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ABSTRACT

PARALLELIZATION OF  
AN  IN TERIO R PO IN T ALG O R ITH M  

FO R LINEAR PR O G R AM M IN G

Hüseyin Simitçi
M .S. in Computer Engineering and Information Science 

Supervisor: Asst. Prof. Cevdet Aykanat 
July 1994

In this study, we present the parallelization of Mehrotra’s predictor-corrector 
interior point algorithm, which is a Karmarkar-type optimization method for 
linear programming. Computation types needed by the algorithm are identi­
fied and parallel algorithms for each type are presented. The repeated solution 
of large symmetric sets of linear equations, which constitutes the major com­
putational effort in Karmarkar-type algorithms, is studied in detail. Several 
forward and backward solution algorithms are tested, and buffered backward 
solution algorithm is developed. Heurustic bin-packing algorithms are used 
to schedule sparse matrix-vector product and factorization operations. Algo­
rithms having the best performance results are used to implement a system to 
solve linear programs in parallel on multicomputers. Design considerations and 
implementation details of the system are discussed, and performance results 
are presented from a number of real problems.

Keywords: Linear Programming, Interior Point Algorithms, Distributed 
Systems, Parallel Processing.



ÖZET

BİR İÇ N O K TA  D O ĞRUSAL P R O G R A M L A M A  
A LG O R İTM ASIN IN  PARALELLEŞTİRİLM ESİ

Hüseyin Simitçi
Bilgisayar ve Enformatik Mühendisliği Bölümü, Yüksek Lisans 

Tez Yöneticisi: Asst. Prof. Dr. Cevdet Aykanat 
Temmuz 1994

Bu çalışmada, Karmarkar-tipi bir doğrusal programlama optimizasyon algo­
ritması olan Mehrotra’nın predictor-corrector iç nokta algoritmasının paralel­
leştirilmesi sunulmaktadır. Algoritmanın içerdiği işlem tipleri belirlenmiş ve 
her işlem tipi için paralel algoritmalar sunulmuştur. Karmarkar-tipi algorit­
maların işlem ağırlığını oluşturan büyük simetrik doğrusal denklem kümelerinin 
çözümü detaylı incelenmiştir. Birçok ileri ve geri çözüm algoritması test e- 
dilmiş, bir biriktirmeli geri çözüm algoritmeısı geliştirilmiştir. Seyrek matris- 
vektör çarpımı ve faktorizasyon işlemlerinin dağıtımı için sezgisel bin-packing 
algoritmaları kullanılmıştır. Performans sonuçları en iyi olan algoritmalar 
doğrusal programlama problemlerinin çoklu bilgisayarlarda paralel çözümü için 
bir sistem geliştirilmesinde kullanılmıştır. Dizayn kıstasları ve uygulama de­
tayları tartışılmış, bazı performans sonuçları sunulmuştur.

Anahtar Kelimeler: Doğrusal Programlama, İç Nokta Algoritmaları, Dağı-

tık Sistemler, Paralel İşleme.
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Chapter 1

Introduction

A consensus is forming that high-end computing will soon be dominated by par­
allel architectures with a large number of processors which offer huge amounts 
of computing power. It is inviting to consider harnessing this power to solve 
difficult optimization problems arising in operations research (OR). Such prob­
lems could involve extending existing models to larger time or space domains, 
adding stochastic elements to previously deterministic models, integrating pre­
viously separate or weakly-linked models, or simply tackling difficult combina­
torial problems [7]. Another attractive possibility is that of solving in minutes 
or seconds problems which now take hours or days. Such a capability would 
allow presently unwieldy models to be run in real time to respond to rapidly 
changing conditions, and to be used much more freely in “what if” analyses.

The main difficulty is the present lack of sufficiently general parallel sparse 
linear algebra primitives to permit the wholesale adaptation of existing, proven, 
continuous optimization methods to parallel architectures.

This work describes the application of highly parallel computing to numer­
ical optimization problems, in particular linear programming which is central 
to the practice of operations research.

Before getting into details, we should address the question: What is a 
linear program ? It is an optimization problem in which one wants to min­
imize or maximize a linear function (of a large number of variables) subject 
to a large number of linear equality and inequality constraints. For exam­
ple, linear programming may be used in manufacturing-production planning
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to develop a production schedule that meets demand and workstation capacity 
constraints, while minimizing production costs. It is being used by the U.S Air 
Force Military Airlift Command (MAC) to solve critical logistics problems and 
by commercial air-lines to solve scheduling problems, such as crew planning [4].

Research in linear programming methods has been very active since the 
discovery of the simplex method by Dantzig in the late 1940’s. It has long 
been known that the number of iterations required by the simplex method can 
grow exponentially in the problem dimension in the worst case. More recently, 
interest in linear programming methods has been rekindled by the discovery of 
the projective method of Karmarkar, which has been proven to require 0{nL ) 
iterations and 0(n^·®) time overall, where T is a measure of the size of the 
problem, and the claims that variants of this method are much faster than the 
simplex method in practice [1, 6, 19].

In the past few years, there have been many other interior methods pro­
posed. In this work we will concentrate on the parallel implementation of 
the one proposed by Mehrotra [18], namely predictor-corrector interior point 

method.

In general, there is a technical barrier to easy application of parallel com­
puting technology to large-scale OR/optimization models — the lack of suffi­
ciently general, highly parallel sparse linear algebra primitives. If one examines 
the “standard” algorithms of numerical optimization several critical operations 
appear repeatedly. Perhaps the most common is the factoring of large sparse 
matrices, this operation forms the bulk of the work in most Newton-related 
methods, including interior point methods for linear programming. It is clear 
that without an efficient parallel version of sparse factoring, it will not be 
practical to simply “port” existing general-purpose sparse optimization codes 

to parallel architectures.

CHAPTER 1. INTRODUCTION 2

Previously, most of the research on parallel solution of linear programs 
concentrated on decomposable linear programs [15, 28], which are assumed to 
have a block-angular structure. Panwar and Mazumder [25] present a parallel 
Karmarkar algorithm for orthogonal tree networks. Li et al. [21] give parallel 
algorithms for simplex and revised simplex algorithms. Currently we are not



aware of any research on the parallelization of interior point algorithms for 
general linear programming problems on distributed memory message-passing 
parallel computers.

Distributed memory, message-passing parallel computers, which are usually 
named as multicomputers, are the most promising general purpose high perfor­
mance computers. Implementation of parallel algorithms on multicomputers 
requires distribution of data and operations among processors while supplying 
communication and synchronization through messages. For these architectures 
it is important to explore these capabilities fully to achieve maximum perfor­
mance. In the following chapters we investigate the efficient parallelization 
of the most time-consuming steps of interior point (Karmarkar-type) meth­
ods and elaborate on the methodology used to develop parallel algorithms for 
these problems. The algorithms and the methodology are used to implement 
PLOP (Parallel Linear Optimizer), a parallel implementation of Mehrotra’s 
predictor-corrector interior point algorithm (PCIPA), on iPSC/2 hypercube 
multicomputer.

In Chapter 2 we will introduce linear programming and PCIPA, and discuss 
the computation types needed by this algorithm. Parallelization of PCIPA will 
be discussed in Chapter 3. In this chapter every section will introduce the 
parallel algorithms for different computation types of PCIPA and how they are 
implemented in PLOP.

CHAPTER 1. INTRODUCTION 3

As noted earlier, the main computational effort of the Karmarkar-type lin­
ear programming methods involve the repeated solution of large symmetric 
sets of linear equations. For this reason, algorithms that optimize the PLOP 
performance for the solution of sparse sets of linear equations are presented 
separately in Chapter 4. These algorithms involve both Cholesky factorization 
and forward-and-backward substitution for the solution of linear equations and 
exploit data locality and concurrency by scheduling the operations among the 
processors.

Experimental results for PLOP performance obtained from actual runs on 
linear programs from the NETLIB suite [8] are presented in Chapter 5. These
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data represent realistic problems in industry applications ranging from small- 
scale to large-scale. Finally we derive the conclusions from the earlier discus­
sions in Chapter 6.



Chapter 2

Predictor-Corrector Method

2.1 Linear Programming Problem

Linear programming problem is the problem of minimizing (or maximizing) a 
linear function subject to a finite number of linear constraints and to the con­
dition that all variables must be nonnegative. The function to be optimized in 
the linear programming problems is called the objective function.

Mathematically, the linear programming problems can be formulated as 
follows^:

minimize c ‘x
subject to A x  = b, (2-1)

X > 0.

where A  is a given m x n matrix and m < n, b is a given m-component 
right hand side vector, c is a given n-component coeiBcient vector that defines 
the objective function, and x is an n-component nonnegative unknown vector. 
Here, m is the number of constraints and n is the number of variables. This 
linear programming problem is called the primal problem.

Associated with this primal problem is the dual linear program:

maximize b^y 
subject to A ^y  -f z =  c, 

z > 0 .

(2.2)

În this work matrices and vectors are denoted by capital bold letters and small bold 
letters, respectively. Nonbold small letters are used for scalar values.



which we have written in equality form by introducing slack variables z (also 
called reduced costs).

The linear programming problem is to find the optimal value of the objec­
tive function subject to the linear constraints. The optimization problem arises 
because the linear equations A x  = b is underconstrained, i.e., the coefficient 
matrix A  contains many more columns (variables) than rows (constraints).

Since Karmarkar’s fundamental paper [19] appeared in 1984, many interior 
point methods for linear programming have been proposed. Among these vari­
ants the primal affine-scaling, dual affine-scaling [2, 24], one-phase primal-dual 
affine-scaling, and one-phase primal-dual path following methods are the most 
popular ones.

We focus on one variant — Mehrotra’s predictor-corrector interior point al­
gorithm (PCIPA). But before introducing PCIPA we will describe the one-phase 
primal-dual path following algorithm (PDPF), which constitutes the theoret­
ical base of PCIPA. In the next section we give a brief review of the PDPF 
algorithm. For a more detailed description, see [18, 23, 26]. Also [22] gives an 
informal and intuitive description.

2.2 Primal-Dual Path Following Algorithm

The PDPF algorithm (Fig. 2.1) is motivated by applying the logarithmic bar­
rier function to eliminate the inequality constraints in (2.1) and (2.2).

Fix /i > 0. Let (x^,y^,z^) be a solution to the following system of 2n -f- m 
(nonlinear) equations in 2n +  m unknowns:

CHAPTER 2. PREDICTOR-CORRECTOR METHOD 6

Ax =  b,

A^y -f- z =  c, 

XZe =  //e,

(2.3)

(2.4)

(2.5)

where e denotes the n-vector of ones, and X  and Z denote the diagonal matrices 
with X  and z vectors, on the diagonal, respectively. The first m equations in 
(2.3) are part of the primal feasibility requirement and the next n equations 
in (2.4) are part of the dual feasibility requirement. The last n equations are 
called //-complementarity.
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start with /i > 0, X > 0, z > 0. 
while stopping criterion not satisfied do 

p = h -  Ax;
<7 = c — A^y — z;
7  = /iX“ 'e  — Ze;
D = X Z “ ^
A y  = (A D A ^)-‘ (AD(<T -  7 ) + p); 
Az — <j — A ^A y;
A x  - D(7 — Az); 
find Op and cxi such that

X > 0 and z > 0 is preserved;
X < - X -f
y y -I- Ay/ttj; 
z <— z +  Az/ttj

Figure 2.1: The primal-dual path following algorithm. 

Applying Newton’s method to (2.3)-(2.5), we get

A A x  =  p,
nrA  A y  -f A z  =  <7,

where

Z A x  -t- X A z  =  (f>, 

p =  b — A x,
rp

<7 =  c — A y  — z,

and

(2.6)

(2.7)

( 2.8)

<l> =  pe — X Ze.

If we multiply (2.7) by A X Z “  ̂ and then use (2.8) followed by (2.6), we see

that
Ay = (ADA^")"^(AD(<7 -  7 ) -b p),

where D is the positive definite diagonal matrix satisfying

D =  X Z " ‘

and
7  =  X"i<^ =  pX-^e -  Ze.

Once Ay is known, it is easy to solve for Az and Ax,

Az =  <7 — A^Ay

(2.9)

(2.10)
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and

The desired update is then

A x =  D (7 — A z). (2.11)

X <-- X +  A x , (2.12)

y ^ ■ y + A y , (2.1.3)

z <--  z -f A z. (2.14)

However, there is no guarantee that this update will preserve the nonneg­
ativity of X and z, so a shorter step has to be taken to keep x  > 0 and z > 0 
using ratio tests.

2.3 Mehrotra’s Predictor-Corrector Method

Mehrotra introduces a power series variant of the primal-dual algorithm. The 
method again uses the logarithmic barrier method to derive the first-order 
conditions (2.3)-(2.5). Rather than applying Newton’s method to (2.3)-(2.5) 
to generate correction terms to the current estimate, we substitute the new 
point into (2.3)-(2.5) directly, yielding

A (x  -f- A x ) =  b, (2.15)

A ^ (y -f  A y ) - f  (z -f-A z ) =  c, (2.16)

(X  +  A X )(Z  -h A Z )e  =  /xe, (2.17)

where A X  and A Z  are diagonal matrices having elements A x  and A z, re­
spectively. Simple algebra reduces (2.15)-(2.17) to the equivalent system

A A x  =  b — A x, (2.18)

A ^ A y -t -A z  =  c — A^y — z, (2.19)

X A z  +  Z A x  =  /¿e -  X Z e  -  A X A Z e . (2.20)

The left-hand side of (2.18)-(2.20) is identical to (2.6)-(2.8), while the right- 
hand side has a distinct difference. There is a non-linear term A X A Z e  in 
the right-hand side of (2.20). To determine a step approximately satisfying 
(2.18)-(2.20), Mehrotra suggests first solving the defining equations for the 
primal-dual affine direction:

A A x  =  b -  A x, (2.21)

A ^ A y  +  A z  = c -  A ^y -  z, 

X A z  -f Z A x  =  -X Z e .

(2.22)

(2.23)



These directions are then used in two distinct ways: to approximate the non­
linear terms in the right-hand side of (2.18)-(2.20) and to dynamically estimate 
fi. The actual new step A x , A y , A z  is then chosen as the solution to
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A A x  = b -  Ax, 

A ^ A y  -f A z  = c — A^y — z, 

X A z  +  Z A x  =  / xe- X Z e  -  A X A Z e .

(2.24)

(2.25)

(2.26)

Clearly, all that has changed from (2.6)-(2.8) is the right-hand side, so the 
matrix algebra remains the same as in the solutions (2.9),(2.10) and (2.11). 
Ratio tests are now done using A x , A y  and A z  to determine actual step sizes 
Op and ad, and the actual new point x ,y ,z  is defined by (2.12)-(2.14).

The results given in [18] show that the predictor-corrector method almost 
always reduces the iteration count and usually reduces computation time. 
Furthermore, as problem size and complexity increase, the improvements in 
both iteration count and execution time become greater. Thus the predictor- 
corrector method is a higher-order method that is generally very computation­

ally efficient.

2.4 Predictor-Corrector Interior Point Algo­
rithm

For the implementation of PCIPA, we will consider a more general form of the 
primal linear problem with the addition of upper bounds and ranges.

minimize c x  
subject to A x  — w = b, 

X -f  t = u, 
w -f- p = r 
X , w, t ,p  > 0.

(2.27)

where u is the upper bound vector, r is range vector, and w, t, p are appropri­
ate slack variables.

Corresponding to the primal problem in (2.27), dual linear problem is as
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m number of rows (constraints) n
A  constraint matrix b
c objective function f
r ranges i
u upper bounds w
X primal solution y
z dual slacks p
q dual range slacks s
t upper bound slacks v

Pres primal residual (i.e., infeasibility) dres
Pobj primal objective value dobj

Ufc shifted upper bounds

number of columns (variables)
right-hand side
fixed adjustment to obj. func.
lower bounds
primal surpluses
dual solution
range slacks
dual for upper bound slacks 
dual for range (w) 
dual residual (i.e., infeasibility) 
dual objective value

(2.28)

Figure 2.2: Variables of PCIPA.

follows:
maximize b ‘y  — u‘s — r*q 
subject to A ^y — s -f z =  c, 

y  -b q -  V =  0, 
s,q , V, z >  0.

Implementation of Mehrotra’s predictor-corrector method on this form of 
linear problem results in the predictor-corrector interior point algorithm (PCIPA) 
given in Figs. 2.3 and 2.4. Linear programming variables used in PCIPA are 
explained in Fig. 2.2. In this algorithm, a variable with a capital letter, other 
than A  matrix, denotes a diagonal matrix with the corresponding vector on 
the diagonal. We use for matrix transpose and for vector transpose.

Issues concerning the construction of an initial solution and an effective 
stopping rule are studied in the literature in detail [1, 5, 9, 23].

2.5 Computation Types for PCIPA

A study of PCIPA given in Figs. 2.3 and 2.4 reveals that PCIPA has a wealth 
of computation types. We will classify them into five general groups:

1. Sparse Matrix-Vector Products. There are two kinds of matrix-vector 
product. One is the product of an m x n matrix with an n vector (A6), 
the other is the product of an n x m matrix with an m vector

2. Vector Operations. These operations include dense vector sum (e.g., 
y -f-q ), difference (e.g., s — z), inner product (e.g., c ‘x). We can also 
include diagonal matrix operations in this type because they are simply
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treated as vectors. For example Z X   ̂ is computed as simply element by 
element division (z ,/x ,) of two vectors z and x.

3. Sparse Matrix-Matrix Product. This involves A D A ^, which is the prod­
uct of two sparse matrices A  and A^ scaled by the elements of the diag­
onal matrix D.

4. Scalar operations. Besides standard scalar operations, this type involves 
the search for a minimum or maximum among a list of scalar values.

5. Sparse Linear System Solution. This is where the most of the solution 
time is used in PCIPA and involves the solution of a large sparse linear 
system K x  =  b, where K  is a positive definite matrix. In PCIPA, K 
appears to be (A D „A ^ -|- D^)·

In the next chapter, we will discuss the parallelization of these computa­
tion types in detail. Since our goal is to get a parallel implementation of the 
PCIPA, we will have a unified approach in the parallelization of these types by 
considering the interactions among them.
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find an initial solution 
start with /i > 0;
/  = U5 = u -  b = b -  A£;
Ub = b ‘ b; Uc = c ‘c; 
itr = 0;
while itr < iteration-limit do

p = b -  A x -J- w; O’ = c -  A^y -f- s -  z; 

a  = r - w - p ;  /3 = y - t -q -v ;

T = Uj -  X -  t;

Pobj = c‘x -f- / ;  Pre3 = >/p‘ p + t ‘ t -f a«a /  (n̂  -1-1);

doti = b‘y -  u ŝ -  r‘q -f- / ;  = ^o-'cr -|- /3̂ /3 /  (wc -f- 1);

if stopping-rule()
optimal found; break;

D„ =  (ZX-^ -I- S T -»)-^  =  (Y W -i -H Q P - i ) - ';

7z = -z ; 7«; = -w ; 7< = -t ; 7 , = -q ;

o- = -  7 ;̂ p = p + 7u,; = "T -  7«; «  = a -  7u,; /3 = /3 -  7 ,;

A y  = (A D „A ^ + Drn)-\p + D „ (Q P - 'a  -  (3) +  AD„(<r -  S T "V )); 

A x  = D „(A ^A y -  <r -I- ST“ V );

As = S(A x -  r)T"^e; Ap = D ^(A y -1- V W ^ a  -|- /3);

A v  = D ^ V W "^(A y -  Q P -ia  + /3)]

A z = 7  ̂ -  ZX"^ Ax; Aw = 7  ̂ -  WV"^ Av;

A t = 7t -  TS"*As; A q = 7, -  QP"^ Ap;

o:p = maxi{l, ¿|^min{Ax,/x„ A w ./w ,, At,/t,·, A p ,/p ,}} ;

ad -  max,{l, ¿^m in{A z,/z,, A y ,/y ,, As,/s,·, Aq,/q,·, A v ,/v ,}} ;

Op = max{l, Op, qj};

Figure 2.3: Predictor-corrector interior point algorithm, first part.
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IJ. = (2(ap -  l)/(ap + 20))(sT -|- p‘ q -f- z‘x -|- v 'w )/(2n -F 2m);

'Y, = ^ X - 'e -A X X -^ A z ;

7  ̂ = -  ASS“ * At;

7g = /iP “ *e -  A P P “ * Aq;

7  ̂ = /iV “ *e -  A V V “ * Aw;

(T = (T -'y ,; P = P + lyj\ T = T - 7 i; a = a -  7 „̂; /3 = /3 -7 , ;

-  z; lw = l w -  w; 7i = 7t -  t; 7, = 7, -  qi 

A y = (AD„A3’ + D ^)-*(p  -(- D ^(Q P -*a -  y3) -t- AD„(<r -  ST“ *r)); 

A x = D „(A ^A y -  <r -l· ST“ *r);

As = S(A x -  r )T “ *e; A p = D ^(A y -|- V W “ *a -1- /3);

A v  = V W “ *(Ay -  Q P -*a  + /3);

A z =  7 ^ - Z X “ * A x ; A w  =  7 ^ „ - W V “ * A v ;

A t = 7i -  TS“ *As; A q  = 7, -  Q P“ *Ap;

t t p  = max,{l, ¿^m m {Axj/x,·, Aw,/w,·, At,/t,·, Apj/p,·}};

arf = max,{l, ^ m iii{A z,/z ,·, Ay^/y,·, As,/s,·, Aqi/q,·, A v,/v,·}};

if ((c* A x < 0) and («p = 0) and (pres < 10~ )̂) 
primal unbounded; exit;

if ((b*Ay < 0) and (a^ = 0) and (¿res < 10“ ®)) 
dual unbounded; exit;

if (o!p < 1) «p = 1; if («d < 1) OLd — 1;

w = w + Aw/ttp; x = x + A x /a p ; y = y + Ay/od;

z = z-|-Az/ad; s = s -f-A s /a j; t = t-(-At/ap;

v = v-|-Av/od; p = p + Ap/ap; q = q-l-Aq/ad;

b = b -I- A£;
X =  X -f

Figure 2.4: Predictor-corrector interior point algorithm, second part.



Chapter 3

Parallelization of PCIPA

The purpose of this chapter is to investigate the efficient parallelization of 
PCIPA on medium-to-coarse grain multicomputers. These architectures have 
the nice scalability feature due to the lack of shared resources and increasing 
communication bandwidth with increasing number of processors. In multicom­
puters, processors have neither shared memory nor shared address space. Syn­
chronization and coordination among processors are achieved through explicit 
message passing. Each processor can only access its local memory. Processors 
of a multicomputer are usually connected by utilizing one of the well-known 
direct interconnection network topologies such as ring, mesh, hypercube and 
etc.

In order to achieve high efficiency on such architectures, the algorithm must 
be designed so that both computations and data can be distributed to the pro­
cessors with local memories in such a way that computational tasks can be run 
in parallel, balancing the computational loads of the processors. Communica­
tion between processors to exchange data must also be considered as part of 
the algorithm. One important factor in designing parallel algorithms is granu­

larity. Granularity depends on both the application and the parallel machine. 
In a parallel machine with high communication latency (start-up time), the 
algorithm should be structured so that large amounts of computation are done 
between successive communication steps. That is, both the number and the 
volume of communications should be minimized in order to reduce the commu­
nication overhead. The communication structure of the parallel algorithm is 
also a crucial issue. In a multicomputer architecture, each adjacent pair of pro­
cessors can concurrently communicate with each other over the communication

14
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links connecting them. Such communications are referred as single-hop com­
munications. However, non-adjacent processors can communicate with each 
other by means of software or hardware routing. Such communications are 
referred as multi-hop communications. Multi-hop communications are usu­
ally routed in a static manner over the shortest paths of links between the 
communicating pairs of processors. In software routing, the cost of multi-hop 
communications is substantially greater than that of the single-hop messages 
since all intermediate processors on the path are intercepted during the com­
munication. The performance difference between an individual multi-hop and 
single-hop communication is relatively small in hardware routing. However, 
a number of concurrent multi-hop communications may congest the routing 
network thus resulting in substantial performance degradation. Moreover, in 
almost all commercially available multicomputer architectures, interprocessor 
communications can only be initiated from/into contiguous local memory lo­
cations. Hence, communications from/into scattered memory locations may 
introduce considerable overhead to the parallel program. In this work, all 
these points are considered in designing an efficient parallel PCIPA algorithm 
for multicomputers.

Our parallel linear optimizer (PLOP) program, running PCIPA, consists of 
two phases. In the preprocessing phase, preparatory work is done such that 
necessary data structures for the later phase is constructed and distributed to 
the processors. In the solution phase, PCIPA is executed by all processors in 
parallel.

All of the matrices used in our implementation are stored in a sparse format. 
For example, the linear programming coefficient matrix A  is stored column­
wise as a sequence of compressed sparse column vectors, which is referred as 
column-compressed, row-index storage scheme. Within each column, nonzero 
elements are stored in order of increasing row indeces together with their row 
indices. However, some of the operations in PCIPA require access of rows of 
A . For the sake of efficient implementation of these operations matrix A  is 
also stored row-wise as a duplicate representation. This representation, which 
is referred as row-compressed, column-index storage scheme, is the dual of the 
row-wise storage scheme. Operations in PCIPA which require access of rows 
of A^ can be efficiently implemented by using the column-wise storage since
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column-wise storage of A corresponds to the row-wise storage of A^.

We use Struct(M, k) to denote the set of row indices of the nonzero entries* 
in column k of the matrix M. That is,

Struct(M, k) =  {e ( rriik ^  0}.

Similarly, Struct(x) denotes the set of indices of the nonzero entries in vector 
X.  That is,

Struct(x) =  {i I Xi ^  0}.

We will use i;(M ) to denote the number of nonzero entries in sparse matrix 
M  and ?;(M, i) to denote the number of nonzero entries in the ¿-th column of 
M . Here, P  denotes the number of processors used.

Throughout this work, column-wise distribution of sparse matrices is used. 
Column i of a sparse matrix M  is assigned to the processor map(M, i). We use 
mycols(M) to denote the set of columns of M  owned by the calling processor. 
Usually, the map(·) function will be determined during the preprocessing phase 
and solution phase is constrained to use these mappings.

3.1 Sparse Matrix-Vector Products

PCIPA involves two types of matrix vector products, AS and A^V> where 
6 is an n-vector (e.g., ^ =  x  and S =  Dn(cr — S T “ *r)) and is an m-vector 
(e.g., '4> = y  and tj) =  A y ).  To perform these operations in parallel, rows 
of A  and A^ matrices should be distributed among processors which corre­
sponds to row-wise and column-wise distribution of A  matrix, respectively. 
The matrix-vector product AS involves m inner products of sparse row vectors 
with the n-vector S. The computational cost of the ¿-th inner product (which 
corresponds to row i) is 2?;(A^, z) floating point operations, where t/(A ^ ,z) 
denotes the total number of nonzeros in the z-th row of matrix A. Hence, in 
order to achieve the load balance during the parallel execution of this type 
of operations, row-wise distribution of A  should be such that the sum of the 
number of nonzero entries of the rows assigned to each processor should be 
equal as much as possible. Note that, this mapping problem is equivalent to

^Nonzero is used to mean the entries which are structurally not equal to zero, though 
they can get a zero value during the operations.
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binsize = ([m/T’J) +  1 
for I = 1 to m do

roww(i) = T](A^,i) 
for I = 1 to P do 

pweight(i) = 0 
prownum(i) = 0 
pstate(i) = EMPTY 

sort(roww, rowidx)
{sort row weights in descending order and put 
index values in rowidx. Tomdx(newindex) =  oldindex.} 

for i = m downto 1 do 
min = 0
for = 1 to 7* do

if ((pweight(fc) < pweight(m?n) or pstate(mtn) = FULL) 
and pstate(fc) ^ FULL ) 

min = k
pweight(min) = pweight(»7«‘n) + roww(i) 
map(A,rowidx(i)) = min 
prownum( min) = prownum( min) + 1 
if ( prownum( min) > binsize) 

pstate(min) = FULL

Figure 3.1; Algorithm to map rows of A  matrix to processors for the multipli­
cation A6.

the p-way number partitioning problem which is known to be NP-hard. In this 
work we employ a bin-packing heuristic for this mapping problem. Every pro­
cessor is considered as a bin. In every iteration of the mapping algorithm the 
row with the highest operation count (number of nonzero entries) is assigned to 
the processor with the lowest weight, until every row is assigned to a processor.

As will be discussed in Section 3.2, row (column) mappings of the A  matrix 
also determine the distribution of the m-vectors (n-vectors) to that processor. 
Hence, computational costs of local vector-vector operations are proportional 
to the number of rows assigned to individual processors. Thus, the number of 
rows assigned to different processors should be equal as much as possible in 
order to achieve load balance during the local vector-vector operations. So the 
objectives of the mapping algorithm can be stated as the distribution of the 
rows among the bins such that every bin has almost equal weight and almost 
equal number of rows. To achieve these objectives, [m/T’J -|- 1 is assigned as 
the capacities of all bins. During the execution of the algorithm we consider 
a bin exceeding this maximum bin size as full. Column mapping algorithm is 
very similar to the row mapping algorithm illustrated in Fig. 3.1.
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and d are local vectors.)
perform global-collect operation on local 6 vectors 
to collect the global S vector 6g 
for j  6 mycols(A^) do 

i9(t) = 0
for k e Struct(A^,j) do

m  = m + a i j x 6 g ( k )

Figure 3.2: Node algorithm for parallel sparse matrix-vector product A6. 

{ij? and V are local vectors.)
perform global-collect operation on local xj> vectors 
to collect the global rf vector ■̂ g 
for j  6 mycols(A) do 

u{i) - 0
for k € Struct(A,j) do

= ^{j) + akj X •0g(fc)

Figure 3.3: Node algorithm for parallel sparse matrix-vector product A^V’ ·

Algorithm that computes A 6  is shown in Fig. 3.2. Here, 6 is used to 
denote the local portion of the global 6 vector 6g. In the algorithm every node 
processor computes inner products of its sparse row vectors with ^g. In the 
algorithm Struct(A^,y) denotes the structure of the j-th row of A. Algorithms 
for the computation of К' '̂ф (Fig. 3.3) are duals of the ones given for A8  and 
can be derived in the same spirit.

3.2 Vector Operations

All vectors are treated as dense. These dense vectors are distributed among 
the processors according to the mappings obtained in Section 3.1. Vectors with 
size n are distributed according to the column mappings and vectors with size 
m are distributed according to the row mappings obtained for A . Most of these 
dense operations doesn’t require any communication or synchronization among 
processors. Every processor computes the corresponding operations with the 
portions of the vectors it owns. As before we will again use x  to denote the 
portion of the global x  vector that is owned by a processor.
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To compute the vector sum p + q  in parallel each processor will concurrently 
compute p -f q with its local portions. Other vector operations are similarly 
computed. Computation of the inner product c 'x  requires a global sum oper­
ation at the end. After each processor computes its local inner product c ‘x, 
the partial sums should be globally summed.

Diagonal matrices are treated as simply vectors. Hence, operations on 
diagonal matrices are computed in parallel similar to corresponding vector 
operations as discussed above.

3.3 Sparse Matrix-Matrix Product

PCIPA and all other types of interior point algorithms requires the formation 
and factorization of a matrix

K =  A D A ^

in every iteration, where only diagonal matrix D changes among the iterations.

In most of the sequential implementations [1, 23] the nonzero elements of 
the outer products are stored, where a „  is the ¿th column of A. K  is
then calculated as

A D A ^ =

where the product of d, is taken with each nonzero element of a*,a‘ ,.

We have to modify this approach to calculate A D A ^ in parallel. Since 
columns of K  will be distributed among the processors, products generated by 
a column a „  must be distributed to the processors those need them in every 
iteration. This would cause a high communication count and volume.

To tackle with this problem, our approach is to locate a nonzero element 
of K  and the set of products that will be added to it on the same processor. 
The preprocessing phase is shown in Fig. 3.4. Here prds(A:,j) denotes the set 
of tuples that constitute the products that will be summed to k{j. In a tuple 
(prd,idx), prd denotes the product and idx is the index of the dijx element 
that will be multiplied with it. Because of the reasons that will be explained 
in the next chapter columns and rows of K  will be reordered, and perm(-)
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for I = 1 to m do
for j  6 Struct(K, i) and j  > i do 

prds(/;,j) = 0 
for I = 1 to n do

for row 6 Struct(A, i) do 
for col € Struct(A,i) do 

if row > col
col2 =  perm(co/) 
row2 = perm(roti))
prd — ĉol̂ i  ̂ r̂oWfi
if row2 > col2

pids(krow2 ,col2 ) = PTds{krow2 ,col2 ) U { (prd, l) }
else

prds(Â;coi2,rou;2) = Prds(/îco;2,rou;2) U { (P̂ d, t) }

Figure 3.4: Algorithm to construct product sets for each kij.

perform global-collect operation on local d vectors 
to collect the global d vector dg 
for i 6 mycols(K) do

for j  6 Struct(K, i) and j  > i do
kji =  0.0
for (prd, idx) £ prds(A:j,·) do 

kji = kji +prd  X dg(idx)

Figure 3.5: Node algorithm for the matrix-matrix product A D A ^.

array in the algorithm is used to denote the permutation vector that makes 
this reordering.

In every iteration the actual value of a nonzero kij will be calculated as 
(Fig. 3.5)

%  =  E  îdx-
{prd̂ idx)Eprds{kij)

In this formulation, since only d vector is needed by processors, communication 
cost is very low.

3.4 Scalar Operations

Most of the scalar operations can be done on processors without any commu­
nication. But some scalar values are needed by every processor. So there will
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be duplication of some operations on every processor.

One of the scalar operations needed by PCIPA is the search for a global 
minimum of some scalar values contained in processors. Most of the parallel 
architectures have standard routines to do this operation.

3.5 Sparse Linear System Solution

A wealth of solution methods for solving large sparse systems of linear equations 
has been developed, most of them falling under two categories:

1. Direct methods involve the factorization of the system coefficient ma­
trix, usually obtained through Gaussian elimination. Implementations 
of methods in this class require the use of specific data structures and 
special pivoting strategies in an attempt to reduce the amount of fill-in 
during Gaussian elimination.

2. Iterative methods generate a sequence of approximate solutions to the 
system of linear equations, usually involving only matrix-vector multipli­
cations in the computation of each iterate. Methods like Jacobi, Gauss- 
Seidel, Chebychev, Lanczos and the conjugate gradient are attractive by 
virtue of their low storage requirements, displaying, however, slow con­
vergence unless an effective preconditioner is applied.

The relative merits of each approach depends on such factors as the charac­
teristics of the problem and the host machine. Size, density, nonzero pattern, 
range of coefficients, structure of eigenvalues and desired accuracy of the so­
lution are some of the problem attributes to be considered. Beyond simple 
characteristics as speed and size of memory, other aspects of the host machine’s 
architecture play a decisive role both in the selection of a solution method and 
in specific implementation details. Recent research in sparse matrix techniques 
concentrate on specializing algorithms that can achieve the most benefit from 
parallelism, pipelining or vectorization. Also important in the comparison of 
the two approaches in implementations dedicated to a specific machine is the 
data transfer rates between various memory media, like disk, main memory, 
cache memory and register files.
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As stated earlier, in this work we make use of Cholesky factorization, which 
is a direct method for the solution of linear systems. In Chapter 4 we will 
discuss in detail parallelization of Cholesky factorization and review existing 
and proposed algorithms. We will also present programming techniques used 
in the implementation of this step in PLOP.



Chapter 4

Parallel Sparse Cholesky 
Factorization

Consider a system of linear equations

K x  = b,

where K  is an n x n  ̂ symmetric positive definite matrix, b is a known vector, 
and X is the unknown solution vector to be computed. One way to solve the 
linear system is first to compute the Cholesky factorization

K  =  LL^,

where the Cholesky factor L is a lower triangular matrix with positive diagonal 
elements. Then the solution vector x can be computed by successive forward 
and backward substitutions to solve the triangular systems

Ly = b, L^x =  y.

4.1 Sequential Algorithms

If K  is a sparse matrix, meaning that most of its entries are zero, then during 
the course of the factorization some entries that are initially zero in the lower 
triangle of K  may become nonzero entries in L. These entries of L are known 
as fill or fill-in. Usually, however, many zero entries in the lower triangle of K 
remain zero in L. For efficient use of computer memory and processing time, 
it is desirable for the amount of fill to be small, and to store and operate on

* Though K appeared as an m x m matrix in the previous chapters, in this chapter we 
assume its size as n x n which is the convention in the literature.
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only the nonzero entries of K  and L.

It is well known that row or column interchanges are not required to main­
tain numerical stability in the factorization process when K  is positive definite. 
Furthermore, when roundoff errors are ignored, a given linear system yields 
the same solution regardless of the particular order in which the equations 
and unknowns are numbered. This freedom in choosing the ordering can be 
exploited to enhance the preservation of sparsity in the Cholesky factorization 
process. More precisely, let P  be any permutation matrix. Since PK P^ is also 
a symmetric positive definite matrix, we can choose P based solely on sparsity 
considerations. That is, we can often choose P so that the Cholesky factor L of 
P K P ^  has less fill than L. The permuted system is equally useful for solving 
the original linear system, with the triangular solution pha.se simply becoming

Ly =  Pb, L^z =  y, X =  P^z.

Unfortunately, finding a permutation P that minimizes fill is a very difficult 
combinatorial problem.

Since pivoting is not required in the factorization process, once the order­
ing is known, the precise locations of all fill entries in L can be predicted in 
advance, so that a data structure can be set up to accommodate L before any 
numeric computation begins. This data structure need not be modified during 
subsequent computations, which is a distinct advantage in terms of efficiency. 
The process by which the nonzero structure of L is determined in advance is 
called “symbolic factorization.” Thus, the direct solution of K x  = b consists 
of the following sequence of four distinct steps:

1. Ordering. Find a good ordering P  for K; that is, determine a permutation 
matrix P so that the Cholesky factor L of PK P^ suffers little fill.

2. Symbolic factorization. Determine the structure of L and set up a data 
structure in which to store K and compute the nonzero entries of L.

3. Numeric factorization. Insert the nonzero entries of K  into the data 
structure and compute the Cholesky factor L of PK P^.

4. Triangular solution. Solve Ly =  P b  and L^z =  y, and then set x =  P^z.



Several software packages for serial computers use this basic approach to 
solve sparse symmetric positive definite linear systems. Detailed explanations 
of these steps and exposition of the graph theoretical notions used in sparse 
linear systems can be found in [13]. We now briefly discuss algorithms and 
methods for performing each of these steps on sequential machines.

4.1.1 Ordering

Despite its simplicity, the minimum degree algorithm produces reasonably good 
orderings over a remarkably broad range of problem classes. Another strength 
is its efficiency: as a result of a number of refinements over several years, cur­
rent implementations are extremely efficient on most problems. George and 
Liu [14] review a series of enhancements to implementations of the minimum 
degree algorithm and demonstrate the consequent reductions in ordering time.

Nonzero structure of A D A ^ matrix for woodw problem can be seen in 
Fig. 4.1. Factorization of this matrix without ordering results in a very dense 
matrix. But after ordering, sparsity is mostly preserved as seen in Fig. 4.2.
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Figure 4.1: Nonzero Entries of A D A ^ matrix for woodw problem.



CHAPTER 4. PARALLEL SPARSE CHOLESKY FACTORIZATION 26

■  '

.. · ■.' · ·*■%' '

Figure 4.2: Nonzero Entries of ordered L (factor) matrix for woodw problem.

4.1.2 Symbolic Factorization

We use ColStruct(M, k) to denote the set of row indices of the nonzero entries 
in column k of the lower triangular part of the matrix M. That is,

ColStruct(M, A:) =  {¿ > A: I m,-fc 7̂ 0}.

Similarly, RowStruct(M, k) denotes the set of column indices of the nonzero 
entries in row k of the lower triangular part of the matrix M. That is,

RowStruct(M, A:) =  {i < A: I mjt, 7̂ 0}.

For a given lower triangular Cholesky factor matrix L ,̂ define the function 
parent as follows:

parent(j) =
min{¿ € ColStruct(L,j)}, if ColStruct(L, j )  7̂ 0, 
7, otherwise.

Thus, when there is at least one off-diagonal nonzero in column j  of L, parent(ji) 
is the row index of the first off-diagonal nonzero in that column. It is shown 

in [13] that

ColStruct(L, j )  C ColStruct(L,parent(j)) (J {p3'r6n t(j)}.

În the subsequent discussion K and b will be assumed to be ordered previously, and 
permutation matrix P will be implicit.



Moreover, the structure of column j  of L can be characterized as follows: 

ColStruct(L,;) =  ColStruct(K, j )  U | |J ColStruct(L,¿) | -  {j-}.
\:<j,pareni(t)=j /

That is, the structure of column j  of L is given by the structure of the lower 
triangular portion of column j  of K , together with the structure of each column 
of L whose first off-diagonal nonzero is in row j .

This characterization leads directly to an algorithm for performing the sym­
bolic factorization which is already very efficient, with time and space com­
plexity 0{i]{L )), where t/(L) denotes the number of nonzero entries in L. An 
efficient implementation of symbolic factorization algorithm is given in [13]. 
With its low complexity and an efficient implementation, the symbolic fac­
torization step usually requires less computation than any of the other three 
steps in solving a symmetric positive definite system by Cholesky factorization.

Once the structure of L is known, a compact data structure is set up to 
accommodate all of its nonzero entries. Since only the nonzero entries of the 
matrix are stored, additional indexing information must be stored to indicate 
the locations of the nonzero entries.
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4.1.3 Numeric Factorization

We will concentrate our attention on two column-oriented methods, column- 
Cholesky and submatrix-Cholesky. In column-oriented Cholesky factorization 
algorithms, there are two fundamental types of subtasks:

1. cmod(y, A:): modification of column j  by column k, k < j ,

2. cdiv(j) : division of column j  by a scalar.

In terms of these basic operations, high-level descriptions of the column-Cholesky 
and submatrix-Cholesky algorithms are given in Figs. 4.3 and 4.4.

In column-Cholesky, column j  of K  remains unchanged until the index of 
the outer loop takes on that particular value. At that point the algorithm 
updates column j  with a nonzero multiple of each column k < j  o iL  for which 
Ijk ^  0. Then Ijj is used to scale column j .  Column-Cholesky is sometimes said 
to be a “left-looking” algorithm, since at each stage it accesses needed columns 
to the left of the current column in the matrix. It is also sometimes referred
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for j  = 1 to n do
for k 6 RowStruct(L, j )  do 

cmod(j, k) 
cdiv(j)

Figure 4.3: Sparse column-ChoIesky factorization.

to as a “fan-in” algorithm, since the basic operation is to combine the effects 
of multiple previous columns on a single subsequent column.

for A; = 1 to n do
cdiv(j)
for j  G ColStruct(L, k) do 

cmod(j, k)

Figure 4.4: Sparse submatrix-Cholesky factorization.

In submatrix-Cholesky, as soon as column k is completed, its effects on all 
subsequent columns are computed immediately. Thus, submatrix-Cholesky is 
sometimes said to be a “right-looking” algorithm, since at each stage columns 
to the right of the current column are modified. It is also sometimes referred 
to as a “fan-out” algorithm, since the basic operation is for a single column to 
affect multiple subsequent columns.

Relevant to the topic of sparse factorization, we introduce the concept of 
elimination tree which is useful in analyzing and efficiently implementing sparse 
factorization algorithms [17, 20].

The elimination tree T (K ) cissociated with the Cholesky factor L of a given 
matrix K has {ui,U2) · · · )^n} as its node set, and has an edge between two 
vertices u,· and Uj, with i >  j ,  if i =  parent (j) , where parent is the function 
defined in Section 4.1.2. In this case, node u,· is said to be the parent of node 
Uj, and node vj is a child of node u,·. The elimination tree is fixed for a given 
ordering and is a heap ordered tree with as its root. It captures all the 
dependencies between the columns of K  in the following sense. If there is an 
edge (u, i  <  j ,  in the elimination tree then the factorization of column j  
can not be completed unless that of column i is completed. Elimination tree
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for the problem woodw (with 1098 nodes) is given in Fig. 4.5 which is a typical 
one for NETLIB problems.
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The row structure RowStruct(L, j )  is a pruned subtree rooted at node u, 
in the elimination tree. Lets T {j) denote this subtree. It can be shown that 
column j  can be completed only after every column in T {j)  has been com­
puted. It also follows that the columns that receive updates from column j  
are ancestors of j  in T(K ). In other words, the node set ColStruct(L,^') is a 
subset of the ancestors of j  in the tree. Let

We have,

anc(j) =  {i  I v¿ is an ancestor of VJ in r (K ) } .

ColStruct(L,j) C anc(^). (4.1)

4.1.4 Triangular Solution

The structure of the forward and backward substitution algorithms is more or 
less dictated by the sparse data structure used to store the triangular Cholesky 
factor L and by the structure of the elimination tree T (K ). Because triangular 
solution requires many fewer floating-point operations than the factorization 
step that precedes it, the triangular solution step usually requires only a small 
fraction of the total time to solve a sparse linear system on conventional se­
quential computers.

The sequential forward substitution algorithm can be stated as follows: 

y,· = 16,· y   ̂ ¡ij + ¡/j I /1,·,, i — 1,2,..., fi.
\ jEHowStruct(Lyi) /

The sequential backward substitution algorithm is:

=  Í/. -  E  ¡Ij * i =  n , n - l , . . . , l .
\ j£RowStruct(L'^ ji) /

4.2 Parallel Algorithms

On parallel machines the same sequence of four distinct steps is performed: or­
dering, symbolic factorization, numeric factorization, and triangular solution.



However, both shared-memory and distributed-memory parallel computers re­
quire an additional step to be performed: the tasks into which the problem 
is decomposed must be mapped onto the processors. Obviously, one of the 
goals in mapping the problem onto the processors is to ensure that the work 
load is balanced across all processors. Moreover, it is desirable to schedule the 
problem so that the amount of synchronization and/or communication is low.

We now proceed to discuss each of these five steps.

4.2.1 Ordering and Symbolic Factorization

One issue associated with the ordering problem in a parallel environment is the 
determination of an ordering appropriate for performing the subsequent fac­
torization efficiently on the parallel architecture in question. However, there 
have been no systematic attempts to develop metrics for measuring the quality 
of parallel orderings. Thus far, most work on the parallel ordering problem 
hcis used elimination tree height as the criterion for comparing orderings, with 
short trees assumed to be superior to taller trees, but with little more than 
intuition as a basis for this choice.

A separate problem is the need to compute the ordering in parallel on the 
same machine on which the other steps of the solution process are to be per­
formed. The ordering algorithm discussed earlier, namely, minimum degree is 
extremely efficient and normally constitute only a small fraction of the total 
execution time in solving a sparse system.

The sequential algorithm for computing the symbolic factorization is re­
markably efficient, and so once again we find ourselves with little work to 
distribute among the processors, so that good efficiency is difficult to achieve 
in a parallel implementation.
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To summarize, the problem of computing effective parallel orderings is very 
difficult and remains largely untouched by research efforts to date. Further­
more, primary concern of this work, interior point algorithms, requires only 
one ordering and symbolic factorization step to be used on several subsequent 
iterations. So we perform ordering and symbolic factorization sequentially in 
the initialization phase of the parallel algorithm (PCIPA).



In this section we will address the problem of mapping the computational work 
in Cholesky factorization on distributed-memory message-passing parallel com­
puters. On these machines, the lack of globally accessible memory means that 
issues concerned with data locality are dominant considerations. Currently, 
there is no efficient means of implementing dynamic load balancing on these 
machines for problems of this type. Thus, a static assignment of tasks to 
processors is normally employed in this setting, and such a mapping must be 
determined in advance of the factorization, based on the tradeoffs between load 
balancing and the cost of interprocessor communication. We map the columns 
of K  among the processors rather than the individual elements of the matrix 
because this level of granularity is well suited for most of the multiprocessors 
commercially available today.

The elimination tree contains information on data dependencies among 
tasks and the corresponding communication requirements. Thus, the elimina­
tion tree is an extremely helpful guide in determining an effective assignment of 
columns (and corresponding tasks) to processors. A graphical interpretation 
of the factorization can be obtained using the elimination tree. Computing 
a column of the Cholesky factor corresponds to removing or eliminating that 
node from the tree. For example, at the first step, any or all of the leaf nodes 
can be eliminated. Moreover, they can be eliminated simultaneously, if enough 
processors are available. This creates a new set of leaf nodes in the tree, which 
can now be eliminated, and so on.

In general the leaf nodes in the elimination tree denote all the independent 
columns of the sparse matrix, and the paths down the elimination tree to the 
root specify the column dependencies. Note that it is the column dependencies 
that give rise to communication or synchronization, since computing column i 
of L will require other columns on which column i depends. Thus, the elim­
ination tree provides precise information about the column dependencies in 
computing L and hence can be used to assign the columns of the sparse matrix 
to different processors.
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4.2.2 Task Partitioning and Scheduling

After the elimination tree has been generated, the next step is to use it in 
mapping the columns onto the processors.
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for t = 1 to n do
fcnt(¿) = 0 

for z = 1 to ra do
fcnt(z) = fcnt(z) + nz(z); 
for k G ColStruct(L, i) do 

fcnt(A:) = fcnt(A:) + nz(i) 
nz(z) = nz(z) - 1

Figure 4.6: Algorithm for predicting the number of floating-point operations 
required to generate each column of L.

In the early work on this problem, successive levels in the elimination tree 
were wrap-mapped to the processors using the following scheme; column i is 
assigned to processor (i — 1) mod V. This results in good load balancing for 
the problem, but it also often results in unnecessarily high message volume. 
The “subtree-to-subcube” mapping [12], does an excellent job of reducing com­
munication while maintaining good load balance for model grid problems and 

other problems with similar regularity in their structure. It is difficult, however 
to use the subtree-to-subcube mapping for more irregular problems.

The mapping scheme presented by Geist and Ng [10] can be thought of 
as a generalization of the subtree-to-subcube mapping scheme to arbitrarily 
unbalanced elimination trees. Their algorithm is described below.

Given the structure of K, the number of nonzero entries in each column of 
L, and the elimination tree, it is possible to calculate the number of floating­
point operations required in computing each column of L. Since we perform 
ordering and symbolic factorization steps prior to scheduling in PLOP, the 
structure of L is readily available in our case. So our algorithm which is shown 
in Fig. 4.6 is simpler than Geist and Ng’s which is an extension of the algorithm 
for computing the amount of fill. The vector nz initially contains the number 
of nonzero entries in each column of L. This vector is destroyed during the 
generation of the vector font, which contains the number of multiplications and 
divisions performed on each column of L. These operation counts will be used 

as nodal weights.
Given an arbitrary tree and V  processors, our task is to find the smallest 

set of branches in the tree such that this set can be partitioned into exactly
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for i = 1 to n do
nodewt(e) = 0 

for I = 1 to n do
nodewt(z) = nodewt(i) + fcnt(i); 
if parent(t) /  i

nodewt(parent(i)) = nodewt(parent(i)) + nodewt(i)

Figure 4.7: Algorithm to generate tree weights.

V  subsets, all of which require approximately the same amount of work. Over 
this class of solutions we wish to maximize the operation counts in the set of 
branches.

Geist and Ng’s strategy involves a breath first search of the elimination tree, 
cutting off branches and applying a heuristic bin packing algorithm to the set 
of branches. The procedure is applied iteratively until the work load across all 
processors meets a user defined tolerance. That is, the iterative procedure will 
be terminated when the difference in work load between any two processors 
is less than a user specified parameter. Each processor is then assigned the 
set of branches in a particular bin. The remaining nodes are assigned to all 
processors in a wrap around manner as described earlier.

The key to this strategy is knowing how large each of the branches is without 
searching down it each time. The relative size of the branches determines which 
parts of the tree need pruning and which parts should be taken as a whole. 
This is accomplished by using a weighted elimination tree. Each node i of the 
tree is given a weight nodewt(i), which is equal to the sum of the weights of 
its children and the number of floating-point operations performed on column 
i of L. The algorithm in Fig. 4.7 describes how these weights are generated. 
The final task scheduling algorithm is shown in Figs. 4.8 and 4.9.

Each column /»̂  is stored on one and only one of V  available processors. An 
n-vector map is required to record the distribution of columns to processors: 
if column k is stored on processor p, then map(L, k) =  p. We use mycols(L) 
to denote the set of columns owned by a processor.
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ratio = 0 
ip = V - I
while ( ratio < tolerance )

ip z= ip 1
partition tree into at least ip branches
initialize all bins to 0
while {list-of-branches not empty)

find branch with max weight in list-of-branches 
add branch to minimum bin 
delete branch from list-of-branches 

find max bin and min bin 
ratio — minbin / maxbin 

assign nodes in bins to processors 
assign rest nodes in wrapped manner

Figure 4.8: Task Scheduling Algorithm.

if ( first call )
initialize list as first ip branches of tree 

while ( size-of-list < ip)
find node in list with max nodewt 
find next branch in subtree with root node 
add next branch and all its siblings to list 
delete node from the list 

return list-of-branches

Figure 4.9: Algorithm to partition the tree.



Algorithms for distributed-memory machines are usually structured around 
some prior distribution of the data to the processors. In order to keep the 
cost of interprocessor communication at acceptable levels, it is essential for the 
algorithm to make local use of local data as much as possible. The distributed 
fan-out and fan-in algorithms are typical examples of this type of distributed 
algorithm. Both of them use the column assignment to distribute among the 
processors the tasks found in the outer loop of one of the serial implementa­
tions of sparse Cholesky factorization of Section 4.1.3.

A straightforward parallelization of the submatrix-Cholesky algorithm shown 
in Fig. 4.4 results in the fan-out algorithm which weis introduced in [11]. The 
outer (k) loop is distributed among the processors using map(L, ·). After each 
owned column k is normalized, it is sent out to processors which own columns 
updated by it. The whole process is structured in a data-driven form, where 
the arrival of a source column triggers the local actions of updating owned 
targets using it. The algorithm is terminated on each processor when alt of its 
owned columns have been normalized and sent out to others.

Due to several weaknesses it has been superseded by fan-in algorithms. 
The distributed fan-out algorithm incurs greater interprocessor communica­
tion costs than the fan-in algorithm, both in terms of total number of messages 
and total message volume. It simply does not exploit a good communication- 
reducing column mapping, such as the one discussed in Section 4.2.2.
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4.2.3 Numeric Factorization

The fan-in algorithm for parallel sparse factorization [3] is motivated by a 
desire to reduce the amount of communication required. In the fan-out algo­
rithm, for every source-target pair involving an update, the processor which 
owns the source column sends it to the processor owning the target column. 
In general, if a particular processor owns more than one of the source columns 
updating a particular target column, each of the source columns must be ex­
plicitly transmitted. Since the multiplier that is used when actually performing 
the update on the target is obtained from the source column, the contribution 
of that source can be computed at the source processor itself, and then sent to 
the target processor. A single message combining all such contributions from
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for ji = 1 to n do
\t j  e  mycols(L) or RowStruct(L, j>) f| mycols(L) 7̂  0 do 

u = 0
for k e RowStruct(L,y) fj mycols(L) do 

u = u + u(y, k) 
if j  ^ mycols(L) do

send u to processor map(L,y)
else

incorporate u into the factor column j  
while ( any aggregated update column for column j  

remains unreceived ) do
receive in u another aggregated update for column j  
incorporate u into the factor column j  

cdiv(y)

Figure 4.10: Fan-in Cholesky factorization algorithm.

the source processor for a particular target column can be formed and this “ag­
gregate” column transmitted instead of each of the source columns. Instead 
of the previously considered submatrix-Cholesky, by using column-Cholesky 
(Fig. 4.3), each target will be considered in the outer loop, enabling the for­
mation of the combined contribution to it all at once, instead of in different 
iterations of the outer loop, so that the space used for storing the combined 
contributions can be reused for each target. Fig. 4.10 gives a pseudocode for 
the resulting fan-in algorithm. The task scheduling algorithm of Section 4.2.2 
can be used for mapping the columns to processors. However, the amount of 
work at each node of the elimination tree is now considered to be the sum of the 
number of update operations from the node and the number of normalization 
operations for the node.

A visual picture of the communication pattern of the fan-in algorithm is 
given in Fig. 4.11. The spacetime figure illustrates snapshots of the execution 
of the algorithm on an iPSC/2 hypercube, with time on the horizontal axis. 
Processor activity is shown by horizontal lines and interprocessor communi­
cation by slanted lines. The horizontal line corresponding to each processor 
is either solid or blank, depending on whether the processor is busy or idle, 
respectively. Each message sent between processors is shown by a line drawn 
from the sending processor at the time of transmission to the receiving proces­
sor at the time of reception of the message.

Utilization count diagram given in Fig. 4.11 shows the total number of
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SPflCETIhE DIAGRAM
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Figure 4.11: Spacetime diagram and utilization count for fan-in factorization
of 80bau3b problem.



processors in each of three states — busy, overhead, and idle — as a function 
of time. Each processor is categorized as idle if it has suspended execution 
awaiting a message that has not yet arrived, overhead if it is executing in 
the communication subsystem, and busy if it is executing some portion of 
the program other than the communication subsystem. These diagrams were 
produced using a package developed at Oak Ridge National Laboratory for 
visualizing the behavior of parallel algorithms [16].

4.2.4 Triangular Solution

This section will address the problem of solving sparse triangular systems of 
equations:

Ly =  b, L^x =  y.

It is very difficult to achieve high computational rates with parallel algo­
rithms for forward and backward triangular solutions. Data dependencies and 
a paucity of work to distribute among the processors make this problem harder, 
even for the dense case. When solving the sparse problems, due to preserva­
tion of sparsity in the factor matrix, there is usually far less work to distribute 
among the processors— approximately t] (L )  floating-point operations rather 
than the n(n — l )/2 floating-point operations available in the dense case. Fur­
thermore, loss of regularity in sparse Cholesky factors increases the difficulty of 
using complicated techniques {e.g., pipelining) to speed up triangular solution.

Though these computations take much less time compared to sequential 
Cholesky factorization, there are several reasons to solve them in parallel. First, 
the triangular systems may need to be solved a large number of times using the 
same factor matrix but using different b vectors. Second, the Cholesky factor 
is usually available across the processors as a result of parallel factorization 
and in such a case parallel solution of triangular systems avoids the overhead 
of collecting the factor matrix into a single processor.
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E lim ination Tree Based FS (E BFS)

Kumar et al. [20] exploit the elimination tree concept to develop forward 
and backward triangular solvers. They consider the situation when the number 
of processors is same as the number of columns of L, and column i along with 
bi are assigned to processor i. Their parallel algorithm for FS phase (EBFS),
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k = mynode() 
u = 0
if Vk is not a leaf

while smod{k) > 0
receive update vector u' from a child r, 
for j  e Struct(u') do

U j  =  Uj +  U j

decrement smod(k)
Vk = {bk -  Uk)/lkk
for j  G ColStruct(L, do

Uj = Uj + Ijk * Vk
send u(j I j  e ColStruct(L, k)) to map(L,parent(i!:))

Figure 4.12: Node algorithm for EBFS with V =  n.

starts from the leaves of the elimination tree. An update vector u of size n is 
associated with each processor, u is initialized to 0. The processor containing 
a leaf node u,· computes the value of y, as

Vi ^  biHa·

It then modifies its update vector as follows:

Vy G CoIStruct(L, ¿), Uj <— /j,y,·.

The modified update vector is sent to the parent of u,. However, instead of 
sending the entire update vector, only the elements in u corresponding to the 
¿-th column structure are sent to the parent of u,. An internal vertex u,· waits 
till it receives update vectors from all of its children and adds each of them to 
its update vector. The value of y, is calculated as

Vi  ̂ {bi u,

The update vector is then modified as follows:

V; € ColStruct(L, ¿), Uj <— Uj +  /j,y,·.

The modified update vector is sent to the parent of u,. Here also, only the 
relevant elements of the update vector are sent. When the computation termi­
nates, the processor i contains the value y,·. The algorithm is given in Fig. 4.12. 
In the algorithm smod{k) initially contains the number of children of u*· Space- 
time diagram and utilization count for EBFS are shown in Fig. 4.13 where 8 
processors are used to solve 80bau3b problem.
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SPACETIME DIAGRAM

BUSY OVERHEAD IDLE

Figure 4.13: Spacetime diagram and utilization count for EBFS on 80bau3b
problem.
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for j  = 1 to n do
i f j  e mycols(L) or RowStruct(L, j) f) mycols(L) 0 do 

u = 0
for k e RowStruct(L, j) f| mycols(L) do 

u = u + yk *ljk 
if j  ^ mycols(L) do

send u to processor map(L,j)
else

while any aggregated update for yj remains unreceived do 
add to u another aggregated update for yj

Vj = -  ^)/h:

Figure 4.14: Fan-in FS algorithm (FIFS).

Kumar et al. later consider the case where the columns are mapped to 
processors according to map(·) function and modify the algorithm to remove 
the redundancy in the messages arising in this situation (see [20]).

Fan-in FS (FIFS)

The sparse forward solution algorithm proposed by George et al. [12] is an 
adaptation of the fan-in algorithm for factorization discussed in Section 4.2.3. 
The columns of L and the corresponding elements of the right hand vector 
b  are distributed among the processors according to the map(L, ·) function. 
In order to compute the value of the processor map(L, k) needs the inner 
product of the A:-th row of L and (yi,y2, · · ■■,yk-i)· This computation is par­
titioned among the processors. Each processor computes the products of the 
elements of the ¿-th row it contains with the corresponding elements of the 
solution vector and sends their sum to processor map(L, ¿). On receiving the 
contributions of all the processors, processor map(L, k) computes the value of 

Vk-

Spacetime diagram and utilization count for FIFS are given in Fig. 4.15 
which has the same time scale with Fig. 4.13 given for EBFS. These figures 
reveal that elimination tree based algorithm has apparently low message count 
and it takes less time to complete the FS in this setting.
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Figure 4.15: Spacetime diagram and utilization count for fan-in FS on 80bau3b
problem.
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i = mynode() 
if (t = n)

~ Vnl̂ nn
for each child Vk of do 

send Xn to processor k
else

receive Xk,k 6 anc(t) from processor parent(i) 
u = 0
for k € ColStruct(L, i) do 

u = u + Xk * Iki 
Xi = iVi -  u)/lii 
for each child Vk of n, do

send Xj^i 6 {i}(J{anc(i)} to processor k

Figure 4.16: Node algorithm for elimination tree based BS (EBBS).

Elim ination Tree Based BS (E BB S)

Again consider the situation when the number of processors is same as the 
the number of columns of L. The computation starts from the root of the 
elimination tree. The processor containing column n of L computes the value 
of Xn <— Vnllnn· It sends x„ to processors that contain children of u„. Each 
processor i receives a message from processor parent{i) , and computes x, as 
follows:

Xi I J/i “  ^ji *  X j
\ jEColStruct(liji)

It then appends x, to the received message and sends it to processors that 
contain the children of u,· in the elimination tree. If u,· is a leaf in the tree, then 
no message is sent from processor i. During the course of the algorithm, each 
processor receives Xi,A: € anc(z) which ensures, by (4.1) that each processor 
receives Xk,k € ColStruct(L, ¿). Hence, the algorithm terminates with the 
correct results.

Again, as in EBFS, Kumar et al. [20] later consider the ceise where the 
columns are mapped to processors according to map(·) function and exploit 
map(·) to reduce the size of the messages.

Send-Forward BS (SFBS)

The sparse backward solution discussed in [12] is based on the dense back­
ward algorithm in which the value of xjt is broadcast to all the processors as 
soon as it is computed. All the processors update elements of y  vector in
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Figure 4.17: Spacetime diagram and utilization count for EBBS on 80bau3b
problem.
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for j  = 1 to n do
valid(j') = false 

for j  = n downto 1 do
if j  e mycols(L) 

u = 0
for k G RowStruct(L^’ ,ji) do 

if not valid(A:) 
receive Xk 
vaIid(A:) = true 

u = u + Xk * Ikj
3̂ = (Vj -  )̂/h3 

valid(j) = true
broadcast Xj to all processors 

Figure 4.18: Broadcast BS algorithm.

{ initialize the sendset() } 
for i = 1 to n do 

sendset(i) = 0 
for k € ColStruct(L^, i) do

sendset(i) = sendset(t) [J { map(L,A;) }

{ BS using sendset() } 
for y = 1 to n do 

valid(y) = false; 
for j  = n downto 1 do 

if j  G mycols(L) 
u = 0
for k G RowStruct(L^, j )  do 

if not valid(fc) 
receive Xk 
valid(/;) = true 

u = u -{■ Xk * Ikj 
Xj = { y j -  u)/ljj 
valid(j') = true 
for i G sendset(y) do

send Xj to processor i

Figure 4.19: Send-forward BS (SFBS) algorithm.



parallel as follows: yj <— yj — IjkXk, j  <  k. Next, the processor containing 
the (k — l)th row of computes Xk-i and broadcasts the same, and so on. 
Broadcast BS (BCBS) algorithm is shown in figure 4.18.

In the sparse case, we can avoid broadcasting x*, if we know the structure 
of the A:-th column of L^. We only need to send Xk to all the processors which 
contain rows of that have nonzero entries in column k. But, since is 
stored row-wise, the column structure is not readily available. In PLOP this 
problem is solved in the preprocessing phase. After finding nonzero structure of 

column-wise (ColStruct), a data structure is formed such that, sendset(it) 
contains the processors which need Xk. This new algorithm which we name 
send-forward BS (SFBS) is shown in Fig. 4.19.
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Buffered BS

Send-forward BS algorithm can be improved radically. In SFBS the value of 
Xk is sent to processors in sendset(fc) as soon as it is computed. This process 
causes the sending processor to do early work and to delay the necessary work, 
because most of the processors in sendset(A:) need x* only many iterations later. 
Furthermore, sending Xk values individually incurs a high message count. So, 
if we buffer x values that will be sent to a processor and in subsequent itera­
tions send them in a combined message, we will reduce the number of messages 
and prevent the early sends. These ideas are used to develop the buffered BS 
algorithm (BFBS) given in Fig. 4.20.

Here, sendset(A:) is modified to contain the tuples (s ,t) such that processor 
s contains rows of that have non-zeros in column k and t is the highest 
index among these columns. In other words, the tuple (s ,t) means that the 
earliest iteration in which Xk is needed by processor s is t.

Additionally, we introduce buffers where buf(f) is used to combine xjt values 
to be sent to processor i. Associated with buf(e), there is a value maxj(f) which 
denotes the earliest iteration in which the current contents of buf(e) is to be 

sent.

In the ¿-th iteration of the algorithm, the value of Xk is computed and added



to buffers denoted in sendset(A:) by the processor having column k. Other pro­
cessors, control the buffer buf(map(L, k)) and if the current iteration value 
exceeds maxj(map(L, fc)), the buffer is sent to processor map(L, k).
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Spacetime diagram and utilization count for BFBS are given in Fig. 4.21 
which has the same time scale with Fig. 4.17 given for EBBS. Though elimi­
nation tree based algorithm has apparently low message count it takes much 
more time than BFBS because of idle waitings.
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{ initialize the sendset() } 
for I = 1 to n do 

sendset(i) = 0 
for k € ColStruct(L^, i) do 

p - map(L, k) 
if 3{p,t) e sendset(i) 

if k > t
sendset(i) = (sendset(i) - {(p, <)}) U {(P>^)}

else
sendset(t) = sendset(t) (J {(p, A:)}

{BS using sendset() } 
for j  = 1 to n do 

valid(j) = false; 
for I = 1 to P do

buf(i) = 0 
maxj(i) = 0

for j  = n downto 1 do
if j  e mycols(L) 

u = 0
for k € RowStruct(L^,j) do 

while not valid(A:)
receive next message W 
for (v, t) € VP

X( =  V

valid(<) = true 
u = u -j- Xk * hj 

— {Vj ~
valid(y) = true
for (i,t) e sendset(j) do

buf(i) = buf(i) U { ( x j j ) ]  
if t > maxj(i) 

maxj(i) = t
else

i = map(L,y) 
if maxj(i) > j

send (v,t) € buf(i) to processor i 
buf(i) = 0 
maxj(t) = 0

Figure 4.20: Buffered BS algorithm (BFBS).
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Figure 4.21: Spacetime diagram and utilization count for BEDS on 80bau3b
problem.



Chapter 5

Computational Results for
PLOP

In this chapter we will present the computational results for the algorithms 
presented in the earlier chapters. All algorithms are implemented on iPSC/2 
hypercube multicomputer and performance results are obtained from actual 
runs on linear programming problems from the NETLIB suite [8]. These data 
represent realistic problems in industry applications ranging from small-scale 
to large-scale.

Statistics regarding the NETLIB problems used in this study are shown in 
Table 5.1. These problems are chosen with the criteria that the configuration 
of the host machine we used allows us to run the preprocessing phase and the 
problem is not very small to derive conclusions on a parallel algorithm. The 
column labeled Nonzeros in L gives the number of nonzeros in the Cholesky 
factor L (excluding the diagonal). The column labeled Arithmetic Operations 
gives the number of arithmetic operations in the calculation of the Cholesky 
factor L. And the column with label Itr gives the number of iterations PLOP 
executes with the problem.

Tables 5.2 and 5.3 show the change in factorization times and triangular 
solution (FS and BS) times by balance ratio of the task scheduling algorithm, 
respectively. All times given in this chapter are in milliseconds and are obtained 
by iPSC’s mclock() function. From this data we conclude that a balance ratio 
of 0.80 gives the highest performance, though this choice does not have a major
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effect. In Table 5.4 factorization times of fan-in algorithm are given. The num­
bers below each of the given times are speed-up values. Speed-up values are 
calculated as the ratio of parallel time to the time on one processor. This table 
shows that, the efficiency of the fan-in factorization algorithm is dependent on 
the problem size. That is, as the number of floating point operations needed in 
the factorization operations increases, speed-up values obtained by the parallel 
algorithm increases, too.

In Tables 5.5 and 5.6 computational results for two forward solution algo­
rithms are given. They show that fan-in FS algorithm has better performance, 
as the number of processors increases, over the EBFS algorithm. Tables 5.7 -  
5.9 give the results for three backward solution algorithms. Among these, 
buffered BS algorithm has the highest performance most of the time.

Computational results for sparse matrix-vector product AS and sparse 
matrix-matrix multiplication A D A ^ are given in Tables 5.10 and 5.11, re­
spectively. Both of these operations have satisfactory performance results. 
Matrix-vector product operation requires global collect of a vector at the be­
ginning. Results obtained for this operation shows that, as the size of this 
vector increases, obtained speed-up values decreases. For example the data in 
Table 5.10 is obtained from the multiplication A x, and we see that as n (size 
of x) increases, the performance decreases. Since AD A^ operation can’t be 
executed on small number of processors, because of insufficient memory, its 
speed-up and percent efficiency values are calculated with respect to the time 
obtained on the smallest number of processors. Figs. 5.1 through 5.8 present 
the speed-up curves for the algorithms discussed.

Finally, in Table 5.12 and Fig. 5.9 the overall performance of one iteration 
of PLOP is presented. As the conclusion of our earlier results we used fan-in 
factorization, fan-in FS (FIFS) and buffered BS (BFBS) algorithms in our final 
implementation of PLOP. We used 0.80 as the balance ratio tolerance in the 
task scheduling algorithm and requested 8 significant figures in the objective 
value. These results show that, though PLOP performs well on moderate size 
problems, as the problem size increases the performance of PLOP increases, 
too. The resemblance between the speed-up curves of Fig. 5.9 and Fig. 5.1 for 
individual problems shows us that, general performance of a parallel interior
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point algorithm is heavily dependent on the performance of the parallel factor­

ization operation.

So far, we have not considered the issue of stability. Vanderbei [27] note 

that the stability of interior point methods needs to be better understood. He 

tells that many of the NETLIB problems results in poorly conditioned matrices 

as the method progresses. PLOP stops prematurely on problems 80bau3b and 

sh ip l21 because of the stability issues, though it converges to the optimum 

value with 7 significant figures on the problem shipl21.
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Table 5.1: Statistics for the NETLIB problems used in this work.

Problem
Name

Constraints
{m)

Variables 
_____ («)

Nonzeros 
in A

Nonzeros 
in L

Operation
count Itr

bnl2
pilotnov 
p i lo t . ja  

cycle 
woodw 

80bau3b 
25fv47 
maros 
nesm 

p ilot4  
sctap3 

ship121

2324
975
940

1903
1098
2262
821
846
662
410

1480
1151

3489
2172
1988
2857
8405
9799
1571
1443
2923
1000
2480
5427

13999
13057
14698
20720
37474
2 10 0 2
10400
9614

13288
5141
8874

16170

83008
54753
53738
73427
47757
42510
33465
25367
23478
14601
17362
11189

13593064 40
6196921 29
5950772 39
5434413 32
3280086 27
2832016 29
2544443 29
1547758 28
1465390 37
1020002 39
617740 16
182499 24

Table 5.2: Change of factorization times and separator sizes by balance ratio. 
(For 16 processors)

Problem Name I Balance Ratio (min/max)
0.70 0.80 1 0.90

bnl2 1 8951 8855 8890
723 729 736

woodw II 3452 3461 3415
373 375 457

80bau3b || 2658 2700 2627
276 286 295

25fv47 II 2558 2490 2526
II 324 330 332

Table 5.3: Change of (FS+BS) times by balance ratio. (For 16 processors)

Problem Name Balance Ratio (min/max)
0.70 0.80 1 0.90

bnl2 798 780 793
woodw 566 559 586

80bau3b 487 498 488
25fv47 443 438 447
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Table 5.4: Computation times and speed-up values for fan-in factorization.

Problem Name Number of Processors
1 2 4 8 16

bnl2 103209 55658
1.85

29472
3.50

14568
7.08

8854
11.66

p ilo tn ov 46869 28617
1.64

16014
2.93

8359
5.61

4905
9.56

p i l o t . ja 45051 28462
1.58

15049
2.99

8443
5.34

4772
9.44

cy c le 41425 24596
1.68

17068
2.43

10360
4.00

6195
6.69

woodw 25048 13548
1.84

10022
2.50

5530
4.53

3455
7.25

80bau3b 21768 13139
1.66

7682
2.83

4010
5.43

2694
8.08

25fv47 19270 10749
1.79

7150
2.69

3978
4.84

2487
7.75

maros 11756 6701
1.75

3630
3.24

2828
4.16

1828
6.43

nesm 11102 8329
1.33

3990
2.78

2441
4.55

• 1769 
6.28

p ilo t4 7709 4692
1.64

2614
2.95

1622
4.75

1085
7.11

sctap3 4844 2979
1.63

1640
2.95

1156
4.19

866
5.59

shipl21 1545 1120
1.38

838
1.84

959
1.61

443
3.49
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Table 5.5: Computation times and speed-up values for fan-in FS (FIFS).

Problem Name 1 Number of Processors
1 1 2 4 8 16

bnl2 1 1717 1069 691 462 351
1 1.60 2.48 3.72 4.89

pilotnov 1 n i l 745 524 362 287
1.49 2.12 3.07 3.87

p ilo t .ja 1090 759 492 360 277
1.44 2.22 3.03 3.94

cycle 1500 992 822 602 454
1.51 1.82 2.49 3.30

woodw 969 576 408 318 260
1.68 2.38 3.05 3.73

80bau3b 913 681 383 263 198
1.34 2.38 3.47 4.61

25fv47 684 451 333 259 216
1.52 2.05 2.64 3.17

mar OS 528 377 257 216 184
1.40 2.05 2.45 2.87

nesm 485 348 269 213 183
1.39 1.80 2.28 2.65

p ilo t4 298 220 156 133 108
1.35 1.91 2.24 2.76

sctap3 402 287 230 192 163
1.40 1.75 2.09 2.47

sh ipl21 265 184 132 228 161
1.44 2.01 1.16 1.65
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Table 5.6: Computation times and speed-up values for EBFS.

Problem Name 1 Number of Processors
1 1 2 4 8 16

bnl2 1 1433 889 496 338 452
1 1.61 2.89 4.24 3.17

p ilo tn o v 1 911 562 347 273 369
1.62 2.63 3.34 2.47

p i l o t . j a 895 580 323 272 354
1.54 2.77 3.29 2.53

cy c le 1263 829 433 304 373
1.52 2.92 4.15 3.39

woodw 811 464 275 204 264
1.75 2.95 3.98 3.07

80bau3b 797 588 291 220 285
1.36 2.74 3.62 2.80

25fv47 570 350 202 177 253
1.63 2.82 3.22 2.25

maros 443 278 163 170 244
1.59 2.72 2.61 1.82

nesm 405 260 176 167 258
1.56 2.30 2.43 1.57

p ilo t 4 250 172 118 123 185
1.45 2.12 2.03 1.35

sctap3 356 222 153 119 155
1.60 2.33 2.99 2.30

shipl21 239 133 82 107 192
1.80 2.91 2.23 1.24
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Table 5.7: Computation times and speed-up values for EBBS.

Problem Name Number of Processors
1 2 4 8 16

bnl2 1687 1459 1303 1170 1304
1.16 1.29 1.44 1.29

p ilo tn ov 1061 851 824 745 858
1.25 1.29 1.43 1.24

p i l o t . j a 1039 824 750 728 846
1.26 1.39 1.43 1.23

cy c le 1474 1055 673 630 711
1.40 2.19 2.34 2.07

woodw 945 610 455 425 507
1.55 2.08 2.22 1.86

80bau3b 948 722 506 499 581
1.31 1.87 1.90 1.63

25fv47 663 518 428 405 479
1.28 1.55 1.64 1.38

maros 523 419 345 357 446
1.25 1.52 1.47 1.17

nesm 473 369 372 378 471
1.28 1.27 1.25 1.00

p ilo t4 291 270 241 269 323
1.08 1.21 1.08 0.90

sctap3 430 299 229 195 230
1.44 1.88 2.21 1.87

shipl21 288 161 94 265 617
1.79 3.06 1.09 0.47
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Table 5.8: Computation times and speed-up values for send-forward BS 
(SEES).

Problem Name j Number of Processors
1 1 2 4 8 16

bnl2 ] 1694 998 639 540 783
I 1.70 2.65 3.14 2.16

pilotnov 1 1097 726 463 470 660
1 1.51 2.37 2.33 1.66

p ilo t .ja 1075 669 418 459 655
1.61 2.57 2.34 1.64

cycle 1490 950 645 676 945
1.57 2.31 2.20 1.58

woodw 962 540 350 401 556
1.78 2.75 2.40 1.73

80bau3b 906 633 348 319 465
1.43 2.60 2.84 1.95

25fv47 674 397 288 315 478
1.70 2.34 2.14 1.41

mar OS 520 308 222 282 452
1.69 2.34 1.84 1.15

nesm 478 328 236 316 486
1.46 2.03 1.51 0.98

pilo t4 295 193 163 200 336
1.53 1.81 1.48 0.88

sctap3 387 238 197 194 266
1.63 1.96 1.99 1.46

sh ipl21 255 151 100 242 350
1.69 2.55 1.05 0.73



CHAPTER 5. COMPUTATIONAL RESULTS FOR PLOP 60

Table 5.9: Computation times and speed-up values for buffered BS (BFBS).

Problem Name Number of Processors
1 2 4 8 16

bnl2 1545 1020 631 440 363 
1.51 2.45 3.51 4.26

p ilo tn ov 996 677 449 348 271 
1.47 2.22 2.86 3.68

p i lo t  . ja 976 626 406 340 280 
1.56 2.40 2.87 3.49

cy c le 1358 883 641 477 427 
1.54 2.12 2.85 3.18

woodw 878 521 331 283 258 
1.69 2.65 3.10 3.40

80bau3b 829 595 349 256 220 
1.39 2.38 3.24 3.77

25fv47 613 375 281 223 204 
1.63 2.18 2.75 3.00

maros 473 311 217 202 202 
1.52 2.18 2.34 2.34

nesm j 435 340 234 195 186 
1.28 1.86 2.23 2.34

p i lo t 4  j 268 184 147 129 121 
1.46 1.82 2.08 2.21

sctap3 j 354 228 190 147 129 
1.55 1.86 2.41 2.74

s h ip l21 1 233 146 97 156 156 
1.60 2.40 1.50 1.50
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Table 5.10: Computation times and speed-up values for the computation of 
matrix-vector product A^.

Problem Name 1 Number of Processors
J 1 2 4 8 16

bnl2 ] 317 166 90 53 45 
j 1.91 3.52 5.98 7.05

pilotnov 269 139 75 44 28 
1 1.94 3.59 6.11 9.61

p ilo t .ja 293 152 80 47 29 
1.93 3.66 6.23 10.10

cycle 419 216 119 63 48 
1.94 3.52 6.65 8.73

woodw 788 409 217 121 106 
1.93 3.63 6.51 7.43

80bau3b 552 292 162 128 100 
1.89 3.41 4.31 5.52

25fv47 211 110 59 34 27 
1.92 3.58 6.21 7.81

maros 195 101 55 35 24 
1.93 3.55 5.57 8.13

nesm 285 149 80 47 40 
1.91 3.56 6.06 7.13

p ilo t4 109 57 32 18 13 
1.91 3.41 6.06 8.38

sctap3 202 106 58 34 23 
1.91 3.48 5.94 8.78

sh ipl21 376 198 108 79 61 
1.90 3.48 4.76 6.16
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Table 5.11: Computation times (T,in milliseconds), speed-up (S) and percent 
efficiency (E) values for the computation of matrix-matrix product ADA^.

Problem Name 1 Number of Processors
1 1 2 4 8 16

T
bnl2 S 

E

I  780 457 260 167 
1.71 3.00 4.97 

J 85 75 62
T

pilotnov S
E

1173 791 407 276 
1.48 2.88 4.25 

74 72 53
T

p ilo t.ja  S 
E

2686 1639 824 617 
1.64 3.26 4.35 

82 82 54
T

cycle S 
E

1108 666 338 
1.66 3.28 

83 82
T

woodw S
E

839 475 298 
1.77 2.82 

88 70
T

80bau3b S 
E

444 289 199 
1.54 2.23 

77 56
T

25fv47 S 
E

1177 677 342 212 144 
1.74 3.44 5.55 8.17 

87 86 69 51
T

maros S 
E

1161 607 342 206 137 
1.91 3.39 5.63 8.47 

96 85 70 53
T

nesm S 
E

1279 747 432 218 130 
1.71 2.96 5.87 9.84 

86 74 73 62
T

pilot4 S
E

764 445 226 134 100 
1.72 3.38 5.70 7.64 

86 85 71 48
T

sctap3 S
E

634 355 241 138 88 
1.79 2.63 4.59 7.20 

89 66 57 45
T

shipl21 S 
E

781 427 258 150 110 
1.83 3.03 5.21 7.10 

92 76 65 44
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Table 5.12: Computation times (T,in milliseconds), speed-up (S) and percent 
efficiency (E) values for one iteration of PCIPA (PLOP).

Problem Name Number of Processors
1 2 4 8 16

T
bnl2 S 

E

61643 33121 17790 10024 
1.86 3.47 6.15 

93 87 77
T

pilotnov S 
E

33173 18662 10307 6061 
1.78 3.22 5.47 

89 80 68
T

p ilo t.ja  S
E

53670 28474 16494 9538 
1.89 3.25 5.63 

94 81 70
T

cycle S 
E

34182 22124 12976 
1.55 2.63 

77 66
T

woodw S
E

14528 8392 5338 
1.73 2.72 

87 68
T

80bau3b S 
E

12023 6773 4398 
1.78 2.73 

89 68
T

25fv47 S 
E

25512 13847 9047 5300 3448 
1.84 2.82 4.81 7.40 

92 70 60 46
T

maros S 
E

17148 9633 5271 4056 2730 
1.78 3.25 4.23 6.28 

89 81 53 39
T

nesm S 
E

18272 12212 6272 3939 2770 
1.50 2.91 4.64 6.60 

75 73 58 41
T

pilot4 S 
E

11062 6639 3699 2444 1705 
1.67 2.99 4.53 6.49 

83 75 57 41
T

sctapS S 
E

10113 5837 3335 2350 1700 
1.73 3.03 4.30 5.95 

87 76 54 37
T

shipl21 S 
E

8605 4882 2948 2643 1636 
1.76 2.92 3.26 5.26 

88 73 41 33
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Figure 5.1: Speed-up curves for fan-in factorization algorithm.

Figure 5.2: Speed-up curves for FIFS algorithm.
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Figure 5.3: Speed-up curves for EBFS algorithm.

Figure 5.4: Speed-up curves for EBBS algorithm.
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Figure 5.5: Speed-up curves for SFBS algorithm.

Figure 5.6: Speed-up curves for BFBS algorithm.
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Figure 5.7: Speed-up curves for matrix-vector product A6.

Figure 5.8: Speed-up curves for matrix-matrix product ADA^
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Figure 5.9: Speed-up curves for one iteration of PLOP.



Chapter 6

Conclusions

In this study, we presented the parallelization of a Karmarkar-type optimization 
algorithm — Mehrotra’s predictor-corrector interior point algorithm (PCIPA), 
on distributed memory message-passing parallel computers. Currently, liter­
ature doesn’t contain a parallel interior point algorithm for these architectures.

We identified five computation types needed by PCIPA as sparse matrix- 
vector product, vector operations, sparse matrix-matrix product, scalar opera­
tions, and sparse linear system solution Then parallel algorithms for each type 
are presented. We have proposed a heuristic bin-packing algorithm, which is a 
row-level granularity scheduling method, to map rows and columns of a matrix 
for matrix-vector product operations. These mappings are used to distribute 
the vectors among the processors, too. Our experiments showed that this al­
gorithm gives mappings which achieve load balance in the matrix and vector 
operations.

The solution of positive definite systems of linear equations constitutes 
the major computational effort in Karmarkar-type algorithms. In two major 
computation-intensive areas associated with the solution of such systems of 
linear equations, Cholesky factorization and forward and backward solvers, we 
have experimented with a number of algorithms to find the appropriate ones 
for interior point algorithms. For parallel sparse Cholesky factorization fan-in 
algorithm is used. This algorithm tries to reduce the amount of communication 
required during the factorization process. By this property it achieves better 
performance results than the fan-out algorithm, which has a high communica­
tion need. Another heuristic bin-packing algorithm is used to map columns of
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this positive definite system for factorization. Flere, elimination tree concept 
is used and subtrees are mapped to processors. Subtree mapping reduces the 
communication need of the factorization.

For forward solution we have compared elimination tree based forward so­
lution and fan-in forward solution algorithms. For backward solution we im­
plemented send-forward backward solution, elimination tree based backward 
solution, and buffered backward solution algorithms. Elimination tree based 
solution algorithms reduces the communication count, but they cause idle wait­
ings. Though they gave better speed-up values for small number of processors, 
they didn’t scale well when larger number of processors are used. Study of 
the spacetime diagrams of fan-in forward solution shows that this algorithm 
requires a huge amount of communication^, but doesn’t cause idle waitings as 
much as the elimination tree based forward solution. Hence, fan-in forward 
solution scaled well for larger number of processors. The situation is same 
between elimination tree bcised backward solution and buffered backward solu­
tion, and buffered backward solution gave better speed-up values as the number 

of processors increased.

All best performing algorithms are combined and a parallel linear optimizer 
(PLOP) program is implemented on iPSC/2 multicomputer. PLOP showed 
satisfactory overall performance on linear programming problems taken from 
NETLIB suite, which represent real industrial problems.

We believe that the algorithms and the methodology discussed in this work 
are general enough to be adapted for use with other versions of interior point 
algorithms and optimization methods. In summary, the preliminary implemen­
tation we have documented here shows sufficient promise of parallel execution 
of interior point algorithms, but as the previous chapter demonstrates, much 
further research will be required to produce a fully efficient implementation.

'Actually, communication count of fan-in forward solution is equal to communication 
count of fan-in factorization.
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