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ABSTRACT

LOT STREAMING IN MULTI STAGE SHOPS

Alper Şen
M.S. in Industrial Engineering 

Supervisor: Assoc. Prof, Ömer S. Benli 
December, 1994

In this thesis, a number of lot streaming problems in flow, open and job 
shops are investigated. Lot streaming is the process of splitting a job to al­
low for overlapping of its operations on various machines resulting in shorter 
completion times. When there is a single job, the problem is to find the size 
of the transfer batches (“subJots”) which minimizes a given performance mea­
sure (e.g., makespan, mean flow time). Multi-job problems are harder, since 
sequencing and sizing decisions must be made simultaneously. Most of the cur­
rent research in lot streaming is concerned with minimum makespan problems 
in flow shops. In this study, other performance measures and shop structures 
are also analyzed. Optimal sublot sizes are derived for the single job two ma­
chine flow shop mean flow time problem. Solution methods are proposed for 
the minimum makespan problem in open shops both for multiple job and single 
job cases.

Key words: Scheduling, Lot Streaming, Flow Shops, Open Shops, Job 
Shops
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ÖZET

ÇOK MAKİNALI ATELYELERDE KAFİLE AKTARMA

Alper Şen
Endüstri Mühendisliği Bölümü Yüksek Lisans 

Tez Yöneticisi: Doç. Dr. Ömer S. Benli 
Aralık, 1994

Bu çalışmada çok makinalı atölyelerde kafile aktarma problemleri ince­
lenmiştir . Kafile aktarma bir işin bölünerek değişik makinalarda işlemlerinin 
çakıştırılması yoluyla akış zamanlarının azaltılmasıdır. Sadece bir tek iş oldu­
ğunda, problem, verilen performans ölçütünü enazlayan transfer kafilelerinin 
büyüklüklerinin bulunmasıdır. Sıralama ve büyüklük kararlan eşgüdümlü alın­
ması gerektiğinden, çok işli problemlerin çözümü daha güçtür. Bu konuda 
yapılan araştırmaların çoğunluğu akış tipi atölyelerde çizelge uzunluğu prob­
lemlerini incelemektedir. Bu çalışmada ise, değişik performans ölçütleri ve 
atelye tipleri İncelenmektedir. Tek işli, akış tipi, iki makinalı atölyelerde orta­
lama akış süresini enazlayan transfer kafilesi büyüklükleri hesaplanmaktadır. 
Çok işli ve çok makinalı atölyelerde çizelge uzunluğu problemleri için çözüm 
yöntemleri önerilmiştir.

Anahtar sözcükler: Çizelgeleme, Kafile Aktarma, Atelye Tipi Üretim
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Chapter 1

Introduction

In classical scheduling theory, the job’s integrity is preserved while it is pro­
cessed and transferred. However, especially in batch manufacturing, it is prac­
tical to move some portion of the job to the downstream machine, before it 
is entirely completed on the current machine. Lot streaming is the creation 
of these transfer lots for a job, so that its operations can be overlapped on 
various machines. Lot streaming is applied by means of suhlots, which are the 
groups of items that are transferred from one machine to the next at once. 
Overlapping operations give the opportunity to start processing earlier on the 
downstream machines to achieve shorter completion times.

Consider the example, in which we have only two machines and a single job 
that consists of 100 identical units. Each unit requires processing of 2 minutes 
on the first machine and 3 minutes on the second machine. If lot streaming is 
not allowed, the job can be completed in 500 minutes (Figure 1.1.a). But, by 
simply transferring 50 units (half of the job) to the second machine, after they 
are complete on the first machine, it is possible to complete all the units in 400 
minutes. We can also deliver these 50 units as soon as they are processed on 
machine 2. Hence 50 units will be delivered at time 250 and the remaining 50 
will be delivered at time 400, resulting in an average completion time of 325 
minutes (Figure l.l.b), as compared to 500 minutes in the no lot streaming 
case. We are further able to reduce completion time to 380 minutes and average

1
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completion time to 308 minutes, using sublot sizes 40 and 60 (Figure l.l.c).

(a )

M I
------

200 500

M 2

(b)

M 1

M2

100 250 400

(c )

M 1

M2

80 200 380

Figure 1.1: Reducing flow times through lot streaming

The use of sublots to accelerate operations is an important aspect in OPT 
systems. Umble & Srikanth [32], Lundrigan [17] and Browne et. al. [6] discuss 
that one of the key elements in OPT systems is the distinction between the 
process and transfer batches. “The transfer batch may not, and many times 
should not, be equal to the process batch”. Fogarty et. al. [11] state the 
importance of transfer batches in the context of drum-buffer-rope scheduling.
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Jobs should be streamed on the non-bottleneck machines to enable the bottle­
neck machines to start their work as early as possible. The transfer of items 
is easily maintained by the use of resources (workers, material handling equip­
ment) at non-bottlenecks. Fogarty et. al. [11] also discuss that reducing sublot 
sizes (thus, increasing number of transfers) may be more efficient, than forcing 
process batch sizes to equal one as in JIT systems. Swann [25] and Vollmann 
[35] argue that conventional MRP techniques are no longer applicable, if over­
lapping operations are allowed. If parts are expedited by use of sublots, there 
is a need for designing (or revising) scheduling algorithms to get the possible 
benefits of OPT philosophy in an MRP system.

Overlapping of operations in scheduling is first considered by Mitten [18]. 
He proposed an algorithm to sequence multi jobs in a two-stage flow shop, in 
which each job may start processing on the second machine, a certain amount 
of time after it has started processing on the first machine.

Szendrovits [26] allowed for equal sized transfers between the stages and 
proposed a model to minimize the sum of setup, finished products inventory 
and work-in-process inventory costs, while meeting the continuous demand. 
The Economic Production Quantity of identical items that he optimized is 
processed uninterrupted on all machines. Truscott [31] studied the case where 
the sublot sizes can be multiples of a certain number and developed a model 
to minimize makespan in the presence of setup times, equal sized transfers 
and transfer times, again with the restriction that the machines should work 
continuously.

Baker [1] and Trietsch [29] relaxed the assumption that the sublots should 
be equal sized and proposed solution procedures to find the sublot sizes which 
minimize the makespan of a single job, with exogenously assigned maximum 
number of sublots. Since then, there is a considerable interest in lot streaming 
problems, of which the related portions are reviewed in the succeeding chapters.

The following section defines the lot streaming problem along with various 
models and restrictions.
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1.1 Problem  D efinition

A resource that performs at most one activity at a time is called a machine. A 
shop is a collection of machines. An m-machine shop consists of m machines, 
Ml, M2, . . . ,  Mm- The activities are called jobs. There are n jobs, Ji, J 2, · · ·, </n· 
Each Jj has m operations Oij. 02j, · · ·, 0,nj. Oij has a processing of duration 
Pij to be performed on A/, . No two operations can be processed simultaneously 
on a machine. A routing R = (M[ij, M[2] ,. . . ,  A/[„,]) for a job is the order of 
machines that will process the job. If this order is fixed for all jobs, the shop is 
called a Row shop. In an open shop, there are no such restrictions. In Job shops, 
each job may require more than m operations (hence each job may require 
same machine at different stages of its processing). Each job has distinct but 
a fixed routing in job shops. .\ job Jj consists of ty identical units. Hence, 
each operation is composed of Uj identical sub-operations, each of length 

Pij ~  P ijl^j·

For a job, the group of units that are transferred at the same time from one 
machine to the next machine in the routing, forms a sublot of that job. For 
each Mi and for each Jj, there can be at most s,j sublots. We assume that the 
number of sublots is fixed in the shop for each job, i.e. = S j ,  i ■= \ , . . .  ,m . 
In one extreme, Sj = Uj for each J, which implies a continuous flow production 
line, if the shop is a flow shop. In the other extreme, Sj = 1 for each j ,  which 
implies a classical scheduling model where each job’s integrity is preserved while 
it is transferred. The processing time of the kth. sublot for Jj on M, is pijLijk, 
where Lijk denotes the number of units in sublot. Clearly, Lijk = Uj for 
each Jj on each M,·. Cijk is the completion time of the kth sublot of Jj on A/,·. 
A job is completed, if all of its sublots are completed on all machines, that is, 

the completion time of Jj, Cj = max,-,;t Cijk.

If the number of units that form a sublot remains the same throughout 
the shop, then the sublots are called consistent, i.e. Lijk = Ljk for each Mi. 
Otherwise, they are called variable sublots. The size of the sublots may be 
restricted to take integer values, i.e. discrete case or the job can be assumed 
to be infinitely divisible, i.e. continuous case.



If each Jj is processed Pij consecutive time units on M,, over the time the 
machine is busy, then the shop is called a non-preemptive shop. If jobs can be 
processed with interruptions to allow for processing of units of a some other job, 
then the shop is called a preemptive shop. The shop is still a non-preemptive 
shop if the processing of a job is interrupted, but the machine is idle during 
the interruption. In any of these models, we do not allow for interruption of 
sublots on any machine. If a machine is not allowed to have idle time from the 
start of its first operation to the completion of its last operation, we say that 
the model is a continuous work model. Otherwise, we say that intermittent 
idling is allowed.

There may be several objectives, depending on the completion times of 
individual units (items), sublots or jobs. The job completion time may be 
critical for a system, in which each job is delivered as a whole. Items in a 
sublot may be assumed to be completed, when the sublot to which they belong 
is completed, resulting in a sublot completion time model. In item completion 
time models, each item is completed as soon as its operations are completed 
on last machine.

CHAPTER 1. INTRODUCTION 5

Under these models, the objective is a regular measure of performance, 
i.e. a monotone non-decreasing function of completion times. This may be the 
makespan, i.e. the time at which all the jobs (with all of their sublots and units) 
are completed. Стах — rnaxj Cj. Total flow time can be another objective, 
where we want to minimize the sum of job completion times, Cj. When 
the sublot completions are of concern, it is reasonable to weigh the completion 
time of each sublot with the number of units in it. That is, mean completion 
time of a job is, C[m]jkL[m]jk̂  where [m] is the last machine in the routing 
of Jj. The objective can be easily revised for item completion time model. 
Similarly, all other relevant objectives, as well as the other elements of the 
theory of clcissical scheduling can be adapted to the lot streaming models.

The problem is to find the sizes (and routings if the shop is an open shop) 
of the sublots, and their sequence on machines so as to minimize the given 
objective function, subject to the restrictions mentioned above.



The purpose of this study is to propose solution methods for some of the 
untouched lot streaming problems. Chapter 2 presents the characteristics of 
the single job problem along with an extensive review of literature. The main 
contribution of this chapter is the Section 2.1.2 where we solve the two-machine 
mean flow time problem under sublot completion time model. The problem of 
routing and streaming a single job in an open shop is studied in Section 2.2. 
In Chapter 3, the multi-job lot streaming models are reviewed and studied. 
Section 3.2 and Section 3.3 present the first studies on streaming multi jobs 
in open shops and job shops. While different models in the literature are also 
reviewed, our derivations depend on the following assumptions.

• All units in a job are available at time 0.

• Processing times are known.

• Jobs have zero setups.

• Material handling equipment is not a constraint neither in availability 
nor in capacity, except that the maximum number of sublots is limited.

• Transfer times are zero.

• Jobs are infinitely divisible, i.e., sublot sizes may not be integer.

CHAPTER 1. INTRODUCTION 6

Chapter 4 discusses the main results of the thesis and directions for further 
research.



Chapter 2

Single Job Models

Although their application areas may be limited, single job lot streaming mod­
els can be useful in understanding the nature of multi-job problems. They 
can also be utilized as a subproblem in exact or heuristic procedures to solve 
the multi-job problems. The research in single job problem concentrates in 
and is initiated by the flow shop problems with consistent sublots to minimize 
makespan. In this chapter, since single job models are analyzed, subscript j  is 
omitted in variable definitions.

2.1 Flow Shop M odels

2.1.1 Form ulations

The basic lot streaming problem was first introduced by Baker [1]. In this 
problem, the sublot sizes are assumed to be consistent, i.e. Lik = Lk for 
each machine A/,·, so that the integrity of the sublot is preserved throughout 
the shop. The objective selected is the minimization of makespan. It is a 
convenient measure to observe the flow time reductions through lot streaming.

For each sublot, we have two types of constraints to be satisfied. Operation
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of the sublot k cannot start on M,, before the sublot (^ — 1) is completed on 
M,. The start of this sublot is also restricted by its completion in the previ­
ous machine, M,_i. With these constraints, the linear program to minimize 
makespan can be stated as.

min Cms

subject to Cik > -k p. Z,/:, f = 1 ,.. . ,  m, = 1,..

Oik > -f-p.Tjt, ¿ = l , . . . ,m ,

¿ i »  =
k=l

Cik > 0, k = l , . . . , s ,  f =

Lk ^  b, k 1 , . . . ,  s ,

C^k b, k —

C,o = 0, z =  1 ,... ,m.

(2 . 1 )

(2 .2 )

(2.3)

(2.4)

(2.5)

(2.6)

(2.7)

(2 .8)

Rather than minimizing makespan, the average time a unit spends in the 
shop can also be a measure of performance. The basic assumption that all the 
units in the job are completed, only when the whole job is completed may be 
a restrictive assumption. Customer service may be improved if we do not wait 
until the whole job is processed [21]. Assuming that each sublot is delivered 
as soon as its processing is completed in the shop (“sublot completion time 
model”), we have the objective of minimizing sum of sublot completion times, 
where each sublot is weighed by its size. The resulting model is a quadratic 
program with the objective function

LkCmk
k=l

(2.9)

subject to constraints (2.2)-(2.8). This quadratic objective function is first 
proposed by Kropp and Smunt [16].

Items can also be delivered, as soon as their processing is complete on the 
last machine (“item completion time model”). Suppose that there are s sublots 
transferred from Mm-i to Mm- Assume as if the last machine Mm processes 
s sublots. If Cmk is tlic completion time of the processing of sublot k on the
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last machine, C„ik -  PmLk will be the starting time of sublot k on Af„j. Since 
we assume that the number of units in a sublot can be fractional, the mean 
completion time of a unit in sublot k will be, {Cmk + Cmk — PmLk)/2. Hence, 
the consistent sublots formulation to minimize the mean flow time under item 
completion time will be.

s 1
min LkCmk -  T̂ Llpr,

k=l

subject to constraints (2.2)-(2.8).

(2 . 1 0 )

An extension of this model, under the consistency assumption, can be used 
to minimize the number of tardy units. Suppose there is a due date, d, for 
the job, and the problem is to complete as many units as possible by this due 
date. A unit is tardy, if the sublot to which it belongs is tardy. If the optimal 
makespan, is less than or equal to d, then we are done, there are no tardy 
units. Otherwise, i.e., if > d, then append the constraint

C m , ,s —\  — d (2.11)

and optimize the objective function,

minL,,

subject to the Constraints (2.2)- (2.8), and (2.11).

When we allow for variable sublot sizes, simple lot streaming models are 
no longer applicable. The assumption that the number of sublots remains the 
same through the shop may be unrealistic in many production systems. These 
considerations lead to a systematically different model proposed by Benli [5]. 
This model is a periodic review model with variable period lengths, which are 
decision variables. The total number of transfers is h. = where s, is the
number of transfers allowed from machine A/, to machine A/.+i. The periods 
are denoted by [T̂ , Tt+i], where Ti, T2, . . . ,  7), are the times at which transfers
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may take place. Define,

A',..
L:,t

0,,i

Number of units produced on machine i in [Ti-i.Ti],
Number of units transferred to machine z + 1 at time Tj, 
Number of units in the input buffer of machine i at time Tj, 
Number of units in the output buffer of machine i at time Ti, 

1 if Lî t > 0,
0 if Lî t = 0.

Note that on any machine M,·, production can take place only in periods 
i , . .. ,h — rn + i, since the at least the first z — 1 and last m — z — 1 periods 
will be used for the transfer of products from machines Mi, A/j, · · ·, M,_i and 
M,+i, M ,+i,. . .  M„j, respectively. Then, we have the following mixed integer 
linear program to minimize makespan.

min Th (2.12)

subject to

Ii,t—i T Ti'_i.i_i — T  ̂— 1 ? · · · r  ̂  ̂h 771 T z,(2.13)

Oi,t-i + Xi,t = 0,-,t + z =  1 ,.. .  ,m , i = z ,. . .,/z -  m + z,(2.14)

PiXi,t < -  T<_i, z =  1 ,.. .  ,m , i = z ,. .. ,/z -  m + z,(2.15)

Li,t < /iVi.t, z =  1 ,... ,m , i = z ,.. . , /z -  m-f-z, (2.16)
h

Y,Y i,t < 5.·, z = l , . . . ,m ,  (2.17)
i = l

Tt > 0,i = l , . . . , /z ,  (2.18)

Ii,ti ^i,ti At,t ^  0, Z 1, . . . , 771, t Z, . . . , /z 77Z T z, (2.19)

Yi.t € {0,1}, z = 1 ,... ,m , t = z,. . . , /z -  77Z + z, (2.20)

where /¿̂ i—i — i — Oi,h—m+i — 0, i/o,o — Ljji,h — U and /z
is a very large number or the capacity of the material handling equipment. 
The Constraints (2.13) and (2.14) are the inventory balance equations for the 
input and output buffers. Machine capacity constraints are (2.15). Constraints
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(2.16) indicate whether a transfer takes place from a machine A/,· at time 7). 
Constraints (2.17) limit the number of transfers (sublots) at each stage. The 
formulation is adaptable to other problems like mean flow time minimization. 
Basic results of the lot streaming problem can also be obtained through the 
restriction of the general model.

2.1.2 T w o-M achine Problem

Minimizing Makespan

When the sublot sizes are consistent, we have the following linear program to 
solve the minimum makespan problem,

minC2s (2.21)

Cik > Ci,k-l “1“p { i  1)2, L· (2.22)

C2k > Cik + P2-̂ /:?  ̂ 1) · · · ) *5, (2.23)

± L , = (2.24)
k=l

Cik > 0, i = 1,2, Â: = 1 , . . . ,  5 , (2.25)

Lk > 0, k =: 1 ,...,5 , (2.26)

Cio = 0, i = 1,2, (2.27)

This problem was studied by Baker [1] and Potts & Baker [20]. Baker [1] 
used the LP formulation to derive the solution. Potts Sc Baker [20] showed 
that the makespan is equal to the sum of

• The processing time of sublots I , . .. ,k  on M i, and

• The processing time of sublots k , . . . , s  on M2

for any sublot k and hence each sublot is critical'. The solution is given by 

the “geometric” sublot sizes, i.e.,
1 — 7T

Li -  U
1 — TT*

(2.28)
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Lk = TfLk-i, k = 2---- ,5, (2.29)

where tt = p^lpi-

The discrete version of the problem is studied by Trietsch [29]. He proposed 
an iterative algorithm of time complexity ^ (s )  to find the optimal integer 
sublot sizes. Trietsch L· Baker [30] analyzed the cases, where the transportation 
times in between machines are not negligible and the transporters have limited 
capacity.

VARIABLE SUBLOTS

If we allow for variability in the sublot sizes in each stage, one would expect 
that any regular measure of performance would improve. This is simply based 
on the fact that, for these measures of performance, consistent sublots are 
subsets of variable sublots. The question is the following: when is it sufficient to 
consider only the consistent sublots in the search of optimal (variable) sublots? 

When the objective is the minimization of makespan, Trietsch & Baker [30] 
state that it is not necessary to consider the variable sublot sizes since there is 
is only one set of transfers. Note that, here the transfer of items from second 
machine is not considered.

EQUAL SUBLOTS

The optimal solutions for the two-machine flow shop problems result in dif­
ferent sublot sizes. However, it may be more practical to use equal sublot sizes. 
In this section, we will compare makespan obtained by using equal sublot sizes, 
F^{L), with the optimal makespan, F*{L), using the ratio, F^{L)/F '‘{L). For 
notational convenience, we shall assume that U = 1, = 1 and p2 = tt.

When equal sublots are used, makespan is.

F^{L) = rnax{l/s -f- tt. 1 -f tt/ s}.

On the other hand, optimal makespan is.
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Potts & Baker [20] have shown that,

F ^{L )/F ^L ) < 1.09.

M inim izing M ean Flow Tim e under Sublot C om pletion Tim e Model

Suppose, an item leaves the shop when the sublot to which it belongs is com­
pleted in the last stage. In a 2—machine flow shop, the flow time of all units 
in the job will sum up to L2kC2k- This is equivalent to mean flow time, 
which is the average time a unit spends in the shop, h Ej=i L2kC2k- Thus the 
problem, with consistent sublots, becomes a quadratic programming problem 
with the objective function

S

E  ^^kC2k, (2.30)
k = l

subject to Constraints (2.22)-(2.27).

An efficient solution procedure, proposed for the two-stage flow shop prob­
lem with consistent sublots is given below. In this problem one has to consider 
two cases: (f) tt < 1, and (n) tt > 1, where tt = P2İP1 · Çetinkaya & Gupta [8], 
independently, obtained the same result for the first case, and they conjectured 
but not proved the result for the second case.

CASE I : 7T < 1

As discussed in Şen et. al., [27], consider the general case. There are in 
machines, with the property pi > max2<,<m{Pt}, and we will show that equal 
sublot sizes (i.e. Lk = U/s A: = 1 ,... ,s) are optimal.

We first need the following result showing that there exists an optimal 
solution with nondecreasing sublot sizes.

R esu lt 1 If Pi > max2<Km{Pi} then an optimal solution exists where;

Ljç ^  ') ^ — 1 ,.. . ,  5. (2.31)
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To prove this result, Şen et. al. [27] showed that any schedule that does 
not satisfy (2.31) can be converted to a schedule which satisfies (2.31) without 
increasing the mean flow time. Suppose we are given the sublot sizes L = 
{L i,. . .  1 Ls) which are claimed to be optimal and for at least one k , Lk > 
Lk+i- An iterative procedure is designed for achieving a schedule which satisfies 
(2.31). At each iteration v, maximum sized sublot among the first s — v sublots 
is replaced at the {s — v) th position in the schedule. In s iterations, the resulting 
schedule satisfies (2.31). It is also shown that at each iteration, the mean flow 
time does not increase.

Çetinkaya & Gupta [8] proved the same result using the following Lemma 
by Miyazaki k  Nishiyama [19],

Lem m a 1 For the ordinary flow shop problem (without lot streaming) to min­
imize weighted flow time (Y^wjCj), job h precedes job I in the optimal schedule

if,
i) 10k < We
ii) Wh ZT=i Pr,h < we ET=i Pr,t, i = 1 ,. . . ,  m 
where, wj is the weight of job j .

Consider our problem as a weighted flow time problem, with sublots con­
sidered as jobs. The processing time of job k on machine i is piLk and weight 

of job k, lük = Lk- Note that,
m m

Lk ^  Le ^  Lk^(^Pr Lk ^  Le ] p^Le·
r= i r= i

It is easy to see that sublot k precedes sublot H if Lk < Le- Then, the result 

follows.

With this property, the following formulation with a convex function and 

fewer constraints can be obtained. Assuming U = I,

minY)^ LkCmk
k=l
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v=2
subject to C,nk = P iY ^L cP  LkY^p^,. k = l , . . . , s ,

=̂l

equivalently,

k=\

k-\
min X] LkiPl ^  + L k '^  P y )

k = l  t - \  i ,= l
s

subject to E U  = l
k = l

R esult 2 An opti7nal solution to the above problem is

Lk = - .s
k =

Proof: Let the Lagrangian function be,
5 A:—1 m s

£ ( L i , Ls,6) = J2 M pi + Lk E py) + Lk -  1),
i t= l  t - l v-\ k = \

then
dC
dLk

= P iY ^ L tP  2Lk Y^py -  piLk + S = 0, and
u = l

BC ®

Since,

Lk = { - S - p i ' ^ L i ) l { 2 ^ p y  - p i ) ,  A: = l , . . . , s
=̂1 v = l

Y^k-i Lk =  ̂ implies that j  is the candidate optimal solution. However,
to prove that it is the desired solution, we have to show that the objective 
function is convex. The Hessian matrix of the objective function is,

a b b b b ..
b a b b b ..
b b a b b ..

11= b b b a b ..
b b b b a ..
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where a — pi  ̂ and b = pi.

In order for the objective function to be convex, the Hessian matrix should 
be positive definite. In a positive definite matrix, every upper left sub-matrix 
should have positive determinant. Let H i , . , Hr, . . . ,H s  = H  be the upper 
left sub-matrices of H. The determinant of Hr can be found to be,

d e t^ ,  =  6 ^ ( ^ - i r - ' ( ^ - F r - l )  (2..32)

since a > b. It is clear that, det Hr > 0, r =  1 , . . . ,  s.

CASE II : 7T > 1

Again assume, without loss of generality, that 17 = 1 and the processing 
time of the job is 1 on the first machine and tt{ = pa/Pi) on the second machine. 
Since p2 > Pi ■, we have tt > 1.

R esu lt 3 When tt > 1, wLk > Lk+i, k — I , . . .  s — I, in an optimal schedule.

P ro o f : Suppose the contrary, i.e., there exists an optimal solution L = 

{L i,. . . ,  Ls) such that, at least for one k, wLk < Lk+i- Let v — mini<jt<s_i{^ | 
irLk < Lk+i}. A new solution can be constructed for some e > 0, as

Lk = Lk, k = l , . . . , v  -  i
Ly — Ly -j- e,

Lu-f-i —
Lk = Lk, k = u -b 2 , . . . ,  s.

It is sufficient to show that the new solution, L is feasible and F{L) < F{L).

Since E]b=i Lk =  Eyt=} Lk, and Ci,y+i =  Ci.,.+i =  E t t l  Lk, for feasibility, it 
is enough to show

C'2,t;+l £  C2,v+l- (2.33)

We will now show that (2.33) holds and F(L) < F{L)  for the following two 

possible cases.
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Case 1 : > C'2,u (See Figure 2.1 and Figure 2.2).

l ·“  1 K+1
v-1 V v+ l v+2

v-1 V v+1 v+2

- 2.V-I ' 2,v '  2.V+1

Figure 2.1: Sublot completion, Case 1: Z = ( i i . . . . ,  Ly-|_i, . . . ,

l.V'l , l.VTl

l · “  ‘ 'v  -----  K u  — 1

v-1 V v+1 V + 2

v-1 V v+1 v+2

' 2.V-1 '2.V ' 2.V+1

L = L + e L = L - £V V v+1 v+1

Figure 2.2: Sublot completion, Case 1: L =  (Li , . . . ,  + e, — e, . . . ,  L^)

For small e > 0, we also have Ci,u+i > C2,v

G2,v+1 = ^Lv+l +  Ci^v+l
= ir(Lv+i — e) + Ci,v+i
=  C 2 , t ,+ 1  —  7T£

Hence, the condition (2.33) is satisfied. To show F(L) < F{L),  define
to be the contribution of sublots v and u +  1 to the objective function and

Uv,v+i ^  Ly -\- Tv+1 — Ly Lv+i·

F y ^ y ^ l { L )  —  +  Z / u ( l  +  7r)]Z-„  +  [ ( C ’ i , i ; - 1  +  ¿ u  +  T v + i )  +  7 r T u + i ] Z / i , ^ . i

= ( i+2 r )T :+ ( f / „  ,u+l +  T̂ Ly+x )iv+l + Ci^y-iUy^v-x-i
= (1 + '^)Ly + Uy^y+iLy^-i + X ¿u+1 + G\^y-iUv^y+i

Similarly,

Fy^y^i{L) = (I + t )LI + Uy,y+iLy+i + + Ci^y-iUy^y+i
= (1 + 7t)(Lu + e)  ̂+ Uy^y+i{L,j+i — c) + ir^Ly^i — e)  ̂ + Ci^y-\Uy^y+i
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then,

Ev,v+i{L) — = —(27t + l)e^ + (2r + — 2L„)e
=  - (2 ; r+ l)e2  + (27r + l ) ( I , + i - I „ ) e

But, we know that ttL  ̂ < Lt,+i, thus L^ < Lv+i, therefore it is clear that 

Fv,v+i(L) -  Fv ,v+i{L) is positive for some e > 0. Hence. F{L) > F{L),  for 
some e > 0.

Case 2 : Ci^v+i < C 2,v (See Figure 2.3 and Figure 2.4).

C,.v.

Ly —f— Ly^j

v-I V v+1 v+2

v-1 V v+1 v+2

_1 _t _1
2̂,v-l 2̂.v 2̂.v+l

Figure 2.3: Sublot completion. Case 2: L = (Li , . . . ,  ¿„+1 , . . . ,  L^)

c,.v., c ,

i -  L , - 1 -  L „ ,

,V+1

V-1 V v+1 v+2

v-1 V 1 v+1 v+2

c,.

Figure 2.4: Sublot completion. Case 2: L = (Zi , . . . ,  + e, Ly^i — e, . . . ,  Zj)

h a v e  C i ^ x j ^ i ^  ^ 2 , V I t

C ' 2 , u - f l  = 7 r Z „ + i + C 2 V

— 7 t Z v + i + ^ 2 , 1 — 1 - I -  7 t Z „

— 7 T  L v + i - f - C 2 , t - 1 +  7 r Z „

z =
C 2 , v + l
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since + = L„ + Z„+i. Hence, (2.33) is satisfied. To show F(L) < F{L),

Tv,v+l(L) — (C2,v-1 F'^Li.)Li, (C2,v-1 -l· '^Fv ,u+l)Ly^l
-7-2

— 7T ~  J^v) + f-^v,v+l02,v-l

Similarly,

then,

A  A  A  _ _ _ _

Fi, v̂+i(L) ' L̂̂  T Ly) T Fy,v+\02,y—\
= T̂ {Ly +  e)̂  + T^Fy,y+i{Fy^y+i — Ly — t) F /7v,u+iC'2,i—i

Fy ŷ+i{L) -  Fy ŷ+i{L) = -ire^ F {Fy,y+i -  2Ly)Trc
=  —TTĈ +  (Tv+1 -  Ly)i:e.

Since (Ty+i — Ly)7T is positive, Fy^y+i{L) — Fy^y^i{L) is positive for some 
c > 0. Thus, F{L) > F{L)  for some e > 0. Thus in any optimal schedule, 
7TL k  ^  Tfc+l A'=:1,.. .S — 1. □

Having observed that nLk > Lk+\ Ar = 1, . . .  s — 1 for any optimal schedule, 
we can write the completion time of each sublot on the second machine as 

(Figure 2.5),

1 2 3 •  f  · k

1 2 3 0 •  ·  k - 1 k

Figure 2.5: Sublot completion, TrLk > Lk+\, A’ = 1, . . . ,  s

‘'2,k

C2k — ¿ 1  + 7T L( A — 1, . . . ,  s.
e=i

The mean flow time is;

F{L) = Y:UiC2kLk

= ¿1 + Jr ^(Llc
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Then, an equivalent reformulation of the problem is,

5 k
ininF(L) = Li

k=i e=i
s

subject to ' ^ L k  = 1,
Jt=l

Lk+\-TrLk < 0, k = l , . . . , s - l ,

Lk ^  0, A; =  1 , . . . ,  s.

(2.34)

(2.35)

(2.36)

(2.37)

R esu lt 4 The following sublot sizes are optimal for (2.3^)-(2.37),

Lk = TT̂ -'^Li, k = l , . . . , v ,  (2.39)

Lk = ------ ---------------, k = v + l , . . . , s  (2.40)(s -  u)

ifirTv > Tv+1 > Lv and v < s.

v-2 Y-1 V v+l v+2 v+3 Yfi

v-3 v-2 v-l Y Y+l v+2 v+3

Figure 2.6: Sublot completion, optimal sublots

P ro o f : The Gantt chart for an instance of the above sublot sizes will be as 
shown in Figure 2.6. Since the objective function can be shown to be convex, 
it will be sufficient to show that the above solution is a Karush-Kuhn-Tucker 

point. The Hessian matrix for the objective function is,

2 1 1 1 1 . .
1 2  1 1 1 . .
1 1 2  1 1 . .

H =  1 1 1 2  1 . .

1 1 1 1 2 . .
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The determinant of each upper left sub-matrix of H  is positive since, from 
(2.32) we have,

det Hr =  r + l, r =

Hence, the Hessian matrix is positive definite and the objective function is 
convex.

Assign, Lagrange Multipliers 6 for (2.35), and Â,- for (2.36). As seen in 
Figure 2.6, only the first u — 1 of the type (2.36) constraints are binding. So 
Karush-Kuhn-Tucker conditions for the solution are.

For Li
1 LI — ttAj — 0.

For Lk A: = 2 , . . . ,  u — 1

7T + irLf; + <5 +  Afc_i — TrAfc — 0.

For L,

For Lk A: = u -f 1 . . . ,  5

7T -f- wLy -H  ̂+ Au_x — 0.

A "t" TrLjt ■}■ — 0.

(2.41)

(2.42)

(2.43)

(2.44)

We have the following solution to the system (2.41)-(2.44). Using the values 
L = (T i , . . . ,  Ls), and noting that Lk = Ls k = u + 1,. . . ,  s, we get from (2.44),

 ̂ “  7 T  7 T  L/̂  y (2.45)

We also get from (2.43) and (2.45),

Â ._i — 7t(Tj Ty), (2.46)

which is nonnegative. 

From (2.42) we obtain.

Â  — 7 T 6 7T TTLk-ki k 1 , . . . ,  v 2,
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Ajk = TrAjt+i + x{Lg — Lk+i) k = I , . .. ,v  - 2 .

which together with (2.46), proves the non-negativity of At k 
We have from (2.46) and (2.47),

A i = ( ^ — ^ ) I . - (7T — i TT̂ — 1 ) i .·

(2.47)

(2.48)

On the other hand, (2.41) and (2.45) give,

1 -f- ttL i — ttLs
Ai —

7T (2.49)

We also need to show that the sublot sizes result in a consistent solution of 
Lagrange multipliers.

I + ttL i - ttL, ^  -TT —
~ -------- 1 — t ------ 7·/^« ~  1.7T 7T — 1 TT̂ — 1 -)^1

Using (2.40),

. 7 r ' ' - T — TT̂” — 7T̂ — — — 1
7T — 1 7T̂ — i 7T

7T — 1 (s — u) 7T̂ — 1  ̂ X

,7r‘' - U  1 1 Lx 7Γ̂ '' -
— l^ (s  — u) X ^x  — l ^ ( s  — r)   ̂ x^ — 1 

which results in.

¿ 1  = □
f e ^ x ( s - u )  + ( ^ ) ^ x

For u =  s (i.e. all the sublot sizes are geometric), we have the system of 

equations (2.41), (2.42) and (2.43). The system has a consistent solution, 
hence it is enough only to show the non-negativity of the Lagrange multipliers, 
Afc, ^ = 1 , . . . ,  s — 1. We have,

-x^* -f- 2x"+i + 2x* -  2x -  1
■̂ s-l — (»> -i)(7 r + i ) E ; ; i i r '
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5 — < — 1 5 - 1

Aji· = A,_1 ^  7T̂ + { L s -  L()k^
<f=0 =̂/.-+1

Since Ajt > Aj_i k = 1 ,... 5 — 2. it is sufficient to check the non-negativity of 
As—1.

Hence, all the sublot sizes are geometric (u = s), only if the polynomial in 
the numerator of is positive for a given tt, since the denominator is always 
positive.

Combining these results, the following algorithm solves the problem: 

A lgorithm  I

u <— 0, optimal^—FALSE

If / ( tt) = -Tr2̂  -h 27T*+̂  + 27T* -  27T -  1 > 0
optimal i— TRUE, geometric sublots are optimal

W hile no t optimal 
u <— u + 1
Ll [ ^ 7 T  -  (s -  u)]/[$fp-7r(5 -  u) + ( ^ ) ^ 7 t]

Lk <— k = 2 , . . .  , v

Lk ^ [ l ~  Li E L i -  )̂]> k = v + l , . . . , s
if 7T L y  ^ L y ^ \  ^ Lyy

optimal <— TRUE, T = (L i,.., Tj) is optimal

For certain values of s, closed form solutions can be obtained. These solu­
tions can be obtained by determining the intervals of tt in which — Lyj î 
and Lyjfi — Ly is positive for u < s and / ( tt) is positive for s. Sample solutions 

for s =  2 and s = 3 are given below.
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Solution For 5 = 2

, r .  r . . i  ( 4 t . * )  + ^
( ^ . 1 ? )  i t l  + v / 2 < x

In the first interval of tt, the sublot sizes are geometric (v = $ = 2), while 
in the second u = 1.

Solution For 5 = 3

1
2 + ’ TT̂-fTT + l ’ 7t2 + /T-|-1 -

/1 TT̂ + TT-l l7i£j:£̂ _z£ 1 7r̂ -f27T+l
V 2 TT̂ +TT̂  +  TT ’ 2 7T̂ -f-7t2-f 7T ’ 2 +
( TT-fl TT+l \
V 37T ’ 3;r ’ 3;r /

if 1 < 7T < (1 + \/5)/2

i )  i f ( l  + v/5) /2<7r<(3+v/T3)/2  
if (3 + \/r3)/2 < 7T

In the first interval of tt, the sublot sizes are geometric (u = 5 = 3), in the 
second V =  2, and in the last interval u = 1.

VARIABLE SUBLOTS

Although the consistent sublots are optimal in the job completion case, 
they are not necessarily optimal for the sublot completion case. The following 

example shows that when the objective is the minimization of sum of sublot 
completion times, consistent sublots do not result in global optimality. Note 
that in this case there is a second set of transfers from the second machine.

Consider the following example : 60 units \vill be processed on a two- 
stage flow shop and pi = 1 and p2 = 3. There are two sublots available. As 
shown in the sample solution above and since tt = 3 the optimal consistent 
sublot sizes are 20 and 40. These sublot sizes result in a mean flow time of 
¿ (20  X 80 -h 40 X 200) =  160 (Figure 2.7).

But, we can achieve mean flow time of ¿(30 x 105 -f 30 x 195) = 150 by 
using sublot sizes (15, 45) on the first machine and (.30, 30) on the second 

machine (Figure 2.7) .

For the optimal variable sublot sizes in a two-stage flow shop, we propose
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M I
M  2

20

M  I

M 2

15

60 80

O ptim al Consistent Sub lo t S izes

200

M ean  F lo w  T im e  =  160

60 105

V a ria b le  S ub lo t S izes

195

M ean  F lo w  T im e  =  150

Figure 2.7: Sublet completion, noii-optimality of consistent sublots 

the following conjectures, without proofs.

C on jectu re  1 Mean flow time is minimized by equal sublots on each stage if 

Pi >  P2-

C onjectu re  2 Mean flow time is minimized by geometric sublots on first stage, 
and equal sublots on second stage if p\ < p2-

These conjectures depend on the continuous production on dominant machines. 

For Pi > P2i the first machine is dominant, and determines the sublot sizes. 
For Pi < P2i the dominant machine is the second one and geometric sublots 
on the first machine provide the minimum idle time for second machine which 
allows continuous production. Thus, operations on the second machine start 

as early as possible and since geometric sublots on the first machine provide 

required input, equal sublots are obvious on the second machine. Note that, the 
Conjecture 2 in addition gives the alternate optimal solution to the minimum 

makespan problem.

EQUAL SUBLOTS

The optimal sublot sizes are derived for the consistent case and conjectured 
for the variable Ccise in previous sections. Recall that, for tt < 1, equal sublots
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are optimal. For the case tt > 1, mean flow time with equal sublot sizes is (See 
Figure 2.8),

1/s

' ^1$  ̂ Îs ' ^1$
----------------------------- )t-------

/̂s

Figure 2.8: Sublot completion, equal sublots

Since it is not possible for general s to derive explicit expression for the 

optimal mean flow time that can be achieved by the consistent sublots, F^{L), 
we shall use a lower bound for its value. We know (from Result 3) that,

7TLk ^  Lf;^i, fc = l , . . . , s  1,

is a necessary condition for optimality.

Consider the following linear program:

 ̂=  min L\

subject to TrLjt > Ljt+i, A: = 1 , . . . ,  s — 1,

-  1,
k=l

Lk > 0, A: = 1 ,... ,5 — 1.

It is not difficult to show that 2 = Thus, the smallest possible size of
the first sublot on Mi is 2 . Since pi = 1, 2 is the earliest time M2 can start 

processing. Once M2 starts processing, it will continue uninterrupted because 

7T > 1. Thus a lower bound for the optimal flow time, F ‘̂ {L), is given by the 

minimal value of the following quadratic program,

F^^{L)  =  {min[2 + 7rLi]Ti + [2d-7r(Ti + Z/2)]T2 + · · . + [2 + 7t(Zi + L2 + · . . + Ts)]Z/j}
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subject to E i .  = 1. 
k = l

Lk ^  k =  ̂s.

which has the solution Lk = l / s  and F^^(L) = (See Figure
2.9)

/̂s
n -1

/̂s ' /̂s
-------- Ji-----

/̂s

n - I

Figure 2.9: Sublot completion, lower bound on consistent sublot sizes

We have F^^{L) < F^{L). Thus, F^{L)/F^{L)  < F^{L)/F^^{L)  
where,

i  _L Trif+ll
F^{L)/F^^{L) = - " 2*

iiz ill 4_ T r k h i l '

Result 5 F^{L)IF^{L) < F^{L)IF^^{L) < 1.14.

Suppose s can take any real value, then, /(Tr,^) = F^{L)IF^^(L)  is a 
continuous function of $ and tt for s > 2 and tt > 1. Then, we set the 
partial derivatives with respect to s and ~ equal to zero. These two non­
linear equations are solved numerically by Maple V ©, giving a single solution 
(7T*,s*) = (1.938,4.267). The solution (tt' . s*) gives /(;r*,s*) = 1.14. This 
single solution is a maximum point, since

= _0.00184.
OTTOS OTT̂  os^

It is obvious that, for discrete values of s the function’s maximum is less then 
the one we have found. Consider the solution (^ ,5 ) = (1.992,4). These values 
result in the ratio 1.139, which is very close the ratio found using (7r“,s*).

The construction of the lower bound for the consistent sublot sizes gives 
the optimal variable sublot sizes that we have conjectured, that is geometric
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sublots on the first machine, equal sublots on the second machine. Since F*{L) 
is the mean flow time achievable by variable sublots, we claim the above result 
holds for the variable sublots (F ^ (L )/F ’ (L) < 1.14).

M inim izing M ean Flow T im e u n d e r Item  C om pletion  T im e M odel

In this case, an item is assumed to be completed as soon as it completes 
processing in the last machine. When continuous sublot sizes are allowed, this 
is equivalent to assuming infinite number of transfers in the last stage. In 
the case of two-machine flow shop with consistent sublot sizes, the objective 
function is

m \ n j 2 [C2k - { P 2/ 2 )Lk] Lk
k = l

subject to Constraints (2.22)-(2.27).

Again we have two cases to consider: {i) tt < 1, and (ii) tt > 1, where 

7T = P2/P 1 · L· Gupta [8] have shown that, if tt < 1, then equal size
sublots are optimal, otherwise it is optimal to use the geometric sublot sizes as 
given in equations (2.28) and (2.29).

EQUAL SUBLOTS

Note that, equal sublots are also optimal, when x < 1. Therefore, we again 
consider the case x > 1, in which geometric sublot sizes are optimal. Equal 
sublots give the following mean flow time (See Figure 2.10 and Figure 2.11)

F^iL) = l /s + ir/2,

since all the items can be assumed to be delivered at time I /5 +  x/2. For the 

optimal sublot sizes we have a similar form:

(x -  1)
(x* -  1) + Tr/2·

R esu lt 6 F^{L)/F*{L) < 1.18.
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Figure 2.10: Item completion, equal sublot sizes
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Figure 2.11: Item completion, optimal sublot sizes

This result is obtained by a similar approach to the one used in Result 5. 
For s = A and tt = 2.021, the ratio turns out to be 1.172.

In this section we analyzed lot streaming of a single job in a two-stage 
flow shop. Makespan minimization problem can be viewed as a mean flow 
minimization problem under the job completion time model. Where applicable, 
consistent and variable sublots are separately treated. The implications of 
equal sublots, which are widely used in practice are also presented. Table 2.1 
summarizes the results of minimization of mean flow time in a two-stage flow 

shop.

Except in Sublot Completion Time Model with pi < p2, consistent sublots 
are optimal in other cases even if variable sublot sizes are allowed. As seen 

from the last column, equal sublots are quite effective. Thus, the practical use 

of equal sublots may be justified.

There may be other streaming policies applicable to the two-machine flow 
shop. Some instances may allow infinite number of transfers (unit transfers) 
between machine 1 and machine 2. In this case, equal sized deliveries are
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Table 2.1: Two-Machine Mean Flow Time Problems

Sublot Sizes Bound
Consistent Variable Equal/Opt

Job
Completion

Pi > P2 Geometric Geometric 1.09
Pi < P2 Geometric Geometric 1.09

Sublot
Completion

Pi > P2 Equal Equal t
Pi < P2 Algorithm I Machine I: Geometric* 

Machine II :Equal*
1.14

Item
Completion

Pi > P2 Equal t t
Pi < P2 Geometric t 1.18

* conjectured f not applicable

obvious. Some other models may allow different number of sublots at each 
stage. While specific instances should be studied for analytical results for this 
problem, the general model of Benli [5] presented in section 2.1.1 provides a 
mixed integer linear (or quadratic) programming formulation.

2.1.3 T hree or M ore M achines

When there are three or more machines and the consistent sublots are used, 
linear programming and quadratic programming formulations are available for 
minimum makespan and minimum mean flow time problems.

Potts & Baker [20] observed that the flow shop problem with process­

ing times p i , . . .  ,p i , ... ,pm, and the inverse problem with processing times 

pm,·· ·  ,pm-i+i,· ••,Pi are equivalent.

Baker [1] studied the three-machine problem with two sublots and obtained 
results similar to that of the two-machine problem. Glass et. al. [12] used the 
network representation of the lot streaming problem to provide solutions for 
the three machine problem with s sublots. A vertex (¿, k) is defined for each 
machine i and for each sublot k, with weight piL^· Directed edges from vertex 
(z, k) to vertex (z +  1, fc) for z = 1, . . . ,  m — 1 and /¡: =  1, . . . ,  s ensure that sublot
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k can start processing on machine i + 1 only after it is completed on machine 
i. Directed edges from (¿, k) to (», + 1) for f =  1, . . . ,  m and it = 1, . . , ,  s — 1
ensure that machine i can start processing sublot k + l, only after it completes 
the processing of sublot k. The length of a path is defined as the total weight 
of vertices that are on it. The longest path from vertex (1,1) to vertex (m,s), 
referred to as critical path, gives the makespan. A 3-machine 4-sublot problem 
is depicted in Figure 2.12.

S u b lo i 1

M a c h in e  2

M a c h in e  3

Figure 2.12: Network representation of a lot streaming problem

Glass et. al. [12] showed that, in an optimal solution, all sublots are 
positive. This intuitive result states that all the possible transfers will be 
utilized to accelerate the production. Using network representation of the 
problem. Glass et. al. [12] derived the optimal consistent sublot sizes for the 
three-machine minimum makespan problem.

R esu lt 7 In a three-stage flow shop, if p\ < pipz optimal sublot sizes are

Li =  i  ~ ~ 1)’
1 1/^, if Pi = P3,

Lk =  k = 2 , . . . , s ,

where, q = {p2 + Pz)l{pi +  P2)·
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R esu lt 8 In a three-stage flow shop, if p\ > pipz optimal sublot sizes are

Lk = 

L„ =

Lk =

^\Ly, h 1,

l/[(9i ~ l)/(9i ~ 1) + -  1)/(9з -  1) -  1], if P\ -ф P2,p -2 ф Рз,
1/[г -  1 + “  l ) / ( ? 3  -  1)], if Pi = P2,P2 Ф Рз,

, l/[(9i “  l)/(? i -  1) + 5 -  u], if Pi Ф p2,p2 = рз
Яз ''Lk, k = v p l , . . . , s ,

where v can be easily found by bisection search in { I ,. . . ,« }  and q\ = Pi/p2, 

93 = P3/P2 ·

When the sublot sizes are not restricted to be consistent, the three-machine 
problem can be solved by a procedure proposed by Trietsch & Baker [30].

When intermittent idling is not allowed, the two-machine solution can be 
applied independently to the consecutive machines to find the variable sublot 
sizes which minimize makespan.

When the objective is minimization of the mean flow times, note that the 
results presented in Section 2.1.2 for the case pi > p2 is applicable to m- 
machine problem for the case pi > max2<,<m{pi). Thus, equal sized sublots 
are optimal for minimizing mean flow time under sublot and item completion 
time models, when the processing time on the first machine is greater than 
processing times any of the other machines.

The two-sublot problem received a greater attention, since marginal returns 
diminishes as the number of sublots increases. Baker L· Jia [3] reported that 
two or three sublots are sufficient to obtain most of the benefit that can be 
achieved by lot streaming. Furthermore, two-sublot solutions can be used in 
developing heuristic methods in s-sublot problems.

Baker Sz Руке [4] and Williams & Tüfekçi [36] studied the two-sublot 
makespan minimization problem. They derived algorithms of complexity O(m^) 
to calculate the optimal sizes of the consistent sublots and used it in heuristics 
to compute the sizes of multiple sublots.
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Topaloglu et. al. [28] and C^etinkaya & Gupta [8] proposed 0 { m ‘̂) time 
algorithms to find sublot sizes that minimize mean flow time under sublot and 
item completion time models.

2.2 Open Shop M odels

In open shop problems, since one is able to choose any routing for the jobs, 
it is possible to obtain shorter makespan than the flow shop problems. How­
ever, this flexibility also adds complexity to both formulation and solution of 
open shop problems. Therefore, the current research is limited to minimum 
makespan problems. Before analyzing the lot streaming problem, the basic 
properties and results in open shops will be summarized.

An open shop schedule must satisfy the following two sets of constraints,

• No two jobs can be processed simultaneously on a machine. That is, for 
each Mi and for each pair of jobs (Jj, Jyt),

either Cij > Pij -f Cik or ^  Pik T Oij. (2.50)

• No two machines can process a job simultaneously. That is, for each Jj 
and for each pair of machines (Mi,Mi)^

either C i j  ^  P i j  -h C ( j or C i j  ^  P ( j  T  C i j (2.51)

Gonzales & Sahni [13] proposed a linear time algorithm, to minimize makespan 
in a two-machine non-preemptive open shop when there is no lot streaming. 
We briefly outline the algorithm below.

Denote Cj = Pij, bj = P ĵ
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A lgorithm  I I

S tep  1: Define A = {Jjjaj > bj}, B = {Jjlaj < bj}
Step  2: Choose Jr and J( to be any two distinct jobs whether in A or B  such 

that
Or > max 6, bf > max a,

“  J j€ A  ■' -  J j e B  ^

and let A' = A -  {J(, Jr} B ' = B  -  [J(, Jr)
Step  3: If aj -  0( > bj -  br,

Construct the schedule (J^, B', A', Jr) on Mi, (J^, B \  A') on M2, 
with job Jr having the routing (M2, Mi), and other jobs {Mi, M 2) 

otherwise.
Construct the schedule {B', A', Jr, Jt) on Mi, {J(, B ' , A ' , Jr) on M2, 
with job Ji having the routing (M2, Mi), and other jobs (Mi, M2)

Note that the jobs in A' and B' can be ordered arbitrarily.

It can be shown [13] that the algorithm finds a schedule with a makespan,

n n

Ст ах =  m ax{^  Uj, b j, max(aj + 6j)} (2.52)
j= i j= i ^

Since this is a lower bound for the length of any schedule, the algorithm is 
optimal. However, Gonzales & Sahni [13], also have shown that the problem 
is NP-Hard for m > 3.

It has been customary to analyze the scheduling problems from the ma­
chines’ point of view. Alternatively, one may consider the problems from the 
viewpoint of jobs. For example, the Gantt charts can be constructed for the 
jobs rather than the machines. In Figure 2.13, the first Gantt chart represents 
a 2-machine 3-job schedule, while the second one represents the same schedule 
from the jobs point of view. This “duality” is useful in open shop problems.
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Mach 1

Mach 2

Job 1

Job 2

Job3

Figure 2.13: Gantt charts for machines and jobs

Since there is no machine order in open shops, the two types of representation 
are equivalent in studying a minimum makespan problem. Therefore, if we con­
sider jobs as machines and machines as jobs, the schedules (makespans) will 
not be affected. Hence an m-machine n-job open shop minimum makespan 
problem (in which processing time of job j  on machine i is P,j) is equiva­
lent to an n-machine m-job open shop minimum makespan problem (in which 
processing time of job i on machine j  is Pij).

In the lot streaming problem, there are two cases to consider. In the first 
case, all the sublots of the single job may be restricted to follow the same 
routing, which will be called single routing models. In this case, the routing 
for the job and sizes of the sublots should be optimized. However, the open 
shop may have further flexibility to allow for different routings for each sublot 
of the single job, i.e. a multiple routing model. In this case, we expect to have 
shorter makespans by optimizing the routing and size of each sublot.

2.2.1 Single R outing M odel

Assume that the sublots are consistent. There are two decisions to be made: 
the routing of the job and the sizes of the sublots. Clearly, if we are given the
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routing of the job, the problem turns into a flow shop lot streaming problem, 
for which we can obtain optimal solutions efficiently by linear programming 
formulations [1].

On the other hand, if we are given the sublot sizes, the problem is only to 
determine the routing of the job. This model is studied by Steiner & Truscott
[24] with the equal sized sublots, i.e. Lk =  l /s .  k = 1,__ s. With the
additional restriction that the machines must work continuously (“continuous 
work’’’), they have shown that in an optimal schedule the job must follow any 
of the pyramidal routings. In a pyramidal routing Rp = (A/[ij, . /̂[2] , . . . ,  
the job visits the machines with an ascending order of processing times followed 
by machines with a descending order of processing times, i.e., there is no i such 
that > p[i] < p[,+i].

Here, we relax the assumption that the sublots must be of equal size and 
the machines must work continuously. However, we will show that the result 

we will obtain, will also imply the above mentioned result.

Now, consider the m-machine open shop lot streaming problem. Suppose 
that sublots are known a-priori and he L =  (Li, L2, . . . ,  Lg). Hence the problem 
is a classical open shop problem with m machines and s jobs, with processing 

times,

Pik ~ PiLki i — I) · · · ) ^ 1 , . . . ,  s.

But in this specific problem, we also have job (fc +  1) follows job k. Therefore, 
the dual s-machine m - job open shop problem is in fact a flow shop problem 

with processing times.

Pik — PkLii I 1, . . . ,S,  k 1 , . . . ,  TÏÏ. (2.53)

Observing this relation, we can now use the basic results of the flow shop 

problem.

Note that, when there are two sublots, the corresponding flow shop problem 

is a 2-machine one. There are two cases to consider, Li > L2 and ¿2  > Li. 
When Li > L2, in the corresponding flow shop, the processing time on the first
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machine is always greater than the processing time on the second machine for 
each job, (2.53). An optimal solution to this problem is LPT sequence for the 
processing times on machine 2 (see Section 3.1.1). Thus, the routing in the orig­
inal open shop, which corresponds to the LPT sequence in the corresponding 
flow shop, is the routing in which the job visits the machines with a descending 
order of processing times, i.e. the routing Rd = M[2],. . . ,  M[m]) is such
that p[,] > P[t-i-i] for г =  l , . . . , m  — 1. Similar arguments are valid for the 
case ¿2  > Li, in which the job visits the machines with an ascending order 
of processing times, i.e. the routing Ra = (A/[ij, M[2] , . . . ,  M[„ij) is such that 
P[i] < P[i+i] for г 1, . . . ,  m — 1. Moreover, because of the reversibility of the 
flow shop lot streaming problem, the two routings give the same makespan. 
Thus, it is enough to consider only one of these routings. Once the routing is 
known, the problem is a single job two-sublot flow shop lot streaming problem, 
which can be solved by an LP formulation or by the algorithms due to Baker 
&: Руке [4] and Williams & Tüfekçi [36].

When there are more than two sublots (s > 2), we observe the following 
characteristic of the corresponding s-machine flow shop.

pik >  Pie => Phk >  Phi·,

since pkLi > p(Li => pkLh > piLh·, and 

Pik >  Phk Pie >  Phe, 

since PkLi > pkLh ^  peLi > peLh . 

for i ,h { I , . . .  ,s] k , i  Ç. { I , . . .  ,m}.

These characteristics are nothing but the properties of an ordered flow- 
shop. Smith et. al. [23] have shown that the best permutation schedule 
for this problem is one of the pyramidal schedules, i.e. the sequence on any 

machine Sp = {J[i],J[2], ■ · · f^/n) is such that there is no A:, 1 < A; < m such 

that P[k-i] > P[k] < P[k+i]· immediate result of pyramidal schedules in the 
corresponding flow shop is the pyramidal routings for the original open shop. 
Hence, we need to consider one of the 2'"“  ̂ pyramidal routings.
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When the sublots are of equal size, it is easy to see that all the pyramidal 
routings result in the same makespan. Moreover, it is always possible to ensure 
continuous work on each machine without increasing the makespan. Hence, this 
is an alternative proof for the result given in [24].

2.2 .2  M ultip le R outing M odel

In this case, each sublot of the job may have a different routing resulting in 
shorter makespans. This problem is studied by Glass et. al. [12] and the 
following results are derived.

When the number of sublots is more than the number of machines, i.e. 
s > m, optimal sublots are consistent and.

Lk =
for к = 1__ , m,
for A’ = m + 1, . . .

with sublot к having the routing {Mk, ■ ■ ■, Mm, Mi , . . . ,  Mk-i) and achieving a 
makespan Стах = m axjpi, .. .,pm}· Note that, in each of the m equal length 
intervals in the interval (0, Стах), each machine processes exactly one of the m  
sublots and hence there is no overlapping.

When there are two sublots and m machines, optimal sublots are consistent 
and Li = Z/2 =  1/2. The routings of two sublots are found by applying Gonza­
les & Sahni’s algorithm [13] to the corresponding 2-machine rn-job problem, 

generating a makespan. Стах = niax{l/2 P,, m ax{pi,. . .  ,pm}}

2.3 Job Shop M odels

In a single job problem, job shop problem is different than flow shop prob­
lem, only when the job requires the same machine at different stages of its 

production.
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Consider the two-machine job shop, in which the job requires machine 1 
at the first and third stages and machine 2 at the second stage and sublot 
sizes are consistent. Glass et. al. [12 ] showed that this problem can easily 
be solved using the 3-machine flow shop results, discussed in Section 2.1.3. 
Let the processing time of the job be Pj at the first stage on machine 1 , P2 

at the second stage on machine 2 , and P3 at the third stage on machine 1 . 
Relaxing the assumption that the job requires same machine at stages 1 and 
3 and solving the problem as a 3-machine flow shop problem (using Results 
7 and 8), we obtain a schedule. Let the makespan of this schedule.
Note that, the makespan does not increase, if we ensure no intermittent idling 
on first and third stages. Now if > Pi +  / 3, we are done, there is no
overlapping of operations at first and third stages. If < Pi -f P3 , increase 
the start time of all the sublots on third stage by length Pi + P 3 — Стах- The 
resulting schedule has length max{G^^^, Pi -f P3 } and therefore optimal.
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M ultiple Job M odels

Lot streaming problems are harder when the number of jobs is more than one. 
This is due to the fact that the sublot sizing, routing and sequencing decisions 
must be made simultaneously. Therefore, some researchers assumed that the 
sublot sizes are known a-priori (i.e., equal or unit sized transfers) and tried to 
implement rules for sequencing sublots. It is obvious that, even these assump­
tions will not help to derive exact and efficient solutions, because of the already 
N P  — Hard nature of the scheduling problems without lot streaming. In this 
chapter, we will discuss 2-machine problems with the objective of minimizing 
makespan.

In addition to the variety of the problems discussed for the single job, we 
have to also consider the preemptive and non-preemptive models. While we do 
not allow for interruption of individual sublots, makespan may improve when 
one processes sublot(s) of a job in between any two consecutive sublots of some 

other job on a machine.

In case of multi jobs, we must also take into account the setup times. 
The setup of a job may be attached to the first sublot of the job, i.e. setup 
may require the presence of a physical unit. The detached setups can be 
made, whenever the machine is idle. Note that, if the inventory costs are not 
extremely high, attached setups can be converted to detached setups, by simply

40
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holding one physical unit of each job, at each machine.

3.1 Flow Shop M odels

3.1.1 N on -P reem p tive M odels

The fundamental result in two-machine flow shop is the Johnson’s algorithm 
to minimize makespan [15]. Denote aj — P^j. bj — P2j. Let A = {Jj\aj < bj} 
and B  =  { J j  \aj > An optimal sequence of jobs, which is the same on
both machines, is the Shortest Processing Time (SPT) ordering of jobs in A, 
according to aj, followed by a Longest Processing Time (LPT) ordering of jobs 
in B, according to bj.

Mitten [18] extended the Johnson’s algorithm to allow for overlapping of 

the operations at both machines. As presented in [22], define £j to be the start 
lag of job j ,  i.e., job j  may start processing on M2 i j time units after it is 
started on Mi. Alternatively, is the stop lag of job j ,  i.e., job j  cannot be 
completed on M2 before C- time units elapsed after it is completed on Mi. It 
is shown that, Johnson’s algorithm can be applied to this time lag problem, 
with modified processing times £j on M\ and £'j on M2 for each job j .

Vickson Sz Alfredsson [34] studied the lot streaming problem with unit sized 
sublots. Identifying each unit as a distinct job, they observed that the shop 
can be also scheduled using Johnson’s algorithm. They have shown that there 
exists an optimal schedule where there is no preemption and the optimal job 
sequence does not change if each unit is transferred in i > 0 time units from 
Ml to M 2· They have also extended these results to three machines. The non- 
preemptive schedules may not be optimal, when the objective is minimizing 
sum of sublot completion times, even in a two-machine flow shop.

In the existence of detached setups, Qetinkaya L· Kayahgil [9] derived an 
algorithm similar to Johnson’s to find optimal sequence of jobs, which have 
unit sized sublots.
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Figure 3.1: Time lags for lot streaming

However, a time lag model for the lot streaming problem is more appropriate 
and insightful. First, consider the simplest case, in which there are no setups. 
Let the sublot sizes be given for each job j .  Lj = Lj\, Lj2, . . . ,  Ljsy Consider 
each job separately. The sublots can be shifted to the left on Mi and to the 
right on M2·, resulting in a no intermittent idling case, without increasing the 
flow time of the job (See Figure 3.1). Then the start lag i  is the difference 
between the starting times of the job on Mi and M2. Alternatively, stop lag 
i' is the difference between completion times of the job on Mi and M2. The 
sequence of jobs can be easily found b}· applying the Johnson’s algorithm using 
the modified processing times on Mi and i ' on M2 for each job j .

Baker [2] used the time lag model to sequence the two-machine flow shop 
with equal sized sublots in which jobs have detached or attached setups. Vick- 
son [33] and Çetinkaya [7] independently showed that, sublot sizing and se­
quencing decisions can be made separately. Çetinkaya studied the problem 
with detached setup times and found optimal sublot sizes similar to the geo­
metric sublots described in Section 2.1.2 for the makespan problem. Vickson 
considered both the detached and attached setups and found similar results. 
The two authors also considered the case when the number of units in the 

sublots are restricted to integers. To see that the optimal sublot sizing of a 
job is independent of other jobs, assume the contrary, i.e. there are jobs that 
are not streamed according to the optimal rule if they were to be streamed 
separately. Applying the optimal rule to each job w-ill obviously decrease the



CHAPTER 3. MULTIPLE JOB MODELS 43

completion time of each job and thus makespan.

If there is no setup, the optimal rule for each job is the geometric rule given 
by the equations 2.28 and 2.29. Then, it is easy to see that sublots (2, . . .  ,Sj) 
on Ml will overlap with the sublots (1, . . .  ,s^ — 1) on M2. Therefore, time lags 
will be f =  ajLji and T = bjLjsj. Modifying the processing times with these 
lags and applying Johnson’s algorithm will give the optimal schedule.

3.1.2 P reem p tive M odels

Potts &: Baker [20] showed that even in a simple problem with two machines 
and two sublots, non-preemptive schedules may not be optimal. Moreover, 
even with the equal sized sublots, preemptive schedules may be optimal in a 
three-stage flow shop [34]. Therefore, especially when the setups are negligible, 
we have to consider also the preemptive schedules.

To our knowledge, there is no study of analytical models in the literature 
on streaming multi jobs in a flow shop. However, Dauzere-Peres L· Laserre
[10] give an iterative procedure to solve the preemptive open shop, job shop 
and flow shop problems. The procedure starts with a sequence of sublots on 
each machine. Given the sequences, optimal sublot sizes are computed. The 

optimal sublot sizes are then input to a classical scheduling problem in which 
each sublot are assumed to be distinct jobs. The iterative procedure stops 
when there are no more improvements.

3.2 O pen Shop M odels

In this section, we study the 2-machine open shop problem. In the first part, 
we discuss the non-preemptive case where each sublot of a job has the same 
routing, i.e. “single routing”. In the second part, we study the preemptive case 
where each sublot of a job may have different routings, i.e. “multiple routing’’. 

Again, we denote Oj = Pij, bj =  P2j.
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When there are only two machines, Gonzales & Sahni’s [13] (see Section 
2.2) linear time algorithm finds the optimal schedule with a makespan,

n n

С т а х  -  m a x { ^  n i a x ( a _ ,  +  b j ) } .

i=i j=i ■'
Clearly, if max{X3”_, bj} > rnaXj aj + bj, the makespan cannot be

improved by lot streaming. Hence, lot streaming is efficient only if

maxj(aj + bj) > max{E"^i «j, E"=i bj}.

For the results of the following sections, we need the following lemma. 

L em m a 2 There can be at most one job v such that

n n

ay +  b y >  m ax{]^ O j .  Y ^ b j ) .
j=l j=l

Proof: Suppose that there are two jobs v and £ that satisfy.

(3.1)

n n

ay + by > m a x { ^  aj, Y  bj}, 
j=i j=i

n n

a t A b i >  m a . x { Y a j . Y b j } ,
j=i j=i

adding both sides.
n  n

Oy + by + ae + be > 2 m a x { Y a j , Y b j } .
j=l j=l

On the other hand,

bj ^  Ov T by T de ~h be,
J=1 i=l

n n n n

2 max {E  E  ^  E  + E  h-
j=l j=l j=\

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

From (3.4),(3.5) and (3.6) we have.
n n

max(5]; Oj, Y b j } >  m & x{Yuj ,  Y  b^},
j=l j=l j=i i=i

which contradicts with the existence of jobs r  and £. □

(3.7)
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3.2.1 N on-preem ptive Single R outing M odel

Consider the case, in which there is a job v that satisfies (3.1), for otherwise 
lot streaming will not improve makespan. Without loss of generality, assume 
that Uv = 1. If we consider only the job v for streaming, assigning an arbitrary 
routing {Ml, M2) or (M2, Ml) and ignoring the other jobs, the optimal sizes of 
the s„ sublots are simply the geometric sublots given in [20]. If we take the 
routing as (Ml, M2) these sizes are,

1 — iT
Lvi — 1 — 7Г®·' ’

Lyk = T'Lic-i. к = 2 .

where tt =  by/ay. The optimal completion time of the job v is,

T U. ^ ^  ivо у — ayL·y\ Т by — ~  “h by
1 —

(3.8)

(3.9)

(3.10)

(See Figure 3.2.a).

The next step in constructing an optimal schedule is sequencing other jobs 
to the right of job v on machine Mi and to the left of job v on machine M2 

(See Figure 3.2.b). The resulting schedule is optimal if one of the following 
conditions hold.

OyLyi ^  ^ ] bj and byLyĝ  ^  ^  ̂ Oj
j = l , j ^ v  j= l , j¥=v

which results in a makespan Стах = Су (Figure 3.2.b),
n n

eiyLyi ^  bj and byLy^  ̂ ^  ^  ̂ o,j

which results in a makespan Стах =  Yl]=i (Figure 3.2.c),
n  n

0-yLyi <C ^ ] bj and byLys  ̂ ^  ^ ] Oj
j = l , j ^ v

which results in a makespan Стах = JCj=i bj (Figure 3.2.d).

(3.11)

(3.12)

(3.13)

However, if

OyLyi <C ^  ̂ bj and byljyĝ  <C. ^ ] o,j (3.14)
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Figure 3.2: Two-machine open shop, constructing the optimal schedule
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(Figure 3.2.e), a left shift of all jobs and sublots on machine Mi will be required 
to achieve a makespan Стах = aj, bj] (Figure 3.2.f). Note that
this left shift is always possible. Since,

iZy "h by  ^  b j  —r' (ly  ^   ̂ b j  
j = l  j = l , j : ^ v

(3.15)

means that the processing time of job v on machine Mi is longer than the total 
processing of all other jobs on machine M2, a left shift on machine Mi does 
not create any overlapping.

Since in each case we achieve the makespan,
n n

Стах — nicix{iZj ,  ^  ̂6j , Cy}
j=l  j=l

(3.16)

this construction is an optimal one. Although this procedure assumes infinite 
divisibility of a job, the results are also applicable to the discrete sublot case 
by using Trietsch’s [29] iterative algorithm to find the optimal discrete sublot 
sizes of a single job streamed in a 2-machine flow shop.

For the continuous case, we can also determine the required number of 
sublots to have a makespan which achieves the physical limit Y,  which is.

n n

Y  = m&x{^aj,J2f>s}
j = i  j = l

for any two-machine shop. Equating this limit to Cy,
^  1 — 7T

y  y — 1 —

log(r -  g,) -  log(r -  M  
log by -  log Gy

after some manipulation. It can be shown that Sy is a positive integer for all 

values of Oy and by when ^  by. For a„ = by.,

we get

(3.17)

(3.18)

(3.19)

C/y - г
«5 у Sy

and the optimal value of Sy is

=
Y

Ov__1
-  Gy I

(3.20)

(3.21)
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3.2.2 P reem ptive M ultip le R outing M od el

In this case, each sublot is taken as a separate job. Again we will consider the 
case when there is a job v that satisfies (3.1), for otherwise lot streaming will 
not improve makespan. We start with the following lemma.

L em m a 3 For each job i,
n  711 ^-{ae + be) < m a x { ^  ^  6 .̂}

j=i j=i
(3.22)

P ro o f :

ae + be < Y^aj  + J^bj  < 2rnax{^a_,·, ^  6̂ } □ (3.23)
j=l j=l j=l j=l

We will now show that two sublots of equal size for job v will be sufficient 
to reduce makespan to its physical limit, (3.17). Take these sublots as distinct 
jobs Vi and with processing times at,; = 0 2̂ = «ind 6i·, = bŷ  = |6„. Then 
apply the Algorithm of Gonzales & Sahni given in Section 2.2 to the n + 1 jobs. 
The optimal makespan will be.

n-fl n-f-l
Стах = max bj,max(aj +  i>j)·}

j=i j=i ^
(3.24)

Obviously Ej=i =  Ej=i <4 and bj = Yjj-i bj. Then we have,

тг+1 n+1
ae + be < m ax{]^ aj  ̂^  6j}, for I Ф V\ and C Ф V2

j=l j=l

from Lemma 1, and,
n+l n-fl

ae + be < m a x { ^  Oj, bj, } for  ̂ = Ui or £ = V2,
¿=1 i=i

from Lemma 2. Hence our actual makespan is,
n n

Стах = m a x { ^ a j, ^  bj} 
j=i j=i

which is the physical limit.

(3.25)

(3.26)

(3.27)



CHAPTER 3. MULTIPLE JOB MODELS 49

3.3 Job Shop M odels

In this section, we analyze the problem of streaming multijobs on two-machine 
job shops to minimize makespan, when the number of operations for each job 
is at most 2. We have 4 sets of jobs.

A = I Jj is processed first on Mi, next on M^}

B  = { j \ J ,  is processed first on M2, next on Mi}

C — {j I Jj is processed only on Mi}

D = I Jj is processed only on M2]

.Jackson [14] proposed the following algorithm to find the optimal schedule 
when there is no lot streaming.

Algorithm  III

Step  1: Sequence jobs in C arbitrarily to give sequence Sc-

Step  2: Sequence jobs in D arbitrarily to give sequence So-

Step  3: Sequence jobs in A according to Johnson’s rule to give sequence Sa

Step  4: Sequence jobs in B  according to Johnson’s rule to give sequence Sb

Step  5: An optimal schedule is {Sa i Sc , S b ) on Mi, {Sb -,Sd i Sa ) on M2.

In the presence of lot streaming, the construction will be similar to the one 
above. We have to revise the Step .3 and Step 4 of the algorithm. This can 
be done b}' applying the time lag model to the jobs in A and B, rather then 
applying the Johnson’s rule. Since there are no setups, the optimal sublot sizes 
of each job are given by the geometric pattern given by Equations 2.28 and 

2.29.
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To justify the argument, consider the jobs in A U C. Consider optimal 
schedule, for Mi there will be no job 'm B  0 D scheduled before any of the 
jobs in AU C, since otherwise it is possible to achieve the same or a shorter 
makespan by simple interchanges. Hence, jobs in AU C will be scheduled first 
on Ml- A symmetric argument is valid for jobs in B  U D on machine M2.

In order to sequence jobs in A U C, create a dummy a job Jj, such that

Cd = (d = 0 and bd = i'd — ^
j e B u D

As mentioned in Section 3.1.1 geometric sublot sizes will create lags Cj = ajLji 
and £j = bjLjsj for each job in A. The jobs in D will clearly have = aj and 
i'j =  0. The dummy job will be scheduled first on M\ by Johnson’s rule, leaving 
enough time for jobs in 5  U to be processed on M 2. The jobs in A will be 
scheduled next on Mi,  before the jobs in C which are sequenced arbitrarily.

Analogous construction can be made for jobs in B  U D.
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Conclusions

The purpose of this study is to propose solution procedures for a number of lot 
streaming problems. The basic assumptions are similar to that of Baker [1], 
Potts & Baker [20] and Glass et. al. [12]. Namely, there are no setup times 
and the sublot sizes are decision variables. In addition to the detailed analysis 
mean flow time objective functions, problems in open shops and job shops are 
investigated.

In Chapter 2, two-machine single job flow shop lot streaming problems are 
studied in detail. Optimal consistent sublot sizes which minimize mean flow 
time are derived for the sublot completion time model. It is also shown within 
the chapter that consistent sublots do not always give the optimal mean flow 
time, contrary to the comments in [8]. For the general problem, optimal sublot 
sizes are conjectured. Further research is needed to prove these conjectures. 
The single job two-machine solutions may be useful in developing solution 

methods for single job m-machine problems as well as for the multi-job two- 
machine problems. Worst case performance bound of equal size sublots with 
mean flow time minimization is also given. The worst case performance of 
18% shows that the use of equal sized transfers may be justified at least in 

two-machine flow shops.

The routing and streaming problem of a single job in an open shop to

51
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minimize makespan was also an area of research. The m! possible number of 
routings is reduced to 2’""* by showing that the optimal routing should be one 
of the pyramidal routings given any arbitrary sublot sizes. The results here 
may be also important in designing a flow shop.

Chapter 3 deals with the multi-job lot streaming problems. The preemptive 
two-rnachine flow shop multi-job problem with lot streaming remains still open. 

Streaming policy, that minimizes makespan in a two-machine open shop, is 
derived for two models. It is observed that, in most cases, the flexibility of open 
shops already allows for makespans which are very close to the physical limit 

(maximum of the total processing times on each machine). However, it is shown 
that lot streaming can be used to achieve this limit even in the presence of a 
job, whose total processing time determines the makespan. Finally, Jackson’s 
algorithm [14] is revised to minimize makespan in multi-job, two-machine job 

shops.

Major drawback of lot streaming models is that the maximum number of 
transfers between machines is a parameter, rather than a decision variable. It is 
assumed that the material handling equipment is always available and transfer 
times are negligible. We suggest the following single transporter model, in 

which the transfers can take place whenever the transporter is available. The 
transfer times are positive and depend on the the two machines, between which 
the transfer takes place.

The problem is the following. There is a single job composed of U identical 

units to be processed in an m-stage flow shop. These U units are ready in the 
input buffer of Ml at time 0. There is a single transporter, which starts its 
service always from a central location. is the travel time from M, to Mi+i, 
which also includes the loading and unloading times {qm denotes the transfer 
time from Mm to the finished product inventory), r, is the travel time from M,· 
to the central location (r„i+i is the travel time from finished product inventory 
to the central location) and vice versa. The objective is to complete all the 

units as soon as possible, minimize “makespan”.

The model proposed to solve this problem is similar to the periodic review
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model of Benli [5] presented in Section 2.1.1. The period lengths are decision 
variables. Let h be an estimate of the maximum total number of transfers that 
can take place. Transfers can start at times Ti, T2, . . . ,  7^. Define,

Lij : Number of units transferred to machine f + 1 at time Ti, 
1, if T.,i > 0,
0, if = 0,

Zt : the time at which ¿th transfer is completed.

K.t =

Clearly, we have.

1=1

The value of Zt can be found by the following set of inequalities. 

Zt > Tt + qiYi,t, f = l , . . . , m ,

(4.1)

(4.2)

with To = Zq = 0. The {t +  l)th  transfer can start only after the transporter 
becomes available.

Tt+i > Tt + q{Yi,t + -{■ riY(^t^i, t = — l (4.3)

with Ti = Ti. If there is a transfer at time Tt from machine i, the output 

buffer of machine i is decreased by L{̂ t units at time T). Also, at time Zt the 
input buffer of M,+i is increased by Lî t units. To write the inventory balance 
equations, define,

Xi t̂ ■ Number of units produced on machine i in [T<_i, Zt-i],
Xi^t '■ Number of units produced on machine i in [Zi_i,Ti],
/,,( : Number of units in the input buffer of machine i at time Tj,

li t̂ ■ Number of units in the input buffer of machine i at time Zt,
Oî t ■ Number of units in the output buffer of machine i at time Tt,
Oî t ■ Number of units in the output buffer of machine i at time Zt-

The inventories must be in balance at time Tt

/.M-l — ^ i , t “t" ^ — 1? · · ., m, f =  1, . . . , /1 , (4.4)

0,-,t_i +  X i , t — O i j t  “l· i  — · ■, . ,  m, f =  1,... . , /1 , (4.5)
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and at time

Ii,t + Li-\,t 

Oi,t +

with

— f —1,.. .,m , t =  1,. ••.ft, (4.6)
= 0.,<, ¿ = l , . . . , m ,  t 1, . . . ,  A, (4-7)

Oifi = Oifl = 0, f = 1,. . . ,m. (4.8)

Lo,t — 0, f = 1,. ••1^5 (4.9)

E,o - E,o = 0, i — 2,. . . ,  m. (4.10)

h,o — I\,o -'
h

(4.11)

(4.12)
i=l

The transfers take place only if they are indicated,

Li,t < (J-Yi.t, f =  t = \ , . . . , h . (4.13)

where /i is a very large number or the capacity of the transporter. There are 
production capacity constraints,

PiXi,t < T t - i - Z t - u  f f (4.14)

PiN-î t < T t - Z t - i ,  i -  I,. . . ,m,  t = I , . .. ,h. (4.15)

Finally, there are non-negativity and integrality constraints.

Tt,Zt > 0, f = l , . . . ,h (4.16)

> 0, ¿ = 1,.. . ,m. (4.17)

? A’,¿7 Oî t > 0, i = . ,m. t 1 , . . . ,  /i. (4.18)

Уг, e {0,1}, 1,. . . , m, f =  1, . . . ,  A. (4.19)

Then our mixed integer linear program will be,

min Zh (4.20)

subject to the Constraints (4.1)-(4.19). Note that Z/, will be the time at which 
all units are completed and transferred to the end product inventory. It may
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be tlie case that there will be less than h transfers, then we will have for some
V < h

Tt = Zt — Zv-i, t = v , . . . , h  — l,

or
ŷ· j = 0 t = v , . . . , h  — I i = 1, . . . ,  m.

For further research, it will be appropriate to analyze this model to make 
it computationally feasible. Some of the periods may be defined as active 
periods as in the model of Benli [5]. Computational experience can be helpful 
in observing some special structures of the problem like periodicity of transfers. 
Extension of this would be construction of the models and heuristic procedures 
for the problems with more transporters.
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