
Ш І Ш

$ f 3 Ш и

t © І й І ti Ä P i H II 11 ?i if Г 8 Й Si*i^'ílrsL iA>»Ö I î » .y
¡?í ЛЛ; « Й% ·ί#4'

ϊ i>. ?· <ít Η· Ψ ̂ τ Ρ Τ·) й в ^ ί'ί І ä Ш Ά

/Г,;.·λ ;■; ¡>. ̂t η 1<\ г· ,'4·.
.ϋΠί. « *i-),!' irt* 'W íí''’ii|¿í

tii¡̂ İt/-&>'á i i ¿ V íifí*(¿í»ij¡ <«%'u tt » IkÍWÍ* iií'ÍfV i W δ v̂ .Ŵ 'oi i '*

njfilr.'İÎV Ѵ.‘У̂ Î'Ÿi ju>'Jít'¿¿'*¿ '«/'¿'S''» ·.♦<* . «‘'ííijiií W !».■<♦ ·ιί·ν·ΐί Jí i W Ѵй i U · * ϊ W à···

ігхщ '·?Μ« fî>
it ï* i ' W ‘v iîi'd ^ü / ·/ Í it ■'«•if 4 ^ W >4 ·4ι(τΜ U ""‘» i ·ί ii. .V 4 'ii *Am1 ІГ»̂ 4і Ч»<^ "w *r ii»

#!'ï ?::?й '̂■■;î4T î?ÎÎ?1Î“ i3î) !̂;"7Îf«k.·'-V 3u«i V' Î - ii -t ic «îh4 ùÎW k >*< •ù<v«!' ’Î!t (il V. Ы

W* w* i ¡> •■A'» ·̂ t·' * «» Ί ! ■í ü'if» Й >:tv̂
ti a ' v·'" «t « 4 Ж« > »

'Г·' ̂ r й̂ ■ ^ Г
■u'< w' k ¿ ¿ .‘ш íV /Λ ψ -'І Λ 4 i tJ

« >̂-ii·;; « wi-i* ··' ν-,'Λ’ί·:;' . ,? :;̂ >f< ; .■¡i)»•Mí» Mié ·*«Ι *· V· "»W Wf W >«

J ·' ' · *' ·4*̂·';,'·■'?H 4'J ώ'ύ*' л '¡ χ ^ '4
j-'v, -íS -if'i, ■ ■ 'i·*̂····' 'Ί ·.'*'* :■; ή « í.' '··■.., '̂ í"̂ = ·· ■·■**■
*i.¿i ÿ. V|I> <14̂ .t Ik' W í<Ki

« 3 ? ^
i 9 f b

MAPPING
AND

FPGA GLOBAL ROUTING
USING

M EAN FIELD ANNEALING

A THESIS

SUBMITTED TO THE DEPARTMENT OF COMPUTER

ENGINEERING AND INFORMATION SCIENCE

AND THE INSTITUTE OF ENGINEERING AND SCIENCE

OF BILKENT UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF SCIENCE

By
Ismail Haritaoglu

September, 1994

'Î4<

' 6 %

Иг- T

¿ 0 2 6 7 9 2

11

I certify that I have read this thesis and that in rny opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Asst. Proi..<^vdet Ay kanat (Advisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as gj^hesis for the degree of Master of Science.öJ;

r3=ri
Assoc. Prof. Ömer Benli

X '

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

AssfT Prof. Mustafa Pınar

Approved for the Institute of Engineering and Science:

Prof. Mehmet Bar
Director of the Institute

ABSTRACT

MAPPING
AND

FPGA GLOBAL ROUTING
USING

MEAN FIELD ANNEALING

İsmail Haritaoğlu
M .S. in Computer Engineering and Information Science

Advisor: Asst. Prof. Cevdet Aykanat
September, 1994

Mean Field Annealing algorithm which was proposed for solving combinatorial

optimization problems combines the properties of neural networks and Simu­

lated Annealing. In this thesis, MFA is formulated for mapping problem in

parallel processing and global routing problem in physical design automation

of Field Programmable Gate Array (FPGAs) A new Mean Field Annealing

(M FA) formulation is proposed for the mapping problem for mesh-connected

and hypercube architectures. The proposed MFA heuristic exploits the conven­

tional routing scheme used in mesh and hypercube interconnection topologies

to introduce an efficient encoding scheme. An efficient implementation scheme

which decreases the complexity of the proposed algorithm by asymptotical fac­

tors is also developed. Experimental results also show that the proposed MFA

heuristic approaches the speed performance of the fast Kernighan-Lin heuris­

tic while approaching the solution quality of the powerful simulated annealing

heuristic. Also, we propose an order-independent global routing algorithm for

SR AM type FPG As based on Mean Field Annealing. The performance of the

proposed global routing algorithm is evaluated in comparison with LocusRoute

global router on ACM/SIGDA Design Automation benchmarks. Experimen­

tal results indicate that the proposed MFA heuristic performs better than the

LocusRoute.

Ill

IV

Keywords: Mapping, Global Routing, Field Programmable Gate Arrays, Mean
Field Annealing

ÖZET

ORTA ALAN T A V LA M A M E T O D U KU LLANILARAK
EŞLEME VE F P G A T E R D E K İ K A B A RO TALAM A

PROBLEM LERİNİN Ç Ö ZÜ M Ü

İsmail Haritaoğiu
Bilgisayar ve Enformatik Mühendisliği, Yüksek Lisans

Danışman; Yrd. Doç. Dr. Cevdet Aykanat
Eylül, 1994

Birleşimsel eniyileme problemlerini çözmek için önerilen Ortak Alan Tavlama
(Mean Field Annealing) algoritması, sinir ağları ve benzetimsel tavlama (Sim­

ulated Annealing) yöntemlerinin özelliklerini taşır. Bu çalışmada. Ortak

Alan Tavlama algoritması Alan Programlamalı Kapı Devrelerinin (Field Pro­

grammable Gate Arrays) kaba rotalama problemine (Global Routing) ve par­

alel programlamadaki eşleme (Mapping) problemlerine uyarlanmıştır. Tezin

ilk bölümünde Ortak Alan Tavlama algoritması Alan Programlamalı Kapı

Devrelerinin (Field Programmable Gate Arrays) kaba rotalama problemi-

ninin çözümünde kullanılmıştır. Önerilen algoritmalarının başarımları Locus-

Route kaba rotalama algoritması ile kıyaslanarak değerlendirilmiştir. Deneyler

algoritmaları karşılaştırmak için kullanılan standart devreler (Benchmarks)

üzerinde yapılmıştır. Elde edilen sonuçlar Ortak Alan Tavlama algoritmasının

kaba rotalama problemini çözmek için iyi bir alternatif algoritma olarak kul­

lanılabileceğini göstermektedir. Tezin ikinci bölümünde Mesh ve Hiperküp

tipindeki paralel bilgisayarlarındaki eşleme problemi için daha önce önerilen

algoritmalardan daha hızlı olan bir algoritma geliştirilmiş ve bu önerilen algorit­

manın başarımları Kernighan-Lin, Simulated Annealing ve daha önce önerilen

ortak alan tavlama metotları ile kıyaslanarak değerlendirilmiştir.

Anahtar Sözcükler: Orta Alan tavlama algoritması, Eşleme problemi. Kaba

rotalama algoritmaları. Alan programlamlı kapı devreleri

IV

ACKNOWLEDGEMENTS

I would like to express my deep gratitude to my supervisor Dr. Cevdet Aykanat

for his guidance, suggestions, and invaluable encouragement throughout the

development of this thesis. I would like to thank Dr. Ömer Benli for reading

and commenting on the thesis. I would also like to thank Dr. Mustafa Pınar for

reading and commenting on the thesis. I owe special thanks to Dr. Mehmet

Baray for providing a pleasant environment for study. I am grateful to my

family and my friends for their infinite moral support and help.

Bu çalışmamı,

herşeyimi borçlu olduğum anneme, babama,
ve

Esine

adıyorum.

VI

Contents

1 INTRODUCTION 1

2 MEAN FIELD ANNEALING 4

2.1 Mean Field Annealing ... 4

2.1.1 Ising M o d e l .. 5

2.1.2 Potts M o d e l... 6

2.1.3 MFA A lgorithm ... 8

3 FPGAs & GLOBAL ROUTING 9

3.1 Introduction to Field Programmable Gate A r r a y s 9

3.1.1 Logic B locks.. 10

3.1.2 Programming Technologies... 10

3.1.3 Routing A rch itectu res... 11

3.2 Physical Design Automation of F P G A s .. 15

3.2.1 P artitioning.. 15

3.2.2 Placement 15

3.2.3 R o u t in g .. 15

3.3 Global Routing Problem in Design Automation of FPGAs . . . 16

vii

3.4 Model of FPGA for Global R o u tin g .. 17

4 MFA SOLUTION FOR GLOBAL ROUTING IN FPGA 22

4.1 MFA Formulation of Global R o u t in g .. 22

4.2 Im plem entation.. 25

4.3 Experimental R esu lts ... 27

5 THE MAPPING PROBLEM 33

5.1 The Mapping P r o b le m ... 33

5.2 The Model of Mapping P rob lem ... 35

6 MFA SOLUTION FOR MAPPING 39

6.1 General MFA Formulation for Mapping P roblem 39

6.2 Interconnection-Topology Specific MFA Formulation for Mapping 42

6.2.1 MFA formulation for Mesh-Connected Architectures . . . 42

6.2.2 MFA Formulation For Hypercube Architecture51

6.3 Performance Evaluation .. 56

6.4 Experimental R esu lts ... 59

7 CONCLUSION 69

CONTENTS viii

List of Figures

2.1 Mean Field Annealing A lg o r ith m .. 8

3.1 The Architecture of General F P G A .. 11

3.2 Example of flexibilities of FPGA (a) flexibility of switch block

(b) flexibility of connection b lo c k .. 12

3.3 The Architecture of Xilinx 3000 F P G A .. 13

3.4 The Architecture of Actel F P G A ... 14

3.5 General approach to FPGA routing a) Global routing b) De­

tailed r o u t in g .. 16

3.6 Sample two bends ro u te s .. 17

3.7 The FPG A model used for Global R o u tin g ... 18

3.8 (a) The routing area of the two-pin net and its subnets, (b) The

possible routes for each s u b n e ts ... 19

3.9 The Cost Graph for FPGA m o d e l... 20

4.1 Channel density distribution obtained by M FA for the circuit

C1355 .. 32

4.2 Channel density distribution obtained by LocusRoute for the

circuit Cl355 ... 32

4.3 SEGA detailed router results of the circuit Cl355 for the global

routing solutions obtained by (a) MFA (b) L ocu sR ou te 32

ix

LIST OF FIGURES

5.1 An example of mapping problem 38

6.1 The proposed efficient MFA algorithm for the mapping problem

for mesh-connected Architectures. 48

6.2 Three different ways for dividing 3-dimensional hypercube to 2

2-dimensional subcubes... ... 52

6.3 The Mean field value calculation of given spin i of subcube . 56

List of Tables

4.1 M CNC benchmark circuits used in ex p erim en ts 27

4.2 The Global Router r e s u lts ... 28

4.3 The SEGA detailed routing results in area optimization mode . 29

4.4 The SEGA detailed routing results in speed optimization mode . 30

4,5' Minimxm Channei Width for 100% ro u tin g .. 31

6.1 Total communication costs averages normalized with respect to

mesh-specific MFA of the solution found by SA,KL,general MFA

and mesh-specific MFA for randomly generated mapping prob­

lem instances for various mesh s i z e ... 59

6.2 Percent computational load imbalance averages of the solution

found by SA,KL,general MFA and mesh-specific MFA for ran­

domly generated mapping problem instances for various mesh

s iz e ... 60

6.3 Execution time averages of the solution found by SA,KL,general

MFA and mesh-specific MFA for randomly generated mapping

problem instances for various mesh s iz e .. 60

6.4 Average performance measures of the solution found by SA, KL,

general MFA and mesh-specific MFA for randomly generated

mapping problem instances... 61

6.5 The Benchmark Sparce Matrix data used in experiments 62

XI

LIST OF TAFiLES Xll

6.6 Total communatication cost averages, normalized with respect

to mesh-specific MFA, of the solution found by SA,KL, general

MFA and mesh-specific MFA for some bechmark mapping prob­

lem instances for various mesh s i z e ... 63

6.7 Load Imbalanced averages,of the solution found by SA ,KL, gen­

eral MFA and mesh-specific MFA for some bechmark mapping
problem instances for various mesh s i z e .. 64

6.8 Total execution time, normalized with respect to mesh-specific

MFA, of the solution found by .SA,KL, general MFA and mesh-

specific MFA for some bechmark mapping problem instances for
various mesh s i z e .. 65

6.9 Average performance measures of the solutions found by SA,

KL, general M FA and mesh-specific MFA for mapping problem

instances.. 66

6.10 Total communication costs averages normalized with respect to

hypercube-specific MFA of the solution found by SA,KL,general

MFA and hypercube-specific MFA for randomly generated map­

ping problem instances for various hypercube s i z e 66

6.11 Percent computational load imbalance averages of the solution

found by SA,KL,general MFA and hypecube-specific MFA for

randomly generated mapping problem instances for various hy­

percube s i z e ... 67

6.12 Execution time averages of the solution found by SA,KL,general

MFA and hypercube-specific MFA for randomly generated map­

ping problem instances for various hypercubesize............................... 67

Chapter 1

INTRODUCTION

A common property of both domain mapping problem in parallel processing

and global routing in VLSI is that both problems are combinatorial optimiza­

tion problems. As many problems in VLSI, parallel processing and other areas,
these algorithms involve a finite set of configuration from solutions satisfying

a number of rigid requirement are selected. The objective of combinatorial
optimization algorithm is to find a solution of the optimum cost provided that

a cost can be assigned to each solution. Many combinatorial optimizations

problems are hard in the sense that they are NP-hard problems. There are no

known deterministic polynomial time algorithms to find the optimal solution

to any of those hard problems. The algorithms using the complete enumeration
techniques are usually exponential in the size of problem, therefore they require

a great amount of time to find the optimal solution. As a result, heuristics that

run in a low order polynomial time have been employed to obtain good solu­

tions to these hard problems. Disadvantage of heuristics is that they may get

stuck in local minima.

A powerful method for solving combinatorial optimization problem used in
previous research is called Simulated Annealing. This method is the applica­

tion of a successful statistical method, which is used to estimate the results of

annealing process in statistical mechanics, to combinatorial optimization prob­

lems. Simulated Annealing is a general method that guarantees to find the

optimal solution if time is not limited. But time needed for Simulated Anneal­

ing is too much and exact solution of NP-hard problems are still intractable.

Properties of Simulated Annealing are that, it can be used as a heuristic to ob­

tain near optimal solutions in limited time, and as the time limit is increased.

CHAPTER 1. INTRODUCTION

quality of the obtained solutions also increase. An important property of Sim­

ulated Annealing is the ability to escape from local minima if sufficient time is

given. Simulated Annealing has been applied to various NP-hard optimization
problem and for most problem it gives good results.

The subjects of this thesis is a recent algorithm, called Mean Field An­

nealing (M FA) was originally proposed for solving the traveling salesperson
problem. MFA is general strategy and can be applied to various problem with

suitable formulations. Work on MFA showed that, it can be successfully ap­

plied to combinatorial optimization problems. Mean Field Annealing (M FA)

merges collective computation and annealing properties of Hopfield Neural Net­

works (HNN) and Simulated Annealing (SA), respectively, to obtain a general

algorithm for solving combinatorial optimization problems. MFA can be used
for solving a combinatorial optimization problem by choosing a representation

scheme in which the final states of the spins can be decoded as a solution
to the target problem. Then, an energy function is constructed whose global

minimum value corresponds to the best solution of the problem to be solved.

MFA is expected to compute the best solution to the target problem, starting

from a randomly chosen initial state, by minimizing this energy function. In

this thesis, MFA is formulated for the mapping problem in parallel processing
and global routing problem in design automation of Field Programmable Gate

Arrays.

The first combinatorial optimization problem, that is solved by MFA in this

thesis, is global routing problem in design automation of field programmable

gate arrays. This study investigates the routing problem in Static RAM Field

Programmable Gate Arrays (F P G A ’s) implementing the non-segmented (Xil-

inx based) network [27]. As the routing in F P G A ’s is a very complex combina­

torial optimization problem, routing process can be carried out in two phases

; global routing followed by detailed routing [11]. Global routing determines

the course of wires through sequences of channel segments. Detail routing

determines the wire segment allocation for the channel segment routes found

in the first phase which enable feasible switch box interconnection configura­

tions [2-5, 14]. Global routing in FPGA can be done by using global routing

algorithm proposed for standard cells [25]. LocusRoute global router is one of

this type of router used for global routing in F P G A ’s [24] which divides the

multi pin net’s into two-pin net’s and considers only minimum distance routes

for these two-pin nets. The objective in the LocusRoute is to distribute the

connections among channels so that channel densities are balanced. In this

CHAPTER 1. INTRODUCTION

thesis, we propose a new approach the solution of global routing problem in
F P G A ’s by using Mean Field Annealing technique.

Second problem that is solved by MFA is the Mapping problem [4, 8, 29].

The mapping problem arises as parallel programs are developed for distributed

memory architectures. Various classes of problems can be decomposed into a

set of interacting sequential subproblems (tasks) which can be executed in par­

allel. In these classes of problems, the interaction patterns among the tasks is

static. In a distributed-memory architecture, a pair of processors communicate

with each other over a shortest path of links connecting them. Hence, commu­

nication between each pair of processors can be associated with relative unit

communication cost. Unit communication cost between a pair of processors can

be assumed to be linearly proportional to the shortest path distance between
those two processors. The objective in mapping subproblems to processors of

multicomputers is the minimization of the expected execution time of the par­

allel program on the target architecture. Thus, the mapping problem can be
modeled as an optimization problem by associating the following quality mea­

sures with a good mapping : (z) interprocessor communication overhead should

be minimized, (ii) computational load should be uniformly distributed among

processors in order to minimize processor idle time. The mapping problem

has been solved by using Simulated Annealing, Kernighan-Lin type heuristic

before. Also the MFA has been formulated in [6, 5]. But this formulation was a

general formulation for any type of multicomputer whose intercommunication

topologies are known. In this thesis we propose an efficient MFA formulation

for topology-specific mapping for 2D-mesh and hypercube. For each intercon­

nection topology, the efficient MFA formulation is given instead of using one

general formulation as in [6].

In Chapter 2 the theory of the Mean Field Annealing heuristic and its en­

coding models are explained. The Field Programming Gate arrays, its design

automation and Global Routing problem are introduced in Chapter 3. Also the

FPG A model for global routing problem are proposed in this chapter. Chap­

ter 4 gives the MFA formulation of global routing problem in FPGAs design

automation. The mapping problem are introduced in Chapter 5. Chapter 6

presents general MFA formulation the topology-specific MFA formulation for

Domain Mapping problem. Finally, conclusion of thesis are stated in Chapter?.

Chapter 2

M EAN FIELD ANNEALING

In this chapter the Mean Field Annealing (MFA) heuristic is introduced and

its models are given.

2.1 Mean Field Annealing

Mean Field Annealing (M FA) merges collective computation and annealing

properties of Hopfield Neural Networks (HNN) and Simulated Annealing (SA),

respectively, to obtain a general algorithm for solving combinatorial optimiza­

tion problems. HNN is used for solving various optimization problems and

reasonable results are obtained for small size problems. However, simulations

of this network reveals the fact that it is hard to obtain feasible solutions for

large problem sizes. Hence, the algorithm does not have a good scaling prop­

erty, which is a very important performance criterion for heuristic optimization

algorithms. MFA is proposed as a successful alternative to HNN. In the MFA

algorithm, problem representation is identical to HNN, but iterative scheme
used to relax the system is different. MFA can be used for solving a combi­

natorial optimization problem by choosing a representation scheme in which

the final states of the spins can be decoded as a solution to the target prob­

lem. Then, an energy function is constructed whose global minimum value

corresponds to the best solution of the problem to be solved. MFA is expected

to compute the best solution to the target problem, starting from a randomly
chosen initial state, by minimizing this energy function. Steps of formulating

MFA technique for a combinatorial optimization problem can be summarized

as follows :

4

CHAPTER 2. MEAN FIELD ANNEALING

• Choose a representation scheme which encodes the configuration space
of the target problem using spins. In order to get a good performance,

number of possible configurations in the problem domain and the spin

domain must be equal, i.e., there must be a one-to-one mapping between
the configurations of spins and the problem.

• Formulate the cost function of the problem in terms of spins, i.e., de­

rive the energy function of the system. Global minimum of the energy

function should correspond to the global minimum of the cost function.

• Derive the mean field theory equations using this energy function, i.e.,

derive equations for updating expected values of spins.

• Minimize the complexity of update operations in order to get an efficient

algorithm.

• Select the energy function and the cooling schedule parameters.

The M FA algorithm is derived by analogy to Ising and Potts model which

are used to estimate the state of a system of particles, called spins, in thermal

equilibrium.

2.1.1 Ising Model

In Ising model spins can be in one of two states represented by 0 and 1. In the

Ising model, the energy of a system with S spins has the following form:

1 (2.1)
k=l1фк fc=l

Here, indicates the level of interaction between spins к and /, and Sk € {0 ,1 }

is the value of spin k. It is assumed that ¡3ki = Pik and = 0 for I < k,l,< S.
At thermal equilibrium, spin average (sjt) of spin к can be calculated using

Boltzmann distribution as follows

1
-f e-'t'k/T (2.2)

Here, <f>k = {H{s))\s =̂Q — {H{s))\s =̂i represents the mean field effecting on spin
k, where the energy average {H(s)) of the system is

CHAPTER 2. МЕЛА' FIELD ANNEALING

(/ /(s)) — ^ Y20ki{skSi) + ^ hk{sk)
h=l Ijtk k=l

(2.3)

The complexity of computing 4>k using Eq.2.3 is exponential. However, for

large number of spins, mean field approximation can be used to compute the
energy average as

(̂ (s)> = i E E M M + E M (2.4)
“ k=l l^k k=l

Since {H{s)) is linear in (sk), mean field <f>k can be computed using the following
equation.

h = (/i(s)>l,.=o - {//(s))i„=. = = - \ E M + (2.5)

2.1.2 Potts Model

In the Potts model, spins can be in one of the K states. In state Potts model

of S spins, the states of spins are represented using S /f-dimensional vectors

Sj = [5 ,1 , . . . , Sik, . . . , 1 < i < -S, where “i” denotes the vector transpose

operation.

The spin vector Si is allowed to be equal to one of the principal unit vectors

e i , · . · , ©k) · · ·) ®K) and can not take any other value. Principal unit vector
is defined to be a vector which has all its components equal to 0 except its ¿ ’th

component which is equal to 1. Spin Si is said to be in state k if it is equal
to efc. Hence, a K state Potts spin Si is composed of two state variables

Sii,.. . ,Sik,... 1 SiKi where s,·* € {0 ,1 } , with the following constraint

к
Y^Sik = G ^ < i < S
k=l

(2.6)

In the Potts model, the energy of a system with S K-state Potts spin has the

following form:

^ = i E E f t - s , s , + E ' A
i= l j:̂ i i=l

(2.7)

Here, fiij indicate the level of interaction between spins i and j, and interaction

between Potts spins S ,Sj is formulated as îkSji· Therefore we

CHAPTER 2. MEAN FIELD ANNEALING

can formulate the energy of the system as

s к к

 ̂ t = l k=ll=l
(2.8)

1=1 1=1

Here, Sik e 0,1 is the value of A:th state of the Potts spin i. At thermal
equilibrium, spin average (s,jt) of spin г can be calculated using Boltzmann
distribution as follows

{Sik) =
оФ.к/Т

(2.9)

Here, (sik) € [0,1]. Note that Sik can be 0 or 1 but (s,jfc) can be any real value

between 0 and 1. represents the mean field effecting on state k of spin i.
The mean field value for Potts spin i can be formulated as

fe = {î (s))ls,=o-{//(s))|s.=
. M M

d{sik) Z Z
b¥»· i=i

(2.10)

(2.11)

At each temperature, starting with initial spin averages, the mean field

effecting on a randomly selected spin is found using Eqs. (2.5) and (2.10).

Then, spin average is updated using Eq. (2.2) and Eq. (2.9) This process is

repeated for a random sequence of spins until the system is stabilized for the

current temperature. M FA algorithm tries to find equilibrium point of a system

of S spins using annealing process similar to SA,. The state equations used in
MFA are isomorphic to the state equations of the neurons in the HNN. A

synchronous version of M FA, can be derived by solving N difference equations

for N spin values simultaneously. This technique is identical to the simulations

of HNN done using numerical methods. Thus, evolution of a solution in a

HNN is equivalent to the relaxation toward an equilibrium state affected by

the MFA algorithm at a fixed temperature [9]. Hence MFA can be viewed

as an annealed neural network derived from HNN. HNN and SA methods
have a major difference: SA is an algorithm implemented in software, whereas

HNN is derived with a possible hardware implementation in mind. MFA is

somewhere in between, it is an algorithm implemented in software, having

potential for hardware realization [8, 9]. In this work, MFA is treated as a

software algorithm as SA. Results obtained are comparable to other software

algorithms, conforming this point of view.

CHAPTER 2. MEAN FIELD ANNEALING

l.Get the Initial temperature Tq, and set T = Tq
2.Initialize spin averages

king spin : [(ui), («2), . . .]
Potts spins :[(Si), (82), · · ·]

3.WHILE temperature T is in the cooling range DO
4. WHILE system is not stabilized for the current temperature DO

Select a spin i at random
4.¡Compute mean field affecting on spin i

Ising spin : compute (f>i - E'(U)|t,,=o -
Potts spins : compute <t>i = [<t>i\,<i>i2, · · ·, <t>iKY such that

= ^ (S)|s ,^0 - ^(S)|s.=e* for i = 1 , 2 , . . AT
4.2Update the average value of spin i

Ising spin: {ui) = -f
Potts spin : {sik) = ioT k = 1,2, . . . , K

5. Update T according to the cooling schedule

Figure 2.1. Mean Field Annealing Algorithm

2.1.3 MFA Algorithm

The Mean Field Annealing algorithm are summarized in Figure 2.1.2. Begin­

ning of the algorithm, the initial temperature are initialized and the current

temperature is set to that initial value (step 1). After that Ising and Potts

spins are initialized (step 2). Then, the annealing property of MFA are begin.

In cooling schedule, the system tries to reach a stable state for each tempera­

ture until most of spins converges a stable state. For each temperature, while

the system is not in stable state, a spin is selected randomly (step 4.1), and

mean field values of spins are calculated (step 4.2) in order to update the spin

values (step 4.3). When the system reaches the stable state, the temperature

decreased by cooling schedule (step 5). At the end of algorithm, when most of

spins converge, spins are decoded for a solution of target problem.

Chapter 3

FPGAs & GLOBAL ROUTING

This chapter introduces the Field Programmable Gate Arrays and its physical

design automation steps briefly. Routing architectures of F P G A ’s are men­

tioned in this chapter and global routing problem and its previous solutions
are given at the end of this chapter. Also the global routing problem in FPGAs

is modeled in this chapter.

3.1 Introduction to Field Programmable Gate Arrays

Field Programmable gate arrays (FPGAs) are new electrically programmable

integrated circuits that provide high integration and rapid turnaround time.

In VLSI design automation, the fabrication tirne is important problem. In

order to reduce time to fabricate interconnects, programmable devices have

been introduced. FPGA is very popular programmable devices used in ASIC

design market.

FPG A can reduce manufacturing turnaround time and cost. In its simplest

form, an FPGA consists of an array of programmable logic blocks and routing

network to interconnect the logic blocks. The programmable logic blocks can

be programmed by the user to implement a small logic function. An important

property of FPGA is re-programmability by using electrically programmable

switches. Commercial F P G A ’s differ in the type of programming technology
used, in architecture of logic blocks and their routing architectures. An FPGA

logic blocks can be as simple as transistor or as complex as a microprocessor.

CHAPTER 3. FPGAS S¿ GLOBAL ROUTING 10

It is typically capable of implementing many different combinational and se­

quential logic functions. F P G A ’s logic blocks can be classified as transistors

pairs, basic small gates (such as two-input N A N D ’s), multiplexes and Look-up
tables.

3.1.1 Logic Blocks

FPGAs logic blocks differ greatly in their size and implementation capability.

The two transistor logic block can only implement an inverter but is very small

in size, while look-up table logic blocks used in Xilinx FPGAs can implement

any five-input logic function but they are significantly larger. Logic blocks

can be classified in terms of granularity. Granularity can be defined in various
ways, for example, as the number of boolean function that the logic block can
implement, the number of equivalent two input NAND gates, total number

of transistors, number of inputs and outputs. But generally, the commercial
logic blocks can be classified into two categories: fine-grain and coarse-grain.
Main advantage of using fine grain logic blocks is that the use-able blocks are

fully utilized. However the main disadvantage of fine-grain blocks is that they

require a relatively large number of wire segments and programmable switches.

3.1.2 Programming Technologies

An FPG A is programmed using electrically programmable switches. Accord­

ing the properties of these programmable switches such as, on-resistance and

capacitance, programming technologies can be classified into three main types.

These three types are SRAM , antifuse and EPROM programming technolo­

gies.

The SR AM programming technologies uses static R AM cells to control the

gates and multiplexes. In SR AM , the switch is a pass transistor controlled by

the state of a SRAM bit. Therefore, SRAM is volatile. Hence The FPGA must

be loaded and configured at the time of chip power-up, it requires external per­

manent memory to provide the programming bits such as PROM or EPROM .

A major disadvantage of SRAM programming technology is its large area (its

takes at least five transistors to implement an SRAM cell). However, SRAM

programming technology has fast re-programmability as an advantage of it.

CHAPTER 3. FPGAS ¿z GLOBAL ROUTING 11

Architecture of FPGA

Wiring Scgnicnts

outing Channel

Logic Block Connection Block Switch Block

Figure 3.1. The Architecture of General FPGA

An antifuse is a two terminal device with an unprogrammed state presenting

a very high resistance between its terminals. When a high voltage is applied
across its terminals, the antifuse will blow and create low resistance link. This

link is permanent. Programming an antifuse requires extra circuitry to deliver

the high programming voltage and a high current. A major advantage of the

antifuse is its small size.. This advantage is reduced by the large size of the

necessar_v programming transistors·.

The floating gate programming technology uses technology found in ultra­

violet erasable EPROM and electrically erasable EEPROM . Major advantage

of EPROM technology' is its fast reprograramability. Also it does not require

extra permanent memory to program the chip on power-up. However this tech­

nology increase the number of processing steps and high resistance transistors.

3.1.3 Routing Architectures

The routing architecture of an FPG A is the manner in which the programmable

switches and wiring segments are positioned to allow the programming inter­

connection of the logic. Figure 3.1 illustrates a typical routing architecture

model. Before giving some commercial FPGA routing architecture, giving

some definition is helpful for understand routing problem in FPGA. A wire

CHAPTER 3. FPGAS & GLOBAL ROUTISG 12

Wiring
Segments

Logic U ·
Block :

Fs=5

Logic
Block

Fc=3

(a) (b)

Figure 3.2. Example of flexibilities of FPGA (a) flexibility of switch block
(b) flexibility of connection block

segment is a wire unbroken by programmable switches. One or more switches

may attach to the wire segment. Each end of wire segment has a switch at­

tached.

A track is sequence of one or more wire segments in a line.

A routing channel is group of parallel tracks as in Figure 3.1.

As shown in Figure 3.1, the model contains two basic structures: Connec­

tion blocks and switch blocks. A connection block provides connectivity from

the input and output of logic blocks to the wire segments in the channels. A

switch block provides connectivity between the horizontal as well as the vertical

wire segments.

As in Figure 3.2, The general routing structure of FPG A has two impor­

tant interconnection block. These are connection blocks which are used to make

connections between logic block pin and routing segments, and switch blocks

where connections are switched at the intersection of horizontal and vertical

channels. The number of switching in connection and switch blocks is impor­

tant for good routability. Large number of switching increase the routability

but it causes poor performance and large delay and also large area.

The number and distribution of switches used in interconnection called

flexibility of an FPG A. Flexibility of switch blocks (F ,) and flexibility of con­

nection block {Fc) can be defined as the number of choices offered to each wire

enter a switching block or a connection block, respectively. The flexibility of
switch block F, is defined to be total number of possible connection offered

CHAPTER 3. FPGASL· GLOBAL ROETISG 13

LB:

Swiictq
Block

LB;

Swiicl·
Block

LB;

General Purpose
Interconnect

LB :

9

Switch
BkKki

SwitcH
Blexrk

e

~ Long Lines
(Horizontal)

Direct
Interconnect

:LB:

I I

Long Lines
(Vcnical)

(a)

Routing
Switch

(b)

Figure 3.3. The Architecture of Xilinx 3000 FPGA

to each wire segment. The flexibility of connection block Fc is defined as the

number of wires that each logical pin of logic block can connect. Next section

describes the important routing architecture of commercial F P G A ’s such as

Xilinx and Actel.

The Xilinx Routing Architecture

Figure 3.3 illustrates the routing architecture used in the Xilinx 3000 series
FP G A . Connections are made from the logic block into the channel through

a connection block. Since each connection site is targe because of the SRAM

programming technology, the Xilinx 3000 connection blocks connects each pin

to only two or three out of five tracks passing by a block . On all four sides

of the logic block there are connection blocks that connect a total of 11 dif­

ferent logic block pins to the wire segments. Once the logic pin is connected

via the connections block makes connections between segments in intersecting

horizontal and vertical channels. Each wire segment can connect to five or six

out of a possible 15 wire segments on the opposites sides. There are four types

of wire segments provided in the Xilinx 3000 architecture:

-General-purpose interconnect consisting of wire segments that pass

through switches in the switch block.

CHAPTER 3. FPGAS & GLOBAL ROUTING 14

Antifuse ^

Input Segment-

Wiring Segment“

LB LB LB L 3 LB
i H
C ̂ i

: 7^
' 1 t

} · < H H)-----------------

____ . k. r i
f f

TX \
\ f

H H
\ /

)-----------------

_______0 _-_______________ _
1.) \
f \ f

7~\
\ f

tX
\ f

} ■ \
\ f

r t)-----------------
c rr rX

\ i >1 (

t-----------1 H H)-----------------

----------------___ i V
- 0 _____ _ ^

s J K
" ̂ f

rX)-----------f H i-----------------

----------------------- Q __________^
s } K
' ̂ r

rX
\ c

tX
w)---------- i H)-----------------

} KfX E)-----------(p —

LB LB LB L 3 LB
-----------& -i Vi \ f \ f— .. . Q ____ ^ Vi

V
S r \ f

)---------- (H)---------

________ Q ^ Vi
J V
5 (

J V >-----------(H)-----------------

-----------O f H Vi
tX >-----------(^-----------------

------------------------------- © — -4)_(

I K '---------- 1 >■<

1 f N 4

i)-----------------

___Ci________ £) (\ i
*-----------€ M.)-----------------

KJ \ _______ 0 ____(. \ (\ i 1
►-------- - i H H)-----------------

f \ i>-----------i H)-----------------

LB LB LB L 3 LB

-Output Segment

‘ Vertical Track

Figure 3.4. The Architecture of Actel FPGA

-Direct interconnect consisting of wire segments that connect each
logic block output directly to four nearest neighbors.

-Long lines, which span the length or width of the chip, providing
high-fanout uniform delay connections.

-Clock line, which is a single net that spans the entire chip and is
driven by a high-drive buffer.

The Actel Routing Architecture

The Actel routing architecture has a eisymmetric architecture because there

are more general purpose tracks in horizontal direction than vertical direction.

The connection block of the Actel routing architecture is shown in Figure 3.4.

The connectivity of A CTEL FPCAs is different in input and output pins. For

input pins, each pin can connect to all of the tracks in the channel that are on

the same side as the pin. The output pins extend across two channels above the

logic block and two channels below it. Output pins can connect to every track

in all four channels that is crosses. There is no separable switch block in the

Actel architecture. Instead, the switching is distributed throughout the hori­

zontal channels. All vertical tracks can make a connection with every incident

horizontal tracks. Each horizontal channel consists of 22 routing tracks, and

each track is broken up into segments of different lengths. There are three type

of vertical segments: input segments, output segments and freeways that either

travel the entire height of chip, or some significant portion of it. This allows

signal to travel longer vertical distance than permitted by output segments.

CHAPTER 3. FPGAS GLOBAL ROUTING 15

3.2 Physical Design Automation of FPGAs

The physical design automation of FPGAs involves mainly three steps which
include partitioning, placement and routing.

3.2.1 Partitioning

Partitioning is the separation of the logic into Logic blocks. Partitioning has

both a logical and physical component. The connections within a logic blocks

are constrained by the limited routing architecture and limited number of

blocks outputs. However, the quality of the resulting partitioning depends

on how well the placement can be done. The logical component has been

investigated in the context of technology mapping in logic optimization.

3.2.2 Placement

Placement starts with logic blocks and input-output blocks in partitioned

netlist and decides which corresponding blocks on the chip should contain

them. The FPGA placement problem is very similar to traditional standard

cell and gate array placement problems. Many of existing algorithm place­

ment algorithms are applicable, such as simulated annealing, force directed

relaxation and min-cut.

3.2.3 Routing

After placement of all circuit, each pin of any multipoint net have to be con­

nected. There are several routing algorithms for different kind of FPGA ar­

chitectures and routing problem in FPG.A’s is very complex as in standard

cells and gate arrays designs. Because of simplicity, the routing problem can

be divided into two step as in traditional routing problem: global routing and

detailed routing.

Global routing in F P G A ’s can be done by using a global router for standard

cell design. In general such a global router divides the multipoint nets into two

terminal nets and routes them with minimum distance path. While doing so it

CHAPTER 3. ERG AS S¿. GLOBAL ROUTING 16

□ □ □

□ □ □ ° ,
□ □ □ □

□ □ □ A
(a)

□

□

□

□

□

□

□

□

□

□

□

(b)

□

□

□

Figure 3.5. General approach to FPGA routing a) Global routing b) Detailed
routing

also tries to balance the density of channels. The global route defines________

route for each connection by assigning it a sequence of channel segments. After
the paths are defined in terms of channel between two-pin connection detailed
router chose specific wiring segments to implement the channel segment

signed during global routing.

a coarse

as-

3.3 Global Routing Problem in Design Automation of
FPGAs

A global router chooses channels for each net and leaves the task of allocating

specific wiring segments and switches to detailed router. The global routing

in F P G A ’s decides for each net to determine which pins are actually to be

connected. The objective of global router is to minimize the sum of the channel

densities of all channels. As in many studies, the routing problem in FPGA

is solved by directly allocating the segments and ignore the global routing

phase. There are unique global router for FPG A: PGAroute. This global

router similar the global router for standard cells and use the LocusRoute

global routing algorithm.

In the LocusRoute algorithm, the following three steps are executed for

each multi pin nets.

1) Net’s Division: Each multi-pin net is divided into a set of two-pin con­

nections using a minimum spanning tree algorithm.

CHAPTER 3. ERG AS & GLOBAL ROUTING 17

Tf

S2

sr··
T2

n

Figure 3.6. Sample two bends routes

2) Route Generation and Evaluation: In this steps, the possible paths be­

tween each pin of two-pin nets are considered and evaluate this paths in terms
of cost value and chose the lowest cost value path.

The method of choosing routes is based on paths that have two or less bends.
LocusRoute evaluates a subnet of all two bend routes between the two physical

pins and chose the one with the lowest cost. The cost function is defined in

terms of the channel densities. Each wire segments and switch blocks are

represented as elements of an array which is called as cost array. Each element

of cost array Hij contains the number of routes that pass through the wire

segment of {i,j). The cost of path(P) is calculated as

Cost(P) = y : Hi,¡ (3.1)

3)Reconstruction: This step joins all two-pin connections back together,

performs assigns unique numbers to distinct segments of some nets in each

channel.

Locus routes uses the iterative technique, that after the first time all nets

are routed, each is sequentially ripped up and rerouted. Iterations reduces the

order dependency and also it improves the routing quality.

3.4 Model of FPGA for Global Routing

The form of commercial FPGA consists of a two dimensional regular array

of programmable logic blocks (LB’s), a programmable routing network and

CHAPTER 3. FPGAS &c GLOBAL ROUTING IS

Vertical
^Channel Segment

• SR,

Horizontal
Channel Segment

LB

SB: Switch Box
LB: Logic Blocks

Figure 3.7. The FPGA model used for Global Routing

switch boxes (SB ’s) [3, 1 , 2]. Logic blocks are used to provide the function­

ality of a circuit. Routing network makes connections between LB’s and in-
put/output pads. Routing network of FPGA consists of wiring segments and

connection blocks. Wiring segments have three type of routing resources in

the commercial SRAM based FPG A [Ij: channel segments, long lines and

direct-interconnections. A horizontal (vertical) channel segment consists of a

number of parallel wire segments connecting two successive SB ’s in a horizontal

(vertical) channel. The SB’s allow programmed interconnection between these

channel segments. Direct-interconnection provides the connections between
neighbor LB ’s. Long lines cross the routing area of FPGA vertically and hor­

izontally. Connection blocks provide the connectivity from the input/output

pins of LB’s to the wiring segments of the respective channel segments. Each

pin can be connected to a limited number of wiring segments in a channel and

this is called a ̂ flexibility of connection block [16]. In this work, it is assumed

that each LB pin can be connected to all wiring segments in the respective

channels. Therefore, we can omit the connection block in our FPGA model.

Since the direct-interconnections are used by neighbor LB’s to provide min­

imum propagation delay and the long lines are used by signals which must

travel long distances (i.e., global clock), these interconnection resources are

not considered in the global routing. Hence, our FPGA model for global rout­

ing considers only the LB’s, SB ’s and channel segments. An FPGA can be

modeled as a two dimensional array of LB’s which are connected to the verti­

cal and horizontal channel segments, and SB’s which make connections between

CHAPTER 3. FPGAS & GLOBAL ROUTIXG 19

Source LB

Source SB

LS-subnet

Target SB

Target LB

f ^^^-.subnet

; f
·' ; (► *

I'i

t :
: ♦

(a)

SL-subnet

(b)

Figure 3.8. (a) The routing area of the two-pin net and its subnets, (b) The
possible routes for each subnets

the horizontal and vertical channel segments (Fig. 3.7).

In this work, we divide all multi-pin nets into two-pin nets using minimum

spanning tree algorithm [19] as in LocusRoute. Hence, a net refers to a two-
pin net here, and hereafter. Consider the possible routings for a two-pin net

with a Manhattan distance of dh + dy where dk and denote the horizontal

and vertical distances, respectively, between the two pins of the net on the

LB grid. The routing area of this net is restricted to a (d/i-t-1) x (d„-t-l) LB

grid as shown in Fig. 3 .8 .a. Then, the shortest distance routing of this net

can be decomposed into three independent routings as follows. Each pin of

this net has only one neighbor SB in the optimal routing area. Hence, each

pin can be connected to its unique neighbor SB either through a horizontal

or a vertical channel segment (Fig. 3.8). Meanwhile, the optimal routing area

for the connection of these two unique SB’s is restricted to a xd„ SB grid

embedded in the LB grid (Fig. 3.8). Hence, by exploiting this fact, we further

subdivide each net into three two-pin subnets referred here as LS, SS and

SL subnets (Fig. 3 .8 .b). Here, LS and 5L subnets represent the LB-to-SB

and SB-to-LB connections, respectively, and SS subnets represent the SB-to-

SB connection for a particular net. Therefore, we consider only two possible

routings for both LS and SL subnets and dh+dy — 2 possible one or two bend

routings for SS subnets for routing the original net.

We define an FPGA graph F (L , 5 , C) for modeling the global routing prob­

lem in FPGAs. This graph is a P x Q two-dimensional mesh where L, S and

CHAPTER 3. PPG AS & GLOBAL ROUTING 20

FPGA Graph

Rl: A possible route for SS-subnet

R2: Two possible routes for the LS-subnet ()

R3: Two possible routes for the SL-subnet (S ,L)
73 73

P’igure 3.9. The Cost Graph for FPG A model

C denote the set of LB ’s, SB’s and channel segments, respectively. Here, P
and Q is the number of horizontal and vertical channels in the FPG A. Each

grid point (vertex) Sp, of the mesh represents the SB at horizontal channel p
and vertical channel q. Each cell Lpg of the mesh represents the LB which is

adjacent to four SB ’s Spq, ■Sp.j+i, and ■Sp+i,,. Edges are labeled such

that the horizontal (vertical) edge (c"^) corresponds to the channel segment

between the two consecutive SB’s Spq and 5p,,+i (sp+i,,) on the horizontal (ver­

tical) channel p (q), respectively. Figure 3.9 displays a 8 x 6 sample FPGA

graph. Then, the pins of the LSISL and SS type subnets are assigned to the

respective cell-vertex and vertex-vertex pairs of the graph as is in mentioned
earlier.

The global routing problem reduces to searching for most uniform possible
distribution of the routes for these subnets. The uniform distribution of the

routes is expected to increase the likelihood of finding a feasible routing in

the following detailed routing phase. Hence, we need to define an objective

function which rewards balanced routings. VVe associate weights with the edges

of FPGA graph in order to simplify the computation of the balance quality

of a given routing. The weight ŵ g (u>pq) of a horizontal (vertical) edge ĉ g
(Cpg) denotes the density of the respective channel segment. Here, the density

of a channel segment denotes the total number of nets passing through that

segment for a given routing. Using this model, we can express the balance

CHAPTI-R 3. FPGAS & GLOBAL ROUTISG 21

quality B oi a. given routing R as

B (R) = E E « (R)) " + E E K , (R)) ^
P=1 q z = l q = i p = l

(3.2)

As is seen in Eq. (3.2), each channel segment contributes the square of its den­

sity to the objective function thus penalizing imbalanced routing distributions.

Hence, the global routing problem reduces to the minimization of the objective
function given in Eq. (3.2).

Chapter 4

MFA SOLUTION FOR GLOBAL
ROUTING IN FPGA

This chapter investigates the routing problem in Static RAM Field Pro­

grammable Gate Arrays (F P G A ’s) implementing the non-segmented (Xilinx
based) network [27]. The architecture model of FPGA used for formulation
and Mean Field Annealing formulation for global routing problem are given

in this chapter. Details of experiments, the circuits used in experiments and

results are shown at the end of this chapter.

4.1 MFA Formulation of Global Routing

The MFA algorithm is derived by analogy to Ising and Potts models which

are used to estimate the state of a system of particles, called spins, in thermal

equilibrium. In Ising model, spins can be in one of the two states represented

by 0 and 1 , whereas in Potts model they can be in one of the K states. All
LS/SL subnets are represented by Ising spins since they have only two possible

routes. In Ising spin encoding of each LS/SL subnet m, = I (0) denotes

that the LB-to-SB or SB-to-LB routing is achieved through a single horizontal

(vertical) channel segment. Each SS subnet n having !{„ > 2 possible routes

is represented by a ATn-state Potts spin. The states of a /t"„-state Potts spin is

represented using a Kn dimensional vector

Vn — [^nl) · · ·) n̂rt · · · ̂ '̂n.A'nj (4.1)

99

CHAPTER 4. MEA SOLUTION FOR GLOBAL ROUTING IN FPGA 23

where “i” denotes the vector transpose operation. Each Potts spin v„ is allowed

to be equal to one of the principal unit vectors e i , . . . , Cr, . . . , and can not

take any other value. Principal unit vector 6 r is defined to be a vector which

has all its components equal to 0 except its r-’th component which is equal to

1 . Potts spin v„ is said to be in state r if v„ = 6 r. Hence, a A'„-state Potts

spin v„ is composed of Kn two state variables t’n\, ■ ■. ,Vnr, ■ ■ ■ ,VnK„, where
Vnr £ { 0) 1 }) with the following constraint

Kn
x ; Vnr = 1
r=l

(4.2)

If Potts spin n is in state r (i.e., == 1 for 1 < r < /i „) we say that the

corresponding net n is routed by using the route r.

In the MFA algorithm, the aim is to find the spin values minimizing the

energy function of the system. In order to achieve this goal, the average (ex­

pected) values (um) and (v„) — [(vni), · · · , {vnr), ■ ■■, (r’nA'„)]‘ of all Ising and
Potts spins, respectively, are computed and iteratively updated until the system

stabilizes at some fixed point. Note that for each Ising spin m, Um G { 0 , 1 }, i.e.,

Ujn can take only two values 0 and 1 , whereas (um) E [0 , 1], i.e., {um) can take

any real value between 0 and 1 . Similarly, for each Potts spin n, Vnr € {0 ,1 }

whereas (u„r) E [0,1]. When the system is stabilized, (um) and (vnr) values

are expected to converge to either 0 or 1 with the constraints J2^i(vnr) = 1

for the Potts spins.

In order to construct an energy function it is helpful to associate the fol­

lowing meaning to the values (um) for LS/SL subnets.

(wm) = ^(subnet m is routed by using the horizontal channel segment)

1 — (wm) = ^(subnet m is routed by using the vertical channel segment)

That is, (um) and 1 — (wm) denote the probabilities of finding Ising spin m

at states 1 and 0, respectively. In other words, (u^) and 1 — (u^) denote

the probabilities of routing subnet m through a single horizontal and vertical

channel segment, respectively. Similarly, for SS subnets represented with Potts

spins

(vnr) = '^(subnet n is routed through route r) for 1 < r < Kn (4.3)

That is, {vnr) denotes the probability of finding Potts spin at state r for 1 <

r < Kn· In other words, (v„r) denotes the probability of routing net n through

CHAPTER 4. MFA SOLUTION FOR GLOBAL ROUTING IN FPGA 24

route r. Here and hereafter, Um and v„r will be used to denote the respective

expected values i{um) and (r„r),respectively) for the sake of simplicity. Now,
we formulate the total density cost of global routing problem as an energy term

Eb(U,V)

where

E E K i U) + <»i,(v)]^ + z E K i u) + (4.4)
p = l q=l <7=1 p = l

w: = E “ d < (V) = E E

W.
ri3ĉ q r€Rn,rBĉ q

;,(U) = E (1 - “») w;,(V) = E E «»r
n3 c", rgKn.rac;;,

where U = . . . } and V = {v i, V2 , . . . } represent the sets of Ising and

Potts spins corresponding to the LS/SL and SS subnets, respectively. For

LS/SL subnets, “m 3 Cpq” denotes “for each LSfSL subnet m whose pair
of pins share the horizontal or vertical channel segment Cp,” . For SS sub­

nets “n 3 Cpg” denotes “for each SS subnet n whose routing area contains

the horizontal and vertical channel Cp,” . Furthermore, “r G Rn,'>' 3 Cpg” de­

notes “for each possible route r of SS subnet n which passes through the

horizontal or vertical channel segment Cp,” . Here, Wp,(U) and Wpg(V) repre­

sent the probabilistic densities of the horizontal or vertical channel segment Cpg
for the current routing states of LS/SL and SS subnets, respectively. Hence,
Wpg (U , V) = typq(U)-f ti)p,(V) represents the total probabilistic density of hor­

izontal or vertical channel segment Cpg for the overall current routing state.

Mean field theory equations, needed to minirhize the energy function Eb·,
can be derived as

= -2K ,(U , V) - < (U, V) - 2(u„ - 0.5)] (4.5)
where cj,, c”, € m

for an Ising spin m and

^„(U,V) = £s(U,V)|v.=o-£«(U,V)|v.=„ (4.6)
= -2(E V) - iw) + E V) - rv)|

c2oer

for 1 < r < Kn

for a Potts spin n, respectively. Mean field values (f>m and <̂ „r can be interpreted

as the increases in the energy function E b (U , V) when Ising and Potts spins

m and n are assigned to states 1 and r, respectively. Hence, —(f>m and —

CHAPTER 4. МЕЛ SOLUTION EOR GLOBAL ROUTING IN EPGA 25

may be interpreted as the decreases in the overall solution qualities by routing

LS/SL and SS subnets m and n through the horizontal channel and route r,

respectively. Then, u,n and values are updated such that probabilities of

routing subnets m and n through horizontal channel and route r increase with
increasing mean field values (f>m. and (f>nT as follows:

оФт/Т
Um =

n̂r --

1 +
оФпг/т

Z t i
for r =

(4.7)

(4.8)

respectively.

After the mean field equations (Eqs. (4.5-4.6)) are derived, the MFA algo­

rithm can be summarized as follows. First, an initial high temperature spin
average is assigned to each spin, and an initial temperature T is chosen. Each

Um value is initialized to 0.5 ± Sm and each Vnr value is assigned to 1/Kn ±^nr

where 6m and Snr denote randomly selected small disturbance values. Note

that limT-^oo^m = 0.5 and limr_oo Vnr = I/Nn- In each MFA iteration, the
mean field effecting a randomly selected spin is computed using either Eq. (4.5)
or Eq. (4.6). Then, the average of this spin is updated using either Eq. (4.7)

or Eq. (4 .8). This process is repeated for a random sequence of spins until the

system is stabilized for the current temperature. The system is observed after

each spin update in order to detect the convergence to an equilibrium state for

a given temperature. If energy function Eb does not decrease in most of the

successive spin updates, this means that the system is stabilized for that tem­

perature. Then, T is decreased according to a cooling schedule, and iterative

process is re-initialized. At the end of this cooling schedule, each Ising spin

m is set to state 1 if Um > 0.5 or to state 0 , otherwise. Similarly, maximum

element in each Potts spin vector is set to 1 and all other element are set to 0.

Then, the resulting global routing is decoded as mentioned earlier.

4.2 Implementation

The performance of the proposed MFA algorithm for the global routing problem

is evaluated in comparison with the well-known LocusRoute algorithm [24].

The MFA global router is implemented efficiently as described in Sec­

tion 4.1. Average of each Ising spin m is initialized by randomly selecting uinitm

CHAPTER 4. MFA SOLUTIOX FOR GLOBAL ROUTING IN FPGA 26

in the range 0.45 < ^ 0.55. Similarly, average of each Potts spin n is initial­

ized by randomly selecting A"„ values in the range 0 .9 //v „ <

and normalizing = u„r/ E *=i Vnk for r = 1 , 2 , . . . , K„. Note that random
selections are achieved by using uniform distribution in the given ranges.

The initial temperature parameter used in mean field computation is esti­

mated using the initial spin averages values. Selection of initial temperature

parameters Tq is crucial to obtain good routing. In previous applications of

MFA, it is experimentally observed that spin averages tend to converge at a

critical temperature. Although there are some methods proposed for the esti­

mation of critical temperature, we prefer an experimental way for computing

To which is easy to implement and successful as the results of experiments
indicate. We compute the initial average mean field as

Nm N„ K„ N„

•tci = (E « ' ' + E E C r '‘)/(JVm + E*·»)
m = l n=l k=l n = l

Note that initial mean field values and are computed according to
Eqs. (4.5) and (4.6) using initial spin values and Here, Nm and N„
denote the total number of Ising and Potts spins, respectiv'ely, where N = Nm +
Nn denotes the total number of spins (subnets). Then, initial temperature is

computed as To = C(f>'Jl̂ g where constant C is chosen as 540 for all experiments.

The cooling schedule is an important factor in the performance of MFA
global router. For a particular temperature, MFA proceeds for randomly se­

lected unconverged net spin updates until AE < e for M consecutive itera­

tions respectively where M = N initially and e = 0.05. Average spin values

are tested for convergence after each update. For an Ising spin m, if either

Um < 0.05 or Um > 0.95 is detected, then spin m is assumed to converge to

state 0 or state 1, respectively. For a Potts spin n, if v„r > 0.95 is detected

for a particular r = 1 ,2 ,..., K„, then spin n is assumed to converge to state
r. The cooling process is realized in two phases, slow cooling followed by fast

cooling, similar to the cooling schedules used for Simulated annealing. In the

slow cooling phase, temperature is decreaised by T = a x T where a = 0.9

until T < To/1.5. Then, in the fast cooling phase, M is set to M / 2 , o is

set to 0.8. Cooling schedule continues until 90Vc of the spins converge. At

the end of this cooling process, each unconverged Ising spin m is assumed to

converge to state 0 or state 1 if < 0.5 or Um > 0.5, respectively. Simi­

larly, each unconverged Potts spin n is assumed to converge to state r where

Vnr = niax{u„jt : k = 1,2 ,..., A'n}. Then, the result is decoded as described in
Section 4.1, and the resulting global routing is found.

CHAPTER 4. МЕЛ SOLİJTION EOR GLOBAL ROUTING IN EPGA 27

Table 4.1. M CNC benchmark circuits used in experiments

Benchmarks
Circuits

name
number

of
nets

number
of

2-pin nets

FPGA
size

9symml 71 259 10x9
too—large 177 519 14x13

apex? 124 300 11x9
example2 197 444 13x11

vda 216 722 16x15
alu2 137 511 14x12
alu4 236 851 18x16

ierjnl 87 202 9x8
C1355 142 360 12x11
C499 142 360 12x11
C880 173 427 13x11
K2 388 1256 21x19

Z03D4 575 2135 26x25
buscntl 145 392 12x11

dramfsm 389 1422 22x21
dma 197 771 17x15
z03 575 2135 26x25

The LocusRoute algorithm is implemented as in [24]. As the LocusRoute

depends on rip-up and reroute method, LocusRoute is allowed to reroute the

circuits 5 times. No bend reduction has been done as in [3]. Both algorithms

are implemented in the C programming language.

4.3 Experimental Results

This section presents experimental performance evaluation of the proposed

MFA algorithm in comparison with LocusRoute and Simulated Annealing (SA)

algorithm. All algorithms are tested for the global routing of thirteen ACM
SIGDA Design Automation benchmarks (M CN C) and four famous FPGA

benchmark circuits on SUN SPARC 10 . The Table 4.1 illustrates the proper­

ties of these benchmark circuits.

These three algorithms yield the same total wiring length for global routing

since two or less bend routing scheme is adopted in all of them. Necessary

design automation process such as technology mapping and placement are done

in University of Toronto by using Chortle technology mapper [11] and XAltor

placement tools.

CUAFTER 4. MFA SOLUTION FOR GLOBAL ROUTING IN FFGA 28

Table 4.2. The Global Router results

Circuit MFA
Cost I Dens I time

PGA SA
Cost I Dens I time"Cost I Dens T time

Ssymml 1.0 12.0 0.36 1.032 14 0.00 1.000 12.0 20.64
toolargc 1.0 16.0 0.88 1.071 17 0.06 1.003 16.0 113.90
apcx7 1.0 14.0 0.42 1.073 16 0.00 0.935 14.0 31.46

ciampU‘2 1.0 15.0 0.64 1.097 16 0.02 0.856 15.0 76.54
vda 1.0 17.0 0.42 1.055 18 0.10 1.002 17.0 207.80
alu2 1.0 17.0 0.30 1.080 17 0.02 0.928 17.0 91.44
a/u4 1.0 17.0 0.68 1.073 19 0.10 0.966 17.0 288.78

tcrml 1.0 14.0 0.34 1.093 14 0.00 0.921 14.0 13.28
C1355 1.0 13.0 0.56 1.119 15 0.00 1.000 13.6 50.36
C499 1.0 15.0 0.48 1.075 16 0.00 1.003 15.0 44.58
C880 1.0 15.4 0.68 .065 17 0.04 0.933 16.8 74.40
k2 1.0 20.2 0.94 1.038 22 0.20 0.952 20.0 712.10

z03D4 1.0 17.0 2.34 1.117 18 0.30 1.000 17.0 1821.12
buscntl 1.0 13.0 0.42 1.050 13 0.00 0.998 13.0 54.92

drarnfsm 1.0 15.0 1.94 1.073 18 0.20 0.999 15.0 763.02
dma 1.0 15.0 1.96 1.084 16 0.10 0.972 15.0 216.80
203 1.0 20.0 2.10 1.119 21 0.30 1.000 20.0 1837.86

Table 4.2 illustrates the performance results of these three algorithms for

the benchmark circuits. The MFA algorithm is executed 10 times for each cir­

cuit starting from different, randomly chosen initial configurations. The results
given for the MFA algorithm in Table 4.2 illustrate the average of these execu­

tions. Global routing cost values of the solutions found by both algorithms are

computed using Eq. (3.2) and then normalized with respect to those of MFA.

In Table 4.2, maximum channel density denotes the number of routes assigned

to the maximally loaded channels. That is, it denotes the minimum number

of tracks required in a channel for 1 0 0 % routability.

As is seen in Table 4 .2 , global routing costs of the solutions found by MFA

are 3.1% -10.5% better than those of LocusRoute. As is also seen in this table,

maximum channel density requirements of the solutions found by MFA are less

than those of LocusRoute in almost all circuits except alu2 and terml. Both

algorithms obtain the same maximum channel density for these two circuit.

How the global router distributes the channel densities, how the global

router decreeise the maximum channel densities and how detailed router com­

pletes the routing arc some important metrics to measure the quality of the

global routers. The propagation net delays, number of switch used , number of

tracks in a channel are considered in comparison of global routers after com­

pletion of routing. The channel densities distribution affects on the number of

tracks and switch also the propagation delay (because of number of switches)

of the nets. In next paragraphs, the results of global routes are given in terms

CllAPTEli 4. A//v\ SOIA TION FOR GLOBAL ROUTING IN FPGA 29

Table 4.3. The SEGA detailed routing results in area optimization mode

Routing Info. Delay Info.
Circuit Total Segment Sheired Avg. Delay Max. Delay

MFA PGA Imp MFA PGA MFA PGA Imp MFA PGA
9syiiiml 674 711 5.20 42 85 5.06 5.56 9.01 63.38 57.97

tooig 1803 1951 7.59 47 114 13.83 15.10 8.45 125.48 122.80
apex7 960 1026 6.43 36 63 9.88 10.64 7.15 70.97 77.65
exp2 1775 1893 6.23 42 56 10.08 11.98 15.86 101.31 121.88
vda 2760 2950 6.44 70 176 18.67 20.58 9.30 140.77 170.36
alu2 1580 1674 5.62 36 129 9.82 9.61 -2.12 129.24 110.30
aJu4 3183 3424 7.04 67 203 16.58 17.08 2.93 153.88 163.30

terml 602 638 5.64 21 47 9.57 9.60 0.32 74.81 70.50
Cl 355 1299 1347 3.56 27 82 12.17 13.15 7.50 121.01 118.12
C499 1242 1296 4.17 37 82 11.64 12.02 3.15 79.75 94.46
C880 1575 1670 5.69 38 91 14.83 15.36 3.48 111.58 115.72
K2 5980 6323 5.42 88 306 25.77 27.54 6.43 244.35 229.54

Z03D4 7125 7700 7.47 227 555 12.75 13.60 6.26 190.62 191.65
bus-cntl 1128 1213 7.01 43 94 7.94 8.57 7.28 104.36 126.24

dr2un-fsm 4267 4648 8.20 174 403 6.19 6.68 7.35 140.61 157.05
dma 2300 2545 9.63 94 214 15.17 16.58 8.53 200.82 194.71
z03 7161 7870 9.01 267 533 13.05 14.40 9.39 193.18 192.93

of these metrics. The balance cost of SA and MFA global routers are not very
different but the execution time of SA is 250 times longer than the MFA on

the averages for all circuit.

The detailed router used in this experiments is called SEGA [20], for SEG-

ment Allocator, and was developed specifically for SR AM based F P G A ’s. The

input of SEGA is a netlist of two point connections, which is output of the

global router. To route the connections, SEGA allocates wire segments ac­
cording to cost function, baising its decisions on either of two goals: optimize

for area or optimize for speed. For area optimization, only routability of the

circuit is considered, which means the cost function focuses only on the task

of successfully routing 100% of the connections in a circuit. In delay opti­

mization, SEGA selects the routes that have the best speed performance. The

following assumption are done in experiments. All routing channels have an

equal number of tracks. The flexibility of the channel blocks are equal to num­

ber of tracks. (Each logic pin can connect to a channel with all tracks) The

LocusRoute global routing algorithm used in PgaRoute global router (P G A).

For further part of this chapter, PGA global router are used for LocusRoute

algorithm [23].

The SEGA detailed router routes the nets by considering either area op­

timization or speed optimization criteria. Therefore all circuits are tested ac­

cording to these two optimization criteria, separately. The output of MFA and

CHAPTER 4. MEA SOLUTIOS EOR GLOUAL ROUTING IN EPGA 30

Table 4.4. The SEGA detailed routing results in speed optimization mode

Routing Info. Delay Info.
Circuit Total Segment Shared Avg. Delay Max. Delay

MFA PGA Imp MFA PG A MFA PGA Imp MFA PGA
9symml 653 649 -0.62 63 147 5.07 5.28 3.94 56.46 48.67

toolg 1776 1822 2.52 74 243 13.34 13.06 -2.17 128.56 106.00
apex7 942 952 1.05 54 137 9.73 9.86 1.28 70.97 63.32
exp2 1746 1762 0.91 71 187 10.01 10.81 7.40 95.27 98.10
vda 2704 2774 2.52 126 352 19.07 19.10 0.17 148.30 164.71
alu2 1533 1542 0.58 83 261 9.46 9.56 1.07 127.29 128.45
alu4 3132 3193 1.91 118 434 16.17 16.29 0.76 145.32 147.41

terml 591 592 0.17 32 93 9.74 8.13 -19.82 76.82 46.33
C1355 1277 1269 -0.63 49 160 12.34 11.69 -5.59 126.73 98.27
C499 1225 1222 -0.25 54 156 11.66 10.72 -8.81 81.49 83.71
C880 1552 1567 0.96 61 194 14.39 14.01 -2.73 106.94 106.06
K2

Z03D4
5900 5995 1.58 168
6965 7664 9.12 437

634
1191

27.05 26.50 - 2.10 262.23
12.42 12.34 -0.65 167.32

210.25
169.05

bus-cntl 1112 1114 0.18 59 193 8.03 7.95 -1.04 95.93 86.24
dram-fsm 4155 4305 3.48 286 746 6.05 6.61 8.54 140.61 146.57

dma 2243 2350 4.55 151 409 14.89 15.40 3.30 203.74 181.06
z03 6953 7205 3.50 475 1198 12.65 13.27 4.69 172.34 173.38

PGA global routers was used as a input of the detailed router. After that
SEGA detailed router was executed in two different mode (area and speed op­

timization mode) for each benchmark circuit. The results of SEGA detailed

router gives information about routing w’hich contains total number of segment,

shared segment and minimum channel width for 10 0 % routing, and propaga­
tion delay which contains average and maximum delay of the nets. Therefore,

quality of MFA and PGA global routers are compared by considering these

routing and delay information.

Table 4.3, Table 4 .4 and Table 4.5 shows the results of SEGA detailed router

whose inputs were constructed by MFA and PGA routers. Table 4.3 represents

the results for area optimization mode and Table 4.4 represents the results for

speed optimization mode. As seen in Table 4.3, MFA needs less number of

segment that PGA for complete routing. There are 3% -9% improvement in

total number of segment used in complete routing. Also MFA causes less

propagation delay than MFA for all benchmark circuits as in Table 4.3. The

average delay for routing are decreased by 3% -15% for MFA according to PG A.

If we consider the number of tracks in a channel, MFA needs small channel

width in 6 benchmarks, but PGA routes 8 benchmarks with less number of

tracks than MFA. For other benchmarks circuit both PGA and MFA need same

channel width as seen in Table 4.5 Finally we can say that MFA global router

produces better results that PGA global router according to area optimization.

Because, MFA can distribute the channel density more that PGA. Also SEGA

CHAPTER 4. МЕЛ SOLI TIOS EOR GLOBAL ROUTING IN EPGA 31

Table 4.5. Miniinun Channel Width for 100% routing

Channel Widht (W)
Circuit Area Opt. Mode Speed Opt. Mode

MFA PGA MFA PGA
9symml 10 10

toolg 13 11 13 12
apex7 11 13 12 15
exp2 13 17 14 19
vda 13 16 16 16
alu2 13 10 13 12
alu4 14 13 15 15

terml 10 11 10
C1355 10 12 12 12
C499 13 11 14 11
C880 12 13 13 14

K2 15 16 19 19
Z03D4 14 14 15 15

bus-cntl 10 10 11 11
dram-fsm 13 11 13 13

dma 11 11 12 13
z03 16 14 16 16

detailed router results in speed optimization mode as in Table 4.4 shows that

there are also improvement in both total number of segment, channel width

and average delay. But the percent of improvement is less than those of area
optimization mode. Note that P G A can cause less maximum delay than MFA

for most of circuits.

Also the channel width is important criteria for routing because its affect

on the size of FPGAs. In Table 4.5 the minimum number of track (channel

width) in a channel are shown for both area and speed optimization mode. As

in this table, for some circuits, M FA gives better results but some circuits PGA

gives better results, therefore the M F A ’s and P G A ’s performance on channel

width are very similar.

Figures 4.1 and 4.2 contain visual illustrations as pictures (left) and his­

tograms (right) for the channel density distributions of the solutions found by

MFA and LocusRoute, respectively, for the circuit C1355. The pictures are

painted such that the darkness of each channel increases with increasing chan­

nel density. Global routing solutions found by these two algorithms are tested

by using SEGA detailed router for FPGA. Figure 4.3 illustrates the results of

the SEGA detailed router for the circuit C1355

CHAPTER 4. MFA SOLUTION TOR GLOBAL ROUTING IN FPGA 32

Figure 4.1. Channel density distribution obtained by MFA for the circuit C1355

Figure 4 .2 . Channel density distribution obtained by LocusRoute for the circuit
C1355

(«)

fiSjSSSSilSii
s f e i s E s s s i
EIS6!@jSiiS!
f i s a n i g s i s
15№ tSSSI№

(¿)

Dl

[□Ld
'□j-O

a- -□
-O -□

Figure 4.3. SEGA detailed router results of the circuit Cl355 for the global
routing solutions obtained by (a) MFA (b) LocusRoute

Chapter 5

THE M APPING PROBLEM

This chapter introduces the mapping problem in parallel processing and its

application.

5.1 The Mapping Problem

Use of parallel computers in various applications, makes the problem of map­

ping parallel programs to parallel computers more crucial. The mapping prob­

lem arises while developing parгdlel programs for distributed-memory, message­

passing parallel computers (multicomputers). In multicomputers, processors

neither have shared memory nor have shared address space. Each processor

can only access its local memory. Synchronization and coordination among

processors are achieved through explicit message passing. Processors of a mul­

ticomputer are usually connected by utilizing one of the well-known direct

interconnection network topologies such as ring, mesh, hypercube, etc. These

architectures have the nice scalability feature due to the lack of shared resources

and the increasing bandwidth with increasing number of processors.

However, designing efficient parallel algorithms for such architectures is not

straightforward. An efficient parallel algorithm should exploit the full potential

power of the architecture. Processor idle time and the interprocessor commu­

nication overhead may lead to poor utilization of the architecture and hence

poor overall system performance. Processor idle time arises due to the uneven

load balance in the distribution of the computational load among processors

of the multicomputer. Parallel algorithm design for multicomputers can be

.33

CHAPTER 5. THE MAPPING PROBLEM 34

divided into two phcises; first phaise is the decomposition of the problem into a

set of interacting sequential sub-problems (or tasks) which can be executed in

parallel. Second phase is mapping each one of these tasks to a processor of the

parallel architecture in such a way that the total execution time is minimized.

This mapping phase, named as the mapping problem [4], is very crucial in

designing efficient parallel programs.

For a class of regular problems with regular interaction patterns, the map­

ping problem can be efficiently resolved by the judicious choice of the decompo­

sition scheme. In such problems, chosen decomposition scheme yields an inter­

action topology that can be directly embedded to the interconnection network

topology of the multicomputer. Such approaches can be referred as intuitive
approaches. However, intuitive mapping approaches yield good results only for

a restricted class of problems, under simplifying assumptions. The mapping

problem is known to be NP-hard [13]. Hence, heuristics giving sub-optimal so­

lutions are used to solve the problem [4, 13, 21]. Two distinct approaches have
been considered in the context of mapping heuristics, one-phase approaches

and two phase approaches. One-phase approaches, referred to as many-to-one
mapping, try to map tasks of the parallel program directly onto the processors

of the multicomputer. In two phase approaches, clustering phase is followed

by a one-to-one mapping phase. In the clustering phase, tasks of the parallel

program is partitioned into as many equal weighted clusters as the number

of processors of the multicomputer, while minimizing the total weight of the

inter-cluster interactions [21]. In the one-to-one mapping phase, each cluster

is assigned to an individual processor of the multicomputer such that total

inter-processor communication is minimized [2 1].

In two phase approaches, the problem solved in the clustering phase is

identical to the multi-way graph partitioning problem. Graph partitioning is

the balanced partitioning of the vertices of a graph into a number of bins, such

that the total cost of the edges in the edge cut set is minimized. Kernighan-

Lin (KL) heuristic [10, 17] is an efficient heuristic, originally proposed for the

graph bipartitioning problem, which can also be used for clustering [21]. KL

heuristic is a non-greedy, iterative improvement technique that can escape from

local minima by testing the gains of a sequence of moves in the search space

before performing them. A variant of the KL heuristic can be used for solving

one-to-one mapping problem encountered in the second phase [15].

Simulated Annealing (SA) can also be used as a one phase heuristic for

CHAPTER 5. THE MAPPISG PROBLEM 35

solving many-to-one mapping problem [15, 28]. Successful applications of SA to
the mapping problem is achieved in various works [15, 28]. It has been observed

that the quality of the solutions obtained using SA are superior compared with
the results of the other heuristics.

5.2 The Model of Mapping Problem

In various classes of problems, interaction pattern among the tasks is static.

Hence, the decomposition of the algorithm can be represented by a static task

graph. Vertices of this graph represent the atomic tasks and the edge set
represents the interaction pattern among the tasks. Relative computational

costs of atomic tasks can be known or estimated prior to the execution of the
parallel program. Hence, weights can be associated with the vertices in order

to denote the computational costs of the corresponding tasks.

There are some model to model the static task interaction pattern. One of

the model is Task Interaction Graph (TIG) model. In the TIG model, inter­

action patterns are represented by undirected edges between vertices. In this

model, each atomic task can be executed simultaneously and independently.

Each edge denotes the need for the bidirectional interaction between corre­

sponding pair of tasks at the completion of the execution of these tcisks. Edges

may be associated with weights which denote the amount of bidirectional in­

formation exchange involved between pairs of tasks. TIG usually represents

the repeated execution of the tasks with intervening task interactions denoted
by the edges.

The TIG model may seem to be unrealistic for general applications since it

does not consider the temporal interaction dependencies among the tasks [26].

However, there are various classes of problems which can be successfully mod­

eled with the TIG model. For example, iterative solution of systems of equa­

tions arising in finite element applications [7, 26] and power system simula­

tions, and VLSI simulation programs [28] are represented by TIGs. In this

work, problems which can be represented by the TIG model are addressed.

In order to solve the mapping problem, parallel architecture must also be

modeled in a way that represents its architectural features. Parallel architec­

tures can easily be represented by a Processor Organization Graph (POG),

where nodes represent the processors and edges represent the communication

CHAPTER 5. TUE MAPPISG PROBLEM 36

links.

In a multicomputer architecture, each adjacent pair of processors commu­

nicate with each other over the communication link connecting them. Such

communications are referred as single-hop communications. However, each
non-adjacent pair of processors can also communicate with each other by means

of software or hardware routing. Such communications are referred as multi­
hop communications. Multi-hop communications are usually routed in a static

manner over the shortest path of links between the communicating pairs of

processors. Communications between non-adjacent pairs of processors can be

associated with relative unit communication costs. Unit communication cost

between a pair of processors will be a function of the shortest path between

these processors and the routing scheme used for multi-hop communications.

For example, in software routing, the unit communication cost is linearly pro­

portional to the shortest path distance between the pair of communicating

processors. Hence, the communication topology of the multicomputer can be

modeled by an undirected complete graph, referred here as Processor Com ­

munication Graph (PCG). The nodes of PCG represent the processors and

the weights associated with the edges represent the unit communication costs

between pairs of processors. As is mentioned earlier, PCG can easily be con­

structed using the topological properties of POG and the routing scheme uti­

lized for inter-processor communication.

The objective in mapping TIG to PCG is the minimization of the expected

execution time of the parallel program on the target architecture. Thus, the

mapping problem can be modeled as an optimization problem by associating

the following quality mecisures with a good mapping : (t) interprocessor com­

munication overhead should be minimized, (ii) computational load should be

uniformly distributed among processors in order to minimize processor idle

time.

A mapping problem instance can be formally represented with two undi­

rected graphs. Task Interaction Graph (TIG) and Processor Communica­

tion Graph (PCG). The TIG Gt{V,EJ), has |U| = N vertices labeled as

(1 , 2 , . . . , ¿, . . . , A'). Vertices of the Gj represent the atomic tasks of the

parallel program. Vertex weight u>, denotes the computational cost associated

with task i for I < i < N. Edge weight e,j denotes the volume of interaction

between tasks i and j connected by edge (f , j) € E. The PCG Gp{P,D),

CHAPTER 5. THE MAPIHNC PROBLEM 37

is a complete graph with |P| = K nodes and |£)| = () edges. Nodes of

the Gp, labeled as (1 , 2 , . . . , p, ç , . . . , A '), represent the processors of the target

multicomputer. Edge weight dpg, for I < p.q < N and p ^ q, denotes the unit

communication cost between processors p and q.

Given an instance of the mapping problem with the TIG G t { V , E) and

the PCG Gp{P,D), the question is to find a many-to-one mapping function

M : V P, which assigns each vertex of the graph Gt to a unique node of the

graph Gp, and minimizes the total interprocessor communication cost (CC)

CC = e,jdAi(i)A/o) (5.1)

while maintaining the computational load {CLp : computational load of pro­

cessors p)

CLp = wi, l < p < K (5.2)
ie v ,\i{ i)= P

of each processor balanced. Here, M(i) = p denotes the label (p) of the proces­

sor that task i is mapped to. In Eq. (5.1), each edge (i, j) of the Gt contributes

to communication cost {CC), only if vertices i and j are mapped to two differ­

ent nodes of the Gp, i.e. M{i) ^ M{j). The amount of contribution is equal

to the product of the volume of interaction e,j between these two tasks and

the unit communication cost dp, between processors p and q where p = M{i)
and q = M{j). The computational load of a processor is the summation of

the weights of the tasks assigned to that processor. Perfect load balance is

achieved if CLp = {Yl^-iWi)/K for each p, I < p < K. Computational load

balance of the processors can be explicitly included in the cost function using

a term which is minimized when all processor loads are equal. Another scheme

is to include load balance criteria implicitly in the algorithm.

In Figure 5.1, an example for mapping problem are shown. The T IG graph

is in Fig. 5 . 1 .a and a corresponding mapping instance is in Fig. 5.1.b

CHAPTER 5. THE MAPPISG PROBLEM 3S

Cutsize = 27

(b)
Figure 5.1. An example of mapping problem

Chapter 6

MFA SOLUTION FOR MAPPING

In this chapter, the general MFA formulation and a new efficient MFA for­

mulation for mapping problem in mesh and hypercube type multicomputer cure
proposed. The experimental results for randomly generated mapping instances
and real problem instances are shown at the end of this chapter.

6.1 General MFA Formulation for Mapping Problem

The MFA algorithm is derived by analogy to Ising and Potts models which

are used to estimate the state of a system of particles, called spins, in thermal

equilibrium. In Ising model, spins can be in one of the two states represented

by 0 and 1 , whereas in Potts model they can be in one of the K states. In

this work we use the Potts model. In the K state Potts model of S spins, the

states of spins are represented using S A'-dimensional vectors

S,· = [s,i, . . . , s,7j , . . . , 5 ,7c] for i — 1,2, . . . , 5 .

where “t” denotes the transpose operation. The spin vector S, is allowed to

be equal to one of the principal unit vectors e j , . . . , e ^ , . . . ,e /c , and can not

take any other value. Principal unit vector e* is defined to be a vector which

has all its components equal to 0 except its l’ ’ th component which is equal to

1 . Spin S, is said to be in state k if S, = ê t. Hence, a A-state Potts spin

S, is composed of K two state variables {s ,fc }^ j , where s,/t 6 { 0 , 1 } , with the

following constraint

K
Y^Sik = 1 for t = 1 , 2 , . . . , 5 ' .
Jt=l

39

(6.1)

CHAPTER 6. MFA SOLUTION FOR MAPPING 40

In the general encoding of the mapping problem, each spin vector corresponds

to a vertex of the TIG G{T, I). Hence, number of spins vectors is 5 = ¡r i = N.
Dimension K of the spin vectors is equal to the number of processors. If a spin

is in state k (i.e., 5,jt = 1) we say that the corresponding tcisk is assigned to

processor k.

In the MFA algorithm, the aim is to find the spin values minimizing the

energy function of the system. In order to achieve this goal, the average (ex­

pected) values V , = (S,) of each spin vector S, is computed and iteratively

updated until the system stabilizes at some fixed point.Hence, w’e define

V,· = [y.i , . . . , Vik, . . . , v .x f = (S .) = [(s . i) , . . . , (s,-fc),. . . , (s,A-)]‘ (6.2)

That is, Vik = for i = 1 , 2 , . . . , 5 and k = 1,2,... ,K. Note that, s,jt €
{ 0 , 1 } , i.e., Sik can take only two values 0 and 1 , whereas Vik € [0 , 1], i.e., u.t

can take any real value between 0 and 1 . As the system is a Potts glass we

have the following constraint similar to Eq. (6.1)

K

Jt=l
for t = 1 , 2 , . . . , Â (6.3)

This constraint guarantees that each Potts spin S, is in one of the K states at

a time, and each task is mapped to only one processor. In order to construct

an energy function it is helpful to associate the following meaning to the values

Vik] Vik = 'P(task i is mapped to the processor k) (or i = 1,2,... ,N, and
k = 1,2,..., K. That is, is the probability, of finding spin i at state k. If

Vik = 1 then spin i is in state k and the corresponding configuration is S, = V ,.

Now, we formulate the communication cost of the mapping problem as an

energy term

K K

= E e,̂ EE'i*iWask i is mapped to processor k)
(i,j)€/ k=\ tjik

P(task j is mapped to processor /)
N K

^E E EÊ u VikVjidki
^ i=l jeAdj(i) k=l Ijtk

(6.4)

where V = | V „ . . . , V , V ^]* is the spin average matrix consisting of N
A'-dimensional spin vectors as its rows. Here, Adj{i) denotes the set of tasks

connected to task i in the given TIG . Minimization of corresponds to the

minimization of the communication cost of the mapping problem. Another

CUAPTEli 6. MFA SOLVTIOA' FOR MAFFISG 41

term of the energy function is the term for penalizing imbalanced mappings.

 ̂ N N

E^(V) = 2 ^ ^ WiWjV{ tasks i and j are mapped to the same processor)

1
1=1 jjij
N N K= -EE W{Wj P (task i is mapped to processor k)

 ̂ ,= 1 k=l
V{ task j is mapped to processor k)

 ̂ N N K

= 2
,= 1 j>ii A:=l

(6.5)

This triple summation term computes the summation of the inner products of

the weights of the tasks assigned to individual processors. Global minimum

of this term occurs when equal amounts of task weights are assigned to each

processor. If there is an imbalance in the mapping, term increases with the

square of the amount of the imbalance, penalizing imbalanced mappings. The

total energy function E is be defined in terms of E^ and E^ as

£ ;(V) = ^ ^ (V) + pE^{W) (6.6)

where parameter ^ is introduced to maintain a balance between the two op­

timization objectives of the mapping problem. Mean field theory equations,

needed to minimize the energy function E, can be derived as

, dB(V) V ' J o ·^
¡tik = — 5— = “ E E '■><'«>’>' - P L · “ '.» y 'j i (6.7)

The quantity represents the A:’th element of the mean field vector ef­

fecting on spin k. Using the mean field values average spin values v,* can

be updated using the Boltzmann distribution as

Vik = for f = l , 2 , . . . , . V , f c = 1,2, . . . , / i ' (6 .8)

where T is the temperature parameter which is used to relax the system itera­

tively. Equation (6 .8) handles the constraints given in Eq. (6.3) thus enforcing

each Potts spin S, to be in one of the K state when they converge.

In Eq. (6.7), the first and second summation terms represent the increases

in the total communication and imbalance costs, respectively, by mapping task

i to processor k. Hence, —d>ik may be interpreted as the decrease in the overall
solution quality by assigning task i to processor k. Then, in Eq. (6 .8), is up­

dated such that the probability of mapping task i to processor k increases with

CHAPTER 6. MFA SOLUTIOS FOR MAPPIAG 42

increasing mean field (̂ ik. After the mean field theory equations are derived

(Eq. (6.7), Eq. (6 .8)), MFA algorithm can be summarized cis follows. First an

initial, high temperature, spin average is assigned to each spin, and an initial

temperature is chosen. At each temperature, starting with initial spin averages,

the mean field vector effecting on a randomly selected spin is computed using

Eq. (6.7). Then, spin average vector is updated using Eq. (6 .8). This process
is repeated for a random sequence of spins until the system is stabilized for the

current temperature. Then, T is decreased according to the cooling schedule,

and iterative process is re-initiated. In [6] we have proposed an efficient im­

plementation scheme which cisymptotically reduces the complexity of a MFA

iteration to Q{davgK -f K^) where davg denotes the average vertex degree in
the TIG.

6.2 Interconnection-Topology Specific MFA Formula­
tion for Mapping

In this section, we proposed efficient Mean Field Annealing formulation for

Mesh-connected and Hypercube-connected architecture.

6.2.1 MFA formulation for Mesh-Connected Architec­

tures

Consider a, P hy Q two-dimensional mesh-connected architecture with P rows

and Q columns. The encoding in the general M FA formulation summarized in

Section 6 .1 necessitates N xK = NxPxQ variables for the problem represen­

tation. In this section, we propose a MFA formulation for the mesh-connected

architectures which exploits the conventional routing scheme in mesh intercon­

nection topologies to introduce a much more efficient encoding scheme. Note

that, the communication distance between any two processors is equal to the

Manhattan distance between those two processors on the processor grid. Hence,

the unit communication cost between any two processors can be expressed as

the sum of two components: horizontal and vertical communication costs. Hor­

izontal and vertical unit communication costs are equal to the column and row

distances between the processor pairs, respectively. Thus, any edge (i,j) € /

CHAPTER 6. MEA SOU TIOS FOR MAPPISG 43

with weight Cij of the TIG will contribute

Efj = Eij + Eij = 6ij X |co/uf7in(i) — column{j)\ + e,j x |ror/7(r) — row{j)\ (6.9)

to the total communication cost, where row{i) and œlumn(i) denote the row

and column indices of the processor that tcisk i is mapped to and | · | denotes the

absolute value function. Here, Ê 'j and Ê j denote the horizontal and vertical

communication costs due to edge (r , j) € / of the TIG. Hence, the row and

column mappings of each task are sufficient for efficient computation of the

inter processor communication cost in mesh-connected architectures.

Encoding

In the proposed encoding, we use two Potts spins of dimensions P and Q
for each vertex (task) of the TIG . Spins of dimensions P and Q are used to

encode the row and column mappings of the tasks, respectively. Note that this

encoding also constructs a one-to-one mapping between the configuration space

of the problem domain and the spin domain. However, it is much more efficient

since it uses a total of Nx{P + Q) tw-o-state variables instead of N xPxQ two

state variables of the general! encoding. Spins with dimensions P and Q are

called row and column spins which are labeled as S,· = [s-’j , . . . ,s[p, . . . ,sjp]‘

and S,· = [«ii , . . · respectively, for t = 1 , 2 , . . . , A'’. If a row

(column) spin is in state p (q) we say that the corresponding task is mapped

to row p (column ?). Hence, sjp = 1 (s^, = 1) means that taisk i is mapped to

row p (column q) of the mesh. That is, if s[p = 1 and = 1 , this means that

task i is mapped to processor pq in the mesh. Here, processor pq identifies the

processor at row p and column q of the mesh.

Energy Function Formulation

The following spin average vectors are defined for the sake of energy function

formulation.

v; = [o',....o,',....,o'p|' = (sf) =
v; = (oi„...,or,,...,oj,j' = (si) = [«.),...,(4)....(»;,)]'

Note that, sjp, € {0 , 1 } , i.e., sjp and are discrete variables taking only two

values 0 and 1 , whereas u[p, E [0 , 1], i.e., ujp and if, are continuous variables

CHAPTER 6. MFA SOLÂITION FOR MAFFIAC 44

taking any real value between 0 and 1 . As the system is a Potts glass we have
the following constraints similar to Eq. (6.3)

p=l
(6. 10)

?=i

These constraints guarantee that each Potts spin S· (S·) is in one of the P
(Q) states at a time, and each tcisk is cissigned to only one row (column) for

the proposed encoding. In order to construct an energy function it is helpful

to associate the following meanings to the v[p and values,

[p = ■p(ta5 k i is mapped to one of the processor in row p),

iq — ^(task i is mapped to one of the processor in column q) (6 . 1 1)

for i = 1 , 2 , . . . Af, p = 1 , 2 , . . . , P and q = 1,2, — That is, (vf̂) denotes

the probability of finding row (column) spin t in row p (column q). Formulation

of horizontal communication cost due to edge (t,j) of the TIG as an energy
term is:

4 j)
Q -l Q

e o E
k=l i= k + l

x{'P(tasks i and j are mapped to columns k and /, respectively) +

P(tasks j and i are mapped to columns k and /, respectively)}

= E E C - + ·>>?.) (6 . 1 2)
k = l t = k + l

Similarly, energy formulation for the vertical communication cost due to edge

CJ) is

E E C - + v;iv,1) (6.13)
k = \ l = k + l

The derivation of the mean field theory equation using the formulation of the

energy terms and Ê -j·̂ given in Eqs. (6.12) and (6.13) results in sub­

stantially complex expressions. Hence, we simplify the expressions for

and in order to get more suitable expressions for the mean field theory

equations. A close examination of Eqs. (6.12) and (6.13) reveals the symmetry

between the expressions for Ê -j·̂ and Ê -ĵ terms which can be obtained from

each other by interchanging ”r” with ”c” and ” P” with ” Q ”. Hence, algebraic

simplifications will only be discussed for the Ê ĵ̂ term. Similar step can be

followed for the Ê ̂ĵ term.

CHAPTER 6. MFA S0LUT10\ FOR MAPPISG 45

We introduce the following notation for the sake of simplification of the

communication cost terms:

= = = = (6.14)
;=i ¡ - k /=1 i - k

Here, F̂ f. and denote the probabilities that task i is mapped to one of

the processor in the first k columns (i.e., columns 1 , 2 , 3 , . . . , A*) and the last

(J—A:+l columns (i.e., columns 1 , . . . , Q), respectively. Similarly, and

denote the probabilities that task i is mapped to one of the processors in

the first k rows and the last P —¿ + 1 rows, respectively. Using this notation

and thru some algebraic manipulations the expression for simplifies as :

4 . » = ' o (E E (' - + E E (' -
k - l l= k + l l=k+l

Q - l Q Q Q -\ Q Q

= ' . H E E E » :< .» J - + E E E » H < . .)
k = l l=k+l m = l k = l l=k+l m=l

Q - l k Q Q - l k Q

t=l /=1 m = k + l k=l 1=1 m=Jt+l
Q -l k Q Q - l k Q

= ^ o i E E ^ i E * ^ > m + E E ^ i / E
Ar=l /=1 m=JH-l fc=l 1=1 m = k + l

= ‘ li E + ' . i E
k = l k=l
Q - l

= 'u + F f A - K) (« >5)
Jb=l

Similarly, the expression for simplifies to

p -i

k=l
(6.16)

We formulate the energy term corresponding to the imbalance cost using

the same inner product approach adopted in the general formulation (Eq. (6.5))

as follows:
 ̂ N N
^ ^ tu,tUjP(task i and j are mapped to the same processor)

2 .= 1 j / .
 ̂ N N r w

= s E E W{Wj E E i is mapped to the processor pq)
2 ,= 1 p=l q=l

V{ task j is mapped to the processor pq)

 ̂ i=l jyi P=1 7=1

P Q

CHAPTER 6. МЕЛ SOLUTION EOR MAPPING •Ш

Total energy term can be defined in terms of the communication cost terms

and the imbalance cost term as

V*=) = E\V^=) + £ " (V*·) + ¡3E^{V^, V^) (6.18)

Here, V = [V I , . . . , V ; , . . . , V ;>]‘ and V<= = [VJ , V,^ . . . , V ^] ‘ denote the

row and column spin-average matrices consisting of .V, P and Q dimensional

vectors as their rows, respectively.

D erivation o f the M ea n F ield T h eo ry E qu ation

The expected values V [and V,^ of each row and column spins S[and are

iteratively updated using the Boltzmann distribution as

(«)
Ф̂р/Т̂

Фй./Г'· (6)
.Ф,<,/Т‘

ЕГ=1 с У (6.19)

for р = 1 , 2 , . . . , Р and q = 1,2,... ,Q, respectively. Here, T ’’ and denote the

temperature parameters used for annealing the row «ind column spin updates

respectively. Recall that, the number of states of the row and column spins

are different (P and Q for row and column spins, respectively) in the proposed

encoding. As the convergence time and the temperature parameter of the
system depends on the number of states of the spins we interpret the row and

column spins as different system, i.e., the temperature parameter of the row

and column spins are different. Note that, Eqs. (6.19.a) and (6.19.b) handle

the constraints given in Eq. (6.10) thus enforcing each row and column Potts

spins SI and Sf to be in one of the P and Q states when they converge. In the

proposed MFA formulation, row and column spins are updated in an alternative
manner, i.e., each row spin update is followed with a column spin update and
vice versa. MFA iterations in which row and column spins are updated will be

referred here as row and column iterations, respectively.

In the proposed formulation, row and column mean field vectors Ф[

and Ф1 are to be computed in row and column iterations, respectively.

Each element and of the row and column mean field vectors Ф,· =

[ФЬ,···, Ф"р, ■■■, Ф{рУ and Ф1 = ФЧдУ experienced by row and
column Potts spins i denote the decrease in the energj’ function by assigning S[

to 6 p and S? to e ,, respectively. Hence, —ф]р {—ф%) may be interpreted as the

decrease in the overall solution quality by mapping task i to row p (column q).
In other words, —φip (—ф{д) corresponds to the increase in the energy function

CHAPTER 6. MFA SOLUTION FOR MAPPISG 47

by mapping task i to row p (column ^). Then, in Eq. (6.19.a) (Eq. (6.19.b)),

is updated such that the probability of mapping task t to row p (column

q) increases with increasing mean field value Using the simplified

expressions for the proposed energy function in Eqs. (6.15), (6.16) and (6.17)

= _ d ^ (V % y :) ^ ^ r (C) r(B)

*p

JeAe(;(t) J = i j Y i 7=1
JÇ

_ aH(V’ , v ‘) _ .(c| .(B)

(6.20)

«7
N P

- E e . j Z ; , 5]) (6 -2 1)
ie>44)(i) p=i

where Z i = y : ‘ i 7 , + f ; i ; » and / ‘, = E hji + E i j i
/;=! ^=p+l k=l k=q+l

As seen in Eqs.(6.20) and (6.21), different balance parameters P'' and are

used in the mean field computations of row and column iterations since row and

column spins are interpreted as different system. Figure 6.1 illustrate the MFA

algorithm proposed for the mapping problem for mesh-connected architectures.

Note that, each iteration of the inner while-loop (step 3.1) involves one row and

one column iteration. Also note that the computation of the energy differences

A E '’ and necessitates computing E in Eq. (6.18) twice at each iteration

of the inner while-loop which drastically increases the complexity of a MFA

iteration. Here, AE'’ and AE^ represent the energy differences due to the row

and column spin updates, respectively. As is seen at Step 3.1.5 we use the

efficient energy difference computation scheme which we have proposed for the

general MFA formulation [6].

An Efficient Implementation Scheme

As mentioned earlier, the proposed MFA algorithm is an iterative process. The

complexity of a single MFA iteration is due mainly to the mean field compu­

tations. As is seen in Eqs. (6.20) and (6.21), calculation of mean field values is

computationally very intensive. In this section, we propose an efficient imple­

mentation scheme which reduces the complexity of mean field computations.

CHAPTER 0. MFA SOLITIOS TOR MAPPISC ‘18

1 . Get the initial temperatures Tq T̂q ̂ and set T'̂ = Tq T̂̂ = Tq

2. Initialize the spin averages V*· = [r[j , . . . , lAf. , t-yp]
and = [ufi, . . . , uffc,. . . ,

3. W HILE temperature T"" and is in the cooling range DO

3.1 W H ILE and are decreasing DO

3.1.1 Select tcisks i and j at random for horizontal and vertical
spins, respectively.

3.1.2 Compute mean field vectors $,· and experienced by
row and column Potts spins i and j.

<f>\p — ~ ^ h e A d j{ i) ^ h ^ ’hp Y^q=l '^iq^hq

<f>% = - E heA djU) T .h = \ M } ^P=l

3.1.3 Compute the summations and Z)t_x

3 . 1 . 4 Compute row and column spin-average vectors V [and V,·

3.1.5 Compute the energy changes lA.E' = and

3.1.6 Update row and column spin-average vectors V [and VJ"

- r(new) J r cinew)

3.2 r*· = a X 7”· and = a X

Figure 6 . 1 . The proposed efficient MFA algorithm for the mapping problem
for mesh-connected Architectures.

CHAPTER 6. MEA SOLUTION FOR MAPPING 49

and hence the complexity of the MFA iteration, by asymptotical factors. Mean

field theory equations given in Section 6 .2 . 1 reveals the symmetry between the

mean field vector computations in row and column iterations. Hence, the pro­

posed implementation scheme will only be discussed for computing the mean

field vector $,■ = [<i>a·, · · ■ ■, · ■ ■, 4>ipY in row iterations. Similar discussion
applies to the computation of the ̂ ̂ vector in column

iterations.

Assume that row Potts spin i is selected at random in a row iteration

for updating its expected value vector V·". W e will first discuss the mean

field computations corresponding to the vertical communication cost. As

is seen in Eq. (6.20), these computations require the construction of the
z ; = vector for each vertex j adjacent to i in TIG .

The computation of an individual vector necessitates the construction of

Fj = [F/ i , . . . , F/p, . . . , FJpY and . . . , . . . , L’jpY vectors. These

two vectors can be constructed in 0{P) time using the recursive equation

= ^Ik-l + '̂ jki for k = 2,3 ,... ,P (6 .2 2)

where Fp = -P
for k = P — l ,P —2,... (6.23)

where ĵP = ĵP

The computation of an individual ZJp value takes 0 (P) time. Hence, the

complexity of computing an individual Zt vector becomes Q{P^). However, in

the proposed scheme the elements of the Z'j vector are computed in only Q{P)
time by exploiting the recursive equation

P

where ZJi =Y^Lji
1=2

(6,24)

Hence, the complexity of mean field computations corresponding to the vertical
communication costs term is 0 (d,P) in a row iteration since the first summation

term in Eq. (6.20) requires the computation and weighted addition of d,· such

Z^ vectors. Here, d, denotes the degree of vertex i in the TIG. Similarly,

the complexity of mean field computations corresponding to the horizontal

communication cost term is 0 (d,Q) when column spin i is selected at random

in a column iteration.

As is seen in Eq. (6.20), the complexity of computing an individual mean

field value corresponding to the imbalance term is Q{NQ). Since P such values

CHAPTER 6. МЕЛ SOLUTION EOR MAPPING 50

are computed in a row iteration, the total complexity of mean field computa­

tions corresponding to the imbalance cost term becomes Q{NPQ). However,

the complexity of these computations can be cisymptotically reduced as follows.

The second summation term in Eq. (6.20) can be re-written by interchanging
the order of summations as

w,
N Q Q N

E W i V ’ ̂ y? y": = } IP ¿ - i tq jgq=l <J=I
Q

q = l
N

(6.25)

where = = E ̂ j^JP ’̂ jq
>=1

(6.26)

Here, Wpg denotes the total computational load of processor pq for the current

row and column spin values. In Eq. (6.26), Wpg — denotes the weight

of processor pq excluding task i. Hence, Eq. (6.26) represents the increase in
the imbalance cost term if task г is assigned to row p (i.e., is set to l).In

the proposed implementation scheme, we maintain a P by Q processor weight

matrix W consisting of Wpg values. The entries of this matrix are computed

using Eq. (6.26) only at the beginning of the algorithm. Then, while updating

the expected value vector V [of an individual Potts spin г, the W matrix is

updated in 0 (P C) time using

ИДпеи,) ^ ^^Id) ^

for p = 1 , 2 , . . . , P and q = 1 , 2 , . . . , Q. Hence, computing Ekj. (6.26) for each

<̂ -p value takes 0 (Q) time. Since, P such values tire to be computed to con­

struct the mean field vector, the total complexity of mean field computations

corresponding to the imbalance cost term reduces Q{PQ) in a row iteration.

It should be noted here that, column iterations also use and update the same

weight matrix W as is used and maintained in row iterations. The complexity

of mean field computations corresponding to the imbalance cost term is also

Q{QP) in column iterations. Thus, the proposed scheme reduces the overall

complexity of mean field computations to Q{davgP + PQ) and Q{davgQ + PQ)
in row and column iteration, respectively. Here, davg denotes the average vertex
degree in TIG . After computing the mean field vectors Ф[and Фу, expected

value vectors V [and Vy of row and column Potts spin i and j can be up­

dated using Eq. (6.19.a) and Eq. (6.19.b) in 0 (P) and 0 ((?) times, in a row

and column iteration, respectively. The complexities of computing the energy

CHAPTER 6. MEA SOLUTIOy EOR MAPPL\G 51

difference AÆ’’' and AE' ̂ as shown at step 3.1.5 of Fig. 6.1 are 0 (F) and Q(Q)
times, in a row and column iteration, respectively.

Therefore, the proposed implementation scheme reduces the complexity of

an individual row and column iteration to Q{davgP + PQ) and Q{davgQ + PQ),
respectively. Note that, a row and a column iteration pair corresponds to a

single iteration of the general MFA formulation discussed in Section 6.1. Hence

the proposed MFA scheme asymptotically reduces the complexity of a single

MFA iteration from Q{davgPQ + (PQ)^) of the general MFA formulation to

0(d a v g (P + Q)+ P Q) for a P by Q mesh. For a square mesh with K processors,
this corresponds to an asymptotical complexity reduction from Q(davgK + K"̂)
to Q{da,gy/K + K).

6.2.2 MFA Formulation For Hypercube Architecture

Consider M dimensional hypercube, encoding in the general MFA formulation

summarized in Section 6.1 needs N x K variables for problem representation.
Here, N is the number of task and M = log(K). In this section, we propose

a new MFA formulation for hypercube type multicomputers which necessi­

tates N X log{K) variables for problem representation. For sake of simplicity,

some definition about hypercube are given below. The communication distance

between any two processors is equal to Hamming distance between those two

processors. The Hamming Distance between two processors in hypercube is de­

fined as the number of different bits between those two processor id’s (binary

representation of processor ids). A dimension i refers to the communication

links between the processors whose processors ids differs on the ith bit. A M
dimensional hypercube can be divided into two (A / — 1) dimensional subcube

along the any dimension. Therefore, M dimensional hypercube can be divided

into two (M — 1) subcube in M different ways (dimension). We define two

(A / — 1) dimensional subcubes H' and H' which is constructed by dividing M
dimensional hypercube along the ith dimension. Subcube H' contains the pro­

cessor whose fth bit of ids is 1 and subcube H' contains the processors whose

ithe bit is 0. In Figure 6.2, the 3-dimensional hypercube is divided into two

2-dimensional subcubes in 3 different ways. In our new efficient formulation,

each task is assigned to subcubes instead of processors.

In hypercube topologies, using Ising model is more suitable than Potts

model, because in Ising model spins can be in one of the two states represented

CHAPTER 6. MEA SOLUTION FOR MAPPING 52

3 dimensionaJ
Hypa“Ojbc

Figure 6.2. Three different ways for dividing 3-dimensionaI hypercube to 2
2-dimensionaI subcubes

by 0 and 1. So, for each M — 1 dimensional subcube of the M dimensional

hypercube, one Ising spin is used for encoding. To encode the configuration

space of the mapping problem, one Ising spin is assigned to each M — 1 dimen­

sional subcube of the hypercube . Totally M Ising spin is represented for each

teisk i. Here M is the number of dimension of the hypercube and if there is K

processor in hypercube, then M = log(K).

There will be a total of |Â | x log{K) Ising spins in the system for encoding

the configuration space of the problem. Note that, this encoding constructs

the one-to-one mapping between the configuration space of the problem domain

and the spin domain. This encoding is much more efficient than the general

M FA encoding which requires lÂ I x K spins for encoding.

The spin which is assigned to task i and represented to subcube H' of the

hypercube is labeled as s·” . If a is 1, we say that the corresponding task is

mapped to one of the processors the Hm subcube.

The average u·" = < s·" > of each spin, s"* is computed and iteratively

updated until the system stabilizes at some fixed point. We define

uf* = < > where m = .. ^log{K)

Here € { 0 , 1 } , whereas u f € [0,1], In order to construct an energy function.

CHAPTER 6. MEA SOU TIOX TOR MAPPISG 53

it is helpful to associate the following meaning to values.

v'A = ■pjtask i is mapped to one of the processors in subcube / / ' " }

For simplicity, the energy' computation is divided to two part, interconnec­

tion communication energy term {E c o m) and imbalance energy term { E m)·

E - Ecom + r X Ekal

W e derive the interconnection communication energy function for mapping

problem as follows.

 ̂ N N log(K)

Ecom = r X) P{ task i is mapped to one of the processor in x
2 ,= i /=1

V{ task j is mapped to one of the processors in H'^.27)
, N N iog(K)

= 5 E E " · / E " ' x i i - * ;) (6-28)
 ̂ ,=1 /=1

W e consider the load-imbalaince term for each processors so we formulate the

energy term correspond the imbalance cost as

 ̂ N N K

Ebal = i E E WiWj X ^ ^ {ta s k i is mapped to processor p} x
2 ,= i jji,· p = i

P {task j is mapped to processor p)

= (6.29)
 ̂ .=1 J5i ,· P=1

Here, Sf is the probability of task i is mapped to processor p. For example,

we have 4-dimensional hypercube and the probability of task i mapped to

processor 9 is Sf = [sfsfs^s;] — {sfx (1 — sf) x (1 — sf) xs ·) we define «Sf

as

«Sf = where 2,· = ms|· -f rh(l — sj) (6.30)

Here 2 ,· is s· or (1 — s|) according to the binary representation of the processor

number p. In equation (6.30), m is 1 or 0 if the /-th bit of the processor number

is 1 or 0. Total energy term can be defined in terms of communication cost

term and the imbalance term as

E — Ecom “h ̂ ^ Effctl
« .V N log(K)

 ̂ .zrl ijij l=l

N N K1

 ̂ «=1 >,i. p=l
(6.31)

CHAPTER в. МЕЛ SOLUTION EOR MAPPINC

In MF'A algorithm, the expected values of each spin sj" are iteratively
updated using Boltzmann distribution as

u”· = -------- -̂--------
• 1 + е-^Г'/ î ’ (6.32)

Each <f>̂ denotes the decrease in the energy' function. Hence for the for­

mulation of mapping problem for hypercube — may be interpreted as the

decrease in the overall solution quality by assigning task i to one of the pro­

cessors in subcube i / ”*. In this work the mean field values are computed as

<PA ф'"' . -f- г X ф Р ! ■Tl Tcom,t ' Tbalyt

The mean field values coming from the communication energy term is cal­

culated as

^ = - _ E j) (6.33)
m
corn,!

jeAdj(i)

Here if is positive then uf* is attracted to 1. This means that probability

of task i is mapped to one of the processor whose m-th bit is 1. Also ,if ■
is negative then uj” is attracted to 0. This means that probability of task i
is not mapped to one of the processor whose m-th bit of binary number is 1.

The computation of the mean field value for communication cost takes 0{davg)
where davg is the average vertex degree of TIG .

Second Term of the mean field value is the imbalance energy term is calcu­

lated as

im ^̂ bal ̂ krî og{K) I
^ j = l P = l

= y ; (6.34)
p=l J=hjjti

Here a is 1 or -1 according to m-th bit of the processor p. To simplify the

equation (6.34), the product term is substituted by in equation (6.30).

1 к <jp N

(6.35)
p=l «

As seen equation (6.35), the complexity of computing an individual mean field

value corresponding the imbalance cost is 0((A^| xK). However, the complexity

CHAPTER 6. MEA SOLVTIOX EOR M APR ¡SC 55

of the computation can be asymtoticaly reduced as follows.

c =
1 /05(A)

where

E o ,{ s n s T) {w -s n
- p = l

(6.36)

(6.37)

Here, W '’ denotes the weight of the processor p for current spin values. The

parenthesis term inside the summation (6.36) denotes the weight of processor

p excluding the task i. Hence (6.36) represent the increase in imbalance cost

term, if task i is assigned to processor p. The entries of the W vectors are
computed using (6.37) at the beginning of the algorithm. Then, while updating

the expected value of individual Ising spin ¿, the W vector is updated in 0{K)
by using iterative properties of equation (6.37). If the s[" is updated in MFA

iteration then the W vector is updated like as

aP{old)
= W J , + 5 , where S ' " " ' “ ' = xm(old) (6.38)

As the Sf value is updated in (9(1) times , updating the W vector takes 0{K)
times. Therefore total computation of mean field value for imbalance cost term

((^^,) takes 0{K) times.

In Figure 6.3, another method are given for calculating the mean field value
for imbalance cost term which takes also 0{K).

If we add the mean field values from communication cost term (6.33) and

imbalance term (6.36), the mean field value for given spin i and subcube

IS
1 1 loaiK)

= - E - i) - 5 E “WADOV - s f) (6.39)
jeAdj{i)

As seen in (6.39), total computation of the mean field value for given spin

i and dimension m is 0{davg + K). Steps of the MFA algorithm for hypercube

topologies is very similar to the M FA algorithm for mesh. In this M FA algo­

rithm one spin is selected randomly for each dimension. Therefore one MFA

iteration requires log{K) mean field value computation. So complexity of the

one MFA iteration is 0{davg x logK + K x logK). Instead of 0{davg x K + K^)
in the traditional MFA algorithm.

CUAPTElt 6. MFA SOLUTION FOR MAFPINO 56

sum = 0;
for k=0 to (p/2*·'·*)-! do

for /= 0 to 2*̂ — 1 do
p = i X 2 '̂+* + /;
q = p + 2̂

VWP = WP - lOiSf
VW’ = VW’ - WiŜ
sum = sum + <Sf(W’ —

endfor
endfor

= —Wi X (sum/sj")

Figure 6.3. The Mean field value calculation of given spin i of subcube IP

6.3 Performance Evaluation

This section presents the performance evaluation of the efficient MFA formu­

lation proposed for the mapping problem for mesh-connected architectures

in comparison with the well known mapping heuristics: simulated anneal­

ing (SA), Kernighan-Lin (KL) and the general M FA formulation. Each al­

gorithm is tested using randomly generated mapping problem instances for

mesh-connected architectures. The following paragraphs briefly present the

implementation details of these algorithms.

The MFA algorithm proposed for the mapping problem for mesh topology is

implemented efficiently as described in Section 6.2.1. At the very beginning the

of the algorithm row and column spin averages are initialized to l/P and l/Q
plus a random disturbance term, so that the initial spin averages are uniformly

distributed in the range

0.9 X i < t - i ”" “ '» < 1.1 X

0.9 X i < t . ; · '" '" “'’ < 1 . 1 x 4

respectively. Note that limrr^o,

initial temperatures and balance parameters used in the mean field computa­

tion of the row and column iterations are estimated using these initial random

spin average values. Recall that, in the mean field computations (Eqs. (6.20))

for f = 1 , 2 , , A , p = 1 , 2 , . . . , P

for 1 = 1,2, . - . , A , i = i , 2 , . . . , g

iT —
*P l/P and lim7-:-.oo = l / Q · The

CHAPTER 6. MFA SOLUTION TOR MAPPING 57

and (6.21) of row and column iterations, the parameters ¡S'" and deter­

mine a balance between the terms and and and respec­

tively. We compute the row spin averages {<i>ip̂)̂ =
and (<i>ip̂)̂ = (H ill T,pzzi using the initial u[p values. Column spin

averages and are computed similarly using the initial val­

ues. Then, balance parameters are computed as /5’’ = CB{<t>'ip̂)̂/{<p’ip̂)̂ and

where Cb is chosen as 5.6. Our experiments show that

computing /5’’ and using this method is sufficient for obtaining balanced

partitions.

Selection of initial temperature parameters TJ and Tq is crucial for ob­

taining good quality solutions. In previous applications of M FA [18, 22], it

is experimentally observed that spin averages tend to converge at a critical

temperature. Although there are some methods proposed for the estimation of

critical temperature, we prefer an experimental way for computing Tq and Tq
which is easy to implement and successful as the results of experiments indicate.

After the balance parameters and are fixed, average row and column mean

fields are computed as {(f>\p) = and

. Then Tq and Tq are computed using Tq = and Tq = CT{<i>î)/Q
where Ct is chosen as 20. Note that, both Tq and Tq aire inversely proportional

to the dimensions of the row and column Potts spins, respectively, which is also

observed for the critical temperature formulations presented in other MFA im­

plementations [18, 26].

The same cooling schedule is adopted for row and column iterations as fol­

lows. At each temperature, row and column iterations proceed in an alternative

manner for randomly selected unconvergenced row and column spin updates

until AE^ < t and AE^ < t for A / consecutive iterations respectively where

M = N initially and c = 0.05. Average spin values are tested for convergence

after each update. If one of the terms of a row or column spin average

vector is detected to be greater than 0.95, that spin is assumed to converge to

state k. The cooling process is realized in two phases, slow cooling followed

by fcLst cooling, similar to the cooling schedules used for SA [22]. In the slow

cooling phase, row and column temperatures are decreased using a = 0.9 until

T < 2o/1.5 for both row and column iterations. Then in the fast cooling phase,

M is set to M /4 , a is set to 0.7 and cooling for row and column iterations are

continued until 90% of the row and column spins converge, respectively. At

the end of this cooling process, the maximum element in each unconvergenced

spin average vector is set to 1 and all other elements in that vector are set to

CHAPTER 6. MFA SOLVTIQN FOR MAPPF\G 58

0. Then, the result is decoded cis described in Section 6.2, and the resulting

mapping is found. Note that, all parameters used in this implementation are

either constants or found automatically. Hence, there is no parameter setting

problem for different mapping instances.

The general MFA formulation summarized in Section 6.1 is implemented

efficiently as described in [6]. The initialization of spin averages, the selection

of the balance parameter ^ and the initial temperature To are performed as

is described for the mesh-specific MFA implementation. The expressions used

for these computations can be found by replacing P and Q with K — PxQ \n
those expressions described for the mesh-specific M FA implementation. The

parameters Cj and Cb are chosen as 0.5. The same cooling schedule described

for mesh-specific MFA implementation is used in the implementation of the
general MFA formulation.

The two-phcise approach is used to apply KL to the mapping problem. KL

heuristics is implemented efficiently as described by Fiduccia and Mattheyses

(FM) [6] for the clustering phase. The recursive bisection scheme implemented

for the first phase recursively partitions the initial TIG into two cluster until

K — PxQ clusters are obtained. Here, K is assumed to be a power of two. In

the KLFM heuristic, computational load balance among clusters is maintained

implicitly by the algorithm. Vertex moves causing intolerable load imbalance

are not considered. The one-to-one mapping heuristics used in the second

phase is a variant of the KL heuristics. In this heuristic, communication cost

is minimized by performing a sequence of cluster swaps between the processor

pairs after an initial random mapping of K clusters [21].

The SA algorithm implemented in this work implicitly achieves the load

balance among processors by setting a neighborhood configuration consisting

of all configurations which result from moving one task from the processor

with maximum load to any other processor. Randomly selected possible moves

which decrease the communication costs are realized. Acceptance probabilities

of randomly selected moves that increase the communication cost are controlled

with a temperature parameter T which is decreased using an automatic anneal­

ing schedule [22]. Hence, as the annealing proceeds acceptance probabilities of

uphill moves decrease.

CHAPTER в. МЕЛ SOLVTION EOR MAPPING 59

Table 6.1. Total communication costs averages normalized with respect
to mesh-specific MFA of the solution found by SA,KL,general MFA and
mesh-specific MFA for randomly generated mapping problem instances for var­
ious mesh size

Problem Size Average Communication Cost
T IG Mesh MFA

N davg P x Q KL SA Gen. Mesh

2 4 x 4 1.20 0.83 1.16 1.00
2 4 x 8 2.62 0.76 1.09 1.00

400 3 4 x 4 1.14 1.01 1.13 1.00
3 4 x 8 1.96 0.94 1.07 1.00
4 4 X4 1.31 1.03 1.09 1.00
4 4 x 8 1.92 0.97 1.08 1.00
2 4 x 8 1.73 0.89 1.10 1.00
2 8 x 8 2.61 0.88 1.30 1.00

800 3 4 X8 2.20 1.13 1.41 1.00
3 8 x 8 2.88 1.06 1.00 1.00
4 4 x 8 1.65 1.14 1.13 1.00
4 8 x 8 2.55 1.17 1.20 1.00
2 8 x 8 1.61 0.99 0.93 1.00
2 8 x 16 2.89 1.05 1.15 1.00

1600 3 8 x 8 1.57 0.99 0.96 1.00
3 8 x 16 2.47 1.00 1.13 1.00
4 8 x 8 2.03 1.17 1.31 1.00
4 8 x 16 3.39 0.93 1.26 1.00

6.4 Experimental Results

The mapping heuristics are experimented by mapping randomly generated

TIGs and test TIGs onto various size meshes. Random TIGs are generated

using the following parameters: number of vertices (N), average vertex de­

gree (davg), maximum vertex weight (wmax) and maximum edge weight {emax)·
In a random graph Gn,p with N vertices, each pair of vertices constitutes an

edge with probability p. Since can have at most pC{N,2) edges, the

sum of the degrees of the vertices of Слг.р is equal to 2pC{N^2). Then, the

expected average vertex degree of Gs,p is davg = 2pC{N,2)/N = p{N — 1).

Thus, the parameter P is selected as p = davg 1(1̂ - 1) to generate a random

TIG with N vertices and expected vertex degree davg· Then, the edge set is

created by flipping a coin with probability p for all {N{N — l) / 2 potential

edges. Each vertex or edge is weighted randomly by choosing a number be­

tween 1 and Wmax or 1 and ê axi respectively. Nine test TIGs generated with

N = 400,800,1600, dovj = 2,3,4,iUmax = 5 and e^ar = Ю using this random
graph generation algorithm. These test TIGs are mapped to 4 x 4 , 4 x 8 , 8 x 8

and 8 x 1 6 two-dimensional meshes.

Cl IA PTEli 6. MIA SOL UTION FOR MA RPISG GO

Table 6.2. Percent computational load imbalance averages of the solution found
by SA,KL,general MFA and mesh-specific MFA for randomly generated map­
ping problem instances for various mesh size

Problem Size Average Percent Imbalance
T G Mesh MFA

N davg PxQ KL SA Gen. Mesh
2 4 x 4 9.1 2.1 8.6 7.8
2 4 x 8 14.5 6.5 11.1 8.3

400 3 4 X 4 11.4 4.4 8.6 4.5
3 4 x 8 15.5 5.5 9.7 8.3
4 4 x 4 11.9 4.0 5.1 7.9
4 4 X 8 16.1 7.8 12.7 6.3
2 4 x 8 12.0 5.8 16.2 7.8
2 8 x 8 16.7 8.4 12.7 8.7

800 3 4 x 8 15.6 3.5 8.7 5.2
3 8 x 8 19.7 9.6 16.0 8.2
4 4 x 8 16.5 13.8 7.9 14.2
4 8 x 8 19.0 6.6 6.2 6.9
2 8 x 8 13.8 9.3 12.7 8.2
2 8 x 16 21.0 9.4 13.9 7.9

1600 3 8 x 8 15.3 14.3 16.6 10.3
3 8 x 16 19.7 10.9 13.0 11.7
4 8 x 8 15.6 9.4 14.9 8.9
4 8 x 16 21.9 7.3 11.2 9.4

Table 6.3. Execution time averages of the solution found by SA,KL,geneггıl
MFA and mesh-specific MFA for randomly generated mapping problem in­
stances for various mesh size

Problem Size Average Execution Time(sec)
TIG Mesh

SA
.MFA

N 1 PxQ KL Gen. Mesh

400

2 4 x 4 1.1 99.4 11.7 2.8
2 4 x 8 1.1 99.4 11.7 2.8
3 4 x 4 0.9 44.0 3.1 0.9
3 4 x 8 1.4 96.4 5.6 1.8
4 4 x 4 1.0 48.8 2.7 1.4
4 4 x 8 1.5 80.0 9.7 3.5

800

2 4 x 8 1.7 248.9 15.8 5.3
2 8 x 8 3.2 522.8 53.8 6.8
3 4 x 8 2.2 256.0 13.0 4.2
3 8 x 8 4.4 550.2 44.7 8.6
4 4 x 8 2.9 240.2 55.1 8.7
4 8 x 8 5.5 545.7 87.6 9.9

1600

2 8 x 8 5.4 1983.6 230.6 13.5
2 8 x 16 15.6 16793.4 1081.5 39.5
3 8 x 8 8.9 1826.5 157.2 18.2
3 8 x 16 24.1 4946.0 515.0 40.6
4 8 x 8 11.3 3095.6 206.2 15.1
4 8 x 16 51.0 5345.7 495.4 49.9

CHAPTER 6. MFA SOLUTION FOR MAPPING 61

Table 6.4. Average performance measures of the solution found by SA, KL,
general MFA and mesh-specific MFA for randomly generated mapping problem
instances

C O M M . COST
LOAD IM BALANCE
E XEC U TIO N TIME

KL

2.10
2.01
0.67

SA

1.00
0.91

93.20

MFA
Gen.

1.13
1.49
8.17

Mesh.

1.00
1.00
1.00

Table 6.1, 6.2, 6.3 illustrates the performance result of the KL, SA , general

and mesh-specific M FA heuristics for the generated mapping problem instances.

In this table, ” Gen” and "M esh” denote the general and mesh-specific MFA

formulations, respectively, discussed in this work. Each algorithm is executed 5

times for each problem instance starting from different, randomly chosen initial

configurations. Total communication cost averages of the solutions in Table 6.1

are normalized with respect to the results of the mesh specific MFA heuristic

developed in this work. Percent computational load imbalance averages of solu­

tions displayed in Table 6.2 are computed using l00x{CLmax — CLmin)IOLavg-
Here, CLmax and CL^in denotes the maximum and minimum processor loads

and CLavg denote the computational loads of processors under perfect load

balance conditions. Execution time averages are measured on a DEC Alpha

workstation in seconds for randomly generated mapping problem instances.

Table 6.4 is constructed for a better illustration of the overall relative per­

formances of the heuristics. Percent load imbalance averages and execution

time averages of the solutions are also normalized with respect to the results of

the mesh-specific M FA heuristic. Then, the overall averages of the normalized

averages of Table 6.1, 6.2, 6.3 are displayed in Table 6.4.

These four tables confirm the expectation that mesh-specific MFA formu­

lation is significantly feister (8.17 times on the average) than the general MFA

formulation while producing solutions with considerably better qualities for

randomly generated problem instances. As seen in these tables, the mesh spe­

cific MFA heuristic produces significantly better solutions than the KL heuristic

whereas the MFA heuristic is slightly slower (only 1.49 times on the average).

The qualities of the solutions obtained by the mesh-specific MFA heuristic are

comparable with those of the SA heuristic. However, the mesh-specific MFA

heuristic is orders of magnitudes faster (93.2 times on the average). Hence,

the proposed MFA heuristic approaches the speed performance of the feist KL

CUAPTKR 6. MFA SOLUTIOS FOR MARRISG 62

Table 6.5. The Benchmark Sparce Matrix data used in experiments

heuristic while approaching the solution quality of the powerful SA heuristic.

Test t i g ’s correspond to the undirected sparse graphs associated with the

symmetric sparse matrices selected from Harwel Boeing sparse matrix test col­
lection [12]. Weights of the vertices are assumed to be equal to their degrees.
These test T IG ’s are mapped to 8 x 8 , 8 x 16 and 16 x 16 2£)-meshes. The

properties of test TIGs are shown in Table 6.5

Table 6.6, 6.7. 6.8 illustrates the performance result of the KL, SA , general

and mesh-specific MFA heuristics for the mapping problem instances from test

TIGs. Each algorithm is executed 5 times for each problem instance starting

from different, randomly chosen initial configurations. Total communication

cost averages of the solutions in Table 6.6 are normalized with respect to the

results of the mesh specific MFA heuristic developed in this work. Execution

time averages are measured on a SUN SPARC 10 workstation. Execution time

averages are normalized with respect to those of mesh-specific M FA heuristic

in Table 6.8. Table 6.9 is constructed for a better illustration of the overall

relative performances of the heuristics. Percent load imbalance averages of the

solutions are also normalized w'ith respect to the results of the mesh-specific

MFA heuristic. Then, the overall averages of the normalized averages of Ta­

ble 6.6, 6.7. 6.8 are displayed in Table 2. Tables 6.6, 6.7, 6.8, 6.9 confirm the

expectation that mesh-specific M FA formulation is significantly faster (7.26

times on the average) than the general MF.A formulation while producing solu­

tions with considerably better qualities for test TIGs. As seen in these tables,

the mesh specific MFA heuristic produces significantly better solutions than

the KL heuristic whereas the M FA heuristic is slightly slower. The qualities of

the solutions obtained by the mesh-specific MFA heuristic are comparable with

those of the SA heuristic. However, the mesh-specific MFA heuristic is faster

CHAPTER 6. MPA SOLUTION TOR MAPPING 63

Table 6.6. Total communatication cost averages, normalized with respect
to mesh-specific MFA, of the solution found by SA,KL, general MFA and
mesh-specific MFA for some bechmark mapping problem instances for vari­
ous mesh size

Com.Cost
Circuit Par MFA SA GcnMFA KL

16 1.00 0.82 1.39 0.95
32 1.00 1.11 1.89 1.61

DWT-492 64 1.00 0.97 1.74 1.98
128 1.00 1.13 2.52 2.33
256 1.00 1.10 2.62 1.90
16 1.00 0.83 1.48 0.74
32 1.00 0.95 1.98 1.17

DWT-758 64 1.00 0.95 2.02 1.79
128 1.00 1.10 2.75 2.85
256 1.00 1.38 4.03 3.34
16 1.00 0.85 1.18 0.99
32 1.00 0.95 1.71 1.25

DWT-1242 64 1.00 1.00 2.01 1.42
128 1.00 1.05 2.62 2.53
256 1.00 1.08 2.94 2.91
16 1.00 0.89 1.12 0.89
32 1.00 0.93 1.30 0.99

JAGMESH2 64 1.00 0.90 2.04 1.91
128 1.00 1.11 3.35 3.06
256 1.00 1.19 3.73 3.44
16 1.00 0.56 0.92 0.69
32 1.00 0.87 1.43 1.14

JAGMESH6 64 1.00 0.91 1.78 1.23
128 1.00 1.13 3.59 2.48
256 1.00 1.08 3.82 3.43
16 1.00 0.78 1.12 0.83
32 1.00 0.86 1.26 1.21

JAGMESH7 64 1.00 0.95 1.89 1.40
128 1.00 1.06 3.25 2.74
256 1.00 1.20 3.77 3.48
16 1.00 0.67 2.14 1.47
32 1.00 0.98 3.25 2.33

BCSPWR06 64 1.00 0.93 2.80 2.18
128 1.00 1.12 3.35 2.90
256 1.00 1.23 3.45 3.80
16 1.00 0.51 1.36 1.11
32 1.00 0.89 2.74 1.88

BCSPWR09 64 1.00 0.90 2.43 1.87
128 1.00 1.01 3.13 2,33
256 1.00 1.80 5.06 4.75

16 1.00 0.84 1.02 1.09
32 1.00 0.89 1.29 1.31

LSHP2233 64 1.00 0.81 1.88 1.37
128 1.00 0.97 3.63 2.20
256 1.00 1.12 2.68 3.31

16 1.00 0.65 1.05 0.37
32 1.00 0.66 1.23 0.43

LSHP3346 64 1.00 0.68 1.91 0.52
128 1.00 0.68 3.48 0.68
256 1.00 0.87 2.10 1.07

aiAPTKR (). MFA SOLUTION FOR MAPPING 64

Table 6.7. Load Imbalanced averages,of the solution found by SA,KL, general
MFA and mesh-specific MFA for some bechmark mapping problem instances
for various mesh size

[x>ad-Bal
Circuit Par MFA SA GcnMFA KL

16 2.41 2.41 4.34 5.42
32 3.01 3.61 7.47 7.35

DWT-492 64 6.10 7. 32 8.54 9.76
128 11.00 15.00 15.50 17.00
256 19.00 35.00 26.00 28.00
16 1.62 0.92 3.79 6.45
32 2.45 2.15 5.52 9.45

DWT-758 64 4.20 5.25 5.68 9.38
128 7.75 14.37 9.25 12.25
256 9.00 26.25 15.00 16.50
16 1.13 0.57 3.55 7.86
32 1.60 1.48 4.60 8.08

DWT-1242 64 2.66 3.85 6.22 8.88
128 5.35 5.28 8.17 12.11
256 9.43 11.43 10.29 16.29
16 1.58 0.82 2.51 4.29
32 0.87 1.64 3.55 5.96

JAGMESH2 64 2.64 4.12 5.60 8.13
128 2.89 6.67 5.56 10.89
256 6.82 15.91 12.73 18.18

16 1.03 0.84 3.95 4.41
32 1.60 0.84 8.32 6.34

JAGMESH6 64 2.10 2.52 7.06 7.39
128 2.54 4.24 5.25 12.03
256 7.93 12.07 10.69 13.45

16 1.29 0.82 2.89 4.64
32 1.68 1.27 5.18 6.60

JAGMESH7 64 2.86 2.81 6.33 8.06
128 4.49 7.65 5.92 11.02
256 9.17 18.75 12.50 13.75
16 1.13 0.31 2.92 4.05
32 2.67 0.63 5.42 5.50

BCSPWR06 64 3.33 0.83 8.00 10.54
128 5.00 1.67 7.67 12.43
256 8.00 5.00 11.33 17.22
16 1.84 0.33 2.31 4.05
32 2.55 0.67 5.44 5.50

BCSPWR09 64 4.19 1.35 7.97 10.54
128 4.05 2.70 10.81 12.43
256 4.05 5.56 18.89 17.22
16 0.88 0.31 1.31 5.16
32 1.52 0.98 2.44 6.36

LSHP2233 64 2.30 1.23 5.39 8.04
128 2.45 2.94 3.92 9.41
256 3.73 7.84 12.07 10.20
16 0.51 0.31 1.21 4.05
32 2.02 0.98 1.87 5.50

LSHP3466 64 1.50 1.23 4.48 10.54
128 1.51 2.94 4.47 12.43
256 4.18 7.84 12.07 17.22

CHAPTER 6. MEA SOLUTION EOR MAPPING 65

Table 6.8. Total execution time, normalized with respect to mesh-specific M FA,
of the solution found by SA,KL, general MFA and mesh-specific MFA for some
bechmark mapping problem instances for various mesh size

Execution Time
Circuit Par MFA SA GenMFA KL

16 1.00 54.70 3.09 0.24
32 1.00 16.73 2.78 0.12

DWT-492 64 1.00 17.56 4.27 0.29
128 1.00 4.64 1.70 0.33
256 1.00 3.91 2.45 2.28
16 1.00 63.29 2.48 0.19
32 1.00 24.00 2.17 0.11

DWT-758 64 1.00 15.98 3.34 0.15
128 1.00 5.70 1.63 0.23
256 1.00 5.39 2.65 1.69
16 1.00 89.19 6.10 0.18
32 1.00 27.50 5.01 0.08

DWT-1242 64 1.00 25.33 7.74 0.13
128 1.00 8.72 2.67 0.19
256 1.00 7.02 3.79 0.75
16 1.00 61.11 8.62 0.12
32 1.00 24.16 7.69 0.08

JAGMESH2 64 1.00 16.43 10.81 0.11
128 1.00 8.53 4.14 0.24
256 1.00 8.21 5.27 1.16
16 1.00 112.12 10.72 0.16
32 1.00 45.16 11.93 0.09

JAGMESH6 64 1.00 30.02 15.45 0.13
128 1.00 13.01 6.60 0.18
256 1.00 10.98 6.25 0.81
16 1.00 78.00 7.75 0.15
32 1.00 32.29 10.98 0.09

JAGMESH7 64 1.00 26.58 19.41 0.14
128 1.00 11.01 4.22 0.20
256 1.00 9.58 6.77 1.10
16 1.00 213.22 2.14 0.30
32 1.00 66.53 1.74 0.13

BCSPWR06 64 1.00 55.05 4.01 0.20
128 1.00 18.43 4.80 0.26
256 1.00 14.24 5.88 0.87
16 1.00 261.90 3.54 0.24
32 1.00 76.14 3.81 0.10

BCSPWR09 64 1.00 59.62 8.27 0.15
128 1.00 23.50 6.56 0.20
256 1.00 32.09 14.88 1.30
16 1.00 104.60 7.72 0.09
32 1.00 44.17 10.05 0.06

LSHP2233 64 1.00 34.47 17.28 0.09
128 1.00 17.48 7.22 0.13
256 1.00 13.95 2.19 0.57
16 1.00 53.11 11.11 0.03
32 1.00 22.63 12.44 0.02

LSHP3466 64 1.00 15.81 13.36 0.02
128 1.00 8.53 11.62 0.04
256 1.00 8.48 2.19 0.20

CHAPTER 6. MEA SOLUTION EOR MAPPING 66

Table 6.9. Average performance measures of the solutions found by SA, KL,
general MFA and mesh-specific MFA for mapping problem instances.

KL SA
MFA

Gen. Mesh.

Communication Cost 2.55 1.08 2.94 1.00
Load Lmba]гαıce 2.34 1.5 1.85 1.00
Execution Time 0.5 19-7 7.26 1.00

Table 6.10. Total communication costs averages normalized with respect to
hypercube-specific MFA of the solution found by SA,KL,general MFA and
hypercube-specific M FA for randomly generated mapping problem instances
for various hypercube size

Problem Size Average Communication Cost
TIG Hypercube MFA

N davg K KL SA Gen. Mesh

3 8 1.41 0.96 1.12 1.00
3 16 2.45 1.02 0.69 1.00

400 4 16 2.43 1.32 1.74 1.00
4 32 1.48 1.21 1.25 1.00
8 32 1.35 1.18 1.25 1.00
8 64 1.25 1.18 1.08 1.00
3 8 1.39 0.87 1.23 1.00
3 16 1.47 1.34 1.30 1.00

800 4 16 1.73 1.13 1.26 1.00
4 32 1.83 0-88 0.93 1.00
8 32 1.55 0.99 1.16 1.00
8 64 1.42 1.03 1.13 1.00

3 8 1.37 0.92 0.84 1.00
3 16 0.98 0.74 0.88 1.00

1600 4 16 0.86 0.74 1.14 1.00
4 32 1.56 0.87 1.26 1.00
8 32 1.26 0.98 1.00
8 64 1.68 1.14 1.36 1.00

(19.7 times on the average). Hence, the proposed MFA heuristic approaches

the speed performance of the fast KL heuristic while approaching the solution

quality of the powerful SA heuristic.

Table 6.10, 6.11, 6.12 illustrates the performance result of the KL, SA, gen­

eral and hypercube-specific MFA heuristics for the generated mapping prob­

lem instances. In this table, ” Gen” and "Hypercube” denote the general and

hypercube-specific MFA formulations, respectively. Each algorithm is exe­

cuted 10 times for each problem instance starting from different, randomly

chosen initial configurations. Total communication cost averages of the so­

lutions in Table 6.10 are normalized with respect to the results of the mesh

specific MFA heuristic developed in this work. Percent computational load

imbalance averages of solutions displayed in Table 6.2 are computed using

CHAPTER 6. MEA SOLUTION EOR MAPPING 67

Table 6.11. Percent computational load imbalance averages of the solution
found by SA,KL,general MFA and hypecube-specific MFA for randomly gen­
erated mapping problem instances for various hypercube size

Problem Size Average Percent Imbedance
TIG Hypercube MFA

N davg PxQ KL SA Gen. Mesh
3 8 12.22 7.50 9.17 2.78
3 16 15.56 8.33 18.46 6.67

400 4 16 14.44 9.33 16.43 10.05
4 32 21.43 15.29 23.33 23.81
8 32 15.48 12.60 30.71 8.33
8 64 23.81 21.15 24.29 21.49
3 8 10.28 2.50 9.17 6.39
3 16 13.89 5.50 13.33 6.75

800 4 16 15.05 5.65 9.32 3.06
4 32 20.15 10.33 15.80 11.11
8 32 18.89 5.50 17.60 13.60
8 64 22.22 13.14 20.65 19.05
3 8 8.20 2.02 4.85 3.63
3 16 11.83 3.66 9.95 5.65

1600 4 16 12.82 3.82 6.97 3.79
4 32 16.67 6.91 11.29 8.60
8 32 15.87 7.68 12.58 8.58
8 64 25.56 7.11 15.33 9.88

Table 6.12. Execution time averages of the solution found by SA,KL,general
MFA and hypercube-specific MFA for randomly generated mapping problem
instances for various hypercubesize

Problem Size Average Execution Timc(sec)
TIG Hypercube MFA

N davg KL SA Gen. Mesh
3 8 0.77 41.27 8.55 0.81
3 16 1.13 64.57 18.75 2.35

400 4 16 1.23 62.49 7.41 1.97
4 32 2.17 106.25 10.48 6.77
8 32 1.52 79.87 6.18 3.00
8 64 2.58 124.63 8.58 4.63
3 8 1.26 123.65 7.78 1.49
3 16 1.91 147.90 15.07 3.99

800 4 16 2.15 156.51 7.53 3.20
4 32 2.95 252.31 15.65 7.19
8 32 4.37 410.88 15.85 5.45
8 64 13.62 707.90 44.46 13.26

3 8 2.42 209.69 22.64 2.64
3 16 0.31 329.72 29.66 7.06

1600 4 16 3.69 432.32 9.96 5.29
4 32 5.68 712.89 47.81 17.42
8 32 8.59 749.02 96.08 14.84
8 64 16.59 2462.81 241.73 45.38

CHAPTER 6. MFA SOLETIOS FOR MAPPISG 68

lOOx{CLmax — CLmin)/CLavg· Here, CLmax and CL,nin denotes the maxi­

mum and minimum processor loads and CLavg denote the computational loads

of processors under perfect load balance conditions. Execution time averages

are measured on a DEC Alpha workstation in seconds for randomly generated

mapping problem instances.

Chapter 7

CONCLUSION

In this thesis, we try to solve two combinatorial optimization problems, global
routing problem in design automation of FPGA and domain mapping problem
in parallel processing, by using Mean Field Annealing method.

First of all. Static RAM based Field Programmable gate arrays (FPGA)

is modeled as 2-dimensional mesh graph. Than we have proposed an order-

independent global routing algorithm, for FPG.A based on Mean Field Anneal­

ing. The performance of the proposed global routing algorithm is evaluated in

comparison with the LocusRoute global router for ACM/SIGDA benchmark

circuits. Initial experimental results indicate that the proposed MFA heuristic

performs better than the LocusRoute.

We proposed an encoding scheme to applied MFA onto global routing prob­

lem for FPGA. Our aim is to minimize the energ>' function of our spin (par­

ticles) system. It corresponds to minimize the our objective function, that is

finding most uniform distribution routes of the nets (balanced routing). We

expected from most uniform distribution of routes that the following detailed

routing shows a good performance. (Decrease in total number of segment used,

decrease in channel width, and decrease in average delay of nets).

Experimental results show that our expectation was true, the MFA al­

gorithm found more uniform distributed routing that LocusRoute algorithm,

therefore the performance of the detailed routing for 100% routing is better in

MFA than in LocusRoute for many benchmark circuits.

We have some difficulties in MFA formulation. In this formulation, it is the

69

CHAPTER 7. CONCLUSION 70

first time that Potts spins have different number of states. In Previous MFA

formulation for various combinatorial optimization problem, all Potts spins

have same number of state, therefore the affect of spin values on the problem

remains same but now, as Potts spin vector has different dimension, the affects

of spins on problem are different. This may cause some problem therefore we

have to find a normalization function that keeps the affect of spins same.

Also if we can find better cooling schedule than we may get better results

than we have got. Especially, critical temperature is very important here, if

it is initialized to very low temperature, than MFA find a local minimum as a

global minimum.

In the second part of this thesis, we have proposed an efficient map­

ping heuristic for mesh and parallel-connected parallel architecture based on

Mean Field Annealing(MFA). We have also developed an efficient implemen­

tation scheme for the proposed mapping formulation. The proposed MFA

scheme asymptotically reduces the complexity of a single MFA iteration from

Q{davgPQ + {PQV) of the general MFA formulation to Q{davg{P+Q)+PQ) for
a. P hy Q mesh. For a square mesh with K processors, this corresponds to an

asymptotical complexity reduction from Q{davgK + K^) to Q{davg\iK -|- K).
And for hypercube type architecture complexity of the one M FA iteration is

0{davg X logK K y. logK) instead of 0{davg y K + K^) in the traditional

MFA algorithm.

The performance of the proposed mapping heuristic is evaluated in compar­

ison with the well-known heuristics Kernighan-Lin (K L), Simulated Annealing

(SA) and general MFA formulation for a number of randomly generated map­

ping problem instances and Harwell-Boeing sparse matrix test collection. The

proposed topology-specific MFA formulation is found to be significantly faster

than the general MFA formulation as is expected. The proposed M FA heuristic

is slightly slower than the fast KL heuristic. However, it always produces sig­

nificantly better solutions than the KL heuristic. The quality of the solutions

obtained by the proposed MFA heuristic are comparable to those of the power­

ful SA heuristic. However, the proposed MFA heuristic is orders of magnitudes

faster than the SA heuristic. If we can find a good cooling scheduling and

initial temperature parameter, then we can get better results. W e conclude

that for mapping problem, MFA can be located on the algorithms line between

the KL and SA.

Bibliography

[1] Fundemental of Placement and Routing. Xilinx Company, SanJose, Cali­

fornia, 1990.

[2] The Programmable Gate Array Data Book. Xilinx Company, SanJose,

California, 1992.

[3] S. Brown B. Tseng, J.Rose. Using architectural and cad interactions to
improve fpga routing architecture. In First International Workshop on
Field Programmable Gate Arrays., pages 2 -7 . A C M , 1992.

[4] S. H. Bokhari. On the mapping problem. IEEE Transactions on Gom-
puters, 30(3):207-214, 1981.

[5] T. Bultan. Parellel mapping and circuit partitioning heuristic on mean
field annealing. PhD thesis.

[6] T. Bultan and C. Aykanat. A new mapping heuristic based on mean field

annealing. Journal of Parallel and Distributed Gomputing, 16:292-305,

1992.

[7] F. Ercal C. Aykanat, F. Ozguner and P. Sadayappan. Iterative algorithms

for solution of large sparse systems of linear equations on hypercubes.

IEEE Transactions on Computers, 37:1554-1567, 1988.

[8] D. E. Vand den Bout and T. K. Miller. Improving the performance of the

hopfield-tank neural network through normalization an annealing. Bio­
logical Cybernetics, 62:129-139, 1989.

[9] D. E. Vand den Bout and T. K. Miller. Graph partitioning using annealing

neural networks. IEEE Transaction on Neural Networks, l(2):192-203,

1990.

71

lilBUOGRAPHY 72

[10] C. M. Fiducciaand R. M. Mattheyses. A linear-time heuristic for improv­

ing network partitions. In Proceedings of the 19th ACM/IEEE Design
Automation Conference, pages 175-181, 1982.

[11] R. Francis, J. Rose, and Z. Vranesic. Chortle-crt: Fast technology

mapping for lookup table-based FP G As. In Proceedings of the 28th
ACM/IEEE Design Automation Conference, pages 227-233, 1991.

[12] J. Lewis I. Duff, R. Grimes. Sparse matrix test problems. ACM Transac­
tion on Mathematical Software, 15(1):1 -14 , march 1989.

[13] B. Indurkhya and H. S Stone. Optimal partitioning of randomly gener­

ated distributed programs. IEEE Transaction on Software Engineering,
12(3):453-495, 1986.

[14] S. Kaptanoglu J. Greene, V . Roychowdhury and A. El Gamal. Segmented

channel routing. In International Conference on Computer Aided Design,
pages 567-572. IEEE, 1990.

[15] F. Ercal P. Sadayappan J. Ramanujam. Task allocation by simulated

annealing. In Proceeding of International Conference on Supercomputing,
pages 475-497, Boston, MA. , May 1988.

[16] A. El Gamal J. Rose and A . Sangiovanni-Vincentelli. Architecture of

field-programmable gate-array. Proceedings of IEEE, 81(7):1013-1029,

July 1993.

[17] B. W . Kernighan and S. Lin. An efficient heuristic procedure for partition­

ing graphs. The Bell System Technical Journal, 49(2):291-307, February

1970.

[18] S. Kirkpatrick, C. D. Gelatt Jr., and M. P. Vecchi. Optimization by

simulated annealing. Science, 220(4598):671-680, May 1983.

[19] T. Lengauer. Combinatorial Algorithms for Integrated Circuit Layout.
John Wiley and Sons, Inc., Chichester, West Sussex, England, 1990.

[20] S. Brown M. Khellah and Z. Vranesic. Minimizing interconnetction delays

in array-based fpgas. In Proceedings of Canadian conference on VLSI,
1994.

[21] F.Ercal P. Sadayyapan and J. Ramanujam. Cluster partitioning aproaches

to mapping parallel programs onto hypercube. Parallel Computing, 13 :1-

16, 1990.

BIBLIOGRAPHY 73

[22] C. Peterson and B. Soderberg. A new method for mapping optimization

problems onto neural networks. International Journal of Neural Systems,
3 (l) :3 -2 2 , 1989.

[23] B. Fallah J. Rose. Timing-driven routing segment assignment in fpgas. In

Proceesings of Canadian Conference on VLSI, pages 1-7, 1992.

[24] J. Rose. Parallel global routing for standard cells. IEEE Transactions on
Computer-Aided Design, 9(10):1085-1095, October 1990.

[25] Z. Vranesic S. Brown, J. Rose. A detailed router for field-programable gate
arrays. In International Conference on Computer Aided Design, pages

382-385. IEEE, 1990.

[26] P. Sadayappan and F. Ercal. Nearest-neigbour mapping of finite ele­

ment graphs onto processor meshes. IEEE Transactions on Computers,
36(12):1408-1424, 1987.

[27] N. Sherwani. Algorithms for VLSI Physical Design Automation. Kluwer

Academic Publishers, 1993.

[28] J. Shield. Partitioning concurrent VLSI simulation programs onto a multi­

processor by simulated annealing. lEE Proceedings Part-G, 134(l):24-28,

1987.

[29] B .A Hendrickson W . Camp, S. J. Plimpton and R. W . Leland. Massively

parallel methods for engineering and science problems. Communication
of ACM, 37(4):31-41, April 1994.

