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ABSTRACT

AN ANALYSIS OF FMS SCHEDULING PROBLEM: A BEAM SEARCH BASED 

ALGORITHM AND COMPARISON OF SCHEDULING SCHEMES

Suleyman Karabük 

M.S. in Industrial Engineering 

Supervisor: Assist. Prof. Ihsan Sabuncuoglu 

September, 1994

FMS scheduling procedures in the literature can be classified into on-line and off-line 

schemes according to the number of scheduling decisions made at a point in time. On

line scheduling attempts to schedule operations one at a time when it is needed and 

off-line scheduling refers to scheduling operations of available jobs for the entire 

scheduling period. In the literature there is no unified argument for or against either of 

these scheduling schemes. This research has two main objectives: development of a 

new scheduling scheme called quasi on-line that makes a trade-off between on-line 

and off-line schemes and comparison of the proposed scheme with others under 

various experimental conditions. A new algorithm is proposed on which the quasi on

line scheme is based. The proposed algorithm is a heuristic and utilizes a beam search 

technique. It considers finite buffer capacity, routing and sequence flexibilities and 

generates machine and AGV schedules for a given scheduling period. A simulation 

model is also developed to implement and test scheduling schemes.

Keywords: Flexible Manufacturing Systems, scheduling, simulation.
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ÖZET

ESNEK ÜRETİM  SİSTEMLERİNDE ÇİZELGELEME PROBLEMİNİN BİR 

ANALİZİ: IŞIN ARAMA TABANLI BİR ALGORİTMA VE ÇİZELGELEME 

METODLARININ KARŞILAŞTIRILMASI

Süleyman Karabük

Endüstri Mühendisliği Bölümü Yüksek Lisans 

Tez Yöneticisi: Yrd. Doç. İhsan Sabuncuoğlu 

Eylül, 1994

Literatürdeki Esnek Üretim Sistemleri (EÜS) çizelgeleme yaklaşımları her bir 

çizelgeleme noktasında verilen karar sayısına göre anında yönlendirme ve önce

den çizelgeleme olmak üzere iki kategoriye ayrılabilir. Önceden çizelgeleme yak

laşımı çizelgeleme kararlarının gerektiği zaman ve tek tek yapılmasini gerek

tirir. Öte yandan, önceden çizelgeleme bütün çizelgeleme kararlarının bir kerede 

alınmasını öngörür. Literatürde hangi yaklaşımın üstün olduğu konusunda bir 

fikir birliği yoktur. Bu araştırmanın iki ana amiu:ı vardır. Birincisi, anında 

yönlendirme ve önceden çizelgeleme yaklaşımlarının arasında olan ve her ikisinin 

olumlu taraflarını birleştiren yeni bir yaklaşım önermektir. İkincisi ise, önerilen 

yaklaşım ile diğerlerini değişik işletim çevrelerinde karşılaştırmasını yapmaktır. 

Bunun için, m akinaların kısıtlı kuyruk kapasitesini, rota ve sıralam a esnekliklerini 

gözönüne alarak m akina ve otomatik güdümlü malzeme taşıtlarını çizelgeleyen bir 

algoritma geliştirilmiştir. Ayrıca değişik çizelgeleme yaklaşımlarının denenmesi 

için bir benzetim modeli de geliştirilmiştir.

A n a h ta r  sö zcü k le r: Esnek Üretim Sistemleri, çizelgeleme, benzetim.
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CHAPTER 1

INTRODUCTION

A flexible manufacturing system(FMS) can be defined as a group of processing 

stations connected by means of an automated material handling and storage system, 

and controlled by an integrated computer system (Groover [11].) As the definition 

implies, the main components of an FMS are processing stations (mostly NC machines 

with different types o f machining tools), material handling system and a computer 

control system which coordinates the activities of processing stations and material 

handling system. These systems are highly automated and capable of producing a 

variety of part types simultaneously. The flexibility of an FMS is mainly due to the 

capability of processing stations which can perform several different types of 

operations, and its material handling system which provides fast and flexible part 

transfer within the system. The aim of FMSs is to fill the gap between high production 

volume transfer lines with low product variety and low production volume NC 

machines with high product variety. These systems provide a number of benefits in 

terms of higher machine utilizations, reduced work-in-progress, lower manufacturing 

lead times, greater flexibility in production scheduling and higher labor productivity 

(Groover [11].) However, the benefits of FMSs are not easy to realize. The 

management of these systems require the solution of several optimization problems 

faced at different stages of an FMS life cycle. These problems can be hierarchically 

decomposed into design, planning, scheduling and control problems (Stecke [38].)

Design problems are concerned with the physical shaping of the system subject 

to budget constraints and system goals. Specifically, determination of part types to be 

produced, process plan of part types, flexibilities and their levels, capacity of material 

handling system and buffers, number of pallets and fixtures, are among the design

1



problems. FMS planning problems include decisions that have to be made before the 

system begins to produce parts. These decisions are also closely related to scheduling 

decisions. Determination of part types for immediate and simultaneous production, 

determination of production ratios, allocation of machines to groups and tools to 

machines constitute the planning problems.

The scheduling problem can be defined as the detailed minute by minute 

scheduling of machines, material handling system components, and other support 

equipment. Given the shop conditions and a set of parts with known or estimated 

processing requirements, it is concerned with scheduling actual job release times, 

determining the start and completion times of each operation on a wide variety of 

resources. Whereas, the control problem is concerned with monitoring the execution 

of the schedule and providing corrective actions in response to various changes in a 

manufacturing environment.

FMS scheduling problems and the proposed solution approaches can best be 

described by the help of a classification framework proposed by Hutchison [14]. In 

this study, the author decomposes the FMS scheduling research into two dimensions 

(Table 1.1). These are system factors that make up the scheduling problem and 

scheduling scheme factors that define the characteristics of a specific scheduling 

procedure.

According to the system factors, the number of part types simultaneously 

produced by the system determine the operational mode of an FMS. This factor 

ranges from dedicated FMSs with large set o f part types and moderate demand to 

random FMSs with small set of part types and low demand. The flow pattern can be 

either Jumbled as in a jobshop or each job may have a fixed processing sequence as in 

a flow shop. Demand pattern determines the scheduling environment. In a periodic 

demand environment order status changes periodically (e.g. every week), whereas 

new orders arrive dynamically over time in continuous demand environment. Another 

common clasification with respect to demand pattern is static and dynamic 

environments. In a static environment, the scheduling problem is defined with respect



System Factors 
Number of part types

Predominant flow pattern

Demand pattern

Scheduling scheme factors
Scheduling problems addressed

Number of decisions made at a point in time

Characteristics considered

. Dedicated 
»Intermediate 
• Random

> Jobshop
> Flow shop

■ Periodic (static) 
Continuous (dynamic)

* Input sequencing
• Detailed scheduling

> On-line
> Off-line

> Machine breakdowns
■ Material handling capacity
■ Tool magazine capacity
■ Pallet/fixture capacity
In-system storage capacity 
Routing flexibility________

Table 1.1 Classification of FMS scheduling (Hutchison [14]).

to a finite set of completely specified requirements; no additional requirements will be 

added to this set. Whereas in a dynamic environment the scheduling problem is 

defined not only for the known requirements but also with respect to the expectations 

for additional requirements and specifications generated over the planning horizon. 

The first issue in the scheduling scheme factors is the scheduling problem addressed. 

The scheduling problem is concerned with both the actual release times of jobs to the 

system (input sequencing) and determination of start and completion of jobs on 

system resources (detailed scheduling). Most of the existing studies give more 

emphasis on detailed scheduling activities.

The scheduling scheme factor is further classified in terms of the number of 

decisions made at scheduling points. A scheduling point is a point in time / when 

scheduling decision(s) is made. With an on-line scheduling scheme, scheduling 

decisions (i.e. start and completion times of jobs) are taken one at a time whenever



needed. On the other hand, an off-line scheduling scheme generates a complete 

schedule of all jobs for the entire planning horizon. System characteristics that are 

considered in scheduling schemes are also listed in Table 1.1. This factor, in a way, 

determines the schedule generation algorithm used in a scheduling scheme. On-line 

scheduling schemes usually employ machine and Automated Guided Vehicle (AGV) 

scheduling scheduling rules in the decision making process, whereas exact or 

complicated heuristic schedule generation algorithms are used in off-line scheduling 

schemes.

There are two important aspects of on-line and off-line schedule generation 

schemes. One is the amount of information used at a scheduling point, other is the 

degree of responsiveness to changes in the environment. With an on-line scheme a 

scheduling decision is made in response to changes in the system state (e.g. machine 

finishes processing of a part or AGV completes delivery of a unit load etc.) Hence, 

individual decisions are delayed until the last moment. This requires making decisions 

one at a time frequently throughout the entire planning horizon. Since the scheduling 

process uses the most up to date information about the status of the system, on-line 

schemes have high degree of responsiveness to unexpected changes in the 

environment. However, only information about one small area of the system is utilized 

in the scheduling process and that leads to myopic decisions.

On the other hand, with an off-line scheme a complete schedule is generated for 

the entire planning horizon at one decision point. The entire condition of the shop is 

considered in the decision making process and that increases the quality of the 

scheduling decisions made. However, during execution of the off-line generated 

schedules various types of unexpected events can easily invalidate the fixed schedule. 

Therefore degree of responsiveness of an off-line scheme is low unless appropriate 

control strategies are adopted.

These two scheduling schemes represent two extreme points in terms of the

extend of information usage in the scheduling process and the degree of



responsiveness to changes in the environment. Yet, there is no unified argument for or 

against on-line or off-line scheduling schemes.

In this thesis we will study the scheduling problem in a random type FMS with 

jobshop type flow pattern under both periodic and continuous demand. The emphasis 

will be on detailed scheduling rather than input sequencing. Specifically, we will 

investigate two important issues that have not been addressed thoroughly in the 

literature. These are as follows:

1. In most of the studies that are concerned with comparison of on-line and off

line scheduling schemes, a deterministic and static manufacturing environment is used 

as a test bed. Only a few studies address the problem in a stochastic and dynamic 

environment. Moreover, these studies usually focus on development of an off-line 

algorithm and measuring its performance against scheduling rules in an environment 

where the levels of system characteristics are fixed (e.g. AGV load level, flexibility 

levels etc.) Hence, in order to accomplish a fair comparison between on-line and off

line schemes, various system characteristics must be taken into account in varying 

manufacturing environments.

2. As mentioned earlier, there are advantages and disadvantages of on-line and 

off-line scheduling schemes. In this thesis, a new scheduling scheme will also be 

proposed to make a trade-off between these two schemes.

In general, industrial scheduling problems are difficult to solve. The FMS 

scheduling problem is even more difficult due to the considerations of multiple 

resources and alternative processing steps and different material handling routes. The 

dynamic nature of the FMSs further complicates the problem. For these reasons, most 

of the proposed off-line scheduling algorithms are based on a number of simplifying 

assumptions in order to keep the computational burden at a reasonable level. As a 

result, some of the relevant and important features of FMSs are usually ignored in the 

existing work. For example, only machines are considered as the primary resource and 

other factors such as material handling system, flexibihties, finite buffer capacities are 

ignored.



In this thesis, a new scheduling algorithm is proposed. It is a heuristic based on 

the filtered beam search technique. It considers most of the scheduling factors listed in 

Table 1.1. Hence, it provides a tool to examine the effects of scheduling factors on the 

system performance. With this tool a fair comparison can be made between on-line 

and off-line schemes. Additionally, the algorithm can generate schedules for varying 

scheduling periods.

The algorithm uses a parameter called the time window which determines the 

scheduling horizon considered at one scheduling point. With an on-line scheme at 

each decision point only a specific point in time is considered, thus scheduling horizon 

is 0 at each decision point. On the other hand, with an off-line scheme the entire 

planning horizon is considered as the scheduling horizon at a scheduling point. 

Therefore, as the value of the time window parameter decreases (increases) the 

scheduling scheme which employs the proposed algorithm becomes closer to an on

line (off-line) scheduling scheme.

We call this new scheduling scheme as quasi on-line. Because it works like an 

on-line scheme except that several scheduling decisions (depending on the value of the 

time window parameter) are taken at a decision point. The role of this time window 

parameter is to adjust the degree of responsiveness of the scheme and the extend of 

information usage at scheduling points.

In this study, a simulation model is also developed to execute the schedules 

generated by different scheduling schemes in stochastic and dynamic manufacturing 

environments. The simulation model is linked with various scheduling algorithms to 

form a simulation based scheduling system. This system is composed of a simulation 

model, a controller and a scheduling module. The scheduling module contains several 

on-line scheduling algorithms as well as the scheduling algorithm developed in this 

research. With this system different scheduling schemes including on-line, off-line and 

the quasi on-line can be compared in different simulated environments, using different 

performance criteria.



The rest of the thesis is organized as follows: Chapter 2 contains a literature 

survey that provides supporting evidence for the observations made in this chapter. 

However, this chapter is not necessary to follow the rest of the manuscript, hence it 

can be skipped without loss of generality. In Chapter 3 the scheduling algorithm is 

described in detail. In Chapter 4, the simulation based scheduling system is described 

in detail and implementation issues are discussed. Chapter 5 presents experimental 

results obtained by running the simulation based scheduling system in various 

manufacturing environments. Finally, concluding remarks are made and future 

research directions are outlined in Chapter 6.



CHAPTER!

LITERATURE REVIEW

The FMS scheduling problem has received ample attention firom researchers of 

different disciplines. This is due to the fact that scheduling decisions effect the 

performance of an FMS significantly (Nof et al. [24]). The multidisciplinary nature of 

the topic prohibits an exhaustive search on the literature. Nevertheless, there are 

already some survey papers that cover most of the work done in this field. In this 

chapter the focus will be on the type of the scheduling scheme (i.e. on-line and off

line). The literature about some other topics will be covered when they are mentioned 

throughout the manuscript.

The rest of the chapter is organized as follows. Section 2.1. reviews recent 

survey papers about FMS scheduling and outlines general issues that are pointed out 

in these studies. In section 2.2., some recent studies about on-line and off-line 

scheduling schemes are examined in detail.

2.1. General Issues

Raman [29] shows the first attempt for a complete review of the existing 

literature on machine scheduling as it relates to flexible manufacturing systems. The 

main focus of his study is to document research on the development of a scheduling 

system for the Automated Manufacturing Research Facility (AMRF) at National 

Institute of Standards and Technology (NIST) of U.S.A.

Hutchison [14] proposes a classification framework (shown in Table 1.1) and 

reviews the FMS scheduling procedures in the context of this framework. Finally he 

makes the following conclusions:

8



• There is a trend toward building intemiediate and random jobshop systems 

with periodic demand

• Off-line scheduling schemes seem most appropriate for the average system in 

the future

• More research is needed to examine the effects of breakdowns and delays on 

on-line and off-line scheduling schemes.

Most recently, Rachamadugu and Stecke [28] provide another classification and 

review of FMS scheduling procedures. The authors also discuss the differences 

between FMS scheduling and jobshop scheduling. In this study, the following features 

are found to be unique to FMSs from scheduling point of view.

. Alternative routing

• Buffer limitations

• Transportation time

. Transportation capacity

• Deterministic processing times

. Reduction of set-up between consecutive operations

• Pallet and fixture limitations.

They also point out that FMSs are more sensitive to machine breakdowns than 

jobshops due to the tighter synchronization, integration, and dependencies among the 

automated components. They argue that all these factors have to be considered when 

developing appropriate· FMS scheduling procedures. They make the following 

conclusions according to their observations.

» There is a lack of concern for due date related criteria and research should be 

directed towards developing scheduling procedures with the primary objective 

of meeting due dates while system utilization and minimizing in-process 

inventories as secondary objectives

. Limited buffer space aspect of an FMS is usually neglected in designing 

scheduling procedures. Consideration of finite buffers is important because of



the integration required o f the system and the consequences of the potential 

blocking and locking

♦ Sequence flexibility which is inherent in the part type rather than the 

processing system is also an important feature and if properly exploited may 

have beneficial effects on various measures of system performance

• Although the limited transportation resources and transportation times that are 

comparable to the processing times can influence the overall system 

performance, these aspects have not been sufficiently considered in the 

literature.

2.2. On-line vs. off-line scheduling

2.2.1. On-line scheduling

10

On-line scheduling schemes usually employ dispatch rules in the decision 

making process. These rules are applied to select the next part (given a set of parts) 

which will take service when a resource bec< ines idle (e.g. machine, AGV, pallet etc.)

Since machine scheduling rules are widely used to solve jobshop scheduling 

problems, there is a wide base of literature available on these rules. Some survey 

papers about machine scheduling rules in a jobshop environment include, Panwalkar 

and Iskander [26], Blackstone et al. [2], and Kiran and Smith [17]. Montazari and 

Wassenhove [21] analyze the performance of machine scheduling rules in an FMS.

Scheduling rules for material handling transporters are first studied by Egbelu 

and Tanchoco [9]. They basically distinguish two types of AGV scheduling rules: 

workcenter initiated rules and vehicle initiated rules. The first type of rules are applied 

when a workcenter completes processing of a job and there are more than one idle 

AGVs that can satisfy the request. In such a situation, a move request is issued for the 

completed part and an idle vehicle is dispatched for the completed part according to a 

workcenter initiated scheduling rule. Whereas the second type of rules are applied



when an AGV completes a delivery operation and there are more than one 

workcenters that issued a move request. In this case a vehicle initiated rule is used.

Sabuncuoglu and Hommertzheim [33] investigate the relative performance of 

machine and AGV scheduling rules against mean flow-time criterion. They test the 

scheduling rules utilizing a simulation model under varying machine and AGV load 

levels, different queue capacities and varying AGV speeds. They show that shortest 

processing time (SPT) (shortest distance (STD) and least queue size (LQS)) performs 

best among machine (AGV) scheduling rules with any AGV(machine) scheduling rule 

combination. They also point out that as the machine and/or AGV load increases, the 

differences in the performance of the scheduling rules become more significant. The 

same authors in a similar study [34] analyze machine and AGV scheduling rules for 

the tardiness criterion. They obtain different experimental conditions by changing 

distribution type and parameters for processing times, varying machine and AGV load 

levels, different queue capacities and AGV speeds and varying levels o f due-date 

allowances. Their findings suggest that although none of the machine scheduling rules 

is the best under all conditions, modified operation due date (MOD) outperforms 

other rules under most of the experimental conditions. In this study, LQS is again 

found to be the best performing AGV scheduling rule under all of the conditions.

In another study, Sabuncuoglu and Hommertzheim [32] propose an on-line 

algorithm for scheduling machines and AGV in an FMS. Their algorithm uses more 

information than traditional machine and AGV scheduling rules. The information such 

as the current system load and the status of jobs in the system are utilized in a 

hierarchical structure so that different decision criteria are applied sequentially to 

identify the most appropriate scheduling decision. They compare the performance of 

the algorithm with that of several other machine and AGV dispatch rules by using 

mean flow time and tardiness criteria and show that the algorithm produces significant 

performance improvement over existing scheduling rules for all of the conditions 

tested.

11



Some studies are concerned with developing dispatch rules that can properly 

exploit routing flexibility. Yao and Pei [42] develop a quantitative measure to assess 

routing flexibility which incorporates all the job and machine characteristics that 

contribute to routing flexibility. They establish two dispatch rules which make use of 

this measure: part selection and machine selection rules. They compare these rules 

with the SPT rule in a simulation study and show that the proposed rules perform 

better than the SPT rule. However, material handling aspect of the problem is not 

considered in this study.

In a similar study, Chandra and Talavage [3] present a decision rule for 

dispatching parts which have alternative processing possibilities. At any decision point 

the rule employs information about shop congestion level, criticality of a part, 

preference of a part for a machine and current shop objective. They conduct a 

simulation study to test the performance of their rule against other dispatch rules and 

show that the proposed rule provides better results.

Mukhopadhyay et al. [23] describe a heuristic scheduling algorithm that take 

into account many system features. Essentially, this heuristic selects the next part to 

be processed by considering tool allocation, pallets scheduling, machine scheduling 

and material handling equipment scheduling. They formulate the problem as a 

hierarchical process and solve it by eigenvector analysis of priority ordering.

One approach to overcome the myopic nature of dispatch rules is to develop 

more complicated procedures that can utilize system wide information. Another 

approach is to develop on-line scheduling schemes that can select and apply different 

dispatch rules when the system operating characteristics change. Wu and Wysk [40] 

present such a scheduling approach. In their system, at the beginning of every fixed 

time period a set of dispatch rules are simulated for a short period of time and the best 

performing one is selected to be used for the next period. The authors also examine 

the effects of the period length. Experimental results show that a significant 

improvement can be obtained by this approach when compared to using a single 

dispatch rule for the entire scheduling horizon. Ishii and Talavage [16] further study

12



the same approach and propose a transient based algorithm which selects a dispatch 

rules for variable time periods. This study indicates that a variable period length 

provides better results then a fixed length. In a more recent study, Shaw et al. [36] 

apply artificial intelligence techniques to capture the changes in the system operating 

characteristics. They use the following system attributes; number of machines in the 

system, total buffer size, variability in machine workload, overall system utilization, 

flow allowance factor which measures due date tightness and routing flexibility. Their 

proposed method performs well when system characteristics do not change 

frequently.

2.2.2. Off-line scheduling

13

Research on development of scheduling algorithms that generate off-line 

schedules has not been as intensive as it is with on-line scheduling algorithms. This is 

mostly due to the fact that the heavy computational requirements of off-line schemes 

prevent their usage in a real time scheduling environment Due to the difficulty of the 

FMS scheduling problem, a wide variety of modeling and solution techniques are used 

in the literature, ranging from optimization algorithms, artificial intelligence methods 

to heuristics methods and simulation techniques. The following studies provide a 

representative collection of scheduling schemes that employ off-line scheduling 

algorithms in the FMS scheduling literature.

Chang et al. [4] propose a two phase heuristic off-line algorithm for FMS 

scheduling in a dynamic environment. According to their scheduling scheme, at each 

job arrival the algorithm reschedules all the available jobs. Because of this, they call 

their scheduling scheme as quasi real time. The algorithm consists of two phases: in 

the first phase a reduced enumeration algorithm is used to generate several feasible 

schedules for each job and in the second phase an integer programming model is 

solved to select schedules for each job so as to optimize a pre specified criteria. The 

optimization procedure uses a branch and filter algorithm that takes advantage of the



special problem structure. They comp;u-e the proposed algorithm against six machine 

scheduling rules. They conduct a simulation study in a deterministic environment with 

an example FMS in which machines, a transfer line and pallets are explicitly modeled. 

Their scheduling algorithm generates schedules for the machines only. The 

performance measure is mean flow time. Computational tests indicate that the quasi 

real time scheme performs better than the dispatch rules. Specifically, it provides 8% 

lower mean flow time than the best performing rule. Another result of this study is 

that, the least work remaining (LWRK) rule performed better than others. It is quite 

surprising that the SPT rule did not perform well in dynamic FMS environment.

Yamamoto and Nof [41] investigates rescheduling policy in a static environment 

where frequent machine breakdowns occur. The off-line scheduling algorithm used in 

their study is adopted from a jobshop schedule generation algorithm, which is based 

on active schedule generation. Thus, as in the previous study it generates only 

machine schedules. According to the rescheduling policy, at each machine breakdown 

all the operations which are not yet processed are used to generate a complete 

schedule. They compare this policy with an on-line scheme which utilizes the first 

come first served (FCFS) rule. The performance measure is minimization of 

makespan. Also, most total work (MTWK) rule is used to release jobs to shop floor 

when a pallet becomes available. Two example systems which consists of machining 

centers and a conveyor loop are used in their study. They show that, schedules 

generated by the off-line algorithm provides better solutions than with that of the 

scheduling rules even when rescheduling policy is not active. Specifically, the 

rescheduling policy provides about 7% improvement over dispatch rules and 2.5% 

over fixed sequencing policy.

Sriskandarajah et al. [37] develop scheduling algorithms for a class of flexible 

manufacturing systems consisting of machining centers with no local buffer area and 

served by a conveyor loop. The scheduling problem in their system reduces to finding 

a job order in the conveyor. Two scheduling algorithms, one of which produces 

optimal solutions for a specific system configuration are proposed by the authors.
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They compare their heuristic with random schedules in a static and detenninistic 

environment and report promising results in favor of the heuristic.

Chang et al. [5] present another off-line scheduling algorithm that is based on a 

bottleneck based beam search. The proposed algorithm generates machine schedules 

and considers only routing flexibility during schedule generation. Other scheduling 

factors are ignored. The algorithm first constructs a search tree then applies beam 

search technique to find a good solution. The cmcial part of the algorithm is the 

generation of the search tree. Each node of the search tree represents a partial 

schedule. The next layer of nodes which correspond to the operations that are 

immediately schedulable are determined as follows. The operations which are not 

included in the partial schedule are used to produce a complete schedule using the 

SPT rule. Then the critical path of the derived schedule is identified. This is the 

collection of operations that form the longest path over which the precedence 

constraints are active. Finally, the operations which can rq)lace and finish earlier than 

the first operation on the critical path are added to the next layer of nodes. This 

procedure is very similar to PERT/CPM analysis because the processing times of 

operations on the critical path are reduced in order to reduce the makespan. In the 

proposed algorithm this is accomplished by making use of routing flexibility. The 

authors also propose a flexibility index to measure the routing flexibility 

quantitatively. In this study they also measure the performance of the algorithm in a 

static and deterministic environment by comparing it with several dispatch rules. Their 

experiments indicate that the effects of routing flexiWity on both the off-line 

scheduling algorithm and scheduling rules are significant. Also, the algorithm 

outperforms the dispatch rules and exploits the routing flexibility better.

Raman et al. [30] describe an axact algorithm and examine its performance in a 

dynamic and deterministic environment. In their approach, at each job arrival a static 

problem is generated and solved by the off-line algorithm. Then the resulting schedule 

is implemented on a rolling horizon basis. The algorithm generates schedules for 

machines and material handling transporter simultaneously. They formulate the
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problem as an integer programming model in which demand for transportation is 

treated as a simple move request between two machining operations. Hence, 

transporters are assumed to turn back to load/unload station. Also, the buffer space at 

the machines is assumed to be uncapacitated. Moreover, it is assumed that any 

machining operation does not begin until the transporter returns to the load/unload 

station. They conduct simulation studies to evaluate the performance of the off-line 

scheme under balanced and unbalanced workload of machines with the objective of 

minimizing mean tardiness. However, the experimental results suggest that the off-line 

scheme produce similar results with that of dispatch rules. The authors attribute this 

to the low utilization level (e.g. 20%) achieved in the experiments which is 

deliberately set to keep computation time at a reasonable level.

The off-line scheduling algorithms developed by De [7] and De and Lee [8] are 

two examples for AI based studies. Both algorithms generate schedules for machines 

considering routing flexibility and transportation time. In the first study, the author 

represents the solution space with the state operator framework that is based on first 

order predicate calculus and a conflict resolution strategy is also used. The 

computational requirements of the algorithm is rather high. Consequently, only a 

simple example is solved to demonstrate the algoritlun. In the second study a frame 

based knowledge representation scheme is used to represent the solution space. The 

filtered beam search technique is also applied to search for a good solution. A 

comparative study has not been done to see the performance of the algorithm.

Hutchison et al. [15] develop two exact scheduling algorithms for a random 

type FMS with jobshop type flow pattern and operates within a static and 

deterministic environment. The first algorithm is based on a mixed-integer zero-one 

programming model and finds optimal solution for the routing and scheduling problem 

simultaneously. The second algorithm decomposes the routing and scheduling 

problems into two subproblems. First, a routing problem is solved and then using this 

solution as input the scheduling problem is solved in sequel. This approach simplifies
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the original problem and reduces the computational efforts considerably. Both 

algorithms utilize a branch and bound technique. In this study they examine:

• the effects of using a procedure that decomposes the scheduling problem

• the effects of routing flexibility on scheduling schemes

• the appropriateness of on-line versus off-line scheduling for a random, jobshop 

FMS in a static environment.

They conduct experiments using an example FMS with seven machines. All 

other subsystems (e.g. material handling etc.) are assumed to have ample capacity. 

They compare two off-line schemes which employ the optimal-seeking algorithms and 

an on-line scheme which uses the SPT rule with a look-ahead control policy, under 

different levels of routing flexibility. The computational results reveal that both of the 

off-line schemes perform much better than the on-line scheme. In addition, the off-line 

schemes take advantage of increased routing flexibility more so than the on-line 

scheme does. They also observe that the decomposed off-line scheme performs very 

close to the optimal off-line scheme.

In another study, Aanen et al. [I] examine the scheduling problem of an FMS 

with a particular configuration. The FMS basically consists of two machines which 

can process a wide range of different jobs and each Job consists of one or more 

processing operations on one or both machines. The problem is solved for sequence 

dependent setup times and constant transfer times that occur on both machines and 

between the machines. With these complexities the problem is handled within the 

context of general jobshop scheduling problem. The authors develop a branch and 

bound algorithm that take advantage of the special structure of the problem. They also 

use a method which limits the number of nodes investigated in order to reduce 

computational requirements. They test the algorithm using different bounding 

procedures and compared it with dispatch rules. They show that the algorithm with 

the best performing bounding procedure yields an improvement o f 6.8% over the 

dispatch rules for makespan criterion. Although the run time of the algorithm is high.
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the authors conclude that this may be reduced by using faster machines and optimizing 

the computer code of the algorithm.

Ulusoy and Bilge [39] address the problem of scheduling machines and 

automated guided vehicles simultaneously in an FMS. They decompose the problem 

into two subproblems: machine scheduling and AGV scheduling. They develop an 

iterative procedure which essentially solves the machine scheduling problem first and 

then finds a feasible vehicle schedule that fits it. At each iteration, a new machine 

schedule is generated and investigated for its feasibility to the vehicle scheduling 

subproblem. The operation completion times obtained from the machine schedule are 

used to construct time windows for each material handling trip and the second 

subproblem is handled as a sliding time window problem. They also develop a single 

pass heuristic procedure so as to provide a basis for comparison. They conduct a set 

o f experiments in a static and deterministic environment and examine the impact of 

processing times/travel times ratio on the performance of the procedure. The results 

suggest that the iterative procedure performs particularly well at high processing 

time/travel time ratio.

The following observations can be made from this brief literature review:

• Generally, off-line algorithms produce better solutions than on-line algorithms 

under static and deterministic environment. Their relative performance under 

more realistic environments (i.e. dynamic and stochastic) are not known and 

hence, open to further research.

• The computational requirements of off-line algorithms are usually much higher 

than on-line scheduling algorithms. In order to use off-line algorithms in real 

time scheduling more simplifying assumptions are made to reduce their 

computational burden. In the absence of considerations of many relevant 

features of the system, it is hard to examine the effects of scheduling factors 

on on-line and off-line scheduling schemes.
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THE SCHEDULE GENERATION ALGORITHM

In this chapter the proposed scheduling algorithm is described in detail and its 

performance is analyzed. The scheduling factors considered by the algorithm are 

machines, AGVs, buffer capacities, and flexibilities (routing and sequence). A 

deadlock avoidance and resolution mechanism is also embedded in the proposed 

algorithm. The algorithm can also generate partial schedules in varying time windows. 

However, in this chapter the algorithm will be used in off-line mode (i.e. complete 

schedules will be generated at one time for entire scheduling horizon) and its 

performance will be compared with that of machine and AGV scheduling rules. An 

analysis of the effects of scheduling factors on the system performance is also 

provided.

The rest of the chapter is organized as follows: in section 3.1. the algorithm is 

described in detail and its properties are discussed. This is followed by a discussion on 

system considerations and experimental conditions in section 3.2. Finally, section 3.3. 

gives computational results.

3.1. Description of the algorithm

CHAPTER 3

There are a number of solution approaches for the FMS scheduling problem in 

the literature. These can be simply classified into: mathematical modeling techniques 

with application of exact solution methods, and heuristic procedures. The former 

approach involves formulating the problem as a mathematical model and solving it 

using an exact algorithm (e.g. Hutchinson et al. [15], Sriskandarajah et al. [37]). 

Successful applications of this approach is limited with size of the problem and types
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of simplifying assumptions to be made. Unfortunately, inherent intractability of FMS 

scheduling problems make heuristic procedures attractive alternatives. These heuristic 

methods range from simple rules to more sophisticated algorithms. The scheduling 

algorithm proposed in this paper is a heuristic. According to the heuristic 

classification framework proposed by Zanakis et. al. [43], it is a construction type 

heuristic. That is, a solution is generated by adding individual components (e.g., 

nodes, variables, arcs) one at a time to a partial solution until a feasible solution is 

obtained. In the proposed algorithm, a decision tree is first constructed and then 

heuristic methods explore this search tree for the best solution. Hence, the algorithm 

is implemented in two consecutive stages: 1) decision tree representation to define a 

solution space and 2) application of a search methodology to find a good solution. 

These two steps of the algorithm are discussed in detail in the following sections.

3.1.1. Representation Scheme

20

The solution space is represented as a decision tree where each node 

corresponds to a scheduling decision to be made and each unique path from the root 

node to any particular node defines a partial solution associated with that node. Leaf 

nodes at the end of the tree specify complete solutions. In the proposed method, the 

search tree is constructed in such a way that various system resources, their capacities 

and flexibilities are taken into account at each layer. This means that availability of 

machines, AGVs, buffer spaces and flexibilities of the jobs are considered when next 

layer of nodes are sprouted from a parent node at each decision point. The detailed 

structure of this sprouting procedure is given below with illustrative examples. The 

following notation is used in the algorithm:
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Notation and definitions:

1

j

m

g

G

Pi,m,g

S iij,m

Siij,m,g

îj,m,g

K

U(K)

W(K)

subscript of jobs 

subscript of operations 

subscript of machines 

subscript of AGVs 

set of AGVs

time at which AGV g delivers job i to machine m for j^h operation 

(delivery time)

time at which AGV g loads job i from machine m (pick up time) 

earliest possible start time of j^^ operation of job i on machine m, 

assuming instantaneous delivery

earliest possible start time of operation j of job i on machine m if the 

job is transported by AGV g

earliest possible finish time of operation j of job i on machine m if 

the job is transported by AGV g 

a partial schedule

a set of immediately schedulable operations for a given partial 

schedule K, U(K)={n i n=(ij,m,s')} where each element n is defined 

by machine m to start processing j^^ operation of job i at time s' 

a set of scheduling decisions for a given K, W(K)={n I 

n=(ij,m,g,p,d,s,s',f)}, where each element n corresponds to 

scheduling of AGV g to pick up job i at time p, deliver it to machine 

m at time d, and scheduling of machine m to start processing j^h 

operation of job i at time s and finish it at time f



Sprouting Algorithm

Step 1. Given a partial schedule K, determine the elements of U(K) 

considering routing and sequence flexibilities, and buffer space availabilities.

Step 2. Construct elements of W(K).

Step 2.1. For each combination of neU(K) and geG , compute (p,d,s,f) values 

ofW(K).

Step 2.2. Compute d*=min{dij ^  g} over the elements o f W(K). Delete the 

elements with Pi jn,g > ·

Step 2.3. Group the elements of W(K) according to the same (ij,m) values. For 

each group, keep the element which satisfies inin{dij jn^g-s'jj ^ ,0}  and delete others. 

Break ties in favor of the one with the least Pi^ni,g values.

Step 3. Group the elements of W(K) according to the same i value. For each 

group, keep the one with the smallest fij,m,g delete others. Break ties arbitrarily.

Step 4. Compute earliest finish time, f*=min{fjj jn,g)» over the elements of 

W(K). Delete the elements with s ij ni,g > f*·
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The first step of the sprouting algorithm integrates routing and sequencing 

decisions. The route of a job is formed progressively by taking into account the 

current state of the solution (i.e. partial schedule). In Step 2 of the algorithm, an AGV 

is schedulable immediately after delivering of its previously assigned load and never 

waits idle for a transportation request. A job which is assigned to an AGV can be in 

the output queue or still be in process. If it is in the process, the AGV goes to the 

respective machine and waits until the job is placed in output queue. Hence, the 

waiting time component associated with material handling system is reduced 

considerably. Step 2.2 ensures that all AGV schedules are active. This means that an 

AGV cannot meet transportation requirements of other jobs without violating the 

feasibility of the AGV schedule. In the proposed algorithm, machines and AGVs are 

simultaneously scheduled. This provides an opportunity for a job to shift a part of its 

waiting time in the input queue of the destination machine to its material handling



time. Hence, the machine waiting time component of the job is also reduced. 

Moreover, choosing the AGV with the nTin{dg value avoids long job

waiting times of the machine.

Step 3 of the algorithm provides a mechanism for effective use o f flexibilities. 

An active schedule generation scheme proposed by Chang and Sullivan [6] is used in 

Step 4 so that none of the operations of the jobs can be started earlier without 

violating the feasibility of the schedule (i.e. remaining elements of W(K) form active 

machine schedules).

3.1.2. Search Methodology
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After representing the solution space, an appropriate search procedure is used

to find good solutions within this space. In the proposed scheduling algorithm, filtered

beam search is used as the search methodology. Beam search is a fast and

approximate branch and bound (B&B) method which operates on a search tree. It

uses heuristics to estimate a certain number of best paths, permanently pruning the

rest. Since large parts of the search tree is pruned off aggressively to obtain solutions

quickly, its running time is polynomial in the size of the problem.
o

Beam search was first used in artificial intelligence by Lowerre [19] for a speech 

recognition problem. It was also applied to several scheduling problems. For example. 

Fox [10] used this technique as a part of ISIS system for solving real-life jobshop 

scheduling problems. Ow and Morton [25] investigated the performance of beam 

search with other heuristic procedures. They also proposed a variation of this 

technique called filtered beam search. In another study, Chang et al. [5] used beam 

search as a part of their FMS scheduling algorithm which is called bottleneck based 

beam search. More recently, De and Lee [8] used filtered beam search as a part of AI 

based scheduling procedure. An overwiev of beam search applications for the 

scheduling problems can be found in Morton and Pentico [22].



In filtered beam search, only a certain number o f nodes (filtenvidth) are 

sprouted, others are filtered out using a local evaluation function. These remaining 

nodes are then evaluated by a global evaluation function and the ones found most 

promising are added to the partial solution. This procedure is repeated on a certain 

number of parallel paths (beamwidth). Hence, the number o f solutions saved at any 

level of the tree is equal to size of the beamwidth. Figure 3.1 illustrates an example of 

beam search. In the figure, shaded circles are the nodes on the solution path and 

dashed circles represent the nodes that are filtered out, whereas solid circles represent 

nodes left after filtering. Since the performance of beam search depends on the quality 

of these functions (i.e. local and global evaluation fiinctions) and the parameters (i.e. 

beamwidth and filterwidth), they need to be specified carefully in order to adopt it to a 

particular
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Figure 3.1. An example of filtered beam search.



solution space representation. The values of filterwidth and beamwidth are usually 

determined empirically. In most of the cases an iterative procedure is used by 

increasing parameter values until the point beyond which neither the filterwidth nor 

the beamwidth adds to the value of the solution, but to computation time. In our 

study, we used the filterwidth of 5 and the beamwidth of 3 as suggested by our pilot 

experiments.

The global evaluation function is a probe search beginning from the argument 

node and returns an upper bound value for the solutions that can be generated if that 

node is added to the solution. Whereas, local evaluation function uses only 

information inherent in a node, hence, is local to that node. In the proposed algorithm, 

the global evaluation function produces a tentative schedule by successively sprouting 

next layer of nodes and selecting one by local evaluation function to add to the 

tentative schedule. How far the global evaluation function goes in the search tree can 

be kept as a parameter. The further it extends the partial schedule, the better is the 

consequences of adding the argument node to the permanent schedule o f the beam 

being investigated. Therefore, the probe length o f the global evaluation function can 

control both the amount of information used by the algorithm and the computation 

time. This is adjusted by a parameter we call a time window. The global evaluation 

function produces a tentative schedule until no more nodes can be sprouted because 

of the constraint imposed by the parameter.

This also brings another design issue within the context of the proposed off-line 

algorithm, that is how to compare given partial schedules for a given performance 

criteria. In general, all of the performance measures that can be used for off-line 

schedules are based on complete schedules. Therefore, new measures are needed to 

evaluate the performance of partial schedules. In the makespan case, partial schedules 

are evaluated according to the average utilization level. In the flowtime case, the 

average waiting time per scheduled operations is employed. For the mean tardiness 

case, operation due dates are used to compute mean tardiness performance of the 

partial schedule. These measures are equivalent to their counterparts (i.e. performance
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measures) which are defined for complete schedules in terms of ranking a given set of 

schedules.

In our implementation of beam search, the local evaluation function is used for 

both filtering and selecting nodes in the global evaluation function. Since the size of 

the solution tree is huge in our case due to considerations of multiple resources, 

various flexibility types, a local evaluation function to be used in the proposed 

algorithm must be computationally very cheap. In the scheduling literature, the most 

popular approach for making quick and local decisions is to use scheduling (or 

dispatching) rules. As reported by Sabuncuoglu and Hommertzheim ([33], [34]), 

there are several machine and AGV rules used for FMS scheduling. In this study, 

some of these rules were used as the local evaluation functions. During rule selection 

process, a few subtle points have been noted that are worthwhile discussing here. The 

first point is that the selected rule should control job releases into the system. In our 

experiments, it was observed that the rules like SPT and MOD result in early job 

releases which eventually cause congestion in the system. The second point is that the 

relative urgency of jobs should not change frequently during the scheduling process. 

Otherwise, a job which is scheduled first on a current machine can wait for a long 

time on another machine and loose the advantage gained in the previous operation. 

For that reason, some job based rules are used in the evaluation functions rather than 

operation based rules (Table 3.1). Note that all these discussion are valid with 

reference to the proposed scheduling algorithm and experimental conditions used in 

this study.
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Performance measure Rule

Makespan 

Mean flowtime 

Mean tardiness

MTWK (most total work) 

LWKR (least work remaining) 

MDD (modified due date)
Table 3.1. Scheduling rules used as local evaluation functions
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3.1.3. System Blocking

In the proposed algorithm, the schedule is constructed progressively by 

sprouting a layer of nodes and adding the most promising node to the partial schedule. 

However, the algorithm may not sprout next layer of nodes if the system is blocked in 

the partial schedule constructed so far. For example, when parts cannot go to the next 

machine on their route due to unavailable buffer space, job movement in the system 

can be blocked. These events in succession cause a deadlock in the system and job 

flow caimot be retained unless the jobs that cause deadlock are moved.

In the proposed algorithm, blocking problems are solved in two stages. First, a 

preventive action is taken at the global evaluation function level. This is accomplished 

as follows. If a next layer of nodes cannot be sprouted in the process of constructing a 

tentative schedule because of a deadlock situation, the global evaluation function does 

not return the performance measure value of the partial schedule, but returns the 

number of nodes added to the tentative schedule so far. When selecting a node from 

globally evaluated nodes, two subgroups are formed. One group contains nodes 

through which schedules can be obtained without any deadlock and the second group 

contains nodes that led to a deadlock situation in their global evaluation. If the first 

group is not empty, the node with the highest evaluation value is selected (Figure 

3.2). Otherwise, the one which has probed farthest is selected (Figure 3.3). In this 

way, the potential paths which may lead to deadlock is avoided as much as possible. 

However, deadlocks can still occur, especially when global evaluation function does 

not probe far enough to detect possible deadlocks. In this case, only step 1 of the 

sprouting algorithm is changed as follows:

Exception Step: Consider the jobs which reside in output queue of the machine 

with no buffer space left. In the processing requirements of these jobs, insert a dummy 

operation on the L/U station with zero processing time.

The exception step ensures that every job which has a potential of resolving the 

deadlock becomes a candidate to be transferred to the L/U station and releases the
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Figure 3.2. Step 1 o f deadlock avoidance mechanism.

X
Dc«dk)ck

Figure 3.3. Step 2 of deadlock avoidance mechanism.



buffer space occupied. Thereafter the sprout algorithm resumes its regular steps. 

When exception step is used, the filtering mechanism filters out the nodes with the 

highest local evaluation function value. Because in this way jobs with higher priority 

value are kept in the system and jobs with lower priority value become candidate jobs, 

whose routes are to be interrupted. Then these nodes are passed to global evaluation 

function and the nodes which cannot resolve the deadlock are detected during global 

evaluation. In this way, deadlocks are resolved with the expense of increasing flow 

time of jobs which are moved to the L/U station.

3.2. System considerations and experimental conditions

As shown in Figure 3.4, the hypothetical FMS under study consists of six 

machines each with a finite buffer capacity, and one load/unload (IVU) station. Parts
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Figure 3.4. A schematic view of the hypothetical FMS under study



are transferred by three AGVs in the system. The distance between two ends of each 

segment in the layout is 5 distance units. Parts enter and leave the system through the 

L/U station. This station is also used as a central buffer area when blockings occur in 

the system. All of the jobs are assumed to be ready at the L/U station at time zero. 

Randomly generated 25-job problems are used in the experiments. Each job has either 

5 or 6 operations with equal probability and each operation is assigned to a different 

machine. Hence, machine loads are kept nearly equal. Operation times are drawn fiom 

a 2-Erlang distribution. The performance of the proposed algorithm is measured under 

various operating conditions with the following experimental factors: 1) machine load, 

2) AGV load, 3) local buffer capacity of machines; 4) routing flexibility, 5) sequence 

flexibility, 6) due date tightness, 7) scheduling criteria. For each of the above factors, 

except the scheduling criteria, two levels (low and high) are considered in the 

experiments (Table 3.2).
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Factor Low High

Machine load level (ML) 15 30

AGV load level (AL) 2 1

Routing flexibility (RF) 1 2
Sequence flexibility (SF) 0.25 0.75

Queue capacity (Q) 2 5

Tardiness factor (TF) 0.35-0.40 0.85-0.90
Table 3.2. Experimental factors and their levels

As suggested by Sabuncuoglu and Honunertzheim [32] machine loads are set 

varying the mean of the operation time distribution and AGV load levels are adjusted 

by changing AGV speeds. Similarly, the mean of the processing time distribution is 

set to 15 and 30 for low and high machine load levels, respectively.

The queue capacity of the machines is set to 2 and 5, corresponding to tight and 

loose values. Routing flexibility measure is taken from Chang et al. [5] who defined it 

in terms of the average number of machines that an operation can be processed. The 

value is set to 1 and 2 for low and high levels of this factor, respectively. We assume



that the first assigned machine is the ideal machine with the least processing time. The 

processing time on the alternative machine is computed by adding a random number 

to the processing time of the operation on the ideal machine. This random number 

comes from a uniform distribution with a mean o f half the processing time of the 

operation on the ideal machine.

Sequence flexibility measure is adopted from Rachamadugu and Scrieber [27]. 

According to their approach, operations of a job are viewed as nodes on an acyclic 

graph. The density of precedence arcs on this graph determines the degree of 

sequence flexibility. Its equation is as follows:

SFM=1.0-(2*all precedence arcs)/(n*(n-l))

where n is the number o f operations. The SFM value ranges between 0.0 and 

1.0. The closer is SFM to 1.0, the higher the sequence flexibility a job possesses. In 

our experiments, SFM is set to 0.25 and 0.75 for low and high sequence flexibilies, 

respectively.

Tardiness factor (TF) is defined as follows. Given a set o f jobs and their 

transportation requirements with flexibilities fixed at their low levels and queue capac

ity set to its loose level, tardiness factor (TF) is equal to the fraction of tardy jobs that 

comes from the solution of the problem by using dispatch rules. This factor helps to 

examine the effects of individual factors on the system performance and to compare 

different solution methods (i.e. the proposed algorithm and scheduling rules). The 

tardiness factor is currently set to 0.85-0.90 for tight due dates and 0.35-0.40 for 

loose due dates.

In practice, the due dates are dictated by the customer and called exegenous due 

date assignment. At other times, the due dates are totally under the control of a 

company which sets them based on expected completion time of parts. This type of 

due date setting is called endogenous due date assignment. Both exogenous and 

endogenous due date assignment methods are implemented in this study. Exogenous 

due dates are generated from a uniform distribution with a particular mean and 

variance. The mean of the uniform distribution is varied to obtain the desired value of
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due date tardiness factor (TF). Endogenous due dates are assigned by the total work 

content (TWK) rule, because this rule has been found to be robust in the previous 

studies. According to this rule, due date of a job is determined by multiplying total 

work content of the Job by a constant multiplier so that the desired TF value is 

achieved.

Performance of the algorithm is tested for makespan, mean flowtime, and mean 

tardiness criteria. Both the proposed algorithm and the simulation model used to 

implement the scheduling rules are coded in C programming language. Computations 

are performed on a Sun 4 workstation. Five different problem sets are randomly 

generated for each factor combination. The performance of the proposed algorithm is 

compared with the scheduling rules listed in Table 3.3. The MODFlFO rule is a 

modified version of the FIFO rule such that priority is given to jobs in the output 

queue of the machine at which the material handling device waits at that moment.

In the simulation model used to implement the rules, an alternative machine in 

the process route is selected using the least total work content criterion. If there is 

more than one AGV available to transfer the part, the one closest to the machine 

which is demanding service is selected. In addition, the deadlock preventive scheme 

proposed by Sabuncuoglu and Hommretzheim [32] is used. This type of use of 

scheduling rules in a simulation model (i.e. event based scheduling) is a typical
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Criteria Machine scheduling rules AGV scheduling rules

Makespan

MWRKrmost work remaining 

LPTdargest processing time 

MTWK:most total work content

STDrshortest distance 

MODFIFO.modified FIFO 

LQSrsmallest queue space left

Mean

flowtime

LWRKileast work remaining 

SPTrshortest processing time

STD:shortest distance 

MODFIFO:modified FIFO 

LQS.smallest queue space left

Mean

tardiness

MDDrmodified due date 

MOD; modified operation due date

STDrshortest distance 

MODFlFO: modified FIFO 

LQS:smallest queue space left
Table 3.3. The list of machine and AGV scheduling rules
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example for implementation of on-line scheduling schemes. Therefore, this chapter 

will also provide a comparison between the off-line and on-line scheduling schemes in 

a deterministic and static environment.

3.3. Computational Results

3.3.1. Comparison of the algorithm with the scheduling rules

In this section, performance of the proposed algorithm is compared with the 

scheduling rules (on-line scheduling scheme). As discussed in the previous section, a 

number of randomly generated problems are used in the experiments. In addition to 

the experimental factors discussed in the previous section, schedule generation 

scheme is added as another factor in the full factorial experimental design. The 

computations are performed by using makespan, mean flowtime and mean tardiness 

criteria. The results revealed that the schedule generation factor is statistically 

significant in favor of the proposed off-line algorithm. The analysis also indicated that 

two way interactions between the scheduling scheme and other factors are significant 

(Table 3.4). These are explained in detail for each performance measure in the 

following sections.

Mean flowtime Makespan Mean tardiness 
(endogenous)

Mean tardiness 
(exogenous)

Factors A L J^ ,R F ,Q  AL,RF,Q AL,ML,SF,TF,Q AL,RF,TF,Q

Table 3.4. Factors that have significant two way interactions with scheduling methods.



Makespan

According to the results of pilot experiments, the two combinations, 

MWKR/MODFIFO and MWKR/LQS are selected for scheduling rules. Specifically, 

the first rule pair is the good choice when buffer capacity is loose, whereas the second 

rule pair is better in tight queue capacity cases. Hence, these two rule combinations 

are used as the on-line methods in the experiments.

On the average (over all of the factors) the algorithm provided a 20% 

improvement over the scheduling rules. Figure 3.5 illustrates makespan differences 

between the proposed algorithm and the scheduling rules for every experimental 

factor. The points on a factor's graph is obtained by averaging the differences in 

makespan, fixing the factor's level to a specific value and taking average over all levels 

of all other factors. In general, the graphs show that the proposed algorithm 

outperforms the scheduling rules at every level of each factor. The results of the 

ANOVA test also confirmed that differences in the relative performances of the 

algorithm and rules are more significant when AL and RF is high, and Q is tight. 

Notice that the slopes of these graphs also measure the effect of a factor to 

differences in the performances of the algorithm and scheduling rules. As can be seen 

in Figure 3.5, the proposed algorithm performs particularly well when AGV load is 

high and queue capacity is tight. For example, the percentage in^rovement of the 

algorithm is as high as 34% when AGV load is high and queue capacity low.

The computation time of the algorithm depends on the number of schedulable 

operations and the level of flexibilities in the system. On the average 25-job problems 

are solved within 350 to 450 CPU seconds when flexibilities are high. This reduces to 

20 to 40 CPU seconds when the flexibilities are at low levels.
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Difference in Makespan Difference In Makespan

Difference in Makespan Difference in Makespan

(O

Difference in Makespan

Figure 3.5. Makespan difference between scheduling schemes



Mean flowtime

SimiJar observations can be made for the mean flowtime criterion. In this case, 

LWRK/MODFIFO and LWRK/LQS are used as the machine and AGV scheduling 

rule combinations for loose and tight queue capacity cases, respectively. As can be 

seen in Figure 3.6, the proposed algorithm provides a substantial flowtime 

improvement (about 30%) over these scheduling rules. Again, differences in the 

performances of the algorithm and rules become more significant as resource 

constraints get tighter and routing flexibility is increased. However, this difference is 

not statistically significant at any level of SF. Thus, both schemes utilize the SF at the 

same rate. As in the makespan case, AGV load level and queue capacity tightness are 

the two most dominating factors for their performance differences. Specifically, the 

improvement is more than 39% when the AGV load is high and the queue capacity is 

tight. Whereas, it is 21% in the reverse case.

Mean tardiness

In the tardiness case, MDD/MODFIFO and MDD/LQS rule combinations are 

selected to be compared with the proposed algorithm. Figure 3.7 shows differences in 

the mean tardiness between the algorithm and the scheduling rules for each of the due 

date assignment methods. The algorithm outperforms the scheduling rules at each 

level of every factor. With exogenous due date assignment method, except for 

machine load case, the algorithm performs better than the rules at high or tight level 

of the factors. With endogenous due date assignment, the algorithm seems to perform 

relatively worse, at high routing flexibility level, although this difference is statistically 

insignificant. In any case, the algorithm achieves very small mean tardiness values at 

high levels of the flexibilities. Moreover, the fraction of tardy jobs is reduced 

significantly by the algorithm at high levels of flexibilities. One important point that is 

not seen on these graphs is that, when due dates are assigned endogenously, setting 

machine load to its high level, does not increase the mean tardiness obtained by the 

algorithm. But the performance of the scheduling rules are affected by this type of 

change. This is a very good property of the algorithm. When the relative performance
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Deference in Mean Flowtima Difference in Mean Flowtimo

Difference in Mean Flowtime Difference in Mean Flowtime

RouHng FW M M y (RF)

(c) W

Difference In Mean Flowtime

Figure 3.6. Mean flowtime difference between scheduling schemes
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Figure 3.7. Mean tardiness difference between scheduling schemes



of the algorithm is compared according to the two due date assignment methods, it 

produces better results with endogenous due date assignment method. Again, from 

the slopes of graphs, queue capacity level, AGV load level, and due date tightness 

level seem to be the most important factors in terms of their effects to the relative 

performances of the algorithm and rules.

3.3.2. Performance evaluation of the algorithm and the effects of scheduling 

factors

39

In this section, performance of the scheduling algorithm is analyzed with respect 

to scheduling factors. These results provide valuable insights into how various 

scheduling factors in an FMS environment (i.e. machine load levels, flexibilities, etc.) 

interact with each other and affect the system performance. Another ANOVA test is 

performed for each scheduling criterion to test the significance of the main factors and 

high order interactions. Table 3.5 summarizes the test results in terms of the main 

factors and high order interactions that are found significant at 1% level.

In general, effects of the main factors are significant for each of the 

performance measures. Only exception is noticed for ML in the mean tardiness case 

with endogeneous due date assignment method. This is due to the fact that both due 

date assignment and machine load level determination methods are based on the total 

work content rule. Consequently, due dates are postponed to later dates (i.e. loose 

due dates) at higher values of machine loads.

The effects of routing and sequence flexibilities on the system performance are 

also significant. This means that performance of the system can be improved 

considerably by utilizing the available flexibility inherent in FMSs. As it is expected, 

high values of machine and AGV load levels, and the low value of level of buffer 

capacity have adverse effect on the system performance. It can also be observed from 

Figure 3.8 that effects of factors on the system performance are different for different 

performance criteria. For example, effects of ML and AL are greatest for the
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Mean flowtime Makespan Mean tardiness Mean tardiness 

(endogeneous) (exogeneous)
Main factors

Two-way
interactions

RF,SF,AL,ML, RF.SF.AL, 
Q ML,Q

RF.SF
RF.AL
RF,ML
SF.AL
AL.ML

Three-way
interactions

None

RF.SF
RF.AL
RF.ML
RF.Q
SF.AL
SF.Q
AL.ML
ML.Q

None

RF.SFAL.TF.Q r f ,s f ,a l ,m l , 
TF.Q

RF.SF
RF.AL
RF.ML
RF.TF
RF.Q
SF.TF
AL.TF
Q.TF

RF.SF.TF
R FA U TF
RF.ML.TF

RF.SF
RF.AL
RF.ML
RF.TF
RF.Q
SF.TF
SF.Q
AL.ML
AL.TF
ML.TF
TF.Q

RF.AL.TF
RF.ML.TF
AL.ML.TF

Table 3.5. Summary of ANOVA results for each scheduling criteria

mean flowtime and the makespan criterion. Whereas. TF and RF are two most 

dominating factors for the mean tardiness criterion irrespective of the due date 

assignment methods.

Two and three way interactions are also analyzed. The results indicate that the 

impact of RF (SF) is greater with low values o f SF (RF). The effect of RF is greater 

when AL is high and ML is low. Especially, the impact o f RF is magnified at the low 

level of ML. This is because the processing time of an operation at an alternative 

machine depends on the processing time at the ideal machine. As ML is increased the 

processing time at an alternative machine increases at a higher rate. Nevertheless, RF 

still improves performance at the high value of ML. RF has also interactions with Q 

and TF and its effect becomes stronger when these factors are at their tight levels. We 

also observe interactions of SF with AL, Q and TF. In all of the cases, SF improves 

the performance at higher rates when these factors are more binding. TF has also 

interactions with all the other factors and the examination of these interactions reveal 

that the effects of these factors are stronger when TF is tight.
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Figure 3.8. Effects of scheduling factors



As can be seen in Table 3.5, TF also makes some of the combined effects of the 

factors stronger in the three way interactions.

Another important interaction is observed between AL and ML. Their 

interaction indicates that the adverse effect of increasing the level of AL(ML) is small 

when ML(AL) is at its high level. Similarly, the effect of increasing AL(ML) level 

becomes stronger when ML (AL) is at its low level. This implies that, among the 

factors AL and ML, if one of them is at its high level, changing the level of the other 

does not affect the system performance significantly. Fmally, the interaction between 

ML and Q in the makespan case indicates that the effect of Q becomes stronger when 

ML is high.

In summary, an off-line FMS scheduling algorithm is developed in this chapter. 

The proposed algorithm considers a wide variety o f system resources in an FMS 

environment. The computational results indicate that the algorithm performs 

significantly better than the rules under various experimental conditions for each of 

the scheduling criteria. Especially, differences in the relative performance of the 

proposed off-line algorithm and the scheduling rules increase as the system resources 

become tighter. Although the computation time of the algorithm is higher than that of 

the scheduling rules, improvement in the performance of the system can justify its 

computational burden.
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CHAPTER 4

A SIMULATION BASED SCHEDULING SYSTEM

4.1. Introduction

Today, simulation is accepted as one of the most valuable OR tools in practice. 

This can be attributed to several reasons such as the reduction in the cost of 

computers and development of new flexible simulation languages. The increased use 

of simulation is due to the growing need for solving complex problems in business and 

manufacturing. Especially, the ability of simulation models to capture necessary details 

of dynamic and complex systems makes simulation the most used OR tool. This 

characteristics of simulation is especially important for Flexible Manufacturing 

Systems (FMSs) because it is veiy difficult for analytical models to properly handle 

the detail and complexity of such systems. Hence, from current FMS practice, 

simulation is seen as one of the most frequently used OR tool.

From current practice, simulation applications can be classified into stand-alone 

applications and hybrid applications. In the former case, which accounts for the 

majority of simulation applications, a simulation model is used as a test-bed for 

evaluating different design alternatives or operational policies without disturbing the 

actual system. In a typical situation, long and multiple runs are taken from the 

simulation model and its results are analyzed by statistical methods. This type of 

simulation application can be called as an off-line use of simulation because there is no 

real time communication between the simulation model and the system elements. In 

general, the off-line use of simulation gives an overall picture about the system being 

simulated. In the second categoiy, there are hybrid applications of simulation with 

other scientific tools such as expert systems (ESj/artificial intelligence (AI) and
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analytical techniques. These hybrid systems are usually developed for real time 

operation and control of the manufacturing systems. This approach also facilitates the 

on-line use of simulation as it is invoked more frequently in this mode. The simulation 

model discussed in this chapter has also several on-line capabilities.

The purpose of a hybrid model is to combine the powers of its constituting 

elements to solve much larger and complex problems with reduced computational 

efforts (Shanthikumar and Sargent [35]). In general, scheduling problems are in this 

nature. Except in relatively simple cases, determination of optimum schedules by 

analytical means is extremely difficult The problem is further complicated by the 

dynamic and stochastic nature of manufacturing environment in which schedules must 

also be maintained (or updated) fiequently over time. Traditional approaches (i.e. 

scheduling algorithms and math programming) may not be self-sufficient in dealing 

with these problems. Simulation methods, artificial intelligence techniques, or their 

combinations may also be needed for efficient operations of advanced manufacturing 

systems. In this chapter, one such a hybrid approach in which both simulation and 

analytical model is utilized, is described in detail.

The idea of integrating simulation model and scheduling algorithms has existed 

for a long time. There are already some studies in which several simulation plus ES 

based scheduling systems are proposed (e.g. Manivannan and Banks [20], Wu and 

Wysk [40]) and their implementation issues are discusses (Harmonosky & Robohn 

[12]).

4.2. The proposed scheduling system

4.2.1. Description of the system
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It can be observed that the majority of simulation applications to scheduling 

problems are in the form of testing several on-line scheduling policies or rules. 

Simulation of off-line scheduling methods has not received considerable attention



from the literature. This is partly due to difficulty in applying simulation to the off-line 

generated schedules in a dynamic and stochastic manufacturing environment. In this 

section, we describe a simulation model that implements both on-line and off-line 

scheduling methods. The proposed model also provides a framework to compare a 

wide range of reactive scheduling policies under different environmental conditions. 

The proposed system is coded in C programming language and implemented in UNIX 

environment using a SUN workstation. The length of the source code is more than 

7000 lines and the size of the executable code is about 150 Kbytes.

As shown in Figure 4.1, the simulation-based scheduling system consists of 

three major components: scheduler (scheduling module), simulation model, and 

controller. Next, the basic functions of each module will be described.

Scheduler is responsible for making all scheduling decisions. Given the system 

status and other relevant data including the scheduling method (e.g. on-line, off-line, 

etc.), it generates a partial or complete schedule. It contains several machine and 

AGV scheduling rules and the scheduling algorithm described in chapter 3.

Simulation model uses two sets of input data: system related data and values of 

environmental parameters. System related data consists o f a physical description of 

the manufacturing system (e.g. number of machines, number and speed of 

transporters, layout). Arrival rate of jobs, parameters o f stochastic events (e.g. 

machine breakdown rate, processing time variation), part types, machine and part 

flexibilities constitute the environmental parameters. In the simulation model, 

machining subsystem, movement of material handling equipment (AGVs), and in- 

process storage capacity are represented in greater detail. The main task of the 

simulation model is to execute (or implement) the scheduling decisions which is made 

by the scheduler and downloaded by the controller. This decision can be in the form of 

a partial machine and AGV schedule or a single decision for a resource. When an on

line scheduling policy is implemented, a resource triggers the controller upon 

completing a task which, in turn, invokes the scheduler. The scheduler makes a 

decision by applying some scheduling rules and passes the final decision to the
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Figure 4.1. A simulation based scheduling system.



controller. Then the controller sends this schedule to the simulation model for 

execution. In the other case, a partial schedule is passed to the simulation model in the 

form of a machine processing sequence, AGV move sequence and operation 

processing sequence for the jobs.

The control module examines the state of the system at every discrete event that 

occurs in the simulation model and provides appropriate course of actions to be 

executed by the simulation model. The control module has the following tasks:

• Keep up with the machine and AGV sequence in off-line mode

. Avoid and resolve deadlock situations

• Implement scheduling policies

The objective in simulating an off-line schedule is to observe its results in a 

stochastic environment. However, it is not easy to follow the exact start and 

completion times imposed by the off-line schedule in a dynamic and stochastic 

environment. When this is not possible, machine processing sequences and AGV 

move sequences are tried to be followed as close as possible to the original schedule.

In most of the manufacturing systems, in-system storage capacity is limited. 

Hence, there is always a possibility for blocking (and locking) in the system due to 

finite capacities. This necessitates the use of effective control policies to avoid 

blocking of material movement in the system. In the literature, the problem has often 

been addressed as a part of the on-line scheduling (Egbelu and Tanchoco [9], 

Sabuncuoglu and Hommertzheim [32]). However, it has not been thoroughly studied 

for off-line scheduling purpose. The problem is more complicated due to a fixed 

sequence that material handling transporters have to follow in the off-line mode. This 

is illustrated with the following examples. In the first case of Figure 4.2, part #2 waits 

for part #1 to be picked up from the current machine and delivered to the destination 

station. However, part #1 also needs to wait for part #2 for its delivery according to 

the AGV schedule. This contradicts with the demand of part #1, leading to a deadlock 

situation. In the second case, there is a similar dependency between part #1 and part 

#3.
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Figure 4.2. Two deadlock examples

As the third task, the controller is responsible for implementation of scheduling 

policies by considering the environmental conditions over time. In order to accomplish 

this, the controller must either be supplied with the appropriate control policy or must 

simulate alternative policies and choose one according to the simulation results. The 

first case is encountered in off-line use of simulation, whereas the second stands for 

on-line use. In the second case, simulation is also used to evaluate different policies at 

decision points. This method has the advantage of being more adaptive to the 

dynamically changing manufacturing environment However, the trade-off between 

simulation run length and statistical validity of the simulation results becomes an 

important issue (Harmonosky [13]). An expert system can also be used to reduce the 

number of scheduling policies that will be evaluated by the simulation model (Wu and 

Wysk [40]). The controller in the proposed scheduling system can take a snapshot of 

the simulation model at any instant and then recover the saved state at a later time. In 

the proposed system, all these features are incorporated. At a decision point a 

snapshot of the simulation model can be saved and then alternative policies can be 

evaluated using the same simulation model.
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4.2.2. Implementation issues

As already mentioned, the proposed simulation based system is implemented 

using a general purpose progranmiing language (i.e. C language). The other option 

was to use a specialized simulation language. There are advantages and disadvantages 

with each. However, the advantages associated with using a general purpose language 

are far better for this case.

From modeling point of view, simulation languages provide a higher level of 

abstraction to build a model. Although this helps in constructing the model easily and 

quickly, it also brings restrictions. In most cases the control logic of the simulation 

model cannot be implemented with the routines supplied by the simulation package. 

This is the most crucial part of a simulation model because simulation is mostly used 

to evaluate different control policies. In such a case, an user written code is interfaced 

with the simulation language. Of course, this brings an overhead to the users. As the 

control logic gets more complex, the use of a simulation language becomes less 

attractive. To give a simple example, suppose that in a jobshop different queuing 

disciplines will be evaluated with the help of a simulation model. It is easy to buUd the 

jobshop model with a simulation language which represents the physical system. But 

in order to implement alternative queuing rules, appropriate code must be written with 

a general purpose language and special routines which interfaces the user's routine 

with the rest of the model must be used. Another issue is that the description of a 

model coded with a simulation language cannot be changed without recompiling. On 

the contrary, a model coded with a general purpose language can alter its description 

by taking input during run time.

From implementation point of view, general purpose languages produce faster 

and more compact executable codes than simulation languages. To give a specific 

example, the simulation language SIMAN produces at least 1300 Kbytes of 

executable code when it compiles a model which includes user written code. On the 

other hand, our proposed system contains over 7000 lines of computer code



(including all scheduling algorithms) and the size of the executable, when compiled 

using the C compiler on SUN computer systems with the optimization flag of the 

compiler set, is only 150 Kbytes. In a hybrid application of simulation with an 

optimization model speed is very important to attain real time response. Another 

important implementation issue is debugging. Although most simulation languages 

have built in debuggers, these are only used to trace the code written with the 

language. There are no debugging tools available to trace the user written code. In 

our implementation we used a UNIX based debugger called ups. It is a shareware 

program and provides an integrated visual environment for debugging.

A significant advantage of simulation languages over general purpose languages 

is that they provide statistical analysis tools and animation facilities. These are 

important to analyze and monitor the system and they are hard to implement with a 

general purpose language. In our case, however, special purpose animation routines 

can be written in the X-Windows environment without much effort.

In summary, the structure of the simulation based scheduling system is 

described in this chapter. The proposed system enables the use of simulation in 

scheduling environment. It can be used both in on-line and off-line decision making 

modes. In this study, we use simulation in off-line mode to investigate the 

performances of various scheduling schemes under different simulated environments. 

The results of these experiments are discussed in the next chapter.
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CHAPTERS

COMPARISON OF SCHEDULING SCHEMES

This chapter discusses the evaluation of three scheduling schemes, namely on

line, off-line and quasi on-line schemes. The simulation based scheduling system 

described in the previous chapter is used to obtain computational results in various 

simulated environments. Section 5.1 describes the implementation o f the quasi on-line 

scheme within the proposed scheduling system. Section 5.2 gives a comparison in 

deterministic and static environment. The simulation results of static and stochastic 

environment are discussed in section 5.3. Finally section 5.4 provides the results for a 

dynamic environment.

5.1. Implementation of the quasi on-line method

In this thesis a new scheduling scheme called quasi on-line is also developed. 

Basically, this scheme makes a trade-off between on-line and off-line schemes. In the 

proposed approach, a partial schedule is generated whenever a scheduling decision is 

needed. This schedule is then executed until the most imminent time at which a 

resource completes its assigned tasks. At that point a new partial schedule is 

generated and the same process is repeated. Hence, the time between each scheduling 

point is not fixed a priori, but the time window parameter which basically determines 

the extend of information usage is fixed. In the quasi on-line scheme, more than one 

task to resource assignment decisions are made as opposed to a single decision in the 

on-line scheduling case. The number of scheduling decisions to be made is controlled 

by the time window parameter. This parameter determines the extend o f information 

usage and the degree of responsiveness.
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For an illustration of the use of time window parameter, consider the example in 

Figure 5.1, in which a partial schedule is generated for the period [toi,t02l· In this 

example, AGV #1 is the first resource that completes its assigned tasks at time tj j, 

provided that an unexpected event does not occur in the mean time. At this point in 

time, a new scheduling period is defined from t n  to t i 2 (i.e. [ tn ,t i2 ]) . Here, all 

scheduling decisions that start before tj  j are fixed and others are cleared. As seen in 

Figure 5.1, the second operation on m/c 3 is cleared and others are fixed. This 

procedure continues until all operations are scheduled. Notice that the proposed quasi 

on-line scheme is very similar to the on-line scheme except that several AGV and 

machine scheduling decisions are made when a resource becomes available.

5.2. Static and deterministic environment
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In this section, the performance of the quasi on-line scheduling scheme is 

measured under different values of time window parameter. Initially, two parameter 

values are used in the experiments. In the former case, the parameter is set to an 

arbitrarily small value (e.g. 100) to limit the amount o f information usage. Whereas, it 

is set to infinite to simulate an off-line scheme in the latter case. The methodology 

described in chapter 3 is also repeated here (i.e. a full factorial experimental design is 

done.) The results of the ANOVA table indicates that the off-line scheme performs 

significantly better than the quasi on-line scheme. This supports the earlier findings in 

chapter 3 that, the use of more information increases the quality of schedules 

significantly. The conditions under which off-line scheme performs relatively better 

(i.e. the extend of information usage is more effective) are also examined. The results 

(Table 5.1) reveal that, when resources are tight (AL, ML, TF high and Q low) or 

there is no alternative machines for operations (RF low), information usage becomes 

more critical. Hence, the off-line scheme performs particularly better than the quasi 

on-line scheme.
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Figure 5.1 Implementation of the quasi on-line scheme
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Factors

Makespan

AL.RF.Q

Mean Flowtime

AL,ML,RF,Q
exogenous

Mean Tardiness
endogenous

AL.ML.RF.Q.TF | AL.ML.RF.Q.TF
Table 5.1. Experimental factors that have two-way interactions with the 

scheduling methods.

The use of a fixed time window for all factor combinations in the experiment 

may effect the interactions of the above mentioned factors. As the makespan of a 

specific problem varies, the number of decisions considered within a time window also 

vary. Hence, the extend of information usage may change. Two most important 

factors that effect the makespan of a problem are AL and ML. In order to understand 

the effects of AL and ML on the nature of the interactions mentioned above, the three 

way interactions are also examined. The results indicated that the above arguments 

hold at both levels of AL and ML.

Another set of experiments is performed to analyze the effects of the time 

window parameter on the quality of the schedules generated. The performances of on

line, off-line and the quasi on-line schemes are measured with four different 

combinations o f experimental factors. These combinations have been determined as a 

result of the previous experiments. The levels of experimental factors are set so that 

we obtain the largest performance difference, smallest performance difference and two 

intermediate difference levels between the off-line scheme and the quasi on-line 

scheme. In these experiments, the value of the time window parameter is varied in 

such a way that it covers a certain fraction of the makespan value of a specific 

problem. These levels correspond to 1/8, 1/4, 1/3 and 1/2 o f the makespan value of a 

problem. For example, if the typical makespan of a factor combination is 1600, then 

we fixed the time window values to 200,400,533, and 800 for the four levels.

In Figure 5.2, which illustrates the results of the above experiments, the 

scheduling methods numbered as I and 6 correspond to on-line and off-line schemes, 

respectively. The methods numbered 2 to 5, represent various versions of the quasi 

on-line scheme with different time window parameter values in increasing order. The 

results show that as the scheduling horizon increases from 0 (on-line method) to a full
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Scheduling Method vs. Makespan

(a)

S c h e d u l in g  M e t h o d  v s .  M e a n  F lo w t im e

(b)
Figure 5.2 Comparison of scheduling schemes: deterministic and static environment
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Scheduling Method vs. Mean Tardiness

(C)
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Figure 5.2 (Cont'd)



horizon (off-line method), the performance of the schedules tend to improve. The 

largest improvement is observed when switching from on-line to quasi on-line with 

the smallest time window value. The slope of the graphs is largest when AGV and 

machine loads are high, due dates are tight, buffer capacity is low and flexibilities are 

low. For this factor combination, computational requirements of the scheduling 

methods are also plotted in Figure 5.3. As expected, the computation time increases 

as the scheduling horizon is lengthened.

In summary the quality of the schedules generated is improved as the length of 

scheduling horizon (the extend of information usage) is increased in a static and 

deterministic environment. This shows that a quasi on-line scheduling scheme can 

utilize the potential trade-off between the quality of the schedule and the 

computational requirements. However, in a dynamic and stochastic envirorunent in 

which most manufacturing system operate, the results may be completely different 

according to the level of interruptions in the system. In the next section, we study this 

problem by considering processing time variations and machine breakdowns.

5.3. Static and stochastic environment

5.3.1. Processing Time Variation
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In a typical real manufacturing environment estimates of processing times are 

used in the scheduling process. However, actual processing times may be different 

than these estimates due to changing machining conditions and other factors. This 

uncertainty can easily degrade the quality of scheduling decisions made.

In this section, impacts of processing time variation on the scheduling decisions 

are investigated. For modeling processing time variations, it is assumed that estimated 

processing times come from a truncated normal distribution with a mean of the 

estimated value and a certain coefficient of variation (cv) to be specified. Actual 

processing times can be higher or lower than the estimated value with the same
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probability. The algorithm uses estimated operation times for generating schedules. 

However, during execution of schedules by the simulation model realized processing 

times are used. In the experiments, levels of scheduling factors are fixed such that 

flexibilities are low, machine and AGV loads are high, tardiness factor is high, and 

queue capacity is high. The three different levels of coefficient of variation is set to the 

values of 0.1,0.2 and 0.3 respectively.

As can be seen in Figure 5.4 which displays the results for each scheduling 

criterion, the performance of scheduling methods detonates as the level of processing 

time variability increases. Except for the makespan criterion, the relative ranking of 

the methods is preserved when compared with the deterministic environment. 

However, with the makespan criterion increasing the value of time window parameter 

leads to an increase in the makespan up to a certain point, beyond which makespan 

decreases again. Nevertheless, the off-line scheme is the best performer for all 

scheduling criteria.

The interesting behavior observed for the makespan criterion needs further 

discussion. This phenomenon can be explained by the high rate of jobs entering the 

system, which is a typical characteristic of schedules generated with minimum 

makespan objective. In general, machines operate with little slack to minimize the 

makespan and this leads to high resource utilization rates when compared to other 

performance measures. For that reason, schedules generated for the makespan 

criterion are more sensitive to variations of processing times. However, when the time 

window parameter is large enough, the total processing time of a machine will be 

close to its estimated value due to the negative and positive deviations in processing 

times. This smoothes out the adverse effects of variations of processing times in the 

long run.

However, if buffer capacity of machines is small, the smoothing effect can not 

be easily realized. In low buffer capacity cases, the synchronization and dependencies 

among machines and AGVs are more important. Specifically, deliveiy sequence of 

parts to machines will be invalidated by variable processing times. Consequently, a
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Scheduling Method vs. Makespan under Variable Processing Times

(a)
Scheduling Method vs. Mean Flow-time under Variable Processing Times

(b)
Figure 5.4 Comparision of scheduling schemes: varaible processing times in static

environment
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Scheduling Method vs. Mean Tardiness under Variable Processing Times

(C)

Scheduling Method vs. Mean Tardiness under Variable Processing Times
endogenous due dates

(d)

Figure 5.4 (Cont'd)



machine may have to wait longer for the next part in its processing sequence and can 

not compensate for the changes in processing times in the long run.

In order to confirm this conjecture, the same experiment is repeated for the 

makespan criterion with a small buffer capacity. As shown in Figure 5.5, the 

performance of the schedules degrade more with large values of time window 

parameter. However, increasing the time window up to some point decreases 

makespan. In this case, information usage becomes more important for the algorithm 

to avoid deadlocks in the low buffer capacity case. This also indicates the importance 

of a trade off between the amount of information usage and the degree of 

responsiveness for the makespan criterion.
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5.3.2. Machine Breakdowns

Machine breakdowns are modeled by the busy time approach (Low and Kelton 

[18]). With this approach a random uptime is generated from a busy time distribution. 

The machine is considered as up until its total accumulated busy (processing) time 

reaches the end of this uptime. Then it fails for a random down time, after which an 

uptime will again be generated.

Low and Kelton [18] recommends that in absence of real data busy time 

distribution is most likely to be a gamma distribution with shape parameter alpha 

equal to 0.7 and scale parameter to be specified. The authors also propose a 

relationship between scale parameters and mean busy and down times, by which the 

model for machine breakdowns can be completely specified. In this framework, the 

level of machine breakdowns is measured by efficiency level which gives the long run 

ratio of a machines busy time to busy plus down time. The parameters and breakdown 

levels used in this study are depicted in Table 5.2.

Breakdown Level 
(efficiency)

Distribution Parameters (Gamma) 
Busy time Down time

95% alpha =0.7
beta=407
mean=3(X)

alpha=1.4
beta=10
mean=15

90% alpha =0.7
beta=450
mean=300

alpha =1.4
beta=25
mean=35

85% alpha =0.7
beta=445
mean=300

alpha =1.4
beta=40
mean=55

Table 5.2. The parameters and breakdown levels used in the experiments.

Figure 5.6 shows the simulation results for each performance measure. For the 

makespan criterion, larger time windows tend to produce worse solutions as the 

efficiency level decreases. Especially, at the lowest efficiency level the makespan 

increases as the length of time window increases, as the length of time window



64

Scheduling Method vs. Makespan under Machine Breakdowns

(a)

Scheduling Method vs. Mean Flow-time under Machine Breakdowns

(b)
Figure 5.6 Comparision of scheduling schemes: machine breakdowns in static

environment
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increases. The best makespan values are obtained with the on-line method and the 

quasi on-line method with the smallest time window parameter value. This shows that 

the degree of responsiveness is more important than the information usage for the 

makespan criterion. For other performance measures the following behavior is 

observed. Increasing the value of time window parameter decreases the performance 

up to a certain point, beyond which any further increase improves the performance.

The behavior of performance curves for mean flowtime and mean tardiness 

criteria can again be explained by the amount o f slack in machine and AGV schedules. 

Unlike the makespan criterion, there exists some slack in machine and AGV schedules 

generated by minimum mean flowtime and mean tardiness objectives. These slacks 

can absorb the effect of machine breakdowns to some extend when the value of time 

window parameter is large enough.

In summary, the results indicate that in all of the performance measures except 

makespan, off-line method performs better than the on-line. However, at lowest 

efficiency level, the best performing method turned out to be the quasi on-line scheme 

with the smallest time window value for all performance criteria.

5.4. Dynamic Environment

5.4.1. Deterministic case
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Generally, in a dynamic environment an off-line scheduling scheme is used on a 

rolling horizon basis. That is at each scheduling point a static problem is generated by 

taking into account all unscheduled operations and other relevant information. This 

static problem is then solved entirely and the resulting schedule is implemented until a 

new job arrival, upon which a new schedule is generated. With this approach the 

dynamic problem is decomposed into a series of static problems which are 

implemented dynamically on a rolling basis. It has proved to give superior results than 

implementations of on-line scheduling schemes. This approach utilizes all available



information at a scheduling point and has high degree of responsiveness because new 

job arrivals are considered immediately. On the other hand its computational 

requirements are rather high.

However, the information used at a scheduling point is not perfect because new 

job arrivals and other exceptions such as varying processing times and machine 

breakdowns that are not known in advance. Therefore, limiting the use of information 

at a scheduling point may provide competitive results with less computational 

requirements. This new approach can be realized with the implementation of the quasi 

on-line scheme.

In a dynamic environment the quasi on-line scheme can be applied in two ways. 

Firstly, it can be applied as in the static environment; that is, new job arrivals are 

ignored until a resource finishes its assigned tasks and triggers the scheduling process. 

Secondly, new job arrivals can also trigger scheduling. Throughout this section the 

first (second) approach will be referred to as Policy 1 (Policy 2). With the first policy 

degree of responsiveness is determined by the value of the time window parameter. 

Moreover, the use of this parameter provides a job release mechanism. On the other 

hand. Policy 2 basically provides a trade-off between computational requirements and 

information usage at a scheduling point and its degree of responsiveness is the same as 

an on-line scheme in deterministic environment.

A set of experiments is performed in order to compare the quasi on-line scheme 

with different time window parameter values and the on-line scheme in a dynamic 

environment. Policy 1 and Policy 2 are also compared. The experimental factors are 

set such that flexibilities are low, machine and AGV load levels are high and the buffer 

capacity is loose. The levels of experimental factors are chosen as a basis to examine 

the effects of changing these levels in future studies. New arrivals are generated from 

an exponential distribution with mean 50. For every different scheduling scheme 

simulation runs are taken until the completion of 5000 jobs. In order to avoid warm 

up period 10 jobs are initially created and placed in the system at the beginning of 

each simulation nin.
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The on-line scheme uses a job release mechanism. The significance of a job 

release mechanism in an on-line scheme is demonstrated by Sabuncuoglu and 

Hommertzheim [31]. As shown in Figure 5.7, limiting the number of jobs on the shop 

floor with 15 gives best results in terms of mean flow-time. This value is used in the 

comparison with the quasi on-line scheme. Also note that, without using this 

mechanism the flowtime of jobs goes to infinity, that is the system cannot meet the 

demand.

Mean Flow-time vs. Number of Jobs In the System
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Figure 5.7. Effects of job release mechanism: on-line scheme

Such a mechanism is not used in the quasi on-line scheme. In experiments with 

mean flowtime criterion this was not needed. However, when the scheduling criterion 

is the mean tardiness, in most of the simulation runs the system could not meet the 

demand and simulation is terminated. This is due to the nature of the local evaluation 

function used in the scheduling algorithm. According to the algorithm, in mean 

tardiness case MDD mle determines the relative priority of jobs. Hence, new arriving



jobs can immediately enter the system. In this section, experimental results with only 

mean flowtime criterion will be examined.

Figure 5.8 displays the simulation results. The scheduling method numbered as 1 

in the figure corresponds to the on-line scheme. The other methods numbered 2 

through 5, for both policies, correspond to the quasi on-line scheme with the values of 

time window parameter set to 2,4,6 and 8 times of the mean arrival rate (i.e. 100, 200, 

300,400). However, the last method numbered as 6 corresponds to the quasi on-line 

scheme with the time window parameter set to 10 times o f the mean arrival rate for 

Policy 1, and to the off-line scheme (i.e. time window parameter set to infinite) for 

Policy 2. In Figure 5.9 cpu requirements of scheduling schemes with both policies are 

plotted.

69

Scheduling Method vs. Mean Flow-time
d y n a m ic  environm ent

Figure 5.8. Comparision o f scheduling schemes: deterministic and dynamic
environment



As can be observed from the Figure 5.8, increasing the value of time window 

parameter in policy 1 results in a continuous decline in the performance of the system. 

This indicates that, responding to new arrivals is crucial in a dynamic system. 

However, a small time window value still performs better than the on-line scheme for 

policy 1. For policy 2, increasing the value of time window parameter improves the 

performance continuously. The application o f off-line scheme gives best results in 

spite of its high computational requirements. This suggests that the off-line scheme 

achieves a better synchronization and coordination of resources and this is preserved 

even when it is applied on a rolling basis. The most important increase is observed 

when switching firom on-line scheme to the quasi on-line with smallest time window 

value.
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Figure 5.9. Cpu time requirements of scheduling schemes: deterministic and dynamic
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Due to its relatively better performances, the quasi on-line scheme will be used 

according to the Policy 2 in the rest of this chapter.

5.4.2. Stochastic Environment

5.4.2.1. Variable processing times

In this section effects of variable processing times on the scheduling schemes are 

investigated in a dynamic environment. The experimental conditions mentioned in the 

previous section are adapted except that the three levels of processing time variations 

which are mentioned in section 5.4.1 are also added.

The simulation results are displayed in Figure 5.10. With all scheduling methods 

the performance deteriorates as the variability of processing times increase. The 

relative performance of each scheduling method is preserved when compared to 

deterministic case. Again the off-line scheme outperforms all other methods. The 

largest performance increases are observed when switching from scheduling method 1 

to method 2 and from scheduling method 5 to 6. These observations suggest that 

information usage at a scheduling point is crucial even though the information is not 

perfect due to processing time variability.

5.4.2.2. Machine breakdowns
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In this section the impact of machine breakdowns on the scheduling schemes is 

analyzed. The same experimental conditions defined in section 5.5.1. are adapted. 

Furthermore, the three machine efficiency levels described in section 5.4.2 are used.

The simulation results are depicted in figure 5.11. Similar observations are also 

made in this case. Additionally, at the lowest efficiency level, information usage 

becomes even more critical. Also notice that with both methods 1 and 2 the system 

cannot meet the demands and the flowtime of jobs goes to infinity.
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dynamic environment

Figure 5.10 Comparision of scheduling schemes: varaible processing times in dynamic
environment

Scheduling Method vs. Mean-Flowtime under Machine Breakdowns
dynamic environment

Figure 5.11 Comparision of scheduling schemes: machine breakdowns in dynamic
environment



CHAPTER 6 

CONCLUSION

In this thesis, essentially three issues are addressed in detail: comparison of on

line and off-line scheduling schemes in various operating environments; development 

and analysis of a new scheduling scheme called quasi on-line that makes a trade-off 

between superior and inferior characteristics of on-line and off-line schemes; and 

examination of effects of scheduling factors on FMS performance.

The first step in the course of this research was to develop a scheduling 

algorithm that considers a wide variety of scheduling related features of an FMS. The 

proposed algorithm generates a partial or complete machine and AGV schedule 

considering limited buffer capacities and routing and sequence flexibilities, for a given 

scheduling period. The scheduling period is specified by a parameter called a time 

window. This parameter determines both the number of scheduling decisions made at 

a time, thus the length of the scheduling period and the extend of information utilized 

at a decision point. The algorithm is designed in such a way that as the value of time 

window parameter increases the scheduling decisions are made in a more coordinated 

and integrated manner. The off-line scheduling scheme used in this study corresponds 

to a version of the algorithm with an infinite value of the time window parameter. 

Whereas the quasi on-line scheme utilizes the algorithm at each decision point with 

small parameter values. These decision points are triggered when a resource finishes 

its assigned tasks. With this scheme the scheduling problem is decomposed in time 

dimension and solved iteratively by concatenating partial solutions generated at each 

decision point. This approach has the following benefits. First the computational 

burden of the solution procedure reduces, second changing the frequency of
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scheduling points by varying the time window acts as a control policy by adjusting the 

degree of responsiveness of the scheduling scheme to unexpected events.

The operating environment of a manufacturing system is differentiated in two 

dimensions: demand pattern and uncertainty in the system. According to demand 

pattern a system may operate in a static environment (i.e. demand arrive periodically) 

or in a dynamic environment (i.e. demand arrive continuously over time). On the other 

hand, if unexpected events other than new arrivals occur over time (e.g. machine 

breakdowns, considerable variations in processing times etc.) the system operates in a 

stochastic environment as opposed to a deterministic environment. In this research, 

effectiveness of scheduling schemes under all these four different environments are 

investigated by carrying out a simulation study.

The second step of this research was to develop and implement a simulation 

based scheduling system in order to implement different scheduling schemes in 

different operating environments. The system is designed to have three components: 

the scheduler, the simulation model and the controller. The scheduler subsystem 

consists of the scheduling algorithm developed in this study and several dispatch rules 

to be used in the on-line scheme. The simulation model executes the scheduling 

decisions made by the scheduler. The controller acts as an interface with the 

simulation model and the scheduling algorithms and is the most crucial part of the 

system especially for the implementation of the quasi on-line and the off-line schemes.

In the experiments different experimental conditions are obtained by varying 

machine load level, AGV load level, buffer capacity level, sequence flexibility level, 

routing flexibility level and due date tightness. The performance measures were 

makespan, mean flowtime and mean tardiness with two types of due date assignment 

methods (i.e. exogenous and endogenous).

In deterministic and static environment, the off-line scheme performed the best 

among others. A more detailed comparison between on-line and off-line schemes 

showed that the performance difference between these schemes becomes more 

significant at high machine load and/or tight buffer capacity and/or high routing
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flexibility for all scheduling criteria and at tight due dates as well for tardiness 

criterion. This result suggests that information usage is more crucial when system 

resources are tight or there are alternative machines for operations. Also, the 

performance difference was relatively higher for mean flowtime and mean tardiness 

criteria than for makespan criterion.

The quasi on-line scheme also performs better than the on-line scheme in 

deterministic and static environment. Further examination of different versions of the 

quasi on-line scheme (obtained with different values of time window parameter) 

revealed that, as the length of the time window increases, so does the quality of the 

schedule. This situation is most apparent when resources are tight and flexibility levels 

are low. Therefore, in a static and deterministic environment the quasi on-line schemes 

makes a trade-off between quality of schedule and computation time.

In stochastic and static environment, however, the determination of the best 

performing scheduling scheme is effected by the levels of experimental factors and the 

type of the stochastic events. Another important factor is the performance criterion. 

The performance of the off-line scheme that generate schedules with the minimum 

mean flowtime and tardiness objectives is rather robust to unexpected events. This can 

be attributed to the slack present in the AGV and machine schedules. This slack is, to 

some extend, used to absorb the deviations in the schedule due to unexpected events. 

Nevertheless, in all cases either the quasi on-line or the off-line schemes performed the 

best.

In dynamic environment, in order to implement the quasi on-line and off-line 

schemes two approaches are examined. With the first approach new arrivals axe 

ignored until a scheduling point, whereas they triggered scheduling in the second 

approach. It turned out that the second approach performed better than the first one. 

This shows that in a dynamic environment responsiveness to new arrivals is crucial in 

scheduling decisions. Another important issue was the use of a job release mechanism. 

The on-line scheme could not meet the demand without controlling the entry of jobs 

into the shop floor. Hence, it employed a job release mechanism. The quasi on-line
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and off-line schemes did not use such a mechanism. As a result, for mean tardiness 

criteria the system could not meet the demand. These results point out the importance 

of a job release mechanism in a dynamic environment.

In dynamic and stochastic environment the second approach is used to 

implement the quasi on-line and off-line schemes. Again the off-line scheme 

performed better than the others. This indicates that, global coordination of resources 

even with using imperfect information is important and beneficial.

For future research the experiments already conducted in stochastic and static 

environment can be extended to cover all other combinations of experimental factors. 

For dynamic environment different job release mechanisms and their effects on 

scheduling schemes can be investigated. Also, different implementation approaches 

for the quasi on-line and the off-line schemes in dynamic and stochastic environment 

can be investigated. Finally, it may be interesting to see an application of a job release 

mechanism in a static environment.
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