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ABSTRACT

A DYNAMIC IMPORTANCE SAMPLING METHOD FOR 
QUICK SIMULATION OF RARE EVENTS

Alper Erdoğan
M.S. in Electrical and Electronics Engineering 

Supervisor: Assoc. Prof. Dr. Erdal Arikan 
August, 1993

Simulation of low-probability events may take extremely long times since they 
occur very rarely. There are various variance reduction methods used to speed 
up simulations in such cases. In this thesis, a new variance reduction technique 
is proposed, which is based on expressing the desired probability as the product 
of a number of greater probabilities and estimating each term in the product 
in a recursive manner. It turns out that the resulting estimator, when feasible, 
uses an importance sampling distribution at each step to constrain the samples 
into a sequence of larger sets which shrink towards the rare set gradually. 
Moreover, the important samples used in each step are obtained automatically 
from the outcomes of the experiments in the previous steps. The method is 
applied to the estimation of overflow probability in a network of queues and 
remarkable speed-ups with respect to standard simulation are obtained.

Keywords : quick simulation, rare event, importance sampling, large deviations, 
variance reduction, q^ieueing network
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ÖZET

ENDER OLAYLARIN HIZLI BENZETİMİ İÇİN BİR 
DİNAMİK ÖNEMSEL ÖRNEKLEME METODU

Alper Erdoğan
Elektrik ve Elektronik Mühendisliği Bölümü Yüksek Lisans 

Tez Yöneticisi: Assoc. Prof. Dr. Erdal An kan 
Ağustos, 1993

Çok ender gerçekleştikleri için, düşük olasılıklı olayların benzetimi aşırı uzun 
süreler alabilir. Benzetimi hızlandırmak için kullanılan muhtelif varyans 
azaltma metodları vardır. Bu tezde, sözkonusu olasılığı daha büyük bir­
takım olasılıkların çarpımı şeklinde ifade edip, her terimi ayrıca tahmin etme 
esasına dayalı bir varyans azaltma tekniği önerilmektedir. Sonuçta ortaya çıkan 
tahmin metodu, örnekleri ender olaya doğru daralmakta olan bir dizi daha 
büyük kümeye sınırlamak için her aşamada bir önemsel örnekleme dağılımı 
kullanmaktadır. Ayrıca, bir aşamada kullanılan önemsel örnekler, önceki 
aşamalardaki deneylerin sonuçlarına göre otomatik olarak elde edilmektedir. 
Metod, bir kuyruklama şebekesinde taşma olasılığını tahmin etmekte kul­
lanılmış ve Standard benzetime göre kayda değer hızlanmalar kaydedilmiştir.

Anahtar Kelimeler : hızlı benzetim, ender olay, önemsel örnekleme, büyük sap­
malar, varyans azaltma, kuyruklama ¡şebekesi
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Chapter 1

Introduction

1.1 G eneral B ackground

Study of stochastic systems often require the use of simulation as a performance 
evaluation tool. This is generally the case when all other tools fail. Among 
analysis methods, the theoretical approach involves obtaining an analytical or 
numerical solution of the problem posed by the system. However, many a 
physical systems and phenomena are so complex in nature that an analytical 
solution is too difficult or impossible and the numerical solution requires exten­
sive computational resources, which might not be available. Moreover, even if 
the system is simple enough, some of its parameters may be unknown. Another 
tool for understanding the behavior of a system is experimentation, which is 
often impractical as the system might not yet exist or direct experimentation 
on the system might be dangerous or too costly. As a consequence, one often 
has to resort to simulation as the only available evaluation methodology, which 
Nobel laureate Ken Wilson characterizes as the third paradigm of science.

Stochastic simulation has a wide variety of application areas [1] such as 
placement of VLSI circuit components, performance evaluation of computer 
and communication networks, flexible manufacturing systems, global optimiza­
tion and random search, molecular dynamics methods in chemical physics and 
Monte Carlo solutions to matrix problems. The simulation of a system may 
have a number of objectives including



• understanding the qualitative behavior of the system

• obtaining estimates of average performance measures

• evaluation of a set of design parameters

• model fitting to measurements of the system

Depending on the objective, the simulation model should have certain de­
sired properties, but without exception a critical factor is the efficiency of the 
simulation method, i.e. its ability to generate reliable estimates within a given 
CPU time. It is generally the case that, simulations of complex stochastic sys­
tems are exceedingly slow, because a sufficiently high number of typical system 
evolutions must be generated to obtain a prescribed accuracy, and a typical 
evolution may take considerable computer time. Moreover, if the simulation is 
to be run for a long time, the period of the pseudo-random number generator 
may be exceeded, putting doubt on the accuracy of the resulting estimates.

1.2 Q uick S im ulation  M eth od s

CHAPTER 1. INTRODUCTION 2

There are a number of techniques used to speed up simulations, which fall 
into two broad categories. In the first category are the variance reduction 
techniques (VRT) which aim to improve the statistical efficiency as measured 
by the variances of the output random variables (i.e. estimates). If the variance 
of an output random variable can be reduced without disturbing its mean, 
then a specified precision can be achieved with less simulation. All of these 
techniques, in essence, involve putting into work our knowledge about the 
system in one way or the other, and with regard to the system complexity, 
they are difficult to set up and application specific. A brief survey of existing 
VRTs can be found in [2]. The techniques in the second category are based on 
distributing the simulation to a multiprocessor system instead of using a single 
processor. Since most systems encountered in practice possess an inherent 
parallelism, it would be also natural to carry this property to simulations. In 
addition, when it is the case that a number of independent simulation runs 
are to be jierformed, these can be efficiently done in parallel. See [.3] for an 
overview of distributed simulation.

Importance sampling is a VRT that has attracted a lot of research in the



last two decades. In this technique, the inputs to the system arb biased in such 
a way that, a specific system response occurs with greater frequency, which 
gives chance to study that kind of response with less simulaĵ jQĵ  Since the 
simulated system was initially biased, the output variables hay^ be scaled 
appropriately to go back to the original system, where the scaling jg determined 
by the original and biased input statistics. Though it presents difficulties 
in practice, there has been a great deal of interest in applyjj^g importance 
sampling to estimating

• probabilities of rare events in Markovian systems [4], [5], |-gj

• error rates in communication systems and detection [7], |gj j-gj

• probabilities of excessive backlogs in queueing networks Iĵ ĵ ^̂ 2]

1 . 3  O b jectives and O utline o f  th e  T hesis

CHAPTER L INTRODUCTION 3

In this thesis, we will be concerned with a subset of quick simul ,. 1 ,’  ̂ ation problems,
namely estimation of probabilities of rare events. Such events u „ ,ijually represent
failures or overflows in stochastic systems. Although they have , ,very low proba­
bility of occurrence, they can seriously impair the system functi . , ̂ j i j  onmg whenever
they occur. As a consequence, one might wish to know the prOĵ  bility of such 
events quite accurately.

In the following, we give a precise definition of the probleir

Let (ii, P) l)e a probability space, /1 C an event and l^i s , . i- . ̂ . . . ·) the indicator
of A. The probability of A is given by

Pa = [  h M d P iu j )J12 ( l . l )

We shall be concerned with the case where /1 is a rare event, ^
small. The standard Monte Carlo estimator for pA is

PA =
J = l

where are i.i.d. outcomes of the experiments on (ii, P). ;

i.e. Pa is very

( 1.2)

caailed unbiased if its expected value is equal to the true value \n  estimator is 
and consistent
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if, as L ^  oo, it converges in probability to the true value. Note that, pa is 
unbiased and consistent, with variance

Kar(pj) = j i p A - p ^ ) (1.3)

A commonly used measure of the accuracy of an estimator is its confidence 
interval. For instance, an (e, ^)-confidence estimator guarantees that the es­
timate is within ±e% of the true value with probability fi. An equally good 
measure is the relative precision defined in terms of the squared coefficient of 
variation

,2 Var\pA]C^ =
E\ji,

(1.4)

Remembering that, is approximately normal for sufficiently large L, the 
accuracy measured by the coefficient of variation can be expressed in terms 
ot confidence intervals. As an example, an estimator with C l  = 1 0 -  is 
equivalent to a (20,0.95)-confidence estimator.

From (1.3) and (1.4), the coefficient of variation of the standard estimator 
can be computed as

- 1 )  (1.5)
L^Pa

It is clear from (1.5) that, if pA is very small, then a large number of i.i.d. 
outcomes must be generated in order to meet a specified precision and when 

is a complex sample space imposed by a complex system, the simulation may 
take extremely long times and some kind of quick simulation technique is called 
for.

Importance sampling has been successfully used for rare event simulation in 
a number of applications [5], [12], [13], [14]. In this work, we will present a new 
variance reduction technique which is closely related to importance sampling 
and is based on dividing the simulation into smaller parts. This division should 
not be confused with distributed or parallel simulation however, because the 
purpose here is not to distribute the simulation but to obtain a statistical 
efficiency in terms of variance. Although importance sampling appears to be 
one of the key ideas in this method, it is not used in the sense put forward by 
the theory, rather it is implicit in the procedure.

The outline of the thesis is as follows:
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In Chapter 2, we give the mathematical preliminaries of importance sam­
pling and consider the class of exponentially twisted family of distributions 
applied to the study of overflow probabilities in networks of queues. Only Sec­
tion 3.1 is crucial to the understanding of the subsequent chapters, the rest of 
Chapter 2 being an overview of some known results in theory and application.

In Chapter 3, we introduce our" method, apply it to the example of the 
previous chapter and examine some conditions on the efficiency of the resulting 
estimator.

In Chapter 4, we present the results of our simulation experiments on the 
network of tandem queues and compare the three simulation methodologies 
discussed so far.

Finally, Chapter 5 gives conclusions and suggestions for further research.



Chapter 2

Im portance Sam pling

2.1 C hange o f  M easure

Recall the standard estimator (1.2):

VA =

where are i.i.d. outcomes of the experiments on The basic idea of
importance sampling is to change P in such a way that the estimator variance is 
reduced. Denoting this new measure by P"', the importance sampling estimator 
is given by

1 · dP (2.1)

where are i.i.d. outcomes of the experiments on (fi,P"'). It is assumed 
that P* is absolutely continuous with respect to P so that the likelihood ratio 
dP/dP* is finite. Note that pA is unbiased

r dP i
E[Pa] ^  /  iA{co)-— {u)dP^(u) ^  /  IAuj)dP{u)=pA  

JQ  d P *  JQ

and has variance

Var[pA\ = ^  j^^i\{u){^{io)YdP*{uj) -

= 77 /n -  A

(i

(2.2)
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For the estimator (2.1) to be more efficient than the standard estimator, 
we should have

Var[pA\ < Var[pA]

or equivalently

i dP * i
Jq lA(‘̂ )dP{uj)

If dP/ dP* [uj) < 1 whenever u; G A, this condition is satisfied, which means 
that a good choice of P* should put its mass mainly on the set A: That is, the 
rare event should occur more frequently under the new measure.

T heorem 1. The choice of

dP*(cu) =
dP{u>) ■ /^(cu)

Pa
(2.3)

achieves the minimum variance for the importance sampling estimator pA- 

See [1.5] for a proof.

Note that the event A occurs with probability 1 under this measure. Sub­
stituting (2.3) into (2.2), we get an interesting result

Var[pA] = 0 (2.4)

Unfortunately, the optimum distribution is impractical for a couple of rea­
sons. First, P(·) is not usually .Specified in closed form. Second, and more 
important is, in order to evaluate (2.3), we need to know pa  ̂ which is the pa­
rameter we are trying to estimate. Hence, the result (2.4) is unachievable in 
practice.

Although the optimum distribution (2.3) is impractical, one can still devise 
sub-optimum solutions which approximate it. Typically, these solutions are 
chosen from a parametric class of distributions, so as to minimize the estimator 
variance. What kind of a constraint class should be used depends on the 
character of the rare event under consideration. In the following sections, we 
will consider the family of exponentially twisted distributions, which has been 
successfully used in large deviation examples. Although the underlying idea 
is the same, the derivation of the results for different applications exhibits big 
differences, so we will be concerned with the slow Markov walk as a specific 
example.
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2.2 Large D ev ia tio n s and Slow  M arkov W alk

Consider the Markov chain {XI} G 9̂ "* defined by

(2.5)

where e is the parameter defining the Markov chain, K(·, ·) is a function from 
X 3? to 3?"̂  and are i.i.d. random variables on 3?. The results will be 

asymptotic when e —> 0.

Let Fc be the distribution of b{x) the mean of Ex and
Mx{s) — Zf[exp(s, 2/)] the Laplace transform of Fx. Let P^ denote the 
probability measure associated with the process {X}.}· Assume that

1. AIx{s) < +00 for each a:, i.e. Ex has a finite Laplace transform.

2. d[Fy^ Ex) < C\\y — a;|| where c > 0 and d is the Prohorov distance [16], 
i.e. Ex is Lipschitz smooth in x.

T heorem 2. Let x^{t) be the solution of the ODE 

 ̂  ̂ and ^°(0) = xqdt
If X q = .To, then

Vt; > 0, VT < + 00, P{ max \Xi — T°(en)| > ?;) ^  0 

when e — 0.

Define a continuous process X'^{t) from X}. as X^{1) = X[t/t\ that A'’' (̂i) 
is the interpolated version of the discrete process. With this, the result of 
Theorem 2 means that the process X'{t) converges uniformly in each interval 
[0,7 ]̂ to the deterministic trajectory T^(i), which is tangent to the mean-field 
of Ex. See Cottrell [5] for a more detailed discussion and references.

Let lx{s) and hx{u) = sup,{{syu) — lx{s)) denote the logarithm and Cramer 
transform of Mx{s), respectively. Let Ct be the set of continuously piecewise 
differentiable functions ip : [0,T] —> such that ¥̂ (0) = To is fixed.

For (p G Cr, the action integral along p is defined by
rT



where ip(t) is the derivative of ip at point t.

With this definition, consider the following theorem

T heorem 3 Let i  > 0, y? be a path of Ct - Let Tg(ip) be a tube around 
ip with diameter S] that is, the set of the trajectories of X^{t), issued from xqi 
such that

Vi G[ 0,T’], \X^{t)-p>{t)\<8  

Then, there exists ¿o such that for 0 < i  < 8q, we have

lim(—e log F'(T/((^))) = /((^) + a(<5) with limo;(i) = 0

Theorem 3 says that, the probability that the process X'^{t) will stay inside 
the tube Tg{p) is approximately equal to exp(—7((^)/e), from which we see 
that, I{(p)je is a measure of the resistance of the process to follow the path </?. 
See [5] for comments and [17] for a proof.

Let y4 be a subset of Ct · By making 8 smaller, one can discriminate the 
tubes around each p C: A. Then, the probability of set A is approximately the 
sum of the probability of different tubes

^ e x p (- /( (^ ,) /e )
I

As e —> 0, the term with the smallest coefficient I{pi) will become dominant 
due to the exponential. This means that, whenever event A occurs, it will 
most likely occur along an optimal path Popt·, for which the action integral is 
minimum. With some more technical assumptions from [18], this observation 
is formalized by the following corollary.

Corollary 1. If /1 g S satisfies inf{/((^) : p g int{A)} = inf{/(</?) : p  G 
c/(y4)}, then

lim (-elogP '(A )) = inf I{p)

CHAPTER 2. IMPORTANCE SAMPLING 9

P robability Change. The above results are generally applied to the 
case where A is a collection of trajectories starting from Xq̂ traversing a stable 
domain and reaching an exterior region T. Since the exit will follow approxi­
mately v̂ opi, the change of probability measure should be made in such a way
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Figure 2.1. A typical walk and dominant exit point

that (fopt becomes the most probable path. By recalling the result of Theo­
rem 2, the problem is then to transform the measure Fx into F* so that the 
transformed mean-field will be tangent to (fopt·

More precisely, F* is defined by

II?*/ \ exp(<?̂  ■dF^iy) = - Mx{9x)

where 0̂  is to be chosen so that, if a; = (popt{t), E[F*] — ipopi{t)· Let P^ be 
the corresponding probability induced on [XI]·

The above problem has been solved for a particular situation in [5]. Suppose 
that lo = 0 and b{x) has the sign of —x for each x so that 0 is an attraction 
point of the process. Define A to be the set of all trajectories, starting at 0, 
crossing a positive boundary a before coming back to 0. If Assumptions 1 and 
2 hold, we have the following theorem.

T heorem 4. If 0̂  in (2.6) is chosen as the solution of 

lx{0x) = li and Ox ^  a fo rx € ]0 ,«[ (2.7)

then among all exponential changes of probability, the transformation 
P^ —> defined by (2.6) is asymptotically optimal in the sense of the vari­
ance, i.e.

r dP '
Lni /  [ -—\YdP^ (to)

IS minimum.

The proof can be found in [5].
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Figure 2.2. M/M/1 Queue

2.3 A p p lica tion s

Example 1. Consider a single M/M/1 queue with arrival rate A and service 
rate /i. Assume A + /̂  = 1 without loss of generality and A < // so that 
the queue is stable. Let {Zk : = 0 ,1 ,...}  denote the embedded Markov
chain representing the number of customers in the system. The transition 
probabilities are given by

= A for z > 1 and po,i = 1 
— p for z > 1

We are interested in the probability pA that, starting with an empty system, 
the number of customers reaches n before returning to 0 again. Knowledge of 
such a probability is useful in finding the mean buffer overflow time in queueing 
networks [12].

To be able to apply the results of the previous section, we need to represent 
the Markov chain in the form of equation (2.5). For this define ZĴ  = Zkin, 
Then,

= '¿I + ^ v ( Z t , a ) (2.8)

Note Pa is also equal to the probability that, starting with a single customer^ 
the system reaches n before returning to 0. In this case, K(0,(fjt) will never 
have to be evaluated since state 0 can only be reached at the termination (final 
step). So, the chain can be assumed to have an homogeneous jump distribution

P{V{^k) = l) = \  and P{V{^k) = -1 ) = /i

for all states, satisfying the continuity requirement in Assumption 1. Equation 
(2.8) now becomes

y n z ^  + - v u , )n
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The Laplace transform of is

Mx(s) = Aexp(s) + //exp(—s) 

Solving for Mx{0x) = 0 gives

Ox = log(^)

Substituting 9x into (2.6), we get

P(V'{^k)=' i )  =  .\exp(log(j)) = /i and

^ ( n & )  =  - I )  =  /<exp(-log(i)) =  A

which is interesting in the sense it dictates the interchange of A and ¡i in the 
original system.

The direct estimator of is

PA = \ ' t
^  j=i

where u>̂ are i.i.d. evolutions of the original system. Actually, is a sequence 
of states starting from 0, ending either in n or 0, and is also called a cycle. 
I{u>̂ ) = 1 if reaches n, 0 otherwise.

The importance sampling estimator on the other hand is

1 · (IP
Pa =

f=i

where are i.i.d. evolutions of the system in which A and y, are interchanged 
and is ratio of probability of occurrence of under P to that under
P \

Let M denote the expected number of Markovian jumps in a cycle of the 
original system and M* denote that of the transformed system. Then, the 
speed-up factor for this change of measure is given by

LM
S = L- M'

where L and L* arc to be chosen such that uar[p^] = var\j)A]· Since the system 
is simple enough, analytical expressions for v(ij’[p a ], M, and M* can obtained 
and the speed-up can be computed as

,9«[n. fl n
(2.9)
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14

41

Figure 2.3. State transition diagram for Example 2 

See [12] for the derivation of 2.9.

As an example, let A = 0.3, // = 0.7 and n = 20. Then, S  is approximately 
2 X 10*̂ , showing the power of the above probability change.

Example 2. Now consider two M /M /l queues in tandem. Let A be the 
arrival rate to the fist queue and pi, p2 be the respective service rates. Call 
such a network a (A,/¿i, /í2)-network. Assume X < pi and A < p2 for stability. 
Let {Zk : ·̂ = 0 ,1 ,...}  be the embedded two dimensional Markov chain taking 
values over the state space S  = {(nj, 722) : nj > 0, TI2 > 0}, where n,· represents 
the number of customers in queue i. Also assume without loss of generality 
that A + /¿1 + /22 = 1· We are again interested in the probability that, the 
number of customers n\ + yi2 in the system reaches n before reaching 0 again. 
The state diagram of the chain is shown in Figure 2.3 where the transition 
probabilities are

Po

Pi

P3

P5

= 1
A

A + Pi 
A

X P P2 
A P6

P2
Pi

A + Pi
P2Pa = . ,

A  +  P2
P2 P7 = Pi
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Note that the jump distributions at the boundary states are different from 
those at the interior states and the change is abrupt at the boundaries, violating 
the continuity assumption. So, the results of Section 2.2 are not directly ap­
plicable here.

It has been shown in [12] that, neglecting the discontinuities at the bound­
aries, the large deviations theory suggests the interchange of A and fi2 - How­
ever, experiments on the (A = 0.20,/ui = 0.30,/^2 = 0.50)-network have shown 
that the above is not an optimum change of measure. It is reported in [12] 
that, for n = 20, where the true value of pA is 3.759 x 10““*, simulating the 
(A = 0.50,/¿1 = 0.30,/^2 = 0.20)-network for 1000 cycles gave = 8.388x10“®, 
while simulating the (A = 0.30, = 0.20, p2 = 0.50)-network for the same
number of cycles gave a better result, pA = 3.595 x 10“'*.

To take care of the above theoretical difficulty, Parekh and Walrand [12] 
proposed a heuristic method which we consider briefly in the next section.

2.4 A  H eu ristic  A pproach

The fact that the large deviations results are not applicable to discontinuous 
kernels does not mean that there is no optimal exit path ipopt on those kernels. 
Thus, any other method which finds (popt and centers the probability around 
it would be equally useful. Such a method has been proposed in [12] based on 
Borovkov heuristics [19].

Consider a G/G/1 queue with arrival rate A and service rate p. Let h\{u) 
and be the Cramer transforms of the interarrival time distribution and
service time distribution respectively. We want to estimate the j)robability of 
the backlog exceeding n in a cycle.

To find the most probable path of overflow, one reasons as follows: For 
the queue length to exceed n in a cycle, there must exist a time T  such that 
n = T(A' — fi') where A' and p' are the empirical (observed) arrival rate and 
departure rate until T. Using a large deviation theorem by Chernoff [20], the 
probability of such a behavior can be approximately evaluated as

I’.x p { -n { \ ' -  /(') ‘(A7t,\il/A') + ( 2 . 1 0 )
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Maximization of (2.10) with respect to A' and fi' reveals the most likely 
trajectory that the original system would follow to reach an overflow. One can 
then replace A by A* and fj, by to make this behavior more probable (A* 
and /i* are the values that maximize (2.10)), which is what we seek. Actually, 
X* = fi and //* = A, the solution in agreement with the large deviation results 
for an M /M /l  queue. See [20] for more details.

A similar approach is possible M /M /l queues in tandem, yielding a change 
of measure where A is interchanged with the smaller of /ii and ^ 2  [12], which 
is quite reasonable, because if the system is to be filled up, it will most likely 
fill up due to the queue which has lower service rate. This result also ex­
plains the superiority of the (A = 0.30,/ii = 0.20,/¿2 = 0.50)-network over 
the (A = 0.50, fii — 0.30, ^ 2  — 0.20)-network, as exemplified at the end of the 
previous section.

The above heuristic is generalized to more complex Jackson networks in [12] 
and the analytical solution of the resulting maximization problem is obtained 
in [21].



Chapter 3

D ynam ic Im portance Sam pling

In this chapter, we are going to introduce a variance reduction technique which 
essentially utilizes the idea of importance sampling, but in a somewhat different 
way.

As before, we are concerned with estimating probabilities of rare events, 
or equivalently, expectations of associated indicator functions. The technique 
is based on expressing the desired expectation as the product of a set of ex­
pectations. The estimation is then performed recursively on each term. This 
decomposition may lead to substantially low coefficients of variation on sam­
ples of the components, and hence, obtaining good estimates of the parts may 
be much easier than obtaining a comparable estimate of the whole.

The technique is called dynamic., because it has an evolutionary nature, 
where the statistics obtained in each stage are used as inputs in the following 
stages. From this point of view, the resulting algorithm can be considered as 
forcing samples in a stepwise manner into the rare set of interest.

16



CHAPTER 3. DYNAMIC IMPORTANCE SAMPLING 17

3.1 T h eory

Let (ft, P) be a probability space a,nd.A C an event whose probability P{A) 
is to be estimated.

Introduce a number of random variables X i , . . . ,  Xn on (fi, P), i.e. functions 
Xi ·. Ll such that A can be written in the form

A — Ai n A2 n · · · C-An (3.1)

where

i) A i 2  A 2 An

ii) A{ belongs to the cr-algebra of events generated by X \ , . . .  ,Xt·, for each 
z = 1 ,. . . ,  n.

Condition ii) is equivalent to assuming that the occurrence of A{ is deter­
mined by the knowledge of the values of i.e. there exists a set
Bi C 2^ such that

(jo G Ai (X ,(u , ) , . . . ,X i (u ))€  B, (3.2)

Although we have chosen Xi^s to be discrete, the following derivations can 
be easily extended to the continuous case. From (3.1) and (i), we have by 
Bayes’ rule

P(A) = P(/l,)P(/l2|/l,) · · · P{An\An-i) (3.3)

Figure 3.1. A = A\ f\ A 2 0 ■■■ C\ An
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The idea is to estimate P{A) by estimating each term P{Ai\Ai-i). Since 
Ai are not arbitrary sets, one can expect F(y4,|y4,_i) to have some nice form. 
Noting that Ai C Ai-\, we have

p { { x , , . . . . ,X i ) e B i )
P((X i , . . . ,A V i ) g 5 ,_0

_ ______ Bi__________

· · · > Xi-i)p{xi\xi, · · ·, a:,_i)
 ̂ _____Bi_______________________

P { { X г , . . . ,X i . г ) € B i . ı )

Let / b,_i denote the indicator of set B{^i. Since = 1 when­
ever (x i,. . . ,  X{) G Bi  ̂ it can be inserted into the summation of the numerator 
without changing the value of the sum, giving

P(A,|A,_i) = (.3.4)
Bi

where

....... · ' = *............................................................................. "

It is interesting to note that ;T(.xi,. . . ,  a;,_i) is the optimum importance 
sampling distribution of (A^i,. . .  ,-A',_i) on the set P,_i (see (2.3)). Equation 
(3.3) can now be written in a more compact form as

Pa = P{A) =  IJp i (3.6)
z=l

where

Pi — )p(x,|xi 1 7 · · · 7 )]

We consider the estimator
n

PA = n  Pi
i=l

with

(.3.7)

;!, = 1 - E V , ) ' )
«  , = l

(3.8)
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where {(X i,. . . ,  XiY : j  = l , . . . ,  Li} are independent random vec­
tors, (X i,. . . ,  XiP chosen from the distribution , Xi-i)p{xi\xi, . . . ,  Xi-i).
The independence assumption guarantees that p.4 is an unbiased estimator and 
it is easy to check that it is also consistent. We call such an estimator as a 
product-form estimator.

The feasibility of the estimator (11.8) hinges on the ability to

i) generate samples from p*(xi,. . .  . . . ,  x,_i) and

ii) recognize whether (xi, . . . ,  a;,·) G B, for arbitrary (a:i,. . . ,  Xi).

We discuss the first item in some more detail. In the following, we write 
P{Bi) to denote P {(X i , . . . ,  Xi) G Bi). By conditioning, we have from (3.5)

pixu- ■ . :Xi-l)p(Xi\xu. . . ,Xi-i)lBi{xi, ■ ■ -,Xi)p*{xi , . . . ,Xi )  =
PiBi^i)P{B,\Bi^,)

p{x \ , . . ■ , -T,-i)/B,._i( .ri , . . .  ,Xi-i)p{xj\xi , . . . ,  j: , - i ) / b ;(x i , ■. .,Xi)
Pi Bi - , )P{Bi \Bi . , )

p*(a:i , . . . ,  xi^i)p{xi\xu · · ·, Xi-i)lBi{x\,  ■ ■ -,Xi)
P(BilBi_i)

Note from (3.9) that p*(xi,. . .  ,Xi) is proportional to

P * ( X l ,  . . .  ,  Xi-i)p(Xi\xi, Xi_i)

(3.9)

(3.10)

and is concentrated on Bi. This means that if we have true samples drawn 
from p*(xi,. . . ,  x,_i) and if we can sample Xi from p(a:,|a;i,. . . ,  a:,_i) given 
X \ , . .. ,Xi- i ,  we can generate samples from p*(a;i,. . .  ,Xi). So it is generally 
our ability to sample from the conditional which determines the applicability of 
the estimator, and when we are able to do so, p* can be generated recursively. 
Actually, this generation would be automatic in the procedure, because (3.10) 
can be recognized as the sampling distribution in the step, so the set of 
samples which fall into 5,· in the step can be used as samples of p*(xi,. . . ,  Xi) 
in the (i + 1)*̂* step. However, there is a technical difficulty that should be 
noted here: If the number of samples of ; / ( x i , . . . ,  Xi) obtained in the above 
manner is less than T,+i, the number necessary in the (f + 1)'^ step, then there 
will be shortage of true samples of p*(.Xi,. . . ,  x,·). An immediate remedy to 
this problem would be to draw at random Z/,4.1 samples from the available set 
with replacement. This would be mathematically equivalent to constructing 
cin empirical distribution p*(x), . . . ,  x,) from the available samples and then
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generating ( X i , . . . ,  X{) from p*(ari,. . . ,  x,·). With these considerations, the 
estimation procedure can be stated as follows:

PROCEDURE. By performing experiments on (i), P)

Step 1. Generate Li indepen.dent samples from p(xi) to obtain X(  for 
j  = 1 ,. . . ,  Li· Estimate pi using (3.8). Record those X (’s which fall into 
Bx.

Step 2. Set i = 2. Choose {Xi , . . .  at random among the values
recorded in the previous step. Generate a sample from p(x,(xi,. . .  ,x,_i) 
with {X \ , . . . ,  as a condition.

Step 3. Repeat Step 2 for L, times to obtain (X i,. . . ,  X,)·’ for 
j  = 1 ,. . . ,  Li. Estimatep,· using (3.8). Record those (X i,. . . ,  X,)^’s which 
fall into Bi.

Step 4. Repeat Step 3 and Step 4 for f = 3 , . . . ,  n.

Finally, form the product pA = nr=i Pi-

Notice that, the above procedure deviates from the theoretical estimator 
given in (3.8), in that, (X i,. . . ,  Xi- iY  in the step are not sampled from the 
true distribution p*(xi,. . . ,  Xt_i), but from an estimate p”(x i,. . . ,  x,_i) of the 
true distribution. We demonstrate in the Appendix that the resulting estimator 
pA in this case is biased, however the bias becomes insignificant for sufficiently 
large values of L,’s. Actually, the accuracy of the estimates p*(xi,. . .  ,Xi) for 
f = 1 ,. . . ,  n turns out to be proportional to the accuracy of p,’s and when L^s 
are so chosen to yield accurate estimates of p,’s, which is generally the case, 
p*’s come out to be quite accurate. So in our following derivations, we assume 
that Li's are sufficiently large so that the bias in pA is negligible.

As a final point, note from (3.6) that

Pa
Pi

rTj/i Pj
> Pa ,

The condition p, > pa assures that, the number of samples required to 
estimate each pi for a given precision is less than or equal to the number 
required to estimate pA for the same precision. However, there are n of these 
Pi's now. Whether there would be net gain in terms of simulation time depends
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on how Pi’s are distributed and average sampling times in each step, which in 
turn depend on the nature of the problem being studied. Therefore, it is 
not possible to draw general conclusions on the efficiency of the product-form 
estimator. However, as will be shown in the next section, the more uniform 
the Pi’s are, the more advantageous is the above estimation scheme.

♦
Comments and Remarks.

l.Tlie product-form estimator utilizes optimum change of measure in each 
step, which is known to be unachievable as it requires the knowledge of the 
parameter to be estimated (see Section 2.1). However, one need not know 
the optimum distribution in this case, because the likelihood ratio p/p"* does 
not appear in the equations. Recall that in standard importance sampling the 
likelihood ratio appears as a weighting factor and must be evaluated for each 
sample. What is needed in this technique is only a set of samples drawn from 
the optimum importance sampling distribution p"‘(x i,. . . ,  Xi), which can be 
obtained in the way described before.

2. The probability 
shrinking towards A. 
respect to the previous 
into the set A, It is this 
sampling distributions 
sampling algorithm has 
samples are learned at 
input to the next step.

of set A is estimated by using a sequence of sets Ai 
At each step, the sampling domain is reduced with 
step, in other words, the samples are forced gradually 
forcing behavior that is represented by the importance 
appearing in the equations. Moreover, the resulting 
a dynamic character, in the sense that, the important 
each step from the system itself, so as to be used as

3. Ability to sample from the conditional p{xi\x\^,. .  ^Xi-\) amounts in 
stochastic systems to the ability to impose certain conditions on the system. 
Although this may not always be possible with real systems, by appropriate 
modeling, it may be possible to control the parameters and inputs of the sim­
ulated system arbitrarily to create a desired condition.

3.2 A pplication: T andem  Q ueues

We now apply the results to the simulation of tandem queues studied in Section 
2.3. Let {Zfc : L· = 0 ,1 ,...}  l)e the embedded Markov chain taking values over 
the state space <5 = {(ni,7i2) : > 0,n2 > 0} where Ui and ni are the
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number of customers in each queue. Assume that the system is initially empty, 
i.e. Zo = (0,0) with probability 1. Let (fi, P) be the underlying probability 
space and A the event that the number of customers reaches n before returning 
to zero again.

We define the following subsets of S:

Si = {(ni,n2) : ni + U2 = f), f = 1, . . . , n (3.11)

We say that {Zk(oj)} hits 5,· at (nj ,n2) if Zk(co) = (ni ,«2) for some k > 1 
and Zi(oj) ^  Si for I = 1, . . . ,  A: — 1. To estimate P(A) we define the random 
variables X i , . . . ,  Xn so that for each oj E D,

i (ni ,n2) if {Zjt(o;)} hits before hitting
Xi{LV) = <

[ (0,0) otherwise

Note that if we regard So and S\ as imaginary boundaries for the random walk 
{Zk{oj)}, Xi equals the point [Zk{u)} first hits the boundary. Let

Ai ={LoED· .  X ,(u;)^(0,0)}

Clearly,

A =  A\  n A 2 n · · · n An
D A2 3  · · · 2

and for each f = 1, . . . ,  n,

u e A i  X i H e B i  (3.13)

Applying the results of the previous section with Bi = Si and noting that 
Ai is measurable w.r.t. Xi only, we have a simpler form than given in (3.4):

p i  =  P { A i \ A i - \ )  =  P ( X i  €  G  S i - i )

= X] X);C(2:,_i)p(a:i|;r,_i), i = 2 , . . . , n
S,-i Si

The estimator for each /;,· can now be written as

1 L·.
Pi = r T . l s , { X l ) (3.14)

where Xf  are i.i.d. copies from the distribution p hor this
case, the sampling process takes the following form:
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i) Sampling from p(x,|x,_i) is equivalent to starting {Zk} in state and 
recording its final state as X{ when {Zk} reaches S{ or .So­

il) Samples of are those pofnts Xi^i on the boundary ¿',_i that were
hit by [Zk] in the (i-l)‘̂  step.

For u) £ fl, the part of {Zk(oj)} which lies beyond the first visit of {Zk (^)} 
to Si-i, if there exists any such visit, is called the cycle of {Zk(u>)}. The 
cycle of {Zk{uj)} is said to be successful if {Zk{u>)} hits Si before hitting So- 
With this definition, the simulation algorithm can be stated in simpler terms 
as follows:

Step 1. Start with an empty system. Generate Li cycles of type 1 to 
obtain X ^. Estimate Pi. Record the final states of successful cycles.

Step 2. Set i = 2. Start the system in 5,_i. Choose at random among 
those states recorded in the (i-l)'^ step, to be a starting state for this 
step. Generate a cycle of type i.

Step 3. Repeat step 2 for T, times to obtain Xf's. Estimate p,·. Record 
the final states of successful cycles.

Step 4 .Repeat step 2 and 3 for i = 3 ,. . .  ,n.

Step 5. Form the product pa = HiLi Pi·

Simulation Result. The (A = 0.10, pi = 0.40, p2 = 0.50)-network has 
been simulated. The true ov'erflow probability is 2.104 x 10“  ̂ for n = 13. Direct 
simulation for 2.55 seconds gave p^ =  0 while simulation using our algorithm 
gave in the same duration pa = 1-815 x 10“ '.

The estimates of pi^s also are listed below:

[pi •••Pi3]=[1.000 .334 ..326 .,303 .287 .277 .270 .264 .263 .258 .2.58 .256 .252]

Detailed simulation results will be presented in Chapter 4 for a more 
complete comparison of the present method with other methods.
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3.3 V ariance A n a lysis

In this section, we compare tlie performances of the standard estimator and 
the product-form estimator, which we repeat below for convenience.

The direct estimator of is given by

PA = j E l A ( { X l , . . . , X n y )
^ i= l

(3.15)

where {X i , . . .  ,XnY  are i.i.d. samples from p (x i,. . .  ,x„), and the product- 
form estimator is

with

PA = Y[ Pi
¿=1

J=I

(3.16)

(3.17)

where are independent copies drawn from the distribution
P*(xi,. . . , Xi-i)p{Xi\xu ■ ■ · ,-C,-l).

As noted before, the relative magnitudes of p,’s depend on the specific 
parameters of the problem under consideration. Hence, we assume throughout 
the section that pA and p,· for z = 1 ,. . . ,  n are known.

In the following, the squared coefficient of variation is used as a figure of 
merit for the estimators. The question is which estimator would achieve a lower 
coefficient of variation given that L, = L. We also assume that average 
sampling times in both estimators are the same so that the above is a valid 
measure of efficiency.

To start with, we need a fact from elementary probability theory

Fact. Let X  and Y  be two independent random variables with squared 
coefficients of variation Cx and Cy respectively. Then

_ ^2 I /^2 I ^2  >or2 (3.18)

The proof is direct from the definition of the coefficient of variation (1.4). 
Next, we make a simplifying approximation
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Approximation. ^  for i j .

Note that the cross-term in (3.18) is dropped. So, the approximation is 
valid whenever C .̂ <C 1 and C~̂  <C 1,"which is generally case for estimators of 
acceptable precision.

With this approximation and (1.5), the coefficients of variation of both 
estimators can now be written

and

where

c L  =  t i c i
i = l

c f  = ( i  -  1)
P i

(3.19)

(3.20)

(3.21)

Given Li = L, the next question is how to allocate L{ so as to get 
maximum performance on .

Theorem 1. (Optimum Allocation) 

L1=1
is minimized for

¿=1
Cp^ = ^2  ~ ^ i  subject to ^2  Li = L and Li > 0, i = I , . ,

C i r

n

Er=, a-
(3.22)

Proof. Treating L, as continuous, we can write the Lagrangian as

C = t , f c l  + \ ( Y , U - L )
1=1 1=1

Differentiating with respect to gives

, X _  n r _  · _  1
d L i ~  ^

Substituting Li into the constraint, we get
I n ^

r  -  i >1/1 . ¿̂ ¿=1
L

which upon back substitution into (3.23) gives

, C< I

(3.23)
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With the result of Theorem 1, equation (3.20) becomes

CL· = = ^ ( i c , Y (3.24)
1=1

Before stating the next theorem, we express (3.6) in terms of C,’s using (3.21) 

PA =  f [  r 2̂ , T and Ci > 0, (3.25)

T heorem 2. The minimum value of Cp  ̂ =  C”,)  ̂ subject to (3.25)
is achieved at Ci =  . . .  =  (7„.

Proof. The problem is to
I n n I

minimize —(5^ CiY subject to T] Cf +  I =  —  and C,· > 0, f =  1 , . . . ,  n 
 ̂ 1=1 PA

which is equivalent to
n n 2

minimize ^  C{ subject to ^  log{Cf + 1) = log( — ) and C{ > 0̂  i = 1 ,..., n
i=l i=i

since Ci > 0. The Lcigrangian in this case is

1
c  = E c .  + M T , + 1) -  i o g ( - ) )Pai=\ ¿=1

Differentiating with respect to C',, we get

Cf  +  2XCi +  1 = 0

Ci = - \ ±  (3.26)

Note that, the right hand side of (3.26) does not depend on i, which proves that 
the minimum is achieved at (7i = . . .  = 6*„, and since Cf^ is convex everywhere, 
it is the global minimum.

Theorem 2 with (3.21) also shows that the product-form estimator is opti­
mum when Pi are uniformly distributed. We call this optimum value Cp̂ {̂ ,nin)·

D efinition. The feasible region of Cf^ is the .set of (p i,. . .  ,Pn) for which

Obviously, for the feasible set to be non-empty, one should have

C '̂ < C ̂

CL· £  CL.
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or, from (3.24), (3.21) and Theorem 2

-  1)  =  —  -  1 
pn PA

which is satisfied for

PA<P^n
where is the solution of

Pa Pa

(3.27)

within the interval [0,1]. We call the critical probability. Values of p  ̂ for 
several n are listed below:

p̂  0.1111 p5 Si 0.0749 pi «  0.0558 P20 ~  0.0094

It has been shown that, when pa is less than or equal to a critical value, 
there exists a feasible region, which is defined by

[ ¿ ( 1  _  l)>/2]2 < ±  _  1 n p ,  = p ^ , P i> p ^ , г = l , . . . , n  (.3.28)
1=1 P' Pa i=i

using (3.24), (3.19) and (3.21).

The existence of an infeasible region is not a serious drawback, because for 
P4 <C 1, which is the case with rare events, the extent of the feasible region is 
very large. For example, for n = 2 and pa = 10“ ,̂ the feasible set is given by

{(p^, l),(l,p^ )}  U {(pi,p2) : 0.001004 < Pi < 0.99.5996, p2 = pa/ p i}

Note that the bounds of pi are very close to unconstrained bounds, pa and 
1, hence there is a large allowable region for (pi,P2) such that the product-form 
estimator performs lietter than the direct estimator.
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Sim ulation R esults

In this chapter, we present the results of our simulation experiments on the 
network of tandem queues studied in the previous chapters. Specifically we 
compare the results of three simulation methodologies discussed so far, namely

i) Direct simulation based on standard Monte Carlo estimation, which we 
briefly call Direct Simulation,

ii) Quick simulation based on exponential change of measure (A interchanged 
with min(/zi,/Z2)), which we briefly call Quick Simulation, and

iii) Quick simulation based on .product-form estimation , which we briefly 
call Dynamic Simulation.

The above are abbreviated from now on by SS, QS and DS, respectively.

The simulations have been run to estimate the overflow probability pA- 
First, we fixed the run-times to be able to compare the convergence rates 
of estimates. The results are shown in Table 4.1 and Table 4.2 for the 
(0.20,0.30,0.50)-network and the (0.20,0.30,0.50)-network respectively for 
various values of n.

It is apparent that both QS and DS perform much better than SS. More­
over, in the (0.20,0.30,0.50)-network, QS seems to be superior to DS, while in 
the (0.20,0.38, 0.42)-network, they yield comparably good estimates. The em­
pirical convergence rates of SS, QS and DS estimates are shown in Figure 4.1

28
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and Figure 4.2 for some set of parameters in each network. It can also be seen 
from these figures that the performance of QS is remarkably degraded in the 
(0.20, 0.38,0.42)-network. These results are not coincidences resulting from the 
randomness of the estimates, as we will see in a while when we consider the 
empirical speed-up factors.

♦
We define the speed up factor between two simulation methods as the ratio 

of expected number of Markovian jumps that must be generated in each to ob­
tain the same variance for the output estimates. To evaluate speed-up factors, 
we recall the variance expressions for the three types of estimators:

Standard Estimator:
1 1 . 1

Var\pA] =  j(P A  -  Pa ) and -  1)
L· ^ Pa

(4.1)

Importance Sampling Estimator: 

1
Var[pA] = ^ { V - Pa ) and -  1) with rj = (4-2)

Product-form Estimator:

a
1

PA
1=1

with Cf = (-----1)
Pi

(4.3)

Let M  and M* be the mean cycle lengths in SS and QS respectively and 
let Mi for г =  I , . . . ,  n be the mean length of the Ph cycle in DS (see Section 
2.3 and 3.2 for the definition of cycles). Then the speed-up between QS and 
SS is

LM
Sqs- ss  — L*M*

where L and L* are to be chosen such that Var[Pa] — Var[pA]· On the other 
hand, the speed up between DS and SS is

LM
S ds- ss  = E"=i f̂ M̂i

(4.4)

where L and L,·, i = I , . . . ,  n are to be chosen such that = Cj^.

From (4.1) and (4.2), S qs- ss  ('^n be easily computed as

[ P A - p \ ) M
S qs- ss  — { p -p \ )M *

(4.5)
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Recall that, an optimum allocation expression for L,’s were given in (3.22) 
assuming that average sampling times (cycle length, in this case) were equal at 
each step. Dropping this assumption, a similar derivation can be carried out 
to find the optimal allocation for thé’case of variable M,’s, which after some 
algebra, leads to the following speed-up expression for DS

S d s - s s  =
l)M

E r . i  CiM!'/2| (4.6)

Simulations have been run for extensively long times to get accurate esti­
mates of M, M*, T] and Mi, i — 1 ,... ,n. The resulting empirical values have 
been inserted into (4..5) and (4.6) to obtain the empirical speed-ups. The results 
are listed in Table 4.3 and Table 4.4.

Remark 1. Note from Table 4.3 and Table 4.4 that Sps-ss  increases very 
fast with n. To understand the reason for this behavior, it is sufficient to con­
sider how Pi's change with n. Actually, p,’s do not change with n, since p,· is the 
exit probability from boundary Si-i to Si, and enlarging the final boundary Sn 
does not affect the transition probabilities from the sub-boundaries. It is only 
the number of p, ’s that changes, which increases simulation time roughly lin­
early. Moreover, each added p, should be approximately equal to the previous 
P i ' s  s o  as to result in an exponential decrease in their product p^, as suggested 
by the large deviation theory and observed in the simulation results.

Remark 2. We see that the performance of QS in the (0.20,0.38,0.42)- 
network is very bad for small n, but recovers as n gets larger. Recall that 
the exponential change of measure concentrates the probability on the most 
dominant exit tube. In this case, however, the most dominant tube cannot 
be isolated since pi is close to p2, i.e. there exist sub-dominant exit tubes 
which contribute considerably to the exit probability. Therefore, the asymp­
totic results of large deviation theory are not valid in this network when n is 
oi! the order of 20. Actually, it has been observed by long simulation exper­
iments that, the convergence rate of QS is very slow for small n. DS, on the 
other hand, is insensitive to the existence of a dominant exit point, hence its 
performance remains almost unchanged in the (0.20,0.38,0.42)-network.
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A = 0.20,/ii = 0.30,/X2 = 0.50
* D irect  

Sim ulation
Quick

Sim ulation
D yn am ic

Sim ulation

n=20
P a  ~  3.76 X lO““*

#  of jumps 314,213 287,838 288,390
CPU time 3.40 sec. 3.47 sec. 3.46 sec.
E stim ate 5.71 X 10“^ 3.73 X 10““ 3.19 X 10“^

n=25
P a  ^  4.96 X 10“®

#  of jumps 1,187,642 1,048,736 1,085,630
CPU time 12.99 sec. 12.72 sec. 12.94 sec.
E stim a te 1.25 X 10“® 4.94 X 10“^ 4.98 X 10“®

n=30
P a  ^  6.52 X 10“®

#  of jumps 2,091,330 1,864,668 1,922,855
CPU time 23.11 sec. 23.11 sec. 23.01 sec.
E stim a te 0 6.46 X lO“·" 6.48 X lO“*"

Table 4.1. Simulation results for the (0.20,0.30,0.50)-network

A =0.20,//i =0.38,/i2 = 0.42
D irect

S im ulation
Quick

Sim ulation
D yn am ic

Sim ulation

11=15
P a  ^  4.68 X lO““»

^  of jumps 241,793 223,329 226,973
CPU time 2.81 sec. 2.72 sec. 2.73 sec.
E stim ate 3.00 X lO“'* 4.16 X 10““* 4.31 X 10“‘‘

11=20
P A  ^  2.15 X 10“®

#  of jumps 966,414 885,648 849,988
CPU time 10.62 sec. 10.97 sec. 10.05 sec.
E stim ate 0 1.77 X 10“® 1 2.14 X 10“®

11=25
P A  ^  9.02 X 10“^

#  of jumps 1,453,114 1,333,135 1 1,373,159
CPU time 16.17 sec. 16.22 sec. 16.14 sec.
E stim ate 0 7.21 X 10“  ̂ 1 8.98 X 10“ '

11=30
P A  ^  3.81 X 10“**

#  of jumps 2,038,117 1,846,449 1,997,591
CPU time 23.63 sec. 23.45 sec. 23.97 sec.
E stim ate 0 2.85 X 10“** 1 4.17 X 10“**

Table 4.2. Simulation results for the (0.20,0.38,0.42)-iietwork
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Figure 4.1. Empirical convergence curves for A = 0.20, fi\ = 0.30, [i2 =  0.50, 
n - 30

Figure 4.2. Empirical convergence curves for A = 0.20, n\ = 0.38, fi2 = 0.42, 
n = 25
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A =  0 .2 0 , =  0 .3 0 , / i2 =  0.50

n M M* V Mi,  i = 2 , . . .  , n P m  ̂ — 2 , . . . , 72 S q s - s s S d s - s s
20 15.00 57.50 7.51  X 10-^ 1.5 9 , . . . ,  43 .04 0 .5 9 , . . . ,  0 .69 160 11
25 14.00 75.00 1.31 X 10-® 1 .6 1 , . . . , 64 .13 0 .5 8 , . . . , 0 .65 870 37
30 14.95 94.39 2 .19  X 10- 1° 1 .5 9 , . . . ,  72.59 0 .5 7 , . . . , 0.68 5851 170

Table 4.3. Empirical speed-up factors for the (0.20,0.30,0.50)-network

A — 0.20, Pi — 0.38, p2 — 0.42

n M M* V M{, i — 2 , . . . , n Pi, i = 2 , . . . , n S q s - s s S d s - s s

15 12.09 36.79 4.17 X lO-“* - 1 .66,..., 32.76 0 .56 ,..., 0.55 0.37 12
20 12.04 52.16 9.34 X 10-° 1.65,..., 45.12 0 .56 ,..., 0.50 0.53 94
25 12.04 67.13 5.94 X 10-° 1.67,..., 58.09 0 .54 ,..., 0.51 2.72 1100
30 12.04 81.65 8.57 X 10-11 1.65,..., 67.16 0 .56 ,..., 0.55 65 15,058
35 12.04 97.41 5.60 X 10-1" 1.66,...,87.22 0 .55 ,..., 0.50 32,444 234,050

Table 4.4. Empirical speed-up factors for the (0.20, 0.38,0.42)-network
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C onclusion

In this thesis, we proposed a variance reduction technique for the estimation 
of rare event probabilities. We obtained simulation speed-ups that are well 
comparable to the those of the existing techniques.

An important feature of our method is its relation to importance sampling. 
Actually, importance sampling is theoretically the most powerful VRT, however 
it presents some practical difficulties. Our sampling algorithm aims to avoid 
these difficulties by squeezing the samples into a sequence of sets shrinking 
towards the rare set, in a way, getting at each step the sampling information 
from the system itself. That is why, we have chosen to formulate our technique 
in the way we did in Chapter 3, emphasizing its dynamic character as well as 
its relation to importance sampling.

The feasibility of our estimator relies upon the assumptions made in Sec­
tion 3.1, concerning the measurability of the introduced sets with respect to a 
partial set of observations and ability of sampling from the conditionals. We 
do not yet know how restrictive these requirements would be in practical sit­
uations, however we see ch'arly that the conditional sampling requirement is 
met whenever W,’s are imlependent, yet the probability of the rare set may be 
difficult to estimate due to its complex nature.

The exponentially twisted estimators are known to be efficient when the 
rare event under consideration is governed by a large deviation principle, but 
even so, the asymptotic results cannot be achieved whenever the minimum 
rate point is not dominant enough. The performance of our estimator, on

34
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the other hand, is not heavily dependent on this characteristic of the rare 
event, however, we believe that when a large deviation principle is in effect, it 
helps p,’s to be distributed almost uniformly, improving the efficiency of DS. A 
further desirable property of DS is th'at it does not require the use of a change 
of measure, mathematics of which can be quite involved.

Although we developed the product-form decomposition to estimate prob­
abilities, i.e expectations of indicator functions, one may naturally suspect 
whether it would work for arbitrary functionals of random variables other than 
the indicator functions. To study this problem, we think, the starting point 
should be expressing the functional as a product of functionals with lower 
variance. We leave this problem as a further research topic.

A still open question with the product form decomposition is how the distri­
bution of p, ’s depends on the characteristics of the rare set and the underlying 
probability distribution. We think certain conditions on those characteristics 
may be developed in order to be helpful to decide whether the product-form 
estimator would achieve a variance reduction.

Finally, we would like to emphasize that our method is yet a new one and 
its feasibility in a number of more practical situations should be investigated.



A ppendix

In the actual product-form estimator described in Section 3.1, the samples 
(X i^ . , ,   ̂XiY  in the (i + 1)̂  ̂ step are not generated from the true distri­
bution . . .  ^Xi) but drawn from a set of samples obtained in the
step, which is mathematically equivalent to constructing an empirical distri­
bution . . . ,  Xt) from the available samples and using it as an estimate
of . . .  ’fXi)· In the following, we derive a recursive relation between the
estimates p"' used in each step.

In the {i + 1)̂  ̂ step, /5’“(x i,. . .  ,Xi) is constructed from the samples in the 
step which fall into Bi, So, we have

p  ( X l ,  .  .  .  ,  X t )  —  / f i ,  ( X l ,  .  .  .  ,  X t } [  Y \ j \  J  v ^ * ^ /
Xj=\ 5, V V ^  1 5 · · · 5 I j /

where (.Yi, . . . ,  for j  = are sampled from the distribution
p*(xi,. . .  ,x,_i)p(a:,|a:,,. . .  '

For simplicity of notation, we abbreviate the second term as follows:

E.&1 Ar......)((AA,...,AX) n. (A.2)

First, we evaluate the expectation of (A.2).

= Y ,P { X B ,= r n } -E [ N ,\N B ,= m ]
'N b - 771

= ' ^ P { ^ B i  = "i} — A’[m/(^,,..„a;,.)(Ai,...,A^,)|(A^i,..., A,·) G Bi]
m

= ^[/(x„....x.)(A^, . . . ,  A .)|(A ,, . . . ,  A.) G B,]
p ^ { x i , . . . , X i _ l ) p { X i \ x i , . . . , X i - l )

E  ■ ■ ■ Efl, /̂ *(-̂ 1) · · · ) —1 )p(^t 1̂ 1) · · · > ^1-1)

;i6
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Substituting (A.3) into (A.l) and taking expectation once more, we get

E[p*{xu...,xi)] = lB,{x\,....,Xi)E[ P*{XI, ■ ■ ■ , Xi-i)p{xi\xu · · · , Xj-l) , 
S  · · · E s .  , Xi-l)p{Xi\xi,  . . . ,  x,_i)^

Assuming that p*(.Ti,. . . ,  Xi-i) is unbiased, the denominator inside the ex­
pectation will be very close to P(BijBi-i) for sufficiently large Li. Replacing 
this term, we get an approximation

E [p*(xi , . . . , xi)] ^ iB (̂x i , . . . , Xi)

=  p"(Xi , . . . ,Xi )

E [p*(x i , . . . , Xi- i)]p(Xilxi, . . . , x,_i)
P(BilBi.i)

(A.4)

where the last inequality follows from (3.9). The validity of (A.4) is directly 
related to the validity of the approximation

m ·  ■ ·. ,Xt - i )p(x i l x i , ·  ■ ■,Xi-i)  ~  P( Bi jB i - i )
Bi

or equivalently that of

E\pi] Pi

which means that, as long as p, is a good estimate of p,, which should natu­
rally be the case, p*{x\ , . . ■, Xi-i)  is a good estimate of p*{xi , ·  ■ ., Xi-i)·  So if, 
disregarding the bias mentioned above, L,’s are chosen so as to get accurate 
estimates of p,’s, the resulting bias will be insignificant.
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