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ABSTRACT

REACTIVE SCHEDULING IN 
CELLULAR MANUFACTURING SYSTEMS

Elif Görgülü
M,S. in Industrial Engineering 

Advisor: Asst. Prof. Selim Aktürk 
September, 1993

A real-time scheduling problem, specifically rescheduling under machine break
downs, is considered in this thesis. A heuristic approach is developed for a 
manufacturing cell with a modified flow shop structure. The strategy resched
ules part of the initial schedule to match up with the preschedule at some 
point. In contrast to other studies, the objective is to create a new schedule 
that is consistent with the other production planning decisions like material 
flow and purchasing by utilizing the time critical decision making concept. In 
the proposed heuristic approach, a new rescheduling strategy is developed and 
different match-up points are defined for each machine in order to maximize 
the flexibility during rescheduling. It is compared with alternative reactive 
scheduling methods in an experimental design and significance of some factors 
are tested by analysis of variance tests.

Keywords: Reactive Scheduling, Time Critical Decision Making
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ÖZET

HÜCRESEL i m a l a t  SİSTEMLERİNDE 
TEPKİSEL ÇİZELGELEME

Elif Görgülü
Endüstri Mühendisliği, Yüksek Lisans 
Danışman: Yard. Doç. Selim Aktürk 

Eylül 1993

Bu tez çalışmasında, bir gerçel zaman çizelgeleme problemi, makina bozul
ması durumunda yeniden çizelgeleme, ele alınır. Akış tipi işlik yapısındaki 
imalat hücresi için sezgisel bir yaklaşım geliştirilmiştir. Geliştirilen strateji 
ilk çizelgeyi bir noktada yakalayabilmek için başlangıç çizelgesinin bir kısmını 
yeniden çizelgeler. Diğer çalışmalardan farklı olarak amaç, zaman kritik karar 
verme kavramını kullanarak malzeme akışı ve satınalma gibi diğer üretim plan
lama kararlarıyla tutarlı yeni bir çizelgeleme yaratmaktır. Önerilen sezgisel 
yaklaşımda, farklı bir yeniden çizelgeleme stratejisi geliştirilmiş ve her makina 
üzerinde farklı yakalama noktası tanımlanarak yeniden çizelgeleme sırasındaki 
esnekliğin arttırılması yoluna gidilmiştir. Bu yaklaşım bir deney tasarımı içinde 
alternatif tepkisel çizelgeleme metodları ile kıyaslanmış ve seçilen bazı etmen
lerin anlamlılığı varyans analizi ile test edilmiştir.

Anahtar Sözcükler: Tepkisel Çizelgeleme, Zaman Kritik Karar Verme
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Chapter 1

Introduction

Most of the research in scheduling considers environments with the assumption 
of fixed and known future conditions. In actual production systems, these 
conditions are seldom the case. Most of the time, an environment can be 
faced with disruptions like machine breakdown, unexpected new jobs, material 
delays, etc. Scheduling in real-time simply means that the system must respond 
to such disturbances or dynamic factors immediately <is these events occur. It 
may be quite easy to construct a schedule, what is difficult is the schedule 
revision required by the dynamic environment. Given an initial schedule and 
a perturbing event, system is rescheduled to cope with the new conditions in 
real-time scheduling.

The original schedule is used as an input when planning other activities 
of the system like material flow and purchasing. During rescheduling, keeping 
the consistency with these decisions is important. An inconsistent schedule is 
going to be inapplicable because of the problems like the lack of material at 
the scheduled operation starting times.

Another point about real-time scheduling is that the computation should 
be completed in a reasonable amount of time. It is a time critical decision 
making process where the shop waits to receive the new schedule.

In this research, a real-time scheduling problem, rescheduling under ma
chine breakdowns is considered. A machine breakdown forces the system out 
of the prescribed state rendering the preplanned schedule invalid. In this case.
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CHAPTER 1. INTRODUCTION

the initial schedule is altered to compensate for this disruption.

Bean and Birge [Bean&Birge 85] proposed a theoretical framework that 
adopts the old schedule to smooth out the difficulties created by the disrup
tions and match-up with the preschedule by utilizing the Turnpike Theory 
[McKenzie 76]. This theory states that a schedule is exactly like a turnpike 
paralleled by a network of minor roawls, if origin amd destination are far enough 
apart, it will always pay to get on to the turnpike and cover distance at the 
best rate of travel, even if this means adding a little mileage at either end.

Their proposed strategy follows the preschedule until a disruption occurs 
and then reschedules part of the preschedule to accommodate the disruption. 
They reschedule to match-up in a future time, which is done in a way that the 
state reached by the revised schedule is the same as that reached by the initial 
schedule.

Our proposed strategy utilizes this match-up idea while the environmental 
conditions and the solution approach are completely different. It also differs in 
that it considers other planning decisions like material flow. We create a new 
schedule that is still consistent with the flow plan.

The match-up scheduling strategy has two basic decisions, determination 
o f a match-up point and rescheduling up to the match-up point. We should 
appro2w:h to this problem heuristically because of the computational complexity 
o f solving for both decisions simultaneously.

In the proposed heuristic approach, two objectives are considered cau
tiously, minimization of deviation from the initial schedule and developing a 
fast solution strategy. The deviation from the existing schedule should be as 
small as possible due to the restrictions caused by other decision levels in the 
hierarchy which are contingent to the results of the initial schedule. Match-up 
point is an important factor on the computation time, it should not be too far 
that makes the problem size large.

Model is developed on a manufacturing cell with the modified flow shop 
structure. Breakdown time is not known a priori but immediately after the 
event occurs, the down duration can be determined. There are no alternative 
machines in the cell, therefore an operation on a machine cannot be swapped
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to another machine.

The organization of the thesis is as follows:

• Chapter 2 gives a literature review about the real-time scheduling prob
lem. Studies are discussed under five main topics, including the match-up 
approach. The chapter ends with a general discussion about the advan
tages and disadvantages of these approaches.

• Chapter 3 deals with the statement of the problem. The points where 
the proposed approach differs form the current literature are listed and 
the problem is defined with its objectives and constraints.

• Chapter 4 details the proposed heuristic approach. Initially the underly
ing strategy is introduced, and then algorithms are listed in detail.

• Chapter 5 illustrates the experimental study. It includes two experi
mental designs which are computational comparison and the analysis of 
variance test.

• Chapter 6 concludes the thesis and discusses the contribution our pro
posed heuristic. Finally, prospects for future work are stated.

The proofs of the Dominance Rule and its transitivity property used in 
Chapter 4 are listed in Appendix A.



Chapter 2

Literature Review

Real-time scheduling is becoming an increasingly important area of research. 
Its importance is primarily due to the nature of the environment that the 
schedule is performed. To issue the dynamic and stochastic characteristics, 
different approaches have been proposed throughout the literature. After a 
general statement of scheduling problems in Section 2.1, the real-time schedul
ing problem is described in Section 2.2 with a classification on the approaches 
to the general form of the problem. They are categorized into five main topics, 
which are stochastic modelling approaches, simulation based approaches, arti
ficial intelligence approaches, off-line scheduling and on-line control approaches 
and match-up approaches. The last class, match-up approach, is accepted by 
this research as well, which is discussed in detail in Section 2.3.

2.1 Scheduling

Scheduling is the allocation of resources over time to perform a collection of 
tasks [Baker 74]. Tasks are described in terms of operations each requiring 
certain amounts of specified resources for a specified time interval called pro
cessing times, the time at which they should be completed and the specified 
routings for resource requirements.

This problem is often complicated by a number of constraints like inter
ference relations that make it infeasible to use the same required resource
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simultaneously or precedence constraints which specify which operations must 
precede which other activities. Other constraints for starting times, due dates, 
non-preemption etc. increiise the complexity and these interrelationships make 
scheduling problems very difficult even for a deterministic and static environ
ment.

Besides this common definition, the scheduling problem can be specified by 
the machine environment, job characteristics and the optimality criterion that 
together define a problem type. In the scheduling literature, the introductory 
textbooks by [Baker 74] and [Kan 76] are the general references. The review of 
the production scheduling by [Graves 81] gives a brief summary of the topic. 
[Morton 92] with his book presenting the foundations of exact and heuristic 
methods is a useful guide for scheduling in different environments. The survey 
on the algorithms and complexity of sequencing and scheduling by [Lawler 89] 
review the complexity results, and optimization and approximation algorithms.

Scheduling problems belong to the class of combinatorial problems and one 
o f the most difficult problems to solve. Scheduling problems are generally 
proved to be NP-hard, as stated by [Kan 76] and [Lawler 89], which means 
that it can be reduced to an NP-complete problem in polynomial time. The 
NP-hardness suggests that it is impossible to always find an optimal solution 
quickly. However it may still be possible to use an approximation algorithm 
to find solutions that are provably close to the optimum. Hence, most solution 
approaches reported in the literature are based on heuristics where optimality 
o f the solution is not guaranteed.

Most of the scheduling algorithms reported in literature consider a static 
situation where the essential characteristics o f the system during the scheduling 
horizon are fixed. The theoretical approaches of Operations Research and 
Artificial Intelligence to scheduling often are not applicable to the dynamic 
characteristics of the actual situation [McKay 88]. In the industrial world, job- 
shop scheduling is still a matter of question, even three decades after the first 
research steps. It appears that one research paper, that by Johnson, set a wave 
o f research in motion that devoured scores of person-years of research time on 
an intractable problem of little practical consequence [Dudek et al. 92]. So a 
fruitless optimization effort has been spent for some period of time. Little has 
been changed in the theoretical world, and the underlying assumptions and
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structure of the theoretical research have remained unchanged for 30 years.

There is an important fact that is commonly neglected; every scheduling 
problem varies with its own dynamic fashion and environmental conditions 
which make it unique. For example, one can model the available time of a 
resource as lasting forever. This assumption is unrealistic and each environment 
hcis its own available resource durations that are unpredictable and lacking of 
a specified pattern. Such events or conditions make up their own constraints 
and mostly not included by the scheduling systems that selects a schedule by 
manipulating a model of the real world, instead of the real world itself. Events 
in the real world change the assumptions where the model is based upon, so 
real-time scheduling becomes a fundamental requirement for scheduling.

In the following section, real time scheduling problem with the above ex
tensions and related approaches are presented. According to their basic un
derlying ideas and assumptions, real-time scheduling approaches are classified 
into five main topics in Section 2.2. They are described in different titles such 
as Stochastic Modelling in Section 2.2.1, Simulation in Section 2.2.2, Artifi
cial Intelligence in Section 2.2.3, Off-Line Scheduling and On-Line Control in 
Section 2.2.4, and finally and most concerned Match-Up Scheduling in Section 
2.2.5.

2.2 Real-Time Scheduling Problem

Variabilities in the production environment and modeling limitations result 
in operational deviations from schedules generated using predictive models. 
Scheduling systems select a schedule assuming that the conditions remain un
changed with the passing time. The challenge of stochasticity arises from in
evitable mismatches between the model and the reality [Parunak 87] . Though 
most o f the environments are dynamic, conventional models in scheduling prob
lems are usually static. In static problems, all the jobs to be scheduled are 
available at the beginning of the planning interval; no legacy of work remains 
from earlier periods, and there is no possibility of deferring any portion of the 
work into a later work [Conway 91]. Therefore static models are more tractable 
than dynamic models, they have often captured the need for more complex.
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dynamic systems. In principle, dynamic systems seem to more closely repre
sent the real production world, except that in practice, time in that world is 
often artificially partitioned into distinct intervals (Conway 91]. Analysis of 
static problems has frequently uncovered valuable insights. There are heuristic 
principles that are useful in more general situations.

Similarly most of the scheduling models are based on the assumption that 
all problem data is known in advance though this may not be a valid cissumption 
for most of the cases. Disruptions like machine breakdown, unexpected new 
jobs, rush or hot jobs with high priorities, material delays, change in release 
dates, tool unavailability, fluctuations in processing times are possible reasons 
introducing stochasticity to the system [Rodammerj. Scheduling in real-time 
simply means that the system must respond to such disturbances or dynamic 
factors immediately as these events occur.

What is meant by ‘ respond’ is important. [Conway 91] states the theoretical 
problem as declared below:

Given a schedule S and a single perturbing event E, produce a 
rescheduling R(S,E) that yields a new schedule S'.

This statement calls to mind a frequent comment heard in many scheduling 
shops:

There is no scheduling problem but rather a rescheduling prob
lem.

It may be quite easy to construct a schedule, what is diflScult is the constant 
schedule revision required by the dynamic environment [Graves 81].

An important challenge in rescheduling is that the run-time of a reschedul
ing method should end up as another disturbance. Another limit is on how 
long can the shop wait to receive the new schedule. This period should be short 
enough so that it will not require any special strategy to be followed during 
the run-time of rescheduling procedure.

The real-time scheduling problem aiming to search for char2w:teristics of 
schedules compatible with the main manufacturing constraints to be satisfied



is especially very important for planning purposes. All the good decisions made 
at the upper levels will be inefficient if the shop-floor level is not able to execute 
them because of disturbances. To take into account of these disturbances, the 
production plans proposed to the workshops need to include many degrees 
o f freedom of various types such as large flow times including time margins, 
underloading of the technical resources to take account of machine failures, 
etc. Consequently on the shop floor decision level, these degrees of freedom are 
available to react in real-time to the various disturbances without modifying 
the proposed production plan. Thus there exists a direct connection between 
the amount of degrees of freedpm necessary to react to disturbances and the 
efficiency of the real-time scheduling procedures. The greater this efficiency is, 
the lower the necessary degrees of amount of freedom will be. But it must be 
noticed that the flexibility associated with these degrees of freedom is costly like 
high level of in process inventories, under loading of the resources, etc. Thus it 
is very important to be able to reduce the requested flexibility by using efficient 
real-time scheduling procedures on the shop-floor level [Erschler 89].

Real-time scheduling can be performed in two distinct ways. An off-line 
schedule can be developed that will help real-time scheduling by giving guar
antee as to the insensitivity of the schedule to future information or a reactive 
approach alone applicable to any arbitrarily off-line schedule is developed. Be
cause of the trade-off, using off-line schedules with costly flexibilities would 
not be preferable. Instead of pure strategies, a combination of these two basic 
ideas exist in the literature in different forms.

The main strategies for dealing with uncertainty of the environment that 
could be reached by the researcher are categorized into five distinct classes:

1. Stochastic Modelling Approaches,

2. Simulation Based Approaches,

3. Artificial Intelligence Approaches,

4. Off-Line Scheduling and On-Line Control Approaches,

5. Match-Up Approaches.

CHAPTER 2. LITERATURE REVIEW 8

Each strategy is discussed in detail by the following subsections.



2.2.1 Stochastic Modelling Approaches

It is the scheduling model that reflects the uncertain nature by common statisti
cal distributions with available information. [Pinedo 83] worked with random 
release and due dates, and [Lawler 89] studied on single machine scheduling 
with random breakdowns. These approaches give only an approximate solu
tion for real-time case because of idealized distributions and rare events. The 
results are for relatively small problems. Research in this area is scattered and 
is not very encouraging. There is a great need for new mathematical techniques 
useful for simplifying the derivation of results in this area.

CHAPTER 2. LITERATURE REVIEW 9

2.2.2 Simulation Based Approaches

[Davis&:Jones 88], [Davis&Jones 89] proposed a scheduling methodology for 
real-time scheduling of operations on a stochaistic job-shop. They solved the 
scheduling problem with a hierarchical decision making control architecture 
based on the decomposition approach of mathematical programming. They 
have the tools of real-time simulation and mathematical decomposition, and 
examined a two level scheduling control technique. E ^h level has responsibility 
for solving its own scheduling problem subject to constraints by its supervisor. 
The higher level scheduler (the supremal) would specify the earliest start time 
and the latest finish time for each task while the lower level scheduling modules 
(the infimals) would refine these limit times for each task by detailed scheduling 
of their assigned activities. Evaluation of the scheduling rules by supremal and 
infimals is the task of an on-line, distributed simulation package.

The on-line real-time simulation methodology is used to analyze several 
candidate scheduling rules in order to solve both infimal and supremal prob
lems. The solution to the problem is composed of both production planning 
and control. The planning elements include simulation, the selection of evalu
ation criteria and scheduling rules. Control function generates event lists and 
coordinate them in presence of conflicts. The event lists are the input to the 
supremal units which are then sorted into a maister schedule, a scheduling list 
and a process list.

The repetitive task of identifying the next action to be taken in a discrete
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manufacturing system serves the real-time scheduling process since decisions 
are dynamic. Most commonly used dispatching rules such as Shortest Pro
cessing Time (SPT), Earliest Due Date (EDD), and First In First Out (FIFO) 
are used to order jobs in other simulation directed scheduling attempts. After 
disruption, the job at the beginning of the list is processed first. These rules 
have the advantage of being easy to understand and to implement. On the 
other hand, these rules have had little analytical studies, thus their efficacy is 
hard to predict theoretically. Their performance is highly dependent on the 
examined environment.

Another control mechanism is developed by [Wu&Wysk 89] which dynam
ically varies the implementation of job dispatching heuristics based on the 
simulated information. Discrete simulation has been extensively used for test
ing dynamic dispatching rules. An accepted recognition among researchers is 
that a combination of simple dispatching rules, in many cases work better than 
individual dispatching rules.

Disadvantage of using such rules is that they do not deal with macro condi
tions, they are myopic and can lead to substantial error. Also using simulation 
to produce schedules is costly, both in the computer time used to generate the 
schedules and human modelling effort required to design and run the simulation 
model.

2.2.3 Artificial Intelligence Approaches

These approaches are logic beised and draw upon computer science techniques 
with an attempt to automate the decision making process to replace human 
intervention in an automated production environment. These approaches uti
lize heuristics and intend to increase the speed of decision making process with 
less emphasis placed on optimality.

A family of knowledge-based scheduling systems, ISIS/OPIS/CORTES have 
been developed by the researchers at the Carnegie Mellon University for auto
matic scheduling that provides a framework for incorporating the full range of 
real-world constraints.

Their design is focused on two basic points [Fox 90):
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1. Constructing a knowledge representation that captures the requisite knowl
edge of the job shop environment and its constraints to support constraint 
directed search.

2. Developing a search architecture capable of exploiting this constraint 
knowledge to effectively control the combinatorics of the underlying search 
space.

ISIS/OPIS/CORTES methods are capable of reactively rescheduling jobs 
in response to disruptions that might occur as well. The chronological order 
o f their evolution and performances are;

• ISIS 1 : Constraint guided scheduling,

• ISIS 2 : Hierarchical constraint guided scheduling,

• ISIS 3 : Multi-perspective scheduling,

• OPIS 1 : Opportunistic scheduling,

• OPIS 2 : Reactive scheduling,

• CORTES : Network-based constraint optimization.

ISIS model is a job centered scheduling system while OPIS dynamically 
switches between being job centered and maebine centered. CORTES system 
has an operation centered view of scheduling. A more detailed discussion on 
these methods can be found in [Smith 92].

Detailed discussion on the opportunistic knowledge-based systems is pre
sented in [Smith 87] , [Pape&Smith 87] , [Ow&Smith 88] , [Ow et al. 88] , 
[Smith et al. 90] , and [Smith 92].

The most interesting part of these procedures related with this study is the 
reactive plan revision. During constraint-based schedule repair in OPIS, five 
strategic schedule revision alternatives have been used: •

• Order Schedule (OSC) - the contiguous part of a given order’s production 
plan is revised by using the beam search which is utilized as a search 
technique of ISIS,
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• Resource Scheduler (RSC) - a designated resource is revised by dispatch
ing rules assuming that dealed resources have high contention so requires 
efficient utilization,

• Right Shifter (RS) - execution times of operations are pushed forward in 
time such that no time or capacity conflict is created,

• Left Shifter (LS) - similarly execution times of operations are pushed 
backward if possible so that no time or capacity constraint is going to be 
violated,

• Demand Swapper (DS) - pairwise interchange of two operations in the 
order schedule is performed if this causes any improvement in the total 
tardiness.

These five strategies are not used arbitrarily but the characteristics of the 
case like the existence of whether a time or capacity conflict avoidance, or 
choice of a resource-based or order-based optimization method are active dur
ing determining the appropriate technique or techniques to be chosen for re
active scheduling purpose. According to the current conditions, the strategy 
needed by the disrupted schedule varies and this is tabularly formulated in 
[Ow et al. 88].

2.2.4 An Off-Line Scheduling and On-Line Control Ap
proach

[Odrey&Wilson 87] developed a controlled structure that is composed of a plan
ning and a control methodology. Their work follows for a goal directed decision 
hierarchy proposed by NIST in Automated Manufticturing Research Facility 
(AMRF). A production control hierarchy possesses several control levels, and 
scheduling problem is addressed at the cell and workstation levels of the hi
erarchy. Off-line methods address the issues of controller design in a discrete 
event environment while on line methods focus on the regularity actions in 
real-time. Their overall approach is based on the mathematical decomposition 
and simulation similar to [Davis&Jones 89].
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Their proposed system is initially in a steady state and remains in this state 
until a failure type disturbance (e.g. machine failures) or a load type distur
bance (e.g. hot orders) occurs. Then the system enters a transient phase and 
the developed on-line control module generates an interim scheduling policy to 
prevent the accumulation of in-process inventory till the broken machine be
come operational, and then the system enters the transient phase. When the 
system enters the transient phase the control module enforces a set of opera
tional strategies to bring the system back to the steady-state periodic schedule 
as quickly as possible [Odrey&Wilson 90].

The basic assumption with this study is that a rolling environment is used 
on the manufacturing cells with cycle times. Cycles have identical machines, 
jobs and operations so repeat themselves when everything is certain. However 
stochasticity does not allow this routine scheduling. A disruption that affects 
one cycle, when not compensated will be dangerous for other cycles. When 
match-up is not feasible, effects of disruption will increase dramatically as each 
cycle begins with a disruption caused by the delay in the previous cycle.

The off-line scheduling model part of this approach uses an optimization 
technique while on-line control structure utilize a hybrid approach of combina
torial optimization and AI techniques.

In order to accommodate all the parts that still need to be processed while 
returning to steady-state, the earliest start times of machines may be shifted 
L time units. The objective is keeping L as small as possible, even though 
its resulting effect on the rest of the schedule is not evaluated. A detailed 
description exists in [Saleh 88] and [Saleh et al. 91].

2.2.5 Match-up Scheduling Approach

Bean and Birge proposed a theoretical framework that adopts the old schedule 
to smooth out the difficulties created by the disruptions and match-up with 
the preschedule [Bean&Birge 85]. They employed Economic Turnpike Theory 
[Winston] by McKenzie by adopting the approach used in economics to the 
real-time reactive scheduling. Turnpike Theory in [McKenzie 76] is used in a 
growth model which is described as.
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It is exactly like a turnpike paralleled by a network of minor 
roads. There is a fastest root between any two points; and if the 
origin and destination are close together and far from the turnpike, 
the best route may not touch turnpike. But if origin and destination 
are far enough apart, it will always pay to get on to the turnpike 
and cover distance at the best rate of travel, even if this means 
adding a little mileage at either end.

Analogous problems arise in the number of areas in economics. Turnpike The
ory develops formal conditions under which returning to an original plan is 
provably as good as re-planning to the original objective. When these results 
are applied to the scheduling area, under a wide range of real-time conditions, 
the expensive approach of rescheduling to the original objective can be replaced 
by the much simpler problem of finding a way back to the original schedule.

Starting from this point of view. Bean and Birge used Turnpike Theory as 
a foundation for adaptive approaches. However this theory has strong assump
tions that cannot be validated by every scheduling problem:

• The strongest turnpike results require uniform convexity of the incre
mental cost even though most measures of scheduling do not satisfy this 
assumption.

• Planning horizon must be long enough since turnpike results are asymp
totic. This assumption is justified in the scheduling case in the limit as 
the horizon of the problem is increased.

• Preschedule is optimal.

• Penalties and setups are charged continuously which means in scheduling 
application, jobs could be preempted.

• A known upper bound for the number of jobs in the system is required 
by the theorem. However also the problem is considered cis a discrete 
time, infinite horizon optimization problem which means there is infinite 
number of jobs in the system.

For a FMS system, real-time scheduling is very critical and its production 
environment better satisfies the above assumptions relative to other systems.
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Therefore FMS is preferable for applications of turnpike results as performed 
by [Birge 85].

The assumptions become close to accurate since FMS has job loads that 
consist of many small pieces and setups are short. This will be advantegous 
to satisfy the assumptions of convex cost function and continuous payment of 
penalties and setups.

[Bean&Birge 85] declares that their heuristic approach does not guarantee 
an optimal solution in all situations. Though match-up point, T, can be chosen 
large enough to get close to an optimal schedule, it is not generally known how 
large T must be. A large T which is known to be leading to computational 
difficulties, makes the method impractical. Given these potential problems, 
algorithm is implemented as a heuristic, and T is determined to balance error 
and effort.

The method results «is good as complete rescheduling iis the rescheduling 
horizon is lengthened and the interval between disturbances increases. This is 
shown by economic Turnpike Theory. The error involved in using the method 
is also bounded by the difference between the match-up cost and a lower bound 
which is found by a local minimization. They suggest using comparison of the 
error bounds for different match-up problem sizes to determine the value of 
additional computational effort in specific situations.

Match-up real-time scheduling algorithm (MURTSA) has three basic steps:

• Define new internal cost parameters.

• Determine the portion of the preschedule to release.

• Reschedule the released portion to minimize cost.

These steps are repeated until match-up is performed or some stopping criteria 
is satisfied. Stopping criteria can be the maximum planning horizon or an 
upper bound for allowable cost. Tardiness is taken as the unique cost measure 
dominating others.

In Step 2, the portion of the preschedule to be released is chosen. The 
objective in defining the new problem set is to allow for a smooth transition
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back to the preschedule turnpike. The problem should be large enough to 
allow for sufficient adjustments to reduce disruption effects, but it cannot be 
too large for the scheduling algorithm.

The problem size is two dimensional, the pool of machines included in 
match-up and the length of the planning horizon. During choosing the machine 
pool, utilization of machines, their reliability, the slack times of operations 
on these machines and mecisures of the criticality of the pool information is 
involved. The concern of the length of the horizon is directly related with the 
number of operations to be included in the reschedule.

Schedule maker in Step 3 can determine whether additional problem sets 
and cost structures need to be defined. Methods like heuristic ordering using 
dominance rules, simple interchanges to find local optima, branch and bound 
procedures that can find fecisible solutions quite easily and simulated annealing 
are proposed by [Birge 85] to improve the feasible schedule, if possible.

A more detailed algorithm called MUSA is given by [Bean et al. 91]. The 
planning horizon is explicitly searched beginning from an initial match-up 
point, 7 i. When the cost for the given match-up point exceeds the upper- 
bound, the match-up point is incremented by A T , until t exceeds a maximum 
value. Feasibility not only defines interference and precedence constraints but 
also upper bound for total cost and match-up point. If the current solution 
results in excessive tardiness cost which means the observed cost is greater 
than the threshold value, and the maximum match-up point, Tmax, which is 
the ending time for the initial schedule, is exceeded then the system proceeds 
to Step 1 after enlarging the problem.

The initial rescheduling attempt is on a single machine, the disrupted one. 
Six different rules are selected for inclusion into MUSA which are SPT, EDD, 
Modified Due Date (MDD), A Priority Index (API), a ratio rule and the or
dering based upon the current sequence. The heuristic calculates six feasible 
schedules based on these ordering rules and chooses the least cost schedule 
that is obtained. When scheduling attempt fails to result a fecisible solution, 
machine number is increased and in the following steps multimachine lot reas
signment is used to redistribute lot-to-machine assignments. They examine two 
approaches for reassignment; a multiple choice integer program (MCIP) for
mulation solved using the technique of [Bean 84], and a priority rule dynamic
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assignment heuristic.

Experimental results are encouraging for the problems with real produc
tion data supplied by an automotive manufacturer. The results support the 
theory by showing that match-up scheduling costs are close to lower bounds. 
Furthermore the results were significantly better than results from pure static 
and dynamic strategies like pushing back the static schedule, dynamic priority 
rules and MCIP that are commonly used in practice with the exception of the 
third one with less common use..

A brief comparison of the models, their strengths and weaknesses are dis
cussed in the next section to be used as a guideline throughout the current 
research.

2.3 Remarks

Scheduling models that try to beat unpredictable events in the manufacturing 
system differ in their approaches as classified in the previous section. Strategies 
developed for finding solutions to undesired disruption effects on the presched
ule have two trends:

1. Just-In-Case E fforts : A structural solution is looked for that will 
minimize the troubles caused by stochastic events. The possibility of 
future disruptions is considered within the initial schedule by adding 
some extra flexibility. Deciding on the amount and type of flexibility is an 
hard job because of the existence of two random variables in the problem. 
These are interarrival times of disruptions since disruption definition is 
general so there are many reasons independent of each other causing a 
single disruption, and the duration of disruptions because it depends on 
the reason of the disruption. This type of an effort is expensive though 
not powerful. It keeps some additional resource (e.g. machine, material) 
for emergency use, so cause additional cost, increased makespan and low 
utilization to prevent an activity that may or may not occur during the 
given time period.
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2. R eactive  Efforts : An operational solution is used that creates solutions 
whenever a disruption occurs, not any time before. When the exact time 
and duration of the event is known, some action is taken to include it in 
the plans. Current flexibility by the initial solution is used to compensate 
this unexpected effect so will not be so costly as the first one, however 
would require much more effort.

The reactive approach dominates the just-in-case efforts that it is applicable 
to a wider range of disruptions and do not require extra resource that might 
be a waste. This research also develops a reactive method to deal with the 
real-time events. Artificial Intelligence is one of the tools used to solve the 
problem in a reactive manner. The proposed methodology by Smith et al. is 
utilized for both generating schedules and reacting to real-time events. A long
term scheduling does not exist since the existing schedule is updated with an 
event not necessarily a disruption but can also be completion of any operation 
within the regular time. Therefore there is no worry for matching-up a specific 
predefined schedule so no hard constraints to keep. It has a decision tree like 
structure to choose the appropriate action according to the conditions of the 
problem which is important for taking a feedback. Separating the disruption 
effects into categories and trying to formulate the specific situations of each 
class is a credible approach.

One of the approaches, by Odrey and Wilson, uses the match-up idea of 
Bean and Birge, which is the underlying concept of this research as well. How
ever they allow the earliest start times of machines to be shifted by L units 
[Saleh et al. 91] with an objective of keeping this L minimum. They have a 
repetitive production assumption. Another assumption is that failure times 
should be smaller than cycle time. Any failure is tried to be compensated 
within the cycle it occurs and if not possible, L units of delay is permitted in 
the next cycle. The next cycle takes this delay as a failure so similarly tries to 
compensate it in its cycle time. This attempt continues in this fashion until in 
one of the cycles a schedule that will cause no delay for the following cycle is 
found. This repetitive attempt increases the nervousness of the system since 
the methodology has no stopping event when the delay is not compensated by 
one of the cycles, so in such a case, an endless effort continues.
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This research, by the basic assumption, differs from Odrey and Wilson’s 
work that it does not restrict the system as having a repetitive manufacturing. 
It is more general so theories and tools used by them becomes inappropriate 
for this study’s problem definition.

To a greater extend, the approach by Bean and Birge is found to be more 
appropriate and followed throughout this study. Their idea is so basic that 
also included by other researchers. In Section 2.2.5 the basic three steps of 
their algorithm has been summarized. There are some lacking points in their 
algorithm that need further research which are as follows:

1. Bean and Birge, in their research, build a close relation between the 
Turnpike Theory and match-up scheduling to conclude that match-up 
policy is optimal or if some assumptions of the theory cannot be satisfied 
by the schedule, they find error bounds of their algorithm. Turnpike 
Theory, as stated in Section 2.2.5, has very strong assumptions that are 
impossible to satisfy for its application to the scheduling problem, even 
for FMS as in [Birge 85].

2. In Step 2, the portion of the initial schedule to be rescheduled is deter
mined. For this purpose, a common T for all machines in the pool, as 
a match-up target, is determined. However, this approach has certain 
disadvantages such as:

i) Machines have different flexibilities (e.g. idle periods, slack of jobs 
on these machines) so this common T may not be equally appropri
ate for all of the machines.

ii) T, when taken same at all machines, will not be always at the begin
ning or end of an operation. Matching somewhere during processing 
a job gives no aid when preemption is not allowed.

iii) Choice of operations in the rescheduling pool is a consequence deci
sion of choosing the T value. For that reason, having any operation 
in the pool will not be sufficient to include the other operations of 
the same job on the pool. When this is the case, slack of jobs, that 
gives additional flexibility needed to match-up, cannot be used on 
purpose but it will rather be an uncontrollable variable.
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3. Scheduling horizon is searched by A T  increments in order to find an ade
quate match-up point in Step 2. This incremental analysis success highly 
depends on the choice of A T . Additionally, this amount of increment 
is always fixed, no matter how much flexibility exists in the system or 
required to compensate the disruption at the moment. At the end of 
Step 3, when scheduling is found to be infeasible with the current pool, 
a feedback about the amount of extra flexibility that seems would lead 
to a successful rescheduling, can be given to be used in Step 2 during 
enlarging the pool size.

4. Bean and Birge mentioned that their appro<ich has an intuitive appeal 
since material flows in the system are planned based on the preschedule 
[Bean&Birge 85]. Not only the material flow but other decisions like 
planning transportation tools, scheduling preceding or succeeding shops 
also use the initial schedule as an input. When some portion of it is 
redesigned, these decisions are all affected by this change. There are two 
possible actions. They are updating these consequence decisions with 
respect to the results of the reschedule or considering the effects of the 
changes in developing the reschedule. The primer alternative may cause 
a need for an update at the upper levels of the hierarchical architecture. 
There might be other decisions affected by these subsequent ones also. 
This will cause a dramatical increase in the dimensions of the problem so 
it will require too much effort. The latter alternative suggests adding new 
constraints during match-up that will represent the limitations caused 
by these consequence decisions. This attempt will restrict the feasibility 
space so might cause a harder problem but will be more efficient.

5. Step 3 deals with rescheduling after the dimensions of the problem is 
defined in Step 2. For rescheduling purpose, cleissical scheduling meth
ods are proposed. These approaches are not always good enough for the 
match-up purpose since the rescheduling problem has its own constraints 
and conditions different than the general scheduling problems. For ex
ample, there are two kinds of due-dates which are job due-dates and 
match-up times. Their importance are not equal, for example a violation 
of the match-up point will result in the enlargement of the pool and an
other rescheduling try, while exceeding the due-dates only is acceptable. 
Therefore finding a feasible schedule within the pool is very important, 
and a good schedule is the one that produces feasible schedules with
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smaller pools, smaller flexibilities, not the one that gives the minimum 
cost by increeising the number of trials so the computation time. In most 
cases, being unable to find a match-up schedule is not because of the 
insufficient flexibility in the pool but because of inefficient scheduling al
gorithm. So it deserves attention that is lacking in the previous studies.

All these aspects are reexamined and alternative strategies are developed 
based on these above points that are thought to be deficient. The following 
chapter gives a complete definition for the model with the assumptions valid 
in this study and the formulation of the problem.



Chapter 3

Problem Statement

Although remarks about the past research are given at the end of the previous 
chapter, the dominant points that are emphcisized by this research are outlined 
in Section 3.1. Assumptions are listed in Section 3.2, which will be in use in the 
remaining part of this thesis. Finally, objectives and constraints are discussed 
in Section 3.3 within this chapter.

3.1 A Different Approach To The Problem

Scheduling in real-time is an important problem that has attracted a lot of 
interest by researchers. Match-up perspective which tries to find a way for 
real-time scheduling hcis been worked on by Bean and Birge as summarized in 
the Literature Review. Their main idea of matching-up the initial schedule by 
rescheduling only some part of it when the whole schedule becomes infeasible 
to apply has given the basic motivation for this research.

The proposed methodology departs from the previous studies in the follow
ing bcisic points :

1. Instead of having a common match-up time T on all machines like Bean 
and Birge, match-up times unique to each machine is considered. This 
is needed since matching-up the schedule during processing a job has no 
meaning when preemption is not allowed. Gantt Charts given in Figures

22



CHAPTER 3. PROBLEM STATEMENT 23

Figure 3.1. Same T̂  ̂ for all machines

3.1 and 3.2 show both cases. As seen in Figure 3.1, some part of the job 
takes part before T and other part after T. Having the first portion in 
the subproblem will give no flexibility since its location on the chart is 
fixed, moreover it cannot be scheduled at any other time.

Another advantage of having different Ti values for machines is that, 
whenever an idle period exists in the initial schedule, it can be included by 
the subproblem independent of any other machines. Having more idleness 
at the reschedule means more flexibility during match-up. Location of 
idle times on the Gantt Chart are assumed to be random, so a common 
T that gives more idleness for one machine may not result so efficiently 
for another machine. Separate TJ values will let each machine to look 
for its own benefits and then the subproblem combined with all will be 
more flexible than the one determined by a unique T. Here, flexibility of 
a subproblem is used to describe a case of having tighter constraints.

2. A match-up point is looked for by trying different time points until one 
gives a feasible solution for the pool defined by that point. A good 
search algorithm should result fast with less effort. Trying to find a
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feasible solution at each A T  increment is not very powerful and does not 
satisfy the above requirement of having distinct TJ values as well. The 
difference in this research is that during developing a valid methodology, 
instead of rescheduling for fixed intervals, feedback is taken from the 
previous scheduling attempt to minimize the search effort, ^he amount of 
flexibility versus complexity added to the rescheduling problem with the 
new match-up point is considered for an healthier decision. What makes 
real-time scheduling critical is the time parameter. Real-time systems 
should be not only reliable but also have the time-critical decision making 
ability. Since match-up point is found by trying different alternatives, the 
number of alternatives should be limited. For that reason it is proposed 
that the enlargement amount should be determined by taking feedback 
from the type and quantity of the opportunities, and conflicts in the 
system instead of having a fixed amount of enlargement, A T , in every 
iteration.

3. Schedule in a manufacturing cell is the main concern but neglecting its 
interaction with other cells or any other elements of the manufacturing 
system is not very realistic. Some of these relations with the surrounding 
environment can be as follows: •

• Preceding and Succeeding Cells : Jobs that require more than one 
cell need feedback between these cells’ schedules. For an interrupted 
cell, the preceding cell’s completion times affect the earliest start 
times and the succeeding cell’s beginning times affect the latest 
possible start times of jobs. When rescheduling the subproblem, 
the initially existing schedule’s beginning and ending times become 
invalid. Therefore new beginning and ending times should be deter
mined such that they would not violate these neighbor cells’ sched
ules.

• Material Flow Into Cell : During developing'the material require
ment plan throughout the system, the outputs of the initial schedule 
were used. When some part of is redesigned, the original material 
flow plan might be no longer available to apply the updated schedule. 
So, rescheduling should be performed by considering its validity.

• Other Resources : Transportation devices, jigs, fixture, etc., which
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are shared by other utilities and not considered directly at the sched
ule are all planned according to the results of the initial schedule. 
These interactions, similar to the first two factors, also put restric
tion to rescheduling. ^

}
Because of these stated interactions, rescheduling attempt might be use
less when its results divert too much from the initial schedule’s results. 
For that reason, an objective of minimizing the deviation from the previ
ous schedule is defined in order to keep the new scheduling results appli
cable by other decisions which use it as an input. Our objective will be 
carried out by both hard and soft constraints, which will be introduced 
in the following sections.

4. Known scheduling heuristics and dispatching rules had been used for 
rescheduling purposes, even though a new rescheduling methodology might 
perform more efficiently by considering the specific constraints of the 
problem. Special interest is given to creation of the rescheduling policy 
in this research and a major portion of this study is devoted to develop 
one.

In the light of these four points, a methodology is developed with the pur
pose of finding a solution to the problem being stated up to now. All related 
assumptions and definitions are given at the following sections of this chapter.

3.2 Assumptions

To make the problem more clear and well defined, an environment that repre
sents the real system is build up with the following <issumptions;

1. A cellular manufacturing system is concerned. A schedule means a pro
duction plan at the cell level and the manufacturing cell is of a moderate 
size due to nature of the cellular manufacturing systems.

2. The cell has a modified flow-shop structure. A modified flow-shop falls 
between a job-shop and a pure flow-shop. Parts can enter or exit at any 
machine, as in job-shop, but follow a uni-directional flow, as in flow-shop, 
though they can skip some machines.
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3. Any disruption is formulated as an additional job with a given starting 
time that cannot be predicted and a known duration. If the reason for 
disruption is the lack of a resource, necessary time to cover it is assumed 
to be known.

4. Disturbances have minor durations or idleness in the initial schedule is 
enough to cover this period.

5. No preemption is allowed, once an operation is started, it is continued 
until finished.

6. Setup times are independent of schedules and are included in processing 
times.

When compared with the work of Bean and Birge, it will be noticed that 
Turnpike theory is not strictly followed by assumptions like the optimality 
of preschedule or preemption. Instead, the practical value of the theoretical 
results motivates their approach to real problems. Nevertheless, it is the study 
that first uses the insight of the Turnpike Theory, and it also gives incentive to 
our research. The model built in this work, with its objectives and constraints, 
is given in the next section. It has the underlying idea of matching-up the 
initial schedule as proposed by Bean and Birge.

3.3 Model Formulation

3.3.1 Objectives

The main purpose of this study is to develop a heuristic that will reschedule the 
system to match-up the initial schedule which became invalid after a disruption. 
During searching for a solution, there are two important ambitions:

1. The deviation from the existing schedule should be as small as possible 
due to the restrictions caused by other decision levels in the hierarchy 
which are contingent to the results of the initial schedule. Two types of 
deviation are considered that are most expected to cause trouble because 
of the interactions stated in Section 3.1:
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i.) earliness : new beginning time can be smaller than the beginning 
time at the initial schedule,

ii.) tardiness : new completion time can be greater than the comple
tion time at the initial schedule.

Both cases are undesired at the reschedule. For example, when a job is 
rescheduled to an earlier time, the material required to process it may 
not be ready or if it is rescheduled to a later time, it may cause a delay 
in succeeding activities.

This work completely eliminates earliness by taking initial beginning 
times of jobs as hard ready time constraints. However, tardiness can
not be strictly restricted. For a job whose scheduled processing period 
overlaps with the down duration of the machine, even scheduling it imme
diately after the down duration may not be enough to prevent tardiness 
unless it has a certain amount of slack. In such cases, there is nothing to 
do except letting the job to be late but trying to minimize the amount of 
deviation. Tardiness is minimized by taking the initial completion times 
of jobs as soft due date constraints.

The heuristic that searches for a solution is operated in real-time that a 
minute of computation time means a minute of system idleness. Then, 
it is a time-critical decision making process which means the solution 
should be found as fast as possible.

The run time of the solution procedure depends on the match-up time 
searching attempt. T^  should not be too far that makes the subproblem 
size large and completion time long, but also it should not be too soon 
that the reschedule will be a fruitless effort and another replication will 
be required.

This objective is considered with two actions included by the procedure:

i.) An efficient strategy to suggest recisonable T̂  ̂ values is looked for.

ii.) Computation time is limited with an upper bound which means 
that if it cannot produce a match-up schedule in a given time, it 
terminates and gives the currently best schedule on hand that has 
been developed till this point.



CHAPTER 3. PROBLEM STATEMENT 28

Both objectives are inherent and are closely followed in the heuristic algorithm 
developed for this problem, which will be discussed in Chapter 4. Additionally 
there are some constraints that state the problem. They will be listed below 
after calling the notation that is used in this study.

3.3.2 Notation

The notation used in the mathematical formulation and throughout this chap
ter is given below:
n
rn
Pi,k

J.B

H
Li
M
Xi,k
Y  old

number o f jobs in the match-up pool, 
number of machines in the cell, 
processing time of job i on machine fc.

I
1 if operation j  of job i requires machine k, 
0 otherwise.

beginning time of schedule for machine k,
match-up time of schedule for machine k,
machine number on which job i enters the cell first time,
machine number on which job i leaves the cell,
tardiness of the last operation for job t,
a very large positive number,
starting time of job i on machine k,
starting time of job i on machine k in the initial schedule.

{1 if job  i precedes job A, not necessarily directly, on machine fc, 
« 1

0 otherwise.

t ,/i  =  ( l , . . . ,n )  and =  (l ,. .. ,m )

Xî k and Yi,h,k are the decision variables of the model, and L,· is the conse
quence variable.
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3.3.3 Constraints

There are three groups of constraints considered by the approach developed 
here:

1. Classical modified flow-shop constraints are still active which are:

i.) precedence relations, 

ii.) non-interference constraints.

2. Match-up constraints are imposed to have the ending state of the resched
ule at the match-up point identical to the state of the initial schedule at 
this time point.

3. The first objective of minimizing the deviation from the initial sched
ule adds the ready time constraints since earliness is taken as a hard 
constraint.

During rescheduling with a chosen match-up point, all these restrictions should 
be considered by the problem solver.

Assuming that and T̂  ̂values have been already determined, the reschedul
ing problem can be formulated as a mixed integer program.

3.3.4 The Mixed Integer Model :

1. One of the global objectives is defined as minimizing deviation from the 
initial schedule which is considered by both hard and soft constraints. 
The soft constraint part, minimizing tardiness, is the objective of this 
MIP. As previously defined, tardiness is the delay in the completion times 
of the initial schedule that may be caused by shifting some jobs to the 
right in the planning horizon for rescheduling purpose. The formal ob
jective definition is:

Min
 ̂ Li
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where

fo r i =  (l,...,n ).

2. Two classical scheduling constraints of modified flow-shop are still in use:

i.) precedence constraint which satisfy that a job can be processed on 
at most one machine at any time and define the process routings,

(^ i,k  d " Pi,k) ^  Y ^ = l
for i = ( l ,. ..,n ) and j  =

ii.) non-interference constraints which satisfy that each machine can 
process at most one job at any time,

^h,k -  Xi,k >  Pi,k — { M  +  p i , k ) ( l — Yi,h,k ),
Xi,k -  Xk,k >  Ph,k -  { M + ph,k ) Yi,h,ky

for i,h =  ( l ,. .. ,n ) and k =  ( l,...,m ).

3. Since another objective is to minimize deviation from the initial schedule 
which is stated as a hard constraint, no earliness from the beginning 
times of the initial schedule are allowed,

fo r i =  (l ,. .. ,n ).

4. Beginning time and match-up time of the reschedule are hard constraints 
which restrict the time interval to perform reschedule,

9«.* XiJ. > r f ,
( XiJ: +  Pi,t ) <  ri* ,

for i — ( l ,...,n ) and k ,j =  ( l ,...,m ).

Beginning time constraint states that, since disruption is not foreseen, jobs 
processed previously cannot be rescheduled. Match-up time constraint brings 
the system to a state at which initial schedule is applicable again.

This model is helpful only for defining the rescheduling part of the approach. 
It is not directly applicable because:

i.) The match-up point, T^, has to be known prior to formulation. How'ever, 
it cannot be determined without enumeration. Correspondingly, the set
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of jobs that will be included by the MIP model cannot be determined 
while T̂  ̂ is not known.

ii.) The second objective of this approach is to develop a time-critical decision 
making process which is difficult to get because of the computational 
complexity of mixed integer programming.

A heuristic methodology is developed to solve the problem stated in this 
chapter. It consists of three parts:

• determination of the job pool and match-up point consequently,

• rescheduling within the given pool,

• enlarging the pool size when match-up effort fails.

The following chapter includes heuristic algorithms developed for the three 
basic steps stated above.



Chapter 4

Match-up Algorithm

The statement of the problem with its assumptions, objectives and constraints 
is presented in Chapter 3. In the light of the stated remarks on other researches 
related with the problem, a new heuristic approach is developed. This proposed 
solution strategy decomposes the problem into three subproblems and apply 
different methodologies for each of them. In Section 4.1, the overall approach is 
discussed. Rescheduling methods for each decomposed part and determination 
o f match-up points are explained in Section 4.2 and 4.3, respectively.

4.1 The Strategy

The problem and the system that owns it is defined in the previous chapter. 
It is a complex task to solve such a problem because of the two decisions that 
are closely related but cannot be solved together. They are:

1. Finding a feasible schedule within the given match-up time.

2. Finding a match-up time for which a feasible schedule exists.

The procedure is formulated to search for match-up points on the time 
horizon, and for a chosen point, feasibility is checked by solving the proposed 
rescheduling algorithm.

32
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Different points on the time horizon are tested in order to find a inatch-up 
point. A pool is created by collecting some of the jobs and all of the machines 
of the cell for this rescheduling interval. A heuristic, with an output of either 
a feasible solution or a new match-up time to be used in the next iteration, is 
applied. This attempt continues until either a feasible schedule is found or the 
limit is reached. Limit can be either the ending time of the initial schedule, 
which means when reached, a complete reschedule has been tried, or it can be 
the user defined computation time to end the try, which is one of the important 
elements in real-time scheduling. The steps of the proposed heuristic approach 
can be represented as:

51 Find an initial rescheduling job pool with a match-up point.

52 Apply the rescheduling heuristic on the pool.
If a feasible solution is found, STOP.
Else, go to STEP 3.

53 Update the match-up point and the job pool according to the result of
the rescheduling heuristic.
Go to STEP 2.

This sequence of actions are represented in a flow diagram in Figure 4.1.

Finding a good rescheduling heuristic is a difficult problem since it is like 
a modified flow shop problem with some additional constraints. A modified 
flow shop problem alone is NP complete. Besides the precedence and interfer
ence constraints of the modified flow-shop, match-up, ready-time and due-date 
constraints are also added in the defined rescheduling problem. Moreover, the 
heuristic also provides a feedback mechanism for enlargement decisions. In the 
case of failure of a fecisible schedule within the given match-up point, a new 
point is tried at the next time which is suggested by the same heuristic too.

Accordingly, the two purposes in Step 2 can be summarized as:

1. Finding a feasible schedule within the given match-up point. If not pos
sible, then,

2. Enlarging the pool that will lead to a feasible solution in the next try of 
rescheduling.
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Figure 4.1. Flow-chart representation of the solution framework

These two missions are so closely related that they are covered by the same 
step. When an attempt of rescheduling results unsatisfactorily, the required 
amount of flexibility can be estimated and the new match-up point can be 
determined so that it will include the correct amount of flexibility. However the 
amount of enlargement needed to collect the required amount of opportunity 
depends on how flexibility is distributed on the planning horizon. As stated 
in the literature survey, people have either given extra flexibility to prevent 
effects of future disruptions or they react to these effects after the disruption 
by utilizing flexibility they have currently on hand. The second action is better 
suited to our problem, so the present allowable flexibility is an uncontrollable 
variable. Therefore, in deciding on the necessary amount of increase on the 
match-up point, the following factors are effectual: •

• the amount of flexibility required to match-up.
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• the length of additional time that includes the needed flexibility.

These two elements are considered both in Step 1, during determining the 
initial pool and in Step 2, to enlarge the pool size. The following subsection 
indicates how these ideas are put in a working order. Later in Section 4.1.2, 
the rescheduling part of Step 2 and its underlying scheme are represented.

4.1.1 Determination of a Pool

Starting from an initial pool of jobs, an initial rescheduling problem, the 
method checks the feasibility of match-up with current pool size and if not 
feasible, then guides on how to enlarge the pool, i.e. which operations to add. 
Choice of a right pool will give an answer to match-up time, but which pool size 
will result a successful match-up is unpredictable. During collecting machines 
and jobs in the rescheduling pool, having enough flexibility is the bcisic concern. 
But neither a direct measure for the required flexibility nor the classiflcation 
o f the types of flexibility can be well defined. How to measure flexibility is still 
a matter of question in general, but for this research word ‘flexibility’ is used 
for a more restricted meaning.

Flexibility of a given schedule includes the following two concepts:

• m achine flex ib ility  : amount of idleness on the machine,

• jo b  flexib ility  : slack time of the job with given ready-time and due- 
date.

Machine flexibility can be, for an instance, compared with the disruption du
ration because the covered idleness by the pool should be at least equal to 
the disruption duration. Other than this condition, it is not easy to have a 
direct comparison between the required flexibility and the collected flexibility. 
The required amount depends on the other scheduling constraints cis well as 
the duration of disruption. Moreover, a direct comparison of disruption length 
with the added flexibility will not be adequate since converting the job flexi
bility into machine flexibility, or vice versa, is not always possible. Instead of
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a quantitative measure on these terms, some qualitatitive distinctions are used 
to decide on how much flexibility to bear.

To increase job flexibility, all operations of a job and consequently all ma
chines processing it is included by the pool. That is because an out of pool 
operation of a job, that has other operations in the pool, will cause extra 
constraints for that job since its beginning time remains fixed for match-up 
purposes. Having all machines of the cell in the pool is a reasonable action 
in order to include a job completely in the pool, with its all operations. This 
will increase the pool size. However, cellular manufacturing is assumed to be 
applied with moderate cell size that will keep the machine number relatively 
small. Furthermore, the developed algorithms that are presented in the forth
coming sections are not very sensitive to the number of machines in terms of 
computation efficiency. Then having all machines automatically in the pool is 
decided to be an appropriate action and used from now on during determining 
the pools.

An important remark, before giving the exact approach, is needed to un
derstand the relationship between the job pool and the match-up point more 
clearly. For a machine, taking the first n operations following the disruption in 
the prescheduled order, will indicate that this machine is expected to match-up 
the original schedule at the beginning of the (n -f- 1)‘ '‘ operation. During the 
arrangement of the pools, another point of view is that, instead of specifying 
operations on machines, time intervals can be considered. When different plan
ning intervals for each machine is chosen, operations to be rescheduled appear 
spontaneously. This second one is a stronger argument because it checks the 
continuity of operations of a job in the pool. Continuity means operations in 
the pool belonging to the same machine should form a continuous time hori
zon. This means that an operation with the two other operations on both 
sides that are included by the pool cannot be out of the pool. In this work, 
pool is formed by operations instead of time intervals since it is practical to 
control the amount of flexibility included by this way. Weakness of this choice 
is compensated by building continuity checking inside the pool determination 
task.

Also another remark about the word ‘disruption’ becomes necessary such 
that it is used interchangeably with machine breakdown. Though breakdown
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is not the only type of the disruption, many cases including breakdown can 
be considered as additional operation on a specified machine, with a constant 
and unpredictable starting time, and known duration. So, just using a specific 
case would not mean the lack of generality, results are applicable to similar 
disruption cases as well.

As mentioned in the previous section, pool size determination strategy has 
two stages, finding an initial pool, and updating the pool. They are described 
in detail in the following paragraphs. Table 4.1 summarizes the notation used 
throughout this chapter.

4.1.1.1 The Initial Pool

For a disruption caused by any reeison, the down time covers the processing 
time of some jobs on the initial original schedule. This disruption duration 
has a beginning time, tj, and completion time, To insert this period into 
the original schedule, idle times that already exist in the preschedule of down 
machine, kj, are utilized. When the down time is <„ — id units long, at least 
a sum of this amount of idle time is needed, assuming that rescheduling that 
machine with 100% utilization is possible though known that it is very rare. 
Finding a feasible solution for that initial pool is fine though it is not most 
likely. In the initial pool, flexibility just enough to cover the down duration is 
given, but the precedence and non-interference constraints are not considered. 
Because of that reason, finding a solution will not be possible most of the 
time. But the infeasible solution will still give feedback about the amount of 
enlargement that is expected to be required in the next iteration.

Initially, the job pool of the down machine, fcj, is collected and then the 
match-up point of this machine is determined. Job pools and match-up points 
o f other machines are settled accordingly.

For this purpose, operations following the breakdown at the down machine, 
that is any job that satisfies the following condition is defined:

^i,k '> td ·

Furthermore those jobs are sequenced in a chronological order:
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: number of jobs in the match-up pool 

: number of machines in the cell 

: job index 

: machine index

: operation of job j  on machine k 

: preceding operation of (j, k) for job j  

: succeeding operation of {j, k) for job j  

: the disrupted machine

: first machine in the cell that job j  is operated by 

: Icist machine in the cell that job j  is operated by 

: ready time for job j  on its first machine kj 

: due date for job j  on its last machine ¿j 

: beginning time of schedule for machine k 

: match-up time of schedule for machine k 

: the beginning time of disruption 

: the ending time of disruption

: the operation after the disruption in the initial sequence 

processing time of operation {j, k)

planned starting time of operation (j, k) in the initial schedule 

the set of jobs to be rescheduled on machine k 

the set of jobs in the pool

maximum match-up time introduced by the planning horizon restriction

n

m

i . j

k

U,!‘ )

kd

rj

dj

td

tu

0[i]

Pj,k

Sk

s
Tmar

Table 4.1. Notation Summary
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0[i] , 0(2) , 0(3) , . . .

They are indexed on their beginning times in the initial schedule which satisfies;

Jobs to be rescheduled on k¿ are collected in the set Skj using the following 
procedure:

50 Set n =  1.

51 If <„ +  E ”=i PO(ij -  A’o(„+,j >  0 then go to Step 2, 

else STOP, set =  A'o,„+„

and Skj =  { 0 (1] , 0 (2], . . . ,  0(„] }.

52 n =  n +  1, go to Step 1.

Step 1 checks whether enough amount of idle time is collected to cover the 
down duration, or not. In Step 2, adding new jobs to the set Sk̂  is continued 
until total idle time in the set exceeds the length of the down period.

Determination of Sk for any machine other than is performed as follows:

50 Set k = 1.

51 Set = m a x j^  Xj,k+Pj,k

52 For any j  in the initial schedule that satisfies

td < Xj,k < for k^kd, 

add j  to Sk·

53 If A; <  m then k = k -i-1, 

else STOP,

5  =  5i U 5a U . . .  U 

n = \S\.
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All the jobs in the set Skj are included by other machines in Step 1. This 
will allow utilizing the slack of jobs during rescheduling. Determining the job 
pool instead of time horizon to be rescheduled has a pitfall. If a job that is 
sequenced in between two jobs of the pool but not included by the pool exists, 
this will cause a discontinuous replanning horizon. In order not to have such 
a case, Step 2 adds such jobs to the pool even when they are not included by 

Finally in Step 3, the overall job pool is formed by the union of machine 
pools.

4.1.1.2 U pdating T he Pool

In the case of failure of finding a schedule for the given pool, a larger pool 
is looked for which is supposed to have a feasible schedule. For a given pool, 
there is no way of answering the question of ‘Does it have a feasible schedule?’ 
without solving the rescheduling problem. The attempt of rescheduling the 
pool may be successful or the result may be a failure. In the case of a failure, 
when a feasible schedule cannot be found within the given match-up points, 
this result is used to decide on the next match-up point that a schedule will 
be looked for.

An unsatisfactory try gives feedback for future tries so makes the decision 
about the choice of the pool that will be considered in the next step more 
realistic. Modified flow shop problem’s own scheduling constraints plus the 
constraints about the disruption and match-up point are the potential reasons 
of infeasibility. To overcome these in the next try with a new pool, more 
flexibility is looked for. This is possible in two ways:

i) jobs that include larger slack amounts can be included by the pool,

ii) idleness allowed at the rescheduling period can be increased.

These two criteria are considered during enlarging the pool by adding new jobs 
and deciding on the new T^. A pool that is thought to be more helpful to the 
rescheduling attempt is formed by this way.

Pool determination is a very important decision that will affect the overall
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success of the solution methodology. A pool which is too large will unfortu
nately increase the dimensions of the problem and this is going to amplify 
the computation time. Additionally, nervousness of the system will increase 
since cumulative deviation is going to be much more than a smaller pools total 
deviation. The advantages of match-up relative to complete rescheduling will 
disappear under such a large pool. If the pool is too small, then a feasible 
solution will not exist so it will be a fruitless attempt to look for a match-up 
with such a pool dimension. The trade-off between two extremes should be 
well balanced to find the right pool size that will be most helpful for finding a 
feasible solution.

Updating the pool, with the insight given above, is not an independent task 
but is build within the rescheduling algorithm that is introduced in the next 
subsection.

4.1.2 Rescheduling Within The Pool

After deciding on a pool size, domain set for rescheduling is formed. This 
is made up of the machines and jobs, with the constraints of the problem. 
Constraints and objectives of the problem have been stated in Section 3.3. In 
this form, problem is a constraint directed scheduling problem with no direct 
cost objective. A breakdown event avoids processing of a machine for some 
period of time. Due date is considered by having an objective function of 
minimizing tardiness. This criterion is taken as a soft constraint while ready 
times of jobs are still hard. This is a necessity more than a convenience. When 
a job that overlaps with the disruption period is considered, the earliest time it 
can be operated is the end of the disruption period, However, this may not 
be enough if its slack becomes negative after disruption because its slack value 
at the initial schedule has not been enough to meet such a disruption. In such 
a case, there is not many possibilities to do except letting it to be tardy. So 
having due-dates as hard constraints might cause an infeasible problem that 
will lead to a unsuccessful attempt for any match-up point.

A secondary reason for having due-dates soft is that due-dates are the con
straints caused by later events when compared with ready times. Relaxing the 
due-dates will give more time for updating the plans affected by the reschedule
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than relaxing the ready times.

The interrupted machine is going to be in a non-working condition for some 
time though it has previously scheduled jobs, to be processed on that period. 
Then it becomes bottleneck because of delayed jobs and a high utilization is 
required to cover this disruption duration. An approach similar to the Shifting 
Bottleneck Procedure developed by [Adams et al.87] is applied and priority 
is given to the down machine during rescheduling. This attitude separates 
the problem and the pool into three distinct parts which are the bottleneck 
machine, machines in the upward direction of it and ones in the downward 
direction, according to the order of machines in the flow-shop.

Initial ready times, I'j, are the ready times for the first operation of job j  on 
the cell and due dates, dj, are for the Izist operation. A job enters the cell on 
machine kj and leaves the cell on machine kj. Another definition for machine 
specific ready-times and due-dates are called as ESj,ki the earliest start time 
of job j  on machine k, and LFĵ k, the latest finish time of job i on machine k. 
These constraints are applied on the disrupted machine by computing earliest 
start and latest finish times of jobs on that machine with respect to these ready 
times and due dates.

The following algorithm describes how we can decompose the problem. 
Rescheduling the down machine is defined cis an ( n / l / r i /^ T i )  problem and a 
consistency check between the results of these three partitions are applied.

Si Update rj and dj for Vj € <S , according to and T̂ /.

That is,

r'i = max(r„T^5) > 
d'i = min(d,,r^0 ·

S2 Make forward and downward scheduling and calculate 

ESĵ k, Lf'j.k for Wj € S and t  =  1 , . . . ,  m.

Let {j, be the last machine at which job j  is processed by before
beginning its operation at machine k. In other words, (j,k’”'“ )̂ is the
immediate predecessor of operation (j, k).
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Similarly, call (i, as the immediate successor of operation (j,k) for 
job that it will be processed by machine after finishing its operation 
on machine k.

52.1 ES.., =  r' for Vj € S.

52.2 Calculate

ESij. =  I max +  Pj.fcP'·««, ii j  G Skprec
max (A'j.fcpr.e + Pj,kp̂ *c,Tk) if j  ^ 5jtpr«

for k 7  ̂ kj and Vj € Sk-

52.3 LFjŷ  = d'j for Vi € S.

52.4 Calculate

LR.k =
, _  i niin (LFĵ jtiuc — pj,fc»uc, n " ) if i  G <SfciUC

if j  G

for yi A:j and Vj 6 Sk.

53 k¿ is the bottleneck machine, schedule it first.

With
LFĵ ki for Vi e Ski 3.nd |5jtj| = njt̂ ,

this is a ( ! Y^Ti) problem which is NP-Hard.

Solve this problem using the algorithm proposed in Subsection 4.2.1.

54 Update ES and LF bounds for operations on the upward and 

downward machines ,

for Vi G Sk̂ <̂̂

LF'jf. — LFjĵ suc — Pj,k’>‘<= for k = l,... ,A :j — 1 and Vi G Sk

=  Ĵ,ka + Pi,ki for Vi G 5*^+1

^^j,k =  •̂̂ 'i.fcP'·« + for -f 1,.. ., m and Vi G Sk

S5 Upward machines’ problem is a modified flow-shop problem 

with hard r, and d,· constraints.

Solve this problem using the algorithm proposed in Subsection 4.2.2.
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...  .........  . . . . . .  >
UPW ARD MACHINES SCHEDULING
r ¡ , d i : hard constraints 

objective is to find a feasible solutionL_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ i
DISTRUPTED MACHINE SCHEDULING

r h a r d  constraint, 
d irso f t constraint 
objective is min. total tardiness

DOWNWARD MACHINES SCHEDULING
r : hard constraint,1 ' IIj  . hard constraint if d .=  T j  

soft constraint otherwise
objective is min. total tardiness

Figure 4.2. Decomposition of the rescheduling problem

56 Downward machines’ problem is a modified flow-shop problem 

with r,· constraint and min X)r,· objective.

Solve this problem using the algorithm proposed in Subsection 4.2.3.

If a fetisible solution exists for both Step 5 and Step 6 

then STOP, match-up is completed.

Else go to Step 7.

57 If Tmax is not reached, then

enlarge the pool by adding new jobs using the algorithm proposed in 
Section 4.3..

Else STOP , a feasible match-up point could not found.

Step 1 updates the ready times and due dates of jobs with respect to defined 
beginning, T f,  and match-up, points. By performing a forward schedule
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tliat tissuines all operations of jobs are processed with no delay, for all jobs, 
earliest starting times on each machine, ESĵ k, is calculated. In a similar fash
ion, by a backward schedule, their latest finishing times, LEj^s are determined 
in Step 2.

Steps 3 ,5  and 6 are solved independently by developing their own solution 
methodologies since their problem statements are dissimilar. Constraints and 
objectives of each one is illustrated in Figure 4.2.

Algorithms used to schedule each of the decomposed portion are introduced 
in Section 4.2. Initially the disrupted machine is rescheduled with a heuristic 
that is discussed in Subsection 4.2.1. Then, by the resulting new beginning 
times of jobs on this machine, current ESĵ k and LFĵ k values are updated 
in Step 4 of the above algorithm to be used by the upward and downward 
machines. These two groups of jobs and machines have different problem char
acteristics, so they are scheduled with two different heuristics that are discussed 
in Subsections 4.2.2 and 4.2.3 respectively.

4.2 Rescheduling Algorithm

As represented in Figure 4.2, the rescheduling problem, when a match-up point 
is given, is decomposed into three subproblems. The scheduling attempt be
gins with the most critical resource which is the broken-down machine. The 
heuristic algorithm developed for this part of the problem is represented in 
Section 4.2.1. After scheduling this machine, due-dates of the jobs in the up
ward machine pool are updated and the algorithm discussed in Section 4.2.2 
is applied. For the last part of the problem, the heuristic algorithm developed 
in Section 4.2.3 is used. Table 4.2 summarizes the additional notation used in 
this section.

4.2.1 Disrupted Machine’s Schedule

Scheduling n jobs having different due dates but a unique ready time with 
an objective of minimizing the total tardiness problem, (n /l/r ,· =  0/ 5 3 1 i)> 
hcis recently been proved to be NP-hard [Du&Leung 90] which implies that
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t -< j : job i precedes job j  in the sequence

Sj : slack time for job j

UNSCH : set of unscheduled jobs

AT : net idleness on the brokendown machine

Rt : set of jobs ready in the cell at time t

UB : upper bound on tardiness on the brokendown machine

Table 4.2. Notation Summary For The Rescheduling Heuristic

the current (n /l/7 ’,/X)T,·) problem is also NP-hard. Unequal ready times case 
is harder to deal with since the alternative of inserting idleness is needed to 
be evaluated. It can be shown that inserted idleness never improves a static 
scheduling problem with equal ready times, however, it might work well for a 
dynamic problem with varying ready times. This dynamic pattern is handled 
with a branch and bound algorithm that uses a static rule and idleness insertion 
together.

A heuristic method is formed by developing a dominance rule to be used 
in the pairwise comparison of the jobs first and then by applying this static 
solution to the dynamic case considering ready times and inserted idleness. 
This proposed dominance rule and its underlying idea are mentioned in the 
following paragraphs.

4.2.1.1 A Dominance Rule To Minimize Tardiness

At any time t when the machine is ready, a criterion is needed to choose one 
job among the Uj elements of the job set Rj, which includes jobs that are ready 
to be processed,

Rt =  {j ■ rj < t}·
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The proposed criterion is a combination of processing time, p,, and remaining 
slack time, t — di — pi. It differs from the common dispatching rules in a way 
that it is a function of t instead of a constant value which would be same at 
all the time slots that a decision is looked for.

A function, f{j , t), that is the ratio of slack time at t to the processing time, 
is defined and properties of it are used for concluding the following results.

The function, is defined as follows:
dj -  r, -  pj

Pi

if < <  Vj 

if < > Vj

Slack time is the remaining time for a job to be processed with zero tar
diness. That is if slack time is negative then this job is already tardy. The 
latest time point that a job can start processing with zero delay is dj — pj 
which is the intersection of f {j , t) with x-axis. The vertical distance of a job 
at a given t to its intersection point with x-axis indicates the urgency of the 
job. Another important criterion that affects the choice of jobs is the slope of 
the function, —I/pj· In Figure 4.3, these two concepts are illustrated
geometrically using the function.

As the slope increases, the speed of reaching to the point of intersection with 
the x-axis or departing from that point increases. The job with the highest 
slope or at present closest to its own intersection point is more urgent than 
other jobs that are also ready at this time point. This property is used to 
develop a dominance rule for choosing one of the two jobs that are ready at 
time t in order to minimize tardiness. The following theorem is written by 
using the geometric interpretation of the f { j ,  t) function. A detailed proof is 
given in Appendix A-1.

T heorem  4.1. Given two jobs i and j  with pi < pj, both ready at time 
with the apsis of the intersection of f{i, t) and f{j , t) called t" where,

V = Pj î Pî j
Pi -  Pi

under the specified conditions stated below, given rules minimize the tardiness.
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Figure 4.3. Interpretation of the function

i) for Pi t* > t,

if f{i,U ) > 0 and f{ j ,u )  > 0 , then use E D D ,
if f{i,C ) > 0 and f{j , C) < 0 , then if di — Pj > U j  ^  h

else i -<},
if < 0 and f{j,U ) < 0 , then use SP T ,

ii) for Pi ^ pj,t‘  < U, use SP T  ,

iii) for Pi =  pj, use EDD .

Additionally, it is proved in Appendix A-2 that this dominance rule is 
transitive such that if job i precedes job j  and job j  precedes job h, then job 
i precedes job h as well. Then job i can be called the best choice among the 
three alternatives to minimize tardiness.

T h eorem  4.2. The sequencing operator ' -< ‘ defined in Theorem 4.1. has 
transitivity property.

The dominance rule given above helps choosing one job among a number
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The dominance rule given above helps choosing one job among a number 
of them by using the transitivity property of the rule. The static problem of 
( n / 1 / r,· =  0 / ^  Ti ) can be solved by these two results.

This rule, alone, is applicable to the static system where all jobs are ready 
at the beginning of the schedule. In the dynamic case, some alternatives may 
not be ready at the decision point. So there is trade-off between waiting idle 
for a critical job to become ready or choosing one of the currently ready jobs. 
In such a case, tardiness that is found by scheduling with the above dominance 
rule without inserting any idleness can be used as a upper bound and other 
alternative schedules having inserted idleness can be evaluated by a branch and 
bound technique. A branch and bound approach developed for this purpose is 
introduced in the next paragraphs.

4.2.1.2 A Branch and Bound Approach On ( )

In the dynamic case, at point t, only some of the jobs are ready and there 
are two alternative decisions, either choosing one among the ready ones and 
start processing immediately or considering jobs that will be ready soon and 
waiting idle for one of them to become ready when this job seemed critical. 
Introducing the second alternative increases the computational complexity. A 
branch and bound application is used in this research to schedule one machine, 
n jobs problem with ready times and due dates to minimize total tardiness.

The levels in the tree indicates the sequence. A number of candidates exist 
for a given level which are the branches.

If this branching procedure was carried out completely, there would be n! 
ending leaves on the tree, each representing a distinct feasible solution. This 
will be a complete enumeration of all sequences. The function of the bounding 
process is to curtail this enumeration. For this purpose, initially, ignoring the 
inserted idleness issue, dominance rule is applied without violating the ready 
times. The resulting total tardiness value is used as an upper bound during 
branching.

During branch and bound, LIFO rule is used to determine which subprob
lems should be solved next. Initially, by using the dominance rule, a schedule
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with no inserted idleness is determined and its total tardiness amount is used 
as an upper bound to evaluate the future candidates. Search begins with the 
Icist level. If a candidate can be found for the present node, then we branch on 
this node and determine the sequence of jobs succeeding it by the dominance 
rule till upper bound is exceeded or all jobs are scheduled. When a solution 
with lower tardiness value is found, upper bound is updated ^ d  search for a 
better one continues beginning from the node that has been branched last time. 
Searching attempt ends after the alternatives of the first level are checked.

The following branch and bound algorithm considers inserted idleness and 
tries to minimize total tardiness :

50 Create an initial candidate by sequencing jobs with the 
D om inan ce R ule.
Calculate the total tardiness and let UB be equal to the 
total tardiness.

51 Go to the last created branch at level n-1.
Find an alternative for this branch by inserting idleness. 
Create a branch for this alternative.
Repeat this try until no more alternatives exist.
Set / =  n — 1.

52 Go to the last branched node at level /.
Try to find an alternative for this branch by inserting 
idleness.
If an alternative exists, then go to Step 3.
Else, if / ^  1, set / =  / — 1, go to Step 2, 

else STOP, branch and bound completed.

53 Sequence the jobs that are not yet assigned up to the 
current branch with the D om inance Rule and 
create the corresponding branches till current tardiness 
exceeds UB ox all jobs are scheduled.
If at any level UB \s exceeded, then this branch is 

fathomed, go to Step 2.
Else if the complete schedule's total tardiness is less 

than UB, update the value oi UB with this total 
tardiness value and go to Step 1.
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Finding alternatives at a certain level for a given branch is performed by 
checking the ready times of jobs. An alternative should not be ready at or 
before the beginning time of the job on the given branch. Moreover, because 
of the well-defined match-up pool, the total idleness. A / ,  that the machine is 
allowed is known,

total idleness(A/) =  idleness in the pool - disruption duration.

Whenever some idleness is inserted to the schedule, the value A /  is updated 
by reducing this amount from the previous value. A schedule cannot use more 
than this amount of idleness, otherwise match-up point is exceeded. There
fore this total idleness limit introduces an upper bound for the ready time of 
the alternative. Another point is that if the job on the given branch can be 
completed by the time that the chosen alternative becomes ready, examining 
this alternative will not improve the current solution. When inserted idleness 
is greater than the processing time of the currently ready job, then that job 
can be processed within this period without affecting the beginning time of the 
alternative job.

When job i is at the last branch which an alternative is looked for, and t is 
its beginning time, the set of alternative jobs can be defined as:

ALT JOBS — { j \ t < r j < t - \ -  min{pi, A / ) }

This kind of a limitation on the alternatives reduces the number of branches, 
so better curtail the enumeration in the tree.

4.2.2 Upward Machines’ Schedule

After a fecisible solution is found for the disrupted machine, its jobs’ beginning 
times become input for the upward machines. They define the possible latest 
ending times of operations on these machines which are calculated as described 
in the algorithm given in Subsection 4.1.2.

This is a constraint directed problem with no objectives but strict bounds. 
A feasible solution may not always exist and when this is the case, this heuristic 
lets the violation of due dates caused by the schedule of the disrupted machine.
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The resulting solution will be infetisible but this output will provide a feedback 
mechanism on deciding how much to enlarge the rescheduling pool.

The proposed heuristic for this part of the decomposition is stated below:

50 Calculate slack values, s,·, of each job cis:

Si = di -  r, -  Pi.

Jobs with Si — 0 are called critical.
If there exists any critical job, schedule it through all machines.
Set  ̂= 1.

51 Update ESi,k and LFî k based on the scheduled jobs
for / =  1 , . . . ,  — 1.
t=  min^gt'A'sc// ESĵ k-

52 S2.1 /2, =  {i· I < > ESi,k,i € UNSCH} .

52.2 For Vj € Rt , have a one step look ahead:

i) if it is scheduled at time t, do any of the remaining jobs could 
become infecisible,

ii) if it is scheduled at time t, does it overlap with any of the 
previously scheduled jobs.

52.3 If the number of feasible alternatives is more than one, 
choose the most critical job, with minimum s, value, 
to be scheduled at time t, call j*.

52.4 If the number of feasible alternatives is none, choose the one causing 
minimum tardiness on other unscheduled jobs.

53 Update ESĵ k and LFĵ k bcised on the scheduled job.
If any job becomes critical when all other jobs have positive slack, 
schedule it through the all upward machines.
If there are unscheduled jobs on the current machine k, then 
set I =  H - 
go to Step 1.
Else if machine k's schedule is completed, 

set A: = A: +  1,
go to Step 1 till all upward machines are scheduled, 
go to Step 5 when scheduling is completed.
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54 Check the feasibility of the schedule.
If at least one job is scheduled after its due-date, then 
schedule is infeasible.

55 If the schedule is not feasible, then
apply the Pool Enlargement Procedure which is described in Section 4.3.

Scheduling begins with the most restricted jobs. These jobs have no slack 
and should be scheduled at their ready times since tardiness is not allowed. 
They are the jobs that are scheduled on their earliest start times on the down 
machine so that no slack has been left for the operations on the upward ma
chines. Step 0 schedules them to be processed on time, and in Step 1, unsched
uled jobs’ earliest start and latest finish times are updated accordingly.

In this heuristic, since ready-times and due-dates are hard bounds, feasi
bility is the basic concern. For this purpose, one step look ahead fecisibility 
checks are performed to find candidate jobs for a certain interval by Step 2.

At the beginning of the procedure, job oriented scheduling is performed for 
the critical jobs in Step 0, though for the remaining jobs, machine oriented 
schedule is applied at Step 3. After scheduling a job, earliest start times and 
latest finish times of other jobs’ operations processed by the same machine are 
updated. Similarly, when a machine is completely scheduled, other operations 
of the jobs’ are updated as well.

After all jobs on all machines are scheduled. Step 4 checks if its results are 
compatible with the beginning times of jobs in the down machines schedule. 
In the case of infeasibility, the Pool Enlargement Procedure referred in Step 5 
determines the necessary amount of enlargement for the next iteration.

In the absence of a feasible solution, scheduling attempt continues to esti
mate the amount of extra idleness to be added in the next iteration. In this 
case. Step 2 tries to minimize the amount of lateness. For the downward part 
of the problem, a similar approach is used. Scheduling attempt continues even 
after it becomes obvious that the solution will result infeiisibility. The heuristic 
algorithm developed for this downward part of the problem is presented in the 
following section.
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4.2.3 Downward Machines’ Schedule

The downward machines’ scheduling problem can be defined as a multi machine 
problem where tlie jobs have specific ready times and due-dates. There are two 
kinds of due-date constraints:

1. the completion time of Icist operations of the jobs’ in the initial schedule,

2. match-up times of each machine.

As discussed in the previous sections, the first type of due-dates are carried 
as soft constraints and the second type as hard constraints. In other words, 
deviation from the completion times at the initial schedule, tardiness, is allowed 
if match-up points are not violated. There are two objectives related with this 
claim:

1. Finding a feasible schedule within the match-up points,

2. Minimizing the tardiness during rescheduling.

The distinction on the due-dates makes this problem different than a classical 
scheduling problem.

An operation oriented scheduling scheme is followed in the proposed heuris
tic algorithm which is a hybrid approach of machine oriented and job oriented 
applications. The underlying idea of the algorithm is that, a cycle which be
gins from the last machine to the first machine of the downward stream, is 
followed till all jobs are scheduled. For the current machine, candidate oper
ations are chosen and if they specify the stated conditions of the algorithm, 
they are scheduled. Otherwise, no job is scheduled in that trial and the same 
attempt is repeated for the next machine. After searching the first machine for 
candidate jobs, it turns back to the last machine in order to initiate to a new 
cycle.

A backward scheduling method is performed by the proposed algorithm. 
Due-dates of the jobs are treated as if they are ready-times and the ready- 
times as the due-dates in that backward fashion. Scheduling begins from
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the match-up point and is directed to the beginning point so that match-up 
time constraints are strictly followed. However, this might cause a violation 
of ready-times. Such a violation indicates that the developed downward ma
chines’ scheduling is not feasible. When it is seen that no feasible solution 
exists, scheduling continues which means match-up with these dimensions is 
impossible but still a schedule, though infeasible, is looked for to estimate the 
necessary enlargement to determine the next pool size.

The proposed heuristic for downward machines is stated below:

50 Set tk =  for A: =  ¿d -f 1 , . . . ,  m.

51 Choose a job j  with the Latest Due Date rule, LDD, on the l<ist machine, 
m, and schedule that job so that it will be completed at i„,.
Call the chosen job, j^.

52 Set tfn — tfn Pĵ ,m· 
and k =  m — 1.

53 S3.1 If /; >  kdi then go to Step 3.2,
else, go to Step 1.

53.2 Choose the job with the D om inance Rule on machine k.
Call the chosen job, H.

53.3 If dĵ ,k > tk OT k is the last machine of then,
if tk-Pj;,k > tk+u then,

schedule it to be completed at tk, 
set tk — tk Pjĵ yk·! 
go to Step 3.2,

else,
set k = k -{■ I, 
go to Step 3.1,

else
if dj>,k -  Pj;,k > tk+i, then,

schedule it to be completed at dj*̂ ki 
set tk =  dj>̂ k -  Pj;,k , 
go to Step 3.2,

else.
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set k = /: -j- I, 
go to Step 3.1.

53.4 Set tk =  dj‘ ,k — Pj’ .k·

53.5 Recalculate ESj,i and LFĵ i based on the scheduled job
for / =  +  1,. ,m.

54 Go to Step 2 until all jobs are scheduled.
Otherwise go to Step 5.

55 Check the feasibility of the schedule,
If at least one job is scheduled before its ready time, 
then schedule is infeasible.

56 If the schedule is feaisible, then
apply left shift procedure to minimize the tardiness,
else if it is not fetisible,
apply the Pool Enlargement Procedure.

Scheduling begins with the last machine of the cell. The initial sequence 
of this machine remains unchanged after Step 1. This is because the comple
tion times in the initial schedule are taken cis due-dates during rescheduling 
and when LDD rule is applied, the sequence would be same. However the 
completion times might be different from the initial schedule. The idea during 
scheduling the last machine is that, tardiness is tried to be minimized by keep
ing the sequence unchanged but possible right shifts are allowed to increcise 
the slackness of jobs.

After a job is scheduled on the last machines, other machines, from m — 1 
to itj -|- 1, are checked to schedule jobs by step 2. There are some rules about 
this scheduling attempt:

• On a machine, a candidate job is looked for by the Dominance Rule, 
stated in Subsection 4.2.1. Ready times are taken as due-dates and due- 
dates cis ready times in this backward scheme. •

• The candidate job cannot be scheduled if its beginning time is smaller 
than the the beginning time of the last job scheduled at the succeeding 
machine. Such a restriction avoids giving a decision for a time interval
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on some machine before the decisions about the same time interval for 
the succeeding machines are given.

• Latest finish time of job i on machine k\ LFî k·, represents the due-date 
if k is the last machine of the job or it stands for the the beginning time 
of the succeeding operation of the same job which is already scheduled. 
For the first case, is a soft constraint which means that a job can
be tardy. However, in the second case it is a hard constraint since LFî k 
represents the precedence relations.

The schedule determined at the end of Step 4 might be incompatible with 
the schedules previously determined for the down machine and upward ma
chines. Operations of the same job in different machine groups (e.g. operations 
on upward machines and the down machine) might overlap. If it is found to 
be infeasible by Step 5, in Step 6 the Pool Enlargement Procedure is applied 
to decide on the size of the pool in the next iteration. The details of this 
procedure are represented in the next section.

4.3 Enlarging The Pool Size

The application of the heuristic that is described in detail throughout Section 
4.2, might not result in a feasible schedule. When this is the case, a new pool is 
formed to be rescheduled. Determination of the pool is quite important since 
a good choice may decrease the number of trials while a bad one may result 
with no solution very frequently. The basic idea behind insisting to complete 
schedules even after it becomes clear that it will not be feasible, is giving a 
feedback about the additional flexibility required by the problem. Then the 
problem pool is enlarged in order to cover this additional flexibility within the 
new problem limits.

In this section, the enlargement procedure is discussed under two main top
ics, initially the general underlying idea in enlargement is covered in Subsection 
4 .3 .1 , and subsequently the procedure developed for enlargement in order to 
include this extra amount is presented in Subsection 4.3.2.



CllAPTEli 4. MATCH-UP ALGORITHM o8

4.3.1 Reasoning Behind Enlargement

As illustrated in Figure 4.2 in Subsection 4 .1 .2 , machines in the cell are grouped 
in three parts:

1 . the brokendown machine,

2 . upward machines,

3. downward machines.

During developing the algorithms for the decomposed parts, it li2is been seen 
that the defined problems for each of the three groups are strictly bounded. 
When a feasible solution does not exist, some of the constraints are allowed to 
be relaxed. However, any arbitrary infeasible solution cannot always indicate 
the amount of enlargement required to get a feasible solution. This leads us to 
consider some of the hard constraints as soft ones which means that violating 
these constraints are still undesirable though not strictly restricted.

In all of the three machine groups, the purpose of the individual algorithms 
is to keep the schedule in between the beginning, T®, and match-up, and 
to follow the precedence relations on the machines of the same group. But none 
of them guarantees that their result fits with the results of the remaining two 
groups. The purpose of such a relaxation is to get feedback about the amount 
of infeasibility for the next iteration when a feasible solution does not exist.

In the hierarchical scheme, initially the brokendown machine is scheduled. 
New starting times of jobs on this machine are used as due dates for the 
operations on upward machines during scheduling the upward machines. For 
the ideal case, these due dates should be hard constraints in order to have 
completeness between the machine groups. Instead they are considered as soft 
constraints, otherwise the problem was too constrained. But match-up points 
are still hard, no operation’s completion time can exceed the machine’s match
up point. For the downward machines, the completion times on the down 
machine are used as ready times by the operations on the downward machines. 
As the jobs are scheduled from future to present fashion in the downward pool, 
they might be scheduled before their ready times, though such a behavior is 
penalized in the algorithm. Both of the occurrences cause a single type of



CHAPTER 4. MATCH-UP ALGORITHM 59

T  T  - 7 
I I I
I I I

I
. 1. .

I
. 1. .

Upward

Machines

Brokendown

Machine

Downward

Machines

Figure 4.4. Examples for infeasibilities between the machine groups

infeasibility; the completion time of a job ’s operation might be greater than 
the beginning time of its succeeding operation only when they are performed 
in two different machine groups. In Figure 4.4, an illustrative example is given 
on the Gantt Chart.

As illustrated by the figure, there are three possible pairs that can have 
infeasibilities between each other:

1 . upward machines’ group and the brokendown machine,

2 . the brokendown machine and the downward machines’ group,

3. upward machines’ group and the downward machines’ group.

When the rescheduling attempt in the current pool is not successful, then 
the reasons should be questioned. The most important reason is the insufficient 
flexibility in the pool. This should be supplied by enlarging the pool in order 
to gain the following advantages:

1 . increasing total idleness in the pool,

2 . increasing the freedom of jobs in terms of number of possible sequences 
and the time interval that a job can be scheduled.
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: job set of upward machines 

: job set of the brokendown machine 

: job set of downward machines 

: completion time of job j  on machine group (.)

: beginning time of job j  on machine group (.)

: amount of infeasibility on pair (.)

: amount of enlargement on the brokendown mac. 

: amount of enlargement on the downward macs.

Table 4.3. Notation Summary For The Pool Enlargement Algorithm 

The trade-off is that an enlargement also brings some disadvantages like:

1 . the number of jobs will increase which means the problem size expands, 
so complexity increases,

2 . the match-up point moves far from the current time and this increcises 
the nervousness.

It can be concluded with this trade-oif that the enlargement in the schedule 
should give the required amount of flexibility by adding a minimum number 
of jobs to the pool. The algorithm that is developed for enlargement tries to 
offer a pool to consider these purposes.

For all pairs, amounts of infeasibilities are checked job by job. The maxi
mum amount of infeasibility is accepted cis the required enlargement quantity 
for each pair. This is the amount of idleness that is needed to be added to the 
pool to get a feasible schedule for the corresponding pair.

Initially, enlargement is performed by the machine group that is in the 
downstream according to the other group in the pair. New jobs are added to
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its job pool till amount of idleness added is equal to the demanded quantity. 
Consequently, these newly contained jobs are also added to the other group 
in the pair. When there is no infeasibility between groups, then no direct 
enlargement is performed, but because of other pairs, some jobs are added to 
their pool to have a complete pool. This is similar to initial pool creation 
method described in Subsection 4.1.1.

In the following subsection, a detailed algorithm with an underlying idea 
as discussed in the previous paragraphs is given.

4.3.2 The Pool Enlargement Algorithm

After it is observed that, with the current job pool heuristic does not result a 
feasible schedule, a new pool is needed for another scheduling attempt. This 
new pool should be large enough to include required flexibility but small enough 
to find a sooner match-up point. Table 4.3 summarizes the additional notation 
used in this section.

The proposed algorithm for enlargement is stated below:

SI Check the feasibility of the current schedule:

51.1 Check feasibility between upward machines 
and the brokendown machine:

Set c =  0.
For Vj G X n IT ,

if C jjj > Bjj, then,
job j  causes infeeisibility, 
it is added to the set I ’j , 
set c =  c -f 1 ,
calculate Ci(c) =  Cjjj —  Bjj.

51.2 Check feasibility between downward machines 
and the brokendown machine in a similar way. 
Calculate 6 2 (0 ) values and determine the set I"!.

51.3 Check feasibility between upward machines 
and downward machines in a similar way.
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Calculate 63(0) values and determine the set

52 If ei(A:), C2 (k), e3 {k) are equal to 0, then,
STOP, schedule is feasible, else, 
enlargement is needed, go to S3.

53 Find max { ei(A;) }, call tjmaxhrokendown’
Find max { C2 {k) , e3 {k) }, call ejmaxdownward-

54 If G~Xfl€iXlfrokcndown ^   ̂ and ĜTTl(IXdownward then,

54.1 enlarge the brokendown machine’s pool to add 
ĝjtiqx¡frokcndown amount of idleness,

54.2 enlarge the pools of the other machines to 
include the new jobs added to the brokendown 
machine’s pool, STOP.

Flse if G—TTlQXffj'okcndown 6 and G—TfXdXdownward ^  6, then,

54.1 enlarge the pool of the every downward machine 
to add Ĝ TfXdxdownward amount of idleness,

54.2 enlarge each of the downward machines’ job pool
to make sure that any job in one of these machines’ 
is also included by other downward machines’ pools,

54.3 enlarge the pools of upward machines and the 
brokeudown machine to include the new jobs added 
to the downward machines’ pools, STOP.

Else if ĜTTXdXff̂ okcndown  ̂ and G—TiXdXdownward ^ 5̂ then,

54.1 enlarge the pool of the every downward machine 
to add tjTidxdownward amount of idleness,

54.2 enlarge each of the downward machines’ job pool 
to make sure that any job in one of these machines’ 
is also included by other downward machines’ pools,

54.3 enlarge the pools of upward machines and the 
brokendown machine to include the new jobs added 
to the downward machines’ pools.
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54.4 if this indirect enlargement of the brokendown machine 
allows at least ^—̂̂ â hTokendown amount of
idleness then STOP,
else enlarge the brokendown machine’s pool to complete 

ifTokcndoum amount of idleness,

54.5 enlarge the pools of the other machines to 
include the new jobs added to the brokendown 
machine’s pool, STOP.

This algorithm terminates with a new set of jobs on machines to be resched
uled if the enlargement is possible, that is the planning horizon is long enough 
to collect required amount of idleness. When the time is not enough for match
up, this algorithm cannot perform enlargement so match-up heuristic ends with 
unsatisfaction.

The enlargement procedure hcis two main tasks, computation of the required 
idleness quantity and determination of new job pool for each machine to cover 
this required amount. Step 1 checks the fecisibility of the schedule and if not 
feasible, measures the infeasibility by calculating the length of overlap, if there 
exists any. The maximum length of overlap is set as the enlargement amount 
by Step 3 after enlargement is initiated by Step 2.

As described in Subsection 4.3.1, enlargement is directly performed by the 
machine group that is in the downstream according to the other group in the 
pair. Other group is enlarged indirectly to cover the jobs added to the down
stream during direct enlargement. This indicates that either the brokendown 
machine or the downward machines are enlarged directly, but never the upward 
machines.

The enlargement amount for these two machine groups is determined by 
Step 3 by using the enlargement amounts calculated in Step 1. All three combi
nations of enlargement values are considered individually in Step 4 and pools 
o f each machine are determined after necessary enlargements. For the case 
where both the brokendown machine and the downward machines should be 
enlarged simultaneously, initially the downward machines’ pools are enlarged 
and other machines pools are updated accordingly. After that, the procedure 
checks if the brokeudown machine has included its idleness requirement with
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this indirect enlargement. When it still requires additional amount of idleness, 
an other enlargement is performed.

In the proposed heuristic, a number of match-up points are tried until one 
of them results a feasible schedule. It is desired to reach the feasible match-up 
point with minimum number of trials. The stability of the algorithm is effected 
by the number of iterations and the length of match-up period. Because of this 
momentous effect of creating the right match-up points, feedback mechanism 
is especially preferred in the algorithm.

4.4 An Example

In this section, the general idea of the developed heuristic is represented on 
an illustrative example. Only the first iteration of the heuristic is described, 
where the steps are represented on Gantt Charts.

The initial schedule is given in Figure 4.5. It is disrupted by a breakdown 
on the fifth machine. Duration of breakdown is 13 units of time and covers 
operations of jobs 7, 9 and 12 on the fifth machine.

Initial pool is determined by the procedure detailed in Section 4.1.1. Idle 
time just enough to cover the down duration is collected by the disrupted 
machine and the job pools of other machines are formed to include the pool 
of the brokendown machine. In Figure 4.6, the boundaries of the overall pool 
and disruption duration is represented on the Gantt Chart.

In the defined pool. Rescheduling Algorithm described in Section 4.2 is 
applied. Machines are decomposed into three groups and for each group the 
proposed algorithms are applied. New Gantt Chart after rescheduling is illus
trated in Figure 4.7.

Since precedence relations between machine groups are relaxed during de
composition, new schedule does not guarantee the fecisibility. As seen from the 
Gantt Chart, this schedule is not feasible. This indicates that the heuristic is 
not able to find a feasible schedule for the given match up point. Then the pool 
enlargement procedure is used to determine the new match up point to be used
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in the next iteration. For this specific example, the maximum amount of in- 
fcasibility is caused hy job 16. which gives the required amount of enlargement 
for the next iteration.

4.5 Summary

After introducing the problem in Chapter 3, this chapter displays the proposed 
hierarchical scheduling approach «is a solution tool to the problem. An overall 
description of the solution approach is discussed in Section 4.1. It has two 
basic steps which are stated as follows:

1. Finding a feasible schedule within the given match-up time.

2. Finding a match-up time that a feasible schedule exists.

To begin with, an initial pool is determined with the procedure described 
in Subsection 4.1.1, that includes the minimum amount of flexibility that is ex
pected to solve the problem. Afterwards, the rescheduling algorithm in Section
4.2 is applied on the defined pool. This algorithm decomposes the problem into 
three subproblems, scheduling the brokendown machine, the upward machines 
and the downward machines. For each of the three subproblems, a different 
methodology is developed and they are solved in the given sequence.

After the defined pool is rescheduled with the proposed algorithm, its fea
sibility is checked. If the resulting schedule is infeasible, then the job pool is 
updated. This is done by adding new jobs to the pool which means by shifting 
the match-up point right in the planning horizon. This enlargement is per
formed by taking feedback from the infeasibilities met in the previous pool. 
The details of this task is described in Section 4.3.

In the forthcoming chapter, the experimental design that is build to test 
the performance of this proposed heuristic is going to be presented.
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Figure 4.5. Preschedule Before Disruption!
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Figure 4.6. Brekdown ou the 5'  ̂ Machine and Initial Pool Boundaries
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Figure 4.7. New Schedule After Rescheduling the Pool



Chapter 5

Computational Analysis

A reactive strategy that reschedules part of the initial schedule to accommodate 
the disruption has been proposed in Chapter 4. In order to test the effectiveness 
of this algorithm, a group of experiments are designed to be performed in this 
chapter.

There are two major questions that an answer is looked for:

1. How does our heuristic perform when compared with other alternatives 
serving for the same purpose?

2. Which variables are most influential on the response of it?

The first question points the evaluation and comparison of the algorithm. The 
latter one includes the determination of key design parameters that impact the 
performance of the algorithm.

Initially, an experimental design which includes a series of tests is built. 
In the experiments, purposeful changes are made on the input variables of the 
heuristic in order to observe and identify the reasons for changes in the response 
of the heuristic. According to the intuition that a variable is influential or not, 
it is classified as a fixed parameter or cis a factor in Section 5.1. Additionally, 
the response of the system is defined in terms of some chosen performance 
measures in this section.

Two types of experiments are designed about the questions above which

69
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are:

1. comparison of our heuristic’s performance over some alternative h,

2. comparison of different factors effects on our heuristic’s performance.

Computational comparison is used for the first part. Section 5.2 gives 
alternatives to see if there is an improvement gained by the developed heuristic. 
For comparison purpose, performance measures defined in Section 5.1 are used.

For the second part, analysis of variance technique is used. It is applied on 
the factors defined in Section 5.1 as discussed in Section 5.3. The significance 
of the factors are checked on the chosen performance measures.

5.1 Experimental Design

This section provides an introduction to the use of statistical design during 
performing experiments. Experimental design provides a way of deciding be
fore the runs are made which particular configurations to consider so that the 
desired information can be obtained with the least amount of work.

In experimental design terminology, the input parameters and structural 
assumptions composing a model are called factors, and the output performance 
measures are called responses. To use the statistical approach in designing and 
analyzing an experiment, it is important to define the choice of factors and the 
response variables.

The decision as to which parameters are considered fixed aspects of the 
model and which are experimental factors is given in Subsection 5.1.1. The 
response variables of the reschedule and performance measures are detailed in 
Section 5.1.2.

5.1.1 Choice of Factors

As an experimenter, we should choose the factors to be tested in the exper
iment, the ranges over which these factors can take values, and the specific
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levels at which runs must be made. By varying the levels of the chosen factors, 
purposeful changes are made in order to observe and identify the changes in the 
reschedule found by tlie heuristic. After discovering some relations between the 
factors and outcome, the reasoning of these relations are going to be discussed.

There are two major input variables for the heuristic, initial schedule and 
the duration of the breakdown. Though the down duration is a measurable 
quantity, this is not easy for the initial schedule. That causes a need for de
composing the factors that affect the initial schedule. These are classified as 
idle time percentage in the schedule, the variance of processing times, ready 
times and due dates. Idle time percentage is an important factor that de
fines the amount of flexibility in the schedule and this amount is utilized dur
ing rescheduling. As this percentage increases, opportunities of performing 
a match-up is expected to be increased. Since the other three variables are 
expected to affect the distribution of idle times throughout the planning hori
zon, they are considered as factors. These factors can cause idle times to be 
placed in large quantities or small, and this affects the frequency of the idle 
times even when the total amount of idleness is same for both cases. Also the 
distribution of idle times may vary, they can be collected in a small portion 
of the horizon, not spread over the schedule, due to these three variables. If 
the ready times are uniformly distributed over the makespan, idle times can be 
evenly distributed. Otherwise all the idleness of the system can be collected in 
a small region and cannot be used properly by the heuristic.

In Table 5.1, the fixed parameters of the system are represented. Though 
these variables remain unchanged at the experiment, factors that are given in 
Table 5.2 are varied within the given ranges. All of the factors have two levels 
which the runs will be made, called tight and loose. This choice is made by 
using a combination of practical experience and theoretical understanding of 
the problem.

After defining five factors with two levels, factorial design is required for 
this type of experiment. A factorial design means that in each complete trial 
or replication of the experiment, all possible combinations of the levels of the 
factors are investigated [Montgomery]. For example, if there are a levels of 
factor A and b levels of fcictor B, then each replicate contains all ab treatment 
combinations. When factors are arranged in a factorial design, they are often
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number of machines
number of jobs
brokendown machine
time of breakdown
precedence relationships
mean processing time
mean idle time

10
300

machine
starting time of 5'  ̂ job

% 75
4 units
2 units

Table 5.1. Fixed Variables

said to be crossed.

This experimental design is a case with 5 factors, each at only two levels. 
The levels of the factors are called ’ loose’ if the allowed flexibility is large 
and ’tight’ otherwise. It is called a 2® design. The 2® design is particularly 
useful since it provides the smallest number of runs with which 5 factors can 
be studied in a complete factorial design. It has 32 treatment combinations. 
The number of replications is taken to be 5, which means that there are 160 
runs in the design. The choice of the response variables will be represented in 
the following subsection.

5.1.2 Performance Measures

The response variables of the heuristic are chosen to measure the performance 
of the reschedule. Performance measures are categorized into two groups which 
measure:

• the quality of the schedule,

• the stability of the schedule.
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Factors T ight Loose
idle time percentage 0.20 0.40
processing time variability U~[ 3 , 5 ] U~| 1 , 7 1
ready time U~[ 0 , makespan ] U~[ 0 , (0.8 * makespan) ]
k (due-date coeff.) U~[ 2 , 3 1 U~( 4 , 5 ]
breakdown duration U~[ 6 , 8 ] U~[ 12 , 14 J

Table 5.2. Experimental Factors

Schedule quality focuses on the deviation of the reschedule from the presched
ule. Stability measures check the efficiency and effectiveness of the algorithm.

Schedule quality is quantified in terms of two performances. These are:

1. earliness,

2. tardiness.

Earliness is a measure on the first operation of a job and tardiness is a measure 
on the last operation. Both terms measure the amount of change between the 
preschedule and the reschedule. The quality improves as the deviation gets 
smaller.

Schedule stability is measured by three performance measures. They are:

1. computation time,

2. match-up point,

3. number of successful solutions.

Since machine breakdowns occur in real time, the run time of the heuristic is 
quite important. As the match-up point enlarges, the problem size expands and
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computation time increases. It can be said that these two me<isures are directly 
proportional. The third item is stated to give an idea about the efficiency of a 
heuristic since no one of them guarantees finding a feasible match-up point.

A general intuition is that as the schedule becomes unstable, its quality 
will also reduce. A late match-up point means a large pool of jobs is revised 
so deviation is increased. In such a case both groups of measures will indicate 
low performance simultaneously.

These performances stated above are a direct reflection of the two objectives 
presented in Chapter 3. One objective was the time critical decision making 
criterion because of the real-time nature of the environment, considered by 
the schedule stability. Other objective was to minimize deviation to decrease 
the nervousness of the system, that is checked by the quality of the schedule 
measure.

5.2 Computational Comparison

In this part of the computational design, the proposed heuristic’s performance 
is going to be compared with some other alternative procedures’ performances. 
The five measures classified in Subsection 5.1.2 will be used for quantitative 
comparison purpose.

The heuristic developed in the previous chapter has two major steps that 
are:

1. Determination of the pool with different match-up points on machines 
which are determined by the proposed feedback mechanism (Variable
a t ;·).

2. Rescheduling the pool by decomposing into partitions and applying the 
proposed algorithms (Hierarchical Scheduling).

In the literature review of Chapter 2, we have remarked on a study performed 
by Bean and Birge. Their approach corresponding to the above steps can be 
summarized as:
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1. Determination of the pool with fixed increments without feedback (Fixed 
AT).

2. Rescheduling the pool with the best of the four dispatching rules (Dis
patching Rules).

These four rules are shortest processing time (SPT), earliest due date 
(EDD), R&M heuristic [Morton et al.84], modified RiiM heuristic for inserted 
idleness [Morton 92]. In SPT, jobs are sequenced in nondecreasing order of 
processing times. EDD sequences by giving priority to the jobs w'ith smaller 
due dates. R&M rule uses the following priority rule during scheduling:

irj = I f d S
Pj  I

- J s r i Y

where S^ is the positive slack of job pav is the average processing times of 
jobs competing for top priority,  ̂ is a free parameter between 1 and 3, and tTj 
is the priority of job j. For modified R&M rule, the following priority rule is 
used during scheduling:

- . M l

where T is the current time, pmin is the minimum processing time of currently 
competing jobs and B is the correction factor suggested to be equal to 1.6 or 
2.

A given pool is scheduled with all of the four rules and the one with the 
best result is implemented. This alternative is very powerful since best of the 
four schedules is taken even though R&M heuristic itself performs very good 
as shown by [Morton 92].

Alternative heuristics are created by combining the different pairs of the two 
approaches. Moreover, Bean and Birge’s first step represented above is tested 
for three different AT  values. AT  is the increase in the match-up time which 
means the amount of enlargement in the pool at an iteration. In Figure 5.1, 
the heuristics developed in this way are represented. Since our hierarchical 
approach is highly correlated with the variable ATi enlargement procedure, 
obviously it will not perform well with the fixed AT  enlargement procedure.
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VARIABLE

At.
n x E D  At

( A t = t m a x / io

n x E D  A t
)(A T  = T\U X /2(0 (A t

n x E D  At  
TM AX/40

HIERARCHICAL

APPROACH OUR’S

DISPATCHING

RULES

ALT
1

ALT
2

ALT
3

ALT
4

Figure 5.1. Alternative Heuristics For Comparison

It should be acknowledged that our heuristic does not allow any earliness for 
the purpose of considering other production planning activities like material 
flow, while the alternatives do. Since other planning decisions are given in 
conjunction with the initial schedule, when a job is scheduled to an earlier 
during rescheduling, the suppliers may not have enough time to deliver the 
material on the required time. Extra earliness allows extra flexibility, so they 
have an advantage that we regret to have in order not to violate the flow 
plans. After running each alternative algorithm on the problems created by 
the experimental design described in Section 5.1, all five performance measures 
are collected. The output of this experiment is represented in Table 5.3.

In terms of tardiness, our heuristic performs worst. This was expected since 
earliness is forced to be equal to zero during rescheduling while the alterna
tives allow earliness. The hybrid algorithm. Alternative 1, is the second worst. 
Among the three algorithms with Fixed A T , Alternative 4 gives the lowest 
tardiness. Obviously, our heuristic dominates others in earliness. Alternative 
1 is the second best and Alternative 2 follows it with a small difference. Then 
earliness sharply increases for Alternatives 3 and 4. But in general, the true
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Tard. Earl.
Comp.T.

(sec.)
Match-up

Point
EfFcy.

%
Overall

Perform.
Our’s 96 0.67 91 100 0.301
Alt 1 86 62 1.04 115 100 0.401
Alt 2 73 72 0.79 225 100 0.437
Alt 3 55 249 0.73 156 100 0.477
Alt 4 53 225 0.81 128 100 0.447

Table 5.3. Comparison of the Average Performances of Alternatives

measure is the total deviation which is the summation of tardiness and earli
ness. In this case, our heuristic performs better than them with a significant 
amount of improvement.

For the computation time, the largest value is 1.04 seconds that belongs to 
Alternative 1 and the smallest is 0.67 seconds that belongs to our heuristic. In 
this measure, our heuristic performs better again.

Match-up point is also an important mecisure, that a large match-up value 
is not desirable. Also here, our algorithm outperforms and the amount of im
provement is notable. The match-up time is quite related with the computation 
time. The reason of our heuristic’s low computation time is the low match-up 
value which decreases the size of the pool to reschedule and the number of 
iterations.

Efficiency is the percentage of problems that a feasible match-up point is 
found. With the current conditions, all five alternatives have 100% performance 
so it is not an identifying measure in this experimental setting.

In order to allow an overall evaluation, a unique measure is desired that 
includes all of the four performances in it. Efficiency is not included since they 
all give the same value. Eigenvector Normalization is used for this purpose.
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The results are represented in the last column of Table 5.3. They also notify 
the dominance of our heuristic to the alternatives. Roughly, it gives 25% 
improvement on the overall measure when compared with the second best 
alternative.

Alternative 1, which is a mixture of our enlargement procedure and the 
dispatching rules is the second best heuristic. Its performance measures are 
quite lower than other algorithms’ values but still higher thaaour heuristic’s 
results. This also indicates that both steps of our algorithm nmkes significant 
improvements individually. Algorithm 1 has the vauriable enlarsment idea and 
is better than the other three alternatives with fixed enlargement while they 
are all using the same dispatching rules. VV'hen we substitute the dispatching 
rule with the proposed hierarchical scheduling rule, the results become even 
better.

Among alternatives of 2, 3 and 4, the first one which has the largest amount 
of enlargement performs better than the other two in the overall. Though, it 
has a greater match-up point, since the pool includes greater amount of flexibil
ity with a larger pool, the quality of the schedule becomes better. Its earliness 
is significantly smaller than the other two alternatives. As the enlargement is 
done with smaller increments, i.e. as A T  decreases, the match-up point also 
decreases. But for the computation time, that is just opposite, enlargement 
with smaller increments cause more iterations, so require longer computation 
time.

Average figures might sometimes be misleading without considering the 
dispersion of the data. In Table 5.4 ranges of the results are represented to 
give an idea about the variance. For tardiness, the interval is too wide for 
Alternative 1. The reason is that this alternative has a case that matches at 
the end of horizon while for the remaining cases, this value is quite small. The 
massive dispersion in the computation time and match-up point is because of 
this unique special case. For the match-up point, both the minimum values 
of our heuristic and Alternative 1 are considerably smaller than the other 
three alternatives. This indicates the dominance of the proposed enlargement 
procedure over the fixed amount of enlargement strategy'. For the maximum 
match-up value, our heuristic is still significantly smaller than all alternatives.

As a conclusion, our heuristic dominates its alternatives for earliness, total
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Tardiness Earliness
C om pu tation

T im e (sec .)
M atch-U p

Point
Our’s (0 , 1394) ( 0 . 0) (0 .4 7 ,5.33) (41 , 277)
Alt 1 (0 , 2382) (0 , 3404) (0.48,24.77) (43 , 1134)
Alt 2 (0 ,8 3 7 ) (4 , 341) (0 .58 ,2 .43) (144 , 456)
Alt 3 (0 ,4 4 6 ) (18 , 618) (0 .48 ,3 .73) (100 , 384)
Alt 4 (0 , 745) (33 , 581) (0 .50 ,5 .40) (72 , 357)

Table 5.4. Comparison of Performance Ranges of Alternatives

deviation, computation time and match-up point. The difference for earliness 
is obvious while for the match-up point and total deviation, improvement is in a 
considerable amount. In the overall performance, it still performs significantly 
better than all alternatives. In the next section, the response of our heuristic 
to changes on different variables is going to be investigated.

5.3 Analysis of Variance

The appropriate procedure for testing the equality of several population means 
is the analysis of variance. In this section we want to test the equality of 
observed responses from the different treatments of the chosen factors. In 
other words, the significance of treatment of the factors on the variance is 
going to be analyzed.

Since our model has five factors with two levels for each factor, 2̂  factorial 
design is used to estimate of :

1. How each factor affects the responses?

2. How the factors interact with each other (i.e., whether the effect of one
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factor depends on the levels of the others)?

The form of the experiment can be compactly represented in a tabular form 
as in Table 5.5 with the factorial design of the crossed combinations, in which ‘- 
’ stands for tight, and ‘ + ’ for loose ceises. Such experiments are e«isy to analyze 
since each effect is estimated independently of the others. Significance is easy 
to assess, and, because of the replication, it is possible to detect an interaction 
between factors if such an interaction exists.

For hypothesis testing, the model error is assumed to be a normally dis
tributed random variable with mean zero and variance cr̂ . The 32 available 
observations are sufficient to estimate all effects and the value of a* is assumed 
to remain constant for both levels of the factor. The appropriate analysis is the 
standard two-way ANOV.\ (analysis of variance) which states that an effect is 
considered to be significant if its value is large relative to the estimated value 
o f (T̂ .

Variances are estimated by sum of squares. Determination of the sum 
of squares of the 32 different orderings becomes a complex task but calcula
tions can be reduced to a simple mechanical formula by Yates’ method. A 
more detailed discussion on the Yates’ method can be found in Chapter 7 of 
[Montgomery].

Among the five performance measures defined in Subsection 5.1.2, ANOVA 
is applied for only three of them. These are tardiness, computation time and 
match-up point. Earliness is constant, equal to zero, and efficiency is not an 
appropriate response for ANOVA because of its very limited outcomes.

For all of the three mecisures, the analysis of variance are summarized in 
Table 5.5 through 5.8. Tables confirm the significance levels of 2® combinations 
o f factors. The last column gives the Type 1 error of accepting the hypothesis, 
a  that the considered combination has equal effect on the performance with 
others. These values are computed by Minitab. When a value is extremely 
small for a factor, then the probability that it is insignificant is quite low. This 
indicates that the heuristic is sensitive to the changes on that factor.

ANOVA results show that the two factors. A, that is the percentage of idle 
time in the initial schedule, and C, that is the ready time interval, are significant
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Factors
R uns Fac. 1 Fac. 2 Fac. 3 Fac. 4 Fac. 5
1
2 +

- - "

;
3 - + - - -

4 + + - - -

5 • - + - -

6 + - + - -

7 - + + - -

8 + + + - -

9 - - - + -

10 - - + -

11 - + - + -
12 + + - + -
13 - - + + -
14 + - + + -
15 - + + + -
16 + + + + -
17 - - - - +
18 + - - - +
19 - + - - +
20 + + - - +
21 - - + - +
22 + - + - +
23 - + + - +
24 + + + - +
25 - - - + +
26 + - - + +
27 - + - + +
28 + + - + +
29 - - + + +
30 + - + + +
31 - + + + +
32 + + + + +

Table 5.5. 2® Factorial Design
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Source of Variation
Sum of 

Squares d.f.
Mean

Square
Significance

Level(Q)

A (Idle Percentage)
В (Processing Time Var.) 
AB
C (Ready Time)
AC
BC
ABC
D (Due Date)
.-ID
BD
ABD
CD
ACD
BCD
ABCD
E (Breakdown Duration)
AE
BE
ABE
CE
ACE
BCE
ABCE
DE
ADE
BDE
ABDE
CDE
ACDE
BCDE
ABCDE

Error
Total

618020
31753
39313

429733
250114

13177
2117

20748
21809
20115
22562
5108
3186
4796
3478

176491
34928
41538
30802
41602
18276
76038
30526

141
462
697

73
68

403
40
51

5754374
7692540

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

128
159

618020
31753
39313

429733
250114

13177
2117

20748
21809
20115
22562
5108
3186
4796
3478

176491
34928
41538
30802
41602
18276
76038
30526

141
462
697
73
68

403
40
51

44956

13.75
0.71
0.87
9.56
5.56 
0.29 
0.05 
0.46 
0.49 
0.45 
0.50 
0.11 
0.07 
0.11 
0.08 
3.93 
0.78 
0.92 
0.69 
0.93 
0.41 
1.69 
0.68 
0.00 
0.01 
0.02 
0.00 
0.00 
0.01 
0.00 
0.00

0.00031
0.40102
0.35271
0.00244
0.01989
0.59116
0.82312
0.49885
0.48520
0.50355
0.48079
0.74068
0.79176
0.74068
0.77776
0.04957
0.37880
0.33929
0.40771
0.33668
0.52312
0.19593
0.41112
1.00000
0.92049
0.88776
1.00000
1.00000
0.92049
1.00000
1.00000

Table 5.6. Analysis of Variance for Tardiness
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Source of Variation
Sum of 

Squares d.f.
Mean

Square
Significance

Level(a)

A (Idle Percentage)
В (Processing Time Var.) 
AB
C (Ready Time)
AC
BC
ABC
D (Due Date)
AD
BD
ABD
CD
ACD
BCD
ABCD
E (Breakdown Duration)
AE
BE
ABE
CE
ACE
BCE
ABCE
DE
ADE
BDE
ABDE
CDE
ACDE
BCDE
ABCDE

Error
Total

3.07
0.02
0.06
2.84
2.30
0.12
0.18
0.01
0.01
0.02
0.01
0.01
0.01
0.00
0.00
0.41
0.24
0.68
0.55
0.40
0.19
0.68
0.68
0.02
0.03
0.00
0.03
0.01
0.00
0.01
0.01

43.73
56.34

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

128
159

3.07
0.02
0.06
2.84
2.30
0.12
0.18
0.01
0.01
0.02
0.01
0.01
0.01
0.00
0.00
0.41
0.24
0.68
0.55
0.40
0.19
0.68
0.68
0.02
0.03
0.00
0.03
0.01
0.00
0.01
0.01

0.34

9.00 
0.07 
0.18 
8.32 
6.73 
0.35 
0.54 
0.04 
0.03 
0.05 
0.02 
0.03 
0.03 
0.00 
0.00 
1.19 
0.71
1.98 
1.61 
1.16 
0.55
1.99
2.00 
0.05 
0.09 
0.01 
0.08 
0.02 
0.01 
0.03 
0.02

0.00325
0.79176
0.67209
0.00460
0.01059
0.55516
0.46378
0.84180
0.86277
0.82342
0.88776
0.86277
0.86277
1.00000
1.00000
0.28961
0.40102
0.16181
0.20678
0.29552
0.45968
0.16076
0.15972
0.82342
0.76467
0.92049
0.77776
0.88776
0.92049
0.86277
0.88776

Table 5.7. Analysis of Variance for Computation Time (CPU)



Cl IA PTER 5. COMP UTATIONA LANA LYSIS 85

on the response of our heuristic relative to other factors. This conclusion is 
same for all of the three performance measures. One level of factor C is that 
ready times are distributed throughout the makespan and the other level is that 
they are distributed on the interval covering the initial 80% of the makespan. 
The second level causes a decrease on the idle percentage of the initial schedule 
since in this case the possibility of waiting idle for a job to be ready reduces. 
Hence both factors A and C decre<ise the total amount of idleness in the system. 
More idleness means more flexibility in a system so, reduction in the idleness 
amount of the initial schedule reduces the feasibility range of match-up and 
increases the complexity.

Factors B, that is the processing time variability, and D, that is the due 
date, are exactly insignificant on the performance for all of the three measures. 
In fact, these different performance measures’ results are quite parallel. Their 
ANOVA results suggest the same factors as significant and insignificant.

For factor E, that is the duration of time that the machine is down, the 
situation is different. It cannot be directly classified as significant or not. It is 
significant at 5 percent for tardiness while it is only significant at 30 percent 
for computation time and match-up point. Though it is expected to have more 
effect on the response, this result is retisonable in the sense that when down 
duration becomes larger, this reduces quality of the schedule but does not have 
a big impact on the number of iterations. Therefore, both the match up point 
and the computation time are slightly affected by the down duration. A brief 
summary of the three tables’ ANOVA results are represented in Figure 5.2. 
Their effect on the performance of the algorithm is categorized into four groups 
as high, medium, low and not significant to make the results manageable.

In this chapter, the heuristic proposed in Chapter 4 is experimented. In the 
first part, its performance is compared with four alternatives. Performance is 
evaluated in terms of the quality of the resulting schedule and time criticality 
of the heuristics which are our two basic objectives stated in Chapter 3. Our 
heuristic results better than alternatives for both type of mecisures. In the 
second half of the study, the effects of the different factors on the performance 
of our heuristic is tested. It is concluded that idle time percentage and range 
of ready times in the initial schedule have significant influence on the results 
relative to other factors. Also duration of time that the brokendown machine
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F a cto rs T a rd .
C o m p .
T im e

M atch .
P o in t

A  (Idle Time%] high h igh high

B (Pr.TinieVar) n. S · n .s . n .s .

C (ReadyT.Int) h igh h igh high

D (Due Date) n .s · n .s . n .s .

E  (DownDur.) medium low low

high  : s ig n i f i c a n t  a t  0 .5  % le v e l
medium : s ig n i f i c a n t  a t 5 % le v e l
low : s ig n i f i c a n t  a t 30 % le v e l
n .s .  ; not s ig n if i c a n t

Figure 5.2. Extract of ANOVA Results
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relative to other factors. Also duration of time that the brokendowu machine 
is off has some effect though not <is much as the other two variables.



Chapter 6

Conclusion

The research presented in this thesis develops a framework for reschedul
ing manufacturing cells when machine breakdown invalidates the preplanned 
schedule. The strategy utilizes the match-up idea of Bean and Birge which 
indicates that an optimal recovery from a single disruption does indeed return 
to the preschedule under certain conditions. It reschedules to match-up with 
the preschedule at some time in the future so that the state reached by the 
revised schedule is the same as that reached by the initial schedule.

We model a cellular manufacturing system with machine breakdowns and 
assume that the preschedule can be followed if no disruptions occur. After a 
machine breakdown, a match-up point is determined and part of the initial 
schedule that covers the time interval between the disruption and match-up 
time is rescheduled. We approached to this problem heuristically because of 
the computational complexity of determining both the match-up point and 
rescheduling in this determined match-up point simultaneously.

Our heuristic approach initially proposes a match-up point, then resched
ules the job and machine pool defined with the match-up point. Though two 
bcisic steps are similar to that in Bean and Birge, the solution approach for 
each step is quite different. Initially the match-up point search procedure 
is improved. Instead of searching the time horizon with equal increments, a 
feedback mechanism is developed to determine the amount of increase of the 
match-up value at each iteration. Match-up value of each machine is different 
since they all have different conditions in terms of flexibilities they have. Then,

88
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a specific scheduling heuristic is proposed which considers the extra constraints 
o f the rescheduling problem that clcissical approaches do not. It decomposes 
the flow shop into three sets, the brokendown machine, downward machines 
and upward machines, and develops different algorithms for each set.

VVe developed an experimental frame where the proposed approach is com
pared with alternative methods and tested the significance of some factors by 
analysis of variance test. For total deviation, match-up point and computation 
time, our heuristic approach dominates other alternatives. We totally elimi
nate earliness in order to keep the new schedule consistent with the flow plan. 
It gives 25% improvement on the overall measure when compared with the 
second best alternative. Also it results 31% reduction for the overall cost when 
compared with the best of the three alternatives created on the heuristic by 
Bean &: Birge.

Analysis of variance tests are performed for five factors. Four of them 
are idle time percentage in the schedule, the variance of processing times, 
ready times and due dates that shape the initial schedule and the last one 
is the breakdown duration. Test results show that two factors which are the 
percentage of idle time in the initial schedule, and the ready time interval are 
highly significant on the response of our heuristic relative to other factors. 
Since, we are trying to exploit the flexibilities inherent in the initial scheule 
when the disruptions occur.

In our heuristic approach, during determining the match-up point, the 
ideéis of collecting flexibility in the rescheduling pool, and using a feedback 
mechanism are used. As denoted in the computational comparison results. 
Alternative 1, which is a mixture of our enlargement procedure and the clas
sical dispatching rules is the second best heuristic, which means that even 
only the proposed match-up determination strategy improves the performance 
measures. The second improvement is made by developing a rescheduling pro
cedure where the combination of our match-up determination strategy and the 
rescheduling procedure performs better than all alternatives.

Finally, we state two potential research areas related to our study; •

• C onsidering  other disruption reasons ; Disruptions like unexpected 
new jobs, rush or hot jobs with high priorities, material delays, change
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The Dominance Property

A .l Proof of the Dominance Rule

Proof of Theorem 4.1 is done by using the geometric interpration of the function 
f ( j ,  t). For any given two jobs, i and j,  one of them is chosen to be scheduled 
at the instance depending on their and functions. The apsis of
the intersection of these lines is called as t’  where:

^  Pjdj  -  Pid j  
Pj -  Pi

The ordinate of the intersection is called as /*  where:

The current time that a choice should be made is called as For jobs i and
j ,  tardiness cost of job j  after choosing job i is denoted as and total cost
o f i and j  after this decision is denoted as T;<j where:

'̂ i<i ~ '̂ i<i '̂ ¡<1

To be used in the proof of Theorem 4.1, an auxiliary theorem is stated.

T h eorem  A .l .  Given two jobs that are both ready at time where pi < pj 
and >  t*,

J. if < r ,  then < 0, > 0 case is infeasible,

91
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2. ifC  > r ,  then for f{j ,C) < 0, > U ca^e is infeAsible.

P roof: The intersection point of lines f{i ,t)  and f{ j , t )  is ( r , / * ) .  

Case 1. C < r
This case is illustrated in Figure A.l.

By using triangle DAC,
\DA\

slope of f{j ,  t) =
|AC|

Pi

=*· /0 ',< ‘ ) =  ^  +  / ·
Pi
A

By using triangle BAC, 

slope of 

, 1
Pi M C I

=> / ( i . n  =  ^ + / ·Pt

Since pj > Pi,

M C I  ,  M C I

Pi Pi



APPENDIX A. THE DOMINANCE PROPERTY 93

Figure A.2. Case 2.

! ^  + r < ^  + /·Pi Pi

fUJ") <

So if f{i ,P) < 0 is given, then f { j ,P)  < f{i ,P) < 0 

Case 2. P > P
This case is illustrated in Figure A.2.

A
By using triangle CEF,

\EF\
slope oi f[j,  t) =

\CE\

Pi \CE\

=> /O'. <') = —  + /■
Pi
A

By using triangle CEG,
\EG\

slope of f{i, t) =
ICEI

1 f(i , t ‘ ) - r
p, \CE\

^  / ( · ■ . « ' )  =  —  +  / ·  Pi

Since pj > Pi,
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_1 _1
Pj Pi

_ ld£! < /· _
Pj Pi

=> f U , c )  >

So if C) < 0 is given, then f{i,  i‘ ) < f(j ,  C) < 0

After the proof of this auxiliary theorem, Theorem 4.1. is developed as 
follows.

T h eorem  4.1. Given two jobs i and j  with pi < pj, both ready at time P, 
the given rules minimize the tardiness.

1. For Pi ^ Pj, V > C,

* / ond f { j , P ) ^ 0 ,  then use E D D ,
i f  f {i ,C) > 0 and f { j ,P)  < 0 then i f  d, — pj > P  j  X i,

else i X j ,
i f f ( i , p ) < 0  and f { j , P ) < 0 ,  then use SPT .

2. For Pi ^  Pj, t* < C, use SP T .

3. For Pi =  Pj, use E D D  .

P ro o f:

Case 1. For Pi ^  pj, t* > P, there are three possibilities:

1.1. f ( i ,P)  > 0 and f ( j ,P)  >  0,
1.2. f ( i ,P)  > 0 and f { j ,P)  < 0,

1.3. f { i ,P)  < 0 and f { j ,P)  < 0.

The forth combination,

f (i ,P) < 0 and f ( j ,P)  > 0

is an infeasible case which is proved above in Theorem A.l.
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Case 1.1. f ( i ,P)  >  0 and f ( j ,P)  > 0 
For this case, T̂ ĵ =  0 A Tĵ  ̂ =  0 

i· P +  Pi < dj — pj A P + pj < di -  Pi
A T ^ , =  o

T'i<j — ’̂ j<i — 0
Indifferent between i and j  for tardiness.

ii. P +  Pi < dj -  Pj A P + Pj > di -  Pi
This case is possible when either dj — pj > di — pi 
or di -  Pi > dj -  Pj 
¡¡.a dj — Pj > di — Pi

This case is illustrated in Figure A.3.
ii.b  dj -  Pj > di -  Pi

This case is illustrated in Figure A.4.
In both cases, Ti ĵ = 0
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Tj<i =  Tĵ i =  P +  Pj -  {di -  Pi)
i ~< j

Since P + Pi < dj — Pj A P + pj > di — pi,
P + Pi + Pj < dj A P + Pi + Pj > di 

di < dj, that is EDD.
iii. P +  Pi > dj -  Pj A P + Pj < di -  Pi

This case is feasible only when dj — pj < di — pi 
It is illustrated in Figure A.5.
Ti<j = Tf̂ j =  P +  Pi -  (dj -  Pi)
T\ = 0

j
Since P + Pi > dj — Pj A + pj < di — pi,

+ Pi + Pj > dj A P + Pi + Pj <  di 
^  dj < di, that is EDD.

iv . P +  Pi > dj -  Pj A P + Pj > di — Pi

Ti<i =  Tî s 
THi = TU
rp _ rp _ rpi   rpj-*>-<1 t̂-ij — ĵ î

= t̂  + Pj -  {di -  Pi) -  {P +  pi -  {dj -  Pj)) 
dj d,

that is EDD.
Case 1.2. f {i ,P) > 0 and f { j ,P)  < 0

For this case, T- ĵ = 0 A T̂ ĵ > 0 A Tĵ i > 0
i .  i "  +  Pj <  di -  Pi 

T' =0
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f(.,0

Figure A.6. Case 1.2.ii

— T·’j<· ~ ĵ<iT, A

=
Ti<j = TUi

rpj __ rpj
-  {dj -  Pj )  -  +  Pi -  {dj -  p j ) )

- p i  <  0

j
ii. P +  pj >  di -  Pi

TU  > 0
Ti î = T/.,· +  T'l.i A Tî i =  TL‘ j-<·
T

}<> ' 
. -  Ti. = Tl

*̂<3 ~ î<}
ĵ<i +  ~ '̂ Ui

=  r  +  Pj -  {di -  Pi) +  P -  {dj -  Pj)

~{t^ + Pi -  {dj -  Pj))
=  +  Pj -  di

This case is illustrated in Figure A.6.
UV̂  > di — Pi, then i ■< j.
If t  ̂ <  di — Pi, then j  -< i.

Case 1.3. f{i,t^) <  0 and f { j ,P)  <  0 
This case is illustrated in Figure A.7.
rp __ fpi   >pj
qn _   rpi   rpj

T,^i-Ti^j  =  T; î + Tj^i-{T:^j + Ti ĵ)
=  t̂  +  Pj -  {di -  Pi) +  t̂  -  {dj -  Pj)

~ {P  -  {di -  Pi) +  P +  Pi -  {dj -  Pj))

=  pj -  Pi > 0
i ^ j
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Figure A .7. Case 2.1.iv

Case 2. For pi /  pj, t* < there are three possible cases:

2.1. f { i ,P)  > 0 and > 0,

2.2. f { i ,P)  > 0 and f { j ,P)  < 0,

2.3. f ( i ,P)  < 0 and f { j ,P)  < 0.

Case 2.1. f {i ,P) > 0 and f{jyP) >  0 
For this case, T̂ ĵ =  0 A Tĵ  ̂ =  0 
i· F +  Pi < dj — pj A FA pj < <f, -  p,

=*· =  0 A 77 ,̂. = 0
Ti ĵ =  Tj î =  0

=A Indifferent between i and j  for tardiness.
ii. F +  Pi < dj -  Pj A F + Pj > d i -  Pi 

=> Tf ĵ = o A r ;^ ,> o  
Ti ĵ =  0 A Tj î > 0 

=A i ^ j
Hi. F +  Pi > dj — Pj A F + Pj < di — pi 

This case is infeasible.
di -  Pi < dj -  Pj
F + Pi > dj -  Pj F +  Pi > di -  Pi

F +  Pi > F +  Pj
Pi > Pj which is a contradiction.

iv. F + Pi > dj -  Pj A FA pj > di -  pi 
This case is illustrated in Figure A.8.
Ti<i =  TU,
Tj î =  T] ,̂
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‘ i-Ci

Figure A.8. Case 2.2.i

7̂ . . _ 'T'i _t<j — ,Vi
=  +  P i -  (di  -  Pi)  -  +  Pi -  (d j  -  P j ) )
=  dj — di > dj -  di + (p, -  Pi) snice p, — Pi <  0
> dj -  Pj -  {di -  Pi) > 0

i -< j
Pi -< Pj, that is SPT.

Case 2.2. f{i,C) < 0 and f { j ,P)  >  0
For this case, Tj î =  0 A T- ĵ > 0 A F·^, >  0

i. C +  Pi < dj -  Pj
This case is illustrated in Figure A.9.

Ti î =  Ti
_ 'T 'X _ r p i~ Ti-ij

C  +  Pj -  {di  -  Pi)
+  Pi -  (d j  -  Pj ) )

Pi > 0
t -< i
Pi ^  Pj, that is SPT. 

ii. P +  Pi >  d j  -  Pj
This case is illustrated in Figure A. 10. Tî i = TU  +  Ti^

PTi<i =  Ti_
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Figure A.9. Case 2.2.ii

Τ» T*. .   Τ’*   Λ . ΠΓ^
j< i -̂ *-<i "̂ i-<* V"̂  i-<i ' *-<i

=  -I-Pi -  {di -  Pi)
—{P — {di — Pi) +  P +  Pi — {dj — pj)) 

=  dj -  P -  Pi
> dj — — Pj > 0 sitice Pi -< Pj

^  i < j
Pi -< Pj, that is SPT.

Case 2.3. f {i ,P) < 0 and f{ j ,P)  < 0
For this case, Tj î > 0  Λ Tf ĵ > 0

tLj > 0  λ t; ^ , > o

Ti<, = TU, +
Ti<i =  rUi + TUi
i. i* <  di — Pi

This case is illustrated in Figure A.ll.
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-  Ti ĵ =  T'-̂ i +  -  {Tl ĵ +  Tf ĵ)
=  p  +  Pj -  {di -  Pi) +  p  -  (dj  -  Pj )

~(P -  (di -  Pi) + P + Pi -  (dj -  Pj)) 
= pj -  p. >  0

i ^ j
^  Pi ^  Pj ) SPT .

ii. di — Pi <tm <tc
This case is illustrated in Figure A.12.
Tj^i-Ti^j  =  Tj î + Tj^i-(TUj + T U

= p +  Pj -  (di -  Pi) + p -  (dj -  Pj)
- ( P  -  (di -  Pi) + P + Pi -  (dj -  Pj))

= Pj -  Pi > 0
i j

=>■ Pi -< Pj, that is SP T .

A.2 Transitivity Property for the Dominance Rule

In the case of more than two job choices at a given time, the Dominance Rule 
can be applicable only if it has transitive property. Its existence is checked by 
Theorem A.2.

T h eorem  A .2 . For any three jobs i, j  and k ready at the current time, the
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following proposal is true:

If i ■< j  and j  -< k, then i -< k.

P roof: When a precedence relation is given between iwo jobs i and j, to con
clude whether which case of the Dominance Rule is applied, the intersec
tion point of the f{i,t) and functions, t", should be determined.
For three jobs, there are three intersection points, and t* f.. There
are two possible cases for an intersection point, it is either greater than 
P or equal or smaller, which means 2̂  different combinations to consider. 
For each job, / ( . ,  P) values can be negative or positive. Also there are 2̂  
different combinations which means that each case has 8 subcases. Here, 
only the case where,

ĵ,k >  i" «»c/ > P

is considered with its 32 subcases. The proof for other cases are quite 
similar.

Case 1. /(i,P) > 0,/(j,P) > 0 and f {k,P)  > 0 
EDD is the valid rule for all pairs, 
i ~< j  A j  ■< k d{ ~< dj A dj -< dk 

di -< dk
i ^ k

Case 2. f {i ,P) > 0, f { j ,P)  > 0 and f (k,P)  < 0
For i and j  EDD is valid, j, k and i, k pairs are sequenced due to
the case 1.2 of Theorem 4.1. 
i -< j  A j  ^ k di ^ dj A P > dj — pk

P > di -  Pk 
=>■ i k

Case 3. f{i, P) > 0, f{ j ,  P) < 0 and f(k, P) < 0
For j  and k SPT is valid, i, j  and i, k pairs are sequenced due to
the case 1.2 of Theorem 4.1. 
i ^ j  A j  ^ k p > d i -  pj A Pi < Pk

P > di -  Pk 
i -K k
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Case 4. < 0,f{j ,P) < 0 and < 0
SPT is the valid rule for all pairs, 

i ^ j  A j  ^ h => Pi < Pj  A Pi < pk 
Pi <  Pk 
i k

Case 5. f { i ,P)  > 0,f{j ,P) < 0 and f{k,V^) > 0
i , j  and k are sequenced due to the case 1.2 of Theorem 4.1. EDD 
is valid for t, k pair.
i ■< j  A j  < k  => P > di -  Pj A P > dk -  Pj 

di < dk 
i ^ k

Case 6. f {i ,C) < 0 j ( j , P )  > 0 and f (k , t ‘ ) > 0
i , j  and i, k are sequenced due to the case 1.2 of Theorem 4.1. EDD 
is valid for j, k pair.
i <  j  A j  k P  >  d j  —  Pi A d j  <  dk 

t ^  dk Pi
i -< k

Case 7. f{i, P) < 0, / ( ; ,  i") >  0 and f{k, P) < 0
i, y and j, k are sequenced due to the case 1.2 of Theorem 4.1. SPT 
is valid for i, k pair.
i ^ j  A j  ^ k => < dj — Pi A dj < dk

=>· < d k — pi 
^  i -< k

Case 8. < 0j{j , t^) < 0 and f{k,t^) >  0
i, k and j, k are sequenced due to the case 1.2 of Theorem 4.1. SPT 
is valid for i ,j  pair.

i ■ < j  A j  ^  k  Pi < P j  A V' < d k -  Pj
< d k -  Pi

i < k
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