
к SSiSI-MSTIÏE IM ÏI-IÂ ?
8íKi!í fálHTI§ili8 â liM lIli

lÄ SE illiilliilliE ilEE
M |Ş|İS8

<;■·■ Ч·*· ̂ 4‘лГ’*''
¿•‘¿ U 4 »i і.і- .·'■ а ' 'Ѵ

і·' ¡l¿ U U V i ’.» Vi «''.‘ i í W f’ i * ‘s*/'V νχ̂ < ъ' .■ J.· » .м<* İ l Λ* U ·*

;.jk‘ С а'.. Í '!4¿' •/■'ù' s í(.: »■'*: ■* ¿ '‘‘к» « '·■ ’'wi· ’·.■!.· »: 1<ÎW ' χ-»' t·*

*' . ' 1 > .■ ■ <ί·''.··. л ;Ч,'· \\ 4 ' .' ■' ■ ’’'f·''' ’ /·«·,', Ч';Н .·; '■ · ; ■' · · >,
•Ѵ>’' ̂ Vjí лі чь.|· ·ί '* il,· <ρ·«' »«· b w рІ «ж» ’*< V "I*/. ‘·*ίί̂ ' ■«<■ ' ' ·*

¿....«· Л'ІРІІІ il f» л?«*! 'V »i ■'«i Л·^ ^ ■<· W ¿

‘¿ ¿ Ч’ j .';»· i w iV ·ίΛ s ·. '» ΐ.< * ’..·4 -

,·· "': ·■' '■' i;·.· · '·» ̂ t'.’ ·' > ■'■‘· ^
^ 4*;* ,4 'щ i iv J -'.ií λΜ '».ν' t· 'л Чй '«і> <Ѵ ··#

, .. -,ν, I V „ V I■·. · ■‘•ί· ■·”» •Л і'.і·'," Ÿ’û

«·<Λ· Wí4 - j<· A · ■'h ' 'S» »·*>' Λ iü/ píW

A CONSTRUCTIVE MULTI-WAY
CIRCUIT PARTITIONING ALGORITHM

BASED ON MINIMUM DEGREE
ORDERING

A THESIS

SUBMITTED TO THE DEPARTMENT OF COMPUTER

ENGINEERING AND INFORMATION SCIENCE

AND THE INSTITUTE OF ENGINEERING AND SCIENCE

OF BILKENT UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF SCIENCE

By
Umit V. (^atalyiirek

September, 1994

ia; i/..

i6 $
СЗЯ

g Ö l 5 5 5 8

I certify that I have read this thesis and that in my opinion it is fully adequate,
in scope and in quality, as a thesis for the degree of Master of Science.

Asst. Prof. Cwdet Aykanat (Advisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,
in scope and in quality, as a thesis for the degree of Master of Science.

:n

Assoc. Prof. Ömer Benli

I certify that I have read this thesis and t^At-icrdiiy ¿pinion it is fully adequate,
in scope and in quality, as a thesi§.idr\the de^e^ofj Master of Science.

Approved for the Institute of Engineering and Science:

Prof. Mehmet Jt^^y
Director of the In^itute

ABSTRACT

A CONSTRUCTIVE MULTI-WAY CIRCUIT
PARTITIONING ALGORITHM BASED ON

MINIMUM DEGREE ORDERING

Ümit V. Çatalyürek
M.S. in Computer Engineering and Information Science

Advisor: Asst. Prof. Cevdet Ay kanat
September, 1994

Circuit partitioning has many important applications in VLSI. Circuit parti­
tioning problem can be most properly modeled as hypergraph partitioning. In
this work, we propose a novel k-v/ay hypergraph partitioning heuristic using
the Minimum Degree (MD) ordering which is a well-known heuristic for re­
ducing the amount of fills in the factorization of symmetric sparse matrices.
The proposed algorithm operates on the dual graph of the given hypergraph.
The algorithm grows node-clusters on the dual graph which induce cell-clusters
with locally minimum net-cut sizes. The quotient graph concept, widely used
in MD ordering, is exploited for the sake of efficient implementation. The
proposed algorithm outperforms well-known heuristics, such as Kernighan-Lin
(KL) based algorithms and Simulated Annealing, in terms of solution quality
on various VLSI benchmark circuits. A nice property of the proposed algo­
rithm is that its execution time reduces with increasing k as opposed to the
existing iterative heuristics. It is even faster than the fast KL-based algorithms
on the partitioning of the benchmark circuits for k > 16.

Keywords: Circuit Partitioning, Hypergraph Partitioning, Dual Graph, Mini­
mum Degree Ordering, Quotient Graph

111

ÖZET

m in im u m d e r e c e SIRALAMASINA DAYALI
YAPICI ÇOK KISIMLI DEVRE PARÇALAMA

ALGORİTMASI

Ümit V. Çatahmrek
Bilgisayar ve Enformatik Mühendisliği, Yüksek Lisans

Danışman: Yrd. Doç. Dr. Cevdet Aykanat
Eylül, 1994

Devre parçalamanın geniş ölçekli tümleşik tasarımlarda bir çok önemli uygula­
ması vardır. Devre parçalama problemi en uygun şekilde hiperçizge parçalama
olarak modellenebilir. Bu çalışmada, yoğunluğu çok seyrek olan simetrik
matrislerin faktorizasyonunda yaratılan eleman sayısını azaltmada çokça kul­
lanılan Minimum Derece (MD) sıralama sezgisel metodunu kullanarak yeni bir
Â;-kısımlı hiperçizge parçalama sezgisel algoritması öneriyoruz. Önerilen algo­
ritma verilen hiperçizgenin karşıt çizgesi üzerinde çalışır. Önerilen algoritma
karşıt çizgenin üzerinde çizge düğümlerini biraraya getirerek hiperçizgede yerel
olarak minimum ağ-kesme miktarına sahip düğüm demetleri oluşturur. Al­
goritmanın daha hızlı çalışabilmesi için MD sıralamasında çokça kullanılan
kümleştirilmiş çizge kavramı uygulanmıştır. Önerilen algoritma, bir çok stan­
dart test devrelerinde, elde edilen çözüm kalitesi açısından, Kernighan-Lin
(KL) ve Simulated Annealing gibi çokça kullanılan sezgisel algoritmalardan
çok daha iyi sonuçlar vermektedir. Algoritmamızın bir diğer önemli özelliği ise;
daha önce önerilmiş metodların tersine, çalışma zamanının artan k değeriyle
birlikte azalmasıdır. Hatta, önerilen algoritma hızlı olduğu bilinen KL-tipi
algoritmalardan, k > \Ç> değeri için, standart test devrelerinde daha hızlı
çalışmaktadır.

IV

Anahtar Sözcükler: Devre Parçalama, Hiperçizge Parçalama, Karşıt Çizge,
Minimum Derece Sıralaması, Kümeleştirilmiş Çizge

ACKNOWLEDGEMENTS

I would like to express my deep gratitude to my supervisor Dr. Cevdet Aykanat
for his guidance, suggestions, and invaluable encouragement throughout the
development of this thesis. I would like to thank Dr. Ömer Benli for reading
and commenting on the thesis. I would also like to thank Dr. Cemal Akyel for
reading and commenting on the thesis. I owe special thanks to Dr. Mehmet
Baray for providing a pleasant environment for study. I am grateful to my
family, my wife and my friends for their infinite moral support and help.

VI

To my parents
and

my wife Gamze

vıı

Contents

1 Introduction 1

2 Circuit Partitioning and Previous Works 4

2.1 Prelim inaries.. 4

2.2 Problem D efin ition.. 6

2.3 Previous W ork s .. 7

2.3.1 Iterative A lgorith m s.. 7

2.3.2 Constructive A lgorithm s.. 10

3 Minimum Degree Ordering 12

3.1 The Basic A lgorithm ... 13

3.2 Implementation with Quotient Graph M o d e l................................ 14

4 Circuit Partitioning Using M D Ordering 17

4.1 Dual G r a p h .. 18

4.2 Node Selection 19

4.3 Size and Valence and Calculations... 24

4.4 Graph Transformation.. 26

vm

CONTENTS IX

4.5 More About Balancing.. 28

4.6 Complexity A n a lysis ... 30

4.6.1 Space Complexity Analysis... 31

4.6.2 Time Complexity Analysis... 33

5 Experiments and Results 37

5.1 Implementation.. 37

5.2 Results.. 39

6 Conclusion 50

List of Figures

3.1 Basic Minimum Degree Algorithm... 14

4.1 A sample hypergraph H and its dual graph G 19

4.2 Construction of dual quotient graph.. 20

4.3 Elimination s te p s ... 23

4.4 Reachable set calculation... 26

4.5 Degree update.. 27

4.6 Algorithm for finding the cluster adjacency....................................... 27

4.7 Update of valence and cluster s iz e ... 27

4.8 Quotient graph transformation... 29

4.9 First Fit Decreasing h eu r is t ic ... 30

4.10 Balancing the p artition s.. 31

4.11 Main algorithm .. ; . 32

4.12 Node selection algorithm .. 33

List of Tables

5.1 Properties of test circuits, (p is the number of pins, a is standard
deviation, avg is average .)... ,38

5.2 Dual Graphs of Test Circuits.. 38

5.3 Comparison of QMD-HP and QMD-BHP. {Wmai and W,nin are the
maximum and minimum part weights respectively, 8 is unbal­
ance ratio, %B.I. is the percent balance improvement in QMD-BHP.) 41

5.4 Outsize averages and standard deviations (a) for test circuits. . 42

5.5 Minimum cutsizes for benchmark circuits. (Bold values are the
best values in each r o w .) .. 44

5.6 Maximum cutsizes for benchmark circuits. (Bold values are the
best values in each r o w .) .. 45

5.7 Stability Ratios (ratio of standard deviation to cutsize) for
benchmark circuits.(Bold values are the best values in each row.) 46

5.8 Execution times for benchmark circuits (in seconds). (Bold val­
ues are the best values in each row .)... 47

5.9 Average (Avg) results for performances of algorithms. Averages
were taken over all our test instances. (A: is the number of parts.
Bold values are the best values in each r o w .) 49

5.10 Average percentage improvements of the proposed QMD-BHP al­
gorithm with respect to SN and SA algorithms for different num­
ber of parts. Averages were taken over all our test instances, k
is the number of parts... 49

XI

Chapter 1

Introduction

Divide and conquer strategy underlies in the solution of the hard problems. It
is based on dividing the problem into small sub-problems contributing to the
solution of the fundamental problem, hence this division reduces the search
space. This strategy is mostly used in the combinatorial optimization problems
and in VLSI layout design.

In VLSI layout design, electronic circuits are modeled as graphs (hyper­
graphs), in such a way that modules and interconnections in the circuits are
represented cis nodes and edges (nets), respectively. Divide and conquer strat­
egy assists in solution of the layout design problem. The sub-problems are
arised by dividing or partitioning the circuit into two or more parts by satisfy­
ing the some balance criteria. The total interconnections between these parts
must also be minimized to have a better solution for the whole problem. In
the literature, this partitioning problem is referred as graph/hypergraph parti­
tioning or mincut partitioning.

The graph (hypergraph) partitioning problem is NP-hard [5]. Hence, heuris­
tics giving suboptirnal solutions in polynomial time are used to solve the prob­
lem. Known heuristic algorithms can be divided into two groups;

1. Iterative algorithms,

2. Constructive algorithms.

Iterative algorithms start with an initial solution, and try to improve this
initial one, at each iteration, until a local optima is found. One of the most

1

CHAPTER 1. INTRODUCTION

popular heuristic is Kernighan-Lin [13] method. It is an iterative graph bipar­
titioning heuristic, in which each iteration contains a number of cell (module)
swaps on the balanced partitions. Many of the subsequent algorithms are based
on this heuristic. The same swap strategy is applied to hypergraph partitioning
problem by Schweikert-Kernighan [23]. Fiduccia-Mattheyses [4] introduced a
better data structure and cell move strategy. Their method works on unbal­
anced partitions given the lower and upper bound on the partition sizes. The
time complexity of one pass (iteration) of the method is also reduced to linear
in the size of circuit. Krishnamurty [17] extended the cell gain concept by
introducing a look-ahead ability. However his method is also a bipartitioning
method as Fiduccia-Mattheyses’ . Sanchis [22] extended this formulation to the
multiple-way partitioning.

There are many other heuristic approaches such as Simulated Evolution [14]
and Simulated Annealing [15]. In general, Simulated Annealing (SA) has the
best solution quality among all those known heuristics. Optimization in the
parameters of SA and extensive empirical studies have been done by Johnson
et. al. [9].

Kahng [11] introduced a constructive bisection algorithm based on the in­
tersection graph G which is dual to the input hypergraph. However, his al­
gorithm produces unbalanced partitions, since no weight information is kept
in the intersection graph. Kamidoi et.al. [12] introduced a new constructive
algorithm called Weighted Hypergraph Bisection (WHB) with the notion of net-
graph. WHB is an extension of Kahng’s method. It produces more balanced
partitions than Kahng’s method and comparable cutsize results.

Although the treatment so far is mostly graph theoretic, motivation for the
work is from the direct solution of sparse linear systems [21]. One phase of the
direct solution is to find a new ordering for rows and columns of matrix, to
reduce the fill-in in the forward and backward substitution phases, which is also
a NP-hard problem [27]. Minimum Degree Ordering, proposed by Tinney[25], is
the most popular heuristic algorithm. It works on the structure of the matrix,
therefore it is a graph algorithm. Liu [18] shows that minimum degree ordering
(MD) results in partitioning by node separator.

Proposed algorithm in this work is based on the minimum degree and dual
graph of the input hypergraph. Our dual graph is similar to the intersection
graph of Kahng. There is one node in the dual graph corresponding to each net

CHAPTER 1. INTRODUCTION

in the hypergraph. Two nodes in graph are connected only if the respective pair
of nets have at least one cell in common in hypergraph. Given this definition
node separator in the graph determines a cut in the hypergraph.

Our algorithm is based on the following well-known observation:

Observation 1 Assigning cells (modules) to the parts to minimize the cutsize
is equal to assigning nets to parts (making them internal netsj in order to
maximize the number of nets that are not in the cut.

Proposed algorithm chooses a net to make internal by a heuristic based on
the minimum degree ordering. However, instead of assigning the net to some
part, it enlarges a cluster by adding the selected net. Therefore, it can also be
considered as a clustering algorithm. We have also realized that, with a slightly
different perspective, the partitioning problem can also be expressed by the
clustering problem, i.e. if we allow to enlarge clusters up to a given partition
size, we get a partitioning on the input. However, we may get more parts
than required. As the current cut between clusters is realized, the problem is
reduced to the number partitioning problem. This NP-hard problem can also
be solved by a simple heuristic such as First Fit Decreasing.

The outline of the work is as follows, the next chapter gives some prelim­
inaries about the graph/hypergraph partitioning problem and more detailed
information about the previous works. Minimum degree ordering algorithm
which is the basis of our algorithm is explained in the third chapter. The
fourth chapter discusses the proposed algorithm. Empirical studies are given
in the fifth chapter and the conclusions are presented in the last chapter.

Circuit Partitioning and Previous
Works

Chapter 2

2.1 Preliminaries

Hypergraph H = ((7, N) is defined as a set of cells C and a set of nets (hyper­
edges) N between those cells. Since in VLSI, circuits are modeled as hyper­
graphs, cell set C denotes the set of modules, and net set denote the interaction
between modules. Every net n, G is a subset of cells. The cells in a net are
called pins or terminals of the net.

We say that cell c is incident to net n if c G n, and two cells which are
incident to same net are called adjacent, in other words, cells in a net are
adjacent. Degree of a cell is denoted by deg{c) and it is the number of incident
nets. In general, minimum node degree is assumed to be 1, i.e. deg{ci) > 1 for
1 < i < \C\. We use the notation \C\ as the cardinality of set C. Cells with
degree zero are called as isolated cells, and they do not introduce problems in
partitioning. The degree of a net is the number of pins (terminals). It is also
assumed that every net contains at lerist two pins i.e. |n| > 2.

or

In a hypergraph the total number of pins p is defined as

P = X) ¿ep(c)
cec

p = X l«l·

(2. 1)

(2.2)

CHAPTER 2. CmCUir PARTITIONING AND PREVIOUS WORKS 5

Graph G = {C, E) is a special case of hypergraph such that each edge con­
tains exactly two terminals. Therefore, algorithms proposed for hypergraphs
can work on graphs without modifications. Since our aim is to solve circuit
partitioning problem and hypergraph models the circuit better than graphs,
we will explain partitioning algorithms using hypergraph notation.

For hypergraph H = (C, A'̂), the weight function on cell set maps each cell
to a positive integer, i.e. for each c € G, weight{c) > 1. We can think that this
function maps each cell to its area in the layout. The cost function on net set
is defined in the same manner, i.e. for each n £ N, cost{n) > 1. Definitions of
lueight and cost function can be extended for a set. Let A Q C and M C N
then

weight(A) = weight{c)
cEA

COSt{M) = ^2 cost{n).
tiEM

Using this notation total weight of circuit can be expressed as weight(C) and
total cost of nets is cost{N).

k-way partition of hypergraph H is defined as

D efinition 1 V = {P 1 1 P2 ·, · · · 1 Ĵt} k-way partition of hypergraph H if and
only if the following three conditions hold:

• Pi c C and Pi 0 /or 1 < f < fc

• u L . p. = c

• P in P j = Sl f o r i < i < j < k

When it = 2 we call this partitioning as bisection or bipartition.

For a partition "P, a net n is said to be internal in partition P, if and only

Vc € n, c € Pi
if

or
n n P, = n.

The set of internal nets N[is defined as Nj — {n|7i is internal net in a partition }
or Nj = {7r|7Z n Pi = n ior n G N and Pi G V } and the set of external nets Ne
is defined as Ne = {n|n fl P,· 0 and n H P, ^ n for n G N and P, G V}. Cut
size C is defined as

C{V) = ^2 cost{n)

CllAPrER 2. CIRCUIT PARTITIONING AND PREVIOUS WORKS 6

neNE
or

C{V) = COSt{NE).

Using different expression

C{V) = cost{N) — cost{Ni).

A partitioning is balanced if all parts have about the same weight. When
all parts have exactly the same weight, we call this partitioning as perfectly
balanced. Note that perfect balance is not possible in ¿-way partitioning if the
total cell weight is not a multiple of k.

2.2 Problem Definition

Let N be set of natural numbers. Given a hypergraph H = (C,N), a
weight function weight : C Af, a cost function cost : N JV let
Vi = {P i, P2, . . . , P*} be a ¿-way partition as defined in Definition 1 satis­
fying the condition

VTmaa;
l̂ max

< A

where Wmin and W^ax are minimum and maximum partition weights, respec­
tively, and A is predetermined imbalance ratio. Also let IT = {V\.,V2 ·, ■ ■ ·} be
the set of all feasible solutions.

Question Find a feasible solution (partition) V that minimizes the cutsize
over all feasible solutions, or more formally;

minC(P) = cost{N) — cost{Nj).

This cost definition computes each external net once regardless of the num­
ber of parts which pins of the net distributed. Other cost definitions can be
done using this number, such that let I be the number of parts which a net n
in cut connects, then contribution of the net to the cut is (/ — !) · cost{n).

CHAPTER 2. CIRCUIT PARTITIONING AND PREVIOUS WORKS

The hypergraph partitioning problem is NP-hard [5]. Although the graph is
a special case of hypergraph in which each edge connects exactly two cells, it is
also NP-hard problem. Any heuristic which solves the hypergraph partitioning
problem can be used for graph partitioning problem, but graph partitioning
heuristics need modifications to handle hypergraph partitioning.

Some other cost function definitions are also available in the literature. In
the next section we will review the previous works on this problem in detail.

2.3 Previous Works

Available heuristic algorithms can be divided into two groups; iterative and
constructive algorithms. Although there is a substantial amount of literature
on the iterative approaches, the literature that addresses the constructive algo­
rithms are rare and more recent. Now let us review the some of those heuristics:

2.3.1 Iterative Algorithms

Kernighan-Lin’s Method :

This heuristic is a graph bipartitioning algorithm [13]. It works on the
balanced partitions, starts with an initial partition (mostly random) and at
each iteration the cutsize is reduced by a number of cell swaps. In order to
get a balanced partition after a swap, all cells must be equally weighted. This
scheme is not applicable for the current problems.

Gain of a swap is calculated as a reduction in the cutsize. All swap gains
are computed and the cell pair with the largest gain is selected for swap. These
two cells are tentatively interchanged and they are locked in their new partition
in order to prevent the algorithm falling in an infinite loop. The cell swap gains
of adjacent cells are recomputed since there may be a change due to current
swap. The next largest swap gain cells are selected to swap next, and this loop
goes until all cells are locked to complete a pass.

At the end of each pass the maximum prefix sum of gains (which must be
positive) are calculated and the cell swaps whose gains are included in this
prefix sum is done. If maximum prefix sum is not positive, this means that no

CHAPTFAt 2. CmCl i r PARTITIONING AND PREVIOUS WORKS 8

further improvements can be done and algorithm terminates. If it is positive,
all cells have been unlocked and algorithm starts a new pass. Maximum prefix
sum strategy allows the algorithm not to stuck in a local optima.

This algorithm is a bisection algorithm but, it can be also used for k-
way partitioning using the heuristic recursively, if /: is a power of 2. The time
complexity of one pass is 0{n^ log n) where n is the number nodes in the graph.
Empirical studies show that this heuristic results in poor cutsize in very sparse
graphs and in special type of graphs such as ladder graphs [1].

Schweikert-Kernighan’s Method :

This heuristic [23], is the application of the swap strategy to hypergraph
partitioning problem. Up to this work, graph model Wcis used for hypergraph
partitioning problems.

Fiduccia-Mattheyses’s Method :

Fiduccia-Mattheyses (FM) [4] introduced the notion of cell move, as well as
the new data structure, for the the hypergraph bisection algorithm. Cell move
gain is computed as reduce in the cutsize and gains are put into bucket list.
This reduces the time complexity of sorting nodes according to their gains to
linear in the number of nodes and edges. That is, let p denotes the total number
of pins, which is calculated as in the Equation 2.1, then the time complexity
of one pass is 0{p).

Hence the cell move strategy is used in this algorithm, and this heuristic
can work on unbalanced partition. Given the lower and upper bound on the
size of the parts, algorithm distinguishes the feasible and infeasible moves. It
starts with an initial solution and it makes a number of cell move at each
iteration. Same prefix sum strategy of Kernighan-Lin’s method is also used as
hill-climbing technique. Because of its ability of working on the unbalanced
partition, many of the subsequent algorithms use the same balance criteria.

Krishnamurty’s Method :

This heuristic [17] is an extension of FM’s method. Look-ahead ability is
added to the cell gain concept by considering the number of pins of a net in a
part. Each node has a gain vector with size /, where / is the number of levels.
First level gain is same as that in FM’s method. Second level gain, shows the
possible cut size reduction in the next move which follows the the current cell

CHAPTER 2. CIRCUIT PARTITIONING AND PREVIOUS WORKS 9

move. If a net has 2 cells in a part (A), and at least one cell in other part
(B), moving one of the two cells from A to B does not reduce the cut size, but
it gives the chance to the other cell of this net, to reduce the cut. Therefore
effect of this net to first level gain of those cells are 0 and effect to second level
gains are the cost of this net.

Sanchis’s Method :

Sanchis generalized the Krishnamurty’s method to the multiple-way (k-
way) circuit partitioning. Since there are more than one part which a cell can
move, each part contains k — I bucket list; one for each other part which a
node can move. Hence, k must enter the run-time complexity of the algorithm.
The time complexity of one pass is 0 {l -p - k · (log k -f Gmax · 0)> where / is the
number of levels and Gmax is the size of buckets.

Simulated Annealing :

Simulated Annealing starts from a randomly chosen initial configuration,
the configuration space is searched for the best solution using a probabilistic
hill-climbing algorithm. In order to search , the neighborhood of a configuration
must be defined. Neighborhood consists of all configurations which can be
obtained by moving one node from a part to another part. At each iteration,
one of the possible moves is chosen as a candidate move. Then decrease in the
cutsize is calculated without changing the configuration. If candidate move
decrecLses the cutsize, it is realized. If it increases the cutsize, then it is realized
with a probability which decreases with the amount of increase in the total
cutsize. Acceptance probabilities of moves that increase the cost are controlled
by a temperature parameter T which is decreased using an annealing schedule.
Hence, as the annealing proceeds, acceptance probabilities of uphill moves
decrease. This method over performs, in the quality of cutsize, all the previous
explained Kernighan-Lin based approaches [15]. However, its run-time is to
large, this makes it impractical. Optimizations in parameters of Simulated
Annealing, and extensive empirical studies have been done by Johnson et.
al. [9].

Ratio Cut :

Wei-Cheng [26] [2] present a new heuristic called Ratio Cut. This is ba­
sically, Kernighan-Lin based hypergraph bisection heuristic with a new cost
function. They put the balance criteria into the cost definition. Their method

CHAPTER 2. CIRCUIT PARTITIONING AND PREVIOUS WORKS 10

gives highly uneven partitions.

Hybrid Approaches :

It is known that Kernighan-Lin based algorithms perform poorly in very
sparse graphs (hypergraphs) and in large graphs. To handle this problem a
number of clustering method have been proposed. Cong-Smith [3] introduced a
clustering algorithm which works on the graphs. They convert the hypergraph
to the graph by representing a r-terminal bet by a r - clique. Then they
use a heuristic algorithm to construct the clusters. The clustered graph is
given as input to the Fiduccia-Mattheyses algorithm. Shin-Kin [24] proposed
a clustering algorithm which works on hypergraphs, then a KL based heuristic
is used to partition the clustered hypergraph.

2.3.2 Constructive Algorithms

Some of the constructive algorithms are based on eigenvector approaches such
as Hadley et.al [7] and Hagen-Kahng [8].

As can be noticed, the clustering algorithms explained in the previous sec­
tion can also be expressed as a constructive algorithm, if we allow to enlarge a
cluster up to a partition size.

Two well known constructive heuristics are :

Kahng’s Method :

Kahng [11] presents a constructive hypergraph bisection algorithm which
has a run-time complexity O(n^) where n is the number of nodes in the hyper­
graph. His algorithm constructs an intersection graph from the given hyper­
graph. Each node of the graph corresponds to a net in the hypergraph and two
nodes in the graph are connected only if the respective pair of nets have at least
one cell in common in hypergraph. Note that this intersection graph concept
is similar to the dual graph concept exploited in this study (Section 4.1). His
algorithm selects a seed node at random and finds the furthest node from it in
the intersection graph. Then it uses breadth-first search, starting from those
two nodes, to find an initial cut in the intersection graph. This initial cut in the
intersection graph corresponds to a partial bipartition in the hypergraph. The
partial bipartition is completed by a PLA folding based algorithm resulting in

a bipartition of the hypergraph. This method gives uneven partitions, since no
size information is stored in the intersection graph.

W H B :

Kamidoi et.al. [12] extend the Kahng’s method, by introducing the net-
graph where nets are also taken as nodes in addition to the cells of the hy­
pergraph. The edge set of the netgraph contains the incidence information of
the hypergraph. That is, if a cell in the hypergraph is incident to a net, then
the corresponding cell-node in the netgraph is adjacent to the corresponding
net-node. Their algorithm selects a random net-node as a seed and finds the
furthest net-node to use as the second seed. Modified version of breadth-first
search is then used to construct an initial cut. It takes care of the weight of
the parts. Then, a heuristic is used to complete the cut into a bipartition of
the hypergraph. Their algorithm also requires 0{n^) computation time. Their
cutsize results are comparable with the Kahng’s method. Their test data were
sparse and random and they claim that algorithm WHB performs 14% better
than FM.

CHAPTER 2. CIRCUIT PARTTITOMNC AND PREVIOUS WORKS 11

Chapter 3

Minimum Degree Ordering

The motivation for this work is from the direct solution of large sparse linear
systems. Let A be a large n-by-n sparse symmetric positive definite matrix.
The direct solution of the linear system

A x = b

involves factoring the matrix A into LL^, where L is the lower triangular
Cholesky factor of A. When A is factored, it normally suffers some fill. Since
PA P^ is also symmetric and positive definite for any permutation matrix P,
we can instead solve the reordered system

(PA P '^)(Px) = Pb.

The choice of P can have a dramatic effect on the amount of fill that occurs
during the factorization. Thus, it is standard practice to reorder the rows and
columns of the matrix before performing the factorization.

The problem of finding a best ordering for A in the sense of minimizing
the fill is computationally intractable: an NP-hard problem [27]. We are,
therefore, obliged to rely on heuristic algorithms. By far, the most popular fill-
reducing scheme used is the Tinney’s Minimum Degree (MD) algorithm [2.5],
which corresponds to the Markowitz scheme [20] for unsymmetric matrices.
This scheme is based on the following observation;

Suppose that ¿ — 1 rows/columns are selected for reordering. Note that this
corresponds to determining the first ¿ — 1 rows/columns of the P matrix. The
number of non-zeros in the filled graph for those rows/columns is fixed. In
order to reduce the number of non-zeros in the ¿-th row/column, it is intuitive

12

CHAPTER 3. MINIMUM DEGREE ORDERING 13

that in the sub-matrix remaining to be factored, the row/column with the
fewest non-zeros should be selected as the i-th row/column. In other words,
the scheme may be regarded as a method that reduces the fill of a matrix by
a local minimization.

3.1 The Basic Algorithm

The MD algorithm can easily be described in terms of ordering a symmetric
graph using the elimination graph model [21]. Generally, it works only with the
zero/nonzero structure of a symmetric matrix and simulates in some manner
the steps of symmetric Gaussian elimination. The zero/nonzero structure of
a sparse symmetric matrix A can easily be represented by a structure graph

Each row/column i in a sparse matrix A is associated with
a node i in its structure graph. Two nodes i and j in the structure graph
are connected (i.e., { i , j } € only if 0 in the sparse matrix A. Let
Go = (Vb, Eo) = G^ be the structure graph of given matrix. We will use
notation Gi to denote the z-th elimination graph which is obtained by the
elimination of i nodes from the initial graph Go. adjo-{x) denotes the adjacency
list of the node x in the z-th elimination graph Gj. At each elimination step a
node Xi in G,_i is selected, and eliminated graph Gi is obtained from G,_i by:

• deleting node x,· and its incident edges in G,_i,

• adding edges to graph so that nodes in adja^_ {̂xi) are pairwise adjacent
in Gi.

Based on the transformation rule, we note that if a node v is not adjacent
to Xi in G,_i

adjoiiv) = adjoi^iiv)

However, if u G adjoi-i (xi), then we have

iidjaM') = {(idjG^-x[^i)0 adjG,_,[v)) - {u,x,·}.

Therefore, only the degree of a node in adjGi_t{xi) may change after the elim­
ination graph transformation from G,_i to G, due to the deletion of edges
incident to Xi and possible addition of new edges joining nodes adjacent to

CHAPTER 3. MINIMUM DEGREE ORDERING 14

Function MinitmimDegree
Go <-
i ^ 1
while I < |F̂ | do

In the elimination graph (7,_i = (K _i,F ,--i),
choose a node X{ of minimum degree

Form the new elimination graph G{ = (VJ, F,),
by eliminating the node from G,_i

f f + 1
endFunction

Figure 3.1. Basic Minimum Degree Algorithm

Xi. Using the elimination graph model, the basic algorithm is presented in
Figure 3.1.

Filled graph of G"̂ = is defined ¿is symmetric graph G^ =
E^), where F = L + L^. Obviously, and E^ consists of

all edges in and all filled edges during factorization. The filled graph G^
can easily be constructed from the sequence of elimination graphs using the
following lemma.

Lem m a 3.1 The edge {xi^Xj] G E^ if and only if {xi,Xj} ̂ E or G
E^ and G E^ for some k < m in {f,;} .

3.2 Implementation with Quotient Graph Model

The characterizations of G, (for i = 1, . . . , |U'̂ |) and E^ can be directly com­
puted in terms of the original graph G" ,̂ using the reachable set concept. Let
5 be a subset of the node set and u ^ S. The node u is said to be reachable
from a node y through S if there exist a path (y, Ui,. . . , ut, u) from y to u for
k > 0 such that u, G 5 for 1 < i < /:. Reach{y, S) denotes the reachable set of
y through 5, and defined as

Reach{y, 5) = {u ^ 5|u is reachable from y through S').

CHAPTER 3. h'llNlMUM DEGREE ORDERING 15

The edge set of the elimination graphs can be computed using the following
theorem

T heorem 3.1 [6] The edge {u,u} e Ei if and only if v e Reach{u,Si), where
Si = { i i , . . . ,a:,·} denotes the sequence of nodes eliminated in the first i steps
of the MD algorithm.

Hence, the adjacency set of a node u ^ Si in G, can be calculated by generating
the reachable set of u through Si., i.e.,

adjofu) = Reachooiu, S i) for i = 1 , . . . ,

The only disadvantage of this implicit representation is the amount of work
required to determine reachable sets can be large, especially at later stages
of elimination. However, it has a small and predictable storage requirement.
Note that the maximum amount of storage requirement is unpredictable in the
explicit representation of elimination.

The quotient graph concept is introduced to reduce the amount of work to
generate reachable sets. In quotient graphs, connected eliminated nodes are
coalesced in order to shorten the length of paths to uneliminated nodes. Let
G = (V, £■) be a given graph and let P be a p-way partition on its node set V:

V = (V „ ...,V ,)

That is Ufc=i Vk = y â nd K H Lj = 0 for i 7̂ j. We define the quotient graph of
G with respect to V to be the graph G /P = (V,S), where {K , Vj) E € and
only if adj{Vi) n Vj 7̂ 0. Here, adj{Vi) = UveK «4?g(v)·

Definition 2 Let V(S) denotes the set of connected components in the sub­
graph G{S).Then the partitioning on the node set V,

V{S) = V iS)0 {V - S)

uniquely defines the quotient graph GjV{S).

Hence, elimination graphs can be efficiently represented using quotient
graphs according to the following theorem:

CHAPTER 3. MINIMUM DEGREE ORDERING 16

Theorem 3.2 [6] For v ̂ V — Si,

Reacho{v,Si) = ReacliQ^{v.V{Si))

where Qi = G'/V(5.) = (V(5,),i.·).

Chapter 4

Circuit Partitioning Using MD
Ordering

The algorithm presented in this work is based on the MD ordering algorithm.
Our algorithm uses quotient graph model for elimination, because of its storage
advantage over the basic MD algorithm. Quotient graph model basically inher­
its the storage advantage of reachable sets model, and improves the run-time of
this model by introducing supernode concept which is not more than coalescing
the connected eliminated nodes. The proposed algorithm will be referred here
as Quotient Minimum Degree for Balanced Hypergraph Partitioning (QMD-BHP)
algorithm.

Section 4.1 presents the dual graph concept. The idea behind the node
selection scheme in the dual graph and its correspondence to the original hy­
pergraph are discussed in Section 4.2. Algorithms for size and valence com­
putations needed in node selections are presented in Section 4.3. Section 4.4
contains discussion about the elimination graph transformations to be per­
formed after node selections. An algorithm to improve the balance quality
of the partition found by the QMD-HP algorithm is proposed and presented in
Section 4.5. Finally, Section 4.6 discusses the computational complexity of the
proposed QMD-BHP.

17

CHAPTER 4. CIRCUIT PARTITIONING USING A/D ORDERING 18

4.1 Dual Graph

Let hypergraph H = (C, N) be given where C is set the of cells, and N is the
set of nets (hyperedges). Each n ̂ N is a. subset of C which has a cardinality
of at least two, i.e. each net connects two or more cells. There is one node in
G corresponding to each net in H. Two nodes in G are connected if only if the
respective pair of nets have at least one cell (pin) in common in H. Let pins{n)
denotes the set of the cells incident to net n, and nets{c) denotes the set of the
nets connected to cell c. Subscript H and G will be used to denote hypergraph
and graph, respectively. For example, pinsnin) will denote the pin-list of net
n in hypergraph H, and pinsa(n) will denote the pin-list of the net associated
with the node n in graph G. As will be explained later, pinsoin) is a dynamic
li.st, whereas pins}{{n) is a static list. We will skip subscript if it is clear from
the context. Using this notation, formal definition of dual graph is as follows;

Definition 3 Dual graph of hypergraph H = (C, N) is a graph G = (W, E),
where N, net list of H , is the node set of G, and e = {n,, n j} G E if and only if
m,nj G N, for 1 < i , j < |/V|, such that i / j and pinsnirii) fl pinsninj) ^ 0.

Our dual graph has several attributes cissociated with each node. The
attributes pinso{n) and onepinsfn) for each node n oi G are defined as follows

• onepins{n) = {c|c G pinsnin) and degn{c) — 1}.

• pinso{n) = pinsf{{n) — onepins(n).

A cell is called a one-pin cell if its degree is one, i.e. it is connected to only
one net in H. Note that only one-pin cells in H do not introduce any edges
into G. Hence, these cells are excluded from the pin-lists of the respective
nodes in G. One-pin cells connected to net n is denoted by onepins{n). Hence,
\pinsH{n)\ = |pmsG(n)| + \onepins{n)\. Figure 4.1 illustrates a sample hyper­
graph H with 10 cells, 9 nets and its dual graph G with 9 nodes, 15 edges.
The pin-lists of the nodes of the dual graph are illustrated in brackets. In this
example, pinsnins) = {7,8,9} whereas pinsoiris) = {7,8} since cell 9 is a
one-pin cell and hence onepins{ns) = {9}.

By referring to Definition 2, Q = G/^{S) = (]^{S),S) denotes the dual
quotient graph of hypergraph H. Hence, Q, = (W{Si),£i) corresponds to

CHAFTER 4. CIRCUIT PARTITIONING USING MD ORDERING 19

the ¿-th elimination graph G{ =- (Ni^Ei) where 5,· = { n i , . . . , n,·} is the se­
quence of ehnunaUid nodes in the first i steps of the MD algorithm. Fig­
ure 4.2 illustrates the pseudo-code for the dual graph construction algorithm.
In this pseudo-code, attributes without subscript refer to the dual graph do­
main. Here, adjQ{n) refers to the set of nodes adjacent to node n in Q, and
degQ{n) refers to the number of nodes in this set, i.e. degQ{n) = |ac(?(2(n)|.
Note that = N, and hence Q o = G o initially. First outer for-loop in
Figure 4.2, initializes the attributes of nodes of Q. Second outer for-loop con­
structs the edge set € oi Q and computes onepins attribute and initializes the
pin-list of each node. Third outer for-loop initializes other node attributes to
be used for node selection during the QMD algorithm.

4.2 Node Selection

We will discuss here only the partitioning of hypergraphs with unweighted cells
and nets for the sake of clarity of the presentation. The proposed algorithm is
applicable for hypergraphs with weighted cells and nets with minor modifica­
tions. In partitioning of a hypergraph with unweighted nets, the cutsize C{V)

CHAPTER 4. CIRCUIT PARTITIONING USING MD ORDERING 20

/* input : a hypergraph H = ((7, N) *f
/* output : a dual quotient graph Qq = */
Function ConstructDual{H, Q)
e ^ 0
for n = 1 to |Â| do

pins{n) <— 0
onepins{n) <— 0

for c = 1 to \C\ do
if dcgnic) = 1 then

let n be the only net incident to cell c (i.e. netsjq{c) = {n })
onepins{n) <r- onepins{n) U {c}

else
for each n € netsnic) do

pins{n) <— pins{n) U {c}
for each net pair {n,-,nj} incident to cell c (i.e. 7?.,-,nj € netsuic)) do

S S (J {{n.-,nj}}
for n = 1 to |Â| do

csize(n) |prniii/(n)|
valence{n) *— degQ{n)
for each m G adjQ{n) do

if {pins{m) C pins{n)) and {onepins{m) = 0) then
valence(n) +— valence{n) — 1

endFunction

Figure 4.2. Construction of dual quotient graph

CHAPTER 4. CIRCUIT PARTITIONING USING MD ORDERING 21

of a partition V simplifies into

C{V) = |7V£:| = |.V| - |.V/|.

Hence, min-cut hypergraph partitioning becomes equivalent to maximizing the
number |Â /| of internal nets. In the proposed algorithm, selecting a node n
in G corresponds to making net n in H an internal net. Initially, in Go = <j,
all nodes are assumed to be separator nodes and there exists no node-clusters.
Hence, in i/o, all nets are assumed to be external nets and there exists no
cell-clusters.

Consider selecting a node n, in the elimination quotient graph Q,_i. If there
exists no previously selected node in the adjacency list of n,·, node n, becomes a
cluster node n, in Q, representing the node-cluster Â „, in G,. Otherwise, node
Hi combines with the cluster nodes in its adjacency list to become a cluster
node in Qi representing the node-cluster

Wn. = U I U {n,} (4.1)

in G,, where cadjQ-_^{ni) = D adjQ._ {̂rii) represents the set of cluster
nodes adjacent to n,· in Qi-i. Recall that 5,_i = { u i , . . . n ,_i} denotes the
sequence of nodes selected during the first t — 1 steps, and Af{Si-i) denotes the
overall set of cluster nodes in Qi-i. Note that cluster nodes in cadjQ^_ {̂ni) are
removed from the cluster node set Af{Si) during this transformation. In both
cases, the new node-cluster in G, induces a new cell-cluster G„. in Hi. In
the former case, the respective cell-cluster G„, in Hi contains only the pins of
n,·, i.e. pinsf{{Cni) — pinsfj{ni). In the latter case, pins of net n, combine with
the pins of the cell-clusters in H corresponding to the cluster nodes in cadjq._ ̂
to form a new cell-cluster Cm- That is,

pinsH{ Cm) =\ U plnsjj{Cn,)\ u pinsnirii) {4.2)

In this notation, each cell-cluster in H is labeled with the last net made internal
in that cluster. Note that node-clusters and the respective cell-clusters consti­
tute connected components in G and i / , respectively. Figure 4.3 illustrates the
elimination steps in the dual quotient graph of the sample hypergraph given
in Figure 4.1. In this figure, each Qi is also associated with the respective Hi
to illustrate the cell-cluster formation. Selection of in Qi which forms the
cell-cluster G„g, where pinsniCm) = pinsnins) = {7 ,8 } is an example for the

CHAPTER 4. CIRCUIT PARTTTIONINC USING MD ORDERING 22

former case. Selection of nr in Q3 which form the cell-cluster Cm such that
pinsff{Cm) — pinsf{{Cng) 0 pinsfi(nr) = {6 ,7 ,8 ,9 }, where ns 6 cadjQ^(nr), is
an example for the latter case.

Consider the selection of a node n, with the minimum degree in the elimina­
tion graph Gi-i to form a node-cluster in G,. This choice is a greedy choice
in the hope that nodes with smaller degree will introduce less fills compared
to the nodes with larger degrees. However, if the node-cluster satisfies
l-^nj + \0'djG{Nm)\ < |Â|, o,dja{Nni) forms a separator for Nm- Furthermore,
we have

T heorem 4.1 [19j adja^mini) = adjoiNm) and de^fG..,(n,·) = |ad;G(Â n,)|·

Hence, the greedy choice in selecting node in G,_i also corresponds to a
locally optimal choice in minimizing the node-separator size |ad;G(-/Vn,)|. Note
that nodes in adja{Nm) will either combine with cluster to form new
clusters or remain in the separator during the future node selections. In other
words, they have no chance to be included in other node-clusters which will
not contain Nm · Hence, local minimization of the separator size also has the
desirable effect of even distribution of the remaining unselected nodes among
the other node-clusters.

In the proposed algorithm, we grow node-/cell- clusters in GIH as
connected-components similar to MD algorithm. However, the criteria for se­
lecting a node n,· in G,_i is the local minimization of the net-cut (net-separator)
size of the cell-cluster Cm that will be induced by the node-cluster Nm to be
formed upon selecting n,·. Let,

extnetsfj(Cn,) = {^j € N | pinsn(nj) D ^ 0

A pinsninj) - pinsH(Cm) (4.3)

represents the set of external nets (real net-cut) of cluster G„,. That is, an
external net of a cell-cluster has at least one pin in that cluster and at least
one pin outside that cluster. In a dual analogy to the MD algorithm, nets
in extnetsH(Cn,) will either become the internal nets of the cluster that will
contain Cm or remain in the net-cut in the future node/net selections in G /H.
That is, they have no chance of becoming internal nets of cell-clusters which do
not contain Cm- Hence, similar to the MD algorithm, local minimization of the
net-cut size also has the desirable effect of even distribution of the remaining
unselected nets as internal nets among the other cell-clusters.

CHAPTER 4. CIRCUIT PARTITIONING USING MD ORDERING 23

Figure 4.3. Elimination steps

CHAPTER 4. CIRCUIT PARTITIONING USING MD ORDERING 24

The net-cut size of a cell-cluster that will be induced by the node-cluster to
be formed upon selecting a node in G will be referred here as the valence of that
node. However, large number of ties occur during node selections according
to the valence values as in the MD algorithm. The selection of the next node
with minimum valence from the candidate set is effectively determined by the
initial ordering which essentially determines the way ties are resolved. In this
work, we propose a tie-breaking strategy which enables growing balanced cell-
clusters. In the proposed algorithm, when more than one node has the the same
valence, the one with the minimum cluster size is selected first. Here, cluster
size of a node in an elimination graph refers to the size of cell-cluster that will
be induced by the node-cluster to be formed upon selecting that node. If the
cells of the hypergraph are unweighted, the size of a cell-cluster is equal to the
number of cells in that cluster. Our selection scheme does not allow a cluster
to grow beyond a predetermined maximum part size. That is, unselected nodes
whose cluster sizes exceed the indicated maximum part size are not considered
during selections. The maximum part size is selected as ^ · (1 + j) where A
is the imbalance ratio (Section 2.2) and ^ denotes the size of a part under
perfect balance conditions.

4.3 Size and Valence and Calculations

Both stopping criteria for cluster expansion and tie-breaking criteria necessitate
the cluster size (csize) computation for each unselected node. Here, csize{n)
of an unselected node n in Qi denotes the size of the cell-cluster (7„ to be
induced upon selecting n. The csizeai(n) attribute of an unselected node n
in Gi can be computed by finding the cardinality of the pin-set in the right-
hand side of Equation 4.2. Note that pin-sets of all cell-clusters induced by the
cluster nodes in cadjQ^{n) are disjoint sets. Hence, the cardinality of the pin-set
represented with first set-union operation can easily be computed by a simple
addition. However, net n shares at least one pin with each cell-cluster induced
by the cluster nodes. Hence, all we need to compute is the number of new pins
to be introduced by net n to the cell-cluster C„. For the sake of efficiency of
these computations, we maintain a dynamic pin-list {pinsa^{n) = pinsQ-{n))
for each unselected node n. Upon selecting a node n,· in Q ,-i, pin-list of each
unselected node n G updated as

pinsQ^{n) = pinsQ^_^{n) — pinsQ-{ni) (4.4)

CHAPrER 4. CIRCUIT PARlTriONING USING MD ORDERING 25

where nadjQ-_^{ni) = adjQ-_i{ni) — cadjQ^_ {̂ni) denotes the set of unselected
nodes adjacent to n, in Qi-i. Hence, pinsQ^_^{n) denotes the subset of pins of
net n (excluding those in onepins{n)) which are not assigned to any cell-cluster
in Hi-i. Thus, csizeQ-{n) of an unselected node can efficiently be computed
as

csizeQ^(n) = ^ csizeQ-(tn) -f |pm5Q;(n)| -f |onepms(n)|. (4.5)
m^cadjQ· (n)

Initial computation of csize{n) is given in the last for-loop of Figure 4.2. Note
that cadj set of each node is initially empty since there is no selected nodes yet.
Therefore initial csize values contains the number of pins of the respective net.
Upon selecting n,· in Q,_i, the cluster size of only those nodes in rchsetQ^_^{ni)
should be recomputed for Q,·. Pseudo-code of size calculation is given in Fig­
ure 4.7. Maintaining dynamic pin-list for each node has other merits during
valence computation as will be discussed later.

The node separator adja{Nm) of the node-cluster Nm in G, formed upon
selecting node n,· in Gi-i already induces a net-cut (cut-separator) for the cell-
cluster Cm in H. However, this induced net-cut may be an overestimation for
the real net-cut of Cm in H. That is,

extnetsHiCm) Q. adjaiNm)· (4.6)

Some of the unselected nets may directly become an internal net of the cell-
cluster Cm upon selecting node n, in G,. This happens for an unselected
node rij € adjoiini) whenever pinsfj{Cm) 2 pinsfj{nj). We will refer to such
nodes/nets as mass-elimination nodes/nets and define the mass-elimination
node/net set of an uneliminated node n as

masselim(n) = adjaiNn) — extnetSf{{Cn)· (4-7)

Nodes in the mass-elimination set of a node n can be eliminated together and
included into Nn upon selecting n. Our implementation forces them to be
selected following the selection of n. Note that they do not introduce any
extra pins to the respective cell-cluster G„ in contrast to the standard node
selections. Hence, the valence of a node n in the elimination graph Q, can be
computed as

valenceQ^n) — degQ.{n) - |masse/fm(2.(n)|. (4.8)

Here, degQi(n) denotes the degree of node n in Qi which is the selection criteria
in the original MD algorithm. Hence, valence computations necessitate finding
the mass-elimination node set for each unselected node.

CHAPTER 4. CIRCUIT PARTITIONING USING MI) ORDERING 26

Function ReachSet{n)
rchset <— 0
for each v € adj(n) do

if deg{v) > 0 then /* v is an uneliminated node */
rchset <— rchset U {u}

else /* u is a cluster node * j
for each u 6 adj{v) — {n } do

rchset rchset U { « }
return rchset
endFunction

Figure 4.4. Reachable set calculation

T h eorem 4.2 An unselected node m G masselimQ-{n) if and only if
onepins{m) = 0 and cadjQfm) C cadjQfn) and

either (i) m G nadjQ.{n) A pinsQ-{m) C pinsQ^n)

or (ii) m G rchsetqXu) Am ^ nadjQfn) A pinsQ^m) = 0

Proof easily follows by noting the two facts. First, unassigned pins (cells) of
node m should be assigned to by the selection of node n. Second, the cell-
clusters which contains the previously assigned pins of m, should be merged
into Cn by the selection of node n.

The third for-loop in Figure 4.2 performs the initial valence computations.
The second for-loop in Figure 4.7 performs the valence update for a node which
is in the reachable set of the selected node. Note that, during the Q,_i —> Q,·
transformation, only the degree and mass-elimination node set of a node in the
reachable set of node n, should be considered for update (See pseudo-code in
Figure 4.5 and 4.7).

4.4 Graph Transformation

Let Hi be the eliminated node in the G,_i —> G, transformation and 5, =
{ n i , . . . ,n , } be the sequence of the eliminated nodes. Recall that, at any
step i of the algorithm, the node set AT(5',_i) of Q,_i contains two types of

CHAFTER 4. CIRCUIT PARTITIONING USING Ml) ORDERING 27

Function DegreeUpdate{rchset)
for each v € rchset do

vrchset *— ReachSet{v)
deg{v) <— \vrchset\

endFunction

Figure 4.5. Degree update

Function ClusterAdj{n)
cadj <— 0
for each v € adj(n) do

if deg{v) < 0 then
cadj <— cadj U {u}

return cadj
endFunction

Figure 4.6. Algorithm for finding the cluster adjacency

Function UpdateVatenceAndSize(v)
vrchset <— ReachSet(i')
vcadj <— Cluster Adj (v)
csize(v) 0
for each «: ^ vcadj d o

csize{v) ·<“ csize(v) +csize{u)
csize(v) <— csize(v) + |pin.s(u)S -f ¡onepins(t
valence(v) deg{v)
for each u € vrchset do

if (onepins(u) = 0) and (pins{u) — pins{v) = 0) then
ucadj <— C luster Adj (u)
if ucadj C Dead;then

valence{v) <— valence{y) — 1
endFunction

Figure 4.7. Update of valence and cluster size

CHAPTER 4. CIRCVIT PARTITIONING USING MD ORDERING 28

nodes; cluster nodes and uneliminated nodes denoted by the sets Ai{Si-i) and
N - Si-1 , respectively. Furthermore, the edge set 6 i-i contains two types
of edges; edges between uneliminated node pairs and edges between cluster
nodes and uneliminated nodes. Hence, given Q,_i = {W {S i-i),6 i-i) with
Qo = Go, the corresponding quotient graph transformation Q,_i —> Q, can
be performed as follows: cluster nodes in cadj<2,_, (n.) are removed from the
connected component set and the cluster node n, is added as a new connected
component. That is.

Ai{Si) = Ai(Si-i) - cadjQ._^{ni) U {n,·} (4.9)

and n, is removed from the uneliminated node set. Recall that A/’(S',) denotes
the set of connected components in the subgraph G{Si) and W{Si) = Af(Si) U
{N — Si) represents the node set of Q,. Note that, node cluster Nm in Gi is
represented with the cluster node n, in Q,.

All uneliminated nodes in the node adjacency list of the cluster node in
cadjQ^_,{ni) are connected to n,· if they were not in the set nadjQ^_,{rii) U {n,·}.
All edges incident to cluster nodes in cadjQ._ {̂rii) are removed from the edge
set. That is,

Ei = Ei-i u | {n /,n ,}| n /e (nad;Q;_j(nfc) - {n,·}) where Uk e cadjQ^_ {̂ni) ̂

- {{nk,ni}\nk e cadjQ._ {̂rii) and ni e nadjQ._^{nk)] (4.10)

The quotient graph representation enables the use of the edge slots of the
nodes in cadj{ni) for new edges to be added to the adjacency list of n,·. It is
guaranteed that the number of such edge slots are larger than or equal to the
number of edges to be added to the adjacency list of n, during transformation
[6]. Figure 4.8 illustrates the pseudo-code for quotient graph transformation
where n denotes the selected node.

4.5 More About Balancing

Although the tie-breaking strategy of QMD-BHP enables growing balanced cell-
clusters, there is no bound on the minimum cluster size when the algorithm
terminates. That is, when the algorithm terminates, it is guaranteed that there
will be no cluster whose size exceed the maximum part size, but the partition
can still be infeasible according to the problem definition (Section 2.2). The

CHAPTER 4. CIRCUIT PARTITIONING USING MD ORDERING 29

Function GraphTrans{n, rchset, cadj)
adj[n) <— rchset
for each v € rchset do

adj(v) <— (adj{v) — cadj) U {n}
endFunction

Figure 4.8. Quotient graph transformation

nice property of the algorithm is that the unselected nodes in the dual graph
already induce cut-nets in the hypergraph. If those cut-nets are realized, the
problem reduces to the ¿-way number partitioning problem on the sizes of cell-
clusters and remaining unassigned unit-sized pins (cells) of the cut-nets. This
NP-hard problem can also be solved by a well-known heuristic namely Fii'st
Fit Decreasing (FFD). Note that the number of unselected nodes/nets is an
overestimation for the real cutsize. Due to the assignment of FFD, the real
cutsize can be smaller than the number of unselected nodes/nets.

Although FFD is a successful heuristic the resulting partition can also be
infeasible. That is, the imbalance ratio of the resulting partition can be larger
than the predetermined imbalance ratio (A). In order to get a smaller imbal­
ance ratio, some of the cells which are assigned to the part with maximum
size should be assigned to part with the minimum size, or parts should be re­
arranged, such that; the difference between the part with maximum size and
part with minimum size is reduced. However, this process can increase the cut-
size. We propose a simple heuristic using the cutsize overestimation property
of the algorithm. We break the largest cluster into its components by making
its representative node/net unselected. Recall that the representative net of
a cell-cluster is the last net which was made internal to that cluster. Making
a node/net unselected corresponds to breaking the respective cell-cluster into
the cell-clusters whose representative nodes were adjacent to that node in the
dual quotient graph during its selection. Hence, this provides more clusters
with smaller sizes to FFD by introducing only one net to the net-cut. Recall
that the number of unselected nodes in the dual graph is an upper case bound
on the cutsize at any step of the algorithm. The selection of the cell-cluster
for breakdown is greedy. The heuristic chooses the largest cell-cluster hoping
that it contains more sub-clusters than a cell-cluster with a smaller size. Only
one breakdown cannot be sufficient to get a feasible partition. Therefore, this

CHAPTER 4. CIRCUIT PARTITIONING USING MD ORDERING 30

Function FFD(clusterset)
for each partition p do

partweight{p) *— 0
while clusterset not empty do

Take the largest cluster C from clusterset
Put C into minimum weighted partition

for each unselected nodes n (i.e. deg{n) > 0) do
Let U be unassigned pins of n (i.e. U — pins{n) U onepins(n))
while U is not empty do

Take a cell c from U
Put the cell c into minimum weighted partition

Find the minimum and maximum weighted partitions, Wmin and W„
return (ITyTiaj: i^^Tn a x

endFunction

respectively

Figure 4.9. First Fit Decreasing heuristic

process should be repeated until a partition which has an imbalance ratio less
that the predetermined value is found.

Pseudo-code for the FFD algorithm is given in Figure 4.9. Algorithm for
the balancing process is given in the Figure 4.10. Outer-most while-loop checks
if the imbalance ratio is satisfied or not. If it is not satisfied the largest cell-
cluster L is selected for breakdown. Note that, the representative node/net
can be a mass-elimination node. Therefore, mass-elimination nodes/nets are
also introduced to the net-cut together with the node whose selection causes
to mass elimination. The inner most while-loop checks if the representative
is a mass-elimination node/net or not. If it is a mass-elimination node, it
is introduced to the net-cut. Hence, balancing completes the discussion of
the proposed algorithm, the main algorithm of QMD-BHP is also given iii the
Figure 4.11.

4.6 Complexity Analysis

Let H = {C^N) be given input circuit, and let Q = (M {S),£) be the dual
quotient graph of given input hypergraph as defined in the Definition 3. Let dc

CHAPTER 4. CIRCUIT PARTITIONING USING MD ORDERING 31

Function BalancePartitio7is{clusterforest)
Let clusterset be the set of clusters formed due to elimination
6 +— F F D(clusterset)
while <5 > A do

Delete the largest cluster L from cluster set
while C is the only child of L in clusterf orest with same cluster size

L ^ C
for each child C of L in the cluster forest do

Add C into clusterset
8 <— FFD{clusterset)

endFunction

Figure 4.10. Balancing the partitions

and dn be maximum node and net degree in hypergraph H respectively. And
let dy be the maximum node degree in dual quotient graph Q.

4.6.1 Space Complexity Analysis

• Input hypergraph is stored in two link-list arrays as described in [22]. It
has space complexity 0{dc · \C\ -f d„ · |A’ |)

• Adjacency list representation is used to store dual quotient graph G. The

number of edges in the graph |F| < ̂ ^2 ̂ ̂ ̂ definition of

dual graph. The space complexity of the storing adjacency list represen­
tation is 0{\E\). Empirical studies on the over 40 test circuit shows that

M + 1
21̂ 1 < • |(7|, where // is average cell degree in the hypergraph.

• Reach set rchset and cluster adjacency set cadj is stored in one­
dimensional array with the size |Â| which is the worst case boundary
of these sets. Therefore space complexity of these arrays is 0(|A^|).

• A one-dimensional array is also used as marking array to compute set
operations effectively, its size is exactly |-V|. That is, its space complexity
is also 0{\N\)

• The worst case space complexity of masselim is C?(|Af|).

CHAPTER 4. CIRCUIT PARTTTIONINC USING MD ORDERINC 32

Function Main
Initialize selectheap
Construct Qo from given Hypergraph H by calling function Construct Dual
masselim *— 0
Initialize cluster forest with empty
for each node n € Qo do

Insert n into selectheap
i <— I
while i < lA'̂ l do

n <— Select Node{)
if n = — 1 then

break while-loop
deg(n) i----- 1
rchset <r— ReachSet(n)
cadj <r- ClusterAdj{n)
for each v € rchset do

delete v from selectheap
for each u € cadj do

Add edge (n, u) into cluster forest
Transform Q,_i into Q, by calling GraphTrans{n, rchset, cadj)
Update degrees of reachable nodes by calling DegreeUpdate{rchset)
for each v G {adj{n) — cadj) do

pins{v) <— pins{v) — pins{n)
if (pins{v) = 0) and {onepins{v) = 0) then

vcadj ^ ClusterAdj{v)
if {n } = vcadj then

put V into masselim
for each v € {rchset — masselim) do

Update valence and cluster size of v by calling UpdateValenceAndSize{v)
Insert V into selectheap

i t’ + 1
BalancePartitions{cluster forest)
endFunction

Figure 4.11. Main algorithm

CHAPTER 4. CIRCUIT PARTITIONING USING MD ORDERING 33

Function SelectNode
if masselim = 0 then

repeat
if selectheap not empty then

n i— ExtractMinimum{selectheap)
else

n <------1
until (csize{n) < maxw) or (n = — 1)

else
Take one node from masselim into n and delete it from set

return n
endFunction

Figure 4.12. Node selection algorithm

• selectheap has space complexity 0(|A^|).

• cluster forest has space complexity 0(|A^|).

• onepins and pinlist contains the cells which a net connected, therefore
their total space complexity is 0{p) where p is the total number of pins
which is defined in the Chapter 2.

• Since degree, valence and cluster sizes are the integer attributes of the
nodes in the dual graph, their space complexity is C?(|Â |).

Therefore total space complexity of the algorithm is 0{dc’ \C\+dn-\N\A\E\)
or using p; the number of pins in the hypergraph, it is 0{p + |F|)

4.6.2 Time Complexity Analysis

Reading the input hypergraph has the time complexity 0{p).

Construct Dual :

First loop initializes pin-lists pins and onepins in (9(|Â |).

• Second loop constructs the pin-lists and dual graph; inside the loop pin-
list are constructed in 0 {dc) and for each incident net pair (there are
0 {dl) pairs) an edge check is done in 0 {dy) and if no such edge exist,
edge is constructed in constant time. Therefore total time complexity of
the second loop is 0{\C\ · ¿1 · d„).

• Third loop determines the valences in 0(\N\-dc-dn) since subset operation
can be done in 0 (dn) using a marker array.

Total time complexity of constructing dual graph is 0{\N\-dc-dn+\C\-dTdy).

SelectNode :

• Extracting minimum from heap is 0 (log |Â |).

• Taking a node from masselim is 0{\).

• Repeat-loop may executed times in the worst case but, then while-
loop in the main algorithm is terminated. Therefore

CHAPTER 4. CIRCUIT PARTITIONING USING MD ORDERING 34

Total time complexity of this function is 0(log |A'̂ |).

ReachSet :

Main loop of this function is executed maximum d„ times. If the adjacent
node is not eliminated before it is added to rchset, otherwise all adjacents of
that eliminated node are added into rchset. In the early stages of the algorithm
is obvious that there are not so much eliminated nodes in the graph, hence this
function has the time complexity 0 (d „), but at the later stages since there
are more eliminated nodes, the worst case time complexity of this function is
0(<P.).

DegreeUpdate :

Since the degree of each node in the rchset must be computed, and this
is done by calling ReachSet for each node, the worst case complexity of this
function is 0{d^). But it must be noticed that at the early stages this function
has time the complexity O(d^).

CHAPTER 4. CIRCUIT PARTITIONING USING MD ORDERING 35

UpdateValenceAndSize :

• Reach set of the node which is being updated (i>) is calculated in 0(dl).

• Cluster size of the node is computed using adjacent cluster nodes in
0 (4) .

• Each node, which is in the reach set of v, is check if· it goes to the mass-
elimination set of V when the node v has been selected. This requires
a set subtraction which can be done in 0 {dn) using a mark array, and
a subset check in the cluster adjacency sets, since the cluster adjacency
sets contains at most 0 (4) items, this subset check can also be done
with the time complexity 0 (4) using again a marker array. Hence, this
process must be done for each item in the reach set, this step has the
time complexity 0(d^ · (4 + 4)) ·

The time complexity of updating the valence and the cluster size of a node
is 0(d^ · (4 + 4)) iu the worst case. Again at the early stages this process has
the time complexity 0 (4 · (4 + 4)) ·

GraphTrans :

• Reach set of the selected node is placed in the adjacency list of the node
in O(d^).

• Adjacency set of each node in the rchret set is updated by deleting
the cluster-nodes adjacent to selected node from the set and adding the
selected node as the representative of the node-cluster. This has the time
complexity O(c^).

Therefore total time complexity of this function is O(d^), again it must
be noticed that at the early stages since reach set has 0 (4) items, the time
complexity of the function is 0 (dl).

FED :

Let set U denotes the unselected nodes, k denotes the number of parts, and
s denotes the cardinality of cluster set.

CHAPTER 4. e m e u IT PARTITIONING USING MD ORDERING 36

• Initializing partition weights takes 0{k) times.

• Assigning the cluster to parts takes 0 { s ■ (s + k)).

• Finding the unselected nodes set U take (9(|A'̂ | · d„) and assigning the
pins of these nodes to parts has the time complexity 0 {dn · k).

Therefore the time complexity of this algorithm is 0{\N\ + \U\ ■ dn- k s ·
{s + k)).

BalancePartitions :

The main loop of this function depends the imbalance ratio A if the required
ratio is not achieved largest cluster is break down its components and FED
algorithm is executed again. In the worst case all clusters can be broken its
components until original node set of the dual graph is constructed. Therefore
in the worst CcLse this algorithm has the time complexity · (|A'̂ | · · A; +
s · (s + k))). But in all our experiments this loop is newer executed more than
25 times.

Main Algorithm :

• All nodes in the reach set of selected node n is deleted from selectheap
in 0{dl · log |Â|) (in the worst case).

• All neighborhood nodes is placed in the cluster forest in 0(dv).

• Nodes which will go masselim is computed in C?(d„ · (dn + d„)).

• Since the valence and the cluster size of all nodes in the reach set must
be recalculated this takes 0 {dl · {d̂ + d«) + d̂ · log 1-̂ 1)·

Since the main loop is executed |Â| times in the worst case, worst case
time complexity of the whole algorithm is 0{dc · (|Â | · d„ + \C\ · dc · d„) + |Â| ·
(dy · (d„ + d„) + d̂ · log |Â D). It should be noticed that at the early stages
of the algorithm since reach sets are in (9(dv) then the time complexity of the
algorithm is reduces to 0(dc-(|A^|-d„ + |C'|-dc-d„)+|A'^|-(d^-(d„+d„)+dt,dog |Â |)).

Chapter 5

Experiments and Results

This section deals with the performance evaluation of the proposed algo­
rithm, compared with two well-known heuristics: Sanchis (SN) and Sim­
ulated Annealing (SA). Each algorithm is tested using 12 benchmark cir­
cuits from LayoutSynth92 standard cell suite and P artition ing93 test
suite in ACM/SIGDA Design Automation Benchmarks (also known as MCNC
Benchmarks). Characteristics of the test circuits are shown in the Table 5.1,
characteristics of the corresponding dual graph are also summarized in Ta­
ble 5.2.

5.1 Implementation

Two versions of the proposed algorithm have been implemented. First version
does not contain the post balancing process, we call this version as Quotient
Minimum Degree for Hypergraph Partitioning (QMD-HP) . Post processing has
been included in the second version Quotient Minimum Degree for Balanced
Hypergraph Partitioning (QMD-BHP). Since our algorithm is constructive, it pro­
duces same results in each run. To get a different solution, we have permuted
the node and net numbers randomly. As expected this has resulted in different
solutions. The imbalance ratio in the QMD-BHP A is set to 0.20 to ensure that
we have the same balance criteria with the compared algorithms SA and SN.
Reading the circuit, permuting the net and node numbers and outputting the
result are also included in the execution time of the algorithm.

Sanchis’s multiple-way network partitioning algorithm is also implemented.

37

CHAPTER 5. EXPERIMENTS AND RESULTS 38

Table 5.1. Properties of test circuits, (p is the number of pins, a is standard
deviation, avg is average.)

name |jv| P cell degree net degree
max. avg. a max. avg. a

balu 701 702 2493 9 3.556 1.171 117 3.551 5.285
cl355 650 618 1745 5 2.685 0.757 11 2.824 1.312
c2670 924 860 2375 5 2.570 1.118 30 2.762 2.546
c3540 1038 1016 3131 5 3.016 0.887 23 3.082 2.336
c7552 2247 2140 6171 5 2.746 0.978 137 2.884 3.877
industryl 2271 2186 7731 9 3.404 1.124 318 3.537 9.016
primary2 3014 3029 11219 9 3.722 1.549 37 3.704 3.819
s838 495 460 1261 5 2.547 0.920 33 2.741 2.398
sioo 602 383 1771 4 2.942 0.466 128 4.624 7.417
struct 1888 1888 5375 4 2.847 0.604 16 2.847 1.793
test03 1607 1618 5807 54 3.614 1.752 225 3.589 8.462
testOG 1752 1641 6638 6 3.789 1.233 388 4.045 11.701

Table 5.2. Dual Graphs of Test Circuits

name |AT| \E\ node degree
max. avg. a

balu 702 3175 308 9.046 13.491
cl355 618 1421 23 4.599 2.567
c2670 860 2292 53 5.330 4.989
c3540 1016 3334 53 6.563 4.716
c7552 2140 5982 250 5.591 7.053
industryl 2186 9064 532 8.293 15.404
primary2 3029 16200 131 10.697 11.559
s838 460 1154 65 5.017 4.733
sioo 383 1749 256 9.133 14.764
struct 1888 5084 32 5.386 3.700
test03 1618 8384 344 10.363 17.257
test06 1641 8313 769 10.132 24.079

CHAPTER 5. PJXPERIMENTS AND RESULTS 39

In the implementation of gain arrays we have used the / levels of one­
dimensional bucket array, each bucket array consisting of 2p + 1 entries where
p is the maximum cell degree in the circuit. At level 1 there will be one bucket
array indexed from —p to p. Each of the entries in this array points a bucket
array at level 2, entries of the bucket arrays in the second level also points to
bucket arrays in the level 3, and so on. At the last level entries are pointers to
gain nodes. This is the same data structure with [22].

The bounds on the size of parts are given as Wp — 0.1 · Wp < Wi <
Wp + 0.1 · Wp where W{ denotes the size of part i and Wp is the perfect load
balance computed as Wp = pi^l'̂ '*'· Run-time again contains the
reading the input circuit and generating the random initial partitioning and
outputting the result.

Our Simulated Annealing implementation based on the cooling schedule in
[9] and follows the guidelines supplied in [9, 10, 16] for multiple-way partition­
ing. The starting temperature weis set to 10 where the acceptance rate was
90%. The termination condition was met when either the acceptance rate was
less than 2%, or the same cutsize was encountered 101/2 times. The penalty
function which allows the infeasible partitions is not used to ensure that each
algorithm we compared selects a move in the same way.

All algorithms were implemented in C programming language, and experi­
ments were carried out on a Sun Sparc 10 Workstation.

5.2 Results

Table 5.3 compares the unbalanced version of proposed algorithm (QMD-HP)
with the balanced version (QMD-BHP), where k is the number of parts and 8

is the imbalance ratio. The number in the parenthesis in the cut column of
QMD-BHP gives the ratio of the cut to cut found by QMD-HP. The number in
the parenthesis in the Time column is calculated in the same manner. Both
algorithms start without permuting the node and net numbers, i.e. QMD-BHP
differs only in the last balancing procedure, whereas QMD-HP does not have any
balancing post process. Times are almost the same, however there are some
cases which run-time of QMD-BHP is gradually less than QMD-HP, this can only
be explained by our operating system. Since it is a multi-user system with
virtual paging, this time difference can be caused by page-swap.

CHAPTER 5. EXPERIMENTS AND RESULTS 40

The last column is the percentage improvement in the balance, it is calcu­
lated as;

^QMD-HP — Sq md - hbpBal.Imp = 100.
^QMD-HP

As can be seen in table; QMD-BHP shows the great improvement in the balance.
However, in the most of the runs, there is no change in the cut since QMD-HP
has also produced balanced partitioning in those test cases. On the average
QMD-BHP produces 5% more cutsizes, in other words, QMD-HP over-performs
the balanced version QMD-BHP by 4% in the cutsize. The question is “what is
important ? Cutsize or balance ?” , since we will compare algorithm with the
SN and SA our results must be balanced to be fare.

Table 5.4 shows the cutsize averages and standard deviation of the 4 pro­
grams (in fact SN-Ll and SN-L3 is the same algorithm with diiferent param­
eters) in the 12 test circuits with partition number k varying from 2 to 32.
SN-Ll is the Sanchis’s algorithm with the first level gain, it can be considered
as multi-way Fiduccia Mattheyses’s algorithm. SN-L3 is the Sanchis’s algo­
rithm with the three level of gains. Selection of the level 3 is based on the
average net degree of our test data. Average net degree is about 3 nearly in
all data. Since level concept of Sanchis’s algorithm based on the net degree,
setting the level parameter larger than 3 does not effect the quality of the cut-
size so much, but it increases the space requirement of the algorithm with the
running time.

Each test, for each k value for each test circuit, 100 run have been done
for the algorithms SN-Ll, SN-L2, and QMD-BHP. Since we have 12 test circuits
and 6 different k values, 7200 runs have been done for each of the programs.
For each test cases 10 SA run have been done, because of its high running time
requirement. We could not put the results of A: = 32 runs for SA because of
time limitations.

The numbers in the parenthesis are the ratio of the cutsize of the respective
algorithm to the cut size found by SN-Ll. The impro\ ement can be computed
as 1 - cut-ratio. For example, when k — ̂ for test circuit balu, SN-L3 shows
1 — 0.77 = 0.23 = 23% improvement, where SA shows 1 — 0.44 = 0.46 = 56%
improvement and QMD-BHP has 1 — 0.40 = 0.60 = 60% improvement in the
cutsize. Bold numbers indicate the best values in each row.

The minimum and the maximum cutsizes achieved in the test runs have
been listed in the Table 5.5 and Table 5.6, respectively, k denotes the number

Table 5.3. Comparison of QMD-HP and QMD-BHP. (ITmax- and W^in are the
maximum and minimum part weights respectively,
is the percent balance improvement in QMD-BHP.)
n ------------------------------ - f r n u n _ u n

CHAPTER 5. EXPERIMENTS AND RESULTS 41

8 is unbalance ratio, %B.I.

qHD-HP
y V Ilia X 6 Cut Time W m a x 6 Cut Time

2 328 373 12.1 38 5.7 328 373 12.1 38 (1.00) 5.7 (1.00)
4 159 211 24.6 66 4.7 159 183 13.1 78 (1.18) 4.8 (1.02)
6 87 152 42.8 78 4.6 107 130 17.7 92 (1.18) 4.5 (0.98)

balu 8 74 126 41.3 81 4.2 82 99 17.2 103 (1.27) 4.3 (1.02)
16 41 49 16.3 133 3.3 41 49 16.3 133 (1.00) 3.3 (1.00)
32 21 22 4.5 160 3.0 21 22 4.5 160 (1.00) 3.0 (1.00)

2 292 358 18.4 29 0.6 292 358 18.4 29 (1.00) 0.6 (1.00)
4 151 197 23.4 45 0.5 159 172 7.6 47 (1.04) 0.5 (1.00)
6 108 109 0.9 53 0.5 108 109 0.9 53 (1.00) 0.5 (1.00)

C1355 8 78 98 20.4 53 0.5 79 96 17.7 55 (1.04) 0.5 (1.00)
16 39 43 9.3 59 0.4 39 43 9.3 59 (1.00) 0.5 (1.25)
32 20 21 4.8 77 0.4 20 21 4.8 77 (1.00) 0.5 (1.25)

2 462 462 0.0 28 1.4 462 462 0.0 28 (1.00) 1.5 (1.07)
4 231 231 0.0 46 1.3 231 231 0.0 46 (1.00) 1.3 (1.00)
6 147 181 18.8 57 1.3 147 181 18.8 57 (1.00) 1.3 (1.00)

c2670 8 111 142 21.8 63 1.2 112 127 11.8 65 (1.03) 1.3 (1.08)
16 57 58 1.7 84 1.2 57 58 1.7 84 (1.00) 1.1 (0.92)
32 28 30 6.7 113 1.0 28 30 6.7 113 (1.00) 1.1 (1.10)

2 514 524 1.9 94 6.1 514 524 1.9 94 (1.00) 6.0 (0.98)
4 237 304 22.0 123 4.5 252 264 4.5 140 (1.14) 4.4 (0.98)
6 156 240 35.0 147 3.7 164 196 16.3 146 (0.99) 3.8 (1.03)

c3540 8 129 130 0.8 163 3.2 129 130 0.8 163 (1.00) 3.2 (1.00)
16 64 65 1.5 187 2.5 64 65 1.5 187 (1.00) 2.6 (1.04)

32 31 37 16.2 219 2.0 31 37 16.2 219 (1.00) 2.1 (1.05)
2 1099 1148 4.3 34 8.7 1099 1148 4.3 34 (1.00) 8.2 (0.94)
4 552 591 6.6 58 9.1 552 591 6.6 58 (1.00) 8.0 (0.88)
6 356 463 23.1 102 7.6 358 444 19.4 114 (1.12) 7.7 (1.01)

c7552 8 257 321 19.9 140 7.1 257 321 19.9 140 (1.00) 6.9 (0.97)
16 134 176 23.9 207 6.2 134 167 19.8 212 (1.02) 6.2 (1.00)

32 70 71 1.4 267 5.4 70 71 1.4 267 (1.00) 5.5 (1.02)
2 1135 1136 0.1 37 40.3 1135 1136 0.1 37 (1.00) 39.4 (0.98)
4 508 660 23.0 99 34.6 532 660 19.4 100 (1.01) 33.8 (0.98)
6 357 459 22.2 143 35.2 358 438 18.3 144 (1.01) 32.5 (0.92)

industry 1 8 271 327 17.1 177 32.1 271 327 17.1 177 (1.00) 30.7 (0.96)

16 139 163 14.7 254 28.9 139 163 14.7 254 (1.00) 29.0 (1.00)

32 70 72 2.8 337 26.3 70 72 2.8 337 (1.00) 27.3 (1.04)

2 1216 1798 32.4 297 221.1 1497 1517 1.3 321 (1.08) 205.1 (0.93)
4 625 1004 37.7 409 78.9 732 792 7.6 420 (1.03) 73.1 (0.93)
6 431 648 33.5 420 59.6 468 576 18.8 436 (1.04) 56.2 (0.94)

primary 2 8
16

362
188

412
189

12.1
0.5

445
500

48.1
32.8

362
188

412
189

12.1
0.5

445
500

(1.00)
(1.00)

45.5
33.3

(0.95)
(1.02)

32 94 95 1.1 583 23.8 94 95 1.1 583 (1.00) 24.2 (1.02)

2 234 261 10.3 31 0.6 234 261 10.3 31 (1.00) 0.6 (1.00)
4 109 156 30.1 46 0.5 114 139 18.0 50 (1.09) 0.5 (1.00)
6 76 112 32.1 53 0.5 78 91 14.3 56 (1.06) 0.6 (1.20)

s838 8 54 79 31.6 58 0.5 56 68 17.6 55 (0.95) 0.5 (1.00)

16 30 35 14.3 69 0.5 30 35 14.3 69 (1.00) 0.5 (1.00)

32 14 18 22.2 95 0.4 15 18 16.7 108 (1-1'·) 0.5 (1.25)

2 294 308 4.5 25 2.5 294 308 4.5 25 (1.00) 2.5 (1.00)
4 132 162 18.5 25 2.5 132 162 18.5 25 (1.00) 2.6 (1.04)
6 96 110 12.7 25 2.6 96 n o 12.7 25 (1.00) 2.5 (0.96)

sioo g 66 96 31.3 25 2.6 74 78 5.1 31 (1.24) 2.5 (0.96)

16 33 63 47.6 25 2.5 37 44 15.9 31 (1.24) 2.7 (1.08)

32 17 20 15.0 86 1.5 17 20 15.0 86 (1.00) 1.5 (1.00)

2 788 1100 1̂ 28.4 41 6.9 904 984 8.1 ^ 57 (1.39) 6.8 (0.99)
4 395 534 26.0 84 6.0 431 498 13.5 97 (1.15) 5.7 (0.95)
5 251 454 44.7 92 5.7 279 336 17.0 131 (1.42) 5.2 (0.91)

struct 8 194 312 37.8 128 5.1 229 248 7.7 138 (1.08) 5.0 (0.98)

16
32

92
46

148 37.8 165 4.2 114 122 6.6 195 (1.18) 4.6 (1.10)
74 37.8 237 3.9 56 64 12.5 268 (1.13) 3.8 (0.97)

2 765 842 9.1 92 33.1 765 842 9.1 92 (1.00) 31.5 (0.95)
(0.95)4 341 484 29.5 155 25.6 368 445 17.3 158 (1.02) 24.3

6 244 362 32.6 169 24.0 252 312 19.2 191 (1.13) 23.0 (0.96)
g 195 237 17.7 189 21.9 195 237 17.7 189 (1.00) 20.6 (0.94)

VCSLwO
16
32

98 115 14.8 241 17.0 98 115 14.8 241 (1.00) 16.9 (0.99)

49 54 9.3 294 15.0 49 54 9.3 294 (1.00) 13.3 (0.89)

2 827 925 10.6 67 49.5 827 925 10.6 67 (1.00) 47.5 (0.96)
4 342 542 36.9 85 46.7 438 438 0.0 93 (1.09) 45.8 (0.98)

6 290 295 1.7 92 45.3 290 295 1.7 92 (1.00) 44.2 (0.98)

ti^st06 g 171 270 36.7 106 45.8 206 246 16.3 122 (1.15) 44.0 (0.96)

16 108
54

113 4.4 154 39.7 108 113 4.4 154 (1.00) 3S.I (0,96)·

32 55 1.8 225 34.5 54 55 1.8 2‘2 5 ■fl.OO) 'M.O (0.901

QMD-BHP
% B .r

0.00
46.78
5S.63
58.39

0.00
0.00
0.00

67.63
0.00
0.00
0.00
0.00
0.00
0.00
0.00

45.90
0.00
0.00
0.00

79.38
53.35

0.00
0.00
0.00
0.00
0.00

16.19
0.00

17.19
0.00
0.00

15.79
17.81
0.00
0.00
0.00

95.93
79.93
44.01

0.00
0.00
0.00
0.00

40.30
55.56
44.24

0.00
25.00

6.00
0.00
0.00

83.59
66.59

0.00
7] .34
4^.31
62.06
79.74
82.67
66.96
0.00

41.43
41.00

0.00
0.00
0.00
0.00

100.00
0.00

55.65
0.00
0 00

CHAPTER 5. EXPERIMENTS AND RESULTS 42

Table 5.4. Outsize averages and standard deviations (a) for test circuits.
SI-Ll

avg-
SI-L3

avg.
SA

avg.
QMD-BHP

avg.

balu

35.8
172.3
203.4
224.3
260.9
280.3

8.2
9.2
9.2
9.9
7.6
5.8

36.3 (1.01)
133.3 (0.77)
163.4 (0.80)
171.9 (0.77)
183.4 (0.70)
195.5 (0.70)

9.0
18.1
9.2
5.6
3.9
5.1

33.2 (0.93)
76.2 (0.44)

125.6 (0.62)
146.2 (0.65)
166.2 (0.64)

7.8
15.3
12.3
4.2
3.2

36.4 (1.02)
69.2 (0.40)
88.7 (0.44)

102.7 (0.46)
133.6 (0.51)
160.0 (0.57)

3.8
4.7
2.0
3.1
1.4
0.0

cl355

37.1
98.4

114.5
123.0
138.9
161.6

7.2
6.7
4.3
4.9
5.9
8.4

34.3 (0.92)
78.4 (0.80)
92.0 (0.80)

100.3 (0.82)
115.2 (0.83)
128.3 (0.79)

8.2
6.0
6.1
6.4
5.1
5.0

34.6 (0.93)
68.4 (0.70)
77.6 (0.68)
80.4 (0.65)
90.0 (0.65)

7.5
2.9
4.2
2.6
2.3

29.0 (0.78)
46.5 (0.47)
53.0 (0.46)
55.0 (0.45)
59.0 (0.42)
77.0 (0.48)

0.0
0.5
0.0
0.0
0.0
0.0

c2670

48.4
132.2
163.6
179.9
224.5
258.4

9.6
9.4

11.8
11.7
10.4
9.6

55.2 (1.14)
117.8 (0.89)
131.9 (0.81)
139.9 (0.78)
160.7 (0.72)
185.6 (0.72)

11.7
8.3
7.9
8.2
8.7
8.0

44.8 (0.93)
77.4 (0.59)
85.8 (0.52)
85.8 (0.48)
99.6 (0.44)

5.3
2.4
3.9
1.2
4.9

30.7 (0.63)
46.2 (0.35)
57.1 (0.35)
63.4 (0.35)
84.2 (0.38)

112.0 (0.43)

5.1
0.6
1.6
1.2
1.9
1.8

c3540

83.9
245.8
290.5
311.7
364.9
409.6

16.2
11.4
9.8

11.9
11.2
10.3

86.2 (1.03)
203.8 (0.83)
243.7 (0.84)
262.9 (0.84)
295.5 (0.81)
319.1 (0.78)

17.7
21.2
14.3
12.8
9.9
7.9

77.2 (0.92)
144.8 (0.59)
183.0 (0.63)
197.4 (0.63)
230.0 (0.63)

9.7
3.7
7.3
7.6
2.8

99.3 (1.18)
133.3 (0.54)
155.6 (0.54)
166.5 (0.53)
196.6 (0.54)
223.3 (0.55)

9.7
8.4
6.1
5.4
3.4
2.7

c7552

44.4
373.9
488.3
540.2
648.6
721.8

15.5
26.1
20.1
20.3
22.0
16.9

47.6 (1.07)
230.9 (0.62)
303.8 (0.62)
352.5 (0.65)
442.0 (0.68)
509.1 (0.71)

15.8
27.8
37.1
36.9
34.0
17.9

83.6 (1.88)
171.4 (0.46)
219.2 (0.45)
259.4 (0.48)
342.2 (0.53)

4.6
8.3
7.7

10.2
15.9

32.3 (0.73)
66.6 (0.18)

114.3 (0.23)
146.2 (0.27)
203.6 (0.31)
265.5 (0.37)

4.8
9.8

11.7
10.1
5.5
5.2

industry 1

58.8
423.0
518.3
569.4
660.6
735.4

27.7
28.9
19.4
17.9
17.1
15.8

69.2 (1.18)
293.7 (0.69)
378.2 (0.73)
406.2 (0.71)
485.6 (0.74)
536.2 (0.73)

29.1
39.1
39.9
32.4
21.4
18.1

71.2 (1.21)
184.8 (0.44)
263.4 (0.51)
293.2 (0.51)
392.4 (0.59)

16.8
19.8
25.3
10.7
13.5

36.5 (0.62)
111.1 (0.26)
153.3 (0.30)
176.3 (0.31)
259.9 (0.39)
332.5 (0.45)

7.9
12.1
15.0
9.6
7.5
3.5

primary 2

282.3
802.0
938.5

1009.5
1156.1
1257.3

40.9
29.4
25.9
23.4
18.4
14.6

259.6 (0.92)
617.9 (0.77)
716.9 (0.76)
777.4 (0.77)
891.2 (0.77)
965.2 (0.77)

43.9
38.4
39.7
35.4
27.7
22.8

226.0 (0.80)
424.2 (0.53)
508.0 (0.54)
565.8 (0.56)
714.3 (0.62)

23.2
33.0
15.8
21.3
30.6

23.3 (0.90)
65.2 (0.78)
81.8 (0.76)
90.8 (0.76)

107.8 (0.74)
122.2 (0.74)

299.5 (1.06)
401.8 (0.50)
433.9 (0.46)
455.6 (0.45)
503.6 (0.44)
578.1 (0.46)

26.4
14.9
13.0
12.8
8.6
5.2

s838

26.0
84.1

107.1
119.5
145.6
164.2

5.7
7.2
6.8
6.4
5.0
5.2

4.0
8.6
8.3
7.5
5.4
5.2

22.2 (0.85)
46.8 (0.56)
61.0 (0.57)
68.4 (0.57)
88.6 (0.61)

6.5
2.3
1.7
3.1
3.4

30.6 (1.18)
47.2 (0.56)

53.9 (0.50)
57.9 (0.48)
68.7 (0.47)

107.2 (0.65)

3.9
2.5
2.2
2.4
1.0
1.3

44.5
94.1

119.2
138.1
176.5
200.3

10.4
8.3
5.1
6.5
7.6
6.9

25.2 (0.57)
63.8 (0.68)
76.0 (0.64)
83.0 (0.60)
92.9 (0.53)
96.3 (0.48)

0.8
7.0
5.6
5.7
3.3
1.7

29.8 (0.67)
68.8 (0.73)
83.0 (0.70)
92.6 (0.67)
94.6 (0.54)

2.4
3.6
6.0
2.5
0.5

25.0 (0.56)
25.0 (0.27)
25.0 (0.21)
31.0 (0.22)
31.0 (0.18)
86.0 (0.43)

0.0
0.0
0.0
0.0
0.0
0.0

struct

56.0
290.3
365.0
436.7
625.2
839.0

8.9
16.7
22.6
31.4
38.3
34.4

55.2
284.9
344.8
371.1
409.0
453.1

(0.99)
(0.98)
(0.94)
(0.85)
(0.65)
(0.54)

12.8
23.2
19.1
17.4
16.9
25.9

67.2 (1.20)
130.0 (0.45)
160.6 (0.44)
180.0 (0.41)
259.4 (0.41)

17.0
12.2
9.6

11.2
10.1

43.4 (0.78)
94.7 (0.33)

120.0 (0.33)
140.5 (0.32)
195.7 (0.31)
270.1 (0.32)

9.0
8.7
7.1
6.7
4.6
4.4

test03

112.6
333.9
397.0
434.8
511.1
567.4

22.6
20.4
17.9
14.3
13.9
13.2

115.5
288.3
339.0
365.2
410.1
441.3

(1.03)
(0.86)
(0.85)
(0.84)
(0.80)
(0.78)

24.4
27.2
21.0
19.3
12.6
9.0

89.8 (0.80)
157.4 (0.47)
226.8 (0.57)
250.8 (0.58)
321.4 (0.63)

6.8
9.8
7.5

10.6
14.4

83.8 (0.74)
160.9 (0.48)

177.8 (0.45)
203.4 (0.47)
242.7 (0.47)
302.8 (0.53)

11.8
14.9
13.8
9.7
4.6
4.7

test06

2
4
6
8

16
32

90.4
296.5
362.1
400.3
459.5
498.3

12.1
22.7
19.0
16.5
11.5
9.3

82.0
244.8
289.2
314.8
350.0
378.5

(0.91)
(0.83)
(0.80)
(0.79)
(0.76)
(0.76)

13.1
22.3
18.9
15.3
10.9
11.6

81.8 (0.90)
151.2 (0.51)

173 (0.48)
191.8 (0.48)
248.8 (0.54)

4.1
11.1
14.5
12.4
14.9

68.6 (0.76)
92.8 (0.31)
95.5 (0.26)

123.5 (0.31)
154.1 (0.34)
229.0 (0.46)

2.7
4.6
5.2
4.2
7.0
6.4

CHAPTER 5. EXPERIMENTS AND RESULTS 43

of parts. The numbers in the parenthesis, are again ratio of the minimum
(maximum) cut of the respective algorithm to the minimum (maximum) cut
found by the SN-Ll. Out of 72 test cases QMD-BHP found best minimum in 61
circuit. It fails to find best minimum mostly in bipartitioning problem. Again
out 72 test cases QMD-BHP found best maximum in 64 test cases.

Another quality measurement is Stability Ratio of an algorithm which can
be found by computing the ratio of standard deviation to the average cutsize.
These results are listed in the Table 5.7, each entries in this table corresponds
the stability ratio of the algorithm, i.e.

r, I I·, n ,· Standard deviation Stability nano = --------- -------------------- .
Average

Bold numbers indicate the best values in each row and k is the number of parts.

The average execution times of the algorithms in seconds are listed in the
Table 5.8. k is the number of parts and each value in the parenthesis gives the
ratio of the average execution time of the respective algorithm to the execu­
tion time of SN-Ll. Execution times include reading circuit, constructing the
random initial partitioning (permuting the cell, and net number in QMD-BHP),
and outputting the results as well as the algorithm itself. For these test cases
SA runs approximately 1017 times slower than SN-Ll for k = 2,4,6,8,16 (note
that A: = 32 case is not included. This number will be considerably higher if
we able to add k = 32 case) and proposed algorithm QMD-BHP runs 3.63 times
slower than SN-Ll. The interesting thing in this table, proposed algorithm’s
run-time decline as the k, number of parts, become large. Best example of
this case is circuit primary2. The run-time of the 4-way partitioning is less
than the half of the run-time of 2-way partitioning. However, the run-time of
the other algorithms increases as the k increases. In our implementation of SN
algorithm, the running time of the algorithm increases in O(k^) (Numbers in
the table does not increase exactly with k̂ because runtime includes reading
input, generating random initial partitioning, etc.).

Table 5.9 summarizes all of the previous tables for different k values. For
each k value, QMD-BHP is superior in the average cutsize. It shows 52.3% im­
provement over the SN-Ll. However, SA has onl}· 35.5% improvement over the
SN-Ll. For jfc = 2 SN algorithm produces better results than SA algorithm.
Cutsize quality of the SA and QMD-BHP is better when number of parts is bigger
than 2.

For minimum cutsizes, QMD-BHP is again winner in general. However, for

CHAPTER 5. EXPERIMENTS AND RESULTS 44

Table 5.5. Minimum cutsizes for benchmark circuits. (Bold values are the best

name k SI-Ll SI-L3 SA QMD-BHP
2 27 27 (1.00) 27 (1.00) 30 (1.11)
4 147 90 (0.61) 54 (0.37) 59 (0.40)
6 184 123 (0.67) 106 (0.58) 85 (0.46)

bгdu 8 203 157 (0.77) 140 (0.69) 92 (0.45)
16 234 171 (0.73) 160 (0.68) 130 (0.56)
32 266 183 (0.691 160 (0.60)

2 21 19 (0.90) 22 (1.05) 29 (1.38)
4 80 65 (0.81) 64 (0.80) 46 (0.58)
6 102 79 (0.77) 73 (0.72) 53 (0.52)

C1355 8 113 83 (0.73) 78 (0.69) 55 (0.49)
16 128 104 (0.81) 86 (0.67) 59 (0.46)
32 145 118 (0.81) 77 (0.53)

2 25 23 (0.92) 39 (1.56) 24 (0.96)
4 110 92 (0.84) 73 (0.66) 43 (0.39)
6 137 115 (0.84) 80 (0.58) 55 (0.40)

c2670 8 154 121 (0.79) 84 (0.55) 59 (0.38)
16 199 139 (0.70) 92 (0.46) 82 (0.41)
32 233 167 (0.72) 109 (0.47)

2 58 60 (1.03) 69 (1.19) 73 (1.26)
4 217 128 (0.59) 141 (0.65) 110 (0.51)
6 268 201 (0.75) 176 (0.66) 141 (0.53)

c3540 8 288 234 (0.81) 184 (0.64) 156 (0.54)
16 342 268 (0.78) 225 (0.66) 190 (0.56)
32 384 300 (0.78) 216 (0.56)

2 21 21 (1.00) 76 (3.62) 23 (1.10)
4 301 185 (0.61) 159 (0.53) 49 (0.16)
6 435 214 (0.49) 208 (0.48) 91 (0.21)

c7552 8 485 262 (0.54) 243 (0.50) 120 (0.25)
16 586 353 (0.60) 326 (0.56) 192 (0.33)
32 683 455 (0.67) 250 (0.37)

2 20 19 (0.95) 48 (2.40) 30 (1.50)
4 343 181 (0.53) 153 (0.45) 99 (0.29)
6 467 256 (0.55) 219 (0.47) 115 (0.25)

industryl 8 516 318 (0.62) 278 (0.54) 161 (0.31)
16 624 430 (0.69) 375 (0.60) 243 (0.39)
32 700 492 (0.70) 324 (0.46)

2 183 176 (0.96) 182 (0.99) 244 (1.33)
4 709 526 (0.74) 388 (0.55) 364 (0.51)
6 869 621 (0.71) 487 (0.56) 406 (0.47)

prim£try2 8 962 693 (0.72) 535 (0.56) 423 (0.44)
16 1104 816 (0.74) 681 (0.62) 483 (0.44)
32 1217 910 (0.75) 563 (0.46)

2 17 16 (0.94) 16 (0.94) 23 (1.35)
4 66 43 (0.65) 43 (0.65) 42 (0.64)
6 90 60 (0.67) 58 (0.64) 50 (0.56)

s838 8 100 71 (0.71) 64 (0.64) 54 (0.54)
16 133 97 (0.73) 85 (0.64) 66 (0.50)
32 150 109 (0.73) 104 (0.69)

2 25 25 (1.00) 25 (1.00) 25 (1.00)
4 74 43 (0.58) 64 (0.86) 25 (0.34)
6 104 61 (0.59) 73 (0.70) 25 (0.24)

sioo 8 118 67 (0.57) 88 (0.75) 31 (0.26)
16 162 78 (0.48) 94 (0.58) 31 (0.19)
32 179 93 (0.52) 86 (0.48)

2 42 33 (0.79) 36 (0.86) 34 (0.81)
4 251 234 (0.93) 121 (0.48) 76 (0.30)
6 266 300 (1.13) 145 (0.55) 99 (0.37)

struct 8 362 328 (0.91) 163 (0.45) 121 (0.33)
16 556 363 (0.65) 245 (0.44) 180 (0.32)
32 753 395 (0.52) 261 (0.35)

2 62 68 (1.10) 83 (1.34) 60 (0.97)
4 287 208 (0.72) 142 (0.49) 126 (0.44)
6 337 283 (0.84) 212 (0.63) 153 (0.45)

test03 8 382 303 (0.79) 239 (0.63) 182 (0.48)
16 475 367 (0.77) 307 (0.65) 232 (0.49)
32 541 415 (0.77) 292 (0.54)

2 66 63 (0.95) 75 (1.14) 67 (1.02)
4 236 177 (0.75) 137 (0.58) 86 (0.36)
6 314 221 (0.70) 153 (0.49) ,89 (0.28)

test06 8 365 282 (0.77) 170 (0.47) 117 (0.32)
16 431 321 (0.74) 231 (0.54) 141 (0.33)
32 47*1 1 352 (0.74) 218 (0.46)

CHAPTER 5. EXPERIMENTS AND RESULTS 45

Table 5.6. Maximum cutsizes for
values in each row.)

benchmark circuits. (Bold values are the best

name k SI-Ll SI-L3 SA QMD-BHP
2 61 61 (1.00) 45 (0.74) 45 (0.74)
4 200 168 (0.84) 96 (0.48) 82 (0.41)
6 228 179 (0.79) 144 (0.63) 04 (0.41)

balu 8 248 18S (0.75 1 151 (0.61) 112 (0.45)
16 282 192 (0.68 1 169 (0.60) 136 (0.48)
32 292 209 (0.72) 160 (0.55)

2 55 53 (0.96) 42 (0.76) 29 (0.53)
4 113 96 (0.85 1 71 (0.63) 47 (0.42)
6 126 111 (0.881 85 (0.67) 53 (0.42)

C1355 8 134 115 (0.86) 84 (0.63) 55 (0.41)
16 166 128 (0.77) 92 (0.55) 59 (0.36)
32 183 140 (0.771 77 (0.42)

2 69 84 (1.22) 54 (0.78) 41 (0.59)
4 158 137 (0.871 80 (0.51) 47 (0.30)
6 204 154 (0.75) 92 (0.45) 65 (0.32)

c2670 8 206 163 (0.791 87 (0.42) 69 (0.33)
16 252 180 (0.711 105 (0.42) 90 (0.36)
32 281 205 (0.73) 118 (0.42)
2 141 133 (0.94) 96 (0.68) 123 (0.87)
4 269 242 (0.90) 151 (0.56) 152 (0.57)
6 313 272 (0.87) 197 (0.63) 167 (0.53)

c3540 8 345 292 (0.85) 206 (0.60) 180 (0.52)
16 395 320 (0.81) 233 (0.59) 206 (0.52)
32 432 339 (0.78) 231 (0.53)

2 106 89 (0.84) 90 (0.85) 42 (0.40)
4 435 304 (0.70) 182 (0.42) 97 (0.22)
6 550 397 (0.72) 229 (0.42) 139 (0.25)

c7552 8 585 426 (0.73) 273 (0.47) 166 (0.28)
16 724 505 (0.70) 366 (0.51) 217 (0.30)
32 757 543 (0.72) 277 (0.37)

2 166 139 (0.84) 98 (0.59) 77 (0.46)
4 471 377 (0.80) 210 (0.45) 169 (0.36)
6 562 447 (0.80) 296 (0.53) 191 (0.34)

industry 1 8 612 491 (0.80) 309 (0.50) 211 (0.34)
16 725 536 (0.74) 416 (0.57) 288 (0.40)
32 788 567 (0.72) 341 (0.43)

2 406 369 (0.91) 249 (0.61) 352 (0.87)
4 867 700 (0.81) 468 (0.54) 434 (0.50)
6 1009 797 (0.79) 523 (0.52) 467 (0.46)

primary2 8 1061 856 (0.81) 596 (0.56) 487 (0.46)
16 1211 948 (0.78) 741 (0.61) 524 (0.43)
32 1292 1009 (0.78) 589 (0.46)

2 50 38 (0.76) 31 (0.62) 40 (0.80)
4 101 86 (0.85) 50 (0.50) 53 (0.52)
6 122 101 (0.83) 63 (0.52) 58 (0.48)

s838 8 133 107 (0.80) 73 (0.55) 63 (0.47)
16 160 124 (0.78) 94 (0.59) 72 (0.45)
32 176 135 (0.77) 110 (0.63)
2 67 28 (0.42) 31 (0.46) 25 (0.37)
4 111 80 (0.72) 73 (0.66) 25 (0.23)
6 132 92 (0.70) 88 (0.67) 25 (0.19)

sioo 8 155 93 (0.60) 95 (0.61) 31 (0.20)
16 196 99 (0.51) 95 (0.48) 31 (0.16)
32 214 102 (0.48) 86 (0.40)

2 86 94 (1.09) 87 (1.01) 91 (1.06)
4 331 330 (1.00) 154 (0.47) 117 (0.35)
6 424 388 (0.92) 172 (0.41) 148 (0.35)

struct 8 525 404 (0.77) 191 (0.36) 169 (0.32)
16 713 446 (0.63) 271 (0.38) 207 (0.29)
32 928 508 (0.55) 282 (0.30)

2 169 189 (1.12) 102 (0.60) 131 (0.78)
4 384 349 (0.91) 168 (0.44) 195 (0.51)
6 443 385 (0.87) 232 (0.52) 208 (0.47)

tcst03 8 466 404 (0.87) 270 (0.58) 226 (0.48)
16 539 441 (0.82) 343 (0.64) 255 (0.47)
32 598 464 (0.78) 313 (0.52)

2 124 137 (1.10) 87 (0.70) 73 (0.59)
4 341 299 (0.88) 170 (0.50) 103 (0.30)
6 409 326 (0.80) 187 (0.46) 116 (0.28)

test06 8 450 357 (0.79) 205 (0.46) 1 138 (0.31)
16 487 381 (0.78) 27.5 (0.56) i 175 (0..36)
32 521 433 (0.83) - - 1 246 (0.47)

CHAPTER 5. EXPERIMENTS AND RESULTS 46

Table 5.7. Stability Ratios (ratio of standard deviation to outsize) for bench-

name k SI-Ll SI-L3 SA QMD-BHP
2 0.229 0.248 0.235 0.104
4 0.053 0.136 0.201 0.068
6 0.045 0.056 0.098 0.023

bгdu 8 0.044 0.033 0.029 0.030
16 0.029 0.021 0.019 0.010
32 0.021 0.026 - 0.000

2 0.194 0.239 0.217 0.000
4 0.068 0.077 0.042 0.011
6 0.038 0.066 0.054 0.000

C1355 8 0.040 0.064 0.032 0.000
16 0.042 0.044 0.026 0.000
32 0.052 0.039 - 0.000

2 0.198 0.212 0.118 0.166
4 0.071 0.070 0.031 0.013
6 0.072 0.060 0.045 0.028

c2670 8 0.065 0.059 0.014 0.019
16 0.046 0.054 0.049 0.023
32 0.037 0.043 - 0.016

2 0.193 0.205 0.126 0.098
4 0.046 0.104 0.026 0.063
6 0.034 0.059 0.040 0.039

c3540 8 0.038 0.049 0.039 0.032
16 0.031 0.034 0.012 0.017
32 0.025 0.025 - 0.012

2 0.349 0.332 0.055 0.149
4 0.070 0.120 0.048 0.147
6 0.041 0.122 0.035 0.102

c7552 8 0.038 0.105 0.039 0.069
16 0.034 0.077 0.046 0.027
32 0.023 0.035 - 0.020

2 0.471 0.421 0.236 0.216
4 0.068 0.133 0.107 0.109
6 0.037 0.105 0.096 0.098

¡ndustryl 8 0.031 0.080 0.036 0.054
16 0.026 0.044 0.034 0.029
32 0.021 0.034 - 0.011

2 0.145 0.169 0.103 0.088
4 0.037 0.062 0.078 0.037
6 0.028 0.055 0.031 0.030

primeiry2 8 0.023 0.046 0.038 0.028
16 0.016 0.031 0.043 0.017
32 0.012 0.024 - 0.009

2 0.219 0.172 0.293 0.127
4 0.086 0.132 0.049 0.053
6 0.063 0.101 0.028 0.041

s838 8 0.054 0.083 0.045 0.041
16 0.034 0.050 0.038 0.015
32 0.032 0.043 - 0.012

2 0.234 0.032 0.081 0.000
4 0.088 0.110 0.052 0.000
6 0.043 0.074 0.072 0.000

sioo 8 0.047 0.069 0.027 0.000
16 0.043 0.036 0.005 0.000
32 0.034 0.018 - 0.000

2 0.159 0.232 0.253 0.207
4 0.058 0.081 0.094 0.092
6 0.062 0.055 0.060 0.059

struct 8 0.072 0.047 0.062 0.048
16 0.061 0.041 0.039 0.024
32 0.041 0.057 - 0.016

2 0.201 0.211 0.076 0.141
4 0.061 0.094 0.062 0.093
6 0.045 0.062 0.033 0.078

test03 8 0.033 0.053 0.042 0.048
16 0.027 0.031 0.045 0.019
32 0.023 0.020 - 0.016

2 0.134 0.160 0.050 0.039
4 0.077 0.091 0.073 0.050
6 0.052 0.065 0.084 0.054

test06 8 0.041 0.049 0.065 0.034
16 0.025 0.031 0.060 0.045
32 0.019 0.031 1 - 0.028

CHAPTER 5. EXPERIMENTS AND RESULTS 47

Table 5.8. Execution times for benchmark circuits (in seconds). (Bold values
are the best values in each row.)

name k SI-Ll SI-L3 SA QMD-BHP
2 0.63 0.80 (1.27) 61.22 (97.17) 5.28 (8.38)
4 0.86 1.51 (1.76) 587.58 (683.23) 4.83 (5.62)
6 1.47 2.52 (1.71) 1200.98 (816.99) 4.48 (3.05)

balu 8 1.62 3.66 (2.26) 1584.56 (978.12) 4.35 (2.69)
16 3.75 12.19 (3.25) 4579.68 (1221.25) 3.34 (0.89)
32 9.77 51.06 (5.23) 3.06 (0.31)

2 0.49 0.60 (1.22) 161.12 (328.82) 0.60 (1.22)
4 0.63 0.93 (1.48) 565.60 (897.78) 0.52 (0.83)
6 0.86 1.57 (1.83) 1058.70 (1231.05) 0.50 (0.58)

cl355 8 1.15 2.38 (2.07) 1395.08 (1213.11) 0.50 (0.43)
16 3.50 7.72 (2.21) 3016.04 (861.73) 0.48 (0.14)
32 9.59 26.69 (2.78) 0.48 (0.05)

2 0.74 0.80 (1.08) 240.12 (324.49) 1.40 (1.89)
4 0.90 1.15 (1.28) 1046.72 (1163.02) 1.30 (1.44)
6 1.49 2.14 (1.44) 1873.30 (1257.25) 1.26 (0.85)

c2670 8 2.14 3.66 (1.71) 3049.84 (1425.16) 1.26 (0.59)
16 5.91 11.43 (1.93) 6135.12 (1038.09) 1.15 (0.19)
32 16.33 43.76 (2.68) 1.13 (0.07)

2 1.13 1.14 (1.01) 584.76 (517.49) 6.66 (5.89)
4 1.53 2.23 (1.46) 1507.28 (985.15) 4.69 (3.07)
6 1.95 3.46 (1.77) 2491.46 (1277.67) 3.73 (1.91)

c3540 8 2.85 5.42 (1.90) 3497.48 (1227.19) 3.23 (1.13)
16 7.11 15.81 (2.22) 8413.82 (1183.38) 2.43 (0.34)
32 21.41 61.91 (2.89) 2.08 (0.10)

2 3.11 3.36 (1.08) 565.02 (181.68) 8.68 (2.79)
4 5.10 5.39 (1.06) 3742.70 (733.86) 8.22 (1.61)
6 7.02 9.33 (1.33) 10692.46(1523.14) 7.68 (1.09)

c7552 8 9.20 13.09 (1.42) 17971.80 (1953.46) 7.14 (0.78)
16 22.75 42.18 (1.85) 46001.22 (2022.03) 6.32 (0.28)
32 59.51 145.53 (2.45) 5.61 (0.09)

2 3.30 3.48 (1.05) 526.50 (159.55) 38.39 (11.63)
4 4.59 6.14 (1.34) 4932.18 (1074.55) 32.89 (7.17)
6 6.35 9.83 (1.55) 11504.72 (1811.77) 31.38 (4.94)

industry 1 8 8.51 15.43 (1.81) 19825.56 (2329.68) 30.39 (3.57)
16 22.62 44.39 (1.96) 55720.86 (2463.34) 26.58 (1.18)
32 58.28 180.58 (3.10) 25.18 (0.43)

2 5.68 5.52 (0.97) 913.96 (160.91) 234.88 (41.35)
4 7.66 9.40 (1.23) 3565.84 (465.51) 105.54 (13.78)
6 9.86 14.34 (1.45) 18406.74 (1866.81) 70.79 (7.18)

primciry2 8 13.76 21.91 (1.59) 37304.18(2711.06) 56.47 (4.10)
16 34.36 64.89 (1.89) 99078.47 (2883.54) 37.10 (1.08)
32 76.68 233.49 (3.04) 27.11 (0.35)

2 0.37 0.41 (1.11) 87.58 (236.70) 0.63 (1.70)
4 0.57 0.80 (1.40) 352.32 (618.11) 0.55 (0.96)
6 0.78 1.33 (1.71) 604.66 (775.21) 0.54 (0.69)

s838 8 1.03 2.07 (2.01) 830.38 (806.19) 0.50 (0.49)
16 2.71 6.73 (2.48) 1949.48 (719.37) 0.49 (0.18)
32 8.01 25.57 (3.19) 0.51 (0.06)
2 0.43 0.43 (1.00) 42.70 (99.30) 2.59 (6.02)
4 0.68 0.74 (1.09) 487.22 (716.50) 2.56 (3.76)
6 0.94 1.10 (1.17) 806.24 (857.70) 2.56 (2.72)

sioo 8 1.30 1.59 (1.22) 1113.86 (856.82) 2.59 (1.99)
16 3.54 4.85 (1.37) 2470.66 (697.93) 2.63 (0.74)
32 10.26 19.57 (1.91) 1.53 (0.15)

2 1.88 2.33 (1.24) 155.28 (82.60) 7.02 (3.73)
4 2.70 3.15 (1.17) 415.06 (153.73) 5.95 (2.20)
6 4.38 5.36 (1.22) 697.88 (159.33) 5.53 (1.26)

struct 8 5.41 7.46 (1.38) 950.30 (175.66) 5.31 (0.98)
16 16.19 24.25 (1.50) 2108.76 (130.25) 4.43 (0.27)
32 64.36 90.38 (1.40) 4.02 (0.06)

2 2.28 2.40 (1.05) 864.48 (379.16) 36.39 (15.96)
4 3.38 4.09 (1.21) 2947.66 (872.09) 26.23 (7.76)
6 4.50 6.09 (1.35) 6693.38 (1487.42) 21.72 (4.83)

test03 8 7.16 9.87 (1.38) 11201.86(1564.51) 18.70 (2.61)
16 16.56 30.17 (1.82) 21761.30(1314.09) 15.89 (0.96)
32 45.91 108.67 (2.37) 13.25 (0.29)

2 2.36 2.45 (1.04) 145.24 (61.54) 47.70 (20.21)
4 3.19 3.74 (1.17) 3237.82 (1014.99) 44.20 (13.86)
6 4.16 5.66 (1.36) 8134.66 (1955.45) 44.30 (10.65)

test06 8 5.73 8.26 (1.44) 13701.64 (2391.21) 42.77 (7.46)
16 12.99 23.51 (1.81) 23867.50 (1837.37) 37.56 (2.89)
32 35.56 91.20 (2.56) 32.15 (0.90)

CHAPTER 5. EXPERIMENTS AND RESULTS 48

bipartitioning problem SN-L3 founds the best results. QMD-BHP results for bi­
partitioning problem are 14.8% worse than SN-Ll. In general, SN-L3 produces
24.7% more favorable results than SN-Ll and QMD-BHP has 45.6% better results
than SN-Ll.

Timing results of the algorithms are normalized according to the SN-Ll, for
different k values. For example, SN-L3 runs 1.09 times slower than SN-Ll for
k = 2 and 2.80 times slower for k = 32. QMD-BHP is 10.07 times slower than
SN-Ll for A: = 2 but only 0.24 times faster for the k = 32. Run-time reduction
of the QMD-BHP can be easily seen from this table. Run-time of SA increases
from 219.12 times to 11364.36 times when k increases from 2 to 16. Fastest
program for k = 2,4,6,8 is SN-Ll. However, for k = 16,32 QMD-BHP is the
fastest algorithm. It is expected that for much bigger k values QMD-BHP will be
always fastest algorithm because of its nature.

Table 5.10 summarizes percentage improvement of the QMD-BHP algorithm
with respect to compared algorithms for the each k value. QMD-BHP over­
performs the all compared algorithms for each value of k. However, improve­
ment percentage is higher for k > 2. QMD-BHP performs 16.31% better than
SN-Ll for bipartitioning but 52.47% better for 32-way partitioning. Again
QMD-BHP results 10.3% better cutsize than SA for A: = 2 and 30.4% for 16-way
partition.

CHAPTER 5. EXPERIMENTS AND RESULTS 49

Table 5.9. Average (Avg) results for performances of algorithms. Averages
were taken over all our test instances. is the number of parts. Bold values
are the best values in each row.)

k SN-Ll 1 SN-L3 SA QMD-BHP
A v g Im provem ents (%) in A vg Cutsizes wrt SN-Ll

2 0.00 2.87 -0.22 16 .31
4 0.00 20.86 46.23 6 1 .2 0
6 0.00 21.95 44.14 6 2 .2 6
8 0.00 23.53 44.31 6 1 .4 1
16 0.00 27.25 43.10 6 0 .3 0
32 0.00 29.22 - 5 2 .4 7
A v g Im provem ents (%) in M inim um C utsizes wrt SN-Ll
2 0.00 3 .76 -42.37 -14.87
4 0.00 30.21 41.03 5 9 .0 0
6 0.00 27.40 41.27 6 0 .5 2
8 0.00 27.23 40.94 6 0 .0 2
16 0.00 ' 29.69 40.90 5 8 .6 2
32 0.00 30.02 - 5 0 .2 1

A v g R atio (%) o f Standard D eviation to A v g C utsizes
2 22.72 21.93 15.35 1 1 .1 4
4 6.52 10.09 7.20 6 .1 2
6 4.67 7.35 5.64 4 .6 0
8 4.38 6.11 3.90 3 .3 7
16 3.46 4.12 3.48 1.88
32 2.84 3.28 - 1 .16

A vg R atio o f A v g R unning T im es to t lose o f S I -L l
2 1.00 1.09 219.12 10.07
4 1.00 1.30 781.54 5.17
6 1.00 1.49 1251.65 3.31
8 1.00 1.68 1469.35 2.24
16 1.00 2.03 1364.36 0 .7 6
32 1.00 2.80 - 0 .2 4

Table 5.10. Average percentage improvements of the proposed QMD-BHP al­
gorithm with respect to SN and SA algorithms for different number of parts.

k SN-Ll SN-L3 SA
2 16.3 11.9 10.3
4 61.2 51.2 26.8
6 62.3 51.9 32.2
8 61.4 49.9 30.4
16 60.3 46.1 30.4
32 52.5 32.3

Chapter 6

Conclusion

In this work, we have proposed a new coarse-grained constructive multiple-way
hypergraph partitioning algorithm. We have transformed the mincut problem
to maximal internal net problem, by dualizing the input hypergraph to graph.
Hence, instead of minimizing the external nets in the hypergraph, we try to
maximize internal net by selecting appropriate nets in the dual graph. The se­
lection scheme based on the well-known ordering heuristic from direct solution
of sparse linear systems.

Efficient implementation of the proposed algorithm have been done using
the quotient graphs. Hence, the space complexity of the basic minimum degree
algorithm is unknown till the end of the algorithm, we have used the quotient
graph which has known space complexity. In fact, using this model the net
selection can be done in-place.

An interesting property of the proposed algorithm is the fact that it is a
¿-way partitioning algorithm. However, its run-time is not proportional with
the k where it is the case in most of the previous algorithms. For example,
in the direct ¿-way partitioning Kernighan-Lin algorithm, each pass contains
¿ · log ¿ as multiplier. Hence, the running time increcises as the number of parts
¿ increases. Proposed algorithm shows the significant reduction in run-time
when ¿ increases.

Two versions of the proposed algorithm have been implemented; QMD-HP
and QMD-BHP. QMD-HP produces good partitioning in terms of the cutsize, how­
ever in some cases it may produce unbalanced partitions. We have added
balancing post process based on the a number partitioning heuristic in the

50

CHAPTER 6. CONCLUSION 51

second version QMD-BHP. The imbalance ratio between the parts can be given
as a parameter to this process.

The performance of the proposed algorithm QMD-BHP is evaluated in com­
parison with two well-known heuristics; Simulated Annealing (SA) and San-
chis’s Method (SN) for 12 benchmark circuits. Since the number of levels in
the Sanchis’s Method is a parameter, we have run the algorithm with two
different parameters; 1 and 3. Level 1 can be considered direct multiple-way
Fiduccia-Mattheyses algorithm. Level 3 is chosen since it is an appropriate
value for our test cases, hence in all test circuits average net degree is about 3.

Test results show that proposed algorithm over-performs the compared al­
gorithms. On the average, the cutsize results of QMD-BHP is 26.0% better than
the SA algorithm, and it is 52.3% better than the SN-Ll algorithm. For bigger
k values, the quality of the cutsize found by QMD-BHP is much better than the
bipartitioning cutsizes, i.e. the results of 2-way partitioning problems are only
10.3% better than SA, however in 16-way partitioning results are 30.4% better
than SA.

Timing results show that the slowest algorithm is SA. For the k value varying
from 2 to 16, it is approximately 1017 times slower than SN-Ll. For these test
circuits, QMD-BHP is approximately 3.63 times slower than SN-Ll. However, it
should be noticed that, running time of QMD-BHP reduces when the number of
part k increases. It is 10.7 times slower than SN-Ll for 2-way partitioning,
but it is 0.24 times faster when the k = 32. Our algorithm is a bottom-up
constructive algorithm, and due to nature of the algorithm it terminates early
for large k values, therefore, this is not a surprising result.

For the future work, algorithm can be modified to reduce its run-time by
changing the calculation of the valence value, i.e., instead of recalculating the
valance value of the each node in the reach set of the selected node, an update
mechanism can be found. Incomplete degree update mechanism and unelimi­
nated supernode concept can also be adopted to speed-up the algorithm. Pro­
posed algorithm can also be used in the placement problem in VLSI, and in
the mapping problem for parallel programming.

Bibliography

[1] T. N. Bui, C. Heigham, C. Jones, and F. T. Leighton. Improving the per­
formance of the Kernighan-Lin and simulated annealing graph bisection
algorithms. In Proceedings of the 26th ACM/IEEE Design Automation
Conference^ pages 775-778, 1989.

[2] C.-K. Cheng and Y.-C. Wei. An improved two-way partitioning algorithm
with stable performance. IEEE Transactions on Computer-Aided Design ̂
10(12):1502-1511, December 1991.

[3] J. Cong and M’L. Smith. A parallel bottom-up clustering algorithm with
applications to circuit partitioning in vlsi design. In Proceedings of the
30th ACM/IEEE Design Automation Conference, pages 755-760, 1993.

[4] C.M. Fiduccia and R.M. Mattheyses. A linear-time heuristic for improv­
ing network partitions. In Proceedings of the 19th ACM/IEEE Design
Automation Conference, pages 175-181, 1982.

[5] M. R. Carey and D. S. Johnson. Computers and Intractability. W.H.
Freeman and Co., New York, New York, 1979.

[6] J. A. George and J. W. H. Liu. Computer solution of large sparse positive
definite systems. Prentice-Hall, 1981.

[7] S. W. Pladley, B. L. Mark, and A. Vanelli. An efficient eigenvector ap­
proach for finding netlist partitions. IEEE Transactions on Computer-
Aided Design, ll(7):885-892, July 1992.

[8] L. Hagen and A. B. Kahng. New spectral methods for ratio cut parti­
tioning and clustering. IEEE Transactions on Computer-Aided Design,
11(9):1074-1085, Sep 1992.

52

BIBLIOGRAPHY 53

[9] D. S. Johnson, C. R. Aragon, L. A. McGeoch, and C. Schevon. Optimiza­
tion by simulated annealing: An experimental evaluation; part I, graph
partitioning. Operations Research ̂ 37(6):865-892, Nov 1989.

[10] D. S. Johnson, C. R. Aragon, L. A. McGeoch, and C. Schevon. Optimiza­
tion by simulated annealing: An experimental evaluation; part II, graph
coloring and number partitioning. Operations Research, 39(3):378-406,
May 1991.

[11] A. B. Kahng. Fast hypergraph partition. In Proc. 26th Design Automation
Conference, pages 762-766, 1989.

[12] Y. Kamidoi, S. Wakabayashi, J. Miyao, and N. Yoshida. A fast heuristic
algorithm for hypergraph bisection. Technical report. Faculty of Engi­
neering, Hiroshima University, 1991.

[13] B.W. Kernighan and S. Lin. An efficient heuristic procedure for partition­
ing graphs. Technical Report 2, The Bell System Technical Journal, Feb
1970.

[14] R. M. King and P. Banerjee. Esp : Placement by simulated evolu­
tion. IEEE Transactions on Computer-Aided Design, 8(3):245-256, March
1989.

[15] S. Kirkpatrick, C. D. Gelatt Jr., and M. P. Vecchi. Optimization by
simulated annealing. Science, 220(4598):671-680, May 1983.

[16] S. Kirkpatrick, C. D. Gelatt Jr., and M. P. Vecchi. Optimization by
simulated annealing. Science, 220(4598):671-680, May 1983.

[17] B. Krishnamurthy. An improved min-cut algorithm for partitioning VLSI
networks. IEEE Transactions on Computers, 33(5):438-446, May 1984.

[18] J. W. H. Liu. A graph partitioning algorithm by node seperator. ACM
Transactions on Mathematical Software, 15(3).T98-219, Sep 1989.

[19] J. W. H. Liu. The role of elimination trees in sparse factorization. SIAM
J. Matrix Anal. App., 11(1):134-172, Jan 1990.

H. M. Markowitz. The elimination form of the inverse and its application
to linear programming. Management Sci., 3:255-269, 1957.

BIBLIOGRAPHY 54

[21] D. J. Rose. Graph Theory and Computing, chapter A graph-theoretic
study of the numerical solution of sparse positive definite systems of linear
equations, pages 183-217. Academic Press, 1972.

[22] L. A. Sanchis. Multiple-way network partitioning. IEEE Transactions on
Computers, 38(1):62-81, Jan 1989.

[23] D. G. Schweikert and B. W. Kernighan. A proper model for the parti­
tioning of electrical circuits. In Proceedings of the 9th ACM/IEEE Design
Automation Conference, pages 57-62, 1972.

[24] H. Shin and C. Kim. A simple yet effective technique for partitioning.
IEEE Transactions on VLSI Systems, l(3):380-386, Sep 1993.

[25] W. F. Tinney and J. W. Walker. Direct solution of sparse network equa­
tions by optimally ordered triangular factorization. In Pi'oc. IEEE, vol­
ume 55, pages 1801-1809, 1967.

[26] Y.-C. Wei and C.-K. Cheng. Ratio cut partitioning for hierarchical de­
signs. IEEE Transactions on Computer-Aided Design, 10(7):911-921, July
1991.

[27] M. Yannakis. Computing the minimum fill-in is np-complete. SIAM J.
Algebraic Discrete Methods, 2:77-79, 1981.

