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ABSTRACT

CODING OF SPEECH AND IMAGE SIGNALS USING 
GABOR DEGOMPOSITION

Emre Gündüzhan
M.S. in Electrical and Electronics Engineering 

Supervisor: Assoc. Prof. Dr. A. Enis Çetin 
July 1994

A new low bit rate speech coding method which uses Gabor time-frequency 
decomposition and the matching pursuit algorithm is developed. A new al­
gorithm based on the projections onto convex sets method is used to smooth 
the discontinuities between speech frames. A two-dimensional extension of 
the Gabor time-frequency decomposition is also developed for image coding. 
Simulation examples are presented.

Keywords: Speech coding, image coding, time-frequency dictionaries, match­
ing pursuit algorithm.

Ill



ÖZET

GABOR AÇILIMI KULLANARAK SOZ VE İMGE 
SİNYALLERİNİN KODLANMASI

Emre Gündüzhan
Elektrik ve Elektronik Mühendisliği Bölümü Yüksek Lisans 

Tez Yöneticisi: Doç. Dr. A. Enis Çetin 
Temmuz 1994

Gabor zaman-sıklık açılımı ve karşılaştırmalı takip algoritması kullanılarak 
yeni bir az bitle söz kodlama tekniği geliştirildi. Söz çerçeveleri arasındaki 
süreksizliğin azaltılması için içbükey kümeler üzerine izdüşüm tekniğine dayanan 
yeni bir algoritma kullanıldı. Gabor zaman-sıklık açılımının iki boyuta genellemesi 
yapıldı ve imge kodlama için kullanıldı. Benzetim çalışmaları yapıldı.

Anahtar kelimeler : Söz kodlama, imge kodlama, zaman-sıklık sözlükleri, 
karşılaştırmalı takip algoritması.

IV



ACKNOWLEDGMENT

I would like to thank Assoc. Prof. Dr. A. Enis Çetin for his supervision, 
guidance, suggestions and encouragement throughout the development of this 
thesis.



Contents

1 Introduction 1

1.1 N otation ................................................................................................ 2

1.2 Time-Frequency Atomic Decom positions......................................  3

1.3 Matching Pursuit in Finite Spaces...................................................  3

1.4 Matching Pursuit with Gabor Time-Frequency Dictionaries . . .  6

2 Speech Coding 9

2.1 Reducing Discontinuities Using the Method of Projections Onto
Convex S e t s .........................................................................................  12

2.2 Simulation E xam ples.........................................................................  14

2.3 Computational Complexity of the New Speech Coding Method . 16

3 Image Coding 20

3.1 Simulation E xam ples.........................................................................  22

4 Conclusion 26

VI



List of Figures

1.1 (a) A discrete Gabor atom with parameters (s,p, k, (j>) =  (50,80,25, j )
and length N  =  200 and (h) the magnitude of its Fourier trans­
form.........................................................................................................  8

2.1 The 4 bit uniform quantizer used to quantize the angles. 14

2.2 (a) An original speech signal, (b) the signal after coding/decoding
using the Gabor time-frequency decomposition, and (c) the sig­
nal after coding/decoding using an LPC-10 vocoder...................... 18

2.3 (a) A voiced speech segment, (b) the coded/decoded segment
having two discontinuities, and (c) the same segment after ap­
plying the POCS based algorithm twice........................................... 19

2.4 (a) An unvoiced speech segment, (b) the coded/decoded seg­
ment having two discontinuities, and (c) the same segment after 
applying the POCS based algorithm twice....................................... 19

3.1 The original (a) and the reconstructed (b) Barbara images. . . . 24

3.2 The comparison of the matching pursuit and JPEG algorithms
using the Barbara image...................................................................... 25

3.3 The comparison of the matching pursuit and JPEG algorithms
using the Lena image. 25

VII



List of Tables

2.1 The 6 hit n-law quantizer used to quantize the inner products. . 15

3.1 The compression results for the Barbara image..............................  23

3.2 The compression results for the Lena image....................................  23

Vlll



Chapter 1

Introduction

Signal decompositions over a family of functions are widely used in signal 
processing. The family of functions used in such a decomposition is called a 
dictionary. The main advantage of signal decomposition methods is to rep­
resent a given signal by a countable set of coefficients. Most commonly used 
decompositions are the Short-time Fourier transform (STFT) [2], the Wigner- 
Ville transform [3], and the wavelet transforms [4], [5]. The family of functions 
in a dictionary are usually linearly independent and they form an orthonor­
mal basis. Using a basis as a dictionary of a decomposition may result in the 
smallest possible dictionary for the exact reconstruction of the signal, however, 
it is difficult to extract some time-frequency properties of a signal from such 
an expansion. For example, the decomposition of signals well localized in time 
over a Fourier basis or the decomposition of signals having a narrow high- 
frequency support over a wavelet basis results in a poor representation. These 
facts motivate decompositions over large and redundant dictionaries. Instead 
of using a single basis in this thesis we select functions, which are most useful 
to represent our signal, from a redundant dictionary and decompose the signal 
over these functions.

Using a large dictionary is especially useful in the representation of a signal 
whose localization in time and frequency vary widely. In this case using a single 
basis will not usually be sufficient for a good representation and the dictionary 
should contain functions which are well-localized both in time and in frequency. 
The elements of such a dictionary are called the time-frequency atoms. The 
decomposition of a signal over a redundant dictionary is adaptive. A signal is 
represented using a chosen subset of the dictionary such that the atoms in the 
subset are best adapted to the signal properties. There is an algorithm, called 
the matching pursuit, which can perform such an adaptive decomposition over

1



families of functions [1]. There is a similar algorithm developed by Qian and 
Chen to expand signals over a time-frequency dictionary [6].

In this thesis a time-frequency atom family, called the Gabor dictionary 
[1], is used in speech coding. A low bit rate speech vocoder which uses a 
time-frequency decomposition is proposed. The same method is also applied 
to image coding using two-dimensional atoms. In the next section we intro­
duce the time-frequency atoms and the matching pursuit algorithm which are 
studied in detail in [1]. In Chapter 2, a speech coding method using Gabor 
time-frequency atoms is described and a new algorithm to smooth the disconti­
nuities between speech frames is developed. Some simulation examples are also 
given in Chapter 2. In Chapter 3, two-dimensional Gabor atoms are developed 
and an image coding algorithm is given. Some simulation results for image 
coding are also shown in this chapter.

1.1 Notation

Consider the Hilbert space L^(C) of complex valued functions, / ,  which satisfy
/ OO

I f{t)  p dt < OO. (1.1)
-OO

For any f , g ^  L^(C), the inner product is defined by
/ OO

f{t)g*{t)dt (1.2)
-OO

where g*{t) is the complex conjugate of g{t). The continuous-time Pburier 
transform of /  6 li^(C) is defined by

A 1 poo
m  =  ^  y_^ /(O e - '-r f i . (1.3)

Let H be the inner product space of complex valued discrete-time functions 
periodic with N. We define the inner product of f ,g  EiUhy

N - l

< h g  > =  f[n\g"[n]. (1.4)
n=0

For any a —> 0 (or oo), any quantity that is bounded by a constant times a 
is denoted by (9(a).



1.2 Time-Frequency Atomic Decompositions

In general, a family of time-frequency atoms can be generated by scaling, shift­
ing, and modulating a window function g{t) G L2(R). We assume that g{t) 
is real, continuously differentiable, has unity norm, and | g[t) I is O ( ^ ) .  A 
time-frequency atom is defined by

5'7(0
1 A - u  iet (1.5)

where 7 =  (s, u, e) which are the parameters of 7. The parameter s is a scaling 
factor, u is a shift term and e is the modulating index. Here 7 is an element of 
the set r  =: R+ x R^. The energy of is concentrated in a neighborhood of 
u, whose time window size is proportional to s. If we take the Fourier transform 
of both sides in (1.5) then we get

g^w) = y/sg{s{w -  e))e -j[w -e)u
(1.6)

The energy of g. {̂w) is concentrated in a neighborhood of e, whose frequency 
window size is proportional to s“ .̂

The dictionaries in a window Fourier transform and a wavelet transform 
are special cases of (1.5). In a window Fourier transform the parameter s is 
fixed, so the time scale does not change [2] and in a wavelet transform s and e 
are inversely proportional to each other [4].

In a time-frequency atomic decomposition the aim is to select a countable 
subset of atoms (if7„(i))neN from the dictionary and express the signal, / ( t ) ,  
as a weighted sum of these atoms, i.e..

/(0 ~  O-nd'̂ nA)· (1.7)
n=0

In the next section we describe an algorithm, called the matching pursuit, 
which can carry such a decomposition.

1.3 Matching Pursuit in Finite Spaces

The dictionary used in a time-frequency decomposition is redundant. In order 
to decompose a signal “optimally” we must choose atoms which best match 
the signal properties. The matching pursuit algorithm can be used for such an 
adaptive decomposition.



Let H be a signal space with a finite dimension N. We define a dictionary
V =  as a family of vectors in H, such that ||= 1 for all 7 G F. Let
V  be the closed linear span of vectors in T>. We assume that the dictionary T> 
is complete, i.e., V  =  H.

Let /  e H. We want to get the closest approximation of /  in norm by one 
of the vectors in T>. Clearly, we must choose G T> such that |< f,g.ya >| is 
maximum. In some cases, it is only possible to find a vector g.ŷ  satisfying

l< > l>  «  sup |< f,g^ >1
7GF

, 0 <  a < 1.
7GF

Next, /  is decomposed as

/  = <  /,</70 > 9io +

where R f  is the residual vector. Since g.ŷ  ±  i? /,

Il/ir= l< /,i, >P + l l« / i r

( 1.8)

(1.9)

( 1. 10)

The matching pursuit algorithm sub-decomposes the residual vector R f  on a 
vector in T> and this procedure is repeated for each new residual vector. Let 

=  / ·  Suppose the order residue, i? " / ,  was computed for some n > 0. 
We choose a vector ĝ  ̂ G V  which satisfies

l< > l>  «  sup |< R^f,g^ >1 .7GF

Then, we sub-decompose R^f into

R -f  =<  Rrf,g,„ > + B”+7

( 1. 11)

( 1. 12)

to obtain the (n +  1)̂  ̂ residue. If we carry this decomposition up to the order 
m, then we obtain an order approximation of / ,  i.e..

m —1
(1.13)

n=0

Since _L for all 0 <  n < m, we get an energy conservation equation

m —1
Il/|p= ^  |< >P + II« ” / (1.14)

n=0

The following theorem proved in [1] shows the convergence of this algorithm.



T heorem  1.1 If the dictionary T> is complete then {g.y„)n>o and {R^f)n>o 
defined inductively by (1.11) and (1-12) satisfy

/  =  E  < R"f,g^n > 9̂ u
n=0

and

for any /  G H.

(1.15)

(1.16)
n=0

If we stop the iterations at an order m then the decomposition is given by 
(1.13). Here, /  is approximated with an error equal to However, this
approximation is not the best one can achieve using the vectors (fi'-Y„)o<n<m· 
Let V„i be the span of (.97„)o<n<m and Pvm the orthogonal projector on 
Ym- The closest approximation of /  using the vectors in Y^  is given by

m—1
Pv./ = E  < > 3-r. + Pv,.fi” /. (1.17)

n=0

In general, the family of vectors {g'f„)o<n<m is not orthogonal. In this case 
P y ^ R ^ f  ^  0. The computation of

m—1
P v . « ” /  = E  *»51. (1.18)

n=0

is called a backprojection. Using backprojection we can decompose /  as

m — 1

f  ^ J2i< > ■̂ Xn)g'1n + (1.19)
n=0

where P w „ , /  is the orthogonal projection of /  onto the space W ^ , which is 
the orthogoiicil complement of Ym in H. We have to solve the following linear- 
system of equations to calculate the coefficients (xn)o<n<m· For any 0 < k < m,

m — 1
^  f'lQik ^ ^ · ( 1.20)

n=0

If the vectors (i'7„)o<n<m are linearly dependent then the solution is not unique, 
but we can always find a solution.

If the dictionary is very redundant the search for the vector ĝ  ̂ in (1.11) 
can be limited to a sub-dictionary =  (fif7)7er„ C P , where Fq, C F is a finite 
index set such that for any /  € H

sup |< f,g^ >|> a sup |< /,(/7 >| . 
7er« 7€F

( 1.21)



Depending on the dictionary, r „  can be much smaller than F. At each iteration, 
instead of searching the whole dictionary, we search for a vector gŷ  G T>a such 
that

l< > 1=  sup |< BJ f̂,gy >1 . (1.22)
7 erc

The rest of the algorithm remains the same.

1.4 Matching Pursuit with Gabor Time-Frequency Dic­
tionaries

A time-frequency dictionary is a family of time-frequency atoms defined in
(1.5). If a matching pursuit is used with a time-frequency dictionary, then any 
function /  G L^(C) is decomposed into a sum of time-frequency atoms that 
best match its residues. It has been shown that a time-frequency dictionary is 
complete in L^(C) [7]. Therefore, for any /  G L^(C) a matching pursuit yields

/  =  S  < -S“ /.97 . >  9 » (1.23)
n=0

where 7„ =  (5„ ,u „ ,e „ )  and

. . 1 A — u
5̂ 7n(0 “  ~

If the window function, g{t), is chosen as the normalized Gaussian function

(1.24)

g(t) = 2<e -TTî (1.25)

then the corresponding family of functions {gy)y^r is called the Gabor time- 
frequency dictionary.

In practice the matching pursuit algorithm has to be used in discrete-time. 
We suppose that we want to decompose a real discrete-time signal with N 
samples. Our vector space H is the set of all discrete signals periodic with N. 
The window function is again the normalized Gaussian given by (1.25). For 
each scale s we sample the window function and periodize it over N  points to 
get

9.W  =  ^  E  9( ^ ^ ^ )  (1-26)

where Kg normalizes the discrete norm of gg. Then, for any integers 0 < p <  
N — 1 and 0 < f c < A ^ —Iwe denote 7 =  (s,p, ^ )  and define the corresponding 
discrete complex Gabor atom as

= 9s[n-p]e’^ ’̂ . (1.27)



Since we want to decompose a real signal, we must use real time-frequency 
atoms to get real expansion coefficients. For any 7 =  {s,p, and a phase 
4> G [0, 27t) the real discrete time-frequency atoms are given by

27T k
«1,♦)['>] = -  p| + <t>) (1.28)

where is the normalization constant to make || ||= I. The normal­
ization constant is given by

^̂ (7.0) = yi -t- Real{e^ '̂t’ < g^,g* > }
(1.29)

For each 7 =  (5,p, and phase the real and complex discrete atoms are 
related by

5̂(7, [ n {e>’̂ g^[n]+e ^V [n ]).
2 (1.30)

A real discrete Gabor atom and its Fourier transform are shown in Figure 
1.1 (a) and (b), respectively. The parameters of this atom are {s,p,k,(f)) =  
(50,80,25, ^). It can be seen that its energy is concentrated around n =  p in 
the time domain and around w =  ^  in the frequency domain. In the next 
chapter we use the matching pursuit algorithm with discrete Gabor atoms 
in speech coding. In Chapter 3 a two-dimensional extension of the Gabor 
dictionary is used in image coding.



(a)

1-------------- 1 1 1 1 1
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(b)

Figure 1.1: (a) A discrete Gabor atom with parameters {s,p,k,(l>) —
(50,80,25, |) and length N =  200 and (b) the magnitude of its Fourier trans­
form.



Chapter 2

Speech Coding

Speech coding is one of the main areas in speech processing. There are many 
algorithms which compress speech signals at bit rates ranging from 64 kbps to 
2 kbps with varying degrees of speech quality [14]. Speech coders can be classi­
fied into two main groups: waveform coders and voice coders. Most commonly 
used waveform coders are pulse-code modulation (PCM), adaptive diifei’ential 
pulse-code modulation (ADPCM) and adaptive subband coding systems which 
can compress speech at typical bit rates of 64 kbps, 32 kbps and 16 kbps, re­
spectively [8]. These coders produce an outjDut speech of high quality, nearly 
indistinguishable from the original speech. Voice coders (vocoders) can com­
press speech signals at lower bit rates than waveform coders but they produce 
lower quality speech. Unlike waveform coders, vocoders extract some parame­
ters of the speech signal and send these parameters instead of the signal itself. 
Some commonly used vocoders are the multipulse linear predictive coder [9], 
the code excited linear predictive coder [10], and the LPC vocoder [11]. These 
vocoders can coinpress speech signals at typical bit rates of 8 kbps, 4 kbps and 
2 kbps, I’espectively. The output speech of multipulse and code excited linear 
predictive coders are of communication quality, i.e., there is some distortion 
but the intelligibility is very high. The output speech of the LPC vocoder is of 
synthetic quality, which means words are mostly intelligible but the speaker’s 
identity can not always be distinguished and a metallic sounding speech is 
reconstructed at the decoder.

The speech coding algorithm that we developed is like a voice coder. It 
sends some parameters extracted from the speech signal. Like most vocoders 
the signal is divided into frames and each frame is processed separately. Each 
frame is approximated by Gabor time-frequency atoms whose parameters are 
trairsmitted to the decoder. An arbitrarily close approximation of the frame

9
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may require a large number of Gabor atoms. Depending on the bit rate finitely 
many atoms are selected in the approximation. As described in the previous 
chapter, each Gabor atom is characterized by three parameters and a phase. 
In our implementation we used a fourth order approximation and each speech 
frame is characterized by four Gabor atoms and the inner products of these 
atoms with the residual signals. These parameters are quantized and trans­
mitted to the receiver. The receiver reconstructs the speech frame from these 
parameters.

Let f[n] be a speech frame consisting of N samples. We start the algorithm 
by computing the inner product of /  with all complex atoms in the dictionary. 
Then, at each step n, we find 7„ such that |< >| is maximum. It
follows from (1.30) that for any real residue i ? " /  and any phase (j)

< R''f,9{'y„,<l>) > =  > }· (2-1)
If we choose (¡)n equal to the complex phase of < R̂ f,g'~/„ >, then we obtain

< > =  K{inAn) l< R' f̂,9'rn >1 · (2-2)

Finally we compute the inner product of the new residue with the complex 
atoms using

< > =  < "̂/,̂ 7 > -  < ^ ” /,^(7„.^n) X  5'(7n,^n),i'7 > · (2.3)

We already know < R f̂,9^y > and < > and we compute the last
inner product using

< i/(7n,̂ n),̂7 > =  > -be- '̂ ”̂ < g;^,g^ > ) (2.4)

which follows from (1.30). The inner product of two complex atoms is given
by

< g y „ g ^ >  =

c2
exp(i;55jr77(̂ 2 - h +  qN){p2 -  Pi + mN))).

' ' (2.5)
If the values of the exponential functions are tabulated, the above formula 
yields an efficient computation of the inner products. Note that since the two 
exponentials decay very fast with m and q it is sufficient to use only a few 
terms of the double summation. The overall algorithm can be summarized as 
follows:
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Initialization: Compute < I^f,g-y > = <  f,g^ > for all 7 G Fa.

(n +  1)®* step: Assume < R^f,g^ > is known for all 7 G Fq.

i. Find 7„ =  argmax^er« \< BĴ f,g-y >\.

ii. Set (f)n =  angle{< BT'f.g^  ̂ >}.

iii. Compute using (1.29).

iv. <  R / , .9(7„,0„) > =  1̂  fld-yn ^ 1·
V. Using (2.4) and (2.5) compute < Si(7„,0„), </7 > lor all 7 G F«. 

vi. Using (2.3) compute < i?""^V)6'7 >  for all 7 G F„.

The residual signal remaining after the algorithm is terminated can have a 
component in the subspace spanned by the selected atoms (5̂7„). Therefore the 
approximation obtained by the algorithm is not the best one can achieve with 
{din)· Using backprojection as explained in the previous chapter we improve 
the approximation and store the new parameters

a„ = <  i?"/,i?(7„,0„) > +a:, 

where Xn are calculated using (1.20).

(2.6)

For each selected atom the three jDarameters {sn,Pnjkn) are indexed, the 
phase is uniformly quantized and the parameter a„ is /i-law coded. All of 
these parameters are sent to the receiver. The receiver reconstructs the frame
by

M -1  

n=0

where M  is the approximation order.

(2.7)

Since we process the speech signal frame by frame, there exist discontinuities 
between frames in the reconstructed signal especially at low bit rates. This 
effect can be reduced using overlapping frames. Each frame is windowed before 
processing and the receiver overlaps and adds the successive reconstructed 
frames. However, this method uses frames of larger length, hence, the speech 
quality is decreased. Alternatively, we use a method based on the projections 
onto convex sets algorithm. A similar method is used to remove blocking effect 
in JPEG-coded images [12], [13].
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2.1 Reducing Discontinuities Using the Method of Pro­
jections Onto Convex Sets

In the coding method described in the previous section each speech frame is 
coded separately. This results in large discontinuities in the output speech 
especially at low bit rates. These discontinuities can be removed by low-pass 
filtering the output speech, but then some high frequencies present in the orig­
inal signal are lost. In this section we develop an iterative algorithm based on 
the method of projections onto convex sets (POCS) [15], [16] which reduces the 
discontinuities considerably without affecting the high frequency components 
of the original signal much.

We define two convex sets to use the POCS algorithm. Since the disconti­
nuities correspond to high frequencies, we choose the first set, (7i, as the set 
of signals bandlimited to a frequency W. It is well-known that Ci is a closed 
convex set [17].

Let fs be the speech signal of length L and

L = K N (2.8)

where N  is the frame length and K  is the number of frames. Let /W  denote 
the frame of /*. Our coding algorithm decomposes each frame / j '  ) as

M
(2.9)

where is the subspace spanned by orthogonal
complement of V ^ , and P^co and P w (0 are, respectively, two projectors onto 
these subspaces. Using the transmitted parameters the receiver can reconstruct

/<■* = Pvc)/i‘> ; . = i,...,/C.
^ M

( 2. 10)

We define our second set as the set of real signals of length L whose frames have 
the same projections onto with the frames of the original speech signal.
i.e.,

(̂2 =  { /  : Pv(·)/^'^ =  for z =  1, . . . ,  /C and f[n] =  0 for n < 0 and n > L}.
(2.11)

To show that C2 is convex consider any two signals / i ,/2 G C2· For all i =  
I , . .. ,K  we have

Pyw/f’ = PyC)/f’ = /“>■ (2.12)

Let
fa = Ol/i + (1 — (x)f2 (2.13)
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for any a. e (0,1). Then, for all z =  1, . . . ,  K

P v « / i>  =  aP y ,„/i'>  +  (1 -  c jP y ,„/<·■' =  /(·'». (2.14)

Therefore, / „  G which shows that C2 is convex. Next, we find a projection 
on C2· For any /  e I^(R) we want to find fp G C2 such that || /  -  /p |P is 
minimized. We can write this as

00

l l / - / p | p  =  E  I / N - W « I P  (2.15)
n= —00

-1  00 K

=  E  I /(»I P + E  I /W P +EII /<’’ -  / f  IP (2-i6)
n=-oo n=L ¿=1

=  l l / I P + E l l 4 ‘’ l P - 2 E < / ' ‘> , / w >  (2.17)
¿=1 ¿=1

= ll/IP+EI|Pv<o/<‘'lP + EIIPw«/<‘'IP¿=1 ¿=1
K

¿=1 ^

- 2 E < / W .P w « 4 ' » > ·
.  ̂ M1=1

(2.18)

Since Py(o/^'^ =  for all i, the above expression is minimized by minimizing

K

E
i=l

K

M

Therefore, we must choose

M M

M

¡Ti

1/*^ ; i = l , . . . , K . (2.20)

equal to fp where

) / ' )  ; i = l , . . . , K . (2.21)

We initiate our algorithm with the reconstructed signal. Then, we itera­
tively make projections onto C\ and C2· The projection onto Ci is just filtering 
the signal by an ideal low-pass filter with a cutoff frequency W. Since the two 
sets are convex, the convergence of this algorithm is guaranteed by the theorem 
of POCS. In practice, we use a non-ideal low-pass filter. In this case filtering 
is not a projection onto Ci and the convergence is not guaranteed. However, 
the algorithm can still remove the discontinuities after a few iterations.
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2.2 Simulation Examples

We implement the matching pursuit algorithm with Gabor time-frequency 
atoms using the C programming language. The dictionary used in our sim­
ulation studies consists of 256 Gabor atoms. To select these atoms we first 
ran the algorithm with a much larger dictionary using a long speech signal and 
we selected the most frequently used 256 atoms from this dictionary. We use 
speech frames of length 200. We obtain the fourth order approximation of each 
frame using the matching pursuit algorithm. For each selected atom 5'(7„, 
the inner product < > and the angle <j)n are quantized. The angles
are uniformly quantized using 4 bits and the inner products are ^-law quan­
tized using 6 bits. The uniform quantizer and the yu-law quantizer are shown 
in Figure 2.1 and Table 2.1, respectively. After the matching pursuit algo-

-2.73 -2.31 -1.89 -1.47 -1.05 -0.63 -0.

l;2i
0.8^

0.42

-0;.42

-0.84

-r.26

0.21 0.63 1.05 1.47 1

Figure 2.1: The 4 bit uniform quantizer used to quantize the angles.

rithm is terminated the inner products are modified using the backprojection 
method. The resultant coefficients are further quantized using the /u-law quan­
tizer. These quantized coefficients and angles are sent to the receiver together 
with the index of the selected atom. Since there are 256 atoms, the index is 
sent using 8 bits. For each atom a total number of 18 bits are sent to the re­
ceiver. The speech signals we used in our simulations were sampled at 8000 Hz, 
so the method described above results in a bit rate of 2880 bits/second.
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Input Magnitude Step Size Segment Code Level Code Decoded Magnitude
0 - 10 000 0
10 - 30 20 000 001 20

130 - 150 111 140
150 - 190

40 001
000 170

430 - 470 111 450
470 - 550

80 010
000 510

1030 - 1110 111 1070
1110 - 1270

160 Oil
000 1190

2230 - 2390 111 2310
2390 - 2710

320 100
000 2550

4630 - 4950 111 4790
4950 - 5590

640 101
000 5270

9430 - 10070 111 9750
10070 - 11350

1280 110
000 10710

19030 - 20310 111 19670
20310 - 22870

2560 111
000 21590

38230 - oo 111 39510

Table 2.1: Tbe 6 bit /j,-law quantizer used to quantize the inner products.
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At the receiver each frame is reconstructed and the POCS based algorithm 
described in the previous section is used to remove the discontinuities between 
successive frames. A Hamming filter of length 7 is used in the algorithm. 
The projections are carried out only for one or two iterations. An original 
speech signal is shown in Figure 2.2 (a). The coded/decoded signals using our 
method and an LPC-10 vocoder are shown in Figure 2.2 (b) and Figure 2.2 
(c), respectively. Although the bit rate is slightly higher than the bit rate of 
a typical LPC-10 vocoder (2400 bits/second), our method produces a better 
quality speech than an LPC-10 vocoder. However, a mean opinion score (MOS) 
study has not been done due to practical difficulties.

It can also be observed that the POCS based algorithm removes the discon­
tinuities. A voiced speech segment and an unvoiced speech segment are shown 
in Figure 2.3 (a) and Figure 2.4 (a), respectively. There are two discontinuities 
between frames in the coded/decoded segments shown in Figure 2.3 (b) and 
Figure 2.4 (b). The result of applying our algorithm for 2 iterations is shown 
in Figure 2.3 (c) and Figure 2.4 (c). It is seen that the discontinuities have 
been removed completely.

2.3 Computational Complexity of the New Speech Cod­
ing Method

The computational complexity of our speech coding method depends on the 
efficient computation of the inner products. The inner product of an atom with 
all other atoms in the dictionary can be computed by 0{M )  multiplications [1] 
using the algorithm described in Chapter 2, where M  is the number of atoms 
in the dictionary. For each frame, this algorithm is initiated by computing the 
inner products of the frame with the atoms in the dictionary. This operation 
requires 0{M N )  multiplications, where N  is the frame length.

The computational complexity of a typical LPC-10 vocoder depends on the 
pitch prediction method. For each frame the number of multiplication oper­
ations can be 0{N)  or 0 {N  log N). However the computational complexity 
of an LPC-10 vocoder is smaller than the computational complexity of our 
method. We compared our method with an implementation of the LPC-10 
algorithm using C programming language. Our method and the LPC-10 algo­
rithm process each frame in 0.22 seconds and 0.02 seconds, respectively, in a 
SUN SPARC-10 workstation.
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The methods we used in this chapter can also be extended to two-dimensions 
(2-D). In the next chapter we define 2-D time-frequency atoms and use them 
with the matching pursuit algorithm in image coding.
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1000 2000 3000 4000 5000 6000 7000 8000 9000

(a)

1000 2000 3000 4000 5000 6000 7000 8000 9000

(b)

(c)

Figure 2.2: (a) An original speech signal, (b) the signal after coding/decoding 
using the Gabor time-frequency decomposition, and (c) the signal after cod- 
ing/decoding using an LPC-10 vocoder.



19

(a)

(b)

(c)

Figure 2.3: (a,) A voiced speech segment, (b) the coded/decoded segment hav­
ing two discontinuities, and (c) the same segment after applying the POCS 
based algorithm twice.

¿500 2550 2600 2650 2700 2750 2800 2850 2900
(a)

Figure 2.4: (a) An unvoiced speech segment, (b) the coded/decoded segment 
having two discontinuities, and (c) the same segment after applying the POCS 
based algorithm twice.



Chapter 3

Image Coding

The matching pursuit algorithm and Gabor time-frequency atoms described in 
the previous chapters can also be applied to image coding. For this purpose we 
must first define a new vector space and two-dimensional (2-D) Gabor atoms.

Our vector space will be the set of 2-D sequences periodic with N in both 
vertical and horizontal coordinates, i.e., for any /  in this vector space,

f[ni + kN,n + IN] = f[m,n] for all (3.1)

We define the inner product of any two sequences /  and g in this space by

(3.2)< f^g >2=  X ) s
771=0 n=0

n

and the norm of a sequence /  by

II /  ||2= \/< /,/>!. (3.3)

We will use a subscript 2 to distinguish this inner product and norm from 1-D 
inner product and norm. We define 2-D Gabor atoms as follows. Let gs[n] 
again be the scaled, sampled and shifted Gaussian periodized to N  points, i.e..

K, ~  n - l N .
(3.4)

where g(t) is the normalized Gaussian defined in (1.25) and Kg normalizes the 
1-D norm of gs. For any 71 =  { s i ,p i ,^^ )  and 72 =  (¿2,^2, ^ ) ,  we define 
the complex 2-D Gabor atom by

. 2nko
(3.5)=  “ H e ’ "  "

Similarly, the real 2-D atoms are defined by

r 1 r 1 ,2i7rk\ k'¿ ,, . .=  K{iu'y2,<l>)9sA^-Pi]9s2[n-P2]cos{— m + — n + <P) (3.6)

20
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where <f> is the phase and K{-ŷ ,̂ ŷ ,4,) is chosen such that

II 9{'nn2,<t>) lb” 1· (3.7)

The matching pursuit algorithm is the same for a 2-D decomposition. The 
inner products in this algorithm are now 2-D inner products, but they can 
easily be computed by successive 1-D inner products. Let /  be a sequence in 
our vector space. Then,

N-\ N- 1
<f,9iu'r2>2 =  f[m,n]g*^^^^[m,n]

m=0 n=0
N-1 N-1

= [« -  V'2\e
m =0 n=0

^ - 1  ,2.k̂
= Y i m  f [^M9sA^-p2]^   ̂  ̂ ["i -  Plje  ̂ ^

m =0 n=0

=  «  f[m,n],g^^[n\>,g^,[m]> .

.2’Kk\ .2irko

. 27tA:i

(3.8)

Hence, we can compute the 2-D inner product of /  with a 2-D Gabor atom 
911,12 computing the inner products of the columns of /  with ĝ  ̂ and
then calculating the inner product of the result with ĝ .̂ Although this method 
requires more multiplication operations than taking a single 2-D inner product, 
we have to store only 1-D atoms. This reduces the required memory consid­
erably, because storing 2-D atoms instead of 1-D atoms squares the required 
memory. To compute the inner product of two 2-D Gabor atoms, the above 
equation is further simplified to

^  9ii,i2i9i[,i2 ^ 2  ^  9iii9i[ 9i2i9i2 ^ (.3.9)

In our image coding method we process the images block by block. The 
input image is first divided into N x N blocks. Then, each block is made 
zero-mean by calculating the mean of the block and subtracting this from each 
pixel in the block. These means are quantized and sent to the receiver. Next, 
the matching pursuit algorithm is applied to each block. The inner products 
and the angles are quantized and sent to the receiver together with the index of 
the atoms selected. The receiver reconstructs an approximation of each block 
using these coefficients. We can apply backprojection at the coder to improve 
the approximation and a POCS based algorithm at the receiver to remove 
discontinuities between blocks.
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3.1 Simulation Examples

We implement the image coding algorithm in C programming language. We 
used 8x 8 blocks in our simulation studies. The dictionary we used is formed by 
all possible pairwise products of 32 1-D atoms, therefore it contains 1024 2-D 
atoms. The 1-D atoms were determined by running the algorithm on several 
images and selecting the most frequently used 32 atoms. The approximation 
order is adaptive in our simulations, i.e., the matching pursuit algorithm runs 
until the maximum inner product is below a predetermined threshold value. 
In this way, the blocks with a low local variance is approximated with a lower 
order than the blocks with a high local variance. It is possible to compress 
an image at different compression ratios by changing this threshold. The 1024 
atoms are indexed using 10 bits and the inner products and the angles are 
quantized and transmitted using 6 bits and 4 bits, respectively.

We used the 512 x 512 Lena image and the 672 x 560 Barbara image in 
our simulation studies. The simulation results using the Barbara image and 
the Lena image are shown in Table 3.1 and Table 3.2, respectively. The orig­
inal Barbara image and the compressed/decompressed Barbara image with a 
compression ratio of 6.0 are shown in Figure 3.1. We also coded these images 
using the Joint Photographic Experts Group (JPEG) compression standard 
[13]. The comparison of our method with JPEG for the Barbara image and 
the Lena image are shown in Figure 3.2 and Figure 3.3, respectively. It is 
seen that JPEG has a better performance than our method at all compression 
ratios.

Gabor time-frequency atomic decomposition does not have a good perfor­
mance in image coding, although it has a good performance in speech coding. 
The main reason for this fact is the different characteristics of speech and im­
age signals. A speech signal is an “oscillatory” signal which looks like a typical 
Gabor atom, hence it can be represented efficiently by Gabor atoms. An imtige 
signal is non-oscillatory and has different characteristics than a Gabor atom. 
Therefore, the Gabor decomposition does not give good results for image sig­
nals.
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Compression Ratio MSDE SNR
0.62 bpp 12.99 13.32 39.48
0.66 bpp 12.20 12.91 40.02
0.71 bpp 11.23 12.40 40.72
0.78 bpp 10.20 11.85 41.51
0.88 bpp 9.05 11.18 42.52
1.03 bpp 7.74 10.36 43.84
1.08 bpp 7.38 10.12 44.25
1.20 bpp 6.67 9.63 45.11
1.33 bpp 6.00 9.14 46.02
1.41 bpp 5.66 8.88 46.52
1.64 bpp 4.88 8.25 47.80
1.78 bpp 4.49 7.90 48.55
2.17 bpp 3.68 7.10 50.42

Table 3.1: The compression results for the Barbara image.

Compression Ratio MSDE SNR
0.59 bpp 13.59 8.96 46.70
0.62 bpp 12.81 8.58 47.45
0.68 bpp 11.79 8.09 48.47
0.76 bpp 10.57 7.56 49.65
0.78 bpp 10.21 7.40 50.02
0.84 bpp 9.51 7.10 50.73
0.92 bpp 8.71 6.75 51.61
0.96 bpp 8.29 6.56 52.11
1.09 bpp 7.34 6.12 53.31
1.17 bpp 6.82 5.88 54.00
1.39 bpp 5.77 5.36 55.61
1.61 bpp 4.96 4.95 57.01
1.97 bpp 4.06 4.45 58.86

Table 3.2: The compression results for the Lena image.
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(b)

Figure 3.1: The original (a) and the reconstructed (b) Barbara images.
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Figure 3.2: The comparison of the matching pursuit and JPEG algorithms 
using the Barbara image.

Figure 3.3: The comparison of the matching pursuit and JPEG algorithms 
using the Lena image.



Chapter 4

Conclusion

In this thesis a new low bit rate speech coding method was developed. The 
method is based on an adaptive decomposition of speech signals over Gabor 
time-frequency atoms. This decomposition is elBciently implemented using 
the matching pursuit algorithm. The new method can code speech signals at a 
slightly greater bit rate than a standard LPC-10 vocoder, but it produces better 
quality speech. However, the computational complexity of the new method is 
large compared to an LPC-10 vocoder. This is mainly due to the calculation 
of inner products with all atoms in the dictionary.

The new vocoder is a fixed bit rate vocoder. It can also be made a variable 
bit rate vocoder by making the approximation order of each frame adaptive or 
using a variable length source coding method such as Pluffman coding. Some of 
the atoms in the dictionary are selected by the algorithm more frequently than 
others. The frequency of occurrence of each atom can be found by running the 
algorithm with long test speeches and then the method can be made variable 
bit rate using Huffman coding. This can reduce the average bit rate without 
affecting the speech quality.

Finally, a projection onto convex sets based method was developed to re­
move discontinuities between successive speech frames. The method can re­
move the discontinuities after only a few iterations.

The method for speech coding was also extended to 2-D. For this pur­
pose, 2-D time-frequency atoms were developed. These atoms are used in the 
matching pursuit algorithm for image coding. Although this method works, 
its performance is far below a standard JPEG coder. This is because an image 
signal has different characteristics than a Gabor atom.

26
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