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ABSTRACT

MAPPING
AND

FPGA GLOBAL ROUTING 
USING

MEAN FIELD ANNEALING

İsmail Haritaoğlu
M .S. in Computer Engineering and Information Science 

Advisor: Asst. Prof. Cevdet Aykanat 
September, 1994

Mean Field Annealing algorithm which was proposed for solving combinatorial 

optimization problems combines the properties of neural networks and Simu­

lated Annealing. In this thesis, MFA is formulated for mapping problem in 

parallel processing and global routing problem in physical design automation 

of Field Programmable Gate Array (FPGAs) A new Mean Field Annealing 

(M FA) formulation is proposed for the mapping problem for mesh-connected 

and hypercube architectures. The proposed MFA heuristic exploits the conven­

tional routing scheme used in mesh and hypercube interconnection topologies 

to introduce an efficient encoding scheme. An efficient implementation scheme 

which decreases the complexity of the proposed algorithm by asymptotical fac­

tors is also developed. Experimental results also show that the proposed MFA  

heuristic approaches the speed performance of the fast Kernighan-Lin heuris­

tic while approaching the solution quality of the powerful simulated annealing 

heuristic. Also, we propose an order-independent global routing algorithm for 

SR AM  type FPG As based on Mean Field Annealing. The performance of the 

proposed global routing algorithm is evaluated in comparison with LocusRoute 

global router on ACM/SIGDA Design Automation benchmarks. Experimen­

tal results indicate that the proposed MFA heuristic performs better than the 

LocusRoute.

Ill



IV

Keywords: Mapping, Global Routing, Field Programmable Gate Arrays, Mean 
Field Annealing



ÖZET

ORTA ALAN T A V LA M A  M E T O D U  KU LLANILARAK  
EŞLEME VE F P G A T E R D E K İ K A B A  RO TALAM A  

PROBLEM LERİNİN Ç Ö ZÜ M Ü

İsmail Haritaoğiu
Bilgisayar ve Enformatik Mühendisliği, Yüksek Lisans 

Danışman; Yrd. Doç. Dr. Cevdet Aykanat 
Eylül, 1994

Birleşimsel eniyileme problemlerini çözmek için önerilen Ortak Alan Tavlama 
(Mean Field Annealing) algoritması, sinir ağları ve benzetimsel tavlama (Sim­

ulated Annealing) yöntemlerinin özelliklerini taşır. Bu çalışmada. Ortak 

Alan Tavlama algoritması Alan Programlamalı Kapı Devrelerinin (Field Pro­

grammable Gate Arrays) kaba rotalama problemine (Global Routing) ve par­

alel programlamadaki eşleme (Mapping) problemlerine uyarlanmıştır. Tezin 

ilk bölümünde Ortak Alan Tavlama algoritması Alan Programlamalı Kapı 

Devrelerinin (Field Programmable Gate Arrays) kaba rotalama problemi- 

ninin çözümünde kullanılmıştır. Önerilen algoritmalarının başarımları Locus- 

Route kaba rotalama algoritması ile kıyaslanarak değerlendirilmiştir. Deneyler 

algoritmaları karşılaştırmak için kullanılan standart devreler (Benchmarks) 

üzerinde yapılmıştır. Elde edilen sonuçlar Ortak Alan Tavlama algoritmasının 

kaba rotalama problemini çözmek için iyi bir alternatif algoritma olarak kul­

lanılabileceğini göstermektedir. Tezin ikinci bölümünde Mesh ve Hiperküp 

tipindeki paralel bilgisayarlarındaki eşleme problemi için daha önce önerilen 

algoritmalardan daha hızlı olan bir algoritma geliştirilmiş ve bu önerilen algorit­

manın başarımları Kernighan-Lin, Simulated Annealing ve daha önce önerilen 

ortak alan tavlama metotları ile kıyaslanarak değerlendirilmiştir.

Anahtar Sözcükler: Orta Alan tavlama algoritması, Eşleme problemi. Kaba 

rotalama algoritmaları. Alan programlamlı kapı devreleri

IV
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Chapter 1

INTRODUCTION

A common property of both domain mapping problem in parallel processing 

and global routing in VLSI is that both problems are combinatorial optimiza­

tion problems. As many problems in VLSI, parallel processing and other areas, 
these algorithms involve a finite set of configuration from solutions satisfying 

a number of rigid requirement are selected. The objective of combinatorial 
optimization algorithm is to find a solution of the optimum cost provided that 

a cost can be assigned to each solution. Many combinatorial optimizations 

problems are hard in the sense that they are NP-hard problems. There are no 

known deterministic polynomial time algorithms to find the optimal solution 

to any of those hard problems. The algorithms using the complete enumeration 
techniques are usually exponential in the size of problem, therefore they require 

a great amount of time to find the optimal solution. As a result, heuristics that 

run in a low order polynomial time have been employed to obtain good solu­

tions to these hard problems. Disadvantage of heuristics is that they may get 

stuck in local minima.

A powerful method for solving combinatorial optimization problem used in 
previous research is called Simulated Annealing. This method is the applica­

tion of a successful statistical method, which is used to estimate the results of 

annealing process in statistical mechanics, to combinatorial optimization prob­

lems. Simulated Annealing is a general method that guarantees to find the 

optimal solution if time is not limited. But time needed for Simulated Anneal­

ing is too much and exact solution of NP-hard problems are still intractable. 

Properties of Simulated Annealing are that, it can be used as a heuristic to ob­

tain near optimal solutions in limited time, and as the time limit is increased.
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quality of the obtained solutions also increase. An important property of Sim­

ulated Annealing is the ability to escape from local minima if sufficient time is 

given. Simulated Annealing has been applied to various NP-hard optimization 
problem and for most problem it gives good results.

The subjects of this thesis is a recent algorithm, called Mean Field An­

nealing (M FA) was originally proposed for solving the traveling salesperson 
problem. MFA is general strategy and can be applied to various problem with 

suitable formulations. Work on MFA showed that, it can be successfully ap­

plied to combinatorial optimization problems. Mean Field Annealing (M FA) 

merges collective computation and annealing properties of Hopfield Neural Net­

works (HNN) and Simulated Annealing (SA), respectively, to obtain a general 

algorithm for solving combinatorial optimization problems. MFA can be used 
for solving a combinatorial optimization problem by choosing a representation 

scheme in which the final states of the spins can be decoded as a solution 
to the target problem. Then, an energy function is constructed whose global 

minimum value corresponds to the best solution of the problem to be solved. 

MFA is expected to compute the best solution to the target problem, starting 

from a randomly chosen initial state, by minimizing this energy function. In 

this thesis, MFA is formulated for the mapping problem in parallel processing 
and global routing problem in design automation of Field Programmable Gate 

Arrays.

The first combinatorial optimization problem, that is solved by MFA in this 

thesis, is global routing problem in design automation of field programmable 

gate arrays. This study investigates the routing problem in Static RAM  Field 

Programmable Gate Arrays (F P G A ’s) implementing the non-segmented (Xil- 

inx based) network [27]. As the routing in F P G A ’s is a very complex combina­

torial optimization problem, routing process can be carried out in two phases 

; global routing followed by detailed routing [11]. Global routing determines 

the course of wires through sequences of channel segments. Detail routing 

determines the wire segment allocation for the channel segment routes found 

in the first phase which enable feasible switch box interconnection configura­

tions [2-5, 14]. Global routing in FPGA can be done by using global routing 

algorithm proposed for standard cells [25]. LocusRoute global router is one of 

this type of router used for global routing in F P G A ’s [24] which divides the 

multi pin net’s into two-pin net’s and considers only minimum distance routes 

for these two-pin nets. The objective in the LocusRoute is to distribute the 

connections among channels so that channel densities are balanced. In this



CHAPTER 1. INTRODUCTION

thesis, we propose a new approach the solution of global routing problem in 
F P G A ’s by using Mean Field Annealing technique.

Second problem that is solved by MFA is the Mapping problem [4, 8, 29]. 

The mapping problem arises as parallel programs are developed for distributed 

memory architectures. Various classes of problems can be decomposed into a 

set of interacting sequential subproblems (tasks) which can be executed in par­

allel. In these classes of problems, the interaction patterns among the tasks is 

static. In a distributed-memory architecture, a pair of processors communicate 

with each other over a shortest path of links connecting them. Hence, commu­

nication between each pair of processors can be associated with relative unit 

communication cost. Unit communication cost between a pair of processors can 

be assumed to be linearly proportional to the shortest path distance between 
those two processors. The objective in mapping subproblems to processors of 

multicomputers is the minimization of the expected execution time of the par­

allel program on the target architecture. Thus, the mapping problem can be 
modeled as an optimization problem by associating the following quality mea­

sures with a good mapping : (z) interprocessor communication overhead should 

be minimized, (ii) computational load should be uniformly distributed among 

processors in order to minimize processor idle time. The mapping problem 

has been solved by using Simulated Annealing, Kernighan-Lin type heuristic 

before. Also the MFA has been formulated in [6, 5]. But this formulation was a 

general formulation for any type of multicomputer whose intercommunication 

topologies are known. In this thesis we propose an efficient MFA formulation 

for topology-specific mapping for 2D-mesh and hypercube. For each intercon­

nection topology, the efficient MFA formulation is given instead of using one 

general formulation as in [6].

In Chapter 2 the theory of the Mean Field Annealing heuristic and its en­

coding models are explained. The Field Programming Gate arrays, its design 

automation and Global Routing problem are introduced in Chapter 3. Also the 

FPG A model for global routing problem are proposed in this chapter. Chap­

ter 4 gives the MFA formulation of global routing problem in FPGAs design 

automation. The mapping problem are introduced in Chapter 5. Chapter 6 

presents general MFA formulation the topology-specific MFA formulation for 

Domain Mapping problem. Finally, conclusion of thesis are stated in Chapter?.



Chapter 2

M EAN FIELD ANNEALING

In this chapter the Mean Field Annealing (MFA) heuristic is introduced and 

its models are given.

2.1 Mean Field Annealing

Mean Field Annealing (M FA) merges collective computation and annealing 

properties of Hopfield Neural Networks (HNN) and Simulated Annealing (SA), 

respectively, to obtain a general algorithm for solving combinatorial optimiza­

tion problems. HNN is used for solving various optimization problems and 

reasonable results are obtained for small size problems. However, simulations 

of this network reveals the fact that it is hard to obtain feasible solutions for 

large problem sizes. Hence, the algorithm does not have a good scaling prop­

erty, which is a very important performance criterion for heuristic optimization 

algorithms. MFA is proposed as a successful alternative to HNN. In the MFA  

algorithm, problem representation is identical to HNN, but iterative scheme 
used to relax the system is different. MFA can be used for solving a combi­

natorial optimization problem by choosing a representation scheme in which 

the final states of the spins can be decoded as a solution to the target prob­

lem. Then, an energy function is constructed whose global minimum value 

corresponds to the best solution of the problem to be solved. MFA is expected 

to compute the best solution to the target problem, starting from a randomly 
chosen initial state, by minimizing this energy function. Steps of formulating 

MFA technique for a combinatorial optimization problem can be summarized 

as follows :

4
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• Choose a representation scheme which encodes the configuration space 
of the target problem using spins. In order to get a good performance, 

number of possible configurations in the problem domain and the spin 

domain must be equal, i.e., there must be a one-to-one mapping between 
the configurations of spins and the problem.

• Formulate the cost function of the problem in terms of spins, i.e., de­

rive the energy function of the system. Global minimum of the energy 

function should correspond to the global minimum of the cost function.

• Derive the mean field theory equations using this energy function, i.e., 

derive equations for updating expected values of spins.

• Minimize the complexity of update operations in order to get an efficient 

algorithm.

• Select the energy function and the cooling schedule parameters.

The M FA algorithm is derived by analogy to Ising and Potts model which 

are used to estimate the state of a system of particles, called spins, in thermal 

equilibrium.

2.1.1 Ising Model

In Ising model spins can be in one of two states represented by 0 and 1. In the 

Ising model, the energy of a system with S spins has the following form:

1 (2.1)
k=l1фк fc=l

Here, indicates the level of interaction between spins к and /, and Sk € {0 ,1 }  

is the value of spin k. It is assumed that ¡3ki =  Pik and =  0 for I < k,l,< S. 
At thermal equilibrium, spin average (sjt) of spin к can be calculated using 

Boltzmann distribution as follows

1
-f e-'t'k/T (2.2)

Here, <f>k =  {H{s))\s =̂Q — {H{s))\s =̂i represents the mean field effecting on spin 
k, where the energy average {H(s)) of the system is
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( / /( s ) )  — ^  Y20ki{skSi) +  ^  hk{sk)
h=l Ijtk k=l

(2.3)

The complexity of computing 4>k using Eq.2.3 is exponential. However, for 

large number of spins, mean field approximation can be used to compute the 
energy average as

(̂ (s)> = i E  E M M  + E  M  (2.4)
“  k=l  l^k k=l

Since {H{s)) is linear in (sk), mean field <f>k can be computed using the following 
equation.

h  = (/i(s)>l,.=o -  {//(s))i„=. = = -  \ E M  + (2.5)

2.1.2 Potts Model

In the Potts model, spins can be in one of the K  states. In state Potts model 

of S spins, the states of spins are represented using S /f-dimensional vectors 

Sj =  [5 ,1 , . . . ,  Sik, . . . ,  1 <  i <  -S, where “i” denotes the vector transpose

operation.

The spin vector Si is allowed to be equal to one of the principal unit vectors 

e i , · . · , ©k) · · ·) ®K) and can not take any other value. Principal unit vector 
is defined to be a vector which has all its components equal to 0 except its ¿ ’th 

component which is equal to 1. Spin Si is said to be in state k if it is equal 
to efc. Hence, a K  state Potts spin Si is composed of two state variables 

Sii,.. .  ,Sik,... 1 SiKi where s,·* € {0 ,1 } , with the following constraint

к
Y^Sik = G ^ < i < S
k=l

(2.6)

In the Potts model, the energy of a system with S K-state Potts spin has the 

following form:

^  =  i E E f t - s , s ,  +  E ' A
i= l j:̂ i i=l

(2.7)

Here, fiij indicate the level of interaction between spins i and j, and interaction 

between Potts spins S ,Sj is formulated as îkSji· Therefore we
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can formulate the energy of the system as

s к к

 ̂ t = l k=ll=l
(2.8)

1=1 1=1

Here, Sik e 0,1 is the value of A:th state of the Potts spin i. At thermal 
equilibrium, spin average (s,jt) of spin г can be calculated using Boltzmann 
distribution as follows

{Sik) =
оФ.к/Т

(2.9)

Here, (sik) €  [0,1]. Note that Sik can be 0 or 1 but (s,jfc) can be any real value 

between 0 and 1. represents the mean field effecting on state k of spin i. 
The mean field value for Potts spin i can be formulated as

fe = {î (s))ls,=o-{//(s))|s.=
. M M

d{sik) Z  Z
b¥»· i=i

(2.10)

(2.11)

At each temperature, starting with initial spin averages, the mean field 

effecting on a randomly selected spin is found using Eqs. (2.5) and (2.10). 

Then, spin average is updated using Eq. (2.2) and Eq. (2.9) This process is 

repeated for a random sequence of spins until the system is stabilized for the 

current temperature. M FA algorithm tries to find equilibrium point of a system 

of S spins using annealing process similar to SA,. The state equations used in 
MFA are isomorphic to the state equations of the neurons in the HNN. A  

synchronous version of M FA, can be derived by solving N difference equations 

for N spin values simultaneously. This technique is identical to the simulations 

of HNN done using numerical methods. Thus, evolution of a solution in a 

HNN is equivalent to the relaxation toward an equilibrium state affected by 

the MFA algorithm at a fixed temperature [9]. Hence MFA can be viewed 

as an annealed neural network derived from HNN. HNN and SA methods 
have a major difference: SA is an algorithm implemented in software, whereas 

HNN is derived with a possible hardware implementation in mind. MFA is 

somewhere in between, it is an algorithm implemented in software, having 

potential for hardware realization [8, 9]. In this work, MFA is treated as a 

software algorithm as SA. Results obtained are comparable to other software 

algorithms, conforming this point of view.
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l.Get the Initial temperature Tq, and set T = Tq 
2.Initialize spin averages

king spin : [(ui), («2), . . . ]
Potts spins :[(Si), (82), · · ·]

3.WHILE temperature T is in the cooling range DO
4. WHILE system is not stabilized for the current temperature DO

Select a spin i at random
4.¡Compute mean field affecting on spin i

Ising spin : compute (f>i -  E'(U)|t,,=o -
Potts spins : compute <t>i =  [<t>i\,<i>i2, · · ·, <t>iKY such that

= ^ (S )|s ,^0 -  ^(S)|s.=e* for i  =  1 , 2 , . . AT 
4.2Update the average value of spin i 

Ising spin: {ui) =  -f
Potts spin : {sik) =  ioT k =  1,2, . . . ,  K

5. Update T according to the cooling schedule

Figure 2.1. Mean Field Annealing Algorithm

2.1.3 MFA Algorithm

The Mean Field Annealing algorithm are summarized in Figure 2.1.2. Begin­

ning of the algorithm, the initial temperature are initialized and the current 

temperature is set to that initial value (step 1). After that Ising and Potts 

spins are initialized (step 2). Then, the annealing property of MFA are begin. 

In cooling schedule, the system tries to reach a stable state for each tempera­

ture until most of spins converges a stable state. For each temperature, while 

the system is not in stable state, a spin is selected randomly (step 4.1), and 

mean field values of spins are calculated (step 4.2) in order to update the spin 

values (step 4.3). When the system reaches the stable state, the temperature 

decreased by cooling schedule (step 5). At the end of algorithm, when most of 

spins converge, spins are decoded for a solution of target problem.



Chapter 3

FPGAs & GLOBAL ROUTING

This chapter introduces the Field Programmable Gate Arrays and its physical 

design automation steps briefly. Routing architectures of F P G A ’s are men­

tioned in this chapter and global routing problem and its previous solutions 
are given at the end of this chapter. Also the global routing problem in FPGAs 

is modeled in this chapter.

3.1 Introduction to Field Programmable Gate Arrays

Field Programmable gate arrays (FPGAs) are new electrically programmable 

integrated circuits that provide high integration and rapid turnaround time. 

In VLSI design automation, the fabrication tirne is important problem. In 

order to reduce time to fabricate interconnects, programmable devices have 

been introduced. FPGA is very popular programmable devices used in ASIC  

design market.

FPG A can reduce manufacturing turnaround time and cost. In its simplest 

form, an FPGA consists of an array of programmable logic blocks and routing 

network to interconnect the logic blocks. The programmable logic blocks can 

be programmed by the user to implement a small logic function. An important 

property of FPGA is re-programmability by using electrically programmable 

switches. Commercial F P G A ’s differ in the type of programming technology 
used, in architecture of logic blocks and their routing architectures. An FPGA  

logic blocks can be as simple as transistor or as complex as a microprocessor.
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It is typically capable of implementing many different combinational and se­

quential logic functions. F P G A ’s logic blocks can be classified as transistors 

pairs, basic small gates (such as two-input N A N D ’s), multiplexes and Look-up 
tables.

3.1.1 Logic Blocks

FPGAs logic blocks differ greatly in their size and implementation capability. 

The two transistor logic block can only implement an inverter but is very small 

in size, while look-up table logic blocks used in Xilinx FPGAs can implement 

any five-input logic function but they are significantly larger. Logic blocks 

can be classified in terms of granularity. Granularity can be defined in various 
ways, for example, as the number of boolean function that the logic block can 
implement, the number of equivalent two input NAND gates, total number 

of transistors, number of inputs and outputs. But generally, the commercial 
logic blocks can be classified into two categories: fine-grain and coarse-grain. 
Main advantage of using fine grain logic blocks is that the use-able blocks are 

fully utilized. However the main disadvantage of fine-grain blocks is that they 

require a relatively large number of wire segments and programmable switches.

3.1.2 Programming Technologies

An FPG A is programmed using electrically programmable switches. Accord­

ing the properties of these programmable switches such as, on-resistance and 

capacitance, programming technologies can be classified into three main types. 

These three types are SRAM  , antifuse and EPROM  programming technolo­

gies.

The SR AM  programming technologies uses static R AM  cells to control the 

gates and multiplexes. In SR AM , the switch is a pass transistor controlled by 

the state of a SRAM  bit. Therefore, SRAM  is volatile. Hence The FPGA must 

be loaded and configured at the time of chip power-up, it requires external per­

manent memory to provide the programming bits such as PROM  or EPROM . 

A major disadvantage of SRAM  programming technology is its large area ( its 

takes at least five transistors to implement an SRAM  cell). However, SRAM  

programming technology has fast re-programmability as an advantage of it.
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Architecture of FPGA

Wiring Scgnicnts

outing Channel

Logic Block Connection Block Switch Block

Figure 3.1. The Architecture of General FPGA

An antifuse is a two terminal device with an unprogrammed state presenting 

a very high resistance between its terminals. When a high voltage is applied 
across its terminals, the antifuse will blow and create low resistance link. This 

link is permanent. Programming an antifuse requires extra circuitry to deliver 

the high programming voltage and a high current. A major advantage of the 

antifuse is its small size.. This advantage is reduced by the large size of the 

necessar_v programming transistors·.

The floating gate programming technology uses technology found in ultra­

violet erasable EPROM  and electrically erasable EEPROM . Major advantage 

of EPROM technology' is its fast reprograramability. Also it does not require 

extra permanent memory to program the chip on power-up. However this tech­

nology increase the number of processing steps and high resistance transistors.

3.1.3 Routing Architectures

The routing architecture of an FPG A is the manner in which the programmable 

switches and wiring segments are positioned to allow the programming inter­

connection of the logic. Figure 3.1 illustrates a typical routing architecture 

model. Before giving some commercial FPGA routing architecture, giving 

some definition is helpful for understand routing problem in FPGA. A wire
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Wiring
Segments

Logic U ·  
Block :

Fs=5

---
Logic
Block

Fc=3

(a) (b)

Figure 3.2. Example of flexibilities of FPGA (a) flexibility of switch block 
(b) flexibility of connection block

segment is a wire unbroken by programmable switches. One or more switches 

may attach to the wire segment. Each end of wire segment has a switch at­

tached.

A track is sequence of one or more wire segments in a line.

A routing channel is group of parallel tracks as in Figure 3.1.

As shown in Figure 3.1, the model contains two basic structures: Connec­

tion blocks and switch blocks. A connection block provides connectivity from 

the input and output of logic blocks to the wire segments in the channels. A 

switch block provides connectivity between the horizontal as well as the vertical 

wire segments.

As in Figure 3.2, The general routing structure of FPG A has two impor­

tant interconnection block. These are connection blocks which are used to make 

connections between logic block pin and routing segments, and switch blocks 

where connections are switched at the intersection of horizontal and vertical 

channels. The number of switching in connection and switch blocks is impor­

tant for good routability. Large number of switching increase the routability 

but it causes poor performance and large delay and also large area.

The number and distribution of switches used in interconnection called 

flexibility of an FPG A. Flexibility of switch blocks (F ,) and flexibility of con­

nection block {Fc) can be defined as the number of choices offered to each wire 

enter a switching block or a connection block, respectively. The flexibility of 
switch block F, is defined to be total number of possible connection offered
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Figure 3.3. The Architecture of Xilinx 3000 FPGA

to each wire segment. The flexibility of connection block Fc is defined as the 

number of wires that each logical pin of logic block can connect. Next section 

describes the important routing architecture of commercial F P G A ’s such as 

Xilinx and Actel.

The Xilinx Routing Architecture

Figure 3.3 illustrates the routing architecture used in the Xilinx 3000 series 
FP G A . Connections are made from the logic block into the channel through 

a connection block. Since each connection site is targe because of the SRAM  

programming technology, the Xilinx 3000 connection blocks connects each pin 

to only two or three out of five tracks passing by a block . On all four sides 

of the logic block there are connection blocks that connect a total of 11 dif­

ferent logic block pins to the wire segments. Once the logic pin is connected 

via the connections block makes connections between segments in intersecting 

horizontal and vertical channels. Each wire segment can connect to five or six 

out of a possible 15 wire segments on the opposites sides. There are four types 

of wire segments provided in the Xilinx 3000 architecture:

-General-purpose interconnect consisting of wire segments that pass 

through switches in the switch block.
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Figure 3.4. The Architecture of Actel FPGA

-Direct interconnect consisting of wire segments that connect each 
logic block output directly to four nearest neighbors.

-Long lines, which span the length or width of the chip, providing 
high-fanout uniform delay connections.

-Clock line, which is a single net that spans the entire chip and is 
driven by a high-drive buffer.

The Actel Routing Architecture

The Actel routing architecture has a eisymmetric architecture because there 

are more general purpose tracks in horizontal direction than vertical direction. 

The connection block of the Actel routing architecture is shown in Figure 3.4. 

The connectivity of A CTEL FPCAs is different in input and output pins. For 

input pins, each pin can connect to all of the tracks in the channel that are on 

the same side as the pin. The output pins extend across two channels above the 

logic block and two channels below it. Output pins can connect to every track 

in all four channels that is crosses. There is no separable switch block in the 

Actel architecture. Instead, the switching is distributed throughout the hori­

zontal channels. All vertical tracks can make a connection with every incident 

horizontal tracks. Each horizontal channel consists of 22 routing tracks, and 

each track is broken up into segments of different lengths. There are three type 

of vertical segments: input segments, output segments and freeways that either 

travel the entire height of chip, or some significant portion of it. This allows 

signal to travel longer vertical distance than permitted by output segments.
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3.2 Physical Design Automation of FPGAs

The physical design automation of FPGAs involves mainly three steps which 
include partitioning, placement and routing.

3.2.1 Partitioning

Partitioning is the separation of the logic into Logic blocks. Partitioning has 

both a logical and physical component. The connections within a logic blocks 

are constrained by the limited routing architecture and limited number of 

blocks outputs. However, the quality of the resulting partitioning depends 

on how well the placement can be done. The logical component has been 

investigated in the context of technology mapping in logic optimization.

3.2.2 Placement

Placement starts with logic blocks and input-output blocks in partitioned 

netlist and decides which corresponding blocks on the chip should contain 

them. The FPGA placement problem is very similar to traditional standard 

cell and gate array placement problems. Many of existing algorithm place­

ment algorithms are applicable, such as simulated annealing, force directed 

relaxation and min-cut.

3.2.3 Routing

After placement of all circuit, each pin of any multipoint net have to be con­

nected. There are several routing algorithms for different kind of FPGA ar­

chitectures and routing problem in FPG.A’s is very complex as in standard 

cells and gate arrays designs. Because of simplicity, the routing problem can 

be divided into two step as in traditional routing problem: global routing and 

detailed routing.

Global routing in F P G A ’s can be done by using a global router for standard 

cell design. In general such a global router divides the multipoint nets into two 

terminal nets and routes them with minimum distance path. While doing so it
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Figure 3.5. General approach to FPGA routing a) Global routing b) Detailed 
routing

also tries to balance the density of channels. The global route defines________

route for each connection by assigning it a sequence of channel segments. After 
the paths are defined in terms of channel between two-pin connection detailed 
router chose specific wiring segments to implement the channel segment 

signed during global routing.

a coarse

as-

3.3 Global Routing Problem in Design Automation of 
FPGAs

A global router chooses channels for each net and leaves the task of allocating 

specific wiring segments and switches to detailed router. The global routing 

in F P G A ’s decides for each net to determine which pins are actually to be 

connected. The objective of global router is to minimize the sum of the channel 

densities of all channels. As in many studies, the routing problem in FPGA  

is solved by directly allocating the segments and ignore the global routing 

phase. There are unique global router for FPG A: PGAroute. This global 

router similar the global router for standard cells and use the LocusRoute 

global routing algorithm.

In the LocusRoute algorithm, the following three steps are executed for 

each multi pin nets.

1) Net’s Division: Each multi-pin net is divided into a set of two-pin con­

nections using a minimum spanning tree algorithm.
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Figure 3.6. Sample two bends routes

2) Route Generation and Evaluation: In this steps, the possible paths be­

tween each pin of two-pin nets are considered and evaluate this paths in terms 
of cost value and chose the lowest cost value path.

The method of choosing routes is based on paths that have two or less bends. 
LocusRoute evaluates a subnet of all two bend routes between the two physical 

pins and chose the one with the lowest cost. The cost function is defined in 

terms of the channel densities. Each wire segments and switch blocks are 

represented as elements of an array which is called as cost array. Each element 

of cost array Hij contains the number of routes that pass through the wire 

segment of {i,j). The cost of path(P) is calculated as

Cost(P) = y :  Hi,¡ (3.1)

3)Reconstruction: This step joins all two-pin connections back together, 

performs assigns unique numbers to distinct segments of some nets in each 

channel.

Locus routes uses the iterative technique, that after the first time all nets 

are routed, each is sequentially ripped up and rerouted. Iterations reduces the 

order dependency and also it improves the routing quality.

3.4 Model of FPGA for Global Routing

The form of commercial FPGA consists of a two dimensional regular array 

of programmable logic blocks (LB’s), a programmable routing network and
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Figure 3.7. The FPGA model used for Global Routing

switch boxes (SB ’s) [3, 1 , 2 ]. Logic blocks are used to provide the function­

ality of a circuit. Routing network makes connections between LB’s and in- 
put/output pads. Routing network of FPGA consists of wiring segments and 

connection blocks. Wiring segments have three type of routing resources in 

the commercial SRAM  based FPG A [Ij: channel segments, long lines and 

direct-interconnections. A horizontal (vertical) channel segment consists of a 

number of parallel wire segments connecting two successive SB ’s in a horizontal 

(vertical) channel. The SB’s allow programmed interconnection between these 

channel segments. Direct-interconnection provides the connections between 
neighbor LB ’s. Long lines cross the routing area of FPGA vertically and hor­

izontally. Connection blocks provide the connectivity from the input/output 

pins of LB’s to the wiring segments of the respective channel segments. Each 

pin can be connected to a limited number of wiring segments in a channel and 

this is called a  ̂ flexibility of connection block [16]. In this work, it is assumed 

that each LB pin can be connected to all wiring segments in the respective 

channels. Therefore, we can omit the connection block in our FPGA model.

Since the direct-interconnections are used by neighbor LB’s to provide min­

imum propagation delay and the long lines are used by signals which must 

travel long distances (i.e., global clock), these interconnection resources are 

not considered in the global routing. Hence, our FPGA model for global rout­

ing considers only the LB’s, SB ’s and channel segments. An FPGA can be 

modeled as a two dimensional array of LB’s which are connected to the verti­

cal and horizontal channel segments, and SB’s which make connections between
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Figure 3.8. (a) The routing area of the two-pin net and its subnets, (b) The 
possible routes for each subnets

the horizontal and vertical channel segments (Fig. 3.7).

In this work, we divide all multi-pin nets into two-pin nets using minimum 

spanning tree algorithm [19] as in LocusRoute. Hence, a net refers to a two- 
pin net here, and hereafter. Consider the possible routings for a two-pin net 

with a Manhattan distance of dh + dy where dk and denote the horizontal 

and vertical distances, respectively, between the two pins of the net on the 

LB grid. The routing area of this net is restricted to a (d/i-t-1 ) x (d„-t-l) LB 

grid as shown in Fig. 3 .8 .a. Then, the shortest distance routing of this net 

can be decomposed into three independent routings as follows. Each pin of 

this net has only one neighbor SB in the optimal routing area. Hence, each 

pin can be connected to its unique neighbor SB either through a horizontal 

or a vertical channel segment (Fig. 3.8). Meanwhile, the optimal routing area 

for the connection of these two unique SB’s is restricted to a xd„ SB grid 

embedded in the LB grid (Fig. 3.8). Hence, by exploiting this fact, we further 

subdivide each net into three two-pin subnets referred here as LS, SS and 

SL subnets (Fig. 3 .8 .b). Here, LS and 5L  subnets represent the LB-to-SB  

and SB-to-LB connections, respectively, and SS subnets represent the SB-to- 

SB connection for a particular net. Therefore, we consider only two possible 

routings for both LS and SL subnets and dh+dy — 2 possible one or two bend 

routings for SS subnets for routing the original net.

We define an FPGA graph F (L , 5 , C ) for modeling the global routing prob­

lem in FPGAs. This graph is a P x Q two-dimensional mesh where L, S and
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FPGA Graph

Rl: A possible route for SS-subnet

R2: Two possible routes for the LS-subnet ( )

R3: Two possible routes for the SL-subnet ( S ,L )
73 73

P’igure 3.9. The Cost Graph for FPG A model

C denote the set of LB ’s, SB’s and channel segments, respectively. Here, P 
and Q is the number of horizontal and vertical channels in the FPG A. Each 

grid point (vertex) Sp, of the mesh represents the SB at horizontal channel p 
and vertical channel q. Each cell Lpg of the mesh represents the LB which is 

adjacent to four SB ’s Spq, ■Sp.j+i, and ■Sp+i,,. Edges are labeled such

that the horizontal (vertical) edge (c"^) corresponds to the channel segment 

between the two consecutive SB’s Spq and 5p,,+i (sp+i,,) on the horizontal (ver­

tical) channel p (q), respectively. Figure 3.9 displays a 8 x 6 sample FPGA  

graph. Then, the pins of the LSISL and SS type subnets are assigned to the 

respective cell-vertex and vertex-vertex pairs of the graph as is in mentioned 
earlier.

The global routing problem reduces to searching for most uniform possible 
distribution of the routes for these subnets. The uniform distribution of the 

routes is expected to increase the likelihood of finding a feasible routing in 

the following detailed routing phase. Hence, we need to define an objective 

function which rewards balanced routings. VVe associate weights with the edges 

of FPGA graph in order to simplify the computation of the balance quality 

of a given routing. The weight ŵ g (u>pq) of a horizontal (vertical) edge ĉ g 
(Cpg) denotes the density of the respective channel segment. Here, the density 

of a channel segment denotes the total number of nets passing through that 

segment for a given routing. Using this model, we can express the balance
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quality B oi a. given routing R  as

B (R ) =  E  E « ( R ) ) "  +  E  E K , ( R ) ) ^
P=1 q z = l  q  =  i  p = l

(3.2)

As is seen in Eq. (3.2), each channel segment contributes the square of its den­

sity to the objective function thus penalizing imbalanced routing distributions. 

Hence, the global routing problem reduces to the minimization of the objective 
function given in Eq. (3.2).



Chapter 4

MFA SOLUTION FOR GLOBAL 
ROUTING IN FPGA

This chapter investigates the routing problem in Static RAM  Field Pro­

grammable Gate Arrays (F P G A ’s) implementing the non-segmented (Xilinx 
based) network [27]. The architecture model of FPGA used for formulation 
and Mean Field Annealing formulation for global routing problem are given 

in this chapter. Details of experiments, the circuits used in experiments and 

results are shown at the end of this chapter.

4.1 MFA Formulation of Global Routing

The MFA algorithm is derived by analogy to Ising and Potts models which 

are used to estimate the state of a system of particles, called spins, in thermal 

equilibrium. In Ising model, spins can be in one of the two states represented 

by 0 and 1 , whereas in Potts model they can be in one of the K  states. All 
LS/SL subnets are represented by Ising spins since they have only two possible 

routes. In Ising spin encoding of each LS/SL subnet m, = I (0 ) denotes 

that the LB-to-SB or SB-to-LB routing is achieved through a single horizontal 

(vertical) channel segment. Each SS subnet n having !{„ >  2  possible routes 

is represented by a ATn-state Potts spin. The states of a /t"„-state Potts spin is 

represented using a Kn dimensional vector

Vn — [^nl) · · · ) n̂rt · · ·  ̂ '̂n.A'nj (4.1)

99
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where “i” denotes the vector transpose operation. Each Potts spin v„ is allowed 

to be equal to one of the principal unit vectors e i , . . . ,  Cr, . . . ,  and can not 

take any other value. Principal unit vector 6 r is defined to be a vector which 

has all its components equal to 0 except its r-’th component which is equal to 

1 . Potts spin v„ is said to be in state r if v„ =  6 r. Hence, a A'„-state Potts 

spin v„ is composed of Kn two state variables t’n\, ■ ■. ,Vnr, ■ ■ ■ ,VnK„, where 
Vnr £ { 0 ) 1 }) with the following constraint

Kn
x ;  Vnr =  1
r=l

(4.2)

If Potts spin n is in state r (i.e., == 1 for 1 <  r <  /i „ )  we say that the

corresponding net n is routed by using the route r.

In the MFA algorithm, the aim is to find the spin values minimizing the 

energy function of the system. In order to achieve this goal, the average (ex­

pected) values (um) and (v„) — [(vni), · · · ,  {vnr), ■ ■■, (r’nA'„)]‘ of all Ising and 
Potts spins, respectively, are computed and iteratively updated until the system 

stabilizes at some fixed point. Note that for each Ising spin m, Um G { 0 , 1 }, i.e., 

Ujn can take only two values 0 and 1 , whereas (um) E [0 , 1 ], i.e., {um) can take 

any real value between 0 and 1 . Similarly, for each Potts spin n, Vnr €  {0 ,1 }  

whereas (u„r) E [0,1]. When the system is stabilized, (um) and (vnr) values 

are expected to converge to either 0 or 1 with the constraints J2^i(vnr) =  1 

for the Potts spins.

In order to construct an energy function it is helpful to associate the fol­

lowing meaning to the values (um) for LS/SL subnets.

(wm) =  ^(subnet m is routed by using the horizontal channel segment)

1 — (wm) =  ^(subnet m is routed by using the vertical channel segment)

That is, (um) and 1 — (wm) denote the probabilities of finding Ising spin m 

at states 1 and 0, respectively. In other words, (u^) and 1 — (u^) denote 

the probabilities of routing subnet m through a single horizontal and vertical 

channel segment, respectively. Similarly, for SS subnets represented with Potts 

spins

(vnr) =  '^(subnet n is routed through route r) for 1 <  r <  Kn (4.3)

That is, {vnr) denotes the probability of finding Potts spin at state r for 1 <  

r < Kn· In other words, (v„r) denotes the probability of routing net n through
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route r. Here and hereafter, Um and v„r will be used to denote the respective 

expected values i{um) and (r„r),respectively) for the sake of simplicity. Now, 
we formulate the total density cost of global routing problem as an energy term

Eb(U,V)

where

E E K i U )  +  <»i,(v)]^ +  z  E K i u )  +  (4.4)
p = l  q=l <7=1 p = l

w: = E  “ d < ( V )  = E  E

W.
ri3ĉ q r€Rn,rBĉ q

;,(U) = E  (1 -  “») w;,(V) = E  E  «»r
n3 c", rgKn.rac;;,

where U  =  . . . }  and V  =  {v i, V2 , . . . }  represent the sets of Ising and

Potts spins corresponding to the LS/SL and SS subnets, respectively. For 

LS/SL subnets, “m 3 Cpq” denotes “for each LSfSL subnet m whose pair 
of pins share the horizontal or vertical channel segment Cp,” . For SS sub­

nets “n 3 Cpg” denotes “for each SS subnet n whose routing area contains 

the horizontal and vertical channel Cp,” . Furthermore, “r G Rn,'>' 3 Cpg” de­

notes “for each possible route r of SS subnet n which passes through the 

horizontal or vertical channel segment Cp,” . Here, Wp,(U) and Wpg(V) repre­

sent the probabilistic densities of the horizontal or vertical channel segment Cpg 
for the current routing states of LS/SL and SS subnets, respectively. Hence, 
Wpg ( U , V )  =  typq(U)-f ti)p,(V) represents the total probabilistic density of hor­

izontal or vertical channel segment Cpg for the overall current routing state.

Mean field theory equations, needed to minirhize the energy function Eb·, 
can be derived as

= -2K ,(U , V) -  < (U, V) -  2(u„ -  0.5)] (4.5)
where cj,, c”, € m

for an Ising spin m and

^„(U,V) = £s(U,V)|v.=o-£«(U,V)|v.=„ (4.6)
= -2( E  V) -  iw) + E  V) -  rv)|

c2oer

for 1 <  r <  Kn

for a Potts spin n, respectively. Mean field values (f>m and <̂ „r can be interpreted 

as the increases in the energy function E b (U , V )  when Ising and Potts spins 

m and n are assigned to states 1 and r, respectively. Hence, —(f>m and —
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may be interpreted as the decreases in the overall solution qualities by routing 

LS/SL and SS subnets m and n through the horizontal channel and route r, 

respectively. Then, u,n and values are updated such that probabilities of 

routing subnets m and n through horizontal channel and route r increase with 
increasing mean field values (f>m. and (f>nT as follows:

оФт/Т
Um =

n̂r --

1 +
оФпг/т

Z t i
for r =

(4.7)

(4.8)

respectively.

After the mean field equations (Eqs. (4.5-4.6 )) are derived, the MFA algo­

rithm can be summarized as follows. First, an initial high temperature spin 
average is assigned to each spin, and an initial temperature T is chosen. Each 

Um value is initialized to 0.5 ±  Sm and each Vnr value is assigned to 1/Kn ±^nr 

where 6m and Snr denote randomly selected small disturbance values. Note 

that limT-^oo^m =  0.5 and limr_oo Vnr =  I/Nn- In each MFA iteration, the 
mean field effecting a randomly selected spin is computed using either Eq. (4.5) 
or Eq. (4.6). Then, the average of this spin is updated using either Eq. (4.7) 

or Eq. (4 .8 ). This process is repeated for a random sequence of spins until the 

system is stabilized for the current temperature. The system is observed after 

each spin update in order to detect the convergence to an equilibrium state for 

a given temperature. If energy function Eb does not decrease in most of the 

successive spin updates, this means that the system is stabilized for that tem­

perature. Then, T is decreased according to a cooling schedule, and iterative 

process is re-initialized. At the end of this cooling schedule, each Ising spin 

m is set to state 1  if Um >  0.5 or to state 0 , otherwise. Similarly, maximum  

element in each Potts spin vector is set to 1 and all other element are set to 0. 

Then, the resulting global routing is decoded as mentioned earlier.

4.2 Implementation

The performance of the proposed MFA algorithm for the global routing problem 

is evaluated in comparison with the well-known LocusRoute algorithm [24].

The MFA global router is implemented efficiently as described in Sec­

tion 4.1. Average of each Ising spin m is initialized by randomly selecting uinitm
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in the range 0.45 <  ^  0.55. Similarly, average of each Potts spin n is initial­

ized by randomly selecting A"„ values in the range 0 .9 //v „  <  

and normalizing =  u„r/ E *=i Vnk for r =  1 , 2 , . . . ,  K„. Note that random 
selections are achieved by using uniform distribution in the given ranges.

The initial temperature parameter used in mean field computation is esti­

mated using the initial spin averages values. Selection of initial temperature 

parameters Tq is crucial to obtain good routing. In previous applications of 

MFA, it is experimentally observed that spin averages tend to converge at a 

critical temperature. Although there are some methods proposed for the esti­

mation of critical temperature, we prefer an experimental way for computing 

To which is easy to implement and successful as the results of experiments 
indicate. We compute the initial average mean field as

Nm N„ K„ N„

•tci = ( E « ' '  + E E C r '‘)/(JVm + E*·»)
m = l n=l k=l n = l

Note that initial mean field values and are computed according to 
Eqs. (4.5) and (4.6) using initial spin values and Here, Nm and N„
denote the total number of Ising and Potts spins, respectiv'ely, where N = Nm +  
Nn denotes the total number of spins (subnets). Then, initial temperature is 

computed as To =  C(f>'Jl̂ g where constant C is chosen as 540 for all experiments.

The cooling schedule is an important factor in the performance of MFA  
global router. For a particular temperature, MFA proceeds for randomly se­

lected unconverged net spin updates until AE < e for M  consecutive itera­

tions respectively where M = N initially and e =  0.05. Average spin values 

are tested for convergence after each update. For an Ising spin m, if either 

Um <  0.05 or Um >  0.95 is detected, then spin m is assumed to converge to 

state 0 or state 1, respectively. For a Potts spin n, if v„r >  0.95 is detected 

for a particular r = 1 ,2 ,..., K„, then spin n is assumed to converge to state 
r. The cooling process is realized in two phases, slow cooling followed by fast 

cooling, similar to the cooling schedules used for Simulated annealing. In the 

slow cooling phase, temperature is decreaised by T = a x T where a =  0.9 

until T <  To/1.5. Then, in the fast cooling phase, M  is set to M / 2 , o  is 

set to 0.8. Cooling schedule continues until 90Vc of the spins converge. At 

the end of this cooling process, each unconverged Ising spin m is assumed to 

converge to state 0 or state 1 if <  0.5 or Um >  0.5, respectively. Simi­

larly, each unconverged Potts spin n is assumed to converge to state r where 

Vnr =  niax{u„jt : k = 1,2 ,...,  A'n}. Then, the result is decoded as described in 
Section 4.1, and the resulting global routing is found.
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Table 4.1. M CNC benchmark circuits used in experiments

Benchmarks
Circuits

name
number

of
nets

number
of

2-pin nets

FPGA
size

9symml 71 259 10x9
too—large 177 519 14x13

apex? 124 300 11x9
example2 197 444 13x11

vda 216 722 16x15
alu2 137 511 14x12
alu4 236 851 18x16

ierjnl 87 202 9x8
C1355 142 360 12x11
C499 142 360 12x11
C880 173 427 13x11
K2 388 1256 21x19

Z03D4 575 2135 26x25
buscntl 145 392 12x11

dramfsm 389 1422 22x21
dma 197 771 17x15
z03 575 2135 26x25

The LocusRoute algorithm is implemented as in [24]. As the LocusRoute 

depends on rip-up and reroute method, LocusRoute is allowed to reroute the 

circuits 5  times. No bend reduction has been done as in [3]. Both algorithms 

are implemented in the C programming language.

4.3 Experimental Results

This section presents experimental performance evaluation of the proposed 

MFA algorithm in comparison with LocusRoute and Simulated Annealing (SA)  

algorithm. All algorithms are tested for the global routing of thirteen ACM 
SIGDA Design Automation benchmarks (M CN C) and four famous FPGA  

benchmark circuits on SUN SPARC 10 . The Table 4.1 illustrates the proper­

ties of these benchmark circuits.

These three algorithms yield the same total wiring length for global routing 

since two or less bend routing scheme is adopted in all of them. Necessary 

design automation process such as technology mapping and placement are done 

in University of Toronto by using Chortle technology mapper [11] and XAltor 

placement tools.
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Table 4.2. The Global Router results

Circuit MFA
Cost I Dens I time

PGA SA
Cost I Dens I time"Cost I Dens T time

Ssymml 1.0 12.0 0.36 1.032 14 0.00 1.000 12.0 20.64
toolargc 1.0 16.0 0.88 1.071 17 0.06 1.003 16.0 113.90
apcx7 1.0 14.0 0.42 1.073 16 0.00 0.935 14.0 31.46

ciampU‘2 1.0 15.0 0.64 1.097 16 0.02 0.856 15.0 76.54
vda 1.0 17.0 0.42 1.055 18 0.10 1.002 17.0 207.80
alu2 1.0 17.0 0.30 1.080 17 0.02 0.928 17.0 91.44
a/u4 1.0 17.0 0.68 1.073 19 0.10 0.966 17.0 288.78

tcrml 1.0 14.0 0.34 1.093 14 0.00 0.921 14.0 13.28
C1355 1.0 13.0 0.56 1.119 15 0.00 1.000 13.6 50.36
C499 1.0 15.0 0.48 1.075 16 0.00 1.003 15.0 44.58
C880 1.0 15.4 0.68 .065 17 0.04 0.933 16.8 74.40
k2 1.0 20.2 0.94 1.038 22 0.20 0.952 20.0 712.10

z03D4 1.0 17.0 2.34 1.117 18 0.30 1.000 17.0 1821.12
buscntl 1.0 13.0 0.42 1.050 13 0.00 0.998 13.0 54.92

drarnfsm 1.0 15.0 1.94 1.073 18 0.20 0.999 15.0 763.02
dma 1.0 15.0 1.96 1.084 16 0.10 0.972 15.0 216.80
203 1.0 20.0 2.10 1.119 21 0.30 1.000 20.0 1837.86

Table 4.2 illustrates the performance results of these three algorithms for 

the benchmark circuits. The MFA algorithm is executed 10 times for each cir­

cuit starting from different, randomly chosen initial configurations. The results 
given for the MFA algorithm in Table 4.2 illustrate the average of these execu­

tions. Global routing cost values of the solutions found by both algorithms are 

computed using Eq. (3.2) and then normalized with respect to those of MFA. 

In Table 4.2, maximum channel density denotes the number of routes assigned 

to the maximally loaded channels. That is, it denotes the minimum number 

of tracks required in a channel for 1 0 0 % routability.

As is seen in Table 4 .2 , global routing costs of the solutions found by MFA 

are 3.1% -10.5%  better than those of LocusRoute. As is also seen in this table, 

maximum channel density requirements of the solutions found by MFA are less 

than those of LocusRoute in almost all circuits except alu2 and terml. Both 

algorithms obtain the same maximum channel density for these two circuit.

How the global router distributes the channel densities, how the global 

router decreeise the maximum channel densities and how detailed router com­

pletes the routing arc some important metrics to measure the quality of the 

global routers. The propagation net delays, number of switch used , number of 

tracks in a channel are considered in comparison of global routers after com­

pletion of routing. The channel densities distribution affects on the number of 

tracks and switch also the propagation delay (because of number of switches) 

of the nets. In next paragraphs, the results of global routes are given in terms
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Table 4.3. The SEGA detailed routing results in area optimization mode

Routing Info. Delay Info.
Circuit Total Segment Sheired Avg. Delay Max. Delay

MFA PGA Imp MFA PGA MFA PGA Imp MFA PGA
9syiiiml 674 711 5.20 42 85 5.06 5.56 9.01 63.38 57.97

tooig 1803 1951 7.59 47 114 13.83 15.10 8.45 125.48 122.80
apex7 960 1026 6.43 36 63 9.88 10.64 7.15 70.97 77.65
exp2 1775 1893 6.23 42 56 10.08 11.98 15.86 101.31 121.88
vda 2760 2950 6.44 70 176 18.67 20.58 9.30 140.77 170.36
alu2 1580 1674 5.62 36 129 9.82 9.61 -2.12 129.24 110.30
aJu4 3183 3424 7.04 67 203 16.58 17.08 2.93 153.88 163.30

terml 602 638 5.64 21 47 9.57 9.60 0.32 74.81 70.50
Cl 355 1299 1347 3.56 27 82 12.17 13.15 7.50 121.01 118.12
C499 1242 1296 4.17 37 82 11.64 12.02 3.15 79.75 94.46
C880 1575 1670 5.69 38 91 14.83 15.36 3.48 111.58 115.72
K2 5980 6323 5.42 88 306 25.77 27.54 6.43 244.35 229.54

Z03D4 7125 7700 7.47 227 555 12.75 13.60 6.26 190.62 191.65
bus-cntl 1128 1213 7.01 43 94 7.94 8.57 7.28 104.36 126.24

dr2un-fsm 4267 4648 8.20 174 403 6.19 6.68 7.35 140.61 157.05
dma 2300 2545 9.63 94 214 15.17 16.58 8.53 200.82 194.71
z03 7161 7870 9.01 267 533 13.05 14.40 9.39 193.18 192.93

of these metrics. The balance cost of SA and MFA global routers are not very 
different but the execution time of SA is 250 times longer than the MFA on 

the averages for all circuit.

The detailed router used in this experiments is called SEGA [20], for SEG- 

ment Allocator, and was developed specifically for SR AM  based F P G A ’s. The 

input of SEGA is a netlist of two point connections, which is output of the 

global router. To route the connections, SEGA allocates wire segments ac­
cording to cost function, baising its decisions on either of two goals: optimize 

for area or optimize for speed. For area optimization, only routability of the 

circuit is considered, which means the cost function focuses only on the task 

of successfully routing 100% of the connections in a circuit. In delay opti­

mization, SEGA selects the routes that have the best speed performance. The 

following assumption are done in experiments. All routing channels have an 

equal number of tracks. The flexibility of the channel blocks are equal to num­

ber of tracks. ( Each logic pin can connect to a channel with all tracks) The 

LocusRoute global routing algorithm used in PgaRoute global router (P G A). 

For further part of this chapter, PGA global router are used for LocusRoute 

algorithm [23].

The SEGA detailed router routes the nets by considering either area op­

timization or speed optimization criteria. Therefore all circuits are tested ac­

cording to these two optimization criteria, separately. The output of MFA and
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Table 4.4. The SEGA detailed routing results in speed optimization mode

Routing Info. Delay Info.
Circuit Total Segment Shared Avg. Delay Max. Delay

MFA PGA Imp MFA PG A MFA PGA Imp MFA PGA
9symml 653 649 -0.62 63 147 5.07 5.28 3.94 56.46 48.67

toolg 1776 1822 2.52 74 243 13.34 13.06 -2.17 128.56 106.00
apex7 942 952 1.05 54 137 9.73 9.86 1.28 70.97 63.32
exp2 1746 1762 0.91 71 187 10.01 10.81 7.40 95.27 98.10
vda 2704 2774 2.52 126 352 19.07 19.10 0.17 148.30 164.71
alu2 1533 1542 0.58 83 261 9.46 9.56 1.07 127.29 128.45
alu4 3132 3193 1.91 118 434 16.17 16.29 0.76 145.32 147.41

terml 591 592 0.17 32 93 9.74 8.13 -19.82 76.82 46.33
C1355 1277 1269 -0.63 49 160 12.34 11.69 -5.59 126.73 98.27
C499 1225 1222 -0.25 54 156 11.66 10.72 -8.81 81.49 83.71
C880 1552 1567 0.96 61 194 14.39 14.01 -2.73 106.94 106.06
K2

Z03D4
5900 5995 1.58 168
6965 7664 9.12 437

634
1191

27.05 26.50 - 2.10 262.23
12.42 12.34 -0.65 167.32

210.25
169.05

bus-cntl 1112 1114 0.18 59 193 8.03 7.95 -1.04 95.93 86.24
dram-fsm 4155 4305 3.48 286 746 6.05 6.61 8.54 140.61 146.57

dma 2243 2350 4.55 151 409 14.89 15.40 3.30 203.74 181.06
z03 6953 7205 3.50 475 1198 12.65 13.27 4.69 172.34 173.38

PGA global routers was used as a input of the detailed router. After that 
SEGA detailed router was executed in two different mode (area and speed op­

timization mode) for each benchmark circuit. The results of SEGA detailed 

router gives information about routing w’hich contains total number of segment, 

shared segment and minimum channel width for 10 0 % routing, and propaga­
tion delay which contains average and maximum delay of the nets. Therefore, 

quality of MFA and PGA global routers are compared by considering these 

routing and delay information.

Table 4.3, Table 4 .4  and Table 4.5 shows the results of SEGA detailed router 

whose inputs were constructed by MFA and PGA routers. Table 4.3 represents 

the results for area optimization mode and Table 4.4 represents the results for 

speed optimization mode. As seen in Table 4.3, MFA needs less number of 

segment that PGA for complete routing. There are 3% -9%  improvement in 

total number of segment used in complete routing. Also MFA causes less 

propagation delay than MFA for all benchmark circuits as in Table 4.3. The 

average delay for routing are decreased by 3% -15%  for MFA according to PG A. 

If we consider the number of tracks in a channel, MFA needs small channel 

width in 6 benchmarks, but PGA routes 8 benchmarks with less number of 

tracks than MFA. For other benchmarks circuit both PGA and MFA need same 

channel width as seen in Table 4.5 Finally we can say that MFA global router 

produces better results that PGA global router according to area optimization. 

Because, MFA can distribute the channel density more that PGA.  Also SEGA



CHAPTER 4. МЕЛ SOLI TIOS EOR GLOBAL ROUTING IN EPGA 31

Table 4.5. Miniinun Channel Width for 100% routing

Channel Widht (W)
Circuit Area Opt. Mode Speed Opt. Mode

MFA PGA MFA PGA
9symml 10 10

toolg 13 11 13 12
apex7 11 13 12 15
exp2 13 17 14 19
vda 13 16 16 16
alu2 13 10 13 12
alu4 14 13 15 15

terml 10 11 10
C1355 10 12 12 12
C499 13 11 14 11
C880 12 13 13 14

K2 15 16 19 19
Z03D4 14 14 15 15

bus-cntl 10 10 11 11
dram-fsm 13 11 13 13

dma 11 11 12 13
z03 16 14 16 16

detailed router results in speed optimization mode as in Table 4.4 shows that 

there are also improvement in both total number of segment, channel width 

and average delay. But the percent of improvement is less than those of area 
optimization mode. Note that P G A  can cause less maximum delay than MFA  

for most of circuits.

Also the channel width is important criteria for routing because its affect 

on the size of FPGAs. In Table 4.5 the minimum number of track (channel 

width) in a channel are shown for both area and speed optimization mode. As 

in this table, for some circuits, M FA gives better results but some circuits PGA  

gives better results, therefore the M F A ’s and P G A ’s performance on channel 

width are very similar.

Figures 4.1 and 4.2 contain visual illustrations as pictures (left) and his­

tograms (right) for the channel density distributions of the solutions found by 

MFA and LocusRoute, respectively, for the circuit C1355. The pictures are 

painted such that the darkness of each channel increases with increasing chan­

nel density. Global routing solutions found by these two algorithms are tested 

by using SEGA detailed router for FPGA. Figure 4.3 illustrates the results of 

the SEGA detailed router for the circuit C1355
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Figure 4.1. Channel density distribution obtained by MFA for the circuit C1355

Figure 4 .2 . Channel density distribution obtained by LocusRoute for the circuit 
C1355
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Figure 4.3. SEGA detailed router results of the circuit Cl355 for the global 
routing solutions obtained by (a) MFA (b) LocusRoute



Chapter 5

THE M APPING PROBLEM

This chapter introduces the mapping problem in parallel processing and its 

application.

5.1 The Mapping Problem

Use of parallel computers in various applications, makes the problem of map­

ping parallel programs to parallel computers more crucial. The mapping prob­

lem arises while developing parгdlel programs for distributed-memory, message­

passing parallel computers (multicomputers). In multicomputers, processors 

neither have shared memory nor have shared address space. Each processor 

can only access its local memory. Synchronization and coordination among 

processors are achieved through explicit message passing. Processors of a mul­

ticomputer are usually connected by utilizing one of the well-known direct 

interconnection network topologies such as ring, mesh, hypercube, etc. These 

architectures have the nice scalability feature due to the lack of shared resources 

and the increasing bandwidth with increasing number of processors.

However, designing efficient parallel algorithms for such architectures is not 

straightforward. An efficient parallel algorithm should exploit the full potential 

power of the architecture. Processor idle time and the interprocessor commu­

nication overhead may lead to poor utilization of the architecture and hence 

poor overall system performance. Processor idle time arises due to the uneven 

load balance in the distribution of the computational load among processors 

of the multicomputer. Parallel algorithm design for multicomputers can be

.33
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divided into two phcises; first phaise is the decomposition of the problem into a 

set of interacting sequential sub-problems (or tasks) which can be executed in 

parallel. Second phase is mapping each one of these tasks to a processor of the 

parallel architecture in such a way that the total execution time is minimized. 

This mapping phase, named as the mapping problem [4], is very crucial in 

designing efficient parallel programs.

For a class of regular problems with regular interaction patterns, the map­

ping problem can be efficiently resolved by the judicious choice of the decompo­

sition scheme. In such problems, chosen decomposition scheme yields an inter­

action topology that can be directly embedded to the interconnection network 

topology of the multicomputer. Such approaches can be referred as intuitive 
approaches. However, intuitive mapping approaches yield good results only for 

a restricted class of problems, under simplifying assumptions. The mapping 

problem is known to be NP-hard [13]. Hence, heuristics giving sub-optimal so­

lutions are used to solve the problem [4, 13, 21]. Two distinct approaches have 
been considered in the context of mapping heuristics, one-phase approaches 

and two phase approaches. One-phase approaches, referred to as many-to-one 
mapping, try to map tasks of the parallel program directly onto the processors 

of the multicomputer. In two phase approaches, clustering phase is followed 

by a one-to-one mapping phase. In the clustering phase, tasks of the parallel 

program is partitioned into as many equal weighted clusters as the number 

of processors of the multicomputer, while minimizing the total weight of the 

inter-cluster interactions [21]. In the one-to-one mapping phase, each cluster 

is assigned to an individual processor of the multicomputer such that total 

inter-processor communication is minimized [2 1 ].

In two phase approaches, the problem solved in the clustering phase is 

identical to the multi-way graph partitioning problem. Graph partitioning is 

the balanced partitioning of the vertices of a graph into a number of bins, such 

that the total cost of the edges in the edge cut set is minimized. Kernighan- 

Lin (KL) heuristic [10, 17] is an efficient heuristic, originally proposed for the 

graph bipartitioning problem, which can also be used for clustering [21]. KL  

heuristic is a non-greedy, iterative improvement technique that can escape from 

local minima by testing the gains of a sequence of moves in the search space 

before performing them. A variant of the KL heuristic can be used for solving 

one-to-one mapping problem encountered in the second phase [15].

Simulated Annealing (SA) can also be used as a one phase heuristic for
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solving many-to-one mapping problem [15, 28]. Successful applications of SA to 
the mapping problem is achieved in various works [15, 28]. It has been observed 

that the quality of the solutions obtained using SA are superior compared with 
the results of the other heuristics.

5.2 The Model of Mapping Problem

In various classes of problems, interaction pattern among the tasks is static. 

Hence, the decomposition of the algorithm can be represented by a static task 

graph. Vertices of this graph represent the atomic tasks and the edge set 
represents the interaction pattern among the tasks. Relative computational 

costs of atomic tasks can be known or estimated prior to the execution of the 
parallel program. Hence, weights can be associated with the vertices in order 

to denote the computational costs of the corresponding tasks.

There are some model to model the static task interaction pattern. One of 

the model is Task Interaction Graph (TIG ) model. In the TIG model, inter­

action patterns are represented by undirected edges between vertices. In this 

model, each atomic task can be executed simultaneously and independently. 

Each edge denotes the need for the bidirectional interaction between corre­

sponding pair of tasks at the completion of the execution of these tcisks. Edges 

may be associated with weights which denote the amount of bidirectional in­

formation exchange involved between pairs of tasks. TIG usually represents 

the repeated execution of the tasks with intervening task interactions denoted 
by the edges.

The TIG  model may seem to be unrealistic for general applications since it 

does not consider the temporal interaction dependencies among the tasks [26]. 

However, there are various classes of problems which can be successfully mod­

eled with the TIG model. For example, iterative solution of systems of equa­

tions arising in finite element applications [7, 26] and power system simula­

tions, and VLSI simulation programs [28] are represented by TIGs. In this 

work, problems which can be represented by the TIG model are addressed.

In order to solve the mapping problem, parallel architecture must also be 

modeled in a way that represents its architectural features. Parallel architec­

tures can easily be represented by a Processor Organization Graph (POG), 

where nodes represent the processors and edges represent the communication
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links.

In a multicomputer architecture, each adjacent pair of processors commu­

nicate with each other over the communication link connecting them. Such 

communications are referred as single-hop communications. However, each 
non-adjacent pair of processors can also communicate with each other by means 

of software or hardware routing. Such communications are referred as multi­
hop communications. Multi-hop communications are usually routed in a static 

manner over the shortest path of links between the communicating pairs of 

processors. Communications between non-adjacent pairs of processors can be 

associated with relative unit communication costs. Unit communication cost 

between a pair of processors will be a function of the shortest path between 

these processors and the routing scheme used for multi-hop communications. 

For example, in software routing, the unit communication cost is linearly pro­

portional to the shortest path distance between the pair of communicating 

processors. Hence, the communication topology of the multicomputer can be 

modeled by an undirected complete graph, referred here as Processor Com ­

munication Graph (PCG ). The nodes of PCG represent the processors and 

the weights associated with the edges represent the unit communication costs 

between pairs of processors. As is mentioned earlier, PCG can easily be con­

structed using the topological properties of POG and the routing scheme uti­

lized for inter-processor communication.

The objective in mapping TIG  to PCG is the minimization of the expected 

execution time of the parallel program on the target architecture. Thus, the 

mapping problem can be modeled as an optimization problem by associating 

the following quality mecisures with a good mapping : (t) interprocessor com­

munication overhead should be minimized, (ii) computational load should be 

uniformly distributed among processors in order to minimize processor idle 

time.

A mapping problem instance can be formally represented with two undi­

rected graphs. Task Interaction Graph (TIG) and Processor Communica­

tion Graph (PCG). The TIG Gt{V,EJ), has |U| =  N vertices labeled as 

( 1 , 2 , . . . ,  ¿, . . . ,  A'). Vertices of the Gj represent the atomic tasks of the

parallel program. Vertex weight u>, denotes the computational cost associated 

with task i for I < i < N. Edge weight e,j denotes the volume of interaction 

between tasks i and j  connected by edge ( f , j )  € E. The PCG Gp{P,D),
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is a complete graph with |P| =  K  nodes and |£)| =  ( ) edges. Nodes of

the Gp, labeled as ( 1 , 2 , . . . ,  p, ç , . . . ,  A '), represent the processors of the target 

multicomputer. Edge weight dpg, for I < p.q < N and p ^ q, denotes the unit 

communication cost between processors p and q.

Given an instance of the mapping problem with the TIG G t { V , E )  and 

the PCG Gp{P,D), the question is to find a many-to-one mapping function 

M : V P, which assigns each vertex of the graph Gt to a unique node of the 

graph Gp, and minimizes the total interprocessor communication cost (CC)

CC =  e,jdAi(i)A/o) (5.1)

while maintaining the computational load {CLp : computational load of pro­

cessors p)

CLp = wi, l < p < K  (5.2)
ie v ,\i{ i)= P

of each processor balanced. Here, M(i) =  p denotes the label (p) of the proces­

sor that task i is mapped to. In Eq. (5.1), each edge (i, j )  of the Gt contributes 

to communication cost {CC), only if vertices i and j  are mapped to two differ­

ent nodes of the Gp, i.e. M{i) ^  M{j). The amount of contribution is equal 

to the product of the volume of interaction e,j between these two tasks and 

the unit communication cost dp, between processors p and q where p =  M{i) 
and q =  M{j). The computational load of a processor is the summation of 

the weights of the tasks assigned to that processor. Perfect load balance is 

achieved if CLp = {Yl^-iWi)/K for each p, I <  p < K. Computational load 

balance of the processors can be explicitly included in the cost function using 

a term which is minimized when all processor loads are equal. Another scheme 

is to include load balance criteria implicitly in the algorithm.

In Figure 5.1, an example for mapping problem are shown. The T IG  graph 

is in Fig. 5 . 1 .a and a corresponding mapping instance is in Fig. 5.1.b
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Figure 5.1. An example of mapping problem



Chapter 6

MFA SOLUTION FOR MAPPING

In this chapter, the general MFA formulation and a new efficient MFA for­

mulation for mapping problem in mesh and hypercube type multicomputer cure 
proposed. The experimental results for randomly generated mapping instances 
and real problem instances are shown at the end of this chapter.

6.1 General MFA Formulation for Mapping Problem

The MFA algorithm is derived by analogy to Ising and Potts models which 

are used to estimate the state of a system of particles, called spins, in thermal 

equilibrium. In Ising model, spins can be in one of the two states represented 

by 0 and 1 , whereas in Potts model they can be in one of the K  states. In 

this work we use the Potts model. In the K  state Potts model of S spins, the 

states of spins are represented using S A'-dimensional vectors

S,· =  [s,i, . . . ,  s,7j , . . . ,  5 ,7c] for i — 1,2, . . . , 5 .

where “t” denotes the transpose operation. The spin vector S, is allowed to 

be equal to one of the principal unit vectors e j , . . .  , e ^ , . . .  ,e /c , and can not 

take any other value. Principal unit vector e* is defined to be a vector which 

has all its components equal to 0 except its l’ ’ th component which is equal to 

1 . Spin S, is said to be in state k if S, =  ê t. Hence, a A-state Potts spin 

S, is composed of K  two state variables {s ,fc }^ j , where s,/t 6  { 0 , 1 } ,  with the 

following constraint

K
Y^Sik =  1 for t =  1 , 2 , . . . , 5 ' .
Jt=l

39

(6.1)
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In the general encoding of the mapping problem, each spin vector corresponds 

to a vertex of the TIG G{T, I). Hence, number of spins vectors is 5  =  ¡r i =  N. 
Dimension K  of the spin vectors is equal to the number of processors. If a spin 

is in state k (i.e., 5,jt =  1 ) we say that the corresponding tcisk is assigned to 

processor k.

In the MFA algorithm, the aim is to find the spin values minimizing the 

energy function of the system. In order to achieve this goal, the average (ex­

pected) values V , =  (S,) of each spin vector S, is computed and iteratively 

updated until the system stabilizes at some fixed point.Hence, w’e define

V,· =  [y.i , . . . ,  Vik, . . . ,  v .x f  =  (S .) =  [ (s . i ) , . . . ,  (s,-fc),. . . ,  (s,A-)]‘ (6.2)

That is, Vik =  for i =  1 , 2 , . . . , 5  and k = 1,2,... ,K.  Note that, s,jt €  
{ 0 , 1 } , i.e., Sik can take only two values 0 and 1 , whereas Vik €  [0 , 1 ], i.e., u.t 

can take any real value between 0 and 1 . As the system is a Potts glass we 

have the following constraint similar to Eq. (6.1)

K

Jt=l
for t =  1 , 2 , . . . ,  Â (6.3)

This constraint guarantees that each Potts spin S, is in one of the K  states at 

a time, and each task is mapped to only one processor. In order to construct 

an energy function it is helpful to associate the following meaning to the values 

Vik] Vik =  'P(task i is mapped to the processor k ) (or i = 1,2,... ,N, and 
k =  1,2,..., K. That is, is the probability, of finding spin i at state k. If 

Vik =  1 then spin i is in state k and the corresponding configuration is S, =  V ,.

Now, we formulate the communication cost of the mapping problem as an 

energy term

K  K

=  E e,̂ EE'i*iWask i is mapped to processor k)
(i,j)€/ k=\ tjik

P(task j  is mapped to processor /)
N K

^E E EÊ u VikVjidki
^ i=l jeAdj(i) k=l Ijtk

(6.4)

where V  =  | V „ . . . , V , ......... V ^]* is the spin average matrix consisting of N
A'-dimensional spin vectors as its rows. Here, Adj{i) denotes the set of tasks 

connected to task i in the given TIG . Minimization of corresponds to the 

minimization of the communication cost of the mapping problem. Another
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term of the energy function is the term for penalizing imbalanced mappings.

 ̂ N  N

E^(V) =  2  ^  ^  WiWjV{ tasks i and j  are mapped to the same processor)

1
1=1 jjij
N N K= -EE W{Wj P ( task i is mapped to processor k)

 ̂ ,= 1 k=l
V{ task j  is mapped to processor k)

 ̂ N N  K

=  2
,= 1  j>ii A:=l

(6.5)

This triple summation term computes the summation of the inner products of 

the weights of the tasks assigned to individual processors. Global minimum 

of this term occurs when equal amounts of task weights are assigned to each 

processor. If there is an imbalance in the mapping, term increases with the 

square of the amount of the imbalance, penalizing imbalanced mappings. The 

total energy function E is be defined in terms of E^ and E^ as

£ ;(V ) =  ^ ^ (V )  +  pE^{W) (6.6)

where parameter ^ is introduced to maintain a balance between the two op­

timization objectives of the mapping problem. Mean field theory equations, 

needed to minimize the energy function E, can be derived as

, dB(V) V '  J o ·^
¡tik =  — 5—  =  “  E  E  '■><'«>’>' - P L ·  “ '.» y 'j i (6.7)

The quantity represents the A:’th element of the mean field vector ef­

fecting on spin k. Using the mean field values average spin values v,* can 

be updated using the Boltzmann distribution as

Vik =  for f =  l , 2 , . . . , . V , f c  =  1,2, .  . . , / i '  (6 .8 )

where T is the temperature parameter which is used to relax the system itera­

tively. Equation (6 .8 ) handles the constraints given in Eq. (6.3) thus enforcing 

each Potts spin S, to be in one of the K state when they converge.

In Eq. (6.7), the first and second summation terms represent the increases 

in the total communication and imbalance costs, respectively, by mapping task 

i to processor k. Hence, —d>ik may be interpreted as the decrease in the overall 
solution quality by assigning task i to processor k. Then, in Eq. (6 .8 ), is up­

dated such that the probability of mapping task i to processor k increases with
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increasing mean field (̂ ik. After the mean field theory equations are derived 

(Eq. (6.7), Eq. (6 .8 )), MFA algorithm can be summarized cis follows. First an 

initial, high temperature, spin average is assigned to each spin, and an initial 

temperature is chosen. At each temperature, starting with initial spin averages, 

the mean field vector effecting on a randomly selected spin is computed using 

Eq. (6.7). Then, spin average vector is updated using Eq. (6 .8 ). This process 
is repeated for a random sequence of spins until the system is stabilized for the 

current temperature. Then, T is decreased according to the cooling schedule, 

and iterative process is re-initiated. In [6] we have proposed an efficient im­

plementation scheme which cisymptotically reduces the complexity of a MFA  

iteration to Q{davgK -f K^) where davg denotes the average vertex degree in 
the TIG.

6.2 Interconnection-Topology Specific MFA Formula­
tion for Mapping

In this section, we proposed efficient Mean Field Annealing formulation for 

Mesh-connected and Hypercube-connected architecture.

6.2.1 MFA formulation for Mesh-Connected Architec­

tures

Consider a, P hy Q two-dimensional mesh-connected architecture with P rows 

and Q columns. The encoding in the general M FA formulation summarized in 

Section 6 .1  necessitates N xK  =  NxPxQ  variables for the problem represen­

tation. In this section, we propose a MFA formulation for the mesh-connected 

architectures which exploits the conventional routing scheme in mesh intercon­

nection topologies to introduce a much more efficient encoding scheme. Note 

that, the communication distance between any two processors is equal to the 

Manhattan distance between those two processors on the processor grid. Hence, 

the unit communication cost between any two processors can be expressed as 

the sum of two components: horizontal and vertical communication costs. Hor­

izontal and vertical unit communication costs are equal to the column and row 

distances between the processor pairs, respectively. Thus, any edge (i,j) € /
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with weight Cij of the TIG will contribute

Efj = Eij +  Eij = 6ij X |co/uf7in(i) — column{j)\ +  e,j x |ror/7(r) — row{j)\ (6.9)

to the total communication cost, where row{i) and œlumn(i) denote the row 

and column indices of the processor that tcisk i is mapped to and | · | denotes the 

absolute value function. Here, Ê 'j and Ê j denote the horizontal and vertical 

communication costs due to edge (r , j )  €  /  of the TIG. Hence, the row and 

column mappings of each task are sufficient for efficient computation of the 

inter processor communication cost in mesh-connected architectures.

Encoding

In the proposed encoding, we use two Potts spins of dimensions P and Q 
for each vertex (task) of the TIG . Spins of dimensions P and Q are used to 

encode the row and column mappings of the tasks, respectively. Note that this 

encoding also constructs a one-to-one mapping between the configuration space 

of the problem domain and the spin domain. However, it is much more efficient 

since it uses a total of Nx{P + Q) tw-o-state variables instead of N xPxQ  two 

state variables of the general! encoding. Spins with dimensions P and Q are 

called row and column spins which are labeled as S,· =  [s-’j , . . .  ,s[p, . . .  ,sjp ]‘ 

and S,· =  [«ii , . .  · respectively, for t =  1 , 2 , . . . ,  A'’. If a row

(column) spin is in state p (q) we say that the corresponding task is mapped 

to row p (column ?). Hence, sjp =  1 (s^, =  1 ) means that taisk i is mapped to 

row p (column q) of the mesh. That is, if s[p =  1 and =  1 , this means that 

task i is mapped to processor pq in the mesh. Here, processor pq identifies the 

processor at row p and column q of the mesh.

Energy Function Formulation

The following spin average vectors are defined for the sake of energy function 

formulation.

v; = [o',....o,',....,o'p|' = (sf) =
v; = (oi„...,or,,...,oj,j' = (si) = [«.),...,(4)....(»;,)]'

Note that, sjp, € {0 , 1 } ,  i.e., sjp and are discrete variables taking only two 

values 0 and 1 , whereas u[p, E [0 , 1 ], i.e., ujp and if, are continuous variables
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taking any real value between 0 and 1 . As the system is a Potts glass we have 
the following constraints similar to Eq. (6.3)

p=l
(6. 10)

?=i

These constraints guarantee that each Potts spin S· (S·) is in one of the P 
(Q) states at a time, and each tcisk is cissigned to only one row (column) for 

the proposed encoding. In order to construct an energy function it is helpful 

to associate the following meanings to the v[p and values,

[p =  ■p(ta5 k i is mapped to one of the processor in row p),

iq — ^(task i is mapped to one of the processor in column q) (6 . 1 1 )

for i =  1 , 2 , . . .  Af, p =  1 , 2 , . . . ,  P  and q =  1,2,  —  That is, (vf̂ ) denotes 

the probability of finding row (column) spin t in row p (column q). Formulation 

of horizontal communication cost due to edge (t,j) of the TIG as an energy 
term is:

4 j)
Q -l Q

e o E
k=l i= k + l

x{'P(tasks i and j  are mapped to columns k and /, respectively ) +  

P(tasks j  and i are mapped to columns k and /, respectively)}

=  E E C -  +  ·>>?.) (6 . 1 2 )
k = l t = k + l

Similarly, energy formulation for the vertical communication cost due to edge

CJ) is

E E C -  + v;iv,1) (6.13)
k = \ l = k + l

The derivation of the mean field theory equation using the formulation of the 

energy terms and Ê -j·̂  given in Eqs. (6.12) and (6.13) results in sub­

stantially complex expressions. Hence, we simplify the expressions for 

and in order to get more suitable expressions for the mean field theory 

equations. A close examination of Eqs. (6.12) and (6.13) reveals the symmetry 

between the expressions for Ê -j·̂  and Ê -ĵ  terms which can be obtained from 

each other by interchanging ”r” with ”c” and ” P” with ” Q ”. Hence, algebraic 

simplifications will only be discussed for the Ê ĵ̂  term. Similar step can be 

followed for the Ê  ̂ĵ  term.
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We introduce the following notation for the sake of simplification of the 

communication cost terms:

=  = = =  (6.14)
;=i ¡ - k  /=1 i - k

Here, F̂ f. and denote the probabilities that task i is mapped to one of 

the processor in the first k columns (i.e., columns 1 , 2 , 3 , . . . ,  A*) and the last 

(J—A:+l columns (i.e., columns 1 , . . . ,  Q), respectively. Similarly, and

denote the probabilities that task i is mapped to one of the processors in 

the first k rows and the last P —¿ +  1 rows, respectively. Using this notation 

and thru some algebraic manipulations the expression for simplifies as :

4 . »  =  ' o ( E  E  ( ' -  +  E  E  ( ' -
k - l  l= k + l  l=k+l

Q - l  Q Q Q -\  Q Q

= ' . H E  E  E » :< .» J -  +  E  E  E » H < . . )
k = l l=k+l m = l k = l l=k+l m=l

Q - l  k Q Q - l  k Q

t=l /=1 m = k + l  k=l 1=1 m=Jt+l
Q -l k Q Q - l  k Q

=  ^ o i E E ^ i  E  * ^ > m + E E ^ i /  E
Ar=l /=1 m=JH-l fc=l 1=1 m = k + l

=  ‘ li E  + ' . i  E
k = l k=l
Q - l

=  'u +  F f A - K )  (« >5)
Jb=l

Similarly, the expression for simplifies to

p -i

k=l
(6.16)

We formulate the energy term corresponding to the imbalance cost using 

the same inner product approach adopted in the general formulation (Eq. (6.5)) 

as follows:
 ̂ N  N
^  ^  tu,tUjP(task i and j  are mapped to the same processor)

2  .= 1  j / .
 ̂ N  N  r  w

=  s E E  W{Wj E  E  i is mapped to the processor pq)
2 ,= 1  p=l q=l

V{ task j  is mapped to the processor pq)

 ̂ i=l jyi P=1 7=1

P Q
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Total energy term can be defined in terms of the communication cost terms 

and the imbalance cost term as

V*=) =  E\V^=) + £ " ( V*·) +  ¡3E^{V^, V^) (6.18)

Here, V  =  [ V I , . . . ,  V ; , . . . ,  V ;>]‘ and V<= =  [ VJ , . . . .  V,^ . . . ,  V ^ ] ‘ denote the 

row and column spin-average matrices consisting of .V, P and Q dimensional 

vectors as their rows, respectively.

D erivation  o f the M ea n  F ield  T h eo ry  E qu ation

The expected values V [  and V,^ of each row and column spins S[ and are 

iteratively updated using the Boltzmann distribution as

(«)
Ф̂р/Т̂

Фй./Г'· ( 6)
.Ф,<,/Т‘

ЕГ=1 с У (6.19)

for р =  1 , 2 , . . . ,  Р  and q = 1,2,... ,Q, respectively. Here, T ’’ and denote the 

temperature parameters used for annealing the row «ind column spin updates 

respectively. Recall that, the number of states of the row and column spins 

are different (P and Q for row and column spins, respectively) in the proposed 

encoding. As the convergence time and the temperature parameter of the 
system depends on the number of states of the spins we interpret the row and 

column spins as different system, i.e., the temperature parameter of the row 

and column spins are different. Note that, Eqs. (6.19.a) and (6.19.b) handle 

the constraints given in Eq. (6.10) thus enforcing each row and column Potts 

spins SI and Sf to be in one of the P and Q states when they converge. In the 

proposed MFA formulation, row and column spins are updated in an alternative 
manner, i.e., each row spin update is followed with a column spin update and 
vice versa. MFA iterations in which row and column spins are updated will be 

referred here as row and column iterations, respectively.

In the proposed formulation, row and column mean field vectors Ф[ 

and Ф1 are to be computed in row and column iterations, respectively. 

Each element and of the row and column mean field vectors Ф,· =  

[ФЬ,···, Ф"р, ■■■, Ф{рУ and Ф1  =  ФЧдУ experienced by row and
column Potts spins i denote the decrease in the energj’ function by assigning S[ 

to 6 p and S? to e ,, respectively. Hence, —ф]р {—ф%) may be interpreted as the 

decrease in the overall solution quality by mapping task i to row p (column q). 
In other words, —φip (—ф{д) corresponds to the increase in the energy function
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by mapping task i to row p (column ^). Then, in Eq. (6.19.a) (Eq. (6.19.b)), 

is updated such that the probability of mapping task t to row p (column 

q) increases with increasing mean field value Using the simplified

expressions for the proposed energy function in Eqs. (6.15), (6.16) and (6.17)

=  _ d ^ ( V % y :) ^ ^ r ( C )  r(B)

*p

JeAe(;(t) J =  i j Y i  7=1
JÇ

_  aH(V’ , v ‘ ) _  .(c| .(B)

(6.20)

«7
N P

-  E  e . j Z ; , 5 ] )  (6 -2 1 )
ie>44)(i) p=i

where Z i  =  y : ‘ i 7 , +  f ;  i ; »  and / ‘,  =  E  hji +  E  i j i
/;=! ^=p+l k=l k=q+l

As seen in Eqs.(6.20) and (6.21), different balance parameters P'' and are 

used in the mean field computations of row and column iterations since row and 

column spins are interpreted as different system. Figure 6.1 illustrate the MFA  

algorithm proposed for the mapping problem for mesh-connected architectures. 

Note that, each iteration of the inner while-loop (step 3.1) involves one row and 

one column iteration. Also note that the computation of the energy differences 

A E '’ and necessitates computing E in Eq. (6.18) twice at each iteration 

of the inner while-loop which drastically increases the complexity of a MFA  

iteration. Here, AE'’ and AE^ represent the energy differences due to the row 

and column spin updates, respectively. As is seen at Step 3.1.5 we use the 

efficient energy difference computation scheme which we have proposed for the 

general MFA formulation [6].

An Efficient Implementation Scheme

As mentioned earlier, the proposed MFA algorithm is an iterative process. The 

complexity of a single MFA iteration is due mainly to the mean field compu­

tations. As is seen in Eqs. (6.20) and (6.21), calculation of mean field values is 

computationally very intensive. In this section, we propose an efficient imple­

mentation scheme which reduces the complexity of mean field computations.
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1 . Get the initial temperatures Tq T̂q  ̂ and set T'̂  = Tq T̂̂  = Tq

2. Initialize the spin averages V*· =  [r[ j , . . . ,  lAf. , . . . .  t-yp] 
and =  [ufi, . . . ,  uffc,. . . ,

3. W HILE temperature T"" and is in the cooling range DO

3.1 W H ILE and are decreasing DO

3.1.1 Select tcisks i and j  at random for horizontal and vertical 
spins, respectively.

3.1.2 Compute mean field vectors $,· and experienced by 
row and column Potts spins i and j.

<f>\p — ~  ^ h e A d j{ i )  ^ h ^ ’hp Y^q=l '^iq^hq

<f>% = -  E heA djU ) T .h = \ M } ^P=l

3.1.3 Compute the summations and Z)t_x

3 . 1 . 4  Compute row and column spin-average vectors V [  and V,·

3.1.5 Compute the energy changes lA.E' =  and

3.1.6 Update row and column spin-average vectors V [  and VJ"

- r(new) J r cinew)

3.2 r*· =  a  X 7”· and =  a  X

Figure 6 . 1 . The proposed efficient MFA algorithm for the mapping problem 
for mesh-connected Architectures.
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and hence the complexity of the MFA iteration, by asymptotical factors. Mean 

field theory equations given in Section 6 .2 . 1  reveals the symmetry between the 

mean field vector computations in row and column iterations. Hence, the pro­

posed implementation scheme will only be discussed for computing the mean 

field vector $,■ =  [<i>a·, · · ■ ■, · ■ ■, 4>ipY in row iterations. Similar discussion
applies to the computation of the  ̂  ̂ vector in column

iterations.

Assume that row Potts spin i is selected at random in a row iteration 

for updating its expected value vector V·". W e will first discuss the mean 

field computations corresponding to the vertical communication cost. As 

is seen in Eq. (6.20), these computations require the construction of the 
z ;  =  vector for each vertex j  adjacent to i in TIG .

The computation of an individual vector necessitates the construction of 

Fj =  [F/ i , . . . ,  F/p, . . . ,  FJpY and . . . ,  . . . ,  L’jpY vectors. These

two vectors can be constructed in 0{P) time using the recursive equation

=  ^Ik-l + '̂ jki for k = 2,3 ,... ,P (6 .2 2 )

where Fp = -P
for k = P — l ,P —2,... (6.23)

where ĵP =  ĵP

The computation of an individual ZJp value takes 0 (P )  time. Hence, the 

complexity of computing an individual Zt vector becomes Q{P^). However, in 

the proposed scheme the elements of the Z'j vector are computed in only Q{P) 
time by exploiting the recursive equation

P

where ZJi =Y^Lji
1=2

(6,24)

Hence, the complexity of mean field computations corresponding to the vertical 
communication costs term is 0 (d,P) in a row iteration since the first summation 

term in Eq. (6.20) requires the computation and weighted addition of d,· such 

Z^ vectors. Here, d, denotes the degree of vertex i in the TIG. Similarly, 

the complexity of mean field computations corresponding to the horizontal 

communication cost term is 0 (d,Q) when column spin i is selected at random 

in a column iteration.

As is seen in Eq. (6.20), the complexity of computing an individual mean 

field value corresponding to the imbalance term is Q{NQ). Since P such values
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are computed in a row iteration, the total complexity of mean field computa­

tions corresponding to the imbalance cost term becomes Q{NPQ). However, 

the complexity of these computations can be cisymptotically reduced as follows. 

The second summation term in Eq. (6.20) can be re-written by interchanging 
the order of summations as

w,
N Q Q N

E W i V ’  ̂ y? y": =  } IP ¿ - i  tq jgq=l <J=I
Q

q = l
N

(6.25)

where = = E ̂ j^JP ’̂ jq 
>=1

(6.26)

Here, Wpg denotes the total computational load of processor pq for the current 

row and column spin values. In Eq. (6.26), Wpg — denotes the weight

of processor pq excluding task i. Hence, Eq. (6.26) represents the increase in 
the imbalance cost term if task г is assigned to row p (i.e., is set to l).In  

the proposed implementation scheme, we maintain a P by Q processor weight 

matrix W  consisting of Wpg values. The entries of this matrix are computed 

using Eq. (6.26) only at the beginning of the algorithm. Then, while updating 

the expected value vector V [  of an individual Potts spin г, the W  matrix is 

updated in 0 (P C )  time using

ИДпеи,) ^  ^^Id) ^

for p =  1 , 2 , . . . ,  P  and q =  1 , 2 , . . . ,  Q. Hence, computing Ekj. (6.26) for each 

<̂ -p value takes 0 (Q )  time. Since, P such values tire to be computed to con­

struct the mean field vector, the total complexity of mean field computations 

corresponding to the imbalance cost term reduces Q{PQ) in a row iteration.

It should be noted here that, column iterations also use and update the same 

weight matrix W  as is used and maintained in row iterations. The complexity 

of mean field computations corresponding to the imbalance cost term is also 

Q{QP) in column iterations. Thus, the proposed scheme reduces the overall 

complexity of mean field computations to Q{davgP +  PQ) and Q{davgQ +  PQ) 
in row and column iteration, respectively. Here, davg denotes the average vertex 
degree in TIG . After computing the mean field vectors Ф[ and Фу, expected 

value vectors V [ and Vy of row and column Potts spin i and j  can be up­

dated using Eq. (6.19.a) and Eq. (6.19.b) in 0 ( P )  and 0 ((? )  times, in a row 

and column iteration, respectively. The complexities of computing the energy
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difference AÆ’’' and AE'  ̂ as shown at step 3.1.5 of Fig. 6.1 are 0 ( F )  and Q(Q) 
times, in a row and column iteration, respectively.

Therefore, the proposed implementation scheme reduces the complexity of 

an individual row and column iteration to Q{davgP +  PQ) and Q{davgQ +  PQ), 
respectively. Note that, a row and a column iteration pair corresponds to a 

single iteration of the general MFA formulation discussed in Section 6.1. Hence 

the proposed MFA scheme asymptotically reduces the complexity of a single 

MFA iteration from Q{davgPQ +  (PQ)^) of the general MFA formulation to 

0(d a v g (P + Q )+ P Q ) for a P  by Q mesh. For a square mesh with K processors, 
this corresponds to an asymptotical complexity reduction from Q(davgK +  K"̂ ) 
to Q{da,gy/K + K).

6.2.2 MFA Formulation For Hypercube Architecture

Consider M  dimensional hypercube, encoding in the general MFA formulation 

summarized in Section 6.1 needs N x K  variables for problem representation. 
Here, N is the number of task and M  =  log(K). In this section, we propose 

a new MFA formulation for hypercube type multicomputers which necessi­

tates N X log{K) variables for problem representation. For sake of simplicity, 

some definition about hypercube are given below. The communication distance 

between any two processors is equal to Hamming distance between those two 

processors. The Hamming Distance between two processors in hypercube is de­

fined as the number of different bits between those two processor id’s (binary 

representation of processor ids). A dimension i refers to the communication 

links between the processors whose processors ids differs on the ith bit. A M  
dimensional hypercube can be divided into two (A / — 1) dimensional subcube 

along the any dimension. Therefore, M  dimensional hypercube can be divided 

into two (M  — 1) subcube in M  different ways (dimension). We define two 

(A / — 1) dimensional subcubes H' and H' which is constructed by dividing M  
dimensional hypercube along the ith dimension. Subcube H' contains the pro­

cessor whose fth bit of ids is 1 and subcube H' contains the processors whose 

ithe bit is 0. In Figure 6.2, the 3-dimensional hypercube is divided into two 

2-dimensional subcubes in 3 different ways. In our new efficient formulation, 

each task is assigned to subcubes instead of processors.

In hypercube topologies, using Ising model is more suitable than Potts 

model, because in Ising model spins can be in one of the two states represented
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3 dimensionaJ 
Hypa“Ojbc

Figure 6.2. Three different ways for dividing 3-dimensionaI hypercube to 2 
2-dimensionaI subcubes

by 0 and 1. So, for each M  — 1 dimensional subcube of the M  dimensional 

hypercube, one Ising spin is used for encoding. To encode the configuration 

space of the mapping problem, one Ising spin is assigned to each M  — 1 dimen­

sional subcube of the hypercube . Totally M  Ising spin is represented for each 

teisk i. Here M  is the number of dimension of the hypercube and if there is K 

processor in hypercube, then M  =  log(K).

There will be a total of |Â | x log{K) Ising spins in the system for encoding 

the configuration space of the problem. Note that, this encoding constructs 

the one-to-one mapping between the configuration space of the problem domain 

and the spin domain. This encoding is much more efficient than the general 

M FA encoding which requires lÂ I x K  spins for encoding.

The spin which is assigned to task i and represented to subcube H' of the 

hypercube is labeled as s·” . If a is 1, we say that the corresponding task is 

mapped to one of the processors the Hm subcube.

The average u·" = <  s·" >  of each spin, s"* is computed and iteratively 

updated until the system stabilizes at some fixed point. We define

uf* = <  >  where m = .. ^log{K)

Here €  { 0 , 1 } ,  whereas u f  €  [0,1], In order to construct an energy function.



CHAPTER 6. MEA SOU TIOX TOR MAPPISG 53

it is helpful to associate the following meaning to values.

v'A =  ■pjtask i is mapped to one of the processors in subcube / / ' " }

For simplicity, the energy' computation is divided to two part, interconnec­

tion communication energy term {E c o m )  and imbalance energy term { E m )·

E -  Ecom + r  X  Ekal

W e derive the interconnection communication energy function for mapping 

problem as follows.

 ̂ N  N  log(K)

Ecom =  r  X )  P{ task i is mapped to one of the processor in x
2 ,= i  /=1

V{ task j is mapped to one of the processors in H'^.27)
, N  N  iog(K)

=  5 E E " · /  E  " ' x i i - * ; )  (6-28)
 ̂ ,=1 /=1

W e consider the load-imbalaince term for each processors so we formulate the 

energy term correspond the imbalance cost as 

 ̂ N  N  K

Ebal =  i E E  WiWj X ^ ^ {ta s k  i is mapped to processor p} x
2 ,= i  jji,· p = i

P {task  j is mapped to processor p)

=  (6.29)
 ̂ .=1 J5i ,· P=1

Here, Sf is the probability of task i is mapped to processor p. For example, 

we have 4-dimensional hypercube and the probability of task i mapped to 

processor 9 is Sf =  [sfsfs^s;] — {sfx ( 1 — sf ) x ( 1 — sf) xs · )  we define «Sf 

as

«Sf =  where 2,· =  ms|· -f rh(l — sj) (6.30)

Here 2 ,· is s· or (1 — s|) according to the binary representation of the processor 

number p. In equation (6.30), m is 1 or 0 if the /-th bit of the processor number 

is 1 or 0. Total energy term can be defined in terms of communication cost 

term and the imbalance term as

E — Ecom “h  ̂ ^ Effctl
« .V N  log(K)

 ̂ .zrl ijij l=l

N  N  K1

 ̂ «=1 >,i. p=l
(6.31)
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In MF'A algorithm, the expected values of each spin sj" are iteratively 
updated using Boltzmann distribution as

u”· = -------- -̂--------
• 1 +  е-^Г'/ î ’ (6.32)

Each <f>̂ denotes the decrease in the energy' function. Hence for the for­

mulation of mapping problem for hypercube — may be interpreted as the 

decrease in the overall solution quality by assigning task i to one of the pro­

cessors in subcube i / ”*. In this work the mean field values are computed as

<PA ф'"' . -f- г X ф Р ! ■Tl Tcom,t ' Tbalyt

The mean field values coming from the communication energy term is cal­

culated as

^  =  - _ E j )  (6.33)
m
corn,!

jeAdj(i)

Here if is positive then uf* is attracted to 1. This means that probability 

of task i is mapped to one of the processor whose m-th bit is 1. Also ,if ■ 
is negative then uj” is attracted to 0. This means that probability of task i 
is not mapped to one of the processor whose m-th bit of binary number is 1. 

The computation of the mean field value for communication cost takes 0{davg) 
where davg is the average vertex degree of TIG .

Second Term of the mean field value is the imbalance energy term is calcu­

lated as

im ^̂ bal  ̂ krî og{K) I
^ j = l P = l

=  y ;  (6.34)
p=l J=hjjti

Here a  is 1 or -1 according to m-th bit of the processor p. To simplify the 

equation (6.34), the product term is substituted by in equation (6.30).

1 к  <jp N

(6.35)
p=l «

As seen equation (6.35), the complexity of computing an individual mean field 

value corresponding the imbalance cost is 0((A^| xK).  However, the complexity
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of the computation can be asymtoticaly reduced as follows.

c  =
1 /05(A)

where

E  o ,{ s n s T ) {w -s n
-  p = l

(6.36)

(6.37)

Here, W '’ denotes the weight of the processor p for current spin values. The 

parenthesis term inside the summation (6.36) denotes the weight of processor 

p excluding the task i. Hence (6.36) represent the increase in imbalance cost 

term, if task i is assigned to processor p. The entries of the W  vectors are 
computed using (6.37) at the beginning of the algorithm. Then, while updating 

the expected value of individual Ising spin ¿, the W  vector is updated in 0{K)  
by using iterative properties of equation (6.37). If the s[" is updated in MFA  

iteration then the W  vector is updated like as

aP{old)
=  W J , +  5 , where S ' " " ' “ ' =  xm(old) (6.38)

As the Sf value is updated in (9(1) times , updating the W  vector takes 0{K)  
times. Therefore total computation of mean field value for imbalance cost term 

((^^,) takes 0{K)  times.

In Figure 6.3, another method are given for calculating the mean field value 
for imbalance cost term which takes also 0{K).

If we add the mean field values from communication cost term (6.33) and 

imbalance term (6.36), the mean field value for given spin i and subcube

IS
1 1 loaiK)

= - E - i) - 5 E “WADOV - s f ) (6.39)
jeAdj{i)

As seen in (6.39), total computation of the mean field value for given spin 

i and dimension m is 0{davg +  K). Steps of the MFA algorithm for hypercube 

topologies is very similar to the M FA algorithm for mesh. In this M FA algo­

rithm one spin is selected randomly for each dimension. Therefore one MFA 

iteration requires log{K) mean field value computation. So complexity of the 

one MFA iteration is 0{davg x logK +  K x logK). Instead of 0{davg x K + K^) 
in the traditional MFA algorithm.



CUAPTElt 6. MFA SOLUTION FOR MAFPINO 56

sum =  0;
for k=0 to (p/2*·'·*)-! do 

for /= 0  to 2*̂  — 1 do 
p = i X 2 '̂+* +  /; 
q = p + 2̂

VWP =  WP -  lOiSf 
VW’ = VW’ - WiŜ  
sum =  sum +  <Sf(W’  — 

endfor 
endfor

= —Wi X (sum/sj")

Figure 6.3. The Mean field value calculation of given spin i of subcube IP

6.3 Performance Evaluation

This section presents the performance evaluation of the efficient MFA formu­

lation proposed for the mapping problem for mesh-connected architectures 

in comparison with the well known mapping heuristics: simulated anneal­

ing (SA),  Kernighan-Lin (KL) and the general M FA formulation. Each al­

gorithm is tested using randomly generated mapping problem instances for 

mesh-connected architectures. The following paragraphs briefly present the 

implementation details of these algorithms.

The MFA algorithm proposed for the mapping problem for mesh topology is 

implemented efficiently as described in Section 6.2.1. At the very beginning the 

of the algorithm row and column spin averages are initialized to l/P  and l/Q  
plus a random disturbance term, so that the initial spin averages are uniformly 

distributed in the range

0.9 X i  <  t - i  ”" “ '» <  1.1 X

0.9 X i  <  t . ; · '" '" “'’ < 1 . 1 x 4

respectively. Note that limrr^o, 

initial temperatures and balance parameters used in the mean field computa­

tion of the row and column iterations are estimated using these initial random 

spin average values. Recall that, in the mean field computations (Eqs. (6.20))

for f =  1 , 2 , . . . . , A , p =  1 , 2 , . . . , P

for 1 =  1,2, . - . , A , i  =  i , 2 , . . . , g

iT — 
*P l/P  and lim7-:-.oo =  l / Q ·  The
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and (6.21) of row and column iterations, the parameters ¡S'" and deter­

mine a balance between the terms and and and respec­

tively. We compute the row spin averages {<i>ip̂ )̂ =
and (<i>ip̂ )̂ =  (H ill  T,pzzi using the initial u[p values. Column spin

averages and are computed similarly using the initial val­

ues. Then, balance parameters are computed as /5’’ =  CB{<t>'ip̂ )̂/{<p’ip̂ )̂ and

where Cb is chosen as 5.6. Our experiments show that 

computing /5’’ and using this method is sufficient for obtaining balanced 

partitions.

Selection of initial temperature parameters TJ and Tq is crucial for ob­

taining good quality solutions. In previous applications of M FA [18, 22], it 

is experimentally observed that spin averages tend to converge at a critical 

temperature. Although there are some methods proposed for the estimation of 

critical temperature, we prefer an experimental way for computing Tq and Tq 
which is easy to implement and successful as the results of experiments indicate. 

After the balance parameters and are fixed, average row and column mean 

fields are computed as {(f>\p) =  and

. Then Tq and Tq are computed using Tq =  and Tq =  CT{<i>î )/Q
where Ct is chosen as 20. Note that, both Tq and Tq aire inversely proportional 

to the dimensions of the row and column Potts spins, respectively, which is also 

observed for the critical temperature formulations presented in other MFA im­

plementations [18, 26].

The same cooling schedule is adopted for row and column iterations as fol­

lows. At each temperature, row and column iterations proceed in an alternative 

manner for randomly selected unconvergenced row and column spin updates 

until AE^ < t and AE^ <  t for A / consecutive iterations respectively where 

M = N initially and c =  0.05. Average spin values are tested for convergence 

after each update. If one of the terms of a row or column spin average 

vector is detected to be greater than 0.95, that spin is assumed to converge to 

state k. The cooling process is realized in two phases, slow cooling followed 

by fcLst cooling, similar to the cooling schedules used for SA [22]. In the slow 

cooling phase, row and column temperatures are decreased using a =  0.9 until 

T < 2o/1.5 for both row and column iterations. Then in the fast cooling phase,

M  is set to M /4 , a is set to 0.7 and cooling for row and column iterations are 

continued until 90% of the row and column spins converge, respectively. At 

the end of this cooling process, the maximum element in each unconvergenced 

spin average vector is set to 1 and all other elements in that vector are set to
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0. Then, the result is decoded cis described in Section 6.2, and the resulting 

mapping is found. Note that, all parameters used in this implementation are 

either constants or found automatically. Hence, there is no parameter setting 

problem for different mapping instances.

The general MFA formulation summarized in Section 6.1 is implemented 

efficiently as described in [6]. The initialization of spin averages, the selection 

of the balance parameter ^ and the initial temperature To are performed as 

is described for the mesh-specific MFA implementation. The expressions used 

for these computations can be found by replacing P and Q with K — PxQ \n 
those expressions described for the mesh-specific M FA implementation. The 

parameters Cj and Cb are chosen as 0.5. The same cooling schedule described 

for mesh-specific MFA implementation is used in the implementation of the 
general MFA formulation.

The two-phcise approach is used to apply KL to the mapping problem. KL  

heuristics is implemented efficiently as described by Fiduccia and Mattheyses 

(FM ) [6] for the clustering phase. The recursive bisection scheme implemented 

for the first phase recursively partitions the initial TIG  into two cluster until 

K — PxQ  clusters are obtained. Here, K is assumed to be a power of two. In 

the KLFM  heuristic, computational load balance among clusters is maintained 

implicitly by the algorithm. Vertex moves causing intolerable load imbalance 

are not considered. The one-to-one mapping heuristics used in the second 

phase is a variant of the KL heuristics. In this heuristic, communication cost 

is minimized by performing a sequence of cluster swaps between the processor 

pairs after an initial random mapping of K  clusters [21].

The SA algorithm implemented in this work implicitly achieves the load 

balance among processors by setting a neighborhood configuration consisting 

of all configurations which result from moving one task from the processor 

with maximum load to any other processor. Randomly selected possible moves 

which decrease the communication costs are realized. Acceptance probabilities 

of randomly selected moves that increase the communication cost are controlled 

with a temperature parameter T which is decreased using an automatic anneal­

ing schedule [22]. Hence, as the annealing proceeds acceptance probabilities of 

uphill moves decrease.
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Table 6.1. Total communication costs averages normalized with respect 
to mesh-specific MFA of the solution found by SA,KL,general MFA and 
mesh-specific MFA for randomly generated mapping problem instances for var­
ious mesh size

Problem Size Average Communication Cost
T IG Mesh MFA

N davg P x Q KL SA Gen. Mesh

2 4 x 4 1.20 0.83 1.16 1.00
2 4 x 8 2.62 0.76 1.09 1.00

400 3 4 x 4 1.14 1.01 1.13 1.00
3 4 x 8 1.96 0.94 1.07 1.00
4 4 X4 1.31 1.03 1.09 1.00
4 4 x 8 1.92 0.97 1.08 1.00
2 4 x 8 1.73 0.89 1.10 1.00
2 8 x 8 2.61 0.88 1.30 1.00

800 3 4 X8 2.20 1.13 1.41 1.00
3 8 x 8 2.88 1.06 1.00 1.00
4 4 x 8 1.65 1.14 1.13 1.00
4 8 x 8 2.55 1.17 1.20 1.00
2 8 x 8 1.61 0.99 0.93 1.00
2 8 x 16 2.89 1.05 1.15 1.00

1600 3 8 x 8 1.57 0.99 0.96 1.00
3 8 x 16 2.47 1.00 1.13 1.00
4 8 x 8 2.03 1.17 1.31 1.00
4 8 x 16 3.39 0.93 1.26 1.00

6.4 Experimental Results

The mapping heuristics are experimented by mapping randomly generated 

TIGs and test TIGs onto various size meshes. Random TIGs are generated 

using the following parameters: number of vertices (N), average vertex de­

gree (davg), maximum vertex weight (wmax) and maximum edge weight {emax)· 
In a random graph Gn,p with N vertices, each pair of vertices constitutes an 

edge with probability p. Since can have at most pC{N,2) edges, the

sum of the degrees of the vertices of Слг.р is equal to 2pC{N^2). Then, the 

expected average vertex degree of Gs,p is davg =  2pC{N,2)/N = p{N — 1). 

Thus, the parameter P is selected as p =  davg 1(1̂  -  1) to generate a random 

TIG with N vertices and expected vertex degree davg· Then, the edge set is 

created by flipping a coin with probability p for all {N{N — l ) / 2  potential 

edges. Each vertex or edge is weighted randomly by choosing a number be­

tween 1 and Wmax or 1 and ê axi respectively. Nine test TIGs generated with 

N =  400,800,1600, dovj =  2,3,4,iUmax =  5 and e^ar =  Ю using this random 
graph generation algorithm. These test TIGs are mapped to 4 x 4 ,  4 x 8 ,  8 x 8  

and 8 x 1 6  two-dimensional meshes.
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Table 6.2. Percent computational load imbalance averages of the solution found 
by SA,KL,general MFA and mesh-specific MFA for randomly generated map­
ping problem instances for various mesh size

Problem Size Average Percent Imbalance
T G Mesh MFA

N davg PxQ KL SA Gen. Mesh
2 4 x 4 9.1 2.1 8.6 7.8
2 4 x 8 14.5 6.5 11.1 8.3

400 3 4 X 4 11.4 4.4 8.6 4.5
3 4 x 8 15.5 5.5 9.7 8.3
4 4 x 4 11.9 4.0 5.1 7.9
4 4 X 8 16.1 7.8 12.7 6.3
2 4 x 8 12.0 5.8 16.2 7.8
2 8 x 8 16.7 8.4 12.7 8.7

800 3 4 x 8 15.6 3.5 8.7 5.2
3 8 x 8 19.7 9.6 16.0 8.2
4 4 x 8 16.5 13.8 7.9 14.2
4 8 x 8 19.0 6.6 6.2 6.9
2 8 x 8 13.8 9.3 12.7 8.2
2 8 x 16 21.0 9.4 13.9 7.9

1600 3 8 x 8 15.3 14.3 16.6 10.3
3 8 x 16 19.7 10.9 13.0 11.7
4 8 x 8 15.6 9.4 14.9 8.9
4 8 x 16 21.9 7.3 11.2 9.4

Table 6.3. Execution time averages of the solution found by SA,KL,geneггıl 
MFA and mesh-specific MFA for randomly generated mapping problem in­
stances for various mesh size

Problem Size Average Execution Time(sec)
TIG Mesh

SA
.MFA

N 1 PxQ KL Gen. Mesh

400

2 4 x 4 1.1 99.4 11.7 2.8
2 4 x 8 1.1 99.4 11.7 2.8
3 4 x 4 0.9 44.0 3.1 0.9
3 4 x 8 1.4 96.4 5.6 1.8
4 4 x 4 1.0 48.8 2.7 1.4
4 4 x 8 1.5 80.0 9.7 3.5

800

2 4 x 8 1.7 248.9 15.8 5.3
2 8 x 8 3.2 522.8 53.8 6.8
3 4 x 8 2.2 256.0 13.0 4.2
3 8 x 8 4.4 550.2 44.7 8.6
4 4 x 8 2.9 240.2 55.1 8.7
4 8 x 8 5.5 545.7 87.6 9.9

1600

2 8 x 8 5.4 1983.6 230.6 13.5
2 8 x 16 15.6 16793.4 1081.5 39.5
3 8 x 8 8.9 1826.5 157.2 18.2
3 8 x 16 24.1 4946.0 515.0 40.6
4 8 x 8 11.3 3095.6 206.2 15.1
4 8 x 16 51.0 5345.7 495.4 49.9
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Table 6.4. Average performance measures of the solution found by SA, KL, 
general MFA and mesh-specific MFA for randomly generated mapping problem 
instances

C O M M . COST
LOAD IM BALANCE
E XEC U TIO N  TIME

KL

2.10
2.01
0.67

SA

1.00
0.91

93.20

MFA
Gen.

1.13
1.49
8.17

Mesh.

1.00
1.00
1.00

Table 6.1, 6.2, 6.3 illustrates the performance result of the KL, SA , general 

and mesh-specific M FA heuristics for the generated mapping problem instances. 

In this table, ” Gen” and "M esh” denote the general and mesh-specific MFA  

formulations, respectively, discussed in this work. Each algorithm is executed 5 

times for each problem instance starting from different, randomly chosen initial 

configurations. Total communication cost averages of the solutions in Table 6.1 

are normalized with respect to the results of the mesh specific MFA heuristic 

developed in this work. Percent computational load imbalance averages of solu­

tions displayed in Table 6.2 are computed using l00x{CLmax — CLmin)IOLavg- 
Here, CLmax and CL^in denotes the maximum and minimum processor loads 

and CLavg denote the computational loads of processors under perfect load 

balance conditions. Execution time averages are measured on a DEC Alpha 

workstation in seconds for randomly generated mapping problem instances. 

Table 6.4 is constructed for a better illustration of the overall relative per­

formances of the heuristics. Percent load imbalance averages and execution 

time averages of the solutions are also normalized with respect to the results of 

the mesh-specific M FA heuristic. Then, the overall averages of the normalized 

averages of Table 6.1, 6.2, 6.3 are displayed in Table 6.4.

These four tables confirm the expectation that mesh-specific MFA formu­

lation is significantly feister (8.17 times on the average) than the general MFA  

formulation while producing solutions with considerably better qualities for 

randomly generated problem instances. As seen in these tables, the mesh spe­

cific MFA heuristic produces significantly better solutions than the KL heuristic 

whereas the MFA heuristic is slightly slower (only 1.49 times on the average). 

The qualities of the solutions obtained by the mesh-specific MFA heuristic are 

comparable with those of the SA heuristic. However, the mesh-specific MFA  

heuristic is orders of magnitudes faster (93.2 times on the average). Hence, 

the proposed MFA heuristic approaches the speed performance of the feist KL
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Table 6.5. The Benchmark Sparce Matrix data used in experiments

heuristic while approaching the solution quality of the powerful SA heuristic.

Test t i g ’s correspond to the undirected sparse graphs associated with the 

symmetric sparse matrices selected from Harwel Boeing sparse matrix test col­
lection [12]. Weights of the vertices are assumed to be equal to their degrees. 
These test T IG ’s are mapped to 8 x 8 ,  8 x 16 and 16 x 16 2£)-meshes. The 

properties of test TIGs are shown in Table 6.5

Table 6.6, 6.7. 6.8 illustrates the performance result of the KL, SA , general 

and mesh-specific MFA heuristics for the mapping problem instances from test 

TIGs. Each algorithm is executed 5 times for each problem instance starting 

from different, randomly chosen initial configurations. Total communication 

cost averages of the solutions in Table 6.6 are normalized with respect to the 

results of the mesh specific MFA heuristic developed in this work. Execution 

time averages are measured on a SUN SPARC 10 workstation. Execution time 

averages are normalized with respect to those of mesh-specific M FA heuristic 

in Table 6.8. Table 6.9 is constructed for a better illustration of the overall 

relative performances of the heuristics. Percent load imbalance averages of the 

solutions are also normalized w'ith respect to the results of the mesh-specific 

MFA heuristic. Then, the overall averages of the normalized averages of Ta­

ble 6.6, 6.7. 6.8 are displayed in Table 2. Tables 6.6, 6.7, 6.8, 6.9 confirm the 

expectation that mesh-specific M FA formulation is significantly faster (7.26 

times on the average) than the general MF.A formulation while producing solu­

tions with considerably better qualities for test TIGs. As seen in these tables, 

the mesh specific MFA heuristic produces significantly better solutions than 

the KL heuristic whereas the M FA heuristic is slightly slower. The qualities of 

the solutions obtained by the mesh-specific MFA heuristic are comparable with 

those of the SA heuristic. However, the mesh-specific MFA heuristic is faster



CHAPTER 6. MPA SOLUTION TOR MAPPING 63

Table 6.6. Total communatication cost averages, normalized with respect 
to mesh-specific MFA, of the solution found by SA,KL,  general MFA and 
mesh-specific MFA for some bechmark mapping problem instances for vari­
ous mesh size

Com.Cost
Circuit Par MFA SA GcnMFA KL

16 1.00 0.82 1.39 0.95
32 1.00 1.11 1.89 1.61

DWT-492 64 1.00 0.97 1.74 1.98
128 1.00 1.13 2.52 2.33
256 1.00 1.10 2.62 1.90
16 1.00 0.83 1.48 0.74
32 1.00 0.95 1.98 1.17

DWT-758 64 1.00 0.95 2.02 1.79
128 1.00 1.10 2.75 2.85
256 1.00 1.38 4.03 3.34
16 1.00 0.85 1.18 0.99
32 1.00 0.95 1.71 1.25

DWT-1242 64 1.00 1.00 2.01 1.42
128 1.00 1.05 2.62 2.53
256 1.00 1.08 2.94 2.91
16 1.00 0.89 1.12 0.89
32 1.00 0.93 1.30 0.99

JAGMESH2 64 1.00 0.90 2.04 1.91
128 1.00 1.11 3.35 3.06
256 1.00 1.19 3.73 3.44
16 1.00 0.56 0.92 0.69
32 1.00 0.87 1.43 1.14

JAGMESH6 64 1.00 0.91 1.78 1.23
128 1.00 1.13 3.59 2.48
256 1.00 1.08 3.82 3.43
16 1.00 0.78 1.12 0.83
32 1.00 0.86 1.26 1.21

JAGMESH7 64 1.00 0.95 1.89 1.40
128 1.00 1.06 3.25 2.74
256 1.00 1.20 3.77 3.48
16 1.00 0.67 2.14 1.47
32 1.00 0.98 3.25 2.33

BCSPWR06 64 1.00 0.93 2.80 2.18
128 1.00 1.12 3.35 2.90
256 1.00 1.23 3.45 3.80
16 1.00 0.51 1.36 1.11
32 1.00 0.89 2.74 1.88

BCSPWR09 64 1.00 0.90 2.43 1.87
128 1.00 1.01 3.13 2,33
256 1.00 1.80 5.06 4.75

16 1.00 0.84 1.02 1.09
32 1.00 0.89 1.29 1.31

LSHP2233 64 1.00 0.81 1.88 1.37
128 1.00 0.97 3.63 2.20
256 1.00 1.12 2.68 3.31

16 1.00 0.65 1.05 0.37
32 1.00 0.66 1.23 0.43

LSHP3346 64 1.00 0.68 1.91 0.52
128 1.00 0.68 3.48 0.68
256 1.00 0.87 2.10 1.07
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Table 6.7. Load Imbalanced averages,of the solution found by SA,KL,  general 
MFA and mesh-specific MFA for some bechmark mapping problem instances 
for various mesh size

[x>ad-Bal
Circuit Par MFA SA GcnMFA KL

16 2.41 2.41 4.34 5.42
32 3.01 3.61 7.47 7.35

DWT-492 64 6.10 7. 32 8.54 9.76
128 11.00 15.00 15.50 17.00
256 19.00 35.00 26.00 28.00
16 1.62 0.92 3.79 6.45
32 2.45 2.15 5.52 9.45

DWT-758 64 4.20 5.25 5.68 9.38
128 7.75 14.37 9.25 12.25
256 9.00 26.25 15.00 16.50
16 1.13 0.57 3.55 7.86
32 1.60 1.48 4.60 8.08

DWT-1242 64 2.66 3.85 6.22 8.88
128 5.35 5.28 8.17 12.11
256 9.43 11.43 10.29 16.29
16 1.58 0.82 2.51 4.29
32 0.87 1.64 3.55 5.96

JAGMESH2 64 2.64 4.12 5.60 8.13
128 2.89 6.67 5.56 10.89
256 6.82 15.91 12.73 18.18

16 1.03 0.84 3.95 4.41
32 1.60 0.84 8.32 6.34

JAGMESH6 64 2.10 2.52 7.06 7.39
128 2.54 4.24 5.25 12.03
256 7.93 12.07 10.69 13.45

16 1.29 0.82 2.89 4.64
32 1.68 1.27 5.18 6.60

JAGMESH7 64 2.86 2.81 6.33 8.06
128 4.49 7.65 5.92 11.02
256 9.17 18.75 12.50 13.75
16 1.13 0.31 2.92 4.05
32 2.67 0.63 5.42 5.50

BCSPWR06 64 3.33 0.83 8.00 10.54
128 5.00 1.67 7.67 12.43
256 8.00 5.00 11.33 17.22
16 1.84 0.33 2.31 4.05
32 2.55 0.67 5.44 5.50

BCSPWR09 64 4.19 1.35 7.97 10.54
128 4.05 2.70 10.81 12.43
256 4.05 5.56 18.89 17.22
16 0.88 0.31 1.31 5.16
32 1.52 0.98 2.44 6.36

LSHP2233 64 2.30 1.23 5.39 8.04
128 2.45 2.94 3.92 9.41
256 3.73 7.84 12.07 10.20
16 0.51 0.31 1.21 4.05
32 2.02 0.98 1.87 5.50

LSHP3466 64 1.50 1.23 4.48 10.54
128 1.51 2.94 4.47 12.43
256 4.18 7.84 12.07 17.22
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Table 6.8. Total execution time, normalized with respect to mesh-specific M FA, 
of the solution found by SA,KL,  general MFA and mesh-specific MFA for some 
bechmark mapping problem instances for various mesh size

Execution Time
Circuit Par MFA SA GenMFA KL

16 1.00 54.70 3.09 0.24
32 1.00 16.73 2.78 0.12

DWT-492 64 1.00 17.56 4.27 0.29
128 1.00 4.64 1.70 0.33
256 1.00 3.91 2.45 2.28
16 1.00 63.29 2.48 0.19
32 1.00 24.00 2.17 0.11

DWT-758 64 1.00 15.98 3.34 0.15
128 1.00 5.70 1.63 0.23
256 1.00 5.39 2.65 1.69
16 1.00 89.19 6.10 0.18
32 1.00 27.50 5.01 0.08

DWT-1242 64 1.00 25.33 7.74 0.13
128 1.00 8.72 2.67 0.19
256 1.00 7.02 3.79 0.75
16 1.00 61.11 8.62 0.12
32 1.00 24.16 7.69 0.08

JAGMESH2 64 1.00 16.43 10.81 0.11
128 1.00 8.53 4.14 0.24
256 1.00 8.21 5.27 1.16
16 1.00 112.12 10.72 0.16
32 1.00 45.16 11.93 0.09

JAGMESH6 64 1.00 30.02 15.45 0.13
128 1.00 13.01 6.60 0.18
256 1.00 10.98 6.25 0.81
16 1.00 78.00 7.75 0.15
32 1.00 32.29 10.98 0.09

JAGMESH7 64 1.00 26.58 19.41 0.14
128 1.00 11.01 4.22 0.20
256 1.00 9.58 6.77 1.10
16 1.00 213.22 2.14 0.30
32 1.00 66.53 1.74 0.13

BCSPWR06 64 1.00 55.05 4.01 0.20
128 1.00 18.43 4.80 0.26
256 1.00 14.24 5.88 0.87
16 1.00 261.90 3.54 0.24
32 1.00 76.14 3.81 0.10

BCSPWR09 64 1.00 59.62 8.27 0.15
128 1.00 23.50 6.56 0.20
256 1.00 32.09 14.88 1.30
16 1.00 104.60 7.72 0.09
32 1.00 44.17 10.05 0.06

LSHP2233 64 1.00 34.47 17.28 0.09
128 1.00 17.48 7.22 0.13
256 1.00 13.95 2.19 0.57
16 1.00 53.11 11.11 0.03
32 1.00 22.63 12.44 0.02

LSHP3466 64 1.00 15.81 13.36 0.02
128 1.00 8.53 11.62 0.04
256 1.00 8.48 2.19 0.20
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Table 6.9. Average performance measures of the solutions found by SA, KL, 
general MFA and mesh-specific MFA for mapping problem instances.

KL SA
MFA

Gen. Mesh.

Communication Cost 2.55 1.08 2.94 1.00
Load Lmba]гαıce 2.34 1.5 1.85 1.00
Execution Time 0.5 19-7 7.26 1.00

Table 6.10. Total communication costs averages normalized with respect to 
hypercube-specific MFA of the solution found by SA,KL,general MFA and 
hypercube-specific M FA for randomly generated mapping problem instances 
for various hypercube size

Problem Size Average Communication Cost
TIG Hypercube MFA

N davg K KL SA Gen. Mesh

3 8 1.41 0.96 1.12 1.00
3 16 2.45 1.02 0.69 1.00

400 4 16 2.43 1.32 1.74 1.00
4 32 1.48 1.21 1.25 1.00
8 32 1.35 1.18 1.25 1.00
8 64 1.25 1.18 1.08 1.00
3 8 1.39 0.87 1.23 1.00
3 16 1.47 1.34 1.30 1.00

800 4 16 1.73 1.13 1.26 1.00
4 32 1.83 0-88 0.93 1.00
8 32 1.55 0.99 1.16 1.00
8 64 1.42 1.03 1.13 1.00

3 8 1.37 0.92 0.84 1.00
3 16 0.98 0.74 0.88 1.00

1600 4 16 0.86 0.74 1.14 1.00
4 32 1.56 0.87 1.26 1.00
8 32 1.26 0.98 1.00
8 64 1.68 1.14 1.36 1.00

(19.7 times on the average). Hence, the proposed MFA heuristic approaches 

the speed performance of the fast KL heuristic while approaching the solution 

quality of the powerful SA heuristic.

Table 6.10, 6.11, 6.12 illustrates the performance result of the KL, SA, gen­

eral and hypercube-specific MFA heuristics for the generated mapping prob­

lem instances. In this table, ” Gen” and "Hypercube” denote the general and 

hypercube-specific MFA formulations, respectively. Each algorithm is exe­

cuted 10 times for each problem instance starting from different, randomly 

chosen initial configurations. Total communication cost averages of the so­

lutions in Table 6.10 are normalized with respect to the results of the mesh 

specific MFA heuristic developed in this work. Percent computational load 

imbalance averages of solutions displayed in Table 6.2 are computed using
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Table 6.11. Percent computational load imbalance averages of the solution 
found by SA,KL,general MFA and hypecube-specific MFA for randomly gen­
erated mapping problem instances for various hypercube size

Problem Size Average Percent Imbedance
TIG Hypercube MFA

N davg PxQ KL SA Gen. Mesh
3 8 12.22 7.50 9.17 2.78
3 16 15.56 8.33 18.46 6.67

400 4 16 14.44 9.33 16.43 10.05
4 32 21.43 15.29 23.33 23.81
8 32 15.48 12.60 30.71 8.33
8 64 23.81 21.15 24.29 21.49
3 8 10.28 2.50 9.17 6.39
3 16 13.89 5.50 13.33 6.75

800 4 16 15.05 5.65 9.32 3.06
4 32 20.15 10.33 15.80 11.11
8 32 18.89 5.50 17.60 13.60
8 64 22.22 13.14 20.65 19.05
3 8 8.20 2.02 4.85 3.63
3 16 11.83 3.66 9.95 5.65

1600 4 16 12.82 3.82 6.97 3.79
4 32 16.67 6.91 11.29 8.60
8 32 15.87 7.68 12.58 8.58
8 64 25.56 7.11 15.33 9.88

Table 6.12. Execution time averages of the solution found by SA,KL,general 
MFA and hypercube-specific MFA for randomly generated mapping problem 
instances for various hypercubesize

Problem Size Average Execution Timc(sec)
TIG Hypercube MFA

N davg KL SA Gen. Mesh
3 8 0.77 41.27 8.55 0.81
3 16 1.13 64.57 18.75 2.35

400 4 16 1.23 62.49 7.41 1.97
4 32 2.17 106.25 10.48 6.77
8 32 1.52 79.87 6.18 3.00
8 64 2.58 124.63 8.58 4.63
3 8 1.26 123.65 7.78 1.49
3 16 1.91 147.90 15.07 3.99

800 4 16 2.15 156.51 7.53 3.20
4 32 2.95 252.31 15.65 7.19
8 32 4.37 410.88 15.85 5.45
8 64 13.62 707.90 44.46 13.26

3 8 2.42 209.69 22.64 2.64
3 16 0.31 329.72 29.66 7.06

1600 4 16 3.69 432.32 9.96 5.29
4 32 5.68 712.89 47.81 17.42
8 32 8.59 749.02 96.08 14.84
8 64 16.59 2462.81 241.73 45.38
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lOOx{CLmax — CLmin)/CLavg· Here, CLmax and CL,nin denotes the maxi­

mum and minimum processor loads and CLavg denote the computational loads 

of processors under perfect load balance conditions. Execution time averages 

are measured on a DEC Alpha workstation in seconds for randomly generated 

mapping problem instances.



Chapter 7

CONCLUSION

In this thesis, we try to solve two combinatorial optimization problems, global 
routing problem in design automation of FPGA and domain mapping problem 
in parallel processing, by using Mean Field Annealing method.

First of all. Static RAM  based Field Programmable gate arrays (FPGA)  

is modeled as 2-dimensional mesh graph. Than we have proposed an order- 

independent global routing algorithm, for FPG.A based on Mean Field Anneal­

ing. The performance of the proposed global routing algorithm is evaluated in 

comparison with the LocusRoute global router for ACM/SIGDA benchmark 

circuits. Initial experimental results indicate that the proposed MFA heuristic 

performs better than the LocusRoute.

We proposed an encoding scheme to applied MFA onto global routing prob­

lem for FPGA.  Our aim is to minimize the energ>' function of our spin (par­

ticles) system. It corresponds to minimize the our objective function, that is 

finding most uniform distribution routes of the nets (balanced routing). We 

expected from most uniform distribution of routes that the following detailed 

routing shows a good performance. (Decrease in total number of segment used, 

decrease in channel width, and decrease in average delay of nets).

Experimental results show that our expectation was true, the MFA al­

gorithm found more uniform distributed routing that LocusRoute algorithm, 

therefore the performance of the detailed routing for 100% routing is better in 

MFA than in LocusRoute for many benchmark circuits.

We have some difficulties in MFA formulation. In this formulation, it is the

69
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first time that Potts spins have different number of states. In Previous MFA  

formulation for various combinatorial optimization problem, all Potts spins 

have same number of state, therefore the affect of spin values on the problem 

remains same but now, as Potts spin vector has different dimension, the affects 

of spins on problem are different. This may cause some problem therefore we 

have to find a normalization function that keeps the affect of spins same.

Also if we can find better cooling schedule than we may get better results 

than we have got. Especially, critical temperature is very important here, if 

it is initialized to very low temperature, than MFA find a local minimum as a 

global minimum.

In the second part of this thesis, we have proposed an efficient map­

ping heuristic for mesh and parallel-connected parallel architecture based on 

Mean Field Annealing(MFA). We have also developed an efficient implemen­

tation scheme for the proposed mapping formulation. The proposed MFA  

scheme asymptotically reduces the complexity of a single MFA iteration from 

Q{davgPQ + {PQV) of the general MFA formulation to Q{davg{P+Q)+PQ) for 
a. P hy Q mesh. For a square mesh with K processors, this corresponds to an 

asymptotical complexity reduction from Q{davgK + K^) to Q{davg\iK -|- K). 
And for hypercube type architecture complexity of the one M FA iteration is 

0{davg X logK K y. logK) instead of 0{davg y K + K^) in the traditional 

MFA algorithm.

The performance of the proposed mapping heuristic is evaluated in compar­

ison with the well-known heuristics Kernighan-Lin (K L ), Simulated Annealing 

(SA) and general MFA formulation for a number of randomly generated map­

ping problem instances and Harwell-Boeing sparse matrix test collection. The 

proposed topology-specific MFA formulation is found to be significantly faster 

than the general MFA formulation as is expected. The proposed M FA heuristic 

is slightly slower than the fast KL heuristic. However, it always produces sig­

nificantly better solutions than the KL heuristic. The quality of the solutions 

obtained by the proposed MFA heuristic are comparable to those of the power­

ful SA heuristic. However, the proposed MFA heuristic is orders of magnitudes 

faster than the SA heuristic. If we can find a good cooling scheduling and 

initial temperature parameter, then we can get better results. W e conclude 

that for mapping problem, MFA can be located on the algorithms line between 

the KL and SA.
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