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ABSTRACT

PHASE TRANSITIONS IN TETRAHEDRAL ISING
LATTICES

Alkan Kabakgoglu
M.S. in Physics
Supervisor: Prof. Dr. Cemal Yalabik
May 12, 1993

After a review of the Renormalization Group theory, the phase diagram
of unisotropic tetrahedral Ising lattice is explored by the motivation gained
through the recent experimental findings about SiGe alloys. Renormalization
Group approach and the mean-field RG approximation previously proposed
by Kinzel are used. Four different ordered phases are observed. The critical
exponent v s caleulated using the linearized transformation around the fixed
points and compared with previous works. It is concluded that the newly

observed orderings in SiGe superlattices are induced by surface effects.

Keywords: Phase transition, critical phenomena, Renormalization Group,

Ising model, SiGe superlattice.
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OZET
TETRAHEDRAL ISING ORGUSUNDE FAZ GECISLERI

Alkan Nabakcioglu
Fizik Bolumn Yiiksek Lisans
Tez Yoneticisi: Prof. Dr. Cemal Yalabik
12 Mayis 1993

Renormalizasyon Grubu teorisinin ele almmasindan sonra, SiGGe tstiindr-
gilerine iligkin yakin zamandaki deneysel bulgulardan esinlenerek egyonhi ol-
mayan tetrahedral Ising orgusiinin faz gemasi incelendi. Yontem olarak Renor-
malizasyon Grubu yaklasimi ve daha 6nce Kinzel tarafmdan onerilen RG orta-
lama-alan yaklagikhg kullamldi. Dort farkls diizenli faz gozlendi. Déntigiimiin
sabit nokta yakmmda dogrusallagtinlmasiyla kritik tstel degerlerden v hesa-
plandi ve bagka caliymalarm bulgulanyla kargilagtirifdi. SiGe Gstiinorgilerin-
de yeni gozlenen diizenlenmelerin yiizey etkilerinden kaynaklandigi sonucuna

varildr.

Anahtar kelimeler : Faz gegisi, kritik olaylar, Renormalizasyon grubu, Ising

modeli, SiGe tistiindrgrisi.
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Chapter 1

INTRODUCTION

Quantum mechanics along with the relativistic corrections in principle draws a
complete picture of the universe, in the sense that once the rules governing the
dynamics of individual particles are set, one can predict the behavior of any
collection of particles, however complicated it is. Unfortunately, this approach
fails to produce any solvable model when one has to deal with a macroscopic
system with practically infinite degrees of freedom. So we need some extra tools
which will carry the microscopic world of atoms to our kitchen. Statistical
mechanics enters the picture right at this point: formulating the collective

behavior of a cluster with ~ 10% particles.

Development of statistical mechanics starts in the second half of the 19th
century with the pioneering studies of the scientists of the time like J. Clerk
Maxwell, J. Willard Gibbs, Ludwig Boltzmann, Thomas Andrews and Rudolf
Clausius on thermodynamic properties of matter.  They investigated new
laws of physics relating the thermodynamic variables such as pressure, volume
and temperature which are experimentally measurable, plus some new quan-
tities such as internal energy and entropy. though unmeasurable, proved to
be essential parameters in determining the equilibrium state of a given sys-
tem. However, soon physicists faced a real challenge i the investigation of
the response of a macroscopic system to a change in the environment. That
is, many systems exhibit an abrupt change of character at a critical value of
an external variable, such as temperature or magnetic field, which varies in a
perfectly smooth manner thronghout a given interval. In other words, when
the time comes, all the particles simultancously decide to behave differently
than they used to do. This anomalous behavior, namely phase transitions in

many physical systems will be our main point of interest from now on.



There is a diverse collection of physical systems that undergo phase tran-
sitions in various forms giving a first impression as if it is unlikely that a
general theory can be built. Some examples are liquid-gas transition of many
materials, superfluidity of liquid helium, spontaneous magnetization of spin
systems, order-disorder transition in binary alloys and superconducting tran-
sition of some metals and ceramics. Though the physical laws governing each
one of the above transitions are quite unrelated, there are certain underlying
similarities giving the clues of a unification. Chapter 2 will present the earlier
theories of phase transitions and the appearance of a unified picture through
the ideas of scaling. The modern approach to the critical phenomena is based
on Renormalization Group ideas introduced by K. Wilson and developed fur-
ther by L.P.Kadanoff, M.E. Fisher, B. Widom and many others. The physical
grounds of the theory and its technical aspects will be given in Chapter 3. In
Chapter 4, a new Kadanoff blocking scheme applicable to tetrahedrally struc-
tured systems will be proposed. The model allows for a possible anisotropy in
one of the bond directions and is expected to he applicable to SiGe superlat-
tices in which a new order-disorder transition has recently been observed. The
resulting phase diagram for the tetrahedral Ising lattice will be analyzed in the

same chapter.



Chapter 2

PHASE TRANSITIONS AND CRITICAL
PHENOMENA

Equilibrium statistical properties of a system with many degrees of freedom are
given in terms of its, so called. Partilion Function (or Zustandsumme, German
word meaning -the great sum-). It is a measure of the volume occupied by
the set of all possible states in the phase-space. TFor a classical system, this is
equivalent to a sum (or an integral for continuous degrees of freedom) of the

corresponding Boltzmann factors over all possible configurations as below :

Nl N2 Nn
Z = Z Z e Z exp_ﬁH((llmnfln) (21)
g1=1¢gp=1 gn=1

where 3 = I/RT, k being the Boltzmann constant and T the temperature
and each coordinate ¢; can take N; discrete values. Instead of Eqn.2.1, one
generally uses the shorthand notation below :
Z = Ze\’])_/”l("")
{a:i}

Once the partition function is defined and computable, the corresponding

Helmholtz Free Euergy can he written down as
F=-lnz/p (2.2)

and remaining thermodynamic quantities follow immediately from the Maxwell

relations, e.g. for a magnetic system as in Table 2.1, Corresponding relations



Table 2.1: Maxwell relations among the thermodynamic parameters of a mag-

netic system

Average magnetization M = —(0G[OH),
Magnetic field H = —(0F/0M)r
Specific heat of magnetization C, = =T (0*F/IT?),
[sothermal susceptibility \r = —(9*G/OH?);

for a fluid may be obtained by the following substitutions :

P,

—V

H —
M —
A phase transition manifests itself as an anomaly in the behavior of these equi-
librium properties in response to an external field, for example the temperature.
The transition from one thermodynamic state to another may demonstrate
qualitative differences depending on whether the transition is of 1st or 2nd or-
der. The distinction between the two is made by observing the behavior of the
free energy at the transition point (after Ehrenfest). The first order transitions
display a discoutinuity in the lst derivative of the Gibbs free energy, or equiv-
alently in the entropy, whereas the discontinuity ol a second order transition

is by definition in the second or higher derivatives (see Fig.2.1)

First order phase transitions have been known for centuries, the most com-
mon examples being the liquid-gas, solid-liquid and solid-gas transitions of a
given substance.

The graphical demonstration of the equilibrium state properties according

to changing ambient parameters is known as a phase diagram. Consider for

instance solid-liguid-gas phase diagram of water in [ig.2.2.



(a) (b)

Figure 2.1: Behavior of the free energy of the system in (a) 2nd and (b)lst

order phase transitions

The phase boundaries are in fact the curves of coexistence representing the
equilibrium states in which two phases with different densities survive simul-
taneously. As a consequence, at the tricritical point all three phases coexist
(for water P, = 218Atm, T, = 374°C [1]). The system exhibits its criticality
(in the sense of statistical mechanics) at the point (7, P.) where the liquid-gas
coexistence curve terminates. The meaning of termination is, above this point
the density difference between the two phases vanishes and the phase transition
along path (2) is of second order. Disappearance of the density difference is an
example of a characteristic feature of second order phase transitions, namely
vanishing of a parameter -called the order parameter- above the critical
point, marking the onset of a previously absent symmetry. Another indicator
of second order phase transitions is the divergence of a number of thermody-
namic functions such as the specific heat (as in A - transition of liquid helium),
susceptibility, correlation function and the correlation length at the critical
point. Among these, divergence of the correlation length introduces the fact
that at T, all the physical lengths vanish tending to either 0 or oo (this will
be discussed in Chapter 3). There exist fluctuations of all sizes. This induces
an exotic phenomenon known as the critical opalescence in certain liquid-gas
phases and binary mixtures. That is, at the criticality, the substance - other-
wise transparent - bears a white, cloudy appearance thanks to the domains of

the size of several thousand atoms which scatter visible light appreciably.



Figure 2.2: Phase diagram of water. T is the triple point where three phases
coexist and C s the critical point. (1) and (2) indicate paths along which the
transition is of 1st and 2nd order respectively.

2.1 A Review of History

The existence of such a critical point was first reported by Andrews for C O,
in his famous article titled “On the continuity of the gaseous and liquid states
of matter” [2] . After four years, Van der Waals made the first theoretical
attempt for the combination of liquid and gas states of matter in a single
theory. He published his well-known equation of state in his PhD thesis titled
“On the continuity of gaseous and liquid states™ [3] . Strangely enough, he was
completely unaware of Andrews’ work at that time. For a historical review, see
for example [4, 5, 6]. The second order phase transition in magnets was first
formulated by Weiss in 1907 [7]. The transition occurs at Curie temperature T,
and zero external magnetic field by the appearance of a self magnetization. The
magnetization defines a preferred direction in space, destroying the rotational
invariance of the system (see Ifig.2.3). This phenomenon is called spontaneous
symmetry breaking. Note that the self magnetization for the magnet is what
density difference to the liquid-gas system is, i.e. the order parameter.
The necessity of an extra parameter to define the thermodynamic state below
T. eliminates the possibility of representing the system with a single analytic
function of thermodynamic variables on both sides of the critical point. Here
appears a puzzle for, the partition function being a sum of analytic terms is
itself also expected to be analytic. So how does the non-analyticity arise?
Answering this question has heen the main challenge in the field of critical
phenomena but a complete theory is still lacking. An immediate observation is

that the partition lunction can have a non-analyticity only when the number of



terms in Equ.2.1 tends to infinity. So from this simple discussion, we reach the
important conclusion that criticality formally exists only in the thermodynamic

limit, i.e. V — oo, N — oo, with N/V constant.

Figure 2.3: Phase diagram for an Ising lerromagnet at the critical external
magnetic field H = 0. Below the Curie temperature T, rotational symmetry
is destroyed by the appearance of a nonzero magnetization.

2.1.1 Landau Mean Field Theory

In 1937, Landau proposed what is now called the Landaw Mecan Field Theory
(LMFT) [8] as a theoretical ground for studying critical phenomena. His theory
covered Van der Waals™ and Weiss’ formulations as special cases and was able
to predict the behavior of the thermodynamic properties at the critical point.
LMFT is so simple that a few lines can be spent to show how it works, e.g.
for a magnet. Landau assumes the free energy F'is an analytic function of the
average magnetization M, so that for H.,, = 0, one can express F' as a Taylor
expansion in powers of A for small values ol M :

(M. T)=Co(TY+ a(TYM? + b(T)YM* + - (2.3)

Note that only even powers of Al contribute to /7 because of the up-down

symmetry in the absence of external field. To find the actual /7, one minimizes

(2.3) with respect to M :
Ja

Now truncate (2.4) with the first two terms and assume b > 0. Since 0F/OM =

=2a(TYM +40(TYM* +--- =0 (2.4)

H by Maxwell relations given above, this condition gnarantees that A increases
with M when M is large.  For « > 0, ¢ has a single mmimum at M = 0.
However, if « < 0. (¢ has two minima at A/ = £,/—a/2b which suggests that

a > 0 corresponds to T > T and a < O corresponds to T < T... Further assume



that @ and b are analytic functions of T so that to the first approximation, b

is a constant and « « (T' = T¢). So LMEFT predicts
Mo (1. - T)"? (4

&
f2
~

¢

around 7" = T,. Consequently, by Equ.2.4,
. 1
x=0M/OH = o X (T ~T.)™!

(i

N

for small M. The exponents 1/2 and —1 are now given certain names (4 and

—7 respectively) for reasons that will become clear later (sce Table 2.2).

2.1.2 Experiment Conflicts Theory

I 1893, Van der Waals had also obtained a similar expression from the asymp-
totic behavior of his equation at the critical point [9]. He analyzed the volume
difference of the liquid (+) and gas (=) phases in the two-phase region and got

VE V=B T -T2+ BT =T +---

from which Van Laar in 1912 [10] derived

pE = pe= BT = T|"? (2.6)

for T~ T.. Note that Egqn.2.6 is dual to Eqn.2.5 since both terms on the
left are the order parameters of the corresponding system. A few years later
however, controversial experimental results started being reported [11, 12, 13,
15]. Numerous experiments with increasing sensitivity showed that /4 was closer
to 1/3 rather than the theoretical prediction 1/2. A similar problem existed for
the other exponents, too. So, the underlying physics of the critical phenomena
had to be different from Van der Waals™ theory. Something was obviously going

wrong and nobody knew what it was.
2.2  Universality and Scaling Laws : The Modern Era

2.2.1 Law of Corresponding States

The non-analytic behavior of a substance at criticality, either as the divergence
of specific heat and susceptibility or as the sudden appearance of magnetization
possesses qualitative and quantitative similarities in many unrelated physical
systems.  Guggenheim plot Fig.2.4 is a classical example of independence of

the shape of the coexistence enrve from the substance in a liquid-gas tran-
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Figure 2.4: The famous Guggenheim plot showing the coexistence curves for
the eight fluids indicated (from Stanley [14]).

sition. This alikeness continues further in magnetic systems. Consider the

magnetization curve in Fig.2.3.

It was again Van der Waals in 1880 [16] who came out with the idea that
the vapor pressure curves of all substances should be the same when they are
represented in terms of rescaled quantities as * = p/p., ¢ = V/V. and § = T/T,

such that
T =7(¢,0).

Then, states of different substances could be given by the above single equa-
tion involving these variables and same nm, ¢ and 6 would represent the cor-
responding states for different substances. This proposition carried a great
importance, because it allowed one to derive the properties of an unknown ma-
terial by simply looking at its critical parameters. Then the equation of state
could be predicted from that of a previously studied sample. Later, Kamerlingh
Onnes [17] generalized the “law of corresponding states” and restated the idea
in terms of molecular interactions, i.e. defining as two basic parameters a char-
acteristic size and an interaction strength for each substance. Consequently,
the corresponding states were derivable using proper scalings involving these

two quantities.
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The law of corresponding states is a statement of universality which is
closely linked to a more recent observation on critical phenomena which can
be stated as follows :

The critical (nonanalytic) behavior of a system can be expressed by power
laws using certain exponents which are independent of the specific Hamilto-
nian defining its physical properties. These exponents depend merely on the

dimensionality of the system and on the degrees of freedom of its constituents.

2.2.2 Critical Exponents and Scaling Laws

The nonanalytic heliavior of many physical properties near the point of criti-
cality is given by certain exponents independent of the Hamiltonian describing
the specific system. These are called the eritical exponents and they play a

key role in modern theories of criticality. A list of these exponents and the

corresponding parameters is given in Table 2.2.
Exponent  Definition Quantity in fluid (magnetic) systems
« C~ i Specific heat at const. volume (magnetic field)
3 pL—pc (M)~ (=t)" Density difference (zero-filed magnetization)*
v X~ |t Isothermal compressibility (susceptibility)
1% £~ =" Correlation length
n () ~ || l=240) Pair correlation function (1=0)
6 M~ H='? Critical isotherm (1=0)

*Valid only for T < T, by definition of order parameter.

Table 2.2: Critical exponents and related thermodynamic guantities. Let

t=(T~-T.,)/T.

The numerical values of these very special exponents are either known by
the exact solution of certain model Hamiltonians, or approximated by sev-
eral expansion techniques or numerical simulations — sometimes in specially

designed hardware - and of course by experiments. However, these exponents
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7= u2-) (Fisher,[18))
a+2684+y = 2 (Rushbrooke,[19])
v = pE—1) (Widom,[20])
vi = 2—a (Josephson,[21])

Table 2.3: “Scaling laws” relating the critical exponents

are not all linearly independent : if only two ol them are known, the rest can be
derived using certaiu “scaling laws”. The immediate question is “Why two?”.
A satisfactory, though not rigorous, answer to this questiou regarding “Widom
hypothesis™ is presented in Chapter 3. Nevertheless, it is informative to illus-
trate here how these relations can be derived through physical arguments. A
basic postulate of the theory of criticality is that near the critical point, the
correlation length £ is the only relevant length scale in terms of which all quan-
tities with the dimensionality of length should be measured. This is known as
the scaling hypothesis. Now if we assume the pair-correlation function to
have the Ornstein-Zernike form
I'(r) = exp™ V& /|pt=24n,

then at the critical point I' ~ (length)==2#" " Using the scaling hypothesis
and the definition £ ~ |t|77,

r ~ Ifl l/((’—2+7]).

However, by the fluctuation=dissipation theorem,

v = /‘:lT /(1".'1' I'(r)

so that \ ~ [t]72=7 This gives the well-known “Fisher law”

7 =v(2—1).
Several scaling laws relating the exponents previously defined in Table 2.2 are

listed 1 Table 2.3.

A deeper understanding of these relations through a unified point of view is
provided by Kadanoll’s scaling picture. In Chapter 3, the origins and the phys-
ical meaning of scaling, Kadanofl’s revolutionary theory and its implications

will be discussed.



Chapter 3

RENORMALIZATION GROUP

The problem of critical phenomena needs a careful treatment, because one
can not use a perturbative approacl in treating the fluctuations at irrelevant
scales since all scales are relevant. This exactly is the reason why the classical
mean-field theories fail at the point of criticality. A successful theory would
be the one that considers all energy or length scales on an equal footing and
the one that is universal enough to be applicable to a variety of problems with
the same handicap. In this chapter, the Renormalization Group (RG)
will he presented as such a technique for exploring the region of criticality. It
appears to he a natural approach to problems involving scale invariance for the

procedure it proposes is a resealing of momentum or position space dimensions.

The key idea of RG is to transform the original Hamiltonian into another
form and thereby to thin out the degrees of {reedom within dimensions of a
correlation length. This is a repeated scaling transformation where at each
step the components of the new system are obtained by an averaging over
short wavelength fluctuations. Naturally, there ave some restrictions on this
transformation. First, all physical properties should be conserved throughout
the whole process. This can be achieved only by keeping the Partition func-
tion unchanged at each step. Furthermore, the mapping should preserve the
space dimensionality (d) and the spin degrees of freedom (n), which are the
only parameters that define the universality class of the critical behavior un-
der exploration. This is because, every new Hamiltonian is merely another
representation of the original system with a definite d and n. Finally, not a
formal but technical restriction is that the transformation should not create
new types of iteractions absent in the previous Hamiltonian, since otherwise
it would not be practical to apply it repeatedly. So the RG transformation has

a cascade structure with My = R{H;} and defines a flow for every point in
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the space of Hamiltonians. The unique geography of the space of Hamiltonians
determined by the RG flows tells the critical behavior of our model. That this
geography is independent of the original coordinates of Hy is nothing but the

statement of the universality discussed in Chapter 2.

Apart from critical phenomena, the RG theory has found applications in
a variety of fields including Quantum electro—-dynamics, Quantum chromo-

dynamics, percolation theory, the Kondo problem, turbulence and polymer

physics.

3.1 Momentum-Space Renormalization

The origin of RG is quantum field theory of elementary particles where one
usually has to compute sums over intermediate states with energies starting
from mec? up to infinity. These (.t(())gn])l,nt.a‘t.ions generally end up with a log-
arithmic divergence of the form dE/E (ultraviolet divergence). This is
an indicator of the lack of a cha,ra,gltifristic energy scale in the problem. The
standard renormalization procedure was developed first by Schwinger, Bethe,
Feynman, and Dyson to remove the divergences in the theory. Later Wilson
and Kogut, pointing out the similarity between the divergences observed in
Quantum Field Theory and Statistical Mechanics (except that the ultraviolet
limit of Quantum Field Theory is changed to infrared in Statistical Mechanics),

proposed a RG scheme applicable to critical phenomena [22].

As a suitable ground for discussing this technique, consider for example a
d-dimensional spin lattice with spin s; sitting on the ¢ — th site according to a
suitable indexing. Given s;, one can define an average magnetization M(x) for

the 1/A neighborhood of @ as

A
M(r) = Mpeap{—ik-x}dk (3.1)

0
so that fluctuations within regions of size ~ 1/A do not change Af(2) much

(M is the Fourier transform of s;). Thereby, one can define an effective Hamil-

tonian in terms of My :

A
exp {Ha(M)} =Y { ] (M => exp{ik-n}s;)} cap{—Ho/kT}. (3.2)

{s;} k=0 n
Note that the Partition function for the new Hamiltonian is equal to the orig-

inal Partition function, 1.e.,
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A Y
Z =Y ecap{—Ho/kT} = II / dM, cap {Hx(M)} . (3.3)

{si} k=077
One has to be careful when dealing with an infinite lattice, because the mul-
tiplication over discrete k vectors in Eqn.3.3 becomes a functional integration

which needs a careful treatment. However, we will skip it here and assume

that the lattice is finite.

Now we can write down the RG transformation as a relation between Hy,
and Hy. We do this by integrating the short wavelength fluctuations with
A/2 < k < A and keeping the Partition function unchanged (1/2 is an arbi-

trary choice) :

A [6.9]
exp{Happ(M)} = ] / exp {Hy(M)} dM,, (3.4)

k=A/2
apart from a constant factor. By substituting dimensionless momentum and

scaled magnetization q = k/A and oq = My - o BEqu.3.d bhecomes

1 o
6.’1?7){]‘[/\/2(0’)} = ] /_(x‘ cxp {Ha(o)} dog. (3.5)

let|>1/2
Eqn.3.5 is the final form of momentum-space RG transformation proposed by
Wilson [23). Let us denote it as fl, = R{Ha}. The aim in introducing o and
q is to make possible the existence of a fixed point of the transformation for

the reason discussed helow.

Eliminating a momentum scale and then rescaling the momenta (so that 0 <
lq| < 1), it can be shown that one defines a new lattice where the correlation
length is also scaled as a2 = €r. Then we can expect the fized points of
the RG transformation to give hints about the behavior of our system around
criticality where € — oo, Because, if there is an H* such that H* = R{H"},
then €r/2 = €x which forces € = 0 or € = oo, First 1s the trivial fixed point
and is ol little interest, but the latter refers to the critical point and deserves

careful analysis.

Actually, the non-trivial fixed point usnally cannot be calculated exactly.
Therefore, under certain analyticity assumptions whicl are valid in restricted
cases, H(o) is assumed to have a power series expansion for small o and is
approximated by the leading terms in the expansion. The number of non-
trivial fixed points (there can be more than one) and the value of the calculated
critical exponents depend on the approximations made after this point. Mean-

field results correspond to the first-order approximation in this formulation.



There are perturbation expansions such as the s-expansion and 1/n-expansion
whicli are built on this renormalization scheme (n @ spin degrees of freedom).
The success of such expansions is due to the fact that the problem becomes

trivial in the limit d — 4 or n — oo [22, 24].

3.2 Position-space Renormalization

That the fluctuations can be integrated one scale at a time in position-space was
first proposed by Kadanoff [25]. Later on, Kadanoff’s block-spin method was
extensively studied and applied to several model systems with success [26, 27],
see also [28]. Specially, in two-dimensional models where the c-expansion and
1/n-expansion fail, block-spin methods can work surprisingly good. Although
the Ising square lattice with nearest-neighbor interaction is exactly solvable [29)
and does not need a RG treatment, the solution applies only to a restricted class
of models in two-dimensions. The Monte Carlo RG is a later method proposed
by Swendsen [30] and is applicable to two and three-dimensional models with

relative ease (see also [31, 32]).

3.2.1 Spin-decimation method

Consider the Partition function for a two-dimensional Ising ferromagnet with

zero external magnetic field

Z=> exp{k SO susigi) (3.6)
{sn} o

where 7 denotes the unit vector in the direction i. The number of terms in the

sum grows exponentially with the dimension of the lattice, i.e. for an N x N

square lattice we have 2V° terms. Moreover, the analysis of critical phenomena

necessitates N to be large, because one has to cousider a lattice of macroscopic

size as £ — oo. The straight-forward evaluation of the sum is a hopeless task.

Instead, the sum can be evaluated partially over (e.g.) half of the spins with
relative ease and this can be repeated successively over the remaining spins.
This is the “Migdal-Kadanoff spin-decimation”. Tor example, consider the

square lattice in Fig.3.1. Take the partial sum over ‘2’ spins keeping ‘o’ spins
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Figure 3.1: The spin—-decimation method applied to a square lattice. ‘o’ spins
are kept fixed and the Partition function is summed over the ‘x’ spins.

fixed. The sum will be a function of ‘0’ spins only. Assign a new Hamiltonian
H'(0) to the 'o-lattice’ s.t.
exp{H'(0)} = Z exp { K Z xi(0i + 0i2 + 053 + 0i4) }.

{xi} J
It is obvious that the Partition function is unchanged with this transformation.

(3.7)

Since all nearest-neighbors of ‘@’ spins are ‘o’ spins, the sum in Equ.3.7 can be

factorized as

exp{H'(0)} = H Z exp {N z; (0;y + 0i2 + 0i3 + 014)}

t r,==%1
= H 2cosh [ N(op + 0i + 0y + 0i4) ]
= cap{A(N) + B(K) Z 0ij 0il. + C(K)0;10:20i30i4} (3.8)
£k
where the final substitution uses cosh(x) = cosh(—x). H' which applies to the

new square lattice with hall the spins turns out to be

H'(s) = AN+ SDT2B(K) sy s+ D9 BIKN) su 5,474 +
n { n +
Z (‘( [\’) H”-'Sn.+l. 'S71,+'2'Su+i+'2 (3())

Unfortunately, H' includes interactions which are absent in H,. This ehm-
inates the possibility of an exact RG transformation because the third and
fourth terms in H' couple two ’x’ spins in the new lattice and the new Par-

tition function can not be deconpled. In a practical construction of an RG
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transformation, one generally comes to such a decision point where a suitable
approximation has to be made in order to proceed (though there are very
exceptional two-dimensional models on which au exact differential RG trans-

formation is definable [33]). See [32] for more about spin-decimation method.

Although the Migdal-Kadanofl transformation is very favorable for its sim-
plicity and applicability in all dimensions, it has a well-known unphysical con-

sequence [34] : The spin-spin correlation function I'y () transforms as
Ty(r)=Tu(r/2) (3.10)

where 7 1s measured in terms of the lattice spacing. But this transformation
does not allow the expected critical behavior Ty (r) ~ [¢|7(=2+7) iy gystems
where d — 2417 # 0. This inconsistency is claimed to be the reason for the bad

performance of the transformation in predicting the critical exponent v.

3.2.2 Kadanoff’s Block-Spin Method

There’s a simpler way of realizing the idea of Wilson’s momentum-space RG
in position-space. An RG transformation can be set by constructing blocks
from a group of spins as in Fig.3.2, then treating the blocks as single spin vari-
ables and building an effective Hamiltonian coupling the block-spins. If the
new spin lattice bears the same symmetries with the original, then a scaling
transformation maps the blocks onto the original lattice sites. The block-spin
variables display the average effect of their internal components, but do not
carry as detailed information. Therefore, the short range Huctuations are ef-
fectively averaged ont and the long wavelengths which are dominant at the
critical point are kept. A sample transformation first proposed by Niemeijer
and Van Leeuwen [26] is shown in Fig.3.2. The spin values of the blocks are

decided by the majority law :

Vo= sgnlsi 4o )

|
= (s s sy = osysas) .o = x| (3.11)

which is again either +1 or —1. The block Hamiltonian is defined as follows :

Nexp{H'(s)} = Zp(s'; s)ycap{H(s)} . (3.12)
{s}

The kernel p(s';s) is +1 i its arguments satisfy Lqu.3.11 and 0 otherwise. It
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Figure 3.2: The RG transformation applied to a triangular lattice proposed by

Niemeijer and Vau Leeuwen.

is called the projection operator. The completeness relation

Z ])(.k:/: ,k.') =]
{s')

guarantees that the Partition function is conserved. The constant factor K on
the LHS of 3.12 stores the extra free energy throughout the transformation.
Finally we need to scale every length in the primed-lattice by v/3 so that the
lattice spacing remains the same. So the two crucial steps are the choice of
the blocks and the projection operator. The projection operator p(s';s) does
not necessarily correspond to a majority rule. There are alternative choices
offered to avoid inconveniences due to forcing the block spin to be 1 (e.g. see

[35, 36]).

3.2.3 Scaling Hypothesis and Critical Exponent Rela-

tions

RG analysis offers an alternative picture for the linear dependence of the crit-
ical exponents defined in Chapter 2. Consider an RG transformation with a
scaling constant L (L = /3 for the previous example) and let f(4, H) represent
the singular part of the free encrgy density where = (T = 1,)/T. and H 1s
the external maguetic field. After a single RG step, the correlation length will
shrink by a factor L. So we will move further apart from the critical point.

The new free energy density will satisfy

Fny = L)
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2—a = dfy 7= 2y —d)/y
1/6 = dfyn~1 v o= 1/y
#o= (d—yu)/y o= d-2y +2

Table 3.1: The critical exponents can be expressed in terms of y, and y, which
are obtained from the relevant eigenvalues of the linearized RG transformation.

because the new spin crystal with its own ¢/ and H' is merely another repre-
sentation of the original system. Remember that the Partition function is not
changed. At this point, we make an assumption known as “Widom Hypothe-
sis” [37]:

Since we move away [rom the eriticality. f and /1 may also scale by some powers
of L, i.e.

L' J( Yy = f(L" 4, L™ H) VYL y,yn >0

or in the language of mathematics, f(t, H) is a generalized homogeneous func-
tion. The quantities y; and y, are two positive (since the system becomes less
critical) exponents scaling the temperatnre and the magnetic field, i.e. the sym-
metry breaking ficlds. Without loss of generality, one may choose L = [[=1/v

or L =17 1o get,

f(LH) = JJ 4 It - o 1) (3.13)
ylm I(H - .I'—-.w./.'/:, 1)

Using Eqn.3.13, Table 2.1 and Table 2.2, listed critical exponents can be ex-
pressed in terms of v, . and d (see Table 3.1). Specifically, v and 5 which are
functions ol y, and y, only are a good basis for expressing all critical exponents
(see Table 2.3). In this picture, there exist naturally two linearly independent
exponents. hecause temperature and the magnetic ficld are the only relevant
parameters affecting the criticality. The meaning of “relevant parameter” and
the role of relevant and irrelevant parameters in the theory of critical phenom-

ena will be discussed 1n the next section.



3.3 Linearized RG transformation

Consider the RG flow H;, = R{H,;} and a non-trivial fixed point H* = R{H*}.
By the continuity of the flow, if H; is close to H*, then H;y; should also be

close to H*. Then, if

Hy=H*+6H,

then R can be approximated by a linear transformation

R{Ho} = R{H" +&H,} ~ R{H"} + B&H,.
Terms of order (6Hy)? and higher are ignored. Now consider the eigenvalue

problem helow :

BO = )0
As a special case, if §Hy = O, then §H; = A O. More generally, if {O;} make

a complete set, then d Hy can be expressed as a linear combination of them :

6Ho =Y piO; = &H =5 uNO,. (3.14)

Strictly speaking, validity of such an expansion is not always guaranteed for
several reasons. [Mirst, if B 1s not Hermitian, RHS of Equ.3.14 may include
additional terms of the form * AL We will assume that this is not the case.
Second, B is most generally an infinite dimensional matrix operating on vectors
O H; of an infinite dimeusional interaction space including all n-body couplings.
Therefore, the completeness of {O;} is not gnaranteed. However, in practice
one can construct a R such that the same type of interactions are created at

each step. Then. B is n xn where n is the number of different couplings in H.

Assuming A;’s are real (if not, below arguments are valid for [A;]), Eqn.3.14
hints the importance of eigenvalues greater than 1. If § Hy includes an operator
O, with A, > I, 6 H; will grow in each iteration with M. H; will move further
and further away from criticality towards a trivial, non-critical fixed point.
Such operators are called relevant. The number of relevant operators deter-
mine the number of parameters that must be fixed for criticality. For example,
the criticality condition for a ferromagnet is [/ = 0 and 7" = T.. That means
we have only two relevant operators, call them O, and Oy, responsible for the
divergence {rom criticality with changing temperature or magnetic field. The

critical exponents are found from the eigenvalues of the relevant operators.



The operators with A; < 1 are irrelevant operators, because their con-
tribution to 6 H; vanish in the limit [ — oc. Their role in the theory of critical
phenomena is central in the description of nniversality. For example, consider a
critical Hamiltonian Hy, 1.e. limy_ §RI{HU} = H~*. Let 6 Hy be an infinitesimal
perturbation to Ho. Then corresponding H; will also deviate from its original
value : H, E H, + 6H,. For large [, H; is essentially H™ and §H; can be lin-
earized as in Eqn.3.14. If Hy + 6Hy is also to be critical, then the coefficients
i, of the relevant eigenvectors O, should be set to zero. This dictates a certain
relation among the couplings existing in 6/, . Note that {;;} is nothing but
another representation of H({h;}) in a different basis. Apart from this rela-
tion, the details of the microscopic interactions in d Hy do not effect the critical

behavior.

Finally, there is a third type of cigenoperator for which A = 1. These are
the marginal operators and their contribution to é H; neither increase nor
decrease in the first order. Therefore, one has to go beyond the linear theory
to decide on their relevance (see the RG treatment of the Kondo problem [23]).
Existence of marginal operators may lead to a line of fixed points as in the
case ol Baxter model (see [47]). In this study, we will exclude the possibility

of marginal operators.

3.3.1 Calculating ‘2’

The critical exponents can be expressed in terms of the relevant eigenvalues.
This calculation is important, because up to this point we could at hest express
the critical exponents in terms of y, and y;, (see Table 3.1) which are still to
be determined. However, if we have a RG transformation we can construct its
linear model B aronnd H™ and extract its cigenvalues. Hence, RG s able to
predict the critical exponents with a precision depending on the accuracy of

the transformation.

Consider in the expression 3.14 the relevant operator related to the tem-
perature and for simplicity assume that it is the only relevant operator of the

transformation. Call it @, aud the related cigenvector A, Then H; can be

expressed as below :
l’l( = }[‘ + /LlA[ C)( + Z /\\, C)'

If Hy is close enough to M~ then all u;'s (inclnding j) are < 1. Now consider

an lo such that | A ~ 1. For this value of I, the correlation length &, will



have a fixed value regardless of the value of [, because H; will be fixed (last

term in the above expression will be negligibly small). So that

£, = L7 €y = const (3.15)

where L is the scaling constant of the RG transformation. Setting p, A to

unity along with Eqn.3.15 gives

In |pef InLyl
In = — = — (i n e/ In Ay ]
0 ll] /\7- 50 (( ) 510

Assuming that g, is an analytic function of temperature and from the require-
ment that g = 0 at criticality, for T~ T, |j,| should behave like ¢|T — T4

Then we can rewrite &, as

InL/In ,\;é
o =

&) =1, T _ 7}]]11 L/1In ,\,610

so that » = In L/ Iu A, Note that € is just a constant factor.

3.3.2 Fixed points and critical surfaces

The topological arguments stated below help to visualize the structure of our
RG transformation without using any algebra. We will ignore many possible

complications and demonstrate only the basic ideas.

The RG trajectories, fixed points etc. define a certain geography in the
space of Hamiltonians (5). S can be divided into one less dimensional sub-
spaces where in each subspace € is constant. On a RG trajectory, the correlation
length will decrease as €(1) = ¢4, where 1 is the time parameter defining the
velocity of the RG flow (for the discrete transformations we discussed so far,
i~ 1). Then a RG path starting {rom a non-critical Hy will pass through all
the subspaces of constant & with € < &. All such trajectories are attracted by
one of the two trivial (£ = 0) fixed points; either the high temperature fixed
point. (Hj_ ) representing total disorder dne to vanishing of all couplings, or
the low temperature fixed point (H7_,) for which there is maximum order
due to infinite coupling. Although H7__ 1s unique, Hi_, is not necessarily

so; e.g. maximum order configurations are different for a ferromagnet and an
antiferromagnet.
Of special interest is the € = oo subspace S, called the critical surface for

obvious reasons. S is an isolated surface separating the two types of trivial

fixed points. RG transformation maps Sa, iuto itself and the trajectories on
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S, are attracted by a non-trivial fixed point H*.. H*. likewise may not he
unique and in that case, S, 1s divided mto domains dominated by each one
of the fixed points. The critical behavior of the Hamiltonians within a given
domain are imposed by the corresponding //™.. However, existence of domains
means that there are boundaries which include other relatively unstable fixed
points. In fact, Hj_, and Hp_,, are the only stable fixed points and the rest
can be classified according to their degree of instability. The instability degree
is defined as the number of thermodynamic parameters needed to be fixed for

the corresponding criticality condition.



Chapter 4

PHASE TRANSITIONS IN
TETRAHEDRAL ISING LATTICE

Critical properties of 3-dimensional systems have been studied with diverse
techniques, most notably Monte-Carlo (MC) and RG algorithms. The RG
techniques have proved to bhe not as powerful as in 2-dimensions, however they
are faster than MC and give more insight about the physics of whatever is going
on. The best estimates of critical exponents in 3-dimensions are ohtained by
expansion technigues. RG is not quantitatively accurate all the time, bhut one

can usually get a qualitatively correct picture.

4.1 Order-disorder transition in SiGe alloys

In 1985, Ourmazd and Bean [38, 39] reported that they observed for the first
time the long-range order in strained SiGe alloy superlattices with alternating
double Tayers of Si and Ge along (111) direction. This bi-layer stacking of Si and
Ge can be achieved with two distinet phases. In one of them, the superlattice
has the same type of atoms in widely spaced [111] planes (RHI phase - “AL”
in this work), whercas in the second configuration we have closely spaced [111]
layers consisting ol a single type of atom (RH2 phase - “SL” in this work). Later
in 1990, LeGoues cf al. [40] observed the same order in unstrained superlattices
which led to the requestioning of the general belief that the order is strain
induced. Both SL and AL phases have been experimentally observed. The
vanishing of SL phase upon heating and recooling the sample [41] implies the
metastability of this ordering related to the growth process [12]. On the other
hand, AL phase is found to be reversible [41] putting forward the significance of

bulk energetics and thermodynamic properties along with the surface kinetics

.)'l



in the appearance of the observed phases (see also [13, 44, 45]).

Motivated by these recent experimental findings, a RG study of the SiGe
alloy crystal can be performed. Aim is to clarify the relevance of the bulk

properties in the occurance of the observed ordering.

The SiGe superlattice is modelled by a tetrahedrally coordinated Ising lat-
tice where Si atoms are represented by np-spins (s = +1) and Ge atoms by
down-spins (s = —1). The strain due to the lattice mismatch is included into
the model by allowing an axial anisotropy in one of the bond directions. This
choice is not unique; for example a biaxial anisotropy can be introduced as well.
However, the existence of ordering in (111) planes suggests the anisotropy be
chosen along one of the four [111] directions. Although the interatomic cou-
plings in the real superlattices are complicated, an approximate picture with
nearest (nn) and next-nearest neighbor (nnn) interactions will hopefully pre-
serve the main features of the phase diagram. There exists a strong evidence for
the validity of this assumption due to the ab initio calenlations of couplings in
SiGe by Bernard and Zunger [15]. Their calculations yield a nnn—coupling an
order of magnitude smaller than nn—coupling term which signals a fast decay

of couphng strength with distance.

The next section describes the model and the RG transformation used in

the analysis.

4.2 The model and the RG transformation

4.2.1 The model Hamiltonian

We analvze the model defined by the reduced Hamiltonian H,

H= Ky > s(F)s(i) + Ky Y s(i)s()

iJ N
i = U Fij = U
+ Z s(r7)s(r5) + ., Z s(r)s(775) (4.1)
Ry Y
Tij = Uy — Ua ] :“ ”#u /; g,

Here, Ny, Ny, Jp, and J, are the interaction constants, obtained by dividing

the interatomic pair energies by AT, where & is the Boltzmann constant, and



T is the temperature. s represents the Ising spin variables that can take the
values of 1. These spins are located on a tetrahedrally coordinated lattice.
We use the notation «,, @, 1., and @y to represent the four (unit) tetrahedral
bond vectors. Since we allow for axial anisotropy in the %, bond direction, we
use © with a greek index to represent any once of the vectors 4y, ., or ty. The
above form for H, then represents a reduced Hamiltonian with nn—-interactions
(K7 and K,), and nun-interactions (.J; aud .Jy). Four-body and higher order

interactions are excluded in this analysis.

A physically complete model is expected to include interactions among an
odd number of spins, too. These terms will break the up-down symmetry of
the Ising model. The relevance of such terms depends on the particular system
to be modeled. We will limit our discussion of alloyvs to systems in which the
up- down symmetry is preserved, i.e. those systems in which the alloy 1s made
50% of one type of atom and 50% of the other, in particular, to the SigsGegs
system. We assume that in such a system, the terms that break the up-down
symmetry of the system are cancelled by an appropriate chemical potential

contribution to vield a reduced Hamiltonian of the above form.

Construction of blocks

The analysis of the model Hamiltonian in Eqn.4.1 by Kadanoff’s block renor-
malization necessitates the construction of “block spins” out of a number of
original spin variables s, in such a way that these new spin variables also form
a tetrahedral lattice, with a larger length scale. The recipe for constructing
these block spins should be such that if the original spin variables s are ordered
in a form corresponding to one of the phases of interest, the block spins shonld
also be similarly ordered. We have chosen a length scale change factor of 3
for our transformation. Il a block spin is centered at one of the original spins
at point 7, its four neighbors are located at 7 — 3a,, 7 — 3y, 7 — 3., and
7~ 3y, Then, 27 of the “old” spins s now correspond to a new block spin
variable. If the block spin has the same sign as the central original spin when
the system is in one of the phases indicated in Table 4.1, then the same kind
of order is duplicated i the new system constructed out of the block spins.
(Exceptions to this are the phases SLoand AL (see Table 4.1) which transform
to one another through the transformation. For these phases, the square of the

transformation duplicates the type of order.)

In Table 4.2, we list the positions of the original spins (relative to the central

position) that form a block spin, and the values of these spins when the system



Table 4.1: Ordered phases of interest

<,(6) s(tte)  s(t) s(t.) $(g) Name of the phase Notation

1 1 | 1 1 Segregated S

| —1 —1 —1 —1 Zinc Blende ZB

1 1 —1 —1 —1 Short Si-Ge AL

1 -1 1 1 1  Long Si-Ge SL

| -1 1 -1 —1 Short Si-Ge along “h” AL,y

1 ] -1 1 1 Long Si-Ge along “h” SLy

1 1 1 -1 —1 Si-Ge layered in “a-b”planes  AB

1 -1 -1 1 I Si-Ge layered in “c-d”planes  CD

Table 4

20 Spins that form a block

Relative position

Number of such  Average value of this

of the spin spins/cell type of spin in the

presence of order

S ZB AL SL
7 = 0 (central spin) 1 | | ! |
7= 4 =1 3 -3
7= 20 — 20y, (£ 12 ! ! I
7= 30 420, (# ) 4 I 3 3
2 £ 6 1 -1 0 -1

r= 2'{7,,' - 'lhl,j, 4 ‘r" J

!

15 perfectly ordered in one of

the phases indicated in Table 4.1.

Note that some of these spins are shared by more than one block spin. Note

also that some of these spins belong to blocks that are not geographically the

closest to them. This enables the inclusion in the block spin of some of the

farther away original spins that enhance the ordering of the new system. We

determine the sign of the block spin from the majority of the sigus of the 13

spins (one at the center of the block, and 12 at a displacement of 24; — 24;, for

any pair of bond directions @; and ;). Note that these original spin variables

always take the same sign as the center spin for all types of order indicated in

Table 4.1. The states of the remaining spins in the block do not contribute to

the value of the block spin.
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4.2.2 RG transformation

Now, a RG transformation must be constructed such that H(s) — H'(s") with

the constraint that the Partition function is the same for both Hamiltonians, i.e.

Z =y exp(H'{s"}) =D exp(H{s}). (4.2)
{s') {s}

The next task is to determine H', i.e. the couplings among {s'}, using the
constraint Eqn.4.2. This can be achieved by assigning values to the new spins
s" and evaluating the part of the total partition function through a partial
summadtion over the s variables as dictated by the constraints imposed by the
choice of s'. The logarithm of this partial partition function is then a linear
function of the renormalized coupling constants, and these new coupling con-
stants can then be determined by solving a set of simultaneous linear equations,
each equation being generated by a different choice of configurations of . (It
is easy to see that this procedure conserves the partition function since a sum-
mation of the partial partition functions for all possible configurations of s’
releases all constraints on the original spins and hence corresponds to the total
partition function.) In general, H" will contain an infimte number of kinds of
mteractions among the spins. One therefore uses some kind of approximation
to determine the renormalized Hamiltonian (sce Section 3.2.1). For this pur-
pose, an approximation scheme developed by Kinzel [16] has heen adopted to
the model defined so far. It enables an approximate determination of ', while
not generating any new types ol interactions among the block spins. In this
approximation, part of the interactions within the original lattice are treated
exactly, while the remaining interactions are decoupled using the mean field

approximation

= 5 <8 > F<s>si (s <sp )8 < s >) = < s >< sy >
s <S> < s> s s > s > (4.3)
where < --+ > represents the average value of the particular spin while the

block spin is constrained to have a certain valne dictated by the type of order

that is imposed on the new, renormalized system, Le.

_ sy P(s"5s) s capll(s)
2isy P8 8) capH ()

p(s;s) guarantees that the sums are over the configurations {s} which are

(1.4)

< & >

i agreement. with the order imposed on the renormalized system. We have
treated the interactions hetween the central spin of the block and spins con-

nected to it by nearest neighhor interactions exactly, while all other interactions



were decoupled using the mean field approximation, so that the Hamiltonian

can be rewritten as

H(,,,,, = Z ]X’,’j 8785 + Z Z ]\’,'p S8 < 8, >+ Z /\'7,(, L85 >< 8 > (’15)

i#j iop —
where indices 7, j represents any one of the five spins in a block that are treated
exactly and p, ¢ represent the spins treated approximately, < s; > is the ex-
pectation value of the remaining spins in the block under the imposed order
on the block spins, and K;; is one of Ky, K3,.J1,.J; or zero depending on the
distance r;;. Replacing H by H.u in Eqn.4.4, we get an implicit equation for
all < s; > (since H,,e includes them) which must be solved self consistently.
In general, the expectations < s; > are different for all spins, therefore the
number of unknowns are too many to he solvable for an arbitrary configura-
tion {s!}. However, restricting the renormalized Hamiltonian to have the same
type of interactions, Equ.4.5 can be solved by considering several symmetric
configurations. In our case, this involves the self consistent evaluation of 41
spin averages, under the 8 different constraints imposed by the types of order

mdicated in Table 4.1.

The partial sums in Eqn.4.4 can be evalnated in terms of unrestricted sums

using the following mathematical trick :

For simplicity, assume that s; = 0,1 and let .S be a partial sum to be eval-

uated :

8= 3op(s ) (s ). (4.6)
{s}

The restriction p(s'; s) on the sum is that Z.s-,- > N/2. This is the majority law

13
over the 13 spins defined previouslyv, Define a funetion of complex variable = as :

S(z)= D" dE N 6 sw) (4.7)
{s}
so that S(1) is the unrestricted sum over all spins. For N < oo, above sum

can be expanded as a finite power series i = :
S(z) = ap: 4+ ap 2! + o+ an 2N, (4.8)

Then, the original sum in 4.6 1s expressed in terms of . as
SN=a;+...+an, N2 <)< N2+ (4.9)

S(2) becomes a Fourier sum for z = ¢/27/(V)

N 2m
S(e'mrly = Y o't kL (4.10)

k=0
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Each Fourier coefficient a; can be calculated using the inverse Fourier transform

1

N 2 - .27
=y e S(e'w ), (4.11)

=0

(l,_.,'

The transformation involves solving a set of linear equations involving cou-
pling constants Ky, K,,.J;,.J; and a fifth parameter, a constant term in the
Hamiltonian conserving the total free energy of the system. Each type of or-
dering of spins gives a linear equation in transformed couplings through the
relations expressed in Equ.4.2 and Eqn.4.4. However, since the number of RG
parameters to be solved is five, the four types of order considered so far are not
enough to realize the transformation. Therefore, average magnetizations are
calculated for four more types of ordering which are listed in Table 4.1. The ne-
cessity of considering four more configurations to get eight linearly independent
equations of five unknowns is due to symmetry constraints, i.e. the transformed

couplings should exhibit the same symmetries as the original Hamiltonian.

Finally, we have a system of equations which can be written in matrix form

as

Ar=10. (4.12)

Eqn.4.12 does not have a solution for the resulting A. Instead, we find an ap-
proximate solution for a giving the least square error, which after some linear

algebra can be written down as

215 = (ATA)TATD (4.13)

This final step completes the transformation. In the next section, the outcomes

of the transformation will he presented.

4.3 Results and the Phase Diagram

The accuracy of the transformation can be checked by comparing with the
previous exact or well-established results. Two special cases for which the
problem reduces to two dimensions will be considered for this purpose. First,
letting Ay = J; = Jy = 0, we have a triangular lattice in each [111] plane
decoupled from the rest of the volume, because the interlayer couplings indexed
by ‘17 are zero. Second. letting Ay = Ny = J;) = 0. we get a honeycomb lattice
Y g 2 1 g A

which again is isolated iu [111] planes. Both cases are expected to give 20

& ] 2

critical exponents. Note that one may obtain a quasi-2/) system by choosing
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Table 4.3: Comparison of results of this work with established results

Special case Critical value Critical exponent (v)

this work other work this work other work

2D Ising model on a

honeycomb lattice (Ky=J,=J,=0) 412 6585 * [47]  .820 1*
2D Ising model on a

triangular lattice (Ky=NKy,=.J,=0) 1908 2746 % [47) 910 1=
3D Ising model on a

tetrahedral lattice (KNy =Ny, Jy=J,=0) .2930 TR0 632

* exact result

K, = J; = 0. However, it is well-known that snch planar systems with finite
thickness exhibit the same type of critical behavior as 2D systems, i.e. share
the same critical exponents. lsotropic tetrahedral lattice with nn-coupling
only is also treated as a special case in three dimensions for which no previous

work i1n the literature exists.

For all of these cases, the critical couplings, i.e. Hamiltonian flowing to
the nontrivial fixed point of the transformation is found and the corresponding
critical exponent v is calculated by linearizing the transformation around the
fixed point as described in Section 3.3. Note that the first system in Table 4.3
does not represent a fixed point since a nonzero N, induces a nonzero J; in the
succeeding iterations. It is nevertheless a critical point which at each iteration
approaches to a fixed point with Ay = .J; = 0. On the other hand, the second
special case is a highly unstable fixed point in the sense that if one of the
vanishing couplings is turned on slightly, the Hamiltonian flows to another
(“crosses over” in RG terminology), more stable fixed point. Table 4.3 lists
the critical parameters obtained by the described RG transformation together
with previous works in the literature. It should be noted here that the choice
of the particular spins that construct the block spins is not optimal for some
of the special cases shown in the table. The value of v for three dimensions is
almost the same as the value found by Kinzel [46] in his application of this RG

method to a 30D cubic lattice.

It is useful to note here that this RG transformation is not designed to han-
dle the special case of the frustrated phase that is expected to occur when the

next nearest neighbor coupling is sufficiently negative. A hetter trausformation



Segragated (S)

A 4

a “layer*

Antiferromagnetic Layers (AL)

Segragated Layered (SL)

Antiferromagnetic (AF)

[igure 4.1: Relative positions of atoms for the types of orders corresponding
to each fixed point. Filled and empty sites represent opposite spins.

would involve the expansion of the degrees of freedom to include the possibility
of defects, as for example in the transformations used by Berker, et al. [13].
The chaotic renormalization group trajectories that are characteristic of such
phases are not observed (for an example sce [49]). The trajectories here that
correspond to this phase however, do indeed have some peculiar characteristics

which is explained in the next section.

4.3.1 The Phase Diagram

With the restricted form of the Hamiltonian as presented i Equ.4.1, the only
ordered phases that will appear are the S, AF, SL, and AL phases. Fig.4.1
shows the corresponding ordering of atoms in [110] planes. Note that the
phases AL and SL contain layers of identical atoms perpendicnlar to (111)
direction, whereas AL is the completely antiferromaguetic tetrahedral lattice.
The phase diagram will be presented only for a restricted set of these phases,
because the symmetry in the Hamiltonian allows one to go from one ordered
phase to another by changing the signs of some of these interactions. As a
result of this symmetry, for example the critical fixed points helonging to each
one of the orderings in Fig.d.1 can be deduced from a single one of them, e.g.
the fixed point of the S phase, using the symmetries of the Hamiltonian hsted
in Table 4.4. In other words, these four fixed points differ only by the signs of

the couplings.



Table 4.4: Symmetries of the Hamiltonian

Original phase K, N, JvJy  New phase

S —]\’] ]\,2 —'.]1 ./2 SL
S - ]\’1 — 1\’2 .]] -]2 Al
S ]\’1 —1\’2 _'/I .]-2 AL

However, the Hamiltonian (and therefore the phase diagram) is not symmet-
ric with respect to all sign changes: When next nearest neighbor interactions
are negative and dominant, the spins will prefer a frustrated state to minimize
the total energy. This can be demonstrated by a straightforward Monte Carlo
simulation. Being more specific, frustration may occur when .J, < 0 or when
Ji < Ky - K, for which the interactions have a competitive nature. Although
this domain is not of major interest to us, and it is questionable whether
the presented renormalization group transformation is sufficiently equipped to
handle this special phase, one does see the effects of this phase in the renormal-
ization group trajectories. As an example, Iig.1.2 shiows the phase boundaries
as well as the renormalized couplings after a single iteration of the RG trans-
formation along the phase boundary for the isotropic Hamiltonian. All points
on the phase boundary eventually renormalize to a fixed point. However; only
the points on the hold portion of the plot approach the fixed point in a regular
fashion, i.e. points closer to the fixed point map into even closer points. On
other parts of the boundary, the transformation results in a rather abrupt jump
onto this regular critical domain, some points transforming to the fixed point
directly, in a single iteration. As can be seen from Mg .2, all phase boundary
points to the left of point P (which corresponds to the maximum of the K vs.
J curve) show this unnsual type of RG flow characteristics, an apparent eflect
of the frustrated phase that is expected to ocenr in this domain. Although one
could classify all points that generate this type of unnsnal RG trajectories as
belonging to the frustrated phase, due to the uncertain amount of accuracy of

such a classification, this region of the phase space will be excluded from the

analysis.
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0.4
S
0.2 4
Fixed point (S)
<&
roo0.0
<
. < — Fixed point (AF)
-0.2 + -
S AF
~0.4 .
-0.20 -0.10 0.00

Jy (=Jz)

Figure 4.2: Phase diagram for the isotropic tetrahedral Ising lattice. The bold
portion of the phase boundary indicates the region where the RG transforma-
tion is expected to be reliable. Dashed curve is a plot of K (of the transformed
Hamiltonian) vs ./ (ol the original Hamiltonian) generated after a single RG
transformation applied to the points with A" > 0 on the given phase boundary.
The flow towards the fixed point is regular only for the hold region (left of P)
where J is positive. For details refer to the text.

Since J, < 0 is suflicient to induce frustration and .J, < 0 < .J; can be
mapped to another system with Jy,.J, > 0. it is suitable to investigate the
phase space for J; and Jy both positive. [Furthermore, the anisotropy will
be introduced through the nn—-interactions, keeping Jy = .J,. This is a good
assumption if nn—couplings are an order of magnitude (or more) stronger than
nnn~couplings whicli is verified by ab initio calculations [45]. Note that the RG
transformation will still generate unequal values of J; and J, in the succesive
iterations. The phase diagrams are obtained by following the RG trajectories
for the corresponding initial coupling constants nutil one gets sufliciently close

to a particular high or low temperature fixed point.

Fig.4.3 shows the critical surface and the fixed point on it corresponding to
the S phase. The base plaue corresponds to T' = 0 and the phase boundaries
which are exact are shown with dashed curves. All points above the critical
surface flow to the high temperature fixed point whereas the points helow the
critical surface are in the domain of the corresponding ordered phase. The
bottom of the valleys on the critical surface correspond to the critical end-

points of first-order transition lines. Iach slope ol a valley belongs to the



JIK1 0 2

K2/K1

Figure 4.3: The critical surface for the anisotropic tetrahedral Ising lattice with
Jv = Jy > 0 as a result of the RG analysis. The fixed point of the S phase
is indicated and several RG flows above (solid) and on (dashed) the critical

surface are shown schematically.

domain of a different critical fixed point. The topology of the critical surface
is illustrated in Fig.4.4. The critical fixed points representing each one of the
orderings shown in Fig.4.] are separated hy domam walls on which lay relatively
unstable fixed Hamiltonians with some of the interactions in Equ.4.1 missing.
In between them lay still more unstable fixed points, with more couplings to
be fixed. The Hamiltonian for the 2-dimensional triangular lattice listed in

Table 4.3 is one of these.

(-+-4)
SL
«mm// (-00+)
* /#
s e AF
(+++\ 000+ /--++)
*,

(+00+)

/M.(m
HC : 2D-Honeycomb

AL
(+--4) () 2 (KK J 1)

i

Figure 4.4: The topology of the critical surface. On the corners are the four
most stable fixed points corresponding to cach ordering. In between are the
more unstable fixed points (some of them are skipped to avoid complexity).



The actual two-hody interactions for the hulk SiGe have been estimated
previously by Bernard aud Zunger through ab initio calculations [45]. Their
results predict N = —2.48meV and J = 0.I5meV. These couplings, when
inserted into the phase diagram predict a very low transitions temperature
which supports the belief that the observed long-range order is induced by

surface effects rather than the bulk properties.



Chapter 5

CONCLUSION

Using RG approach, the phase diagram for the tetrahedral Ising lattice is
obtained with anisotropic nearest neighbor and next nearest neighbor interac-
tions. With the allowed anisotropy to hreak the symmetry along a tetrahedral
bond direction, one can obtain four diflerent ordered phases. Fixed points cor-
responding to the phases are related to cach other by transformations involving
sigh changes of the couplings. The critical exponents for 30 and 2I) are cal-
culated by linearizing the transformation around the fixed points. Results are
in agreement with the values obtained for systems in the same universality

classes.

Considering the SiGe crystal in this context and using values of couplings
obtained through the crystal energies for different configurations (see [44]), one
obtains relatively low transition temperatures due to the small energy differ-
ences between the different phases. Furthermore, the critical fixed points for
each one of the phases differ only by the signs of some of the couplings, so that
the isotropic fixed point remains stable in this new scheme with an extended
set of parameters. Therefore, it can be concluded that a slight anisotropy in
the bulk interactions is not sufficient for appearance of a new ordering (5L
or AL) in SiGe. Our results indicate (in agreement with the previous work
[44]) that surface-kinetic eflects rather than the hulk thermodynamic eflects

dominate the observed ordering during the growth of SiGe alloys.

Apart from the primary motivation concerning SiGe alloys, the present
study can be used as a starting point for any RG application on tetrahedrally
coordinated systems. Although the present structure of the model is not suit-
able for handling spin-glass phases properly, it may be developed further by
allowing for more than two spin states which hopefully will create the expected

chaotic trajectories for the frustrated phases.
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