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ABSTRACT

OPTIMAL REPLACEMENT POLICIES WITH MINIMAL 
REPAIR AND RANDOM COST

Hakan Levent Deinirel 
M.S. in Industrial Engineering 
Supervisor: Dr. Ülkü Gürler 

June, 1993

When a system fails usually two actions take place; either replacement 
of system with a brand new one or repairing it if possible. In this study, 
it is assumed that system under consideration is repairable and is minimally 
repaired at failures with a random repair cost. Two replacement models are 
provided under this set-up. First model assumes that the system is replaced 
when the total cost of minimal repairs exceeds a total cost limit. Second model 
incorporates the number of failures into replacement decision. Here the concept 
of critical failure is introduced and used by means of two sub-models. In the 
first sub-model it is assumed that the system is replaced at the kth critical 
failure or at cige T. And the second sub-model assumes that the system is 
replaced at the first critical failure occurs after age T.

The first model is just constructed but cannot be solved due to complexity 
of the resultant function. But, solution methods of the sub-models of second 
model are provided.

Key words: Replacement Policies, Minimal Repair, Cost Limit.
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ÖZET

DEĞİŞKEN ONARIM MALİYETLİ VE ASGARİ ONARIMIN 
YAPILDIĞI SİSTEMLERDE DEĞİŞTİRME MODELLERİ

Hakan Levent Deniirel
Endüstri Mühendisliği Bölümü Yüksek Lisans 

Tez Yöneticisi; Dr. Ülkü Gürler 
Haziran, 1993

Sistemlerde meydana gelen bozulmalar genelde tamamen değiştirme veya 
eğer mümkünse onarma yoluyla giderilir. Bu çalışmada onarılması mümkün 
olan sistemler ve onarımin sistemi tekrar çalıştırmaya yetecek en küçük düzeyde 
yapıldığı varsayılmıştır. Bu doğrultuda iki değiştirme modeli sunulmuştur. Bir
inci modelde sistem onarım maliyetlerinin toplamı hesaplanan maliyet limitini 
aştığında yenileniyor. Bu modelde amaç, maliyet limitini bulmaktır, ikinci 
model sistemde meydana gelen bozulma sayılanında dikkate alacak şekilde 
kurulmuştur ve iki ayrı değiştirme politikası içermektedir. Bu polikalardaki 
ortak amaç sistemin değiştirilmesini gerektiren onarım sayısını ve/veya yaşı 
bulmaktır.

Birinci model, ancak kurulabilmiş, sonuçta çıkan fonksiyonların kompleks 
olamsı nedeniyle çözüm önerisi getirilememiştir. Fakat ikinci model için çözüm 
metodları sunulabilmiştir.

Anahtar sözcükler. Bakım Onarım Sistemleri, Değişken Onarım Maliyeti, 
Asgari (Minimal) Onarım
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Chapter 1

IN TR O D U C TIO N

Due to developments in teclinology, new complex machinery and equipment 
are gradually replacing the labor force in manufacturing. Researches are being 
conducted both in industry and in universities to built factories of future where 
most of the operations are performed solely by machines. Such a development 
leads to factories that can be operated by fewer number of workers whose job 
are basically to control the processes. Since the percentage of machinery and 
equipment cost increases, as the labor cost decreases, they have to be used 
more effectively, efficiently and less costly. Studies such as machine scheduling, 
])roduction i^lanning and control, inventory control, and material handling are 
conducted for effective, efficient and less costly manufacturing. Most of these 
studies assume that machinery or equipment for manufacturing are available 
whenever need arises. In reality however, this may not be true since breakdown 
of any machinery or equipment at any time is possible. Dealing with such 
possibilities pointed out the importance of maintenance planning. In this study, 
maintenance planning is examined under manufacturing environment, however 
the results are applicable to the other areas of interest including military, hecdth 
and fire services, railroads, highways, so on.

For a typical manufacturing plant, the importance of maintenance planning 
comes from the consideration of the following questions;



• VVh<at, is the true, practical life of the components that are critical to the 
machines that convert raw materials to finished goods? When is the right time 
to replace parts?

• How much money should be budgeted for maintaining the plant’s infra
structure? When should the expenditures be made?

• What is the lifetime for the major pieces of manufacturing equipment? 
When should new machinery become the alternative decision?

• How do you ensure that a critical machine is not disabled at the moment 
of need?

• How much of the maintenance cost should be allocated for emergency 
repair, preventive maintenance, predictive maintenance or normal repairs?

• What is the management’s role in the maintenance system?

In this study emphasis is put on the optimal replacement of systems subject 
to stochastic failures. It is hard to place this problem as an answer to any of 
the above questions, but as can be seen it is common for most of them.

In a manufacturing environment, a machine, a production line, a manufac- 
turing cell, a material handling system can be considered as a system. Missiles, 
tanks, aircraft can be considered in military environment. Ambulances, x-ray 
equipment, surgery room can be considered for health services. No matter 
which environment is under consideration, the main point is to decide when to 
replace the system to ensure that they are used effectively, efficiently and less 
costly, and they are availal/le whenever need arises.

CHAPTER I. INTRODUCTION 2

1.1 R e lia b ility  and M a in ten a n ce  P o lic ie s

The study of maintenance policies is a part of Reliability Theory and involves 
a broad range of decision-making problems. Some of them are Replacement,
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Repair, Inspection, Repairman Problem, Spare Parts Inventory, and Number 
and Allocation of Standby Units. Before going into the description and the 
scope of these decision-making problems,some concepts of Reliability Theory 
will be introduced first.

Reliability theory is concerned with determining the probability that a sys
tem, possibly consisting of many components, will function during the mission 
time. For instance, a series system will function if and only if all of its com
ponents are functioning, while a parallel system will function if and only if at 
least one of its components is functioning.

During the mission time of a system there may occur some undesirable 
events due to environmental or internal conditions. These undesirable events, 
so called failures, cause disru])tions in the process. A failure is the result 
of a joint action of many unpredictable random processes going on inside the 
operating system as well as in the environment in which the system is operating.

Replacement policies incorporate the studies about the stochastic nature 
of the failures of the system with optimization methods to achieve a desired 
amount of quality. By cpiality, a quantitative measure such as, system reliabil
ity, system availability or cost of maintenance is meant. System reliability and 
system availability are defined in terms of the lifetime of a system.

Lifetime of a system is the random time from the beginning of the operation 
until the appearance of a failure and it is the source of the uncertainty in 
maintenance decision making. Lifetime highly depends upon the structure of 
a system. For a singhi-unit .system (can be considered as a part of a whole, 
as well) lifetime can be determined without having complex analysis, but for 
a multi-unit system lifetime is a function of lifetimes of units that built the 
system.

Let A’ be the random variable denoting the lifetime of the system. Then 
V {X  > Xo), which is the probability that X  exceeds a value Xq., is the system 
reliability (or the sxirvival probability) for a mission time of ;Co· P{X > x) — 1 — 
F{x) is called the survival function with F{x) being the cumulative distribution
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function of the random lifetime X.

System, availnhility is the probability that for a specified period of time the 
system is available for operation. There are several availability measures as 
defined below;

i) Point avnilnhility is the probability that at a given time instant, say t, the 
system is available for operation, i.e. let I{t) = 1 if the system is operational at 
time t, 0 otherwise. Then, point availability, A{t) is defined as = V[I{t) = 1].

ii) Lim.iting availability; is the expected fraction of time in the long run over 
which the system operates, i.e.. Limiting availability (/1) = limt_oo A{t) if the 
limit exists.

Other forms of availability such as interval and limiting interval avaihibility 
are also used to express quantities of interest for maintenance decision-making.

Failure rate (or hazard rate) r[t), and Cumulative failure rate R{t), play 
key roles in maintenance decision-making. Failure rate of an equipment at 
time t is proportional to the probability that the equipment will fail in the 
next small interval of time given thcit it is good at the start of the interval. Let 
F{t) be the distribution function of the lifetime variable X,  and suppose the 
density function f{t) exists. Then the failure rate r{t) is defined as.

?■(() m
1 -  F(i)

(1.1)

Note that.

r(t) = lim — VU < a; < /, -f A t\x  > t) ’ Ai-O At ’

= limAi—0
F ( t T A t ) - F ( t )

AtF(t)
( 1.2)

If Fft) does not possess a density, i.e. if it has discontinuities, analogous 
definitions of the failure rate also exist. However throughout this study, it



CHAPTER I. INTRODUCTION

is assumed that F{t) is absolutely continuous and the density exists. If 
r{t) given in (1.1) is increasing with t, then Lifetime distribution F{t) is an 
increasing failure rate (IFR) distribution. Conversely, it is a decreasing failure 
rate (DFR) distribution if r(i) is decreasing with t.

The cumulative failure rate R{t) is defined as R{t) = fQr(t)dt. The survival 
probability can be expres.sed in terms of cumulative hazard rate as F(f.) = 
p - m

After introducing some concepts of reliability theory, what follows in the 
sequel is the description and scope of maintenance decision making problems.

R eplacem ent: Replacement decision making involves determining the 
time of replacement of a system under some optimization criteria, such ¿is; 
minimizing total cost, maximizing availability, etc.

Usually two types of policies are considered for the replacement decisions: 
age replacement and block replacement. Under age replacement^ the system 
is replaced upon failure or at age T, whichever comes first. Usually, ci is 
assumed to be the cost of reidacement at failure and 02 is assumed to be cost 
of replacement at age T, where Ci > 02. For age replacement, the average 
long-run cost per unit time is given by;

c,F{T) +  C2 F{T)
C{T) =

lo m d f ·
(1.3)

Under block (periodic) replacement the system is replaced upon failure and at 
times T, 2T, 3T · · ·. The expected cost per unit of time following a block 
replacement policy at interval T  over an infinite time span is given by;

Cl M{T)  + 02
C(T) =

T
(1.4)

where M{T)  is the expected number of failures in [0, r )  (renewal function) 
corresponding to the underlying lifetime distribution. For the derivation of 
above formulas refer to [5].

R epair: For repairable systems, two types of repair have been considered; 
minimal and imperfect rej)air. Minimal repair concept was first introduced by



Barlow&Hunter [3]. Under minimal repair, it is assumed that the repair ac
tion returns the system into operational state but system characteristics are the 
same as just before failure i.e. the system is as good as old. In other words, sys
tem’s failure rate remains undisturbed by any repair of failures. Minimal repair 
is an appropriate model for complex systems such as computers, airplanes and 
large motors, where system failure occurs due to com])onent failure and sys
tem can be made operational by replacing the failed component by a new one. 
Therefore the system characteristics are nearly the same before and after fail
ure. Formally, minimal repair can be defined as follows [23]: Let Vj, · · ·, V],, · · · 
denote the successive failure times of a system and X,i — Y,i — T,i_t be the 
time between failures, where Vq = 0. Let F{t) = V{X\  < t), then the system 
undergoes minimal repair at failures if and only if

r{X ,i < X |Al + A'2 + · · · -f A,i_i — t) — -----;---- 7=rrr\----  ~

CHAFTER I. INTRODUCTION G

l - C ( l )

for X > 0, t > Q.

Right hand side of the above equality is proportional to the failure rate given 
in ( 1.2), so the equality states that system failure rate remains undisturbed by 
any minimal repair of failures.

Let Nt be the number of failures in [0,f) for a system which is subjected to 
minimal i-epair after each failure. Then the distribution of Nt follows a non- 
stationary Poisson Process with an intensity function r(i), where r{t) is the 
failure rate of the lifetime variable. Moreover, expected number of failures in 
[0, i) is = R{f.) (see [20] and [3]). Then,

ViNt  = n) = -^(‘)[R(0 ]'‘ (1.5)

The concept of imperfect repair has originated from the discussion about 
imperfect maintenance which has appeared in [25], [24], [21] and[7]. In these 
studies, it is argued that, due to repairing the wrong part or only partially 
repairing the faulty j)art or while repairing the faulty part damaging some 
adjacent parts, the maintenance action may not be as perfect as it is assumed to
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be. Thus, maintenance action is divided into two categories in terms of repair. 
The system may be a.s good as new after a perfect repair, or it may be as good 
as old after a minimal repair. Brown and Proschan [6] put the framework of 
the imperfect repair and provided useful results. According to their discussion, 
under imperfect repair, a system is repaired at failure. With probability p it is 
returned to the as good as new state (perfect repair), with probability {[ —p) it 
is returned to the functioning state as good as old (niinivial repair). Imperfect 
repair is the generalization of minimal repair since an imperfect repair with 
p =  0 is a minimal repair.

Inspection : The basic purpose behind an inspection is to determine the 
state of the equipment. The indicators, such as bearing wear, gauge readings, 
quality of product, etc. which are used to describe the state, are specified. 
Then the necessary maintenance actions are taken accordingly. .An inspec
tion schedule must balance the trade-off between cost of inspection versus the 
benefit of correcting minor defects before major breakdown occurs.

Spare P a rts  Inventory: Usually, when a replacement decision is made, 
it is assumed that the system or some of its parts which are subject to re
placement are available whenever they are needed. But, keeping everything 
on hand is both expensive and at some instances not possible. So, optimal 
level of inventories and for which units these inventories will be kept must be 
determined. This area of interest is newly considered in the literature due to 
developments in solutions to inventory problems.

S tandby  U nits: Several number of standby units are placed on to the sys
tem so that whenever a unit is failed it is replaced by its standby immediately. 
The research problems in this area are related to finding the optimal number 
of standby units to be placed for fulfilling an objective (e.g. minimizing cost 
or maximizing availability). Allocation of standby units, i.e. for which units 
they should be u.sed, is another consideration.

The decision-making issues mentioned above are not independent of each 
other. Usually two or more of them are taken into account for a maintenance 
policy. For example; a system may be inspected at fixed points in time together



with being re|)<iirecl at failures and can finally be replaced when its cost of 
operation exceeds or reliability level reduces below a certain permissible level. 
The aim of such a policy may be to decide the frecpiency of inspections, how 
to repair and when to replace the system in order to utilize the system more 
effectively, efficiently and reliably.

1.2 T h e L iteratu re  R ev iew

CHAPTEfi 1. INTRO DUCT ION 8

In the past three decades, many scholars and prcictitioners have shown inter
est in the study of maintenance models for the systems with stochastic failure. 
One major reason for this is the fact that maintenance models have various ap
plication a.reas such as military, industry, health and environment. As systems 
become more complicated and recpiire new technologies and methodologies, 
more sophisticated maintenance models and control policies are needed for 
their effective usage.

One of the main references about maintenance models is the book by 
Barlow&Proschan [5]. Later, several others followed, including Barlow and 
Proschan [4], Certsbakh [L3] and .Jardine [16]. In addition, several survey pa
pers have been published in this area, including Cho and Parlar [8], Thomas 
[.32] and Pierskall and Voelker [27].

In the sequel, studies about several maintenance models are provided. Most 
of them are related to the replacement of a system under different conditions. 
Studies related to other maintenance actions are also provided briefly.

Kaio and Osaki [18] reviewed some discrete and continuous lifetime dis
tributions and ap])liecl them to typical rephicement models of age and block 
rephicement. They [provide the resvdt in tables as a reference guide.

Derman et.al [11] considered an extreme version of the replacement prob
lem. Under their model, a vital component of a system must be replaced before
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it fails, otherwise the system fails with no possibility of repairing. They as
sumed n spare units and their objective is to maximize the expected life of the 
system.

Mehrez and Stulman [19] modifies the age replacement policy by introduc
ing inventory constraint. They argued that instantaneous replacement is not 
always possible due to lack of spare units so that they have provided an age 
replacement model constrained by two inventory models.

Flynn et.al [12] studied a multi-component system and they based their 
policy to CCP (critical component policy) concept. This is similar to CPM 
(Critical Path Method) in project management. Their objective is to find the 
replacement policy of comi)onents which minimizes the long-run average cost 
per period. They showed that it is optimal to replace a failed component if it 
is a critical one.

Nakagawa and Kowada [23] aiuilyzed a system with minimal repair at fail
ures. They provided the formal definition of minimal repair, and derived some 
probability and reliability quantities. They had applied their result to a re
placement policy. In particular, they assumed that system under consideration 
is subject to minimal repair at failures and is replaced at a prespecified age T  or 
at the nth failure, whichever occurs first. They provided the conditions under 
which the optimal number of failures is finite cind unique. Their work did not 
assume random repair cost. A Similar work has been carried out by Nguyen 
and Murthy [26], but they assumed that after each repair the failure rate is 
increased. They considered two policies based on this assumption. Policy I is 
suited for single unit systems and Policy II is suited for multi-unit systems.

Hayre [14] provides a study about deciding whether to repair or to replace. 
He assumed a system which deteriorates over time. When the deterioration 
reaches a critical level, the system has to be either repaired or replaced by a 
new one. Repairs are cheap but usually less effective so that new failures might 

occur shortly after repair. Replacement is costly but it renews the system. He 
modeled this trade-off between repair or replacement as a semi-Markov decision 
process and minimized the long-run average cost ]>er unit time. Similar to this



CHAPTER 1. INTRODUCTION 10

study, Yuii and Bai [03] considered a repair cost limit policy for a system with 
imperfect repair. Their aim is to find an optimal cost limit L over an infinite 
time horizon, which is vrsed for the decision of repair or replace at fiiilures. They 
assumed that repair cost is a random variable and if the estimated cost of repair 
is beyond the value of T, it is economical to replace the system. They found an 
expression for the expected cost rate with respect to repair cost and cumulative 
hazard function. Because of the difficulty of the analysis of the expression 
for general failure distributions they used a Weibull failure distribution and 
a negative exponential distribution for repair cost. They showed that under 
these distributions, value of L is finite and unique. On their earlier study, 
Yun&Bai [2] considered the same model for a system with minimal repair at 
failures. Under this model the system is repfivced either if the estimated cost 
of minimal rejiair on a given failure exceeds a calculated cost limit value L or 
at age T, whichever occurs first.

Cleroux et. al. [9] consider the age replacement policy with minimal repair 
and random repair costs. They assume that replacement of the unit at the 
failure is depend upon the random cost C of repair. Under their policy a 
replacement at failure takes ])lace if C > Sci, where Ci is the constant cost 
of replacement at failure and 6 is a given percentage of the cost Ci. The 
variable 6 is assumed to be a known parameter by the decision maker. They 
had provided the cost function over an infinite time span and the solution 
algorithm for finding the optimal planned replacement times.

In this study, the cost limit policy of Yun and Bai [2] is modified to con
sider a total cost limit. In particular, the optimal total cost limit, L, is inves
tigated if the system is replaced when the cumulative cost of minimal repairs 
exceeds L. When the costs of minimal repairs are assumed to be independently 
and identically distributed continuous random variables, the long-run aver
age cost function, obtained by the Renewal Reward Theorem, becomes quite 
intractable. Neverthele.ss, average cost function is derived and presented in 
section 2.2. Since average cost function becomes highly complex for a general 
continuous minimal repair cost distribution, a sj)ecial discrete cost model is 
considered in section 2.3. Under this special cost distribution, replacement
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models considering the number of failures are studied.

For all of the models that are considered in the present study, the long 
run average cost per unit time function is analyzed. From Renewal Reward 
Theorem (.see Ross,f28j), this long run per unit time cost can be obtained by 
dividing the expected total cost in a replacement cycle to the expected length 
of that cycle. Let C be the average long run cost per unit time, then

C
¿[total co.si] 

¿[length] ( 1.6)

Notation

Several notations are used throughout the study, those of which are common 
to all policies are listed below. Model specific notations are provided in their 
related sections.

/(¿), F(f), F{t) pdf, Cdf, Sf of the system’s life time.
7‘(f), R{t) failure rate and cumulative failure rate of the system.
Nt number of failures in [0,i).
X{.) indicator function which returns value 1 if the argument

inside the parenthesis is true.
¿{.) Expected value of a random variable.
T ’ optimal replacement age of the system.
cr cost of replacement of the system with a brand new one.

Assumptions

1. The planning horizon is infinite.
2. Repair and replacement times are negligible.
3. r[t) is strictly increasing and remains the same after each failure.
4. Lifetime distribution F[t) is continuous and its density f{t)  exists.
5. Time value of money is ignored.



Chapter 2

OPTIM AL REPLACEM ENT  
POLICIES

2.1 R ep la cem en t B a sed  on  T otal C ost L im it 

w ith  R an d om  M in im al R ep air  C ost

In their study, Yun and Bai [2] consider a system subjected to failures for which 
minimal repair is performed. Under their assumption minimal repair cost is 
a random variable. Their aim is to find a cost limit L over ¿in infinite time 
horizon such that, if the estimated cost of a repair at a failure exceeds the 
calculated value L, the system is replaced. Their policy is to continue to repair 
the system as long as the estimated cost for each failure is below L, replace it 
if the cost of a repair is more than L or at the first failure that occurs after 
age T,  whichever occurs first. Such a policy gives a comparison value to the 
decision maker in order to decide whether to repair or replace the system at 
the time of failure.

In the present study, Yun and Bai’s cost limit policy is modified to incor
porate total cost limit. In other words, rather than finding a cost limit to 
compare repair costs, a total cost limit is investigated to compare cumulative

T2
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repair costs. Policy under total cost limit is to continue to repair the system 
while the sum of the re|)air costs are below a total cost limit, L, and replace it 
when the total cost limit exceeds L.

Notation and Assumptions

X.

v;
L'

pdf and Cdf of the repair cost .
r?,-fold convolution of G'(x), gix) respectively.
cost of minimal repair of /ith failure having distribution
function of G{x)
time of the ¿th failure.
optimal total cost limit.
number of failures before the total repair cost e.xceeds L.

1. Repair cost distribution G{x) is continuous and its density g{x) exists
2. Xi's are independent and identically distributed.

The system under consideration is minimally repaired at each failure with 
a random repair cost of A’i, i = 1, 2,··· and when the total repair cost exceeds 
a calculated cost value, L, it is replaced with a brand new one. X{, i = 1, 2, · · ·, 
are distributed by G(.'r), :re(0,oo), where X q — 0. Let Yi be the time of the ith 
failure, then V] ~  F{f.)

In Figure 2.1, a typical behavior of the system is shown. Since at the 4th 
failure total rej^air cost (A’l + X^ + .A3) exceeds L, the system is replaced.

Let S,i sum of minimal repair costs of n failures, then

t=l

Define

= max{n : .S'„ < L] (2.1)



CHAPTER 2. OPTIMAL REPLACEMENT POLICIES 14

C(L)

A'3

V', >3 >4

Figure 2.1: Co.st Limit Policy
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where is the nuiiil)er of failures before the total cost of repair exceeds the 
total cost limit L.

• Expected total cost until replacement : The total cost incurred by the 
replacement time is given by from the results of renewal theory. Then 
expected total cost of a replacement cycle is given as,

S[Total = o[.S'n̂ ] + cr 

From Renewal Theory, the survival function of is,

V[Sn,  > .s) = G{L) -  r  G[L -  y)dM{y) for  ,s < L
Jo

where M{s)  = ^ '”=1 GG){s ) and P(5„ < s) = GG){s ).

Thus,

£1%,] = i \ o { L )  -  r G[L -  y)dM{y)]d.s
JO Jo

^  r L
= L G { L ) - J 2  { L- y ) G{L- y ) g^G, i y  

Jo

Adding the cost of replacement to the above equation leads,

:2.2)

(2.3)

(2.4)

S[Total Cost\ = ca + LG{L) -  £  -  y)G[L -  y)y^"-\y)dy (2.5)
u=l 0̂ •

• Expected length of a replacement cycle : Since is the time of the ¿th 
failure, V'kt+i is the time of the failure where replacement occurs so that it is the 
length of a replacennuit cycle. Then the expected length of a replacement cycle, 

found by conditioning the expected length to the number of
failures;

5[VV+,1 = £|£-(V»,„|Ki = nll
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-  X) + 1 = n) (2.6)
n=l

V {'̂ 1 = n) in (2.6) is the probability that, at the nth failure the total repair 
cost is below L, and at the (n + l)st failure, total cost exceeds L. Then,

= n) = V{Xi  + · · · + AT < L, AT + · · · + AT+, > L)

T’iAi + · · · + A,I  ^  L) — T[Xi  + · · · + > L)

= 6'<'6(L) -  (2.7)

So, (2.6) can be rewritten as.

= E  = n](G(’0(^) _  G’("+i)(L))
71=1

In order to calculate = n], 7^(V„+i > t) must be determined.
Note thiit,

V{Yn+i >  t) =  V{Nt <  n)

and V{Nt = n) is already stated in (1.5). Hence,

t = l 'll

Then,

T[VH.+,|K = n ]=  r z
.=0

(It

Finally, combining (2.9) and (2.8) yields.

/*00 ‘
= E (C '''”>(i) -  G'"+'>(i)) /  E

n=l i=0

12.9)

l\ (It (2.10)
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The above equation can be simplified by changing the order of summations;

-  ..x>
Sllength] =

1=0  ̂ ^

-(It

(2.11)

As a result, from (2.5) and (2.11), the average cost per unit time function 
of a system subject to minimal repair at each failure and which is replaced 
when the total cost limit is exceeded is given ¿is follows;

C ( i)  = LG(L) -  E ”  I /»''(G -  y)G[L -  y)</''Kv)d,j + c„

Jo” «-*'''«(')'■<«
(2.12)

The above equation is so hard to analyze for a general cost distribution 
due to convolutions. Even if the cost distribution is selected to be exponential 
(where n-fold convolution of exp(A) is r(n,A)) the above function is still in
tractable. Due to this rea.son similar models will be studied in the next .sections. 
This section is ended with the following analysis: let,

rm

then,

Z (i) =  /  z(t, x)/y"'^(x)(Ix 
Jo

zi(t) = ¡ y  'N ^ h G ) ( x ) d x +

Using the above relation, and setting the derivative of (2.12) to zero yields 
the following relation:

W(L)[G(L) +  Lg{L) -  f ;  i ‘'[-yG(L· -  ;;) + ( i  -  g)glL -  y)V/"\y)dg\
11=1
oo ¡.L

-L G [L ) - Y ,  ( L -  y)G{L -  ¡/)a"‘l(!/)<i!/ = c„
1 Jo71=1

where,

W{L) =



CHAPTER 2. OPTIMAL REPLACEMENT POLICIES 18

The value of L which satisfies the cibove equation is a candidate for an 
optimum L. However providing results for the existence and uniqueness of L 
requires further analysis which is not employed in this study.
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2.2 R ep la cem en t B ased  on N u m b er  o f  Fail

ures and  A ge w ith  R an d om  M in im a l R e 

pair C ost

In the previous model, the difficulty of dealing with minimal repair costs having 
general distribution functions was pointed out. In this iiiodeb a special discrete 
minimal repair cost distribution is introduced and used under different policies.

During the operation of a system several number of failures may occur. 
The repair cost of each failure varies according to the nature of the failure. 
For instance, a resistance failure in the power card of a computer stops the 
operation, but the computer can be operated by replacing the resistance with 
a small cost. On the other hand, if the whole power card of the computer 
was burn out, then a considerable amount of money must be paid to bring the 
computer l)ack to operation. Suppose failures are divided into two categories 
in terms of cost. Some failures are more expensive to recover (e.g. power 
card example), call these critical failures, whereas some require considerably 
less payment (e.g. resistance example), call these non-critical failures. Such a 
distinction lead to a discrete repair cost distribution function defined as follows;

Let Xi be the cost of /th failure, i = 1, 2, · · ·. Suppose that with probability 
the failure is criticcil and the cost is c„i, and with probability (1 — /;) it is a 

non-critical failure which costs Cq. So, for each

Cjn with probability p 
Co loith probability (1 — /;)

(2.13)

With the al)()ve cost t’linctioii, two replacement models are considered. In 
the first model the system is minimally repaired at failures and replaced when k 
critical failures occur or at age T, whichever occurs first. In the second model, 
the system is minimally repaired at failures and replaced at the first critical 

failure occurs after time T.

The distribution of the number of failures in (0,i) is already given in (1.5),
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thus it is possible to find V{N^ = k) by conditioning on total number of failures.

ViN^ = A.·) = £  V{Nt =  n)V{N^ =  k\Nt = n)
l = k

Since with probability p, a failure is a critical one;

v{N^ = k) = n

i=k n\
n — k

k\

Similarly;

Then,

v {n :  =  k) =
<0-1

Ad

s m = pR{t)

m ] - { i - p ) R { t )

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

Above ecpiations are useful for the determination of the expected total cost of 
the models studied in the next sections.

Notation

P

Fy{t.)
N1̂
AVf

X.
v;
A:*

T ’

Co

probability that a failure is a critical one,
{(I-p) probability that a failure is non- critical), 
distribution of time between critical failures, 
number of non-c.ritical failures in [0,A). 
number of critical failures in [0, t). 
random cost of fth failure defined in (2.13). 
time of the /th critical failure, 
optimal number of critical failures to replacement, 
optimal age of the system for replacement, 
cost of repairing a non-critical failure.
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cost of repairing a critical failure 

It is obvious tliat Cq < c„i < <'r

2.2.1 M odel A

In this model, tlie system under consideration is replaced at the time of kth 
critical failure or its age T, whichever occurs first.

Firstly, the cost function which represents tlie long-run average nuiintenance 
cost per unit time will he constructed. As stated before, it is composed of two 
expressions: Expected length and expected total cost.

• Expected length of the replacement cycle : There exists two possibilities 
for the length of the replacement cycle, it can either be age T if less than k 
critical failures occur in [0,T], or the time of the kth critical failure if it occurs 
before T. Let RC denote the length of the rei)lacement cycle, then,

RC = TI{Yl  > T )  + < T) (2.19)

and,

€[RC] = S [ T I { Y , > T )  + £[ Yk I { y i <T)

= TViYk > T) + r ydFy,{y) (2.20)
Jo

To evaluate 7̂ (V'i· < T), note that V{yi- < t) = T’(iV)·' > k). From (2.L5),

e“'’̂ (d[p/?(i)]^·
iP(yV)· = k) =

k\

So,

v{N^>k) = 5:
j=k Jl

j=0 J'·
(2.21)
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Let Hk{t) = V{Yk < t), then

« ,( /)  = 1 - 5 : ( 2 .22)

j=0

So, going back to €[RCY
T

£[RC] = THk(T)+ f  ijdlhiv) (••̂ •••̂ 3)Jo
Applying integration by parts to the integral in the above equation yields;

£\RC] =  f
Jo Hk{y)di (2.24)

• Expected cost until replacement: Maintenance co.st is the result of two 
types of repairs, tho.se for critical failures and those for non-critical failures. 
Thus, by using (2.17) and (2.18), expected cost until replacement can be found.

For the number of failures, two possibilities exist: system may be replaced 
at the time of A:th critical failure, so that there are k critical failures and Ny^ 
non-critical failures; or the system may be rejilaced at its age T  so that Ny 
critical; and Ny non-critical failures occur. Let N F stand for the number of 
failures, within a replacement cycle, then;

N F  = [k + Nin i iYk  < T) T [Nly -t- 7V^]J(y', > T) (2.2,5)

Taking the expectation of both sides of (2.25);

S[NF] = £[[k + N{{]I{Yk<T)] + £[[N^- + N^]I{Yk>T)]  (2.26)

= k V {Y k< T )  + £ [N l I { Y k < T )]

+£[N!jJ{Yk > T)] + £ m i { Y k  > T)]

First note that;

I(Vi < 7’)] £[£[Nll{Y„ < T)\Yt = ¡11 

J I ( ¡  < 7)1

í ( ( ı - r t f i ( ¡ ) I ( ¡ < г ) l

Jo
(2.27)
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also,

> T )] = S[N:rI{Nr < f̂ )]
^  .e-’>^^T'[pR{T)Y

=  --------

¿=0
pR(T)fl,_,{T)  ¿• = •2.3, 
0 k =  \ .

C2.-28)

Next,

£ [N ^ I{ y i> T )]  = £ m r { Y , > T )

= { l - p ) R { T ) f h { T } (2.29)

Finally, from (2.27), (2.28), (2.29), and introducing the costs; 

£lfaHure CO.R.] = c,nlkH,(T) + pR(T)H,_i(T)]

Co(l-p)l/^ R(t)dH,(i) + R(T)H,(T)  (2.30)

Thus, expected total cost until replacement, from (2.30) and adding re
placement cost of Cft, is;

£[iotal co. t̂] = c,4kLR(T)+pR(T)/7,_i(T)j (•2.31)

+co(l -  p)[Ĵ  ̂ R(i)dfR(n  + R(T)H,(T)j  + CH

Let Cfc(T) be the long-run average cost per unit time of a system subject 
to replacement either at ktdi failure or at age T, then from (2.24) and (2.32);

c„ikHt{T) + pR{T)Ht-,(T)] + co(l -  p) lg  Hult)dFi(t)] + crCt(T) =
¡ ¡ I h i t

(2,32)
The above function of Ck{T) is analyzed under two policies given in the fol
lowing .sections.
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Policy I.

Under some circumstances the number of critical failures that the system man
ager is willing to allow before replacement can be prespecilied. Then the only 
concern is to find a replacement age T* which minimizes the cost The reason 
why only the critical failures are considered for replacement decision is that 
each critical failure adds more cost to the total cost figure than non-critical 
failures in a given replacement cycle.

Assuming that k - ko, (2.32) can be rewritten as follows;

U^-okh,{T) + pR.{T)fh,^,{r)] + co(l -  p) fhJt)dR{t)  + cn 
) = -----------------------------

(2.33)

The following lemma will be necessary for the proof of the Theorem 2.1 

Lemma 1 : Let

■'hAT) = .-(Dli'^p + cCi - /,) !  -  C i j T )

i) i/jicoiT) is increasing in T  € (0,oo).

ii) LimT_^ikf;^{T) = (X) if F{t) has IFR.

Proof : Provided in Appendix.

Theorem 2.1 i) Optimal replacement age T* which mvnwiizts (2.3o) is the 

value of T which satisjics;

r(T)[c.„,, +  c „H -p )] =  CtAr) (2„34)

a) If there exists a T* then it is unique f o r T  G (0,(X)).

hi) If no solution to (2.3/^) exists then a policy of replacement only at koth 

failure is optimal.
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Proof, i) Differentiating (2.33) with respect to T and equating to zero gives 
(2.34). Thus, optimal replacement age T* is the value of 7’which satisfies the 
equality in (2.34).

ii) For T = 0 fpkoi^) = —{koCm + cn) < 0 and from Lemma 1, iho{T) is 
increasing and tends to infinity as T —»· oo.

Thus, ipkoiT) starts from —cn, then cross zero, which meiuis a 7'* exists, 
and goes to infinity. Also it crosses zero only at once so that T* is unique.

iii) If no solution to (2.34) exist, then T" — oo, so that there is no need to 
consider the age of the system.

Example

In order to demonstrate the use of model, the case A:q = 1 will be analyzed. 
In particular, the system under consideration will be replaced at the time of 
the first critical failure or age 7', whichever occurs first.

Cost function for k) = 1 is in the following form;

c,,Nh{T) +  C o i l  -  p) ¡0̂' Fh(t)dR{t) +  cn
CAT)  =

¡A H u m
[(1 — e + Cq(1 — /;))] + cji

(2.35)

From Theorem 2.1 and Lemma 1 the value of T* which minimizes (2.35) 
can be found from

i(3’)[c'„.;' + <.'o(l-;))] = C,(r) (2.36)

The VVeibull distribution is selected for the lifetime variable. Probability 
density function of Weibull is: f{t) = and F{t) = 1 — e“ '". This
distribution has IFR if«  > 1. Also, /■(<) = aC'“ ' and /?(i) = C.

The optimal replacement age T “ which satisfies (2.36) can be found by 
numerical search. The integrals in the function is approximated by Trapezoidal 
Approximalion [31]. In this approximation, the limits of the definite integrals
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are divided into n suh-intervals by taking n = 7’/0 .000001 where T  is the upper 
limit of the integral.

Table 2.1 summarizes the optimal replacement ages for two different shape 
parameters (a) under cq =  50, c,n = 200 and = 2000.

cv = 2 O' = 4
P T C(T) T C(T)

0.1 7.784 945.499 1.847 1603.233
0.2 7..572 1211.898 1.772 1761.455
0.3 7.540 1431.933 1.710 1887.426
0.4 7.380 1631.913 1.660 1994.731
0.5 7.193 1795.213 1.610 2086.983
0.6 6.987 1952.997 1.583 2167.773
0.7 6.770 2097.049 1.543 2241.326
0.8 6.574 2232.653 1.513 2308.221
0.9 6.390 2360.372 3.486 2369.019
1.0 6.210 2482.462 3.454 2426.443

Table 2.1: Example of Model A Policy I

The error bound for the integral (from page .206 of [31]) in the denominator 
of (2.35) due to trapezoidal approximation is about d.OObE — 7 given that 
/j = 0.1, and T* = 7.784 which is the optimal T  of the first cost combination. 
Under both shape parameters o-, as the probability of critical failure occurrence 
increases, age T  decreases while average cost is increasing.

When p = 1, Policy I is eriual to classical age replacement policy, because 
when p = 1 (2.35) is of the following form,

I i m - u

where F{T) = 1 — Then by adding and substracting crF{T) to the
numerator yields,

,, (c.,. + c«)f(J-) + ck 'F(T)
irmt

which is similar to the long-run average cost function of age replacement, given
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in (1.3), for Cl = c„i + Cfi. Thii.s comparison of the two policies; age replace
ment and Policy I of Model A is possible by letting c,„ · ;;c„i + (1 — p)co i.e. 
considering the probability p as the weight of the cost of repair in expectation. 
For example, when = 0.1, c„i in age replacement cost function can be taken 
as c„, = (0.1)(200) + (0.9)(50) = 65.

Table 2.2 summarizes the optimal age values of age replacement under the 
listed c,n values for VVeibul^a = 2).

P T 0(T)
0.1 65 5.-4.31 2330.233
0.2 80 5.431 2347.455
0..3 95 5.384 2363.426
0.-4 n o 5.380 2380.731
0.5 125 5.341 2397.983
0.6 140 5.338 2414.773
0.7 155 5..320 2431.326
0.8 170 5.300 2448.221
0.9 185 5.281 2465.019
1.0 200 5.281 2482.443

Table 2.2; Age Replacement Model

In Figure 2.2, long-run average cost per unit time for each p is given. As 
can be observed Policy I of model A gives better results as oppose to age 
replacement for this specific case. This leads to the discussion that, if it is 
possible to distinguish failures in terms of cost and find a probability p to be 
used in repair cost distribution, it would be beneficial to employ policy I rather 
than age replacement.

Note that Policy I is similar to total cost limit policy, given in the previous 
section, since the cost of critical failures is fixed to a limit of (koCm). However 
these policies are not identical, box'ause the decision is made by considering 
only one type of failure so that the contribution of the other type is not taken 
into account.
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Figure 2.2: Age Replacement vs Model A Policy I

Policy II.

In the previous policy, optimal replacement age T ’ is analyzed when the num
ber of critical failure's is s])ecified in advance. Under Policy II., the value of k", 
which minimizes (2.22) will be investigated, for a fi.xed T.

Suppose that, the number of critical repairs k is not considered for replace
ment decision and the only concern is to determine the optimal T. Then the 
corres])onding cost function can be obtained by letting ^ > oo in Ck{T). The
following lemma is needed for the analysis of C,yc.{T) = lim/;;_,x, Ck{T).
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Lemma 2

linu._oo I - i k i T )  -  0
linu-^oo Hk{T) = 1

HUt)dR{t) = R{T) 

lim,_oo fo H,{t)dt = T

Proof: Obvious from the sum of Poisson probabilities.

Now. from the above lemma,

c„ipR.{T) + co(l — p)R{T) + Cfi
C.AT)  =

(2.;37)

T (2.38)

If there e.xist a T ” which minimizes the above equation then it must be the 
root of the equation in the following implication;

dC^{T)
dT

= 0 (c„,p + Co(l -  v))r{T) = C^{T)

or.
Tr[T) -  R{T) =

Cr

[CmP + Coi 1 -  />))

(2.39)

(2.40)

RHS of (2.39) is equal to the equation provided in (2.34) when k is selected 
to be oo. The following theorem gives the conditions for determining the 
optimal A;* for a fixed T.

Theorem 2.2 i) If l.here exist;> a T" which ftati-iificit (2.40), then for any T > 
T* there, exists a finite mid unique k” which satisfies

\V{k-,T) > CR and W{k' -  l ,T)  < Cr (2.41)

where

W(k, T) =
t’ [(yc... + (1 -  rtco)i/n.,(r)l

(2.42)
- [ c n f i k - Z U i k - t y -
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Note that W{k,T)  = 0 for A: = 0 a7id incrca-niuj with k.

ii) For any T  < T*, no A* satisfying (2-41) exists. So reylaccinent should 
be at T  = T*.

Hi) If 710 T* satisfyi7ig (2.40) exists, i.e. T* = oo, thcji /lo A* ca/i he found. 
Fmally, no solution to 7nai7ite7ia7ice problem exist. .̂

Proof.

i) If any T > T* is selected for the replacement age then, to find a A’ which 
minimizes C{k,T)  following inequalities can be formed;

C { k ’  + 1,7') > C { k C T )  U7 i d  C { k \ T )  < C { k '  -  1,T)

Then, by examining C(A + 1, T) — C { k ,  T )  > 0 and C { k  — 1, T) — C { k ,  T )  > 0, 
and letting LHS of the inequalities be W [ k , T )  yields (2.41).

The function W { k , T )  is increasing in A since W [ k  + 1,T) — W { k , T )  > 0 
(proof is given in appendix). Now let

W{oo,T) = lim W{k,T)

then
VK(oo.T) = (Tr(T) -  R{T))(c,„p + co(l -  p) (2.43)

This can be shown as follows; From Theo/rmi 3 of [23]

If (¡)[t) and i){t) are continuous functions and, <j){t) 0 and 0{t) ^  0 then;

(2.44)/ P V i o *  mlim —
f:tfi){i)dt i){b)

Then, with f„{t) -  pr{t)Ff’{T);

.=A;+1 *·
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¿ii:i jT  i " "liiii
lo {pR{t))^

Next, the RHS of the above equation reduces to the following by letting 
X = pR{t) and using the result given in (2.44).

rpR(T)¡ 1 '  ' x - e - d x
lim —TTT̂fPft(T) X-r p i

Jo PdH-'(^))
=  pr{T)

Similarly, using

i {pR.{T)ft-'^^^'^^
k\

clR{t) = C  
Jo

im
JT e-r>^^YW%lR(t)

rT e-P̂ (̂ )(pR{t))̂  
Ji k! (It

= pv{r)

Also,
h-l

lim {k — y~',{k — i)
.· ■ m l'N'1

e-pfi(i)(p/^(i))<
k—-> ¿=0 ¿! ) = pRiT)

Finally, combining above and the limit in the third row of (2.37) concludes 
(2.43).

As can be observed, bF(oo,T*) is similar to (2.40). Figure 2.3 represents 
the situation. T ‘ is the minimum value of T  which satisfies (2.40). Broken lines 
are representing the W{k,T)  at a particular k and solid line is the function 
given in (2.40). Consider time T\ is selected as fi.xed T, at that time W{k,T[) 
approaches to Tir(T'i) — R.{T\) as A: oo but the conditions given in (2.41)
are not satisfied since for all Ar, W{k,T\) < cp. Whereas, if 2'2 is considered as 
the fixed replacement time then, conditions in (2.41) can be satisfied for some 
A:.

As a conclusion, if any T' > T" is selected then W{k/I') > cp for all k, so 
that a finite ·̂* which satisfies (2.41) exists.
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Figure 2.3: Behavior of W{k,T)  when k oc

ii) if T < T '  is selected for replacement age, then W{k,T)  < c/?, for all k 
with this value of 7’, also Ck{T) is decreasing in k for T < T “ so no k" satisfying 
(2.41) is found. Therefore re])lacemeiit is at T  without considering the number 
of critical failures.

iii) If T ” ■ oo, then T' = oo so that W{k,T)  is always < cr which yields 
no A;* exists. □

In order to find the number of failures to be used as decision variable with 
age, first the value oiT"  which satisfies (2.40) should be found, then by selecting 
a T  greater than 7"“, value of k" should be searched by G{k,T)·

Example

In order to show how A:* is obtained, the following example is selected. 
Let the lifetime distribution be Weibull having a  = 2. Then the distribution
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function is F{f.) = I — e.

The values of T* for p — 0.1,0.2, · · ·, I which satisfies (2.40) are summarized 
in Table 2.;l. Cost values are taken to be cq = 50, c,„ = 200 and cr - 2000. 
Graphical representation is provide in Figure 3.1.

P T* Ar* Ck>(T·) P T* k· Ci-(T·)
0.1 5.547 - 4 728.0785 0.6 3.779 - 8 1070.9244

5.647 4 728.0724 3.879 8 1070.9343
5.747 4 728.2119 3.979 8 1071.1786
5 .847 4 728.4800 4.079 8 1071.5736
5.947 4 728.8607 4.179 8 1072.0518

0.2 5.000 - 5 812.2343 0.7 3.592 - 8 1129.6360
5.100 0 81 2.1938 3.692 8 1129.6262
5.200 5 812.2932 3.792 9 1123.1515
5.300 5 812.5060 3.892 9 1123.7343
5.400 5 812.8084 3.992 9 1124.4224

0.3 4.5S8 - 6 884.6836 0.8 3.430 - 9 1177.5125
4.688 6 884.6512 3.530 9 1177.5726
4.788 6 884.7752 3.630 9 117 7.9444
4.888 6 885.0178 3.730 9 1178.5000
4.988 6 885.3462 3.830 9 1179.1399

0.4 4.264 - 7 949.4774 0.9 3.288 - 9 1230.0325
4.364 7 949.4712 3.388 9 1230.0807
4.464 7 949.6553 3.488 9 1230.4418
4.564 7 949.9767 3.588 9 1230.9746
4.664 7 950.3901 3.688 9 1231.5730

0.5 4.000 - 8 1009.1798 1.0 3.162 - 9 1280.5051
4.100 8 1009.2146 3.262 9 1280.5431
4.200 8 1009.4907 3.362 9 1280.8961
4.400 8 1010.4858 3.462 10 1281.3345
4.500 8 1010.8654 3.562 10 1281.6298

Table 2.3: Example of Model A Policy II

Results of the e.xample states that, as the probability of critical failure 
increases, replacement age T  decretases. In addition to that, number of critical 
failures for replacement increases. Since cost of critical failure is increasing 
due to the occurrence of more critical failures, total cost is also increasing
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in p. Notice that the cost figures vvitli optima! A:’ are very close to those at 
T “ which corres|)on(ls to the model when k —> 'oo; i.e. wlien the number of 
critical failures are not considered in the model. Such an observation leads that 
number of critical failures as a decision variable is not that much important at 
least for this specific example.



CHAPTER. 2. OPTIMAL REPLACEMENT POLICIES :C)

2.2.2 M odel B

In the previous model, the system under consideration is replaced at age T or 
at Arth critical failure, whichever occurs first. In model B, it is assumed that the 
system under consideration is replaced at the first critical failure which occurs 
after age T. Objective of this model is to find the age T which minimizes the 
average long-run maintenance cost.

Let r  Ije the duration of the time from T t(j the occurrence of the first 
critical failure and h't Fr(f.) be its distribution function, Then;

Frit) = V{ t < t )  = [ -  =  1 -  e - r [ « ( T + r ) - f i ( T ) ] ^

with probability density function:

f,{t) = pr{T + t)e-^mr+t)-R{r)]

• Expected length of the replacement cycle: The system is in operation 
T T units of time. Then expected length of the replacement cycle is;

£[RC] = T + 8[t]

where.

f ( r )  = r
Jo

-̂p[R(T+l)-R{T)] l̂f

(2.45)

(2.46)

= eP^(î’)
/* (X >

• Expected cost until replacement: Total cost of repairing both critical 
and non-critical failures together with replacement cost are considered for the 
expected cost until replacement.

.Since the system is replaced at the time of the first critical fiiilure that 
occurs after time T, the expected number of critical failures in a replacement 
cycle is given by [2.17] as ¿’[M;.] = pR{T). Thus expected cost for critical 
failure repair is;

c.npR{T) (2.47)
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Expected number of non-critical failures is o[yV7'^r]· Noting from (2.1(S) 
that, = (1 -p)R{T)·,

= r i ( J V i « k  = iW n(i)J 0
roo

= ( l-p )[ /? (T )  + (l/p)]

(2.48)

Thus, the ex])ectecl cost for non-critical failure repairs until replacement is;

<■„(1 -r t [« (7 ’) + (l/p)l (2.49)

Finally, from (2.47), (2.49) and introducing replacement cost,

'.[total co.s/i] = c,npR{T) + c,j( I -  p)[R(T) + ( l/p)] + c r  (2.50)

Let C{T) be the average long-run maintenance cost function of a system 
subject to replacement at the first critical failure occurs after time T. Then 
from (2.24) and (2.50);

cwpRiT) + Coil -  p m T )  + (l/p)] + CRC{T) =

Note that

X e_ -P^O)da

^~̂ Co -)- Cr
C(0) =

and (2.51) is decreasing if,

T
epiMT) j : -  e-P^nu)du 

and increasing il,

T
ePl^C') e-pf^C)du

j ; -  e-pBOdu

-  [pR{T) - l ] < p

-  (p/i(T) -  1] > p

(1 -  p)cq 4- pcR 
Pi-m + ( 1 ~ p)Co

(1 -  p )cq + pCR
pc,n + (1 -  p)co

(2.51)

For the determination of optimal T* which minimizes (2.51, the following 
theorem is given.
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T heorem  2.3 i) The value of T* vjliicli aiinitnizes (2.51) is the value oj T 
which satisfies;

[CntP + Cq(1 -  p)]
pgp/i(T) = C{T) (2.52)

a) There exists at most one value for T" and it is unique.

in) If no solution to (2.52) exists then there is no need to replace the system.

Proof, i) DifFerentiating (2.51) with respect to T  and ecpiatiiig to zero 
gives (2.52). Tims, it is optimal to replace the system at the first critical 
failure occurs after time T* which siitisfies (2.52).

ii) Let tp(T) be defined as;

[r.np + co( 1 -  p)]
0 (T) = -  C{T) (2.53)pepf^O f j  ‘e

[̂ toP + <’o( 1 — />)] CmPR{T) + C'o( 1 — p)[R{T) + ( 1/p)] + Cfi
p(,pR{T) e~̂ ’̂ C)du T  + eP^H) f 'p t-pJ^Odu

For r  = 0, t/’(0) = {crn -  cn ) !U ^  < 0 and,

dHT) r{T ) [T+H {T)Y
dT

where

pMP{T)
.c ,[p-pH{T)-{T+H{T))] + [c,R{T)+c>]pHiT) > 0

H{T) = f^ e-P̂ ^ '̂ \̂lu
cl = c,np + Co(l -  p)
c2 = Co((l — p)/p) + Cfi

Thus il'{T) can cross zero at most once. Also, t/fiT) oo as T  —> oo, T ‘ is 

unique.

iii) If no solution to (2.52) exists, then T* = oo so that it is better to use the 
system forever or until it bo'comes unusable.
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Example

In order to demonstrate the use of model, consider a system with VVeibull 
lifetime distribution having shape parameter <y = 2 (relevant information was 
given on page 25).

Value of T* can be found by numerical search. For the easiness of compu
tation, the integral in the denominator of the cost function can be rewritten 
l)y using integral tallies;

/,;^c ·'·'■■ dx· = a > 0

since R{t) = C for Weibull with cv = 2

(2.54)

Table 2.4 summarizes the values of T* for two different cost combiiuitions.

Co -  50 
c,„ = 200

C R  = 2000

Co = 10 
Cm = 30 
C R  = 50

P C ( r ) C{T')
0.1 4.500 692.6314 0.720 43.7929
0.2 4.285 763.0043 0.881 44.7901
0.3 3.994 830.2513 0.950 44.0860
0.4 3.723 893.2245 0.980 44.4863
0.5 3.471 952.5145 0.994 45.2979
0.6 3.260 1008.6749 1.000 46.2896
0.7 3.080 1062.1297 1.023 47.3642
0.8 2.920 1113.2049 1.107 48.4769
0.9 2.780 1162.1741 1.198 51.6038
l.O 2.650 1209.2557 1.214 56.7684

Table 2.4: Example of Model B
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As can h(' expected, while the probability of critical failure occurrence in
crease, the o|)tiinal T ‘ is decreased. The case /) = 1 is not simply the classical 
age replacement model since under age replacement the system is replaced 
at a failure or at the age, whichever occurs first. But, here there may occur 
expectedly R(T) number of failures until replacement. In the above case ex
pected number of failures in (0,2.650) for p — l,Co = 50,c„i = 200, ch = 2000 
is 2.650^ ~  7. For the other cost figures expected number of failures is ap- 
])roximately 1. Graphical representation of the results is providtxl in Figure 
3.1.



Chapter 3

CONCLUSION

Two repla.cemeat models are consitlered in this study. In the first part, the 
cost limit policy, which is introduced by Yun and Bai, is modified to total 
cost limit. The long-run average cost per unit time function is derived. The 
further analysis has not been performed due to complexity of the function 
especially originated from n-fold convolution of the minimal repair cost distri
bution. Ex])onential distribution might be selected and can be analyzed as a 
cost distribution, but in that case; Firstly, it does not make any difference even 
the n-fold convolution of exponentiid is r(/i. A). Secondly, memoriless property 
of exponential makes unreasonable to assume it as the distribution of cost, and 
finally, the model l)ecomes case specific, in other words, it is only valid when 
the cost distribution is exponential.

In the second part, a discrete cost distribution is introduced. Namely, 
failures are divided into two categories in terms of their repair costs. Two 
sub-models are considered in this part, in the first one, the system is replaced 
at the kth critical failure or at age T, whichever appears first. The long-run 
average cost function of this model is cuialyzed under two policies. In the first 
policy, number of critical repairs is fixed in advance and then optimal age which 
minimizes the long run average cost is found. In the .second policy, for a fixed 
T, the number of critical repairs which can also be used as a decision variable 
is found. Finally, the last model of the second part is about to finding the

40
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replarement a.g(* of thr systcnn where it is rephiced at tli(' first critical tailurci 
occurs after age T ,

In Figure İÎ.I, comparison of the there policies of the second model is pro
vided. Note that, for all of them Weibull(2) lifetime distribution and same cost 
values are used. As can be observed Model B gives the best reults among all 
others for this specific example.

Remarks and Further Research Areas

The total cost limit i)olicy ('an be analyzed further for special cost distri
butions. Also, age can l)e incorporated to the model for rephicement decision.

In the second model and its sub-models, probability p can be considered ¿is 
a time dependent v^iriable e.g. it may be increasing throughout uscige. Also, by 
generating enough number of examples the three policies can be tested since 
in the present study only one example is provided. Although Model B seems 
to be good for that Crise it may differ for some other cases.

One of the interesting study is considering a system where cifter each failure 
the failure rate is incresing or shifted due to rep^iir.
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r̂ igim* 3.1: ('oinpari.son of the three policie,s



A ppendix A

Proof of Lemma 1

./■1,(7') = r(r)[,.„.p + i-„(l -  ,.)) -  CV,(7·)

i) To prove that i/Y.g(T’) is inreasing, first note tluit for T  = 0, '/’¿0 (0 ) 
■{koc,n + cpt) < 0. I hen;

i ’ko(T) — 7-(T)[c„j) + co( 1 — 7̂)] (A.l)
c,n[koHk,{T) + pR{T)fh,.r{T)] + co(l fhoit)dR{t) + cn

— 7'(T’)[c„J7 + Oo( 1 —
0

/0  Rkoi!j)dy 

Hko{y)dy

c A h l l k X n  + vR{T)Hko-x[T)] + Co(l -  v) I  fhoit)dR{t) + CH
r

(IT
* M ' n  , ,, {pK{r)Y= r{7 + co( I -  p)] 2^  - -̂---

1=0 *·

+ [<'mP + Co( 1 -  7̂ )] ^  flko {y)dy

(A:o-l)! i=0 /!

43
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+  pR{T)vr{T) 

dr(T)
(A:o-2)!

= + Co( 1 -  p)] flk  ̂(//)</;(/ > 0

1=0 /1

Thus 0 (T) is inreasing with T starting from —(̂ qc,h + cr)·

ii) Since -0A:o(T) —> CO as i —> oo when 7*(T) —> oo, can cross zero at
most one naiiK'ly at unique T*.



A ppendix B

Proof of W{k + 1, T) -  W{k, T) > 0

The iunction W(k^T)  is appear in Model A, policy II. The following is to show 
that it is increasing I)y k.

W { k + \ , T )  = + co( 1 -  ;>>)]

A.--1

-(c,n{k + I -  E (^· -  O " + coi 1 -  p) [ '  H,+ At)dR{t))
i=o -̂ 0

and,

W ik ,T )  = /o ____f
k - \

-{c,n{k -  Y^ ik  -  + e„(l -  p ) £  fh(t)dB.it})
i=0

after some cancellations and grouping,

\V{k:+ 1,7) -  W {k/r )  > 0

is eciual to.

rl

i s

1  , . X _  i j
■I I

> 0

the difference in the square paranthesis is always greater than zero from the 
Theorem 3 of [23], which leads W{k/P)  is increasing

•'15
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