
5 Θ 5
■ U S ' S

f 3 3 ^

If’ fu · !{ Ä I i á Í . istej S íaá P I |. fl'l !¿ ■
' - ’ % ' t » a 'u *ttr- M i U ѴФ ä. :НШ ш ‘·ψ>; w імі liu) S «г-ні- >W m-

®' ε if '̂I î · ̂ ^ P ■ ■ ■ ■ ü f 6 1H ·?Ι ■ i ΨΤi# ■ lar "U·» «̂B· ' i ■ i ■ CI Й ■ 1«' fe iliat a‘i· iii* ліа ϊ'ΐί ■ ü’ 3ı M V' ¿̂4 lıTS *hĤ

i l i k l i =' - 4№ Sİİİ Ё M'a . ѵЛ’ İ 'S .*' » і Ц Й ѵ Ц >{1 w ·»'«

"*ΐ<··ΙΪ: .■^átivr í̂.'í^*'; **: -'“νΐΐ'

rîi= -,:..:·ρ,:γ 3 - ’··, ·

- - / ‘ j -’̂ ш U v 'v · . - —f

FRACTAL TREE MODELING:
GENERATION, RENDERING AND

GROWTH ANIMATION

A THESIS

SU BM ITTE D TO THE DEPAR TM EN T OF C O M P U T E R

ENGINEERING AND INFORM ATION SCIENCE

A N D TH E IN ST IT U T E OF ENGINEERING A N D SCIENCE

OF BILKENT UNIVERSITY

IN PARTIAL FULFILLM ENT OF THE REQ U IR EM E N TS

FO R THE DEGREE OF

M ASTER OF SCIENCE

by
Ersin Ünal

February, 1995

n
fe r s in Û n d !

T
ж

• U53

So

I certify that I have read this thesis and that in my opinion it is fully adequate,
in scope and in quality, as a thesis for the degree of Master of Science.

Prof. Bülent Özgüç (Advisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,
in scope and in quality, as a thesis for the degree of Master of Science.

Prof. Cemal Yalabık

I certify that I have read this thesis and that in my opinion it is fully adequate,
in scope and in quality, as a thesis for the degree of Mci6ter of Science.

Asst. Prof. Ilyas Çiçekli

Approved for the Institute of Engineering and Science:

Prof. Mehmet
Director of the Insiitute

ABSTRACT

FRACTAL TREE MODELING:
GENERATION, RENDERING AND GROWTH ANIMATION

Ersin Ünal
M.S. in Computer Engineering and Information Science

Advisor: Prof. Bülent Özgüç
February, 1995

Plant modeling for visual purposes is a challenge, especially when user inter­
action is a concern. In this thesis, we propose a recursive, time-aware, fractal
tree model with realistic features including statistical self-similarity, stochas­
tic pruning and heuristic branch intersections. The main focus is on realistic
branch structures. The skeletal model constructed by statistically fractal meth­
ods is fleshed out using heuristic acceleration techniques. We develop a system
with near real-time feedback for fast model manipulation and viewing. The
system implementation is developed on an SGI Iris Indigo XS24 workstation.

Keywords: Fractal Modeling, Natural Phenomena Modeling, Tree Modeling.

Ill

ÖZET

FRAKTAL AĞAÇ MODELLEME

Ersin Ünal
Bilgisayar ve Enformatik Mühendisliği, Yüksek Lisans

Danışman: Prof. Bülent Özgüç
Şubat, 1995

Kullanıcı etkileşimi söz konusu olduğunda, görüntü amaçlı bitki modellerinin
gerçekleştirilmesi için çeşitli zorlukların aşılması gerekir. Bu tezde, yinele­
nen, zamana bağımlı, fraktal bir ağaç modeli öneriyoruz. Gerçekçi özellikleri
arasında istatistiki eş benzerlik, rassal budama ve hüristik dal kesişimlerini
sayabiliriz. Modelin odak noktası gerçekçi dal yapılarıdır, istatistik! frak­
tal yöntemlerle oluşturulan model iskeleti hüristik hızlandırma teknikleri kul­
lanılarak kaplanmıştır. Modelin parametrik ayarlamalarına ve izlenmesine yakın
gerçek zamanda cevap verebilen bir sistem geliştirdik. Sistemin uygulaması bir
SGI iris Indigo XS24 iş istasyonu üzerinde yapılmıştır.

Anahtar Sözcükler: Fraktal Modelleme, Doğal Fenomen Modelleme, Ağaç
Modelleme.

IV

ACKNOWLEDGMENTS

I would like to express my gratitude to my advisor Prof. Bülent Özgüç for his
motivating support during my M.S. study.

I would also like to thank Prof. Cemal Yalabık and Asst. Prof. Ilyas Çiçekli
for their invaluable comments on this thesis.

Finally, I would like to thank my collègues who accompanied me with intellec­
tual support throughout the M.S. years.

I dedicate this thesis to my beloved family.

Contents

1 Introduction 1

2 Background 4

2.1 Fractal G eom etry... 4

2.2 Natural G row th.. 6

2.3 Botanic G row th.. 6

2.4 Tree Modeling... 7

2.5 Visual Modeling.. 8

2.6 Modeling Approaches... 9

2.6.1 Iterated Function System s... 9

2.6.2 Highly Botanic M odels... 10

2.6.3 Our Model... 10

3 The Model 12

3.1 The Basic M o d e l... 12

3.2 The Refined M o d e l... 14

3.3 The Time-Aware Model .. 17

vi

CONTENTS vii

4 Implementation 20

4.1 Implementation of the Time-A ware M o d e l.................................. 20

4.1.1 Construction 21

4.1.2 R endering... 25

4.2 Real-Time Graphical User Interface.. 26

5 Conclusion 29

A Color Plates 31

B Fractal Similarity Concepts 42

List of Figures

3.1 Basic Algorithm.. 13

3.2 Refined Algorithm .. 15

3.3 Stochastic Pruning of B ra n ch e s.. 16

3.4 Enhancements for Branch Formations... 18

3.5 Logarithmic Branch G ro w th .. 19

4.1 Data Structure for a B ran ch .. 22

4.2 Generalized Tree Data Structure.. 23

4.3 Wedge Formation at Branch Intersections..................................... 24

4.4 Wedge surface consists of patches generated by visiting the cor­
ners counter-clockwise.. 25

A.l Rendering Mode: L in e ... 32

A.2 Rendering Mode: D i s c ... 33

A.3 Rendering Mode: W ireframe... 34

A.4 Rendering Mode: Gouraud S h a d e d ... 35

A.5 Rendering Mode: Texture Mapped ... 36

A.6 Tree generated at time 10 37

viii

LIST OF FIGURES jx

A.7 Tree generated at time 2 0 ... 3g

A.8 Tree generated at time 24 39

A.9 Tree generated at time 2 8 ... 40

A. 10 Tree generated at time 32 .. 41

List of Tables

3.1 Selected parameters for the tree m o d e l .. 14

4.1 Rendering Methods

4.2 Mouse Actions

25

27

C h ap ter 1

Introduction

Towards the end of the twentieth century, the world is faced with serious threats
against the environment. Nature has always been powerful enough to recreate
itself. However, recent mindless actions endanger the wild-life, which is the
essence of the entire life-cycle on the planet earth [6].

Conservation of nature is vital for the continuation of life. With this in
mind, natural phenomena must be monitored through means of modeling.
Plant life, or trees to be more specific, being the most vulnerable and de­
fenseless, emerge as a suitable focus to start with. Modeling the branching
structures, we can mimic trees with close correlation.

Tree modeling has many application areas in the film and simulation in­
dustries. Models which allow fast generation are important, especially for the
simulation business. Flight simulation systems need to generate terrain data
to set up realistic environments to fly through. Bit-mapped tree images can­
not provide the needed realism because they are two-dimensional. Generating
three dimensional structures using planar images is not appropriate because
the results do not exhibit natural appearance due to being generated through
sweeping or similar techniques. Paraphrasing, they appear to be too mechan­
ical and regular. Therefore, a need for three-dimensional tree models arises.
Film scenarios which have to be quickly worked out make fast generated tree
models necessary. Especially for real-time simulations that generate complex
three dimensional sceneries, adding flavors like trees or small forests must not
impair the performance, thus near real-time generation is desirable. The quick

1

CHAPTER 1. INTRODUCTION

generation constraint renders fractal, procedural models more suitable, because
computer generation of fractals is fast and accurate.

Tree models with aging capabilities are also desirable. Agricultural simula­
tions and class-simulations for botany render aging models important. Facili­
tating natural forces during tree model growth, forests can be modeled as living
systems with trees at different ages. Botany classes for children can make use
of aging trees built by computer simulations to instruct young people about the
acts of nature on trees. Having real-time tree aging tree models can be fruitful
in following what-if scenarios. A responsive system can enforce the learning
of children because they do not lose their interest while waiting for the next
generation of trees.

Other modeling techniques like particular branching patterns [2] [13], graftals
[30], extensions of graftals [26], particle systems [29], botanic structures [24],
iterated function systems [14] [25] [27] [28] or combinatorics of trees [7] provide
impressive results but lack the simple and fast generation cycles required for
real-time simulations. The fractal model by Oppenheimer [22] forms the basis
of our research, as it is a fractal model and considers the trunk formations.

In a broad sense, trees are branching structures with self-similarity and a
seemingly recursive form. These implicit features are good evidence to embark
on a procedural model. However, modeling the branching characteristics does
not suffice for realism. Needle-like branches — <is usually is the case with
most of the tree models in the literature which mainly concentrate on only
branching patterns — must be covered with leaves to hide away their skeletal
structure. In our model, the trunk is an important, integral part of the entire
tree. Mimicking branch deformations render the model more realistic in terms
of visualization.

A selective survey of tree models with extreme features follows in Chapter
2. Building on the knowledge base peaked by Oppenheimer, Chapter 3 intro­
duces our model starting with a basic fractal model with exact self-similarity.
Statistical features enhance this simple model to cover the varied tree forms
due to natural forces. This refined model is further developed to contain sim­
ulated time as a parameter of aging. We present the implementation details in
Chapter 4. Chapter 5 concludes the thesis and provides directions for further
enhancements.

CHAPTER 1. INTRODUCTION

Color plates of screen shots presenting the rendering modes of our system
and the key-frames for the growing animation of an example tree are collected
in Appendix A. Appendix B provides formal definition of fractal self- similarity
and self-affinity concepts.

C h ap ter 2

Background

2.1 Fractal G eom etry

In the past, when mathematics was mainly concerned with smooth sets and
functions, Euclidean Geometry was considered to be the ultimate geometry
whereby rules of calculus were applicable. This geometry with deep roots
sometimes fell short to cover certain non-smooth, irregular sets. Yet, such
cases were regarded as individual peculiarities until rather recent times, more
precisely the last quarter of the 19th century. The study of the non-smooth
(non-differentiable but continuous) sets is believed to begin with the publica­
tion of such a set by Weierstrass in 1875. Many other sets by Cantor, Peano,
Lebesque, Hausdorff, Koch, Sierpinski, and Besicovitch followed in the next 50
years without a theory which could cover them. However, this effort showed
that Euclidean Geometry had its shortcomings.

The peculiarities of one time, when grown in number, deserved a more
careful study. Although they are oddities in terms of Euclidean Geometry,
they all share common properties which make them a class of their own. The
shared features include [3] [4]:

• self-similarity (sets having copies of themselves within themselves)

• detail at arbitrarily small scales (fine detail)

CHAPTER 2. BACKGROUND

• straightforward simple definition in contrast to intricate detailed struc­
ture

• recursive definition (procedural definition rather than functional)

• not easily described in classical terms of calculus (not a locus of a sim­
ple geometric condition (Euclidean), not a solution set for any simple
equation)

• no well-defined local geometry (not differentiable at any point)

• not measurable in classical terms (e.g. a curve with a length of zero may
be infinite)

Geometry provides a framework applicable to nature. Planetary orbits can
be approximated by ellipses and the shape of the earth is assumed to be a sphere
for many practical reasons. Early studies centered around modeling nature for
easier manipulation. A glance at recent literature in physics, however, shows
natural objects not described as simple classical geometrical entities but as
fractals — cloud boundaries, topographical surfaces, coastlines, turbulence in
fluids, and so on. Although none of these are actual fractals, they behave
similarly over sufficient ranges of scale. Similarly, there are no perfect lines or
circles in nature. So, generalizations drawn using fractals are not less general
than those made with classical geometric entities, at least in a qualitative
perspective.

Fractal Geometry is the study of fractal structures, drawing similarities to
classical geometry and its applications. Modeling is, of course, one of the most
important uses of geometry. Natural objects used to be modeled by simplistic
objects of classical geometry. But the smoothness of such hypothetical models
make them useless when detail is important at scales. On the other hand, use
of fractal objects provide more precise models at wider ranges of scale.

Fractal dimension is an important issue in identification of models with
different appearances. Arbitrary pattern recognition is an area where patterns
are regarded as fractals. Their dimensions are calculated and this data is used
to provide the rules of recognition or matching of new samples with known
ones.

2.2 N atural Growth

Modeling natural phenomena has always been a challenge, especially before the
chaos theory. Traditional methods were only adequate to mimic macroscopic
trends in natural systems. Actually, complex behavior was regarded as a pe­
culiarity to be avoided. However, natural systems usually tend to be of this
odd kind when studied close enough over various scales. Microscopic behavior,
once overlooked, became the central concern after the advent of chaotic and
fractal concepts.

Natural growth of biological structures appears to be random in a broad
sense. Paraphrased, growth tends to be unpredictable, hence, hard to model.
Early endeavors rule out microscopic details or local behavior to provide a
simple understanding of the overall structures. As exemplified in Chaos [9],
ecologists try to model populations in terms of traditional, calculus based ap­
proaches which turns out to be nothing but thin approximations to the real
phenomena. Economists try to model commodity prices using Gaussian dis­
tributions, only to find out that it is impossible to generalize or extrapolate
for even short term predictions. As it turns out, the macro trends do not fit
with traditional distribution models. Rather, they resemble themselves at dif­
ferent scales. Annual and centennial fluctuations in commodity prices tend to
be rather similar, which emerges as statistical self-similarity as described in
Section 2.1 and Appendix B.

CHAPTER 2. BACKGROUND 6

2.3 B otanic Growth

Environmental issues become more important as man destroys vital resources
for life. Studying plants and their growth patterns may prove useful for the
preservation of the environment. With this in mind, botanic modeling emerges
as a vital tool for the conservation of the nature.

Modeling real-life growth patterns of plants may provide a better under­
standing of the world around us. Plant growth exhibits rather regular patterns
in a global sense. With traditional approaches, it is possible to claim that
plants grow taller from year to year, building new parts of themselves which

CHAPTER 2. BACKGROUND

resemble the global form.

Modeling plants and their growth patterns is not an easy task, as the sim­
plistic patterns at first sight are rather illusory. The extreme regularity is only
at the surface, because the similarity is actually rather weak. Paraphrasing,
the self-similarity that is visible at first sight is not exact but rather statistical.
Natural formation of plants generate easily distinguishable structures which
resemble others in their species but are not identical in any way.

The concept of statistical self-similarity makes modeling plants more com­
plex than initial expectations. We try to provide a better understanding of
the processes involved in the growth of plants through a time-aware model of
trees. The following sections focus on tree models that attempt to capture the
essence of botanic growth patterns.

2.4 Tree M odeling

Tree modeling may be defined as a subset of botanic modeling. Trees exhibit
recursive and self-similar features, which can be exploited in procedural mod­
eling. Moreover, trees preserve coherence of their branch relations through
growth. The self-similarity concept, which is a result of the developmental
process, is characterized by Mandelbrot [15] as follows:

When each piece of a shape is geometrically similar to the whole,
both the shape and the cascade that generate it are called self­
similar.

A biological interpretation is provided in [8]:

In many growth processes of living organisms, especially of
plants, regularly repeated appearances of certain multicellular struc­
tures are readily noticeable.... In the case of a compound leaf, for
instance, some of the lobes (or leaflets), which are parts of a leaf
at an advanced stage, have the same shape as the whole leaf has at
an earlier stage.

We extend this concept of self-similarity to branch structures as well. A
tree model faithful to nature has to facilitate various features including

• Statistical self-similarity,

• Realistic branch forms,

• Realistic branching schemes,

• Extendibility, and

• Growth potential while preserving the general form.

Fulfilling these goals is possible with various models in the literature. How­
ever, we also introduce the concept of an interactive^ model.

2.5 V isual M odeling

CHAPTER 2. BACKGROUND 8

A classification of models is important because the application is actually what
defines the details. High detail models are usually much better suited to off-line
analyses. However, interactive modelers must sacrifice computation intensive
features to provide prompt response to the user.

A model that optimizes level of detail and complexity is desirable. This
brings about the concept of visual modeling. We term a model visual, if it has
pleasing visual aspects with as little complexity as possible. Heuristics play an
important role because they are vital for approximating complex behavior. We
introduce the complexity of the models as the computation time they require.
Models with high detail and complex synthesis are disregarded due to our
initial objectives presented in Chapter 1. Rephrasing, we seek to build a tree
modeling system with near real-time response and natural visual appearance.

Our core goal is visualization of trees; therefore, the model needs to be
regarded as means rather than an end.

model which can be manipulated in near real-time

2.6 M odeling Approaches

Many modeling approaches have been tried to mimic static and growing plants.
Of these, the most noteworthy approaches are using iterated function systems
(IFS) and models faithful to botanical structure and development. These two
models represent two extreme cases in the sense that IFS approach [14] [25]
[27] [28] is highly simple and artificial due to the grammatic rewriting rules
involved, and the botanical model [24] is extremely detailed to reproduce the
natural phenomenon eis accurately as possible.

CHAPTER 2. BACKGROUND 9

2.6.1 Iterated Function System s

Iterated Function Systems (IFS) provide a modeling paradigm based on gram­
mars [12]. They constitute a base for Lindenmayer Systems (L-Systems) which
are used for modeling plants.

L-Systems are conceived as a mathematical theory of plant development
[14]. Later studies based on L-Systems proved to be useful in plant modeling,
especially after geometric interpretations have been added [25] [27] [28].

L-Systems facilitate a developmental approach to plant modeling with two
distinctive features:

• Emphasis on the space-time relation between plant parts.

• Inherent capability of growth simulation.

Turtle geometry is used as the medium to combine the rewriting rules of L-
Systems with geometric entities. The turtle interpretation provides the branch
axes which must be post-processed for visualization. The common approach
is to build the skeleton with line segments as produced by the turtle interpre­
tation, followed by adding leaves which hide away the underlying needle-like
branches. Since the global form is realistic, close-ups are avoided for fine visu­
alization. The power of the L-Systems is especially in generating herbaceous

CHAPTER 2. BACKGROUND 10

plants with thin branches and numerous leaves. They are also good for mod­
eling individual plant organs. The main concern is to build natural branching
structures. Details of branch forms are usually left over to post-processing.

2.6.2 H ighly Botanic M odels

A highly botanic model is proposed in [24]. As opposed to major algorithmic
models based on the irregularity and fuzziness of objects, featuring fractals,
graftals or particle systems, others focusing on branching patterns with em­
phasis on morphology, the authors stress faithfulness of the models to the
botanical knowledge of the architecture of the trees. They study how trees
grow and occupy space, where and how leaves, flowers or fruits are located,
etc.

The botanical model incorporates time as well, so that viewing the aging
of a tree is possible. The model also provides for easy integration of physical
parameters such as wind, incidence of factors such as insect attacks, use of
fertilizers, and plantation density. All of these features make this model a
suitable tool for agronomy or botany.

All these features come with a cost; i.e. computation time. The highly
detailed, botanically correct model is too complex for fast generation because
of the computations involved in modeling. With near real-time user interaction
in mind, the highly botanic model falls short and emerges as a state-of-the-art
off-line model.

2.6.3 Our M odel

The tree models presented in the previous sections represent the two extremes.
Iterated function systems (Section 2.6.1) provide a very artificial way with
little detail at the branch structure level. The rewriting rules provide the
self-similarity at the macro level. As expected, trees modeled using IFS’s are
usually covered with leaves which hide away the skeletal branches. The overall
appearance is more than satisfactory for relatively large trees with great num­
ber of branches. This approach resembles the traditional modeling techniques

CHAPTER 2. BACKGROUND 11

(See Section 2.2) which rule out microscopic behavior (individual branch struc­
tures) in favor of macroscopic features (total appearance of the trees). The IFS
method builds trees fast, ignoring natural features of the branches.

The other extreme modeling technique is the highly botanic model (Section
2.6.2) which is too detailed for interactive manipulation. Its high level of
realism is good for building stand-alone trees which ignore the construction
time.

We propose a model which is easy to build and features high level of indi­
vidual branch structure details. The model is developed in three stages as de­
scribed in Chapter -3 for different applications. The basic model starts off with
a simple, non-statistical structure. The refined model provides the stochastic
features needed to be more realistic. This model is sufficient if static trees are
to be modeled with preset number of branching levels. When we introduce
growth animation, the refined model is further manipulated to provide the
time-aware model. This model decides on branch metrics and recursion depth
level using simulated time. It also preserves the global structure over time by
facilitating independent pseudo-random number generators for all probabilistic
variables. Thus, growing trees exhibit coherence in their overall form through
time.

A detailed description of the models follow in the next chapter.

C h ap ter 3

The Model

We propose a model of tree structure and growth with emphasis on real-time
manipulation and interaction. For this purpose, we start with a simple model
based on recursion. The model is essentially procedural and fractal [12]. Elab­
orating on its shortcomings, we provide a more complex, refined model to
account for the natural phenomena involved. Building on the refined model,
we present the time-aware model which allows time dependent modeling for
aging animation.

3.1 T he Basic M odel

The basic tree model emerges as a recursively defined procedural structure
with rather simple rules guiding the growth of its branches. The recursion
provides the fractal nature of the model. Theoretically, the tree as a whole is
identical to higher level sub-trees in the simplest case, whereby all parameters
are kept constant through recursion steps. In this context, the model is exactly
self-similar.

The basic algorithm (Figure 3.1), simply provides the recursive construction
pattern of the tree model. The build_a_braiich() procedure uses a generalized
cylinder to mimic the branches. The bu ild_children() procedure shoots off
the next level of branches atop the current one^.

'Implementation details are presented in Chapter 4.

12

CHAPTERS. THE MODEL 13

construct_tree(parameters)
{

if (depth == deep_enough)
return;

else

build_a_branch(parameters);
build_children(parauneters);

}
}

bu i ld_ a_branch (paraimet er s)
{

build a cylinder and transform to appropriate position in space
}

build_children(parameters)
{

repeat n times
construct_tree(new_set_of.parameters);

>

Figure 3.1. Basic Algorithm

This algorithm, in its current state, merely provides recursion as a means
of mimicking self-similarity. It becomes more productive when the parameters
are changed for different recursion depth levels and branch count. Some of the
important parameters are given in Table 3.1.

The basic model is based on a model proposed by Oppenheimer [22]. Our
model differs essentially in the distribution of higher level branches atop a par­
ent branch. Oppenheimer’s model follows the direction of the stem for a major
axis of the tree; whereas in our model, higher level branches are distributed in
a cone whose tip is positioned at the tip of the parent branch. Therefore no
distinction is made between branches and stems. This provides a more uniform
model in terms of recursion.

Linear computation of new parameters for each child branch or a sibling

CHAPTERS. THE MODEL 14

Top angle of the cone of next level of branches
Size ratio between consecutive branch levels
Rate of tapering in terms of radii ratios along a branch
Number of branches at a level
Initial length and radii of the first branch
Number of discs along a branch axis
Number of points sampled on the discs along the branch axis

Table 3.1. Selected parameters for the tree model

group yields a heuristic but a rather regular growing tree structure. Heuristics
drawn on life observations include implicit features like higher levels of branches
being smaller than lower levels. Another bizarre heuristic is that all branches
shoot off the tip of their parent branch.

Branches are regarded as generalized cylinders, tapered along their axis
to provide a nature-like flowing branch look. This also provides consistency
with shorter higher level branches as they are made narrower. The tapering
is linear and the primary axis of the cylindrical branch is straight. These
features yield a rather mechanical tree, in the sense that branches are uniform
and resemble robot arms. These solid cylinders are sampled at regular intervals
along their primary axis. Discs are generated, centered along and orthogonal
to the axis. These circular discs are further sampled at regular intervals along
their perimeters to generate discrete polygons to simulate the discs. These
orthogonal polygons provide a wire-frame model. Since each polygon has the
same number of vertices and are stacked along the axis, consequent polygons
can be used to build patches simulating the surface of the cylinder. These
patches are used in the rendering process described in Chapter 4.

3.2 The Refined M odel

The basic model in Section 3.1 is good for a fast and simple simulation of
tree structures. Yet, its exact self-similarity renders it obsolete for serious
tree modeling. Statistical self-similarity is the essence of mimicking natural
phenomena. As proposed in [22] and [12], random numbers in fractal modeling

CHAPTERS. THE MODEL 15

yield more life-like structures than exact ratios.

build_tree()
{

calculate(ftbottom, &top);
if (final.depth > 0)
maike_tree(0, 0, parameters, bottom, top);

}

make_tree(child_no, depth_no, parameters, bottom, top)

if (depth_no == MAX_depth_no)
return;

else

flesh_out_current_branch();
increment(child_no, depth.no);
setup.rajadom.seedsO;
prepare.transformationsO;
repeat number.of.children.times
{

if (not.pruned(child.no, depth.no))
{

transform(ftbottom, &top);
prepare.new.set.of(parameters);
make.tree(child.no, depth.no, parameters, bottom, top);

}
}

}
}

Figure 3.2. Refined Algorithm

With this in mind, we propose a refined model procedurally as in Figure 3.2.
The main difference in this model is the inclusion of stochastic manipulation of
both geometric and topological parameters. Almost all parameters are given a
mean value, calculated as in the basic model, followed by a variance cancelling
out the effects of exact self-similarity.

CHAPTERS. THE MODEL 16

Full tree with fanout = 3 Dashed branches are to be pruned

Dotted branches are implicitly pruned because of their parents
Final pruned tree

Figure 3.3. Stochastic Pruning of Branches

Statistical self-similarity provides non-identical sub-trees bearing resem­
blance to other sub-trees and the whole tree. This feature adds a natural
visual aspect to the model. Furthermore, stochastic pruning of branches is in­
troduced into the model. Paraphrased, initial branch count is used to distribute
the sibling branches equally inside the branch cone, but some of the proposed
branches are pruned randomly to enhance the natural aspects and suppress
the regularity of the model. Figure 3.3 provides a 2D example of pruning. The
dashed branches in the middle tree are to be pruned. The selection is based
on a random survival-of-the-fittest. With certain probabilities, some branches
are pruned down. The dotted branches are siblings of the pruned ones, which
are therefore implicitly pruned.

Further refinements are made to the fleshing-out of the branches. Initially,
in the basic model (Section 3.1), branches are assumed to be simple gener­
alized cylinders with tapering. Further enhancements are introduced in the
refined model. Each branch starts off as in the basic model, but it is perturbed
stochastically to provide a more natural appearance. The discs are sampled or­
thogonally at constant, uniform intervals along the straight branch axis. Then
the centers of these discs are transformed in 3D using a mean and variance
of displacement along the orthogonal axes. Thus, the straight cylinder axis
becomes distorted with random perturbations to its linearity. A second en­
hancement is varying the linearly tapered disc radii. The mean radius length

CHAPTERS. THE MODEL 17

is computed by linearly interpolating between the bottom and top radii as in
the basic model. A variance is introduced into the radii length to deform the
smooth linear tapering of cylindrical branches. This feature provides a wig-
gly appearance, accounting for the non-linear local enlarging of branch trunks.
(See Figure 3.4 for details).

3.3 T he T im e-A w are M odel

So far, both of the proposed models are good for still tree structures with
a preset depth and level-wise branch count. Our scope, however, covers the
growth animation of trees as well. Hence, we propose time-awareness of the re­
fined model to provide key-frames for discrete time values. Time is interpreted
as a parameter in evaluating the final depth of recursion. Furthermore, both
global time and local depth of a branch are used in computing the scale ratio
of branches with respect to other levels. A heuristic involved in the process
is that a branch grows to its theoretical (initially preset) maximum size log­
arithmically. This provides fast initial growth, dampening as the branch gets
older. This scale factor is used for the height and the radius of the branches.
Application to both dimensions keeps the branches at nearly constant aspect
ratio at different time values. Another heuristic employed in the model is that
the cone, in which the sibling branches are distributed, enlarges in time to
mimic the weight of the growing child branches.

The time-awareness enhancement to the refined model provides an easy
means of generating key-frames for growth animation. Recursion depth is
proportional to the time value. The scale factor is a function of both. If a
level is added every n units of time, the scale factor reaches 0.5 in n/2 time
units, dampening logarithmically. In other words, it becomes 0.75 at n time
units, and proceeds to 0.875 at 2n time units. After 4n time units, when the
next level of branches are born, the previous layer reaches 93.75% of its full
size. This heuristic logarithmic growth pattern is implemented for n = 4 with
pleasing results. (See Figure 3.5).

Implementation details of the time-aware model and the real-time graphical
user interface are presented in Chapter 4.

CHAPTERS. THE MODEL 18

. C
c :

c >·.

.< Z JZ >

. Cc

C _ r 3 > ,

r > ·

Linear Tapering

(Basic Model)

Varying Centers

(Refined Model)

C

:<Z
c
c

Varying Radii

(Refined Model)

Varying Centers & Radii

(Refined Model)

Figure 3.4. Enhancements for Branch Formations

CHAPTERS. THE MODEL 19

Normalized HeightA
0.96875
0.93750

0.87500

0.75000

0.50000 ------

Time
t t t t t
1 2 3 4 5

Figure .3.5. Logarithmic Branch Growth

C hap ter 4

Implementation

We propose a time-aware model for fractal tree structures in Chapter 3. The
main concern of the model is fast construction and rendering. The model
is implemented on Silicon Graphics Iris Indigo XS24 workstation^. Real-time
user interaction is regarded as the main concern throughout the implementation
phase.

We present implementation details about the model itself in Section 4.1.
Section 4.2 presents the features of the real-time graphical user interface im­
plemented under X-Windows using the Motif 1.2 widget set.

4.1 Im plem entation of the Tim e-Aware M odel

The Time-Aware Model is an enhanced version of the Refined Model presented
in Figure 3.2. The recursive core is kept with modifications to account for the
time dependency. The Refined Model facilitates individual random number
generators for all stochastic parameters so that bcisic form of the entire tree
stays consistent over varying time values.

 ̂Entry level SGI workstation in 1992.

20

CHAPTER 4. IMPLEMENTATION 21

4.1.1 C onstruction

Branch construction starts at the origin of the 3D space. The initial branch
axis is in the positive 2:-axis direction. Discs are sampled at equal intervals
along its length orthogonally. Next phase varies the linearly varied radii of the
discs to provide the wiggly appearance. Finally, center points are translated
in the xy-plane so that discs are shifted out of uniform order. Translating
the center points in the positive .s-axis direction enlarges the patches on the
surface of the generalized cylinder branches. This is an unwanted effect which
distorts the rendered view. Therefore, translation of the centers is confined to
the xy-plane.

After the distortion of the layout of the discs, points are sampled on their
perimeters yielding regular polygons orthogonal to the positive z-axis. These
polygons are stacked on top of each other constituting discrete control points
for the surface of the branch.

The branch is modeled as a collection of discrete surface control points.
These points are then moved to their appropriate position in space relative to
the overall tree structure using linear transformations [11] [31].

This procedure for generating control points for branches simplifies the
construction of the tree. This is desirable as the core concern is speed in
the generation process. The transformation matrix is computed only once for
each disc along a branch. Scaling is performed on the original branch at the
origin. This renders the single transformation matrix possible because relative
placement is already accounted for. The transformation then becomes simple
rotations and translations to locate the branch at its appropriate place and
correct orientation with respect to the parent branch.

Branches are generated in a depth-first manner due to the implicit ordering
of recursion. However, this presents no inconvenience for the construction
process. The data structure (presented shortly) renders it possible to preserve
adjacency relationships between parent and sibling branches.

CHAPTER 4. IMPLEMENTATION 22

Figure 4.1. Data Structure for a Branch

The Data Structure

As presented in Section 4.1.1, the tree consists of branches which are in turn
represented by control points sampled on their surfaces. We also need the
recursion depth level, and the branch axis bottom and top points as described
in Section 4.2. Rendering phase needs, not only the control points, but also the
normal vectors at these points for correct shading. Therefore, data required for
a branch is a contiguous array of (control point, normal vector) pairs defining
the surface (See Figure 4.1). The data structure for the tree model is implicitly
a tree version. The important feature is that each node has variable fan-out.
Therefore, we need a generalized tree data structure.

CHAPTER 4. IMPLEMENTATION 23

As discussed in Section 4.1.2 and presented in Figure 4.1, branches are
stored as individual entities. They do not e.xhibit any kind of relationship with
their parent, peer and offspring branches. The adjacency has to be accounted
for so that the final visualization can identify the entire tree as a single object.
The unifying data structure is presented in Figure 4.2, where each branch of
the tree on the right is represented by a box on the left. Each box contains
three pointers; namely one for the branch data (Trunk), one for the first child
branch, and one for the peer branch. The rendering phase traverses the tree
breadth-first, visiting peer branches before progressing to the siblings.

Figure 4.2. Generalized Tree Data Structure

Without disregarding the speed concern, we need a fast solution for the
intersection of generalized cylinders problem. The problem arises at branch
intersection points. Even for just two branches meeting at a junction, since they
are neither collinear nor parallel, they cannot maintain the continuity expected
of natural branch connections. Therefore, a heuristic solution has been adopted
(See Figure 4.3). The primary axis top of a parent branch is adjacent to the
axis bottom of the offspring branch. As we have sampled points on discs
along the branches, we use them to create a pseudo-interconnection. The discs
involved are the second top-most in the parent and the second bottom-most
in the sibling. During the rendering process, a wedge is formed traversing the

CHAPTER 4. IMPLEMENTATION 24

points on the two discs in counter-clockwise fashion (See Figure 4.4). This
ensures that no hole is left at the interconnection node. Rendering details are
given in Section 4.1.2.

Axis of child branch

Figure 4.3. Wedge Formation at Branch Intersections

This heuristic solution to branch intersections enforces a refinement in the
data structure. Each branch must have a link to all of its siblings. Since the
number of siblings are not exactly known beforehand^, the data structure needs
to be flexible.

We propose a tree structure with nodes having three pointers. One pointer
is for the contiguously allocated branch surface control points. The other two
pointers are for the first child and the first peer branch. Therefore, to reach
all first level siblings, a branch follows its first child link followed by the peer
link of that child until no more child peers are available. This data structure

^Stochastic pruning, see Section 3.2.

CHAPTER 4. IMPLEMENTATION 25

Figure 4.4. Wedge surface consists of patches generated by visiting the corners
counter-clockwise

is easy to construct and provides all of the flexibility we need for the rendering
phase.

M ethod Explanation
Line Approximated axis drawn between bottom and top centers
Disc Polygons sampled as cross-sections of the branch

W irefram e Control points on the branch surface connected
Shaded Polygons in the wireframe structure Gouraud [10] shaded

T ex tu red Polygons in the wireframe structure texture mapped

Table 4.1. Rendering Methods

4.1.2 Rendering

The model is implemented on a Silicon Graphics Iris Indigo XS24 workstation
with the IrisGL library [1] [16] [17] used in the rendering process. User interface
is implemented under X-Windows [18] [19] with the Motif widget set [20] [21].

Various levels of rendering are implemented for easy manipulation of large
trees as well as small ones. The rendering methods are given in Table 4.1.
These different rendering techniques are also utilized in user interaction as
described in Section 4.2.

The rendering process is five-fold. For the line case, we only need the
bottom and top center points for each branch. Connecting these points by

CHAPTER 4. IMPLEMENTATION 26

straight line segments, we get a skeletal tree which provides an idea about the
final form. As it is the fastest to generate — consisting of line segments only —
the line method is ideal for preview purposes encountered in user interaction.

The disc model provides a cross-sectional view which is useful when manip­
ulating trunk parameters like branch width and related ratios. It actually uses
all of the data generated in the construction phase. The discs are rendered
as polygons consisting of the sampled points. The disc method is also a fast
rendering scheme, because it only consists of line segments as in the previous
case.

The wireframe method connects the discs of the previous case, forming
the branch surfaces. It also shows the wedges formed to cover the branch
intersections. With this feature added, it is good for previewing the actual
form of the final tree.

The shaded model is based on the wireframe model. The IrisGL library
provides hardware accelerated Gouraud[10] shading with at most eight light
sources. The normal vectors computed at the construction phase are utilized
to speed up the rendering.

The final rendering method is texture mapped. This is based on the shad­
ing method with the addition of a simple bark texture to enhance the visual
impact. IrisGL provides library calls to simplify texture mapping. Texture
map corner coordinates are related with surface patch corners. Pre-computed
normal vectors enhance the texture mapping with shading. This method takes
more time than all others but provides the best visual results.

4.2 R eal-T im e Graphical User Interface

Within the scope of the thesis, we implement a system to design, render
and animate fractal tree models conforming with the Time-Aware Model. The
main concern is near real-time response with maximum interactivity.

The graphical user interface is built on X-Windows using OSF/Motif 1.2

CHAPTER 4. IMPLEMENTATION 27

Button Axis Direction Action
Left Horizontal

Vertical

Left
Right

Up
Down

Rotation around 2:-axis
Rotation around i-axis
Rotation around x-axis
Rotation around i-axis

Middle Horizontal Left N/A
Right N/A

Vertical Up Zoom in
Down Zoom out

Right Horizontal Left Rotation around y-axis
Right Rotation around y-axis

Vertical Up Rotation around i-axis
Down Rotation around x-axis

Table 4.2. Mouse Actions

widget set. Mixed mode programming^ enables standard Motif drawing win­
dows to be accessed through GL. Hence, Motif provides the framework to build
on.

GUU construction extends beyond widget creation and placement. Our
system approaches the interaction problem with the mouse in mind as proposed
by Ozgiig [23]. Keyboard interaction is usually slow and difficult to learn or
remember. On the other hand, the mouse is simple and fast to use. On­
screen sliders are chosen to easily manipulate various numerical parameters.
These sliders provide near real-time preview. All parameters except for those
related to the branch radius are previewed in the line rendered mode. For
the rest, the preview mode is the disc method, because of the cross-sectional
view. Moreover, the construction phase also optimizes itself to produce data
for the related preview mode. The line rendering mode needs only the branch
axis bottom and top points. The constructor makes use of this fact to skip
the generation of surface control points, which speeds up the building phase
considerably.

The power of the interaction mechanism, however, lies with the interaction
possible within the visualization window. The tree image is rendered in a GL

^IRIS documentation refers to hybrid programs that use GL and X-Windows as mixed
mode programs.

“̂GUI: Graphical User Interface

CHAPTER 4. IMPLEMENTATION 28

sub-window where the mouse has special functions.

Usually, 3D controls are difficult to manage with a 2D pointing device like
the mouse. We use the 3-button mouse installed on SGI workstations to rotate
and scale the tree. The mouse buttons are used in conjunction with dragging
to give the feeling of holding and transforming the tree model in the object
space. The mapping between the mouse events and the linear transformations
is given in Table 4.2.

When the rendering method is shaded or texture mapped, the rendering
time usually takes too long to allow fast interaction. As described in Section
4.1.2, line method is the fastest to complete. Therefore, the rendering mode
switches to line when user interaction is detected in the form of a mouse drag.
Thus, the system manages to respond in near real-time to rotations and scal­
ings. Once the drag stops, the original mode is restored to provide the desired
image.

Render mode switching in structure preview and user interaction makes
near real-time system response possible. This is an important issue for an
ergonomic interface. Avoiding the keyboard and concentrating on the mouse,
the user easily focuses on the tree model parameters and the image rendered
in the viewing window.

C hapter 5

Conclusion

Tree modeling poses many challenges when subjected to fast construction.
Heuristic methods are vital for a tree modeling system which must provide
near real-time user interaction both in construction and rendering phases.

We have presented such a system capable of generating time dependent tree
models with statistical self-similarity, stochastic branch pruning, and deformed
branch structures.

The Time-Aware Model is the result of many heuristic short-cuts. We
model the branches as generalized cylinders. We assume the cylinders have
polygonal lateral surfaces which are further sampled at regular intervals along
the main cylinder axis. This provides a mesh model of the generalized cylinder,
or branch. At this abstraction level, we can deform the regular polygonal
cylinders randomly to get more realistic images. The perturbations on the
centers and radii of branches provide the desired realism with natural wiggly
appearance.

Improvements on the deformation of branches are possible through bending
and twisting. In our model, the branch axis is assumed to be linear at first.
As a result of the random variations in disc centers, the linear axis becomes
zig-zag. Initially bending the axis can provide branches that point down in
contrast to up-going branches currently available. Twisting along the axis can
also generate flowing trunk patterns which might be desirable. Incorporating
pysical laws to compensate for external forces like gravity and wind conditions

29

CHAPTERS. CONCLUSION 30

can be fruitful. Bending in the reverse direction of gravity or in conformation
with directed wind effect can enhance the realism. Stiffness coefficient can
be used as a factor to improve the natural flavor of bending. Old branches,
assumed to be stiffer than younger off-shoots, can be made more resistive to
external forces, thus conforming with nature. These improvements add only
minor compexity to our near real-time model.

A major problem is faced at branch intersection points. The actual problem
is intersection of generalized cylinders. With our polygonal mesh defined on
the lateral surface of the cylinders, it is possible to speed up intersection gen­
eration heuristically. Instead of creating the intersection set of the branches,
we prefer post-processing of the model through means of creating parametric
wedges to fill in the gaps which occur at intersection of branches pointing in
different directions. Our data structure provides for quick implementation of
the problem because each parent branch can access the discs of any number
of its siblings. Thus, after rendering the branches which take part in the in­
tersection, wedges are constructed and rendered over the intersection point.
Using backface culling and z-buffer, it is possible to omit unwanted parts of
the wedges from the final image.

Time dependence of the tree model for growth animation is managed through
the use of simulated time as a parameter for branch length and recursion
level computations. A heuristic is employed for branch length calculations.
Logarithmic growth is assumed for aging branches. Furthermore, the cone in
which the sibling branches are distributed enlarges with increasing time. These
heuristics provide a fast modeling of aging of trees. Since the time-aware model
lacks botanic facts, enhancements are possible through introduction of rules
from botany.

Future work can be conducted in providing additional features to enhance
the realism possible with the current system. Key frames that can be gener­
ated at discrete time values can be interpolated both internally and through
the use of third-party animation packages. Current rendering is based on the
IrisGL library which provides Gouraud shading with simple texture mapping.
More realistic images are possible if the model is rendered using ray-tracing
or radiosity packages. However, such packages render the near real-time user
interaction impossible due to the amount of computations involved.

A p p en d ix A

Color Plates

In the following pages, color plates are presented which exemplify the rendering
modes and the aging simulation. First five plates show the line, disc, wireframe,
shaded and texture mapped tree models. The following five plates are of an
example aging sequence of a tree.

31

APPENDIX A. COLOR PLATES 32

'.ill I
2 ·> 0

I I u n k 1 cn< | t h

.

t h H .«t i «
2 0

Hot t o w l< -«<1 i u s

1 (>
I o|> R .k I i II s

. 8 0

W i <11 li R a t i o

6 0
S t. <> w - n I a I K ' li A i K | I <>

tt H o t II t s

2
il R I a IK' li o s

2 8

I i w · ·

< >

siiAi)i:i) riixiuRi; uuir
/.

Figure A.l. Rendering Mode: Line

APPENDIX A. COLOR PLATES 33

/rr*r
2b 0

I I IIII k 1 i ‘ M<| t li

. /b
I .« ' iK| I li H * * » > <>

3 0
H o i t o m K,i<l i u s

1 (>
l o p H a i i i u s

. 8 0
H i <11 h K a I i o

6 0
St o » - n I ai j c l i An»| I o

8
N D i s c s

8
I P o i n t s

3
N Hi .) II c li o s

2 S

IKXIURK QUIT
Z

AÖ A
, % % t / ’>

1 0 0 . (

1 00 . (

Figure A.2. Rendering Mode; Disc

APPENDIX A. COLOR PLATES 34

y

[I l i n k I o n «It h

. /b
I.«-n<i t h K .11 i o

2 0
H o l t o w K .«<1 i II s

1 (>
lop R .kI ins

. 8 0
H i <11 h R n t i O

6 0
St o w - H i . i n o i l An<i 1 «

4 P o i II ! s

2

4 Ri . i nch<>s

28

I I MO

<

S H A D K I) r i l X H J R K Q U \ T

7.

Figure A.3. Rendering Mode: Wireframe

APPENDIX A. COLOR PLATES 35

I f r v t : -JJ
2 \> 0

l i u n k l onq t . h

. 7 b

l .oiKf t h Rat i o

2 0

Hot . t o m R a d i u s

1 ()
Г о |> R a <1 i u s

.80
W i d t h R a t i o

60

S t o n i - B i . «nch An<il€>

8
M Discs

8
(t Vo i II t. s

2

N 1И aI Iо l i e s

->8
lime

< >

{.INK I ' HXTURK Q U I T

J

Figure A.4. Rendering Mode: Gouraud Shaded

APPENDIX A. COLOR PLATES 36

f n r
0

I I l i n k I <>n<| t h

. /·*

f,<'iM| t li H .11 I o

/0
H o t t o » H . lA I II K

1 f>

l o | > K . i i l i i i s

. 8 0
W i d t h R. i t i o

(>0
S t l i m - i i i . i n c h A n < | I c

M I' o i n t s

I H I .1 n r h c s

I 1 n .■

SHAD hi) I h X n J H h QU I I

% !?>■
' i . ! >

H I
\ h i f '

% /
'i:
%nr

1 0 0 . (

1 00 . (

Figure A.5. Rendering Mode: Texture Mapped

APPENDIX A. COLOR PLATES 37

uj
zi.o

I I l i nk 1 oiK| t . Ii

. Vb
I, n <j t h H .· t. i o

?.()

h o t . t o » Rai l i n s

1 ()
i o | > R .k I i n s

. 8 0
W i <11 h R a t i o

60
St. o i B- Bi a n c h A m | 1 «

8
N D i s c s

8
ii P o i n t. s

2

tt B l a n c h c s

10

SHADKD IMXTURi; QUIT
Z

Figure A.6. Tree generated at time 10

APPENDIX A. COLOR PLATES 38

; — » f r e t ' A1
2!>()

I 1 l i nk

. /b
If« I) t h R a t. i o

'
H o I. t o m R a <1 i u s

1 (>
' l ' o|> R a<i i u s

. 8 0

Wi<U. li R a t i o

60
I S t . o m - H i a i i c l i An<i 1 «
 ̂ a
tt D i s c s

8
N P o i n t s

2

H R i a n c h o s

2 0
l i m e

< >

T E X TU RK Ü U I T

Z

Figure A.7. Tree generated at time 20

APPENDIX A. COLOR PLATES 39

lij
0

I i l i nk 1 «n<i t h

. /U
I· o II <11 h K a t. i o

2 0

1̂01.1. om Radius
1 (>

To|> Radius
. . 8 0
W i <11. Ii R a t. i o

60
St. « w - B i a n c l i A t i < | l «

8

M D i s c s

8
II Do i n t. s

?.

H H i a n d i e s

?.'1

Time

SHADKD TKXTURh: QOIli
Z

T 'I 1/

" - 4 V

■'y

/
4/·

Figure A.8. Tree generated at time 24

APPENDIX A. COLOR PLATES 40

U
2 b 0I

T I l i n k h

i i . / b

• L < ^ n < | t l > K a t . i o

I ̂ 2 0
I B o t t o m R a < l i U K

I
I 1 < > | > K a < i i u K

.80

H i t . I i R a t . i o

60
| S t . « m - B i a n c h A n q 1 «

8
i ■ ■

t t I) i K c K

8

P o i n t , s j

2

I I B i a n c h o N

28 I

1 i m«

< >

I) I S C T K X T U R K O U I T

z

\ l · ' Kt4 r'·■- i V
i

‘■‘rrr
■y . . . c . ,

1 00 . (

1 00 . (J

Figure A.9. Tree generated at time 28

APPENDIX A. COLOR PLATES 41

I /П'С

2b 0
I I l i nk 1 o n q t h

. /Ь
I.oiKi t h R a t i о

2 0

Dot . t om R <i<I i n s

1 ()
I о |> R a d i n s

.80
W i <! t. h R a t i o

60
i St. o m - R i a n c h An<) 1 о

8

i) Discs
8

N P o i n t , s

2

M IH . m e l i e s

i2
l i m e

-UJ

Figure A. 10. Tree generated at time 32

A p p en d ix B

Fractal Similarity Concepts

When we refer to similarity in fractals, various concepts arise including self­
similarity and self-affinity with their exact and statistical forms. We present
a formal definition of the said terms [5].

The similarity transformation transforms points x = (x i ,...^xe) in E-
dimensional space into new points x' = (rxi, ...,rxE) with the same value of
the scaling ratio r. A bounded self-similar fractal set of points S is self-similar
with respect to a scaling ratio r if is the union of N non-overlapping subsets
S i , . . . ,S n , ^dch of which is congruent to the set r[S) ontained from S by the
similarity transform defined by 0 < r < 1. Here congruent means that the
set of points Si is identical to the set of points r[S) after possible translations
and/or rotations of the set. The similarity dimension is then given by

Ds =
\nN
In i

T

(1)

The set S is statistically self-similar when S is the union of N distinct
subsets each of which is scaled down by r from the original and is identical in
all statistical respects to r(S). Often, random sets — such as a coastline —
are statistically self-similar not only for a given value of the scaling ratio r, but
for all scaling ratios above some lower cutoff (the micro-scale) and some upper
cutoff (the macro-scale).

An affine transformation transforms a point x = (x i,..., xe) into new points

42

APPENDIX B. FRACTAL SIMILARITY CONCEPTS 43

x' — {riXi, ...^veXe), where the scaling ratios ri,...,rE are not all equal.

A bounded set S is self-affine with respect to a ratio vector r = (rj, ...,rE)
if S is the union of N non-overlapping subsets S i , ...,S n , each of which is
congruent to the set r(5') obtained from S by the affine transform defined by
r. Here congruent means that the set of points Si is identical to the set of
points r(5') after possible translations and/or rotations of the set.

The set S is statistically self-affine when S is the union of N non-overlapping
subsets each of which is scaled down by r from the original and is identical in
all statistical respects to r(5). The fractal dimension of even the simplest
self-affine fractals is not uniquely defined.

More details on self-affine and self-similar sets are available in [15].

BIBLIOGRAPHY 45

[12] J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes. Computer
Graphics. The Systems Programming Series. Addison-Wesley, 2nd edition,
1990.

[13] Y. Kawaguchi. A morphological study of the nature. Computer Graphics.!
16(3):223-232, 1982.

[14] A. Lindenmayer. Mathematical models for cellular interaction in devel­
opment. Journal of Theoretical Biology, 8:280-315, 1968. Parts I and
II.

[15] B. B. Mandelbrot. The Fractal Geometry of Nature. W. H. Freeman, San
Francisco, 1982.

[16] P. McLendon. Graphics Library Programming Tools and Techniques. Sil­
icon Graphics Inc., Mountain View, CA, 1991. Document Number 070-
1489-010.

[17] P. McLendon. Graphics Library Programming Guide. Silicon Graphics
Inc., Mountain View, CA, 1992. Document Number 007-1210-050.

[18] A. Nye and T. O’Reilly. X Toolkit Intrinsics Programming Manual, vol­
ume 4. O’Reilly L· Associates, Inc., osf/motif 1.2 edition, 1992.

[19] A. Nye and T. O’Reilly. X Toolkit Intrinsics Reference Manual, volume 5.
O’Reilly & Associates, Inc., osf/motif 1.2 edition, 1992.

[20] Open Software Foundation, Cambridge, MA. OSF/Motif Programmer’s
Guide, release 1.1 edition, 1991.

[21] Open Software Foundation, Cambridge, MA. OSF/Motif Programmer’s
Reference, release 1.1 edition, 1991.

[22] P. E. Oppenheimer. Real time design and animation of fractal plants and
trees. ACM SIGGRAPH, 20{4):55-64, 1986.

[23] B. Özgüç. Thoughts on user interface design for multi window envi­
ronments. In E. Gelenbe and A. R. Kaylan, editors, Second Interna­
tional Symosium on Computer and Information Sciences, pages 477-488,
Istanbul, Turkey, October 1987. Boğaziçi University.

BIBLIOGRAPHY 46

[24] P. de RefFye, C. Edelin, J. Frangon, M. Jaeger, and C. Puech. Plant
models faithful to botanical structure and development. ACM Computer
Graphics^ 22(4):151-158, August 1988.

[25] P. Prusinkiewicz, A. Lindenmayer, and J. Hanan. Developmental models
of herbaceous plants. ACM Computer Graphics, 22(4):141-150, August
1988.

[26] P. Prusinkiewicz. Applications of 1-systems to computing imagery. In
Proceedings of the Third Workshop on Graph Grammars and their Appli­
cations to Computer Science, pages 534-548, Warranton, December 1986.

[27] P. Prusinkiewicz and J. Hanan. Lindenmayer Systems, Fractals, and
Plants, volume 79 of Lecture Notes in Biomathematics. Springer-Verlag,
1989.

[28] P. Prusinkiewicz and A. Lindenmayer. The Algorithmic Beauty of Plants.
Springer-Verlag, 1990.

[29] W. T. Reeves and R. Blau. Approximate and probabilistic algorithms for
shading and rendering structured particle systems. Computer Graphics,
19(3):313-322, 1985.

[30] A. R. Smith. Plants, fractals and formal languages. Computer Graphics,
18(3):1-10, 1984.

[31] A. Watt. Fundamentals of Three-Dimensional Computer Graphics.
Addison-Wesley, 1989.

