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ABSTRACT

LOT STREAMING IN FLOW SHOPS

Engin Topaloğlu 
M.S. in Industrial Engineering 

Supervisor: Assoc. Prof. Ömer S. Benli 
December, 1994

Lot strea,ming \s permitting partial transfer of processed portions of a job to down­
stream machines, thus allowing ovelapping operations. The primary motivation is to 

improve the measures of performance by the quick movement of work in the shop. 

In this thesis, we study various forms of the lot streaming problem in flow shops 
to derive the characteristics of optimal solutions. We first analyze single job lot 

streaming problems, then extend the results to multi-job problems.

When there is a single job, the lot streaming problem is to find the best transfer 
batch sizes that optimizes the given criterion. We consider three different measures 

of performance, job, sublot and item completion time criteria. We derive a closed 
form solution for a special case of job completion time criterion. Under sublot 

completion time criterion, when the first machine has the largest processing time, 

we show that partial transfers of equal size are optimal. We propose two polynomial 
time algorithms for the problem in which only two transfer batches are permitted 

between each consecutive machines for sublot and item completion time criteria.

In multi-job lot streaming problems, the sequencing and lot streaming decisions 

must be considered simultaneously. For multi-job problems we investigate the hier­

archical application of lot streaming and sequencing decisions.

Key words: Scheduling, Lot Streaming, Flow Shop
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ÖZET

AKIŞ TIPI ü r e t i m d e  k a f il e  a k t a r m a  
YÖNTEMLERİ

Engin Topaloğiu
Endüstri Mühendisliği Bölümü Yüksek Lisans 

Tez Yöneticisi: Doç. Dr. Ömer S. Benli 
Aralık, 1994

Kafile aktarması, bir işin tamamlanmış bölümlerinin daha sonraki makinalara 
gönderilerek, işlemlerin çakıştırılmasma olanak sağlamaktır. Bu süreçin ana 
amacı, taşıma kafileleri kullanarak işin atelye içinde hızlı akışını temin etmektir. 
Bu çalışmada çeşitli tek ve çok işli kafile aktarma problemlerinin optimal çözüm 
yordamları incelenmiştir.

Tek işli problemler için üç kısıt incelenmiştir: iş, kafile ve parça bitiş za­
manlarının enazlanması. Iş bitiş zamanının enazlanması amaç fonksiyonu için, 
özel bir durumda optimal kafile büyüklüklerini veren bir çözüm verilmiştir.

Birinci makinenin en büyük işleme zamanına sahip olduğu durumlarda, 
eşit büyüklükteki kafilelerin kafile bitiş zamanı amaç fonksiyonunu enazladığı 
gösterilmiştir Kafile ve parça bitiş zamanlarının enazlanması amaç fonksiy­
onlarında, yalnız iki kafile kullanımının öngörüldüğü durumlar için polinom 
zamanlı iki algoritma verilmektedir.

Çok işli problemlerde sıralama ve kafile büyüklüğü kararlarının aynı anda 
verilmesi gereklidir. Kafile aktarma ve sıralama kararlarının ard arda ver­
ilebileceğinin öngörüldüğü ikiden çok makinalı bir problem tipi içinde Johnson 
Kuralına benzer bir algoritma önerilmiştir.

Anahtar sözcükler: Çizelgeleme, Kafile Aktarma, .Akıcı Atelye
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Chapter 1

Introduction

The operations scheduling, as one of the basic areas of production and in­
ventory management, has attracted the attention of many researchers, since 
the pioneering paper of Johnson [15] on the two machine flow shop schedul­
ing problem. Since then the operations research literature witnessed the rapid 
development of scheduling research. Now the operations research literature is 
satiated with innumerable papers, but the publications describing the practical 
applications of scheduling research results remained relatively scarce. This is 
of course counter-intuitive to the spirit of operations research. This fact is the 
result of lack of the instances that the restrictions and the assumptions of the 

scheduling research results hold. As pointed out by Dudek et al. [12] for the 
flow shop scheduling research,

“We have never been approached by anyone claiming to have a need for 
solving a problem having the characteristics assumed by most flow shop re­

searchers. ”

They, then question the existence of the problem, along with flexibility 
and effectiveness of the algorithms on hand under relaxed situations. In fact, 
contrary to the definitions of the flow shop in the classical scheduling theory, 

the flow shops may actually require conditions that are entirely apart from the 

ones presupposed by the scheduling researchers.

1



CHAPTER 1. INTRODUCTION

In classical scheduling theory the jobs are assumed to be indivisible single 
monolithic entities. The fact that a job might be of many identical elements is 
disregarded, or it is implicitly assumed that partial transfer of completed parts 
in between the stages of the shop is not possible. However, this is rarely the 
case. In general, the scheduling problems that arise in the batch production 
systems, the entities called jobs contain more than a single item.

Basically, the lot streaming is permitting partial transfer of completed por­
tions of the job to the downstream machines to allow overlapping operations. 
The essence of the idea is the use of transfer batches in between the stages of 
the workshop to increase bottleneck utilization by the quick movement of work 
over the workshop. Lot streaming can be seen as splitting where each split 
part is considered as a different job. However, preemption, which is a mean to 
adjust the priorities of the jobs, is different from lot streaming. In preemption, 
the penalty associated with preempting a job is the additional setup incurred 
when the processing of the preempted job is restarted. Whereas no setup is 
required before the processing of a lot, since the previous lot contains identical 
items.

Although the Manufacturing Resource Planning (MRPII) systems, espe­
cially in the batch production environments, disregard the lot streaming issue, 
the lot streaming concept is likely to be practiced in real settings, since in the 
existence of capacity problems, it is quite unreasonable to wait for the entire lot 
to finish its processing in the current stage, while the downstream machines are 
idle. In our context, lot is a predetermined medium range production quantity, 
such as weekly MRP order releases, whereas sublots or the so called transfer 
batches are the production quantities determined at operational level.

The development of the lot streaming research is in parallel with the rising 
awareness of the importance of lead time reduction techniques. In Just In 
Time (JIT) philosophy this is attained through the concepts of lot size of one, 
zero set-up time. The advantage of using large batches in production is totally 
eliminated when there is no setup. Therefore the use of small lots cut the 
manufacturing lead times, and hence increase the effectiveness [7]. In group
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technology, the same goal is attained through reduced setups, work in process 
inventory and more efficient specialized material handling equipments.

Importance of overlapping operations is also stressed in Optimized Produc­
tion Technology (OPT) [17, 33], also referred to as Synchronous Manufacturing 
[30]. One of the eight principles of the OPT approach emphasizes the use of 
transfer batches different from the process batches. From the setup cost point 
of view large process batches are more attractive, but this does not impose any 
restriction on the transfer batch size. While avoiding the heavy setup costs by 
using large batches, the inventory carrying cost can be leveled by the use of 
small transfer batches. The use of transfer batches increases the utilization of 
the bottleneck machines, which in turn implies the reduction in the flow time

[7].

Until recently, there have been relatively little work on lot streaming. The 
first known research emphasizing the importance of overlapping operations is 
due to Szendrovitz [25]. He presents a model to find the economic production 
quantity in a multi-stage production environment. He assumes that a fixed 
lot size is manufactured through a fixed sequence of manufacturing operations 
with a single setup before each operation. He allows the transportation of 
sub-batches to have an overlap between the operations so as to reduce the 
manufacturing cycle time. Each batch is of an individual unit. He pays no 
special attention to the optimization of any scheduling criteria, other than 
pointing out the substantial reduction in manufacturing cycle time. Goyal 
[14] studies the Szendrovits’s model. He tries to find the best sublot size that 
minimizes the setup plus costs inventory holding costs. Hence, Goyal is after 
an optimal lot streaming strategy.

Moily [19] calls lot streaming as the component lot-splitting, in which the 

lot size of a component item covers only a fraction of its parent items lot size 
in multi-stage manufacturing environment. He considers the number of sublots 
as a decision variable and optimizes the total inventory holding cost plus the 
order costs with respect to number of sublots and the order size of end item.
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1.1 The Problem  D efinition

A scheduling problem can be defined as the problem of allocating available 
times of resources to a number of tasks optimally. The resources are renew­
able, in the sense that, they cannot be depleted or are capable of being replaced 
immediately during the planning period. The resources are usually production 
related such as machines, material handling equipments but can be other en­
tities such as trucks, teachers, doctors. The definition of task may refer to 
components, classes, truck loads basically any of activities that require alloca­
tion of some renewable resource for a certain period of time. We use the terms 
machines L· jobs referring to resources and tasks, respectively.

In the classical scheduling problem, we basically consider m machines to be 
scheduled to process n jobs. We denote machines with index i, i = I , . . .  ,rn 
and jobs with index j, j  = I , . .. ,n. We assume that a machine can process 
at most one job at a time, and a job can be processed on only one machine at 

a time.

As defined by Conway et al. [11] an operation is an elementary task to be 
performed. Each (i ,j)  pair may correspond to a number of operations. But, 
here we assume that each pair denotes just a single operation and hence an 
operation is uniquely determined by index There might be some partial
or full precedence relationships among the operations of a job. The ordered set 
of relations belonging to a job is called routing. The processing time, which is 
denoted by Pij, is the amount of time needed to perform the operation {i,j)·

We assume that each job consists of Uj identical units to be processed on all 
machines. The processing time of a single unit of job j  on machine i is denoted 
by Pij, where pij = PijfUj. For each job and for each stage the number of 
transfer batches (sublots), s,j, are given. We assume that 1 < s,j < Uj for 
some (i , j)  otherwise the lot streaming aspect of the problem will be trivial. 
The transfer batches of job j  between the machines i and i -f 1 are denoted 

by Liji, L,j2, · · ·, Lijs,j, i = I , . . . ,  m, j  = A schedule is a set of all
pairs, (5',jfc,C,jjt), indicating start and end times of the operation of a sublot
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(z, k). The objective is to find the sequence of jobs and the sizes of transfer
batches so as to minimize the given criterion. A feasible schedule is a schedule 
that allows no overlaps among the pairs {Sijk, C'.jJt) of machine i, and satisfies 
possibly, some other restrictions imposed by the shop and job characteristics. 
Furthermore we make following assumptions.

• The machines are available continuously in the scheduling horizon, that 
is, the machines are free of breakdowns, and they need no maintenance.

• The machines of the shop are distinct, therefore an operation can be 
performed by only one machine.

• All the jobs are available at time zero.

• The shop is deterministic, that is all the processing times are known with 
certainty.

• The transportation times between the machines are negligible.

We mainly consider two optimization criteria, mean 6ow time and makespan. 
The flow' time is the time elapsed between the arrival and the completion time 
of a job. We might also be interested in the flow times of sublots. Since we 
assume that all the jobs are available at time zero, the flow time of a job is 
equal to its completion time. As there are more than one job and more than 
one sublot, the weighted sum of flow times is used as an aggregate measure.

The makespan is defined as the time required to complete the processing 
requirements of all jobs in the shop, or basically, the maximum flow time of a job 

or sublot. Minimization of makespan is appropriate if all the Uj units belong to 
a single customer order. In classical scheduling theory the makespan criterion 
is known to be one of the simplest criteria, in the sense that, it leads to easier 
problem formulations . But, it is equally important since an improvement in 
the makespan, although not necessarily, may imply the improvement in other 

performance measures.



We consider the lot streaming problems in Bow shop. The flow shop is the 
simplest multi-stage shop environment. In flow shop the routing of the jobs 
are unidirectional, that is, each job must visit the machines in a single given 
order. Although it is the most restrictive and the easiest one, polynomial-time 
optimization algorithms are not available for the problems containing more 
than two machines, other than implicit enumeration of feasible alternatives. 
Under the makespan criterion two machine flow shop problem is solvable in 
polynomial time. But the problems beyond two machines is shown to be AfV— 
complete [23]. For the mean flow time criterion, however, even two machine 
problem is not within the boundary of the efficiently solvable problems [23].

When we analyze the problem, we use the following additional notation.

• n  denotes the sequence of jobs or sublots.

• n (j)  denotes the j  th job in the sequence II.

• F{L) represents the objective function of the lot streaming problem as a 
function of the transfer batch sizes L = [T m ,. . . ,  Lmnsmr,]·

CHAPTER 1. INTRODUCTION 6

1.2 A ssum ptions

Devising exact solution schemes to the scheduling and streaming problems with 
all the attributes defined above is extremely difficult, if not impossible. The 
pure multi-machine scheduling problems can be solved efficiently, up to just 
two machines. Therefore, by taking into account the additional complexity 
introduced by including the lot streaming problem, we impose some restrictive 
assumptions on the problems, to be able investigate some well solvable cases.

1.2.1 Continuous vs. D iscrete Sublots

In general, a lot streaming problem may arise in any setting where a number 
of tasks or activities are required to be performed on a number of entities
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sequentially. But clearly the largest domain, or the potential customer of the 
streaming problems is the discrete parts manufacturing industry, where all the 
sublots contain discrete number of units. But we assume that the job to be 
split into lots is continuous, i.e. infinitely divisible. Therefore, the sublot sizes 
might be any real value. This is not a very restrictive assumption if the number 
of units in the job, Uj, is reasonably large.

We have three main reasons for attacking the continuous sublot version. 
First, under integral sublots requirement, the formulation of lot streaming 
problem usually results in integer programming models, hence the discrete 
sublots problem is expected to be harder. Second, we can obtain reasonably 
good integral solutions by rounding the continuous sublot solution, especially 
when the number of items within a job is large. Finally, we may increase our 
understanding of lot streaming problem with integral sublots, by investigating 
the characterization of the continuous sublot solutions. These characteristics 
can later be used to devise heuristics to the discrete sublots problem.

1.2.2 B atch  vs. Item  A vailab ility

While considering the lot streaming problem, one must pay attention to the 
two cases arising from the assumptions of the shop. An item is said to be 
batch available if that item cannot be transferred to the downstream machines 
or to the other sublots, before all other items contained in the same sublot is 
completed on the current machine. The batch availability assumption is appli­
cable for the machines where the items are produced in batches and it is not 
possible or practical to remove the item from the batch, until the whole batch 
completes its processing. The heat treatment and batch painting operations 

are of this kind. Since the batch availability assumption is a restriction, it may 
result in sub-optimal solutions, as it will be shown in the next section.

If an item is item available, it can be removed from its transfer batch as 
soon as it completes its processing on the current machine. But, this does not 
mean that each item is transferred to the next machine as soon as it becomes
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available. There is still a limit on the number of transfer batches, to 
transfer the items from the machine i to machine ?’ + 1. The item availability 
assumption is suitable for the cases where an item is dependent to the items 
in its batch only when the transfers take place.

Under batch availability assumption the completion time of an item on 
machine i is equal to the completion time time of last item in the sublot it 
belongs. Whereas under item availability assumption the completion time of 
an item on the current machine is the time it completes its processing on that 
machine.

Obviously, the batch and item availability cases may appear together in 
practice, but for the sake of simplicity we consider the problems where the 
items are all batch available or all item available in every stage. Also we 
restrict our attention primarily to the batch availability case, because of its 
simplicity which results linear type of constraints in the mathematical model.

1.2.3 C onsistent vs. Variable Sublots

Under consistency assumption, the number of items in a sublot remains fixed 
across the machines. Hence, Lijk = Ljk indicating the machine independent 
sublot sizes. The consistency assumption is realistic in the settings where 
frequent changes in the sublot sizes are very costly or, it is difficult to track 

the movement and contents of the sublots in the shop. Under this assumption 
the items are by definition batch available.

In variable sublots assumption the size of the transfer batches is allowed to 
change in between the stages of the shop. Allowing variability in the sublot sizes 
may improve the objective function value. There might also be settings where 
the variability of sublots arises naturally. For example, consider the shop where 
the material handling equipment availability is different between the pairs of 
consecutive machines, so that we are allowed to use more transfer batches in 
between some stages of the shop. Clearly, this will necessarily result in variable



CHAPTER 1. INTRODUCTION

sublots, since it is hardly justifiable not to use existing handling equipment, if 
the shop is operating around its full capacity. Under consistency assumption, 
Sij — Sj, the number of sublots allowed in between each consecutive stage must 
be the same for the job j .

To make the discussion more transparent, consider the following example 

which is a modified version of one given in [21]. A single job oi U = 90 identical 
units is to be processed on four machines with processing times pi = 6, p2 = 
6, рз = 90, p4 — 18. Only two transfer batches are permitted in between 
the consecutive machines. If streaming is not allowed the makespan, the time 
complete the whole batch is the number of items times the sum of processing 
times, m

Стах = Uj2Pij  = 90 X 120 = 10,800
t = l

If we allow two consistent transfer batches, the makespan reduces to 9,270, 
since some of the operations can be overlapped (Figure 1.1). If we also allow 
variable sublots under batch availability assumption, we are able to decrease 
the makespan further to 9,180. Notice that on the second machine, the first 
sublot waits the completion of the second sublot. The reason is that, the first 
sublot to be send to the next machine, contains items from the second sublot 
coming from the previous machine. Since the items are batch available, in 
order to remove one item from the second batch, it is necessary to wait the 
completion of the entire sublot.

Finally, in the most relaxed case where the sublots are variable under item 
availability assumption, we can obtain an optimal makespan of length 8,490.
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Figure 1.1: Suboptimality of consistent sublots in a 4-machine shop
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1.3 O utline o f the Thesis

The main purpose of this thesis is to analyze the various lot streaming problems 
to derive the basic solution characteristics and identify the well solvable cases.

The outline of the thesis is as follows. In Chapter 2 we discuss single job 
lot streaming problems. We give results pertaining to three measures of the 
performance: sublot, item, and job completion time criteria. In section 2.2 job 
completion time criterion is discussed. We derive an exact solution scheme for 
a special case of m-machine s-sublot problem.

For sublot completion time criterion, we show that when the first machine 
has the largest processing time, the equal sublots are optimal, in Section 2.3.2. 
In Section 2.3.3, we give two 0{w?) algorithms for the two sublot problem along 
with an experimental study for the comparison of the algorithms. An example 
is presented in Section 2.3.4 to show that the consistent sublot solutions are 
suboptimal even for two machines.

In Section 2.4 we extend the results of sublot completion time criterion 
to item completion time criterion. We show’ that the two sublot problem is 
solvable in 0(m^) time. The basic results pertaining to two machine problem 

is also reviewed.

Chapter 3 is devoted to multi-job lot streaming problems. In section 3.2 we 
give alternative derivation of Vickson’s result [31] on two machine lot stream­
ing problem. We present a three machine example in Section 3.3 in which 
the second machine is dominated, to show that the lot streaming problem is 
not independent of the sequencing problem. We also discuss the hierarchical 

application of streaming and sequencing decisions. For a special case of this 
problem, we show that the sequencing problem can be solved by the Johnson’s 

algorithm [15].

The conclusion and suggestions for further research is presented in the last 

chapter.



Chapter 2

Single Job Lot Streaming 
Problems

As discussed in Potts and van Wassenhove [22], three different criteria can be 
considered depending upon when and how the items are withdrawn from the 
last machine. When an item cannot be withdrawn from the last machine until 
the entire job is completed, the criterion is referred to as the job completion 
time. This criterion treats whole U units as a single job, and equivalent to the 
makespan criterion of classical scheduling theory.

If an item can leave the last machine only when the sublot to which the 
item belongs completes processing, the completion time of the item is assumed 
to be the completion time of the last item in its sublot. This criterion is called 
the minimization of sublot completion time and represents a limited delivery 
capacity from the last machine.

Finally, an item can be delivered as soon as it finishes processing on the last 

machine. This criterion is called the item completion time. In effect, infinite 
number of transfer batches (sublots) are assumed for the last machine.

The next section defines the general problem, presents the formulation of 
the general lot streaming problem. The results pertaining to job completion

12
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time are presented in Section 2.2. In Section 2.3, optimal results are derived 
for the criterion of minimizing the sublot completion time. Extensions to the 
item completion time model are given in Section 2.4.

2.1 Problem

In this study, our treatment of lot streaming problem will be limited to the 
problems under consistency and infinite divisibility assumptions. But first we 
give the general formulation of the single job problem.

The lot streaming problem is investigated under consistency, batch avail­
ability and continuity assumptions by Baker [4], Potts L· Baker [21], Trietsch 
&; Baker [29], but the general case was not addressed. A general formulation of 
this problem was first given by Benli [6] in the form of mixed integer program. 
The formulation is able to handle the m-machine .s-sublot problem under vari­
able sublots and item availability assumptions. He also models a more realistic 
case where the number of transfer batches between the machines can vary. Us­
ing this formulation, Benli draws some of the well known results, e.g. geometric 
sublots, characterization of no wait sublots problem etc., by incorporating the 
restrictions imposed by consistency and other assumptions.

He formulates the lot streaming problem as a multi-stage periodic review 
model in which the period lengths are allowed to vary. He refers to the output 
of stage i as item i. Thus, a unit of item (i — 1), f = 1 ,. . . ,  m is required in 
stage i to process a unit of item i, where the item 0 is the raw material and item 
m  is the end product. The periods are defined by the time points at which a 
transfer occurs between the consecutive machines. Therefore, if s, transfers are 
permitted between the stages i and f -|-1, the formulation contains h = -s.
time points where the transfers between the consecutive machines are allowed. 
If these points are represented by Tj, t = I , . . .  ,h. each period of the problem 
is the intervals [Tt-i,Tt\. Following variables are used in the formulation.
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Xi^t '■ Number of items produced at stage i in the period Tt\.

Lî t '■ Number of items transferred from stage i to stage i + 1 in the 
period [Tt-uTt],

lî t ■ Input inventory of item i available at time point Tt to produce 
item ¿ + 1.

Oi,t · Number of items waiting to be transferred to the next machine 
at time Tt (the output inventory).

1 if a transfer occurs between the stages i and e + 1 in period t. 
0 otherwise

In stage i, the production cannot start before time point T,, since raw 
material (item 0) cannot be processed to be used in production of the item 
i before f — 1 transfers take place. With a similar reasoning no item can be 
produced after time period T(, t > h — m + i since the output cannot be 
transferred to the last stage using the remaining transfers.

The general formulation of the lot streaming problem is given in the next 
page. The first two constraint sets maintain the input and output material 
balance, respectively. The third constraint set specifies the production capacity 
of the periods. The fourth constraint limits the number of transfers in between 
the stages i and 2’ + 1. The fifth constraint set specifies the allowable transfers. 
The sixth and seventh constraint sets force entire job to be processed. The 
formulation contains rn(5/i — 5rn — 2) + h + I variables m{h — m + 1) of 
which are binary variables. There are 4h — 3m + 1 constraints excluding the 
nonnegativity requirements.
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min E{L) 
subject to

Ii,t-i + ^1-1,i-i — lit — Nit — 0 f = 1,. . . ,  m t = i , . . . , h — m + i
Oij-i  + A,( — Ou — Lu = 0 1 = 1,. . . ,  m t = i,. . . , h — m +1
PiXu -  {Tt -  Tt-t) < 0 1 = 1,. t = i,. ..,/1 — m + i

y;, < s,. 1 = 1,. . . , /71
Lu - Y ü < 0 1 = 1,. . . , ;/i t = i , . ., . ,h — m + i
EÎ*=m ^rnt = 1
■£'0,0 = 1
To ~  Ii,i—l — Ii,h—m+i ■ 0 1 =  1,... . ,  m

f-̂ 1,1 —1 — Oi^h—m+i — 0 1 = 1,... . , /71

Tt, Xu, lit, Ou, Lit ^  0 i = 1,.,, . , /71 t = i , . . . ,h — m + i
(2.1)

The objective function is, 

Th
F{L) =

for the job completion time criterion, 
for the sublot completion time.

Ŷ t=m for the item completion time criterion

E h —m T , rp 
t=m  ^

In job completion time minimization, the completion time of the last sublot 
on the last machine is minimized. In sublot completion time criterion the 
weighted sum of the completion times of sublots is minimized. The weights 
are basically the sizes of the sublots. If the criterion is the item completion 
time, the average completion time of each sublot is weighed by the number of 
items in the sublot. The formulations specific to the cases under consistency 
assumption and fixed number of sublots are given in the related sections.
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2.2 Job C om pletion Tim e Criterion

In this section, the optimization criterion is the minimization of completion 
time of the last item in the shop or the so called minimization of makespan. Un­
der consistency and infinite divisibility assumptions, the following formulation 
of single job iïr-machine flow shop lot streaming problem given independently 
by Trietsch [28] and Baker [4],

min F{L) 
subject to

- c

E L i L, = U 
Cu — Pi Li > 0
C,k -  C a-1 -  Pi Lk > 0, 1 = 1,... .,m , k = 2,... . , s
Cik -  C.-i,k -  Pi Lk > 0, i = l , . . ,. ,m, k = 2,.. . . , s

C,k > 0, ,., m, k = 2,.. . . , s
Lk > 0, k = \ , . . , . , s

where Cik denotes the completion time of sublot k on machine i, Lk denotes 
the size of sublot fc, and U denotes the number of items in the given job. The 
objective function value denoted by F{L), is the function of the sublot sizes. 
Without loss of generality, we let t/ = 1 .

The first constraint forces the whole job to be processed. The second and 
third constraint sets prevent the operations of two consecutive sublots to over­
lap on a machine. The fourth constraint prevents the overlaps between the 
operations of a sublot on different machines. In the objective function, the 
completion time of the last sublot is minimized. Since all the variables are 
continuous and the objective function and the constraints are linear, this prob­
lem is solvable in polynomial time.

2.2.1 G eneral R esu lts

Single job m machine lot streaming problem under consistency assumption 
is closely related with ordered flow shops in which both machines and jobs
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are ordered. Given any instance of sublot sizes La,-, A: = 1. . .  s, the resulting 
problem is an ordered flow shop problem. This result follows from two facts. 
First, for every sublot the order of machines from the largest processing time to 
the smallest processing time is the same. Second, for each machine the ordering 
of sublots from the ones requiring the greatest processing time to the ones 
requiring the smallest processing time are the same. Therefore the following 
results cited by Smith et al. [24] highlight some important characteristics of 
lot streaming problem.

• If the first machine has the greatest processing time then the best con­
sistent sublot sizes are in non-increasing order {Lk > Eyt+i).

• If the last machine has the greatest processing time then the best consis­

tent sublot sizes are in non-decreasing order {Lk < Lk+i)·

• If the machine with the greatest processing time happens to be one of the 
middle machines, then the sublot sizes are in pyramidal order, that is, a 
subset of the sublots are arranged in increasing order of sizes, followed 
by the remaining sublots in decreasing order.

The proofs of the arguments are straightforward, based on the contradiction 
using pairwise interchange argument, as shown in Smith et al. [24].

Trietsch & Baker [29] present an extensive survey of the basic results of lot 

streaming under job completion time criterion.

2.2.2 T w o-Sublot Problem

A comprehensive treatment of two-sublot problem under makespan criterion is 

given by Baker к  Руке [5], where an 0{rn?) algorithm is developed, by utilizing 
the bottleneck machine and the critical path concepts. In addition, several 
heuristics are devised to attack m-machine s consistent sublot problem. They 
also show that in the optimal solution there are two bottleneck machines. For
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the same problem, Williams and Tüfekçi [34] presents an algorithm with 0{m^) 
complexity, and several heuristics, using the network optimization techniques.

2.2.3 Two-M achine Problem

Trietsch [28] and Baker [4] show that for the 2-machine problem the optimal 
consistent sublots are in geometric pattern (Figure 2.1),

s-l

/=0
( 2 .2 )

Sublot I 

Sublot 2 

Sublot 3 

Sublot 4

Figure 2.1: 2-machine flow shop with geometric sublots

where Lk is the fraction of sublot (C/ = 1), s is the maximum number of 
transfer batches permitted and tt is the ratio of the processing time of second 
machine to the first (tt = P2/P 1 )·

Trietsch [28] studies two machine problem under limited material handling 
availability. The notion of variable sublot is introduced explicitly by Potts 
L· Baker [21]. For the 2-machine flow shop problem, they show that solving 
consistent sublot problem yields the optimal solution. They provide a counter 
example for 4-machine flow shop showing sub-optimality of consistent sublot 
solutions. They also derive several performance bounds identifying the sub­
optimality of equal sublot solutions with respect to consistent sublot optimal
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solutions.

2.2.4 Three-M achine Problem

The three machine problem is first studied by Baker [4]. He derives explicit 
solution scheme for 2-sublot 3-machine flow shop problem. Trietsch & Baker 
[29] provide a three machine example where the consistent sublot solution is 
suboptimal. Baker Jia [3] presents an experimental study to find the per­
formance of the equal and consistent sublots solutions with respect to variable 
sublots solution.

Glass et al. [13] study lot streaming problem in three-machine flow shop, 
job shop and open shop to find the best consistent sublot solution. For the three 
machine flow shop problem they give a complete characterization of the optimal 
solution. They first analyze the critical path structure of the problem and 
identify two different patterns depending on the processing times of machines.

P2 < PiP3

P2 > PiP3

(2.3)

(2.4)

For the case (2.3), the optimal solution has the following form

Lk =  i(Lk-i

where
Lx =

1

7T = Pi +  P2 
P2 +  P3

For the case (2.4), the sizes of the sublots depend on the crossover sublot 
/, that is, the sublot on which the critical path defining the makespan of the 
schedule jumps from the first machine to the second and third. They prove
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that in this case the optimal sublot sizes are in the form

(,) _  i i o T l < k < l
LY’ =

7T3 hi (or k < I < s
(2.5)

where

and

r- -  Pi
P2

L?^ =

7T3 =

1

P2

s - l

(2.6)

(2.7)

Furthermore, they show that the sublot completion time is a convex func­
tion of /, and therefore, the value of I can be found in O(log s) time by bi-sectiori 
search. The overall complexity of their algorithm is 0{s).

2.2.5 Special Cases o f m-M achine Problem s

The optimal sublot sizes given by the formula (2.2) are in the form of a geo­
metric series. The resulting sublot fractions has an interesting characteristic. 
All sublots are critical, that is, there is no idle time in between completion of 

sublot k and the start of sublot k + I (Figure 2.1).

The geometric sublot sizes can be shown to give optimal sublot sizes for a 
special case of m machine flow shop problem. First such result is due to Baker 
[4] for three machines two sublots problem. When pi pz ^  P21 sublot fractions 
can be computed using 2.2 and taking tt as

P2 +P37T =
Pi +P2

This result is extended to the s sublots case in Glass et al. [13]. It can be 
shown that it can be generalized further to the m-machine single job problem:

Result 2.1 Consider m machine streaming pi'oblem under consistency assump­
tion icith s transfer batches in between any consecutive stages. If
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m — 1

P i  P m  > { J 2  
1=2

then the optimal consistent sublot sizes are given as

r k - l

Lk =
7 Г "

¿-/=0

(2.S)

(2.9)

where
7Г = ЕГ=2 Р.

(2. 10)

To be able to prove the result, we need to give the proof of following two 
results. In the proof of the Result 2.2 we make use of the network represen­
tation of the streaming problems, introduced by Baker & Руке [5]. In this 
representation a node (г, к) corresponds A:’th sublot on machine i. The arcs 
emanating from the node (i,k) have length p, Lk- Assuming that Ljt’s are 
known in extent, the longest path in the network corresponds the makespan of 
the solution Lk, к = 1 ... s.

R esu lt 2.2 Eor any choice of sublot sizes, Li, I =  1 ...  s, the critical path 
defining the optimal makespan contains no more than one sublot on the machine 

i, г = 2 . . .  m — 1.

Proof: Assume that, for the particular sublot sizes Li, I = 1 .. .s, the critical 
path defining the makespan contains more than one sublot on some of middle 
machines (г, г = 2 . . .  m — 1). Let k{, г = 1 .. .  m — 1 denote the index of the 

sublot through which the critical path jumps from machine i to machine ¿+1. 
In Figure 2.2, a particular configuration for the network representation of a 
•o-machine s-sublot problem is presented. Let CP" denote the part of critical 
path from node (l,A:i) to node {m,km-i)· Then the CP" is longer than both 

CPi and CP2 .

CPi < CP"
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Figure 2.2: Network representation of the 5-machine problem

m —1 ^m-i m —1 kt
Y ^ P i+ P iY ,  L i<  piLk, + J2p i
1=2 l=ki 1=2 /=fci_i

m —1 m —1 fci

P i  +  P i  E  L i < J 2  P i  S

1=2 1=2 /=fci_i

Pi <
E5.2'P.

E km  — \ T
/=A;i+l

( 2.11)

CP2 < CP-

Tfi — 1 kjyi—i 1 771 — 1 ki
L k i  ^  P i - f  P m  X ]  L i  <  P i  L t  +  P i  Lk ^

1=1 l=ki 1=2 /=/:,_!
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m — 1 f̂ in -1 “  1 m — 1 A*,

Y^Pi +Pm Ll <  Y2 p, ^  Ll
1 = 2  l=ki i=2

ETJ2 'Pi Ll -  L ,,)
P m  < —1 r

/= 1̂
(2.12)

From (2.11) and (2.12) we obtain,

[ E K ‘ pt (Efir,_. [ E K ' p. Ll -  ¿r.,)l

^  (e L"·’· '  C  ( ^ '‘ ”<."+1 i t )

But clearly,
\  m̂ —1

E < E i-

and ki \  kfjî i 1
Ll -  LkA < ^  Ll

\l=k,-i / /=¿1

Therefore,

p . p™ < ( E p .) (2.13)

resulting in a contradiction. □

For a given sublot fractions, we call the sublot c critical if

k —\ m  s

c = argmax{i<fc<s}  ̂pi ^  L/ + F*, p, + ^  1 /
i=l 1=1 l=k+l

R esu lt 2.3 I f the processing times satisfy the inequality 2.8 then in the optimal 
solution, there cannot be a non-critical sublot.
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Proof: The proof we present here is a straightforward extension of the proof 
given by Potts L· Baker [21] for 2-machine flow shop.

Let Li, I = 1.. .s  and F{L) be the optimal solution and optimal makespan 
for the problem. Moreover assume that there is an intermittent idleness after 
sublot Lk on the first or on the last machine. Consider following solution 
obtained by perturbing the optimal solution,

4  = L k { l -6 )  + S 

L\ = L i{ l - 8 ) l ^ k

and define A as

A = F(L)
i t - 1

P iY ^ L iA  Lk P» +Pm 1C
1-1 1=1 l=Jc+l

For the perturbed solution let c be the index of critical sublot, that is

(2.14)
c - 1

^ (^ ')  = Pi C  ^! + C  p«·+ Pm C
1=1 t=l i=c' + l

If c < A:, we have

c - 1

F(L') = p i ( l - i ) C ^ /  + ^ c ' ( l - ^ ) C P m + P m ( l - < 5 )  E  (2-15)
‘= 1  l = c ' -1-1

If c > k, then

c - 1

F(L ') = p i ( l - S ) Y ^ L ,  + L p ( l - S ) J ^ p ^ + P m ( l - S )  E  ¿/+Pm<5 (2.16)
/=1 t= l  l=c'-l-l

From (2.15) & (2.16) we get

c -1

F(L ') < p i ( l -S )  L, + l p ( l - 8 ) X ^ P m + P m ( l - ^ )  E  L, + S max{pi,p,n}
1=1 1=1 l=c'-f-1
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F { L ')< { l-6 )F { L )  + 6 max{p,,p,,} 

But since max{pi,p,„} < E'{L)^

F{L) > F{L')

For c = from (2.14) we have,

P i  X ]  P i  +  P m  X ^

/=1 t= l  l=k
+ ^J2p i

i = l

JTl

F(L') = ( l - 6 ) ( F { L ) - A ) ) + S - £ p i
t =  l

F(L') = F{L) + s I ' £ p, - F { L )  + a ] - A
'.1=1

For the following choice of 6

6<
E" , p, -  F{L) + A

again we get,
F{L) > F{L') □

P ro o f [R esult 2 . 1 ]: It follows from the Result 2.3 that for an optimal solution 

L i, I = \ . . .  .9, we have
c - 1  m  s

+ £  t ,  i i l 7 )
/=? i=l 1 = 0 J]



CHAPTER 2. SINGLE JOB LOT STREAMING PROBLEMS 26

= Pi J 2 L i + Lc+l Pi +Pm
l=l  1=1 lzzc+2

From (2.17) L· (2.18) we get,

P\Lc “l· (Tyc-fl L q) ^   ̂Pi Pm^c-{-l — 0 
¿=1

(2.18)

m —1

Lc+i Pi = LcY2Pt
i=l 1=2

ĉ+1 _  Yli=2 Pi
i .  “ E K 'p .·

Since Li = 1, we have

Lx =

and

Lk =
Xfc-l

□

2.3 Sublot Com pletion Tim e Criterion

The sublot and item completion time criteria result in quadratic programming 
models, hence they are expected to be harder than the job completion time 
problems, which are known to be solvable in polynomial time under the con­
sistency assumption [4].

For the sublot completion time criterion, several quadratic programming 
formulations are given in Kropp L· Smunt [16]. Their study emphasize the 
experimental findings, rather than specific analytical results. The analytical 
treatment of several problems under this criterion is presented in Topaloglu et 
al. [27], Şen et al. [26] and Çetinkaya & Gupta [9]. The optimality proof of
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equal sublots solution when the first machine has the greatest processing time, 
is given in Şen et al. [26] and Çetinkaya L· Gupta [9]. Şen et al. [26] reveal 
some interesting characteristics of two machine problem, and give an 0(л) 
algorithm to find the best consistent sublots, along with an example showing 
the sub-optimality of the consistent sublot solutions in a two-stage shop. They 
also give performance bounds for the equal sublot solutions.

Çetinkaya L· Gupta [9] present an 0{rrP) algorithm for the two sublot prob­
lem under sublot completion time criterion. Their algorithm exploits the feasi­
ble machine concept proposed by Baker and Руке [5] and the results from the 
ordered flow shops of the classical scheduling theory.

In the following section we give general results for sublot completion time 
criterion. In Section 2.3.3 we derive two 0{rrP) algorithms for m-machine tw'o 
sublot problem. We present results pertaining 2-machine s-sublot problem in 

Section 2.3.4.

2.3.1 T he Problem

We consider the following formulation of lot streaming problem with mean flow 

time criterion under consistency assumption,

min F{L) =  Lk Cmk 
subject to Y^k=i Lk — U

Cn — Pi Li > 0

Cik Ci^k—l -  Pi Lk > 0, г = 1,..,., m, к = 2,. . . , s

Cik -  Ci-i,k -  Pi Lk > 0, г =  1,.. ., m, к = 2,. . . , s

Ĉ k > 0, г = 1,.. ., m, fc = 2,. . . , s

Tfc>0, к = 1,. . . , s

where Cik denotes the completion time of sublot k on machine i, Lk denotes 
the size of sublot k, and U denotes the number of items in the given job. The
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objective function value, the total flow time denoted by F{L), is the function 
of the sublot sizes. Without loss of generality, we let i/ =  1.

Since a sublot can be removed from the shop only after the whole sublot 
is completed on the last machine, in the objective function the completion 
time of sublot on the last machine is weighed with the proportion of lot in the 
corresponding sublot.

2.3.2 G eneral R esu lts

Following special case covers a considerable fraction of flow shop streaming 
problems.

R esu lt 2.4 In a single job lot streaming problem, if the following condition 
holds,

Pi = max Pi

then the sublots of equal size are optimal, i.e.,

Lk = -  k =  l , . . . , s  
s

We first need the following result showing that there exists an optimal solution 

with nondecreasing sublot sizes^.

R esu lt 2.5 I f  pi = maxi<,<m{pi} then an optimal solution exists in which.

Lk ^  Lk-\- \ , k 1 , . . . ,  s. (2.19)

Proof: Suppose the contrary, that is, there exists an optimal solution L = 

[jCi , . . . ,  Ls] such that for at least one k , Lk > Lk+i-

^The property given in equation (2.19) is proved for any choice of the processing times 
by (^etinkaya k  Gupta [9].
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Now we will give an algorithm that will construct a schedule satisfying 
Condition (2.19) and having the objective value not more than that of L. 
Let lit =  (Ili(l), rit(2),. . . ,  IT((s)) and H = (11(1), 1 1 ( 2 ) , II(s)) denote the 
sublot sequence at iteration of the algorithm and the optimal sublot se­
quence, respectively.

Ho < - 1 1

for t — 0 to  s — 1 do 
begin

r  <- argmax{i<t<,_q{Ln,(A:)}
n,+i ^  IL
for k = r to  s — t do 

Ili+i(A;) <— rii(A: -}-1 ) 
rii+i(s - t )  Ili(r) 

end

In the iteration of first “for” loop, the minimum sublot among the first 

(5 — t) sublots in the sequence !!< is removed from its place and inserted in 
(s — place to form the sequence Ili+x. The final schedule satisfies,

Lk ^  Lk+i

To show that the resulting schedule has objective value not more than the 

optimal solution, consider the following two observations.

O bservation  1 In the iteration of the algorithm, if the largest sublot among 

the first (s — t) sublots, Ili(r), is removed from the schedule, then the minimum 

decrease in the total flow time A “ is,
3

A" > PiLn,(r) Ln,(i)
l = r + l
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Proof: Let C be the minimum decrease in the completion time of the sublots 
that follow the removed sublot. Clearly,

A~ > C~ ¿n,(/)·
/=r+l

As illustrated in Figure 2.3, a lower bound on the C~ can be found as,

^  , |C '* ,n ,(r )  -  C , , n , ( r - 1 ) }  ·

As it is mentioned in Section 2 .2 .1 , the lot streaming problem turns out to be 
an ordered flow shop problem, when the sublot sizes are given. In ordered flow 
shops, when the first machine has the largest processing time, the minimum 
makespan is achieved, if the jobs are in non-increasing order of processing 
times. This result is given by Smith et al [24]. In order to prove this result, 
they consider an optimal sequence with at least one job whose processing time is 
larger than the processing time of the immediately succeeding job. They show 
that, the new sequence formed by pairwise interchange of these two jobs does 

not have longer makespan. This implies, however, that the longest makespan is 
achieved when the jobs are in nondecreasing order of processing times. Using 

this fact, we get

r- 1  i
C i , n t ( r - 1 )  < P i ' ^  ¿ n , ( / )  +  m ^ a x  { ¿ n , ( / ) }  X ] p v ·

;= i v - 2

The expression on the right is the maximum completion time that can be 
achieved on the machine by sequencing the first i — 1 sublots. The following 

is a lower bound on C,,ri((r))

r t
C,-,n,(r) >  P i  X I  ^ n , ( 0  +  L n , { r )  X  P v

l= l  v=2

Thus, we have

C > min{i<,<TO} (pi EF=i ^nt(i) + ^n,(r) E U 2 Pv
- {P i Lnt(i) +  max{i</<r-i}{Tn,(i)} · EU2P«)} >
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> {piin,(r) + {f-n,{r) -  max{i</<r_i}{Ln,(/)}) · Tjy=2Pv]

Since Lni(T) — max{i</<r}{/vn,(/)} > max{i</<r_i}{Zni(/)} we have 

C ^  rn*Î {l<i<m} {Pl ̂ ri((r)

> Pl-̂ n̂t(r)·

Ml

M2

M3

M4

Sublot I^(r)

I I Sublot n, -̂1)

Qn,n,(r-I) Qn,n,(r)

Figure 2.3: Gantt Chart of fit 

Hence, the minimum decrease in the objective function is
S

A" > Planar) ^
/=r*f 1

Observation 2 If the largest sublot among the first t sublots, Hi(r), is inserted 
(5 _  ty '’· place in the schedule (Figure 2.4), then the maximum increase in the 

total flow time A+ is,

A"̂  < PiLu,{r) Y  ¿n,(t)
/=r + l
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Proof: Let be the increase in the completion time of removed sublot, when 
it is inserted in the (s — place.

Observe that,

— Ln,(r)C'^ + PiLn,(r)
l = s - t + l

C'^ can be written as

< Ci^Ut+iis-t) — Ci,nt{r)
<  Pi  ^ n , ( 0  +  -^n,(r) J 2 ^ = 2 P v ~  { p i  E [=1 Ln, { l )  +  ¿ n , ( r )  E u= 2 P u)

<  p i  E f = r + 1  ^rit(i)

Hence, the maximum increase is

A+ <  PiLn.(r) Ef=rVi '̂ 11,(0 +  PiLn,(r) Ef=i-<+i Lu,{i)

< ;^ii'n,(r)Ef=r+i ^n,(/) O

Ml

M2

M3

M4

□ Sublot n„ | (s-t)

M L

^n,.,(s-t)

Figure 2.4: Gantt Chart of Hj+i

Therefore, in the step of proposed algorithm, the maximum overall in­

crease in the mean flow time value is

A +  -  A -  <  0
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Hence, the mean flow time of the sublot schedule constructed by the algorithm 
is not worse. Thus, in the optimal solution, Lk < Ljt+i, fc = 1 , . . .  ,s.

As shown in Figure 2.4, the completion time of the sublot k on the last 
machine is,

k —1 m

C m k  —  P i  ^  ^  -|- Lfç ^  ^  P i  .

/ = 1  t = l

With this property the following concise formulation with a convex objective 
function and fewer constraints can be obtained,

min E L i I^kCmk
st C m k  -  P i  L l  -  L k  E i ^ l  P i  = 0

E L i  L k  =  1

k = 1 ,..., s

or, equivalently.

min E L i  L·, + Lt E a ,  P.)

s t  J 2 l = l  ^

P ro o f  [Result 2.4]: The Lagrangian function of the problem is.

s k —1 m  s

C { L u ..... i „  i )  =  E  M p i  E  E p .) +  « ( E  -  1).
l = l  i = l  k = l

then.
Fir *
—-  = p iY ^ L iT  2Lr ^  Pi -  PiLr + i  = 0
oLr ,_1 j::;!

and.
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Since,
dC dC
d L r  dLr+i

— 2{Lr Lr+i) Pi — PiLr Pi Lr+\ — 0
:=1

or.

L r i^ ^ ^ P i Pi) — ■^r+l(2y^p, ~ P l ) i
t = l 1=1

Lr — Lr+i

But Yl,k=i =  1 implies that Lr = l / s  is the candidate optimal solution. 
However, to prove that it is the desired solution, we have to show that the 
objective function is convex. The Hessian matrix of the objective function is

a b b b b .. 
b a b b b .. 
b b a b b .. 
b b b a b .. 
b b b b a ..

where
a = 2 and

¿=1

b = Pi

The positive definiteness of the Hessian matrix will imply the convexity of 
the objective function. In order to prove that a matrix is positive definite, it is 
enough to show that the diagonal elements of the U matrix in LU decomposi­
tion of Hessian matrix (or, the pivot elements without row exchanges) are all 

positive.
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Consider any matrix with above structure with a > 6 > 0. After the first 
Gaussian elimination step, we get the first pivot entry as (a > 0), with updated 
matrix

a
0

0
0
0

b b b b
a-b—b̂ a-6—6̂ a-b — b̂

a a a a
a-b—b̂ a?-P a-b—b̂ a-b — b̂

a a a a
a-b-b'̂ a-6— â -b'̂ a-b-b'̂

a a a a
a-b—b̂ a-b—b̂ a-b—b̂ 0? —b̂

a a a a

Sinee
q2 _  ¿2 a - b - b ^
---------> ------------ > 0

a a

the sub-matrix starting from second row and second column has the same 
structure as the original one. Hence, its first pivot element will be positive 
and the resulting matrix will have the common structure. The proof follows 
inductively. □

2.3 .3  T w o-Sublot Problem

Clearly, more the number of sublots in the shop, better the measure of perfor­
mance is. But, the number of sublots that can be used for transfers is dictated 
by the material handling equipment availability in the shop, which is rarely 

unlimited. Analyzing the two sublot problem can be justified because of two 
reasons. First, the improvement in the objective function from the use of an 
additional sublot is expected to decrease as the number of sublots increases. 

Potts L· Baker [21] shows that for the two machine flow shop problem un­
der makespan criterion, the largest improvement is obtained when number of 

sublots is increased from one to two.
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Second, since no practical algorithm is available yet for the rn-stage s-sublot 
problem for sublot and item completion time criteria, the two sublot problem 
can be a building block in the design of heuristics to attack s-sublot problems.

The M odel

The formulation of two sublot problem problem under sublot completion time 
criterion can be given as follows;

subject to
=  [C m i L i  - f  C „ t2 L 2 ]

L i +  L 2  =  U

C n - p \ L i  >  0

C ,2 “  C n  ~  P>L2  ^ 0 f =  1 , . . .  ^rn

C n ~  C'i-1,1 — P i L \ > 0 i  — 2 , . . . ,  m

Q 2 -  C i - 1 , 2  -  P iL 2 > 0 1 =  2 , . . . ,  m

L i , L 21  C i k  ^  0

The first constraint forces the entire job to be processed in its entirely. The 
second constraint defines the completion time of the first sublot on the first 
machine. The third constraint prevents the second sublot to be processed on 

a machine, before the first sublot is completed on the same machine. The 
last two constraints prevent the overlapping of operations of a sublot being 
processed on different machines. Without loss of generality, assume that the 

given job contains a single item (U = 1).

Note that (see Figure 2.5),

and.

Cmi = Li E/=l Ph 
Cm2 = max{i < i< m

¿2 = l - i | .
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Ml

M2

M3

M4

M5

First Sublot 

Second Sublot

Cml Cm2
Figure 2.5: 5-machine shop with two consistent sublots

Thus, the objective function can be equivalently written as,

min F(Ti) = [LiEfciP/+ maxi<.<m{Ti E;=i P/+

( 1 - i i )  E T = , P i } ] ,

rearranging the terms,

min F{Li )  = [Lj pt +  maxi<,<m{Xj;-i Pi +  Pi ~  ^1 2 ^iP i)  +

L l i E T = i P t - T , U P i ) } h

or, using the fact that maximum is the smallest upper bound.

min F{Li) 

subject to

(2.20)

1(2 X E i p i) ~ i? + [E!=i Pi -  2 E E , Pi] ¿1 + 

E E i P i - C ( i i ) < 0 .
i — 1 ,... ,m.
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With these manipulations the problem reduces to a minimization problem 
containing only two variables, namely I  j which is the fraction of the first sublot, 
and F{Li). There are 7u constraints each of which is a quadratic function of a 
single variable Li.

1 L ,

Figure 2.6: Feasible region of two-sublot the problem

T he Analysis of th e  M odel

Let a,·, bi, Ci, denote the coefficients of Lj, Li and the constant term, respec­
tively, in the Constraint i of (2 .20). Since a,· > 0, f = 1 , . . . ,  m, a,Tj 6,Li -t- c.· 
is a convex function of Li. The area defined by each constraint is the epigraph 

of the convex function, which is a convex set. Since the intersection of the con­

vex sets is convex, the feasible region of the problem is convex. The objective 
function is linear, therefore the minimum will occur at the boundary of the fea­
sible region. Furthermore, there are finite number of points that are candidates 
for optimum. This finite set of candidate points comprise 2 · (^) intersection 
points of the constraints taken as equations and the minimum point of each 
individual equation, giving a total of rrF candidate points for the optimum.
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This search space can be reduced, by exploiting the following characteristics 
of the family of quadratic equations defining the feasible region.

O bservation  3 IVe first consider the intersection points of the feasible region. 
Consider two parabolas indexed as r and t. Without loss of generality, assume 
that r > t. The intersection points of these two parabolas are the roots of the 

quadratic equation
atrL\ + btrLi + Cir = 0

where

Gtr { ^ i 2 p i ) - p t
l = t  

r - 1

2  P i + P r + P t

i ‘̂ Y ,p t ) - P r
l = r

t̂r —

Ctr —

/=¿ + 1
t m  r m

(Y2 p‘ - ‘̂ Y .P i ) -  (YLpi -  2 E p/)
/ = 1  l = t  l = l  l - r

-  Y2 Pi - ‘̂ ' ^ P i
i = i + l  l - t

r - 1

P i - P r -  “̂Pt
l = t + l

m  m  r — 1

( E p / ) - ( E p O =  YL pi + pt
l = t  l =T  l = t + l

let y = E L /+1 Pi then

atr = 2y + pr+ pt

b t r  =  - 3 y  - P r  -  2 p t

Ctr =  y +  Pt

The determinant of above quadratic equation is

At r  = -  40irCtr
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= (-3?/ - p r -  2 p tf -  4 · (2y + p ,+  pt) -{y + pt) 

= y'̂  + 2ypr + pI 

= {y + Pr?

Then the roots of the equation are

f t r  _
^ 1,1 -

tr V^tr
2atr

3 y  +  P r  +  2 p j  — y  — P r  

2 { 2 y  + p r  + P i )

2y + 2pt
2{2y + pr +pt) 

y +  P t

2y + p rT  Pt 

______ î=t Pi_____
Pr + Pi + 2 Pi

Ct -  Cr

at — Or

T t r
■̂ 1,2

—btr + \/A tr
2ofr

3 p  +  P r  +  +  y  +  P r

2{2y +Pr+Pt)

4y + 2pr + 2pt 
4y + 2pr + 2pt

= 1 □

O bservation  4 The parabola i intersects F{Li) axis at J^JLiPh implying that 
parabola ¿ + 1 intersects the F{L\) axis at a lower point than the parabola i.
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O bservation  5 The minimxim point of parabola i occurs at 

L - = _  {'2Er=iPi-EUxPt)
2a.· 2{p,+2j:r=,+iPi)

r*  -  -  
1 “  -2

E i;! Pi
2 ( p . + 2 Er=.+iP/)

which implies that as i increases the minimum values of parabolas lift to the 
left on the Li-axis and all the minimal sublot fractions are less than 1/2.

O bservation  6  Since the minimum points of parabolas occur when Li < 1 / 2 , 
all the parabolas have positive derivatives in the interval L\ € ( | ,  1]· Hence the 
size of the first sublot minimizing the sublot completion time criterion cannot 
be larger than 1 / 2 .

O bservation  7 a, = (-p,· +  2E/=,P/) =  (p.· +2Efc,+iP/)  is decreasing as i 
increases. Therefore the parabola z +  1 is flatter than the parabola i.

O bservation  8  The slope of the curve i at Li = 1,

2a.· +  6.· =  4(ET=i Pi) -  ‘¿Pi + EU i PI ~  2 E ,'̂ . Pi
= 2E;=,+iP/ + EJ=iP/

= E t iP i  + ET^iPi

decreases as i increases.

Obviously, the candidate point Li = 1 , which represents the case where 
no streaming is allowed, cannot be the optimal solution. Therefore, from the 
Observation 3, we conclude that, when the intersection points of two parabolas 

are considered as candidate points for the optimality, it suffices to check just 
one of the roots, namely to the nontrivial one,

ct -  Cr 
at -  Or

This result reduces the number of candidate points resulting from the intersec­

tions of equations defined by the constraints by half.
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The Algorithms

In this section we present two algorithms both having running time O(m^). 
First algorithm searches the optimum solution by moving from one candidate 
point to the adjacent one. Second one finds the optimal solution by perform­
ing bisection search based procedure on the candidate optimal points. An 
e.xperimental comparison of the algorithms is also presented.

Algorithm I

i <— 1

C l  ^  {2 , , .  . . , ,m} 
optimal e- false 
while not optimal do 

begin
-bt
2atLx

r ^  a rg m in { i^ c L } {^ }  
if £î =£r. ^ I  then

at—CLr

Ct-Cr
at—dr

begin

C L ^ C L - { t }  
t ■(r- r
if {2arLi -1- i>r) > 0 then 

optimal true 

end
else

optimal <— true
end.
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The first constraint {aiLj + biLi +ci)  is taken as the initial parabola. Then, 
the algorithm visits the candidate optimal solutions of the feasible region. It 
checks the optimality of given solution by testing the condition

dFr{Li)
dLi — [IttrLi + br) ^  0

where Fr{Li) represents the equation form of the constraint r. If this condition 

holds, then the intersection point is the first point that the objective function 
starts to increase. When the condition is satisfied with equality, then the given 
point is the minimal point of the parabola r. Hence its feasibility implies the 
optimality.

The next candidate point is determined, by finding the greatest Li value at 
which the current parabola is feasible. Apparently, this point is the smallest 
L\ value at which the current parabola intersects with some other parabola. 
If more than one parabola intersect at the same point then the one with the 
smallest index is chosen as the search curve for the next iteration.

To prove the finite convergence of algorithm, it is enough to show that no 
candidate intersection point is visited more than once.

R esu lt 2.6 The algorithm visits a candidate optimal point at most once.

Proof: In each iteration the algorithm chooses the parabola satisfying the 

condition.

r argmin{i^cL}{-------- }at -  ai

Since the current parabola is removed from the candidate optimal list, {CL)., 
and the next curve for candidate point search is chosen from this list, at the 
subsequent iterations the same point cannot be chosen. Hence, there cannot 
be any cycling taking place. The number of candidate optimal points is finite. 

□
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R esu lt 2.7 The above algorithm converges to an optimal solution.

Proof: The algorithm starts with the first constraint. As it can be easily in­
ferred from the Observation 4, the first constraint is the only binding constraint 
in the interval Li € [—oo,e], where e € [0,1]. The rule

r <- argmin{i^cL) { - —dt d{

is used find the index of the curve defining the next candidate point with the 
current parabola.

If the current iteration is not a degenerate one, obviously the next point is 
correctly deterndned, since beyond the first intersection point, the intersecting 
curve starts to be binding. Otherwise, the degenerate steps are repeated until 
the parabola with the largest index is chosen as the next curve to move on. 
Clearly, at the degenerate candidate point, the parabola with the largest

dF,{L^)
dLi

value is the next binding curve. Hence, to complete the proof of the argument 
what we need to show is that the curve with the largest index has this property.

dL,'^~ 2ar-i'i +
= 2[(2 Pi) -  PrJi'i + E U  PI -  2 PI 
= E L i  PI + 2(2Ti - l ) E T = r P i -  2^iPr

hence,

=  Pr+I -  2 (2 i, -  l)p, -  2 i,(p .+ , -  p.)dLi
= (1 — 2Ti)pr-i-i + (2 — 2Li)pr
> 0.

The last equality follows from the Observation 6, stating that in the optimal 
solution, the first sublot size (Ti) is less than or equal to one half. □
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It is not difficult to show that, the coefficients, a,, 6,, c,, can be computed 
in linear time from the processing times. The algorithm performs 0{m ) oper­
ations to find the next intersection point in the bottleneck operation

f ~ 1r ■(- argnnn{i^cL}{-------- }Ot — a,

Hence, to be able to show that the complexity of algorithm is not more than 
we need to prove that the number of candidate points resulting from 

the intersection of equations is in the order of m.

F(L,)

1 L.
aj -a ,

Figure 2.7: Configuration when n =  2

R esu lt 2.8 Under sublot completion time assumption, the feasible region of 
the problem contains at most m intersection points.

Proof: We prove this argument by induction on number of constraints. Con­

sider a problem containing m machines.

n =  2 If only the region defined by the first two parabolas is considered, there 
can be at most two intersection points as illustrated in Figure 2.7.



CHAPTER 2. SINGLE JOB LOT STREAMING PROBLEMS 46

71 = k Assume that the number of feasible intersection points is less than or 
equal to k̂  when there are k parabolas.

n = k + I Consider the new parabola added to the region defined by the first k 
parabolas. Let t be defined as,

F(L.)

Figure 2.8: Configuration when n = k + I 

t <- argmax{i<,<jt}{----------- }
at — Ok^i

Namely t is the parabola that intersects with the parabola A: + 1 at the 

largest Li value in the region (0 , 1 ). If the region defined by the first k+1 
constraints are considered, it is not difficult to see from the Observation 
8 that this intersection point is feasible, since it shows that in the region

£, g |£ L Z fi± l, i j ,
Oi ~ <̂k+l

the curve k + l is binding as shown in Figure 2.8. Let ^¿(Li), denote the 

value of Fth constraint at Li. Observe that

FtiLi) > Fk+i{L,)
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when

Li < Q ~ Q+i
~ O/t+l

since two distinct parabolas can intersect at most at two different points, 
the curves t and r cannot intersect when Li < . Clearly the fea-
sible region defined by the first k constraints is contained in the region 
{Li : Et{Li) < F{Li)}.  Hence, there cannot be any other feasible inter­
section point resulting from adding the [k -|- l ) ’th parabola (Figure 2.8). 
Therefore the number of intersection points is at most k + I, showing 
that the feasible region contains at most m intersection points. □

Algorithm  II

The algorithm we present in this section is bi-section search based, and has 
the same worst case complexity bound as the first algorithm. Let Fk+i{Li) 
be defined as before and L[, L[ be the right and left margins containing the 
optimal solution, respectively.

In each iteration the algorithm computes improving upper and lower bounds 
[L[,L[] on the optimal solution. The statement,

d ^  argmaX{i<,<,„}{F,(L;")}

4-Z/̂finds the parabola that is binding at point L'^ — C If there are two 
parabolas with the same property, then the tie is broken by choosing the one 
with the largest index, since it is the binding curve on the relevant side of LJ". 

If the dominant parabola is increasing at point the nearest intersection 
point on the left is set as the new right limit as shown in Figure 2.9 . If the 
dominant parabola is decreasing at point LJ", the nearest point on the right is 
set as the new left limit. The algorithm terminates when right and left limits 
coincide, or the minimum point of the parabola d, the one that is binding at 

the point Tj‘ = is feasible.
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L[ ^ 0

optimal fa lse  
while no t optimal do 

begin
Trni l̂ <— 2

d argmaX{i<,<„}{F,(L;")}
if -ladL'f + bd > 0  th en  

begin

In max [,7>}lad-a. /

‘f (^ 1 < - ^ )
begin

optimal ^  true
T* <_______ Ll.^  2aj

end
else L\ <— Li 

end
if 2adL’f  + bd <0  th en  

begin
Li <— max^..

if ( i ,  > - ^ )  th en  
begin

optimal *— true 

end
else L\ <— Li 

end
if L'l = L\ th en  

begin
optimal <— true 
L \ ^ L \  

end

end.
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To prove that tlie correctness of the algorithm, we need following two re­
sults.

Figure 2.9: Updating L\

R esu lt 2.9 The intervals [Li,Lr] computed in each iteration contains the op­
timal solution, L\.

Proof: Clearly, the initial interval [L/, L̂ ] =  [0,1] contains the optimal solu­
tion. In each iteration, one of the bounds is tightened according to the slope 
of the parabola d at point Lm- If the slope is positive [negative] then right 
[left] limit is decreased [increased] to the closest intersection point on the left 
[right]. If next intersection point is less [greater] than the point where the mini­

mum value of the current parabola occurs, then algorithm terminates with the 
optimal solution as the minimum point of current parabola. Otherwise, the 
intersection point is updated as the new right (left) limit. Clearly, with these 
modifications, the optimal solution is retained within the limits. □

R esu lt 2.10 The algorithm terminates in at most m iterations.
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Proof: At each iteration, the algorithm finds either the optimal solution or 
discards at least one intersection point by updating one of the limits. Since the 
same intersection point cannot be repeated, and the feasible region contains at 
most m intersection points as shown in the Result 2.8, the algorithm terminates 
after investigating at most m intersection points. □

R esu lt 2 . 1 1  The Algorithm II is of 0{rn^) complexity.

Proof: The coefficients of the parabolas can be computed in linear time. The 
bottleneck operations of the algorithm are the “max” and “argmax” state­
ments, requiring 0{m)  operations. Since there are only m intersection points, 
the while loop can iterate at most m times. Hence, the algorithm performs 
O(m^) operations in the worst case. □

The problems of streaming two sublots in an m-machine flow shop under 
makespan (job completion time) and sublot completion time criteria poses the 
similar characteristics. Under makespan criterion the feasible region is defined 
by linear equations rather than quadratic equations (Figure 2.10). The optimal 
solution is found by searching the upper envelope defined by m linear equations. 
Clearly, the minimum makespan achieved at one of the intersection points.

A slight modification of our algorithms can be used to solve makespan 

problem in (9(m^) time. Baker L· Руке [5] make use of a heuristic argument that 
the line corresponding to the machine with the largest processing time is usually 
one of the binding curves at the optimal intersection point. Therefore, they 
find a near optimum solution. The other line is searched from the remaining 
lines having slope oppositely signed from the slope of the line corresponding to 
machine with the largest processing time. Let t be the index of the machine 

with the largest processing time. If the lines are in the form,

fl,·L\  T ¿11 i =  1 , . . . ,  m

then the index of the other binding line is,

r = argrnax{,-̂ ,̂ t  ̂ j (L{ CLt + bt
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E xperim en ta l S tudy of A lgorithm s

As we have shown in the previous sections, the proposed algorithms have the 
same worst case complexity bounds. To compare their practical running times 
we carried out an experimental study. We considered eleven sets of problems 

consisting 1 to 255 machines. For each set, we generated 50,000 problems 
whose processing times were chosen randomly from a uniform distribution in 
the range [1,100]. Each problem is solved by both algorithms and statistics 
are gathered separately. The results are listed in the following table.

The first column of the table lists the number of machines in the prob­

lem set. The second and third columns tabulates the maximum number of 
iterations performed to solve the 50,000 problems by .Algorithms I and II, re­
spectively. The fourth (fifth) column lists the maximum difference between the 
number of iterations performed by the algorithms, among the problems that the 

first (second) algorithm performed better. Finally, the last two columns lists 
average number of iterations performed by Algorithms I and II, respectively.
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m Max it I Max it II Max dif I Max dif II Avg it I Avg it II

1 1 1 0 0 1 1

2 2 1 0 1 1.17 1

3 3 3 1 2 1.27 1.05
4 3 3 1 2 1.31 1 . 10

5 2 4 1 2 1.38 1.16

10 4 4 2 3 1.53 1.39

20 4 5 2 3 1.67 1.69

40 5 6 2 3 1.83 1.99

80 6 6 2 5 1.98 2 .2 1

160 7 6 3 5 2.15 2.42

255 7 7 2 6 2.32 2.59

Average Number of Iterations

Figure 2.11: Average number of iterations performed by Algorithms I and II

Interestingly, the average of the algorithms are far better than their worst 
case bounds. Even for 255 machine problem set, all the problems are solved
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M axim um  Num ber of Iterations

Log m

Figure 2.12: Maximum number of iterations performed by Algorithms I and II

within 7 iterations by both algorithms. On the average, 2.5 iterations of Algo­
rithms I and II were required to find the optimum solutions for 255 machine 
problem set.

As shown in the first graph, up to 15 machines the second algorithm per­
forms consistently better than the first one as seen in Figure 2.11. However, 
when there are more than 15 machines, the first algorithm dominates the sec­
ond one on the average number of iterations performed. The maximum number 
of iterations needed to solve each set is plotted in the Figure 2.12. As the fifth 
and the sixth columns indicate, the variance of the second algorithm is smaller. 
There are problems solved in a single iteration by Algorithm II, which were 

solved in seven iterations by Algorithm I.
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2.3.4 T w o-M achine Problem

Although the two stage machining shops rarely exists in practice, they have 
received considerable attention because of their simplicity compared to the 
problems having three or more stages. The two machine problem may give 
insights about the characterization of the optimal solution of the m-machine 
problem. Furthermore heuristic procedures can be developed based on these 
characteristic to obtain good solutions for the general problem.

Sub-optim ality of Consistent Sublots

In this study, we consider streaming problems under consistency and infinite 
divisibility assumptions. As stated before the consistency assumption may 
cause sub-optimality. However, for the makespan criterion (job completion 
time criterion), Potts L· Baker [21] have shown that in a two machine flow shop, 
the consistent sublots yield the optimal solution. But this is not the case for 
the sublot completion time criterion. To show the sub-optimality of consistent 
sublots, consider the problem of streaming a job in a two machine flow shop 
with processing times pi = 1, P2 =  2. Assume that only two sublots can be 
used on either machines (Figure 2.13). The best consistent sublot solution is,

Li = 1, L2 = I, F(L) = —
3 3  ̂  ̂ 18

whereas the following variable sublots solution has better objective value,

Ln =  Li2 -  - ,  ¿2 1  =  2 ’ ^ 22  =  F{L) =

To justify the above argument intuitively, assume that we are given the 
sublot sizes on the first machine. Also assume that these sublots allow a con­
tinuous production on the second machine. Since one cannot vary the sublot 

sizes on the first machine the best strategy can be found by considering the sec­
ond machine as a single machine. Therefore, the best one can do is to complete 

the job using equal transfer batches, as shown in Section 2.3.2.
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-)=34/18

Ml

M2

11=1/3 L 12=2/3

L 21 =1/2 L22= 1/2

i
4/3

I F(L)=33/18 

IB

Figure 2.13: Optimal consistent sublot and variable sublot solutions 

The Results

In two machine problem under sublot completion time criterion we consider 

two cases,

Pi > P2 

Pi < P2

The solution for the first case is actually derived in Section 2.3.2 as

Lk — ) Z's

However the optimization problem in the second case is quite difficult as
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compared to the first one, because of the complicated nature of the constraints. 
The optimal solution is found in Şen et al., [26] by observing the fact that in 
the optimal solution there cannot be an idle time in between the processing 
of any two consecutive sublots on the second machine. By making use of this 
fact, they simplify the problem and obtain following formulation with a convex 
objective function and fewer number of variables and constraints,

m inF(L) = 
subject to

PiLi + P 2 E L 1 Ef=i LiLk 

E L i  Lk -  1
PiLk -p iLk+ \ > 0
Z,*; > 0

k = \,
k = 1,

. ,6 -  1

• ·> ^

They, later, observe an interesting characteristic of optimal solution. The 
size of sublots follow the geometric pattern up to a sublot /, 1 < / < s, and 

the remaining sublots are of the same size, that is

Lk =
_  EL,

k = l , . . . , l  

L k=  k = l T E . .
TtZî/ > L;^i > Li

where

Efc=i Lk = l implies

P 2n = — 
Pi

Li =
^ { s - k ) 7 r + [ ^ )  7T

They prove the optimality of this pattern of solutions using Lagrangian mul­
tipliers. The immediate result of these observations is the following algorithm 

of 0{s) complexity.
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o p t i m a l  f a l s e  

I ^  1
while not o p t i m a l  do 

begin

Li ^

Li+i

Lt+i

T̂2k _

s—l
if ttL i >  L;+i > Li then 

o p t i m a l  <— t r u e

end.

The similar results are conjectured by (Jetinkaya & Gupta [9], without 
proving the optimality of the solution.

When the second machine is dominating, in the optimal solution sublots are 
unequal. But in some real settings, the equal sublots strategy might be more 
attractive due to design of handling equipment or capability of the system in 
tracking the number of items within a sublot. It is shown in [26] that equal 
sublots perform reasonably well in the two machine flow shop. The equal sublot 
solution is not more than 114 % of the consistent optimal solution.

2.4 Item  C om pletion T im e Criterion

The item completion time criterion is relevant when the material handling 
availability is infinite at the last machine, such as belt conveyors, etc. But we 
still assume that an item waits the completion of the sublot it belongs in the 
other machines. As it will become clear, the item completion time criterion 
poses most of the properties that the sublot completion time has.
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For this criterion, the relevant literature is limited. For item completion 
time criterion, Qetinkaya& Gupta [9] show that when the first machine has the 
largest processing time the equal sublots solution is optimal. When there are 
two machines, they prove that the geometric sublots give the best consistent 
solution. They also give 0{m^)+bi-section search algorithm for the two-sublot 
iTi-machine problem. The algorithm first sets bounds on the optimal solution 
using the optimal solution of sublot completion time criterion, then converges 
on the optimal solution by bi-section search. The algorithms we present here 
find the exact solution in O(m^) time.

2.4.1 The M odel

Under the item completion time criterion, the formulation presented in the 
previous section for the sublot completion time model is slightly modified. 
The sublot k starts its processing on the last machine at time Cmk — PmLk- 
Therefore the item in the sublot completes its processing on the last stage 

at time Cmk — PmLk + Pmi As it is illustrated in the Figure 2.14, the total 

flow time is

^mk Pm̂ k ■*" Rn ^
1

Subl ot k dt

Cmk - mk■ Pm C

Figure 2.14: Delivery at the last stage in item completion time criterion

m  = E
k=\

fLk
I {Cmk Pm̂ -̂ k “l· Pm )̂ Jo
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k=i

E
k = l

^  r^mk^^k----- —

Lk

Prn I A: = 1 ,... ,5  terms are the only difference between the itemHence,
completion and the sublot completion time models. Clearly the item com­
pletion time criterion is. in a sense, a relaxed version of sublot completion 
time criterion, therefore its optimal solution dominates the optimal solution of 
sublot completion time criterion.

2.4.2 G eneral R esu lts

For the item completion time criterion, when the first machine has the largest 
processing time, it is shown in [9] that, the equal sublots give the best consistent 
sublot solution. There is at least one optimal solution where the sublot sizes are 
in non-decreasing order. By using this fact, objective function of the problem 
can be reduced to a constant term plus the objective function of the problem 
under sublot completion time criterion. Therefore the Result 2.4 ,i.e

L k ^ -  k = C. . . , s  s

also holds for item completion time criterion.

2.4.3 T w o-Sublot Problem

The objective function of the item completion time model is.

• T i P m k \  ^ j. P m -0 2 ·^

mm ¿ l ( G m l ----- Y - )  + L 2 [ C m 2 ------Y - )
P m  L 2

using the fact that Ti -f- ¿2  = 1, we get

min Cm\L\ T C*m2̂ 2 Pm^l "t" PmL\



CHAPTER 2. SINGLE JOB LOT STREAMING PROBLEMS 60

Using the similar reductions as in the Section 2.3.3 for CmiLi +C'„,2^̂ 2, the fol­
lowing equivalent formulation for the item completion time model is obtained.

min F{L\) 

subject to

(2.21)

[ ( 2  E t .  P i )  -  P i  -  P r n ]  L \  - f  [ p „ ,  - H  E É ,  PI -  2  E t ,  P t ]  L ,  +

E H iP i-P m l'2  -  F{L,) < 0, (2.22)

i = I , . . .  ,vi

T he Analysis of the  M odel

Let ai, bi, Ci., again denote the coefficients of Lj, Li, and the constant term. 
Since a, > 0, i = the feasible region of the above problem is also
convex. Since we have a linear objective function, the optimum solution is at 
the boundary of the feasible region. As it is the case in sublot completion time 

problem, there are finite number of candidate points for the optimum solution. 
Namely, the intersection points of the parabolas, and the minimum point of 
each parabola.

The similarities and differences in the problems are outlined in the following 
two observations.

O bservation  9 The candidate optimal points of the feasible set formed by 
intersections of the parabolas are the same for both the sublot completion time 
and the item completion time models. This follows from the fact that the extra 
terms in the item completion time formulation is independent of index i. Hence 
the coefficients of joint parabola formed by parabolas t and r.

Clif — df df

bij- — bj-

Ctr ~ Cf Ctt
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are the same in both formulations. Therefore, the parabolas t and r intersect 
at points Li = 1, and L\ = .

O bservation  10 The candidate points formed by minimujn points of the each 
individual parabola are,

2a, 2[(2E;1.+ ,P i) - P . - ? .

EKi PI
c r  = i  -

2 2[(2J:K„+,w) + î- ,-P »

Because of the (—Pm) terms in the denominator of the above expression, the 
minimal values of the parabolas in the item completion time criterion occur at 
smaller Li values than the sublot completion time model.

It should be seen that the Observations 5 through 8 that are stated for 
the sublot completion time formulation, are also valid for the item completion 
time criterion. Therefore the 0{m f) algorithms given in the previous section 
are also applicable to the item completion time model. To establish the finite 
convergence of the algorithms we need to prove following results.

R esu lt 2.12 The feasible region of the problem (2.21) has at most m different 
intersection points.

The proof is along the same lines as the proof of the Result 2.8.

R esu lt 2.13 A candidate optimal point is visited at most once by the first 

algorithm.

The proof is similar to that of Result 2.6.
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R esu lt 2.14 The Algorithm I converges to an optimal solution.

Proof: The family of parabola has the features stated in Observations 4 and 7 
given for the sublot completion time model. Therefore, for the convergence to 
an optimal solution, it is enough to show that the curve with the largest index 
has the greatest slope in the interval [0,1/2].

2a,Ti + K

— 2 [ ( 2  P i )  ~  P r  — P m ] L i  +  P m  +  P i  — 2  P i

— P i  T  2 ( 2 L i  —  1 )  Y l f L r  P i  ~  2 L i P r  +  ( 1  —  L \ ) p m

hence.

^  = r .»  -  2(2L, -  l)p, -  2L,{p.^, -  p.)
=  (1 — 2Ti)pr+i +  (2 — 2L\)pr 
> 0

from the observation that |  □

R esu lt 2.15 The intervals [T;, Lr], computed in each iteration of Algorithm II, 
contains the optimal solution of the two-sublot problem with item completion 
time criterion, L\.

The proof is along the same lines as the proof of Result 2.9.

Therefore, the two sublot problem under the item completion time criterion 
is solvable in O(m^) time with Algorithms I or II.

2.4 .4  T w o-M achine Problem

The two machine lot streaming problem is solvable in polynomial time as shown 
in [9]. As it is the case in sublot completion time criterion, there are two cases 
possessing different solution characteristics.

Pi >  P2
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Pi < P2

As mentioned in Section 2.4.2 the equal sublots are optimal for the first 
case. For the second case, the derivation of the optimal solution is easier than 
the sublot completion time criterion. The minimization of the item completion 
time turns out to be the sum of the idle time and a constant term on the second 
stage. This results in geometric sublots solution,

1=0

7T =
Pi'

since the idle time on the second machine is minimized by geometric sublots.



Chapter 3

M ulti Job Lot Streaming 
Problem s

The lot streaming and sequencing problems generally arise in the same context, 
namely, in detailed production scheduling. V'ery few production system pro­
duces only a single type of job and in quite a few production system the jobs 
are indivisible monolithic entities. In most industrial settings the streaming 
problem is embedded into the sequencing problem. Obviously, simultaneous 

consideration of both problems can further improve the performance measures.

One of the well known tractable problems in the scheduling theory is the two 
machine flow shop under makespan criterion, for which Johnson’s algorithm is 
optimal. It turns out that 2-machine n-job streaming-sequencing problem is 
a special case of this, and hence, it is also polynomially well solvable. In this 
chapter we consider the integration of sequencing and streaming decisions first 
in 2-machine and later in m-machine flow shop.

There are a number of papers in literature studying scheduling of jobs 
where the overlapping of operations are permitted, ^etinkaya L· Kayaligil 

[8] considers the minimization of makespan in 2-machine flow shop problem. 
They assume an unlimited material handling capacity between the machines, 
and therefore allow the unit sized transfer batches. The sequence independent

64
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setups are also included in their model. The setups are detached, that is, it is 
possible to perform the setups without having the job actually at that machine. 
They show that the sequencing problem is the special case of two-machine flow 
shop problem with arbitrary time lags, which is introduced by Mitten [18].

Vickson L· Alfredson [32] considers two and three stage flow shop prob­
lems with equal sized transfer batches. They give an algorithm similar to one 
proposed by Qetinkaya L· Kayahgil [8] for 2-stage flow shop and the special 
cases of 3-stage flow shop. They also give a counterexample where the best 
non-splitting solution is suboptimal for the mean flow time criterion.

Baker [2] studies the same problem and proposes a unified solution to the no 
setup, attached and detached setup cases. Baker also examines the special ver­
sions of m machine problems where all the machines other then two machines 
are dominated. All of these papers assume unit sized or equal sized trans­
fer batches, no attention is paid for the best allocation of work into transfer 

batches to minimize the makespan under limited material handling availability 
case.

When the unit or equal transfer batches are used, it is superfluous to split 
the lots. However, when the transfer batches are of different sizes, then splitting 
the jobs can be more attractive, as shown by Potts L· Baker [21]. (Jetinkaya [10] 

investigates 2-machine n-job flow shop problem to find the best sequence and 
best transfer batch sizes to minimize makespan criterion. His model assumes 
sequence independent detached setups. He further shows that the streaming 
and sequencing decisions can be given sequentially for the makespan criterion, 
i.e. first find the transfer batch sizes for each job individually to compute the 
start and the stop time lags, and then find the best sequence.

Vickson [31] obtains the same results and further he proves that when job 
splitting is not allowed the lot streaming problem is independent from the 
sequencing problem for any regular measures of performances. For the contin­

uous sublots problem, he proposes some closed form solutions for computing 
the transfer batch sizes in the presence of attached and detached setups. For 
the same problem under integral sublots restriction, he presents polynomial
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algorithms for both attached and detached setup cases.

3.1 Problem

For two machine flow shop problem involving arbitrary time lags, Mitten [18] 
shows that, applying Johnson’s algorithm to the time lags gives the best per­
mutation schedule for the makespan criterion. Let the start and stop lags be 
denoted as Ij and I'j, respectively (Figure 3.1). A start lag of length indicates 
that, the job j  cannot start processing on machine two, before at least Ij time 
units pass upon its completion on machine 1. Similarly a stop lag l'· means that 
the job j  cannot finish its processing on machine 1 before at least l'· time units 
pass upon its completion on the machine one. In Mitten’s original work, time 
lags are permitted to have any value, including negative values. Negative time 
lags arise in the following two cases. First, when a job can start and finish on 
the second machine before its completion on the first machine. Second, when 
there is a long setup on the second machine or a long removal time on the first 
machine. Following conditions are sufficient for a best permutation schedule 
to be globally optimal.

Pij > Ij > 0, (or p2j >l ' j >0)  1 < i  < n

In the following section, it is shown that a streamed job satisfies this con­

dition, in two-machine flow shop.

3.2 Two-M achine Problem

Consider a single job to be processed on two machines, moreover assume that 
the job can be transferred to the next machine using s transfer batches. For 
any choice of transfer batch sizes the resulting configuration yields a job with 
two positive time lags. To obtain this configuration, the sublots on the sec­
ond machine are shifted to the right to obtain continuous production without
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changing the time to complete the job (Figure 3.1). As it can be seen from the 
figure the start and stop lag of job j  is,

 ̂ Cmar P\ 1

 ̂ CmaT P2·

Ml

M2

Ml

M 2^

<------

max

Figure 3.1: Time lags in streaming problem

For a given sublot sizes, the optimal makespan can be found by applying 
.Johnson’s algorithm to Ij and /*. When the lot streaming and sequencing 
decisions are considered simultaneously in two machine flowshop, it turns out 
that the decisions can be made hierarchically to find the best makespan. The 
following result is a straightforward extension of the one given by Akyel [1]. 
The result shows that for any regular measure of performance, there is at 
least one optimal solution in which sublot sizes of each job follows a geometric 

pattern.

R esu lt 3.1 For 2-machine n-job sequencing and streaming problem where job 
j  can be transferred to the next machine using sj transfer batches, there exists
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an optimal solution in which each job is streamed independently using

Lk =
/=0

(3.1)

7T =
Pi

Proof: Let IT be an optimal sequence of the jobs and Ljk^ j  = 1.. .iz, k = 
1 ...  Sj be the optimal sublot sizes. Assume that for at least one job, the sublot 
sizes are different from the ones computed from (3.1). Let the job r be one 

of these jobs. Let [^iriCir] and [S2t-,C2t] be the time intervals allocated to 
the job r on machine 1 and machine 2, respectively. Assume that instead of 
Lrk, k =  l . . .S r ,  we use the sublot sizes computed from (3.1). Clearly, for 
any choice of sublot sizes sizes, the interval [5ir,C'ir] can be allocated to the 
job r on machine 1. Since the sublot sizes computed from (3.1) minimizes the 
makespan of job r, the new completion time of job r on the second machine can 
not be greater than C2r (Figure 3.2). Hence [52r, C2r] time interval can still be 
allocated to the job r without increasing the optimum value of the sequence H. 
Hence, if every job has the sublot sizes computed from (3.1), the performance 
measure of the sequence H will not be worse. □

Ml

M2

Ir

*2r

Job r

C2r

Q r

Figure 3.2: n-job lot streaming problem
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When a single job is streamed using the geometric pattern (3.1), the start 
lag is simply processing time of first sublot on machine 1 and the stop lag is 
the processing time of last sublot on machine 2, (Figure 3.3) formally for a job 
j  we have start lag / and stop lag /’ as

Ij = pij Lj\

— Pij Ljs

Also observe that

h < Pij

since the length of overlapping area is positive for every job. Therefore, the 
M itten’s results can be used to establish the global optimality.

Ml

M2

II

/i

nmax

Figure 3.3: Time lags in the geometric solution

The immediate result of Result 3.1 is the following algorithm for the prob­
lem of lot streaming and sequencing n-jobs in a two machine flowshop. The 
algorithm computes the optimal transfer batch sizes and start and stop lags 

for each job in the “for” loops. Later, it finds the sets F  and B  containing 
the jobs that are to be sorted according to their start or stop lags. Finally, it 
concatenate both set to get optimal sequence.
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for y = 1 to  n do 
begin

TTJ

N1

P2j
P\J

1

end

r," n ’r' 
for k = 2 to  Sj do

^jk   ̂ ' i'j,k—l

h '*■“ T’lj ■
Ij ^  P2j ■ Ljjs

F <- {j ■■ I, < I'j]
ij > /;)

Sequence the jobs in F  in the non —decreasing order o f Ij to get ITi 
Sequence the jobs in B  in the non —increasing order o f I'j to get 112

The optimal sequence is ITi + II2

3.3 E xtensions to the Flow Shops C ontaining  

3 or M ore M achines

The results of previous section cannot be generalized to the flow shops contain­

ing three or more machines. Minimization of rnakespan in a three stage flow 
shop is known to be AfV  — Hard [2.3]. Therefore, the three machine problem 

with lot streaming is expected to be harder to solve than the 2-machine prob­
lem. Consequently, in this section, our aim is to detect the cases of m-machine 
sequencing and lot streaming problems that are polynomially solvable.
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Machine dominance results of classical flow shop theory are not directly 
applicable to the lot streaming problem. The domination of a machine implies 
that the dominated machine can not be bottleneck for any sequence. An exten­
sive survey of the solvable cases of permutation flow shops are given by Monma 
k  Rinnooy Kan [20]. However, if lot streaming is also allowed, under the sublot 
sizes of jobs must also be taken into account as well as job processing times. 
A machine that is non-bottleneck when there is no streaming may turn out to 
be bottleneck when streaming is permitted. One such example is illustrated in 
Figure 3.4. There are two jobs which can be transferred to the next machine 
using two sublots. Clearly when lot streaming is not permitted, the machine 
two is dominated by machine three. But in the lot streaming problem, the 
machine two turns out to be the bottleneck machine. If the transfer batches 
of the jobs are found individually and then jobs are sequenced to find the best 
makespan, the makespan turns out to be 10.62. But the optimal solution of the 
problem is 10.50 and the optimal sublot sizes are different from the ones found 
by streaming each job independently. Therefore, the lot streaming problem is 
not independent from the sequencing problem for the shops containing more 
than two machines.

One other difficulty in three or more machines problem is that the streamed 
problem cannot be directly seen as the time lag problem. The start and stop 
lags are ambiguous, since there are virtually two start and two stop lags as 

seen from the Figure 3.5. There is no clear criterion to sequence the jobs. 
Because of these, we consider the hierarchical application of the lot streaming 
and sequencing problems. Assume that in an /n-stage flow shop we have n jobs 
to sequence. A heuristically good strategy is to stream each job independently 
and later sequence these jobs according to the resulting configuration.

In the next result, we try to find the best sequence of jobs for a special case 
of the 77i-rnachine problem to minimize the makespan, given the best sublot 
sizes minimizing the individual makespan of each job.

R esu lt 3.2 In the sequencing problem in an m-stage flow shop given the op­
timal sublots for each individual job, if the following conditions hold, then the
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Ml

M2

M3

Ml

M2

M3

L,,= l/2  L,2=1/2
L2,=9/17 L22=8/17

□  First sublot of job 1

□  Second sublot of job 1 

First sublot of job 2 

Second sublot of job 2

c max —10.62 p , r  1 Pi 2“  ^

L ,i= l/2 L,-=l/2
Р2Г 4 P22=4

4 .= l /2
12

L22=1/2 Рз1=4 Pj2= 4

=10.50

Figure 3.4: Lot streaming with second machine dominated 

best schedule can be found by applying the Johnson’s algorithm.

Plj Pmj >
Ш — 1

i=2
(3.2)

m —1
max Pij} < min (3.3)

{l<j<n}

Plj > Pmj ■ (3.4)

Sublots are consistent and each job has s sublots (3.5)

The optimal lot streaming strategy for a single job in a shop satisfying the
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condition (3.2), was given in the Section 2.2.5 as,

L k ^
7T

where
7T Z T = 2 P ,

(3.6)

(.3.7)

This solution has some interesting characteristics. There are s distinct 
critical paths, each of which contains a distinct sublot as the critical sublot 
(Figure 3.5). Also each critical path contains only one sublot on the interior 
machines.

I I Sublot 1 

[~~| Sublot 2

The following notation will be used in the presentation of the subsequent 

results (Figure 3.5),

lj\ — Lji pij 
m —1

^ j2  =  Lji  ^  Pij
i=2 

m —1

i=2
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İJ2 =

h =

Ljs Pt~,j

Ijl + f)2
l' f'

+ ^2

As proven in Section 2.2.1, when the first machine has the largest processing 
time, if each job is streamed individually, the optimal sublot sizes are in non­
increasing order for each job, that is.

7 ^  ^ ^  ^  Lk, (3.8)

We first prove two results to show that, the second machine cannot be a 
bottleneck machine for any sequence of the jobs.

R esu lt 3.3 If the conditions (3.2), (3.3), (3.^) and (3.5) hold then,

min {/,} > max {/;.} (.3.9)

Proof: Take any two jobs t and r arbitrarily. Observe that

m —1

h i  —  I^ t i  P i t  â - i ı d  —  L r s  ^  ^ P i j ·
1-2

Since Lii > Lt2 ^   ̂ ^  Lis and Ltk = we have

, 1 
Lti >

5

and also Lri > ¿ r2 ^  · · · ^  Lrs and Lrk = implies

Lr s  ^  "~7 5

From assumption (3.3) we have

m - l

P it >  Y ,  P it
i=2
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Tlius
1 1

L l  — P i t  L t l  >  -  P l i  >  -  ^  P i r L r s  =  I r l □
i=2

R esu lt 3.4 I f  each job streamed individually using (3.6) then, for any sequence 
of the jobs, the critical path defining the makespan of the schedule can not 
contain more than one sublot on the second machine.

Proof: Assume that, there exists a sequence IT in which there are more than 
two operations on the critical path defining the makespan. To simplify the 
notation, assume that

( n ( l ) , n ( 2 ) , . . . , n ( n ) )  =  ( l , 2 ........n)

Let c be the index of the job whose operation on the second machine is the 
first of these critical operations. The case is illustrated in Figure 3.6. As seen 
from the figure, for the job c + 1 to be critical on one of the interior machines, 
the following condition should be satisfied,

f
Li > L+1,1·,

but this contradicts with the Result 3.3.

Ml

M2

M3

Job c

Figure 3.6: First critical sublot on the second machine
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P ro o f [R esult 3.2]: As it is shown in Result 3.4 (Figure 3.6), there cannot 
be any interference of sublots of two different jobs on the interior machines. 
Hence, the makespan C',„aa.(n) for a sequence H is,

C „ „ ( n )  =  ■ j E p . n o ) + c , i : S +  t  Pm,)
J - ^  j = c + l

where c is the critical job in the sequence H. is the makespan of the job
j ,  when it is streamed individually.

Then the minimum makespan is

{
c - 1  n

Z]pin(j) + + Z l Pano)

j=i i=c+i

Let O j  denote the length of overlap in between the operations of job j  on 
machine one and three. Clearly,

O n ( c )  =  P i n ( c )  +  P a n ( c )  -

C - 1  n

-  {  Z p i n ( i )  +  P i n ( c )  + P 3 I I ( c )  -  O u { c )  +  Z  P3n(j)
' ' j = l  i = c + l

m i n  < Z  P i n ( j )  -  On(c) -  Z  ^ n ( j )  +  Z  P s n o ) [  +  Z  ^ n ( j )
' ¿ = 1  i = l  j = c  )  j = l

{ C n i n

Z (pin(j) - On(j)) + Z (p3n(j) - <̂ri(j)) [ + Z
j = l  j = c  )  j = l

mj'' ( ¿  + Z I + Z
{  j = l  j = c  )  j = l
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Since the second term is a constant, the last expression is equivalent to

r c n
in in j E ^no) + E ^no)

J=1 J=c

But the last expression is the objective function of the two-machine flow 
shop problem, with p /s  are replaced by Ij, for which the Johnson’s algorithm 
is optimal. □

Observe that rn-l
1 ] = <  L,

i = 2 1=1

Therefore, sorting the jobs in non-decreasing order of their stop lags, gives 
the best sequence.

Now if we replace the conditions (3.3) & (3.4) with conditions

m  — l

P m j  ^  P l j ·

(.3.10)

(3.11)

Because of the symmetry, now we have

max /,1 < min /i, and U < L

Hence, in this case the optimal schedule can be found by sorting jobs in non­

increasing order of their start lags.



Chapter 4

Conclusions and Further 
Research

The purpose of the this study was to investigate the various forms of lot stream­
ing problem to derive the basic solution characteristics and identify the well 
solvable cases. For this purpose, we first studied single job lot streaming prob­
lems, later extended our results to multi-job problems.

For the single job lot streaming problem, we considered three measures of 
performance, sublot, item and job completion time criteria. Under job com­
pletion time criterion, we derived an exact solution scheme for a special case 
of m-machine s-sublot problem satisfying,

2

P.P» > ( e 'p.)

For the sublot completion time criterion, when the first machine has the 
largest processing time, we derived the exact solution scheme. In order to 
establish this result, we first showed the existence of an optimal solution in 
which the sublot sizes are in increasing order. By making use of this fact, 
we proposed a simplified formulation containing fewer number of constraints 
with a convex objective function. Later we derived the optimal solution using 
Lagrange multipliers method.
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We considered the two-sublot problem. By making use of some results from 
the scheduling theory, we transformed the standard formulation to two variable 
minimax optimization problem with quadratic constraints. After investigating 
the characteristics of the feasible set, we proposed two algorithms each having 
0{rv?) complexity, where m denotes the number of machines. This bound is 
equal to the one proposed by Çetinkaya and Gupta [9]. In order to compare 
the algorithms we carried out an experimental study. The empirical running 
time of the algorithms turned out to be much better than the their worst case 
behavior. For two-machine problem under sublot completion time criterion, we 
gave an example to show the suboptimality of the consistent sublot solutions.

In order to present the results pertaining to item completion time criterion, 
we pointed out the similarities in between the sublot and item completion time 
criteria. Later, we showed that 0{m^) algorithms given for the sublot comple­
tion time criterion are also applicable to the item completion time criterion. 
This is the best bound for this criterion.

Finally, we attacked the multi-job streaming problems. For two machine 
problem, we gave a simpler alternative derivation of the Vickson’s [.31] results 
on the independence of the streaming and sequencing problem. We also gave a 
three machine example in which the second machine is dominated in classical 
scheduling terms, to show that the lot streaming and sequencing problems are 
coupled. We also investigated performance of the hierarchical application of 
streaming and sequencing decisions. For a special case of this problem, we 

showed that the sequencing problem reduces to two machine problem.

There are several directions for the further research. The experimental 
study of the algorithms for the item and sublot completion time criteria, 
pointed out the existence of the algorithms with better bound. By investiga­
tion of further characteristics of the feasible set of problem, further reduction 

in these bounds is likely.

Due to the its nonlinear objective function, the general m-machine s-sublot 
problem under consistency assumption cannot be adressed for sublot and item
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completion time criteria. The solution properties of the two-machine and two- 
sublot problems can be used to devise heuristics for the irr-machine s-sublot 
problems.

In our experimental studies, for the three-machine problem when one or two 
machines are dominated, we observed several structural patterns in the optimal 
solutions, indicating the possible existence of exact solution algorithms.

The variable sublot lot streaming problems can be investigated by study­
ing the formulation of the general lot streaming problem given by Benli [6]. 
Although his formulation is inherently complicated, for two sublot and two 
machine problems exact algorithms may be driven.

The multi-job lot streaming problem is a promising area for the further 
research. Although we showed that the classical dominance results does not 
apply for the lot streaming problem, our empirical studies pointed the existence 
of more restricted special cases, such cis

min{pij} > max{p-2j} min{p2j} > max{p3 ,} j j j j

or.

min{pij} >  max{p2j } min{p3j} > niax{p2i}
J j  j  }

where the streaming problem can be decoupled from the sequencing problem.

Considering streaming and sequencing problems hierarchically is a good 
strategy, when the simultaneous consideration complicates the problem. In 
the three machine problem, when the condition

P\j P3j > {P2jy 1 < 7 < n

is relaxed, we observed that the optimal sequence could still be found by ap­
plying the Johnson’s algorithm. But the proof of

for the case

min {/,} > max {/■}

Pïj P3j < (p2jy 1 < ;  < «·
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is not available. Hence we give this result as a conjecture.

C on jec tu re  1 In the problem of lot streaming and sequencing in the 3-stage 
flow shop problem, if the following conditions hold, then the best schedule can 
be found by applying Johnson's algorithm.

. max {p2j } < min {pi,}.

Pij ^  Pzj ■

Sublots are consistent and each job has s sublots

Investigation of other special cases along with the proof of this result, can 
be a promising direction for further research.
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