd 256 X 256 8 20.01 22.49 4.36 7.15 10.33 11.33 4.30 4.96
1st 512 X 512 1 219.86 219.86 219.86 219.86 0.00 0.00 0.00 0.00
1st 512 X 512 2 150.83 186.68 93.83 127.40 7.36 76.10 13.67 16.08
1st 512 X 512 4 62.93 89.83 42.45 67.20 10.40 11.19 8.86 10.88
1st 512 X 512 8 42.00 60.55 18.81 37.91 14.66 15.89 5.04 7.20
2nd 512 X 512 1 177.38 177.38 177.38 177.38 0.00 0.00 0.00 0.00
2nd 512 X 512 2 114.46 144.34 88.86 93.32 6.19 42.50 12.15 13.06
2nd 512 X 512 4 59.76 71.04 42.06 51.35 9.16 9.25 7.96 10.00
2nd 512 X 512 8 41.54 48.41 20.15 27.94 14.05 15.20 5.21 6.08
3rd 512 X 512 1 96.82 96.82 96.82 96.82 0.00 0.00 0.00 0.00
3rd 512 X 512 2 71.19 91.34 47.20 52.01 5.36 31.73 11.55 12.49
3rd 512 X 512 4 39.17 51.12 21.50 31.08 9.22 9.32 7.80 10.04
3rd 512 X 512 8 30.38 37.30 10.45 17.93 13.11 14.35 5.41 6.07
1st 1024 X 1024 1 650.86 650.86 650.86 650.86 0.00 0.00 0.00 0.00
1st 1024 X 1024 2 399.96 414.99 272.74 380.83 10.38 108.31 18.25 19.68
1st 1024 X 1024 4 167.75 233.65 121.88 204.25 10.91 35.78 10.73 12.94
1st 1024 X 1024 8 78.98 135.72 55.29 111.87 15.86 16.81 5.62 7.03
2nd 1024 X 1024 1 532.26 532.26 532.26 532.26 0.00 0.00 0.00 0.00
2nd 1024 X 1024 2 317.37 329.49 250.79 291.90 7.83 63.71 14.40 15.22
2nd 1024 X 1024 4 138.07 174.96 116.27 150.83 11.64 11.83 9.64 11.81
2nd 1024 X 1024 8 78.38 104.66 55.06 81.57 15.51 16.68 5.57 6.81
3rd 1024 X 1024 1 285.92 285.92 285.92 285.92 0.00 0.00 0.00 0.00
3rd 1024 X 1024 2 176.17 203.28 138.05 152.88 7.10 50.87 13.44 14.35
3rd 1024 X 1024 4 84.26 113.85 62.88 89.64 11.34 11.53 9.54 11.73
3rd 1024 X 1024 8 52.97 72.94 30.38 51.17 14.51 15.83 5.99 6.66

Table A.3. Horizontal division results using bounding box with delta data.
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RESULTS IN SECONDS BLUNT DATA SET
EXECUTION TIMES TOTAL RENDERING SWAPPING DIVIDING

VIEW RESOLUTION P MIN MAX MIN MAX MIN MAX MIN MAX
1st 256 X 256 1 40.79 40.79 40.79 40.79 0.00 0.00 0.00 0.00
1st 256 X 256 2 26.65 29.56 20.06 23.02 2.47 2.54 3.65 3.79
1st 256 X 256 4 15.13 18.18 10.06 12.96 2.78 2.80 2.02 2.25
1st 256 X 256 8 9.69 12.08 5.31 7.57 3.06 3.22 1.06 1.34
2nd 256 X 256 1 22.50 22.50 22.50 22.50 0.00 0.00 0.00 0.00
2nd 256 X 256 2 16.96 17.19 12.03 12.23 1.81 1.83 2.82 2.95
2nd 256 X 256 4 9.32 11.16 5.39 7.40 2.08 2.12 1.51 1.75
2nd 256 X 256 8 6.58 8.00 2.76 4.32 2.29 2.62 0.89 1.18
3rd 256 X 256 1 26.92 26.92 26.92 26.92 0.00 0.00 0.00 0.00
3rd 256 X 256 2 17.93 19.65 13.31 15.03 1.58 1.63 2.74 2.87
3rd 256 X 256 4 9.83 13.03 6.19 9.31 1.97 2.01 1.47 1.65
3rd 256 X 256 8 6.03 8.73 2.99 5.27 2.03 2.32 0.84 1.11
1st 512 X 512 1 115.39 115.39 115.39 115.39 0.00 0.00 0.00 0.00
1st 512 X 512 2 66.85 66.87 59.34 59.56 2.80 2.91 4.11 4.21
1st 512 X 512 4 33.95 39.18 28.43 33.82 3.02 3.10 2.10 2.35
1st 512 X 512 8 18.55 24.30 13.96 19.62 3.11 3.21 1.13 1.41
2nd 512 X 512 1 65.01 65.01 65.01 65.01 0.00 0.00 0.00 0.00
2nd 512 X 512 2 38.52 40.78 32.37 34.56 2.34 2.40 3.43 3.56
2nd 512 X 512 4 18.18 25.73 13.35 20.86 2.63 2.71 1.88 2.07
2nd 512 X 512 8 11.06 16.46 6.77 12.22 2.78 3.11 1.18 1.61
3rd 512 X 512 1 81.76 81.76 81.76 81.76 0.00 0.00 0.00 0.00
3rd 512 X 512 2 46.82 48.62 40.90 42.78 2.13 2.20 3.37 3.51
3rd 512 X 512 4 20.97 31.82 16.54 27.22 2.49 2.57 1.77 1.95
3rd 512 X 512 8 11.83 18.42 8.26 14.54 2.43 2.68 0.96 1.25
1st 1024 X 1024 1 353.49 353.49 353.49 353.49 0.00 0.00 0.00 0.00
1st 1024 X 1024 2 183.37 191.85 175.50 183.57 3.07 3.16 4.51 4.51
1st 1024 X 1024 4 89.25 104.63 83.59 98.59 3.18 3.26 2.33 2.34
1st 1024 X 1024 8 44.39 64.05 39.47 59.27 3.16 3.26 1.24 1.66
2nd 1024 X 1024 1 202.79 202.79 202.79 202.79 0.00 0.00 0.00 0.00
2nd 1024 X 1024 2 106.86 113.74 99.76 106.47 2.76 2.84 3.94 4.06
2nd 1024 X 1024 4 47.60 69.85 42.14 64.12 2.99 3.10 2.26 2.51
2nd 1024 X 1024 8 26.15 39.82 21.23 35.22 3.04 3.31 1.26 1.60
3rd 1024 X 1024 1 257.06 257.06 257.06 257.06 0.00 0.00 0.00 0.00
3rd 1024 X 1024 2 136.71 139.09 129.62 132.27 2.57 2.66 3.97 4.01
3rd 1024 X 1024 4 55.12 89.98 50.07 84.73 2.86 2.94 2.01 2.21
3rd 1024 X 1024 8 29.39 47.79 25.38 43.38 2.72 2.94 1.09 1.46

Table A.4. Rectangular division results using hounding box with blunt data.
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RESULTS IN SECONDS POST DATA SET
EXECUTION TIMES TOTAL RENDERING SWAPPING DIVIDING

VIEW RESOLUTION P MIN MAX MIN MAX MIN MAX MIN MAX
1st 256 X 256 1 61.40 61.40 61.40 61.40 0.00 0.00 0.00 0.00
1st 256 X 256 2 42.44 43.61 31.37 32.01 3.42 3.45 6.46 8.29
1st 256 X 256 4 23.34 23.58 16.14 16.37 3.54 3.56 3.22 3.41
1st 256 X 256 8 14.01 14.95 8.26 8.98 3.78 3.83 1.85 2.18
2nd 256 X 256 1 31.01 31.01 31.01 31.01 0.00 0.00 0.00 0.00
2nd 256 X 256 2 26.76 27.06 15.81 16.86 3.20 3.20 6.22 7.61
2nd 256 X 256 4 16.23 16.94 8.51 9.24 3.87 3.94 3.45 3.58
2nd 256 X 256 8 10.21 11.38 4.46 5.20 3.75 4.08 1.83 2.19
3rd 256 X 256 1 22.53 22.53 22.53 22.53 0.00 0.00 0.00 0.00
3rd 256 X 256 2 21.73 22.74 11.52 12.43 2.85 2.87 6.01 7.94
3rd 256 X 256 4 13.22 13.95 6.03 6.63 3.53 3.62 3.42 3.61
3rd 256 X 256 8 8.58 10.13 3.20 4.19 3.52 3.82 1.73 2.03
1st 512 X 512 1 175.11 175.11 175.11 175.11 0.00 0.00 0.00 0.00
1st 512 X 512 2 101.93 106.55 88.77 89.08 4.28 8.81 7.97 8.13
1st 512 X 512 4 54.31 56.24 44.84 45.79 4.89 4.95 4.05 5.20
1st 512 X 512 8 29.70 32.82 22.14 24.78 4.78 4.96 2.20 3.21
2nd 512 X 512 1 89.68 89.68 89.68 89.68 0.00 0.00 0.00 0.00
2nd 512 X 512 2 59.74 60.34 45.33 46.88 4.76 4.77 8.03 8.99
2nd 512 X 512 4 32.79 37.22 22.19 26.40 5.83 5.93 4.48 4.70
2nd 512 X 512 8 19.24 23.14 11.09 14.55 5.62 5.99 2.38 2.73
3rd 512 X 512 1 61.91 61.91 61.91 61.91 0.00 0.00 0.00 0.00
3rd 512 X 512 2 45.53 45.70 31.08 33.18 4.22 4.27 7.70 9.60
3rd 512 X 512 4 25.85 27.61 15.77 17.29 5.34 5.36 4.43 4.67
3rd 512 X 512 8 15.49 18.59 7.71 10.30 5.27 5.61 2.30 2.57
1st 1024 X 1024 1 546.84 546.84 546.84 546.84 0.00 0.00 0.00 0.00
1st 1024 X 1024 2 293.99 294.53 274.65 277.05 6.47 6.47 10.07 11.94
1st 1024 X 1024 4 151.95 155.95 139.08 143.12 6.92 6.97 5.40 5.49
1st 1024 X 1024 8 76.25 87.23 66.68 77.23 6.57 6.85 2.81 3.26
2nd 1024 X 1024 1 261.28 261.28 261.28 261.28 0.00 0.00 0.00 0.00
2nd 1024 X 1024 2 149.98 152.97 132.64 133.57 6.45 6.46 10.05 12.02
2nd 1024 X 1024 4 75.24 93.19 61.44 79.23 7.69 7.75 5.68 5.84
2nd 1024 X 1024 8 38.90 54.81 28.43 44.00 7.31 7.74 2.90 3.18
3rd 1024 X 1024 1 184.77 184.77 184.77 184.77 0.00 0.00 0.00 0.00
3rd 1024 X 1024 2 110.52 112.69 92.28 96.51 5.88 5.92 9.54 11.47
3rd 1024 X 1024 4 58.53 63.24 45.16 49.85 7.20 7.26 5.75 5.76
3rd 1024 X 1024 8 33.05 39.73 21.49 29.00 6.80 8.75 2.86 3.22

Table A.5. Rectangular division results using hounding box with post data.
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RESULTS IN SECONDS DELTA DATA SET
EXECUTION TIMES TOTAL RENDERING SWAPPING DIVIDING

VIEW RESOLUTION P MIN MAX MIN MAX MIN MAX MIN MAX
1st 256 X 256 1 75.72 75.72 75.72 75.72 0.00 0.00 0.00 0.00
1st 256 X 256 2 59.70 87.08 34.81 42.33 5.15 39.80 10.56 11.76
1st 256 X 256 4 29.81 38.53 14.86 21.79 7.71 7.75 6.42 8.50
1st 256 X 256 8 25.19 30.56 7.26 13.54 11.57 12.65 4.57 5.20
2nd 256 X 256 1 60.89 60.39 60.89 60.89 0.00 0.00 0.00 0.00
2nd 256 X 256 2 51.01 52.74 31.11 33.24 7.81 8.81 9.98 10.90
2nd 256 X 256 4 28.79 31.76 15.70 16.76 6.60 6.67 6.04 8.23
2nd 256 X 256 8 23.74 25.64 7.91 9.53 10.27 11.58 4.36 4.94
3rd 256 X 256 1 35.52 35.52 35.52 35.52 0.00 0.00 0.00 0.00
3rd 256 X 256 2 35.38 38.25 18.32 18.97 4.35 9.64 9.50 11.11
3rd 256 X 256 4 21.22 25.09 8.57 10.52 6.69 6.74 5.63 7.80
3rd 256 X 256 8 19.04 21.70 3.96 5.86 10.16 11.02 4.08 4.74
1st 512 X 512 1 219.86 219.86 219.86 219.86 0.00 0.00 0.00 0.00
1st 512 X 512 2 150.45 162.29 93.64 127.42 7.00 52.92 13.67 15.08
1st 512 X 512 4 63.60 90.65 36.60 69.58 9.26 17.94 8.31 10.68
1st 512 X 512 8 38.66 57.80 17.06 36.73 14.00 15.20 4.84 6.34
2nd 512 X 512 1 177.38 177.38 177.38 177.38 0.00 0.00 0.00 0.00
2nd 512 X 512 2 114.36 147.38 88.88 93.26 6.27 45.75 12.15 13.15
2nd 512 X 512 4 62.08 66.39 45.05 48.04 8.95 9.09 7.57 8.97
2nd 512 X 512 8 41.94 46.50 21.55 27.02 12.91 14.54 5.14 5.79
3rd 512 X 512 1 96.82 96.82 96.82 96.82 0.00 0.00 0.00 0.00
3rd 512 X 512 2 71.48 102.75 47.13 52.06 5.57 43.27 11.49 12.50
3rd 512 X 512 4 37.19 48.57 20.15 29.23 9.15 9.23 7.54 9.59
3rd 512 X 512 8 28.40 35.50 9.18 16.06 12.99 14.02 5.11 5.74
1st 1024 X 1024 1 650.86 650.86 650.86 650.86 0.00 0.00 0.00 0.00
1st 1024 X 1024 2 368.90 413.27 273.29 382.10 10.12 76.43 17.19 18.33
1st 1024 X 1024 4 132.77 244.78 106.72 219.21 12.34 15.30 9.42 11.61
1st 1024 X 1024 8 74.20 141.11 51.23 117.69 15.13 16.03 5.26 7.13
2nd 1024 X 1024 1 532.26 532.26 532.26 532.26 0.00 0.00 0.00 0.00
2nd 1024 X 1024 2 316.65 324.57 249.99 290.99 7.83 59.60 14.39 15.52
2nd 1024 X 1024 4 149.54 173.00 128.02 149.24 11.55 11.65 9.61 12.01
2nd 1024 X 1024 8 82.42 99.08 60.21 77.80 14.18 15.99 5.35 6.21
3rd 1024 X 1024 1 285.92 285.92 285.92 285.92 0.00 0.00 0.00 0.00
3rd 1024 X 1024 2 175.93 198.45 138.07 152.71 6.95 46.05 13.40 14.33
3rd 1024 X 1024 4 78.91 112.69 57.82 88.98 11.34 11.51 9.27 11.42
3rd 1024 X 1024 8 48.59 69.48 27.81 48.29 14.33 15.42 5.30 6.27

Table A.6 . Rectangular division results using bounding box with delta data.
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RESULTS IN SECONDS BLUNT DATA SET
EXECUTION TIMES TOTAL RENDERING SWAPPING DIVIDING

VIEW RESOLUTION P MIN MAX MIN MAX MIN MAX MIN MAX
1st 256 X 256 1 40.79 40.79 40.79 40.79 0.00 0.00 0.00 0.00
1st 256 X 256 2 27.39 28.12 21.84 22.77 2.64 2.67 5.19 5.22
1st 256 X 256 4 15.47 19.08 10.69 12.63 1.97 3.52 4.11 6.51
1st 256 X 256 8 8.55 15.29 5.18 7.25 1.45 4.44 3.29 8.07
2nd 256 X 256 1 22.50 22.50 22.50 22.50 0.00 0.00 0.00 0.00
2nd 256 X 256 2 14.55 17.12 10.54 13.04 1.79 1.80 3.86 3.93
2nd 256 X 256 4 8.13 12.39 4.90 7.44 1.20 2.44 3.20 4.82
2nd 256 X 256 8 5.37 9.31 2.71 4.29 0.94 2.49 2.64 4.96
3rd 256 X 256 1 26.92 26.92 26.92 26.92 0.00 0.00 0.00 0.00
3rd 256 X 256 2 17.38 18.86 13.30 15.02 1.65 1.71 3.79 3.89
3rd 256 X 256 4 8.91 12.22 6.15 9.53 0.97 2.19 2.65 4.28
3rd 256 X 256 8 6.28 9.17 3.27 5.04 0.83 2.23 2.33 4.67
1st 512 X 512 1 115.39 115.39 115.39 115.39 0.00 0.00 0.00 0.00
1st 512 X 512 2 65.34 65.67 59.20 59.80 2.95 2.96 5.71 5.75
1st 512 X 512 4 32.34 38.63 28.01 33.81 2.20 4.07 4.14 7.55
1st 512 X 512 8 16.26 24.04 12.88 18.05 1.58 5.07 3.35 9.65
2nd 512 X 512 1 65.01 65.01 65.01 65.01 0.00 0.00 0.00 0.00
2nd 512 X 512 2 31.36 44.42 26.53 39.37 2.35 2.35 4.72 4.76
2nd 512 X 512 4 16.48 29.58 12.68 22.84 1.38 3.53 3.63 6.55
2nd 512 X 512 8 9.25 19.55 6.46 12.01 1.11 3.59 2.75 7.65
3rd 512 X 512 1 81.76 81.76 81.76 81.76 0.00 0.00 0.00 0.00
3rd 512 X 512 2 45.73 47.06 40.82 42.31 2.22 2.22 4.61 4.69
3rd 512 X 512 4 25.69 29.37 20.24 22.98 1.33 3.20 3.35 6.21
3rd 512 X 512 8 14.19 18.10 10.22 12.26 1.16 3.03 2.38 6.29
1st 1024 X 1024 1 353.49 353.49 353.49 353.49 0.00 0.00 0.00 0.00
1st 1024 X 1024 2 183.20 191.00 176.70 184.10 3.27 3.29 6.41 6.42
1st 1024 X 1024 4 87.43 107.20 83.04 98.32 2.28 4.60 4.33 8.52
1st 1024 X 1024 8 40.21 66.55 36.67 59.58 1.51 6.17 3.52 12.11
2nd 1024 X 1024 1 202.79 202.79 202.79 202.79 0.00 0.00 0.00 0.00
2nd 1024 X 1024 2 90.17 127.70 84.25 121.50 3.05 3.08 5.72 5.85
2nd 1024 X 1024 4 44.63 74.83 40.59 66.91 1.74 4.03 3.98 7.70
2nd 1024 X 1024 8 23.66 46.55 20.67 40.42 1.30 4.71 2.93 9.13
3rd 1024 X 1024 1 257.06 257.06 257.06 257.06 0.00 0.00 0.00 0.00
3rd 1024 X 1024 2 103.50 167.10 97.96 161.20 2.73 2.74 5.47 5.50
3rd 1024 X 1024 4 54.49 90.48 50.14 83.37 1.89 3.75 4.27 7.29
3rd 1024 X 1024 8 30.06 60.61 25.14 50.45 1.57 5.07 3.76 9.89

Table A.7. Recursive division results using bounding 60a: with blunt data.
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RESULTS IN SECONDS POST DATA SET
EXECUTION TIMES TOTAL RENDERING SWAPPING DIVIDING

VIEW RESOLUTION P MIN MAX MIN MAX MIN MAX MIN MAX
1st 256 X 256 1 61.40 61.40 61.40 61.40 0.00 0.00 0.00 0.00
1st 256 X 256 2 39.99 40.72 31.11 31.92 3.56 3.56 8.50 8.57
1st 256 X 256 4 24.02 25.21 16.01 17.10 3.60 3.84 7.82 8.09
1st 256 X 256 8 13.73 16.65 7.96 9.58 2.17 3.80 4.69 7.91
2nd 256 X 256 1 31.01 31.01 31.01 31.01 0.00 0.00 0.00 0.00
2nd 256 X 256 2 24.20 25.58 15.88 17.19 3.26 3.29 8.06 8.10
2nd 256 X 256 4 16.82 17.06 8.31 9.32 2.80 4.01 7.63 8.41
2nd 256 X 256 8 10.58 13.58 4.48 5.34 1.87 3.80 5.17 8.69
3rd 256 X 256 1 22.53 22.53 22.53 22.53 0.00 0.00 0.00 0.00
3rd 256 X 256 2 19.52 19.66 11.56 11.81 2.88 2.89 7.62 7.74
3rd 256 X 256 4 12.78 14.98 5.36 7.34 2.53 3.47 7.33 7.67
3rd 256 X 256 8 7.10 10.63 2.81 4.59 1.50 2.67 3.99 6.48
1st 512 X 512 1 175.11 175.11 175.11 175.11 0.00 0.00 0.00 0.00
1st 512 X 512 2 100.40 101.20 89.04 89.35 4.78 5.73 10.62 11.67
1st 512 X 512 4 55.43 57.02 45.29 46.10 4.64 5.28 9.83 10.69
1st 512 X 512 8 29.02 35.57 22.03 25.54 3.21 5.08 6.58 10.89
2nd 512 X 512 1 89.68 89.68 89.68 89.68 0.00 0.00 0.00 0.00
2nd 512 X 512 2 56.04 60.45 45.06 49.37 4.82 4.84 10.58 10.62
2nd 512 X 512 4 34.91 38.03 22.34 26.60 4.53 6.42 11.27 12.32
2nd 512 X 512 8 21.41 27.17 10.87 14.25 3.19 6.44 7.38 13.67
3rd 512 X 512 1 61.91 61.91 61.91 61.91 0.00 0.00 0.00 0.00
3rd 512 X 512 2 41.05 43.33 30.65 32.85 4.35 4.37 10.06 10.12
3rd 512 X 512 4 22.88 32.92 12.28 21.71 3.96 5.39 10.52 10.93
3rd 512 X 512 8 12.93 22.05 6.05 11.67 2.01 4.95 5.14 10.92
1st 1024 X 1024 1 546.84 546.84 546.84 546.84 0.00 0.00 0.00 0.00
1st 1024 X 1024 2 289.50 289.60 275.40 275.50 6.56 6.62 13.46 13.53
1st 1024 X 1024 4 137.00 176.20 123.10 161.90 6.46 7.29 13.78 14.18
1st 1024 X 1024 8 70.21 101.40 61.84 81.75 3.50 9.06 7.30 19.37
2nd 1024 X 1024 1 261.28 261.28 261.28 261.28 0.00 0.00 0.00 0.00
2nd 1024 X 1024 2 137.60 162.20 123.60 148.20 6.55 6.57 13.36 13.40
2nd 1024 X 1024 4 76.27 94.26 60.51 78.80 6.21 8.12 14.86 15.64
2nd 1024 X 1024 8 41.16 61.15 29.69 42.95 3.57 9.83 10.24 20.93
3rd 1024 X 1024 1 184.77 184.77 184.77 184.77 0.00 0.00 0.00 0.00
3rd 1024 X 1024 2 104.90 109.50 91.67 96.38 6.11 6.14 12.62 12.62
3rd 1024 X 1024 4 58.99 64.14 44.66 49.49 5.71 7.52 14.09 14.49
3rd 1024 X 1024 8 30.27 46.00 17.92 33.50 3.51 7.52 10.15 19.13

Table A.8 . Recursive division results using bounding box with post data.
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RESULTS IN SECONDS DELTA DATA SET
EXECUTION TIMES TOTAL RENDERING SWAPPING DIVIDING

VIEW RESOLUTION P MIN MAX MIN MAX MIN MAX MIN MAX
1st 256 X 256 1 75.72 75.72 75.72 75.72 0.00 0.00 0.00 0.00
1st 256 X 256 2 56.86 65.51 36.56 41.30 10.91 14.96 19.97 23.57
1st 256 X 256 4 28.83 40.62 15.87 22.91 4.22 7.93 12.89 17.42
1st 256 X 256 8 18.79 29.86 7.61 12.81 2.78 9.01 10.89 18.43
2nd 256 X 256 1 60.89 60.89 60.89 60.89 0.00 0.00 0.00 0.00
2nd 256 X 256 2 46.91 62.76 31.07 32.00 6.23 22.48 14.54 31.33
2nd 256 X 256 4 29.91 31.25 15.82 16.65 4.01 6.56 13.84 14.37
2nd 256 X 256 8 15.71 25.16 8.19 9.74 2.57 7.01 7.47 15.79
3rd 256 X 256 1 35.52 35.52 35.52 35.52 0.00 0.00 0.00 0.00
3rd 256 X 256 2 31.63 40.59 18.23 18.83 4.62 13.73 12.40 22.04
3rd 256 X 256 4 21.88 24.01 8.51 10.37 4.11 6.15 13.24 13.61
3rd 256 X 256 8 14.26 20.03 3.89 6.09 2.48 6.94 8.10 14.11
1st 512 X 512 1 219.86 219.86 219.86 219.86 0.00 0.00 0.00 0.00
1st 512 X 512 2 118.50 158.50 89.72 133.90 13.35 17.43 23.48 28.40
1st 512 X 512 4 55.31 96.89 37.44 69.79 6.88 10.42 17.82 26.20
1st 512 X 512 8 28.30 63.67 16.52 39.01 3.23 13.01 11.46 31.54
2nd 512 X 512 1 177.38 177.38 177.38 177.38 0.00 0.00 0.00 0.00
2nd 512 X 512 2 111.90 124.90 89.35 93.30 8.15 25.40 17.76 35.34
2nd 512 X 512 4 56.43 73.19 42.37 49.82 4.37 11.22 13.97 23.37
2nd 512 X 512 8 32.66 52.60 20.17 26.98 2.91 11.27 12.29 27.90
3rd 512 X 512 1 96.82 96.82 96.82 96.82 0.00 0.00 0.00 0.00
3rd 512 X 512 2 62.35 77.11 42.85 56.14 10.49 11.18 19.16 20.28
3rd 512 X 512 4 34.32 52.91. 18.36 33.05 4.95 9.72 15.64 19.48
3rd 512 X 512 8 16.91 38.82 8.71 17.81 3.21 10.00 8.18 20.75
1st 1024 X 1024 1 650.86 650.86 650.86 650.86 0.00 0.00 0.00 0.00
1st 1024 X 1024 2 343.60 407.70 272.00 380.20 13.11 58.33 25.63 71.29
1st 1024 X 1024 4 140.80 254.20 122.90 219.90 7.57 17.85 17.59 33.81
1st 1024 X 1024 8 68.49 165.20 55.11 136.00 4.17 20.48 13.24 44.31
2nd 1024 X 1024 1 532.26 532.26 532.26 532.26 0.00 0.00 0.00 0.00
2nd 1024 X 1024 2 290.70 311.40 250.10 289.90 9.34 29.08 20.27 40.36
2nd 1024 X 1024 4 133.40 178.80 116.20 147.20 4.55 14.74 17.13 31.30
2nd 1024 X 1024 8 69.83 113.60 55.35 94.39 2.98 14.10 14.37 30.05
3rd 1024 X 1024 1 285.92 285.92 285.92 285.92 0.00 0.00 0.00 0.00
3rd 1024 X 1024 2 174.20 176.70 137.80 152.00 11.54 28.09 21.21 38.38
3rd 1024 X 1024 4 78.08 115.20 56.84 88.68 6.72 11.75 21.14 25.98
3rd 1024 X 1024 8 35.08 79.85 26.30 54.46 2.81 12.46 8.75 24.86

Table A.9. Recursive division results using bounding box with delta data.
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RESULTS IN SECONDS BLUNT DATA SET
EXECUTION TIMES TOTAL RENDERING SWAPPING DIVIDING

VIEW RESOLUTION MIN MAX MIN MAX MIN MAX I MIN I MAX
1st 256 X 256 40.79 40.79 40.79 40.' 0.00 0.00 0.00 0.00
1st 256 X 256 30.12 33.08 20.24 22.86 3.36 3.45 9.55 10.11
1st 256 X 256 21.17 22.96 10.82 12.56 3.20 4.68 10.00 10,99
1st 256 X 256 13.61 24.86 5.94 7.14 2.18 7.96 7.00 18.23
1st 256 X 256 16 9.29 42.08 3.31 4.38 1.28 15.72 5.09 38.02
1st 256 X 256 32 6.67 277.80 2.10 2.95 0.S2 267.30 4.25 275.30
2nd 256 X 256 22.50 22.50 22.50 22.50 0.00 0.00 0.00 0.00
2nd 256 X 256 18.55 24.08 12.25 12.29 2.7 5.65 6.11 11.69
2nd 256 X 256 12.51 20.36 6.09 7.01 2.16 3.85 6.29 13.40
2nd 256 X 256 9.24 19.10 3.17 4.40 1.5 5.16 4.78 15.05
2nd 256 X 256 16 6.07 12.04 1.81 2.9: 1.03 3.12 3.70 9.36
2nd 256 X 256 32 28.63 242.20 0.35 2.93 1.08 38.61 26.68 240.30
3rd 256 X 256 26.92 26.92 26.92 26.92 0.00 0.00 0.00 0.00
3rd 256 X 256 24.08 88.01 12.95 15.72 2.62 11.90 8.32 74.85
3rd 256 X 256 14.84 18.83 6.80 9.08 1.75 3.00 6.41 10.76
3rd 256 X 256 12.07 1426.00 3.72 5.4: 1.17 667.20 8.28 1422.00
3rd 256 X 256 16 6.03 10.67 1.98 3.13 0.71 2.66 3.45 8.02
3rd 256 X 256 32 3.69 6.88 1.27 2.10 0.60 1.78 2.06 5.22
1st 512 X 512 115.39 115.39 115.39 115.39 0.00 0.00 0.00 0.00
1st 512 X 512 74.39 74.74 59.27 59.62 4.23 4.35 14.66 15.02
1st 512 X 512 44.07 52.03 30.01 31.62 3.20 6.32 13.84 20.62
1st 512 X 512 26.17 58.66 15.25 17.71 2.22 10.66 9.42 40.84
1st 512 X 512 16 14.91 28.19 7.08 10.06 1.23 5.24 6.14 19.43
1st 512 X 512 32 8.73 18.83 3.87 5.85 0.79 4.22 4.06 13.21
2nd 512 X 512 65.01 65.01 65.01 65.01 0.00 0.00 0.00 0.00
2nd 512 X 512 42.13 43.62 33.66 34.42 2.55 3.32 7.40 9.82
2nd 512 X 512 26.03 31.54 17.40 18.51 2.80 4.79 8.01 12.91
2nd 512 X 512 17.49 35.19 8.99 10.24 2.12 6.32 7.20 25.09
2nd 512 X 512 16 10.85 19.56 4.86 6.63 1.21 4.43 4.80 14.06
2nd 512 X 512 32 8.12 15.56 2.65 4.20 1.08 5.96 4.41 11.36
3rd 512 X 512 81.76 81.76 81.76 81.76 0.00 0.00 0.00 0.00
3rd 512 X 512 52.95 56.19 40.08 43.66 3.05 3.12 12.45 12.58
3rd 512 X 512 31.82 37.17 20.75 23.44 2.22 4.31 10.90 15.60
3rd 512 X 512 19.16 40.27 10.68 13.80 1.51 7.25 7.39 28.78
3rd 512 X 512 16 11.86 20.40 5.58 7.36 0.94 3.63 4.86 14.53
3rd 512 X 512 32 7.55 17.12 3.24 4.25 0.76 9.10 3.82 13.51
1st 1024 X 1024 353.49 353.49 353.49 353.49 0.00 0.00 0.00 0.00
1st 1024 X 1024 200.40 218.40 176.60 185.50 5.52 6.17 23.72 32.46
1st 1024 X 1024 107.70 123.90 88.91 97.85 3.29 6.00 18.70 29.37
1st 1024 X 1024 58.44 99.00 43.25 51.94 2.45 12.03 15.16 54.63
1st 1024 X 1024 16 31.11 51.16 20.38 28.31 .09 5.94 9.87 28.43
1st 1024 X 1024 32 71.40 534.90 10.09 15.98 0.98 16.97 56.96 524.80
2nd 1024 X 1024 202.79 202.79 202.79 202.79 .00 0.00 0.00 0.00
2nd 1024 X 1024 15.50 135.90 100.20 106.80 ,55 7.88 15.25 28.73
2nd 1024 X 1024 65.70 75.40 50.11 57.24 .46 5.43 15.53 21.85
2nd 1024 X 1024 41.75 93.73 25.71 29.70 10.89 16.00 65.84
2nd 1024 X 1024 16 23.46 37.85 12.39 16.75 .33 6.76 7.81 22.66
2nd 1024 X 1024 32 16.37 26.18 6.77 10.43 14 5.62 7.16 16.62
3rd 1024 X 1024 257.06 257.06 257.06 257.06 .00 0.00 0.00 0.00
3rd 1024 X 1024 155.90 158.60 125.90 134.20 .58 5.48 21.61 32.36
3rd 1024 X 1024 88.11 97.61 64.96 70.16 .66 6.33 18.31 31.24
3rd 1024 X 1024 50.81 60.91 31.86 38.12 6.18 14.52 29.02
3rd 1024 X 1024 16 29.48 34.76 16.39 19.74 08 3.80 10.21 17.97
3rd 1024 X 1024 32 18.87 107.60 9.35 11.36 0.90 4.96 7.75 97.63

Table A. 10. Horizontal division results using rasterization with blunt data.
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RESULTS IN SECONDS BLUNT DATA SET
EXECUTION TIMES TOTAL RENDERING SWAPPING DIVIDING

VIEW RESOLUTION P MIN MAX MIN MAX MIN MAX MIN MAX
1st 256 X 256 1 40.79 40.79 40.79 40.79 0.00 0.00 0.00 0.00
1st 256 X 256 2 30.11 33.73 20.22 23.22 2.96 3.79 9.58 10.39
1st 256 X 256 4 19.78 23.47 10.43 12.52 2.95 4.74 9.17 12.44
1st 256 X 256 8 13.60 23.94 5.51 7.34 2.21 9.13 7.61 18.39
1st 256 X 256 16 7.25 17.95 3.00 4.40 1.14 4.23 4.23 14.31
1st 256 X 256 32 10.56 144.00 1.52 2.78 0.90 8.83 8.33 142.20
2nd 256 X 256 1 22.50 22.50 22.50 22.50 0.00 0.00 0.00 0.00
2nd 256 X 256 2 19.73 20.33 10.13 13.80 2.39 4.00 5.72 10.14
2nd 256 X 256 4 11.18 15.98 5.30 7.91 1.98 3.05 5.34 10.29
2nd 256 X 256 8 9.74 80.77 2.83 4.76 1.20 6.01 4.93 76.67
2nd 256 X 256 16 56.42 257.10 1.59 2.86 0.56 6.50 54.68 255.20
2nd 256 X 256 32 3.09 8.97 0.96 2.04 0.43 2.16 1.81 7.60
3rd 256 X 256 1 26.92 26.92 26.92 26.92 0.00 0.00 0.00 0.00
3rd 256 X 256 2 19.48 25.71 13.47 15.31 2.13 4.01 5.82 10.35
3rd 256 X 256 4 14.40 20.90 6.60 9.12 1.90 2.73 6.56 12.87
3rd 256 X 256 8 8.39 18.53 3.49 5.79 1.06 4.29 4.67 12.72
3rd 256 X 256 16 5.96 61.62 1.86 3.65 0.67 2.52 3.95 58.87
3rd 256 X 256 32 7.60 320.80 1.01 3.04 0.39 150.00 6.59 318.70
1st 512 X 512 1 115.39 115.39 115.39 115.39 0.00 0.00 0.00 0.00
1st 512 X 512 2 75.11 75.57 59.71 60.92 4.09 4.18 14.53 14.95
1st 512 X 512 4 43.88 51.58 29.81 31.69 3.31 6.35 13.67 20.32
1st 512 X 512 8 26.92 54.02 13.45 20.01 2.19 10.68 9.43 39.60
1st 512 X 512 16 11.97 26.80 6.35 10.81 1.29 4.59 5.61 17.92
1st 512 X 512 32 7.84 20.80 3.41 6.24 0.67 7.28 3.88 15.70
2nd 512 X 512 1 65.01 65.01 65.01 65.01 0.00 0.00 0.00 0.00
2nd 512 X 512 2 35.30 50.48 25.74 40.40 3.27 3.32 9.51 9.74
2nd 512 X 512 4 21.48 36.00 13.54 21.50 2.41 5.07 7.92 14.40
2nd 512 X 512 8 12.19 38.50 6.83 11.50 1.37 6.34 5.32 26.96
2nd 512 X 512 16 7.30 26.65 3.67 6.91 0.76 5.81 3.04 19.68
2nd 512 X 512 32 4.81 15.77 2.15 4.19 0.50 3.10 2.24 12.33
3rd 512 X 512 1 81.76 81.76 81.76 81.76 0.00 0.00 0.00 0.00
3rd 512 X 512 2 54.23 56.34 40.97 43.57 3.14 3.20 12.71 12.95
3rd 512 X 512 4 30.70 36.12 20.33 23.42 2.08 4.25 10.20 14.60
3rd 512 X 512 8 18.59 40.10 8.64 15.44 1.45 7.30 7.25 28.59
3rd 512 X 512 16 8.72 20.09 4.24 9.22 0.72 4.11 4.08 15.26
3rd 512 X 512 32 5.87 15.62 2.48 5.37 0.46 3.14 3.35 11.16
1st 1024 X 1024 1 353.49 353.49 353.49 353.49 0.00 0.00 0.00 0.00
1st 1024 X 1024 2 201.50 236.60 178.40 185.60 5.18 5.87 22.99 50.52
1st 1024 X 1024 4 108.10 132.40 89.25 97.03 3.55 5.98 18.84 39.01
1st 1024 X 1024 8 52.80 99.94 39.00 60.36 2.11 11.74 13.77 55.43
1st 1024 X 1024 16 44.00 135.20 18.97 33.84 1.24 27.30 14.57 106.50
1st 1024 X 1024 32 63.62 675.40 10.02 19.33 0.89 161.70 51.77 660.40
2nd 1024 X 1024 1 202.79 202.79 202.79 202.79 0.00 0.00 0.00 0.00
2nd 1024 X 1024 2 98.23 145.70 83.73 123.10 3.85 6.01 14.43 22.20
2nd 1024 X 1024 4 53.95 86.24 42.32 63.94 2.96 6.42 11.61 23.05
2nd 1024 X 1024 8 53.24 311.50 21.46 35.84 1.43 226.90 18.76 280.20
2nd 1024 X 1024 16 15.16 45.14 11.48 21.05 0.82 7.04 3.37 28.66
2nd 1024 X 1024 32 10.34 147.50 6.55 12.26 0.56 44.95 3.45 136.70
3rd 1024 X 1024 1 257.06 257.06 257.06 257.06 0.00 0.00 0.00 0.00
3rd 1024 X 1024 2 156.70 158.50 126.20 135.00 3.76 5.64 21.55 31.95
3rd 1024 X 1024 4 86.30 124.30 64.99 69.90 2.60 6.41 21.09 57.82
3rd 1024 X 1024 8 50.82 62.84 31.41 38.28 1.98 5.74 14.83 31.39
3rd 1024 X 1024 16 24.69 40.27 14.05 24.34 1.01 3.98 10.00 20.19
3rd 1024 X 1024 32 22.98 101.10 7.25 13.77 0.57 48.18 11.49 93.07

Table A .11. Recursive division results using rasterization with blunt data.
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