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ABSTRACT

PHASE TRANSITIONS IN TETRAHEDRAL ISING
LATTICES

Alkali Kal )akçıoğhı 
M.S. ill P İ1V8İCS

Supervisor: Prof. Dr. Ceinal Yalabık 
May 12, 1993

After a review of the Renormalization CJroup theory, the phase diagram 
of unisotro])ic tetrahedral Ising lattice is explored l)y the motivation gained 
through the recent experimental findings about SiGe alloys. Renormalization 
Group approcich and the mean-field R(J approximation previously pro])osed 
by Kinzel ¿ire used. Four different ordered pluises are olxserved. The critical 
expoiKMit // is Ciih’uhited using the liiUNirized t.ra.nsform<ition ¿iround the fixed 
points and ('om|)fii’ed with previous works. It is ('oiu'luded tluit the newly 
observed orderings in Si(!e superlattices are induced by surface effects.

Keywords: Plmse tiTinsition, critic<il phenomena, Renorm<iliz<ition Group, 
Ising model, SiGe superhittice.
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ÖZET

TETRAHEDRAL KING ÖRGÜSÜNDE FAZ GEÇİŞLERİ

Alkali Kal lakçıoğlıı 
Fizik Bölümü Yüksek Lisans 

Tez Yöneticisi; Prof. Dr. Cemal Yalaink 
12 Mavis 1993

Reıjonnalizasyon Grubu teorisinin ele alınmasından sonra, SiGe üstünör- 
gülerine ilişkin yakın zamandaki deneysel Inılgulardan esinlenerek eşyöıılü ol­
mayan tetrahedral Ising örgüsünün faz şeması incelendi. Yöntem olarak Renor- 
malizas\T)n Grulm yaklaşımı ve daha, önce Kinzel tarafından önerilen RG orta- 
lama-alan yaklaşıklığı kullanıldı. Dört farklı düzenli faz gözlendi. Dönüşümün 
sabit nokta yakınında doğrusallaştırılmasıyla kritik üstel değerlerden iz hesa­
plandı ve liaşka çalışmaların bulgularıyla karşılaştırıldı. .SiGe üstüııörgülerin- 
de yeni gözlenen düzenlenmelerin yüzey etkilerinden ka.yna.kla.ndığı sonucuna 
varıldı.

Anahtar kdvmdcr : Faz geçişi, kritik ohıylar, Fienormalizasyon grubu, isi 
modeli, SiGe üstünörgüsü.
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Chapter 1

IN T R O D U C T IO N

Quantum mechanics along with the relativistic corrections in principle draws a 
coni])lete picture of tlie universe, in the sense that once the rules governing the 
dynamics of individual particles are set, one can ])redi('.t the l)ehavior of any 
collection oi particles, however complicated it is. Unfortunately, this approach 
tails to ])roduce aii}̂  solvable model when one has to deal with a macrosco])ic 
system with practically inhnite degrees of freedom. So we need some extra tools 
which will carry th(-i microscojuc world of atoms to our kitchen. Statistical 
mechanics enters the picture right at this point: formulating the collective 
behavior of a cluster with ~  10 ’̂̂ particles.

Development of statistical nu'chanics starts in the second half of the I9th 
century with the pioneering studies of the scientists of the time like J. (derk 
Maxwell, J. Willard (Jil)bs, Ludwig Boltzmann, Thomas Andrews and Rudolf 
Clausius on thermodynamic pro])erties of matter. They investigated new 
laws of physics relating the thermodynamic varial.)les such as i>ressure, volume 
and temperature which are ex|)erimenta.lly mea.sural)le, plus some new quan­
tities such as internal energy and entrojiy, though unmeasurable, proved to 
be essential parameters in determining the equilibrium state of a given sys­
tem. However, soon ].)hysicists faced a real challenge in the investigation of 
the response of a macrosc()].)ic system to a change in th(̂  ('iivironment. That 
is, many systems exhil.ut an abiaipt change of charactei· a.t a. critical value of 
an external variable, such as tem])erature or magnetic Held, wliich varies in a 
perfectly smooth manner throughout a given interval. In other words, when 
the time comes, all the ¡^articles simultaneously decide to l)ehave diiferently 
than they used to do. This anomalous l)ehavior, namely phase transitions in 
many ])hysical systems will l)e our main ])oint of interest from now on.



There is a diverse collection of physical systems that undergo pluise tran­
sitions in various forms giving a first ini])ression as if it is imlikel^y that a 
general theory can be built. Some examples are liquid-gas transition of many 
materials, superfluidity of liquid helium, spontaneous magnetization of spin 
systems, order-disorder transition in binary alloys and superconducting tran­
sition of some metals and ceramics. Though the ])hysical laws governing each 
one of the above transitions are (piite unrelated, there are certain underlying 
similarities giving the clues of a unification, (fliapter 2 will ¡present the earlier 
theories of phase transitions and the appearance of a unified picture through 
the ideas of scaling. The modern ap])roach to the critical phenomena is based 
on Renormalization CJrou]) ideas introduced hy K. Wilson and developed fur­
ther by L.FMxadanofF, M.E. Fisher, B. Widom and many others. The physiccd 
grounds of the theory and its technical as])ects will l)e given in Chapter 3. In 
(Iha.])ter 4, a new Kadanoff Idocking scheme ap])licable to tetrahedrally struc­
tured systems will be j)ro|)osed. The model allows for a ¡possible anisotropy in 
one of the l)ond directions and is ex|)ected to l)e a|.)plical)le to SiCJe su])erlat- 
tices in which a new order-disorder transition lias recently l)een observed. The 
resulting phase diagram for the tetixihedral Ising lattice will l:>e analyzed in the 
same cha.])ter.



Chapter 2

PH A SE  T R A N SIT IO N S A N D  CRITICAL  

PH E N O M E N A

Equilibrium statistical properties of a system with many degrees of freedom are 
given in terms of its, so called. Partition Function (or Zustandsumnic^ German 
word meaning -the great sum-). It is a measure of the volume occu]:)ied by 
the set ol all possible states in the phase-space. For a classical system, this is 
equivcdent to a sum (or an integral for continuous degrees of freedom) of the 
corresponding Boltzmann factors over all ])Ossible coniigurations as below :

N2 Nn
z  = E  E  ■ ■ ■ E  « p ·" " '· '.... .

7J =172 = 1 7n = l
(2. 1)

where [i = \ /kT ,  k being the Boltzmann constant and T  the tem])erature 
and each coordinate </, can take N{ disci'ete x’alnes. Instead of Eqn.2.1, one 
generally uses the shorthand notation below ;

Z = ^  exp

Once the ])artition function is defined and conii)utal)le, the corresponding 
Helmholtz Free Energy can be written down as

F = -  In Z//i (2.2)

and remaining tliermodynamic (piantities follow immetliately from the Maxwell 
relations, e.g. for a. magnetic .system as in Table 2.1. Oorresponding relations



Table 2.1: Maxwell relations among the thennodyncimic parameters of a mag­
netic system

Average magnetization M = -{ d G id H )r

Magnetic field H = -  {dFidM)r

Specific, heat of magnetization Cm = -T{ (P F /dT '^ )

Lsothermal susceptibility X t = - { d H d id H '%

for a flnicl may be obtained by the following substitutions

H
M

F
- 1/

A phase transition manifests itself as an anomaly in the behavior of these equi­
librium ].)roperties in response to an external field, for exam])le the temperature. 
The transition from one thermodynamic state to another may demonstrate 
qualitative differences depending on whether the transition is of 1st or 2nd or­
der. The distinction between the two is made by oli.serving the behavior of the 
free energy at the transition point (aftei· Ehrenfest,). The first order transitions 
display a. discontinuity in the l.s/, derivative of tiu' (¡il)bs free energy, or etpiiv- 
alently in the entro]>y, whereas the discontinuity of a. second order transition 
i.s by definition in the second or higher derivatives (see Fig.2.1)

First order jdiase transitions have been known for centuries, the most com­
mon examples l>eing the liquid-gas, .solid-liquid and solid-gas transitions of a 
given sul.)stance.

The gra])hical demonstration of the equilibrium state pro])erties according 
to changing ambient parameters is known as a phase diagram . Consider for 
instance .solid-liquid -gas pha,se diagram of water in Fig.2.2.
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(a)

G

(b)

Figure 2.1: Beha,vior of the free energy of tlû  system in (a,) 2nd and (l))l.si 
order phase transitions

The phase boundaries are in fart the curves of coexistence re])resenting the 
equilibrium stcites in which two ])hases with different densities survive simul­
taneously. As a consequence, at the tricritical point all three j)hases coexist 
(for water F\ = 2lSAtm,Tt = 374°C [1]). The system exhiluts its criticality 
(in the sense of statistical mechanics) at the ]>oint (T ,̂ fc) where the liquid-gas 
coexistence curve terminates. The meaning of termination is, above this point 
the density difference between the two phases vanishes and the phase transition 
along ].)ath (2) is of .‘<econd order. Disa|)|;)eara,nce of the density difference is an 
example of a characteristic feature of second order phase transitions, namely 
vanishing of a parameter -called the order param eter- above the critical 
point, marking the onset of a ])revioiisly absent symmetry. Another indicator 
of second order j)hase transitions is the divergence of a numl)er of thermody­
namic functions sucli as the specific heat (as in A - transition of liquid helium), 
susceptibility, correlation function and the ('orrela.tion length at the critical 
])oint. Among these, divergence of the correlation length introduces the fact 
that at Tc all the ])hysical lengths vanish tending to either 0 or oo (this will 
be discussed in Chapter 3). There exist fluctuations of all sizes. This induces 
an exotic phenomenon known as the critieal opalescence in certain liquid-gas 
phases and binary mixtures. That is, at the criticality, the substance - other­
wise trans])arent - bears a white, cloudy ap])earance thanks to the domains of 
the size of several thousand atoms which scatter visil.)le light appreciably.



Figure 2.2: Phase diagrani of water. T is the tri]>le ])oint where three pluises 
coexist and C is the critical i)oiiit. (1) and (2) indicate |)aths along which the 
transition is of l.s/ and 2nd order respectively.

2.1 A R eview  of H istory

The existence of such a critical point was first rej^orted by Andrews for CO2 

in his famous article titled '̂On the continuity of the gaseous and licpiid states 
of matter” [2] . After four years, Van der VVaaJs made the first theoretical 
attemj)t for the coml.^ination of licpiid and gas states of matter in a single 
theory. He published his well-known e(|uation of state in his PhD thesis titled 
‘'On the continuity of gaseous and licjuid states" [3] . Strangely enough, he was 
completely unaware of Andrews’ work at that time. For a historical review, see 
for example [4, 5, 6]. The second order phase transition in magnets was first 
formulated by Weiss in 1907 [7]. The transition occurs at Curie temperature 
and zero external magnetic field by the appearance of a self magnetizcition. The 
magnetization defines a [)referred direction in space, destroying the rotational 
invariance of the system (see Fig.2.3). This plienomenon is called spontaneous 
syminctry breaking. Note that the self magnetization for the magnet is what 
density difference to the liquid-gas system is, i.e. the o rder param eter. 
The necessity of an (‘xtra ])arameter to define the thermodynamic state below 
Tc eliminates the possil.)ility of representing the system with a single analytic 
function of thermodynamic variables on both sides of the critical point. Here 
appears a puzzle for, the partition function being a sum of analytic terms is 
itself also expected to be analytic. So how does the non-analyticity arise? 
Answering this question has been the main challenge in the Held of critical 
phenomena but a complete theory is still lacking. An immediate observation is 
that the ])artition fuiK'tion can have a non-ana.lyti('ity only when the number of



terms in Eqn.2.1 tends to infinity. So from tliis simjjle discussion, we reach the 
important conclusion that criticality formally exists only in the thermodynamic 
limit, i.e. V —> cx), N  oo, with N /V  constant.

M

Figure 2M: Phase diagram for an Ising ferromagnet at the criticcil external 
magnetic field H = 0. Below the Curie tem])erature 7'c, rotatioiud symmetry 
is destroyed by the ap])ea.rance of a. nonzi'ro magnetization.

2.1.1 Landau M ean Field Theory

In 1937, Landau |)roi)osed what is now called the Landau Mean Field Theory 
(LMFT) [(S] as a theoretical ground for studying critica.1 i)henomena. His theory 
covered Van der Waals’ and Weiss’ formulations as s|)ecial cases and was able 
to j^redict the behavior of tlie thermodynamic proi)erties at the critical point. 
LMFT is so simple that a f(*w lines can l)e s])ent to show how it works, e.g. 
for a magnet. Landau assumes the free energy F is an analytic function of the 
average magnetization M , so that for = 0, one can ex])ress F as a Taylor 
ex])ansion in ])owers of M for small values of M :

M; r )  = 6'o(7’) + a [T)M- + /;(7')Af·' + · · · (2.3)

Note that only oven povveis of M contril)Ul.e to /·’ l)eeaiise of the up-clown 
.symmetry in the a.l)senee of external held. To find the actual P\ one minimizes 
(2.3) with res])ect to M :

OF
= 2«(Г)Л7 + -1/с(7')Л/'Ч··· = 0

dÂ'l
(2.4)

Now truncate (2.4) with the first two terms and assume b > 0. .Since d F /dM  = 
II by Maxwell reUrtions given above, this condition gua.ra.ntees that H increases 
with M when M is large. For a > 0, C has a single minimum at M -  0. 
However, if a < 0, C has two minima at M = ci/2 b which suggests that
a > 0 corresponds to 7' > 7(. and a < 0 corresponds to 7’ < 7(.. Further assume



that a ciiid h are analytic functions oi T  so that to the first a])])roxiination, h 
is a constant and a oc [T — Tc)· So LMFT |)i*edicts

M oc (2.5)

around T  = Tc. Consequently, by Eqn.2.4,

X = dMIdH  = — oc (T -  T J - '
2a

for .small M . The ex])onents 1/2 and —1 are now given certain names (/? and 
—7 res|)ectively) for reasons that will liecoim' dear latei· (sec' Tal)le 2.2).

2.1.2 E xperim ent Conflicts Theory

In 1893, Van der VVaa.ls had also olitained a similai· expression from the asyni])- 
totic behavior of his equation at the critical ])oint [9]. He analyzed the volume 
difference of the liquid ( + ) and gas ( —) |)hases in the two-|)hase region and got

-  K- = \T -  + B-, \7' -  1\\ + · · ·

from which Van Laar in 1912 [10] derived

-  p, = /i, |7' -  7',| (2.6 )

for T  ~  Tc, Note that Eqn.2.() is dual to Ec|n.2.r) since Iioth terms on the 
left are the order ])a.raineters of the corres])onding system. A lew years later 
however, controversial ex])erimentcil results started being rejiorted [11, 12, 13, 
15]. Numerous ex])ei*iments with increasing sensitivity showed that ft was closer 
to 1/3 rather than the theoretical prediction 1 / 2. A similar ])rol)lem existed for 
the other ex|)on('iits, too. So, the underlying |)hysics of the critical ])henomena 
had to l)e dilferent from Van der VVaals' theory. Something was ol)viously going 
wrong and iioliody knew what it wa.s.

2.2 U niversality and Scaling Laws : The M odern Era

2 .2.1 Law of Corresponding States

The* lion-analytic behavior ol a substance at criticality, (dtlier as tlie divergence 
of s])ecific heat and suscej)til)ility oi* as the snddc'u app(‘a.rance ol magnetization 
])ossesses qualitative and quantitative similarities in ma.ny unrelated physical 
systems, (iuggenheim plot Fig.2.4 is a classical exa.m])le ol inde])endence oi 
the shai)e of th(' coexistence curve from the' substance in a Iic]uid-gas trail-



Figure 2.4: The famous Guggenheim plot showing the coexistence curves for 
the eight fluids indicated (from Stanley [14]).

sition. This alikeness continues further in magnetic systems. Consider the 
magnetization curve in Fig.2.3.

It was again Van der Waals in 1880 [16] who came out with the idea that 
the vapor pressure curves of all substances should be the same when they are 
represented in terms of rescaled quantities as tt = p/pci <!> = and 0 — TjTc 
such that

7T = 7t((̂ , 0).

Then, states of different substances could be given by the above single equa­
tion involving these variables and same iitt, <f> and 9 would represent the cor­
responding s ta tes  for different substances. This proposition carried a great 
importance, because it allowed one to derive the properties of an unknown ma­
terial by simply looking at its critical parameters. Then the equation of state 
could be predicted from that of a previously studied sample. Later, Kamerlingh 
Onnes [17] generalized the “law of corresponding states” and restated the idea 
in terms of molecular interactions, i.e. defining as two basic parameters a char­
acteristic size and an interaction strength for each substance. Consequently, 
the corresponding states were derivable using proper scalings involving these 
two quantities.
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The law of corresponding s ta tes is a slatenient of universality which is 
closely linked to a more recent observation on critical ])henoinena which can 
l.)e stated as follows :
The critical (nonanalytic) behavior of a system can be expressed by power 
laws using certain exponents which are inde])endent of the s])ecific Hamilto­
nian defining its physical properties. These exj)onents depend merely on the 
dimensionality of tlui system and on the degrees of freedom of its constituents.

2.2.2 C ritical E xponents and Scaling Laws

The nonanalytic l)ehavior of many ])hysical j)roperties near the point of criti­
cality is given by certain exponents independent of the Hamiltonian describing 
the sjieciiic system. These are called the critical exponents and they ])lay a 
key role in modern theories of criticaliW. A list of these exjjonents and the 
corresponding para,meters is given in Table 2.2.

Exponent Dcfinilioii C^uaniity in fluid (inaynciic) systems

a c  ~  |/|-« Specific heat at const, volume (magnetic field)

P L - pa ( M ) ~  { - t Y Density difference (zero-filed magnetization)"'

7 Isothermal com])ressil.)ility (susceptil)ility)

n i  ~  \ I V ' (correlation length

V r ( 7 · )  ~ Pair rorr(‘lation function (t=0)

S ( ’ritical isotherm (t= 0)

* Valid only for T  <  '1\ Ijy de iin ition of order parannH cr.

Table 2.2; (Critical ex])onents and related th('rmodynainic (|ua,ntities. Let 
t = { T -  Z ) /Z .

The numerical values of these very S])ecial exponents are either known l)y 
the exact solution of certain model Hamiltonians, or a])])roximated by sev­
eral expansion technic|ues or numerical simulations -  sometimes in specially 
desigmsl hardware - a.nd of course l)y experinu'uts. However, these exponents
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7 = ;/(2 -  ?/) (Fisher,[IS])

a + 20 + -y = 2 (Rushbrooke,[19])

7 = 0 { S - l ) (VVidom,[20j)

iy(i = 2  —  O ' (.Josephson,[21])

Table 2.3: “Scaling laws” relating the critical exponents

are not (ill linecirly iiulepeiulent : if only two of them are known, the rest can be 
derived using certain ‘'scaling laws”. The immediate (piestion is “Why two?”. 
A satisfactory, though not rigorous, answer to this question regarding “Widom 
hypothesis” is presented in (?ha.])ter 3. Nevertheless, it is informative to illus­
trate here how these relations can l)e derived through ])hysical arguments. A 
basic ])ostulate of the theory of criticality is that near the critical point, the 
correlation length ^ is tlie only relevant length scale in terms of which all quan­
tities with the dimensionality of length should l)e mecisured. This is known as 
the scaling hypothesis. Now if we assume the |)air-correlation function to 
have the Ornsteiu-Zernike form

r(r) =

then at the critical point F ~  Using the scaling hypothesis
and the definition

r  ~  |/l|

However, by the iluctnation-dissi])ation th(X)ieni,

,  = j L / . , V r ( r ,

iives the well-known "Fisher law” :so that X ~  T

7 = ;/(2 -  ?/).

Several scaling laws relating the ex]>onents previously defined in Table 2.2 are 
listed in Table 2M.

A deeper understanding of the.se relations through a unified ])oint of view is 
provided by Kadanoff’s scaling ])icture. In (dia])l.(u· '■], the origins and the phys­
ical meaning of scaling, Kadanoff’s revolutionary theory and its implications 
will be di.scu.ssed.



Chapter 3

RENO RM ALIZATIO N G RO UP

Tlie problem of critical |)lienomeiia. needs a. careful treatment, because one 
can not use a ];)ertui‘bative ap])roach in treating the fluctua.tions at irrelevant 
scales since all scales are relevant. This exactly is the reason vvhĵ  the classical 
mean-field theories fail at the point of criticality. A successful theory would 
be the one that considers all energy or length scales on an equal footing and 
the one that is universal enough to be a]q.)lical)le to a variety of problems with 
the same handicap. In this cha.])ter, the R enorm alization  G roup (RG) 
will be presented as such a technique for ex])loring the region of criticalit}^ It 
a.p])ears to l)e a, natural ap|>roach to |)rol)lems involving scale invariance for the 
|:>rocedure it proposes is a rcscaliiifj o[ monumtum or |)osition s|)ace dimensions.

The key idea of ll(i is to transform the original Hamiltonian into another 
form cind thereby to thin out the degrees of freedom within dimensions of a 
correlation length. This is a rej^eated scaling transformation where at each 
step the components of the new system are ol)tained l)y an averaging over 
short wavelength (liictuations. Naturally, there are some restrictions on this 
transformation. First, all physi('a.l [properties should be conserved throughout 
the whole ¡process. This can be achieved oidy Ipy kee])ing tlie Partition func­
tion unchanged al, each st,e]p. Furthermore, tlu' ma.|p|)ing sliould preserve the 
space dimensionality ((/) and the spin degrees of freedom (??), which are the 
only [Parameters that defiiu' the universality class of the critical behavior un­
der ex[)loration. This is beixiuse, every new Hamiltonian is merely another 
representation of th(' original system with a definite d and n. Finally, not a 
formal but technical restriction is that the transformation should not create 
new ty[pes of inl,era('tions aJpsent in the [)r('vious 1 la.miltoniaii, since otherwise 
it wovdd not. !)(' [Pi’a.i'tical to a[P[ply it i‘e[)(‘at('dly. So the RCJ transformation has 
a cascade struct,lire with ///4.1 E= )R{/7/} and defines a flow for every [point in

12
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the space of Hamiltonians. The unique geogTa])hy of the spa.ce of Hamiltonians 
determined by the RCi flows tells the critical behavior of our model. That this 
geography is independent of the original coordinates of / /q is nothing but the

ill

Apart from critical phenomena, the RC! theory has round aiiplications in 
a variety of fields including Quantum electro-dynamics, (Quantum chromo­
dynamics, ])ercolation theory, the Kondo |)rol>lem, turliulence and ])olymer 
physics.

3.1 M om entum -Space R enorm alization

The origin of RC is quantum fi(‘ld tlieoiy' of eh'nuMitarv ¡larticles where one 
usuall}-̂  has to com|)ute sums over intermediati' sl.ates with energies starting 
from rnc  ̂ u]) to infinity. These com])utations generally end u]) with a log-

/ 00
(lE/E (ultraviolet divergence). This is

inĉ
an indicator of the hick of a characteristic energy scale in the prol)lem. The 
standard renormalization procedure was develo])ed first by Schwinger, Bethe, 
Feynman, and Dyson to remove the divergences in the theory. Later Wilson 
and Kogut, pointing out tlie similarity lietween the divergences ol)served in 
Quantum Field Theory and Statistical Mechanics (exc’ept that the ultraviolet 
limit of Quantum Fic'ld Tlieory is changed to infra.i*ed in Statistical Meclianics), 
proposed a RC scheme a])])lical)l(' to critical |)lienomena [22].

As a suitable ground for discussing this techniciue, consider for exam])le a 
^/-dimensional spin hittice with s])in si sitting on the z — th site according to a 
suital.de indexing. Civen .S/, one can define an average magnetization M[x)  for 
tlie 1/A neighl.)OiTood of;/* as

M (X ) = / Ml: (■•xp {— / k · X} r/k 
Jo

so that fluctuations within regions of size ~  1/A do not- change M[x)  much 
[Mk is the Fourier transform of .s/). Thereby, one can define an effective Hamil­
tonian in terms of :

exp{IU{M))  = n  · “ 1·̂ ') )
{«,■} n

Note that the Partition function for the new Hamill.onian is e(|ual to the orig­
inal F’artition function, i.e..
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^  rf>.>

Z = J2 c :xp{ -Ho/kT}  = n  /  exp{l-U{A4)} .

One has to be careful when dealing with an infinite lattice, because the mul­
tiplication over discrete k vectors in Ec]n.3.-5 l)e('omes a functional integration 
which needs a careful treatment. However, we will ski]) it liere and assume 
that the lattice is finite.

Now we can write down the RC transformation as a relation l:)etween / /a/2 
and / / a. We do this by integrating the sliort wavelength fluctuations with 
A/2 < k < A and kee])ing the Partition function unchanged (1/2 is an arbi­
trary choice) :

/ » r X )

I_. /.. j  —n<>
(3.4)

k = h / 2

apart from a. constant, factor. By snl)stituting dimensionless momentum and 
scaled magnetization q = k/A and cτ̂  ̂ = yV//. · oa Ecjn.3.3 becomes

txpiHf. / i ia' )] = p  Í  txp{]-U{cr)} da, .̂ (3.5)

Eqn.3.5 is the final form of monientuni-sjjace RCl transfomiation ])ro])osecI by 
WiLson [23]. Let us denote it as /7a/2 = The aim in introducing a and
q is to make ])ossil)le the existence of a fixed ])oint of tlie transformation for 
the reason discussed l)elow.

Eliminating a momentum scale and then rescaling the momenta (so that 0 < 
|q| < 1), it can be shown that one defines a new lattice when* the correlation 
length is also scaled as = Ía· Then w<* can ex).)ect the fixed poinU of 
the R.Cl transforma.tion to give hints a.l)Out the behavioi· of our .system around 
criticality where ^ oo. Because, if there is an /7* such that 77’ — ■’R{77*), 
then (̂ a/2 — which forces = 0 or 7 = First is tlie trivial fixed point 
and is of little interest, but the latter lefers to the critical point and de.serves 
careful a.iialysis.

Actually, the noii-trivial fixed |)oint usually cauiiot be caJculated exactly. 
Therefore, under certain analyticity assum])tions which are valid in restrictexl 
cases, / / ( t ) is assumed to have a. jurvver series ex|)ansion foi· small a and is 
a])proximated by the leading terms in the ex|)a.nsion. The number of non­
trivial fixed ])oints (there can be more than one) and the value of the calculated 
critical ex])onents depend on the approximations made alter this point. Mean- 
field results correspond to the first-order ap|)roximatioii in this formulation.



15

There are i)erturl.)ation ex|)ansions .siicli as tlu  ̂c-expaiisioii and 1/??.-ex].)ansion 
wliiclj are built on this renormalization scheme ( 7 /  : s])in degrees of freedom). 
The success of such expansions is due to the fact that the ])roblem becomes 
trivial in the limit r/ —> 4 or n > 00 [22, 24].

3-2 Position-space R enorm alization

That the fluctuations can be integrated one scale at a, time in ])osition-space was 
first proposed by KadanoiF [25]. Later on, Kada.noiF’s l)lock-s])in method was 
extensively studied and applied to several model systems with success [26, 27], 
see also [28]. Specially, in two-dimensional models where the ¿-expansion and 
l / 7?.-expansion fail, block-spin methods can work sur])risingly good. Although 
the Ising square lattice with nearest-neighl)or interaction is excictly solval:>le [29] 
cind does not need a RCJ treatment, the solution ap|)lies only to a restricted class 
of models in two-dimensions. The' Monte ( kirlo IlC is a. later method |.)ro])osed 
by Swendsen [30] and is ap]dical)le to two and thi'ee-dimensional models witli 
relative ease (see also [.31, 32]).

3-2.1 Spin-decim ation m ethod

Consider the Partition function for a two-dimensional Ising ferromagnet with 
zero external magnetic field

{in) " "

where i denotes tlie unit vector in the direction i. The number of terms in the 
sum grows exponentially with the dimension of the lattice, i.e. for an N x N 
sejuare lattice we have 2'^’ terms. Moreover, the analysis of critical ])henomena 
necessitates N  to l>e large, Irecause one has to ('onsidcu· a lattice' oi macrosco))ic 
size as —> oo. The straight-forward ('valuation of tlu' sum is a. ho|)eless task.

Instead, the sum can be evaluated ])artially over (e.g.) half of the spins with 
relative ease and this can be repeatcxl successively over the remaining spins. 
This is the “MigdaT-KadanofF s|)iu-decimation”. For exa.m])le, consider the 
s(|uare latti<'.e in Fig..'l.l. Take the partial sum over br’ spins k<-'eping ‘o’ sj)ins
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Figure 3.1: The spiu-deciniatioii method a.];)plied to a scpiare lattice, ‘o’ spins 
are kept fixed and the Partition function is summed over the ‘x’ spins.

fixed. The sum will l.)e a function of V/ spins only. Assign a new Hamiltonian 
H\o)  to the ’o-lattice’ s.t.

exp { I I ' { o ) }  =  ^  cx]) { I \  ^  Xj (o/i +  Oi2 + ('F7)

{x*,·} i

It is obvious that the Partition function is unchanged with this transformation. 
Since all nearest-neighbors of ‘.r’ spins are ‘o’ spins, the sum in Ecin.3.7 can be 
factorized as

exp {//'(o)} — PJ ^  exp {A X{ (o^ + 012 + + ô .i)}
i x , = ± \

= JJ  2 cosh [ A'(o,i + 0,2 + 0,3 + O,,,) ]
7

= cxp{A{K)  + B{K)Y^o , ,o , ,  + C(yOo.,o,-20,30.4} (3.8)

where the final sul.)sl itutioii uses cosh{x) — co.s7/.(—;r). II' which applies to the 
new scpiare lattice with half the spins turns out to l>e

/ / '( , )  =/i(A -)+ + E E  « ( '0  •' ŷî \±2 +
n I n ±

H-j- Î '■ 7i.-}- 2 ' /1 i -j" 2

Unfortunately, / / ' includes interactions which are alèsent in Ho- This elim­
inates the ])ossibility of an exact RCî transformation I)ecause the third and 
fourth terms in H' (‘ouple two ’x’ s])ins in the' new lattice and the new Par­
tition function can not l)e decoupled. In a |)ra.ctical construction of an RG
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transionnation, one generally comes to such a decision point where a suitalrle 
approximation has to be made in ordei· to proceoid (tliougli there are very 
exceptional two-dimensional models on which an exact diileiential RC trans­
formation is defina.l)le [3d]). See [32] for more about s])in-decimation method.

Although the Migdal-Kadanoff transformation is very favoral)le for its sim­
plicity and applicability in all dimensions, it has a. well-known unphysical con­
sequence [.34] : The spin-spin correlation function F/./]?·) transforms as

r//(r)  = r,y ,(r/2) (.3.10)

where ?■ is measured in terms of the lattice s|)aciiig. But this transformation 
does not allow the expected critical behavior r/y(7*) ~  systems
where f/ —2 + 7/ 7̂  0. This inconsistency is claimed to l)e the reason for the bad 
performance of the transformation in predicting the critical ex]X)nent u.

3.2.2 KadanofF’s Block-Spin M ethod

There’s a sim])ler way of realizing the idea, of Wilson’s momentum-space RG 
in position-s])ace. An RC! transformation can be set l.)y constructing blocks 
from a group of spins as in Fig.3.2, then treating the l)locks as single spin vari­
ables cind building an effective Ilamiltonian coupling the block-spins. If the 
new si)in lattice bears the same symmetries with the original, then a scaling 
transformation maps the [docks onto the oi’iginal lattice sites. The block-s])in 
variables display the avei’cige effect of tlieir internal com|)onents, l)ut do not 
carry as detailed information. Therefore, the' short range (iuctuations are ef­
fectively averaged out and the long wavelengths which are dominant at the 
critical point are ke|)t. A sa.m])l(' ti'ansforma.t.ion first ])i-oposed by Niemeijer 
and Van Leeuwen [26] is sliown in Fig.3.2. The' s])in values of the l.)locks are 
decided l)y the ma.joi-ity la.w :

.s' =  + /7 /. ( .S ]  +  .S2 +  .S;0

“ (•‘̂1 + '̂ 2 + «SS “  •‘''2'̂ a) .S/ = ±1 (3.11)

which is again either +1 or —1. The block Hamiltonian is defined as follows :

A' txp {Il '{s)} = p { ·''■) (-'7' {77(.S)) .
{-■}

The kernel /7(.s';.s) is +1 if its arguments satisfy E(|ii.3.11 and 0 otherwise. It
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Figure 3.2: The RCí transforniation a])i)liecl to a triangular lattice ]:>roposecl by 
Niemeijer and Van Leeiiwen.

is called the projection operator. The coin])leteness relation

^ 7>(.s';.s) = 1 
{*'}

guarantees that the Ibi.rtition fuiK'tion is conserv(‘d. The constant lactor K on 
the LHS of 3.12 stores the extra free energy thi*ougi]out the trcinsforination. 
Finally we need to scale every huigth in the |)riined-lattice by >/3 so that the 
lattice s])acing remains the same. So the two crucial ste])s are the choice of 
the blocks and the |)rojection oj)erator. The j)rojection operator p{s'\s) does 
not necessarily corres]:>ond to a majority rule. There are alternative choices 
offered to avoid iiu'onvenic'iices due' to forcing th(' Idock s|)in to l.)e ±1 (e.g. see 
[35, 3()]).

3.2^3 Scaling H ypothesis and C ritical Exponent R ela­

tions

RCl anaJysis off(‘i*s an allc'rnativc' |)i(’ture foi’ tlu' liiK'ai* dependence of the crit­
ical exponents deliiK'd in Chapter 2. Considei· an HC l.i*a.iisfoi*maiion with a 
scaling constant L [L — \/3 for the pr('vious exampl(') and let / ( / ,  /7) re|)resent 
the singular part of tin' IVec' enei*gy dc'iisity wli(‘re / = (7' — 7[^)/T’. and И is 
the extei’iial magui'tic fi(dd. After a, single HCI st(‘|>, the correlation length will 
shrink by a factor L. So W(' will move further a.])art from the critical point. 
The new free energy density will satisfy
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-  iV = d/yi 7 = [2yk-d) / y t

\ / l  = d/y^ -  1 = l/Vt

fl = {d- yk ) l y i 7/ = d -  2yi,, -f 2

Tal)le 3.1: The critiral ex|)onents can he ex])res.secl in lerni.s o f a n d  jy/̂  vvliicli 
are obtained froi'n the icdevant eigenva.liies of tlie linearized RCI transformation.

because the new s])in crystal with its own // and H' is merely another repre­
sentation of the original system. Rememl)er that the Partition function is not 
changed. At this ])oint, we make an assumption known as “Widom Hy]:>othe- 
sis” [37]:
Siiico' we move avvii.y from the criticalit y. / aiul II may also scale l̂ y some |)owers 
of Z/, i.e.

C '/ ( / ,  H) = /„ IJ" /-/) VL yc Vk > 0

or in the language of mathematics, /(/,, II) is a generalized homogeneous func­
tion. The quantities yi and yu are two positive (since the .system becomes le,ss 
critical) ex])onents scaling the tem|)erature and the magnetic held, i.e. the sym- 
metiy breaking h<'lds. Without loss of generality, one may choose L = H~^l»'' 
or L = r '/·’'■

= ./■(/·/ · 1)

Using Eqn.3.13, Table 2.1 and Table 2.2, list(‘d critical ex])onents can be ex­
pressed in terms of ;(/i, yn i>ntl d (see I'alde 3.1). .Specilically, // and ?/ which are 
functions oi ]ji and ///, only are a good basis for ('xpi'essing all critical ex|)onents 
(.see Table 2.3). In this picture, tln'ie exist uatnially two linearly independent 
exponents, because tem|)eiature and the magnetic h('ld a.i(' the only relevant 
parameters alfecting the criticality. The meaning of ‘‘relevant |)arameter” and 
the role of relevant and ii relevant j)a.ia.meters in the theory ol critical ])henom- 
ena. will be discussed in the next section.
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3.3 Linearized RG transform ation

Consider the RC flow ///+i - 3?{///} and a non-trivial fixed point /7* = ,%{//*}. 
By the continuity of the flow, if /// is close to //*, then /7/+| should also he 
close to /7*. Then, if

Hi = //·  + 8Hi,

then can be approximated by a linear transformation

;'R{7/o} =  +  8 H o ]  ~  )R {/7 *} + B 8 1 U .

Terms of order [8H»Y and hi'i.her are ignored. Now consider the eigenvalue 
])roblem l>elow :

BO = XO

As a special case, if 8Ĥ ) - (9, then 8Hi = O. More generally, if {(9,} make 
a complete .set, then ^7/o can be expressed as a linear c.oml)ina.tion of them :

8Ho — ^ f i i O i  8 Hi = 'Y'/iiX'O,.
/ i

Strictly speaking, validity of such an ex])ansion is not always guaranteed for 
several reasons. First, if B is not Hermitian, RHS of Eqn.3.14 may include 
additional terms of the form VVe will assume that this is not the case.
Second, B is most generally an infinite dimensional matrix oi)erating on vectors 
SHi of an iniinite dimensiona.1 interaction space including all n-body couplings. 
Therefore, the com])leteness of {Oi} is not guaranteed. However, in practice 
one can construct, a such that the sa,m(' ty|)e of interactions are created at 
each step. Then. B is n x n where n is tlie number of different couplings in Ho·

Assuming A/’s are real (if not, l>elow arguiiK'nts are valid for |A |̂), Ecin.3.J4 
hints the importance of eigenvalues gi*eater than 1. If i//u  includes ¿in o])erator 
Or with Xr > 1, SHi will gi’ow in e<ich itercition with Ab /7/ will move further 
and further ¿iway from criticedity towards a trivi^il, non-critical fixed point. 
Such o])ercitors ai'e c<illed relevant. The numl)ei‘ of i*elevant o|)erators deter­
mine the numl)er of ])ar<imeters that must be fixed for criticcility. Foi* exam])le, 
the criticiility condition for a ferromagnet is /7 = 0 and T = I'c· Th^it me îns 
we hcive only two I'elc'v̂ int oju'rfitors, Ccill th('m Oi ¿ind (9//, resj)onsil.)le lor the 
divergence from criticality with cluinging temper^iture or imignetic field. The 
critical exponents ¿ire found from th(‘ eigenv¿ılues of the relevant o])erators.
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The operators with A, < 1 are irrelevant opera to rs, Irecause their con­
tribution to 8Hi vanish in tlie limit I oo. I ’lieir role in tlie theory of critical 
phenomena is centra] in the descri])tion of univei sality. For example, consider a 
critical Hamiltonian F/o, i.e. lim/_̂ oo 3(f̂ {/7o} = /7*. Let 8l·l̂ i be an infinitesimal 
])erturl)ation to Hq. Then corresponding /7/ will also deviate from its original 
value : Hi A  Hi + 8Hi. For large /, /7/ is essentially /7’' and i/7/ can be lin­
earized as in Eqn.3.14. If 77o + <̂ /7u be critical, then the coefficients
//7. of the relevant eigenvectors Or should l)e set to zero. This dictates a certain 
relation among the couplings existing in bllo . Note that {/¿¿} is nothing but 
another rej)resentation of H{{Ki])  in a different basis. A])art from this rela­
tion, the details of the mici'oscopic interactions in do not effect the critical 
behavior.

Finally, there is a third type of eigenoperatoi' for which A = 1. These are 
the m arginal opera to rs and their contribution to bHi neither increase nor 
decrease in the first order. Therefore, one has to go l)eyond the linear theory 
to decide on their relevance (see tlie RCI treatment of the Kondo prol)lem [23]). 
Existence of marginal operators may lead to a line of fixed |)oints as in the 
case of f3axter model (see [47]). In this study, we will exclude the ])Ossil)ility 
of marginal o]>erators.

3.3.1 C alculating

The critical exponents can l)e ex])ressed in terms of the relevant eigenvalues. 
This calculation is im])ortant, l)ecause up to this point we coidd at l.)est express 
the critical ex])onents in terms of yi and yu (sc'e Table 3.1) which are still to 
be determined. Howiwer, if wc' have' a R(1 transformat-ion w(' can construct its 
linea.r model B a.iound 7/’" and ('Xtract ils eigenvalues. IleiK'e, R(J is al)le to 
¡predict the criti('.al ex])()iients witli a piecision depending on the accuracy of 
the transformation.

Consider in the expression 3.14 the relevant operator related to the tem­
perature a.nd for sim|)licity assume that it is the onl,y relevant o])erator of the 
transformation, ( ’all it Ot a.nd the related ('igenvi^ctor Â  Then Hi can be 
ex])ressed as Ik4ow :

III — //* + fttXi 0(  -f ^  A, O,.

If //() is close enough to /7* then a.ll (iiK'luding //./) ar(‘ 1. Now consider 
an /0 such that |//J Â° ~  1. For this valiu' of /, th(' correlation length î  ̂ will
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have a fixed value regardless of the value of /(,, because /// will be fixed (last 
term in the above ex])ression will be negligildy small). So that

60 = •̂  ^0 = cunst ,

where L is the scaling constant of the RG transformation. Setting to
unity along with Eqn.3.15 gives

/0 = = ^ ( 0  =

Assuming that fii is an analytic function of tem])erature and from the require- 
nient that fit = 0 at criticality, for T  ~  7'̂ , \fh.\ should beliave like c\T — Tc\. 
Then we can rewrite as

SO that // = In L/ 111 A/.. Note that is just a. constant factor.

3.3.2 F ixed points and critical surfaces

The topological arguments stated l)elow h(d]) to visua.Iize the structure of our 
RC transformation without using any algebra. VVe will ignore many possible 
com])lications and demonstrate only the basic ideas.

Tlie R.CJ trajectories, fixed ]>oints etc. define a certain geograj^hy in the 
si)ace of Hamiltonians {S). S  can be divided into one less dimensional sub- 
s])aces where in each subs|.)a.ce is constant. On a. RCl trajectory, the correlation 
length will decrease as (f(/) = where / is the tinu' ])arameter defining the
velocity of the R(I flow (foi* tlu' discrete t.ransformations we discussed so far, 
/ ~  /). Then a R(I ])ath starting from a iioii-ciitical /7o will pass througli all 
the sul.)s])a.ces of coiistanl, ( with ^ < (̂0. All siii'li trajectories are attracted l)y 
one of tiie two trivial (C = 0) fixed ])oints; either the high t(Mii])erature fixed 
])oint re])resenting total disorder due to vanishing of all couplings, or
the low tem])eratur(' fixed point (/Aj'-o) for which there is maximum order 
due to infinite cou|)ling. Although uiii(|ue, //f-Q is not necessarily
so; e.g. maximum oi'der configurations are dilfV'rent for a ferromagnet and an 
antiferromagnet.

Of S])ecial inter('st is the = oc> sul)spa.ce called the critical surface for 
obvious reasons. S,x, is an isolated surfa('e sc'parating the two types of trivial 
fixed ])oints. RCi transformation ma.])s into itself and the trajectories on
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Soo attrcictecl by a. iioii-trivial fixed ]K)iiit /7",.. likewise may not be
unique and in tliat case, ,S'rx. divided into donmins dominated by each one 
of the fixed points. The critical behavior of the Hamiltonians within a given 
domain are imposed by the corres])onding U", . However, existence of domains 
means that there are boundaries which include other relatively unstal)le fixed 
points. In fact, 77f_Q and H^-oo •‘̂ tal)le fixed ])oints and the rest
can be classified according to their degree of instal)ility. The instability degree 
is defined as the number of thermodjmamic [parameters needed to be fixed for 
the corresponding criticality condition.



Chapter 4

P H A SE  T R A N SIT IO N S IN  

T E TR A H E D R A L  ISING  LATTICE

Critical properties of 3-diinensioiial systems have l)eeii studied with diverse 
techniques, most Motal)ly Monte-(!arlo (MC) and RCJ algorithms. The RG 
techniques have ])ro\'ed to l>e not as ])owerful as in 2-dimensions, however they 
are faster than M(! and give more insight al)out the i)hysics of whatever is going 
on. The l)est estimates of critical ex])onents in .‘{-dimensions are ofitained by 
exj^ansioM techni(|iies. RCí is not cjuantitaLivc'ly a.ccura.te all tlie time, but one 
can usually get a (jualitatively correct pi('ture.

4.1 Order-disorder transition  in SiG e alloys

In 1985, Ourmazd and Bean [.‘{S, 89] re])orted that the}' ol)served for the first 
time the long-range order in strained SiCie alloy su|)erlattices with ¿ilternating 
double layers of Si and (¡e along (111) dirc'ction. 'This l)i-la.yer stcicking of Si and 
(ie can l.)e achievc'd with two distinct ])hases. In one of them, tlie su])erlattice 
has the same type of atoms in widely s|)ac('d [ill] ])lanes (RHl i>hase - ‘‘AL” 
in this work), whei(‘as in the' second configuration we have closely spaced [111] 
layers consisting of a single ty])e of a.tom (R1T2 |)hase - in this work). Later 
in 1990, LeCioues ct ai [40] observed the same order in unstra.ined suj^erlattices 
which led to the re(|uestioning of the general beliel that the order is strain 
induced. Both SL and AL ])hases have l)e(ui experimc'nta.lly observed. The 
vanishing of SL phase upon heating and recooling the' sampk' [41] implies the 
metastal.)ility of this ordei'ing r('la.ted to th(' growth |)rocess [42]. On the other 
hand, AL ])hase is found to l)c reversible [11] putt ing forward the signiiicance of 
bulk energetics and tiu'rmodynamic propertic's along with the surface kiiictics

24
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ill the a.]:)].̂ eara.Mre of tlu' oliserved ]:>ha.se.s (see also [-̂ 13, 44, 45]).

Motivated by these recent experimental findings, a RXI study of the SiGe 
alloy crystal can be performed. Aim is to clarify the relevance of the l)ulk 
properties in the occurance of the observed ordering.

The SiGe su])erlattice is modelled by a tetrahedrally coordinated Ising lat­
tice where Si atoms are represented by u|)-s|)iiis (.s = +1) and Ge atoms hy 
down-spins (,s = —1). The strain due to the lattice mismatch is included into 
the model by allowing an axial anisotroi)y in one of the bond directions. This 
choice is not unique; for example a biaxial anisotro]\y can be introduced as well. 
However, the existence of ordering in (111) planes suggests the anisotropy be 
chosen along one of the four [111] diiections. Althougli the interatomic cou­
plings in the real superlattices are com])licat(‘d, an ai)|)i*oximate picture with 
nearest (?/.7/.) and next-nearest: neighl)oi* (?/7/7/) iiit,era('tioiis will hopefully pre­
serve the main features of the |)ha.se diagra.m. TIkmc' exists a strong evidence for 
the validity of this assumption due to the ah initio (xih'ulations of coi.q l̂ings in 
SiGe by Bernard and Zunger [15]. Their Ccdculations yield a 7?<7n7-coupling an 
order of magnitude smaller than 7?.77.-cou])ling term which signals a fast decay 
of coupling strength with distance.

The next section descril)es the model and tlie K.CJ transformation used in 
the analysis.

4.2 T he m odel and the RG transform ation

4.2.1 T he m odel H am iltonian

We analyze the model dc'liiied by' tlu' li'diiced 1 la.iniltonia.ii /7,

(4.1)

1 j j — U/x u n»
■ n ^ /i

Mere. A], A'2, ·/], fUid J2 are t.lie iiiterartioii coiisl.aiils, ol)t.aiiie(l by dividing 
tli(' interatomic' pair energic^s lyy hJ', wlic're /.■ is the Boltzmaiin constant, and
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T  is the tem])erature. .s represents tlie Ising s])in variables that can take the 
values of ±1. These s])ins are located on a tetrahedrally coordinated lattice. 
We use the notation Uh, and u,i to re])resent the four (unit) tetrahedral 
bond vectors. Since we allow for axial anisotro])y in the Ua l.̂ ond direction, we 
use u with a greek index to represent any oiu' of the vectors u/,, Uc or Ud. The 
above form for //, then represents a reduced Hamiltonian with 7/-?/.-interactions 
(/ii (ind / \2), and 7i7i7?-iiiteractions (Ji and ./2). Four l.)ody and higher order 
interactions are excluded in this analysis.

A physically complete model is expected to include interactions among an 
odd numl)er of spins, too. These terms will break the u])-down symmetry of 
the Ising model. The relevance of such terms de])ends on the particular system 
to be modeled. We will limit our discussion of alloys to systems in which the 
u])- down symmetry is ])i*eserved, i.e. those systems in which the alloy is made 
50% of one tyi^e of atom and 50% of the othei·, in pa.rticula.r, to the Sio.5Cĥ o.5 
system. We assume that in s u c Ij a system, the terms that l>reak tlie up-down 
symmetiy of the system are cancelled hy an a|)])ro|)riate chemical potential 
contril)ution to vield a reduced Hamiltonian of the al)ove form.

Construction of blocks

The analysis of the model Hamiltonian in Eqn.-l.l lyy Kada.noif’s l)lock renor­
malization necessitates the construction of "l)lock spins” out of a number of 
original s])in varial:)les .s, in such a. way that these new s])in varial)les also form 
a tetrahedral lattice, with a larger length scale. The reci|)e for constructing 
these l)lock s])ins should l)e sucli that if the original s])in varial)les .s are ordered 
in a form corresponding to one of the phases of interest, the block spins should
cliso l)e similai'ly ordered. We have chosen a length scale factor of 3
for our transformation. II a. Ijlock s])iii is centered at one of the original s])ins 
at ])oint f, its four lUMghbors are located at r — 3/q,, r — .'{vp,, 7̂  — and 
f  — Then, 27 of the "old” s])ins s now correspond to a. new l)lock s])in
varial)le. If the block si)iii lias the same sign as the ('entral oi’iginal s])in when 
the system is in one of the |)hases indicated in Table 4.1, then the same kind 
of order is du])li('a.ted in the new system consti-ucted out of the block s])ins. 
(Exce|)tions to this are th(‘ |)hases SL and AL (see Tal>le 4.1) which transform 
to one another through the transformation. Imr these ])ha.ses, the square ol the 
transformation duplicates tlie ty])e of order.)

In Tal)le 4.2, we list tlu' |)Ositions of the oi iginal s|)ins (relative to the central 
position ) that form a Idock spin, and the values of th(\se s|)ins when the systiun
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Ta.l)le 4.1: Ordered phases of interest

0) •̂ ( ) .S(W6) s{uc) .s(firf) Name of the phase Not.
1 1 1 1 1 Segre'gated s
1 -1 -1 -1 -1 Zinc Blende ZB
1 1 -1 -1 -1 Short Si-Ci\' AL
1 -1 1 1 1 Long Si-CJe SL
1 -1 1 -1 -1 Short Si-CIe along '4)” AU
1 1 -1 1 1 Long Si-Ce along “b” s u
1 1 1 -1 -1 Si-CJe layered in “a-l)”])lanes AB
1 -1 -1 1 1 Si-CJe layered in “e>d”])lanê s CD

Tal)le 4.2: S])ins that form a, l)lock

Relative position 
of the spin

Number of sucli 
s])ins/cell

Average' value of this 
type of spin in the 
[presence of order
S ZB AL SL

0 (central spin) 1 1 1 1  1
f  -  ili 4 1 _1 1 _1 

1 1 1  1f = 2 u i - 2 uj, t j 12
V - 2 u,->t2 uj, 4 1 _1 1 I
f = 2 u i - U j , () 1 -1  0

IS •fectl}̂  ordered in one of the ])hases indica.l(‘d in Ta.I)le 4.1.

Note that soiDe of these' spins are shared hy more' than one l)le>e;:k s])in. Note 
also that some of thê se spins hele)ng te> l)le)e:ks t.hat are not ge'e)gra.|)hie:ally the 
closest to them. Tliis enal)les the ine'lusion in the' Idê ck spin of some of the 
farther away e)riginal spins that enhance the' e^rdering ol the' new system. We 
determine the sign of tlie l>lock spin from the majority of the' signs ot the 13 
spins (one at the e;enter of the block, and 12 at a. displacement of — 2 uj^ for 
any pair of bond directions Ui and Uj). Note that the'se original s])in variables 
always take the same sign as the e'enter s])in for all ty|)e‘s of e)rder indicated in 
Tal.)le 4.1. Tlie staters of the remaining s])ins in the' l>le)ck do not e'.ontrilnite to 
the value' e)f the ble)ck spin.
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4.2.2 RG transform ation

Now, a RC5 transformation must be constructed sucli that //(.s) —> H'[s') with 
the constraint that the Partition function is tlie same for l)otli Hamiltonians, i.e.

{.S·'} {5}
(4.2)

The next, task is to cietei*niine // ',  i.e. tlie cou]:)lings among {.s'}, using tlie 
constraint Eqn.4.2. This can be achieved hy assigning values to the new s])ins 
.s' and evaluciting the part of the total ])artition function through a partial 
summation over the .s variables as dictated l)y the constraints im])osed by the 
choice of .s'. The logaritlim of this ])artial ¡partition function is then a linear 
function of the renormalized cou];)ling constants, and these new coupling con­
stants can then be determined by solving a set of simultaneous linear equations, 
each equation being generated by a different choice of configurations of .s'. (It 
is easy to see that this procedure conserves the partition function since a sum- 
miition of the partial ])artition functions for all j)ossible configurations of .s' 
releases all constraints on the original spins and hence corres])onds to the total 
pcirtition function.) In general, / / ' will contain an infinite number of kinds of 
interactions among the s])ins. One thercd'ore uses some kind of a])proximation 
to determine the i*enormalized Hamiltonian (see Section 3.2.1). For this ])ur- 
pose, an a])proximation sclieme developed l)\· Kinzel [Ki] has l)een ado])ted to 
the model defined so far. It, enables an a])|)roximate determination of //', while 
not genera.ting any new types of intcnactions a.mong tlie block spins. In this 
ap])roximation, ])art of the interactions within the original hittice are treated 
exactly, while the remaining interactions are decoupled using the mean fi(dd 
ap])roximation

.s'eSy — *S/ .sy d" ^  i ^  y d" (*Sf 'Sy ^ ) ( *s/ *sy ^ )  .sy·

.S, < .s.; > d- < .s, > .Sy— < .s,· >< .Sy > (4.3)

where < · · · > rejiresents the average' value of the |)arti('ula,i· s))in while the 
l.)lock s])iii is constrained to have a certain \’aliie die'tatc'd by the' tyix' of oialer 
that is ini])osed on tlie new, renormalized system, i.e.

/)(.s';.s) guarantees tha.t the' sums are over the' configurations {.s} which are 
in agreement, with the ordei' im|)osed on tlu' iR'iiorma.Iized syst.e'm. VVe have 
treated th(‘ inl.erae'tions Ix'tween tlie central spin of the' block and s])ins con- 
nect(xl to it l)y nearest neigiilior intc'ractions exa.c'tly, while all other interactions



29

were clecou])lecl using the ineaii field a.p])roxinia.tion, so that, the Mamiltoniaii 
can be rewritten as

Have — Hij Si Sj + ^  ^  hip Si < Sp > + ^  hptj < Si > < Sj > (4.5)

where indices г, j  represents any one of the five s|)ins in a l)lock that are treated 
exactly and p, ry represent the spins treated a])|)roximately, < .s\ > is the ex­
pectation value of the remaining spins in the l)lock under the ini])osed order 
on the block spins, and AY; is one of or zero depending on the
distance Vij. Replacing H by Have in Ecin.4.4, we get an ini]dicit equation for 
all ^  Si (since Have ini.-h.ides them) wliK.h must l.̂ e solved sell (.onsistently. 
In general, the expectations < Si > are different for all spins, therefore the 
number oi unknowns are too many to be solv’aI)le for an arl)itrary configura­
tion {.s'·}. However, restricting the renormalized Hamiltonian to have the same 
type of interactions, Ес|П.4.5 can lie solved hy considering several symmetric 
configurations. In our case, this involves th(‘ self consistent evaluation of 41 
spin averages, under the 8 different constraints imposed l\y the ty]>es of order 
indicated in Table 4.1.

The partial sums in E(.|ii.4.4 can lie evaluated in terms of unrestricted sums 
using the following mathematical trick :

For simplicity, assume that Si — 0, 1 and let .S' be a partial sum to be eval­
uated :

S" = ^  p(.s'; .s)/(.si, . . . ,  .s/v)· (4.6)

The re.striction p{s'; s) on the sum is that ^ .s , > A^/2. This is the majority law
i

over the 13 s])ins defined |)r(n'iously. Define a funct-ion of complex varialile л: as :

= E  -
(.·>· 1 -I---l· Л· /V ) (4.7)

•SO that .S’(l) is the unrestricted sum over all s])ins. For N < oo, above sum 
can be ex])anded as a iinite power sei'ies in ~ :

.S(c) = «0 ~ . (4.i )̂

Then, tlie original sum in 4.6 is expressed in terms of u,/,. a,s

= (L, + . . .  + u,v , Л7‘2 < 7 < N/2 + 1. (4.9)

.S'(̂ ) becomes a Fourier sum for ~ > ;

5 '(e 'w ') = ^  a/, ( ' 
·̂=o

‘ /V-fl  ̂^ (4.10)
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Eacli Fourier coefficient au can be ciilculated using the inverse Fourier transform
2 w „

<4 =
1̂ 0

(4.11)

The transforniation involves solving a set of linear ecpiations involving cou­
pling constants l \ 2 -> J\^ and a fifth ])aranieter, a constant term in the 
Ihimiltonian conserving the total free energj^ of the system. Each type of or­
dering of spins gives a linear equation in transformed cou])lings through the 
relations expressed in Eqn.4.2 and Eqn.4.4. However, since the number of RG 
parameters to be solved is five, the four ty])es of order considered so far are not 
enough to realize the transformation. Therefore, average magnetizcitions are 
calculated for four more tyi)es of ordering whi('h are listed in TaJde 4.1. The ne­
cessity of considering four more configurations to get eight linearly inde])endent 
equations of five unknowns is due to symmetry constraints, i.e. the transformed 
couplings should exhibit the same symmetries as the original Hamiltonian.

Finally, we have a system of ecpiations which can be written in matrix form 
as

Л.7: = h . (4.12)

Eqii.4.12 does not have a solution for the resulting A, Instead, we find an ap­
proximate solution for X giving the least scjuar(' eri'or, which after some linear 
algebra can be written down as

.7,·,,, = {Л‘ ЛГ^ЛП>. (4.13)

This final step completes the transformation. In the next section, the outcomes 
of the transformation will l)e presented.

4.3 R esu lts and the Phase D iagram

The accuracy of the transformation can l)e checked l)y com])aring with the 
])revious exact or well-established results. Two s|>ecial cases for which the 
problem reduces to two dimensions will lie considered for this |)ur|)ose. First, 
letting Ai = J\ — 7-2 = 0, we ha.ve a triangular lattice in each [111] plane 
decoupled from the rest of the volume, l)eca.use the interlayer cou])lings indexed 
l)y Ч ’ are zero. Second, h'tting K\ = К2 = ,1\ = 0. we get a honeycoml) hittice 
which aga.in is isolated in [111] planes. Both cases аг(‘ (‘X))(‘ct(4l to give 2 D 
critical ex])onents. Note' that one may obtain a (|uasi-2/^ system by choosing
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Table 4.3: Ck>mi)aris()ii of results of tliis work with estal)lishecl results

Special case (u*itical value Critical exponent (//)
this work other work this work other work

21) Ising model on a 
honeycomb lattice 
2D Ising model on a 
triangular lattice 
3D Ising model on a 
tetrahedral lattice

exact result

(A-, = J , =  J 2 =  0) .412 .6.38.'3 * [47] .820 1*

(A'l =  K 2 =  .7i =  0) .1908 .2740  · [47] .910 r

( A 1 =  /V 2, J\ =  D  = 0) .2930 .780 .032

I\ 2  = .7] - 0. However, it. i.s well-known t hat, such plana.r syslenis with finite 
thickne.s.s exhibit the .same tv])e ol critical l)eha.vior as 'ID systems, i.e. sha.re 
the sa.me critical exponents. Isotropic tetrahedral lattice with ??.??-c.oupling 
only is also treated as a s|)ecial case in three' dimensions for which no previous 
work in the literature exists.

For all of these cases, tlie critical cou|)lings, i.('. Hamiltonian flowing to 
the nontrivial fixed point of the transformation is found and tlie corresponding 
critical ex])onent ;/ is calculated b}' linearizing the transformation around the 
fixed point as described in .Section .3.3. Note that the first system in Table 4.3 
does not represent a fixed point since a nonzero l\ > induces a nonzero ,/2 in the 
succeeding iterations. It is nevertheless a critical |)oint which at each iteration 
approaches to a fixed ])oint with A'l = ./] = 0. On the other hand, the second 
special case is a highly unstable fixed point in the .sense that if one of the 
vanishing couplings is turned on slightly, the Hamiltonian Hows to another 
(“cro.s.ses over” in RCl terminology), more stabh' lixi'd point. Ta.l)le 4.3 lists 
the critical parameters obtained by the (h'sciilx’d KO transformation together 
with previous works in the literature. It should be noted here that the choice 
of the ])a.rticular spins that construct the block spins is not ojitimal lor some 
of the special cases shown in the talde. The value of for three dimensions is 
almost the sa.me as the value found by Kinzel [4fi] in his apiilication of this RG 
method to a 'iD cubic lattice.

It is useful to note here that this R(! transformation is not designed to han­
dle tlie s|)ecial case of the frustrated ])ha.se that is ex|)('c1,('d to occur when the 
next iK'arest neighbor coujiling is sufficiently nega.tive. A Ix'tter transformation
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Segragated (S)

Aiitiferromagnetic Layers (AL)

Segragated Layered (SL)

Antirerromagnetic (AF)

Figure 4.1: Relative positions of atoms for the ty])es of orders corresponding 
to each fixed point. Filled and eni])ty sites re])resent o])])osite s])ins.

would involve the expansion of the degrees of freedom to iiiclmh' tlu' ¡possibility 
of delects, as for examjple in the transformations used 1)V lierker, et al. [IS]. 
The chaotic renormalization group trajectories that are cliaracteristic of such 
phases are not olpserved (for ¿in examjple see [44)]). The trajectories here tluit 
corresjpond to this pluise however, do indeed have some ¡peculiar characteristics 
which is expUiined in the next section.

4.3.1 The Phase Diagram

With the restricted form of tlie Hamill.onian as ¡)r('sented in F(.¡n.4.1, the only 
ordered phases that will ajppear are the S, Al·", SL, and AL ¡phases. Fig.4.1 
shows the corres¡ponding ordering of atoms in [110] planes. Note tliaX the 
phases AL and SL contain layers of identical atoms ¡per¡pendicular to (111) 
direction, whereas AF is the completely anti ferromagnetic tetrahedr<il lattice. 
The ¡phase diagram will be ¡)i'esented oidy for a restricted set of these ¡)hases, 
because the symmetry in the Hamiltonian allows one to go from one ordered 
¡phase to another by changing the signs of sonu' of thes(' interactions. As a. 
result of this symmetry, for exaiipple the criti('al fixed ¡)oints belonging to each 
one of the ordeinngs in l îg-d.! can be deduc,(‘d IVom a single one of them, (\g. 
the fixed ¡point of tlie S ¡phase, using the symmetries of the Hamiltonicvn listed 
in Table 4.4. In other words, these four fixed ¡points differ only Ipy the signs of 
the coippl
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S
s
s

K-2 ■I2 New j)ha.se
- /v , I<2 - h ■h .SL

- K 2 ■h ■h AF
Ki -¡<2 -■h ■h AL

However, the Hamiltonian (and therefore i Ik' i)hase diagram) is not symmet­
ric with respect to all sign changes: When next, nearest neighl)or interactions 
are negative and dominant, the spins will ])refer a frustrated state to minimize 
the total energy. This can be demonstrated by a. straightforward Monte Carlo 
simulation. Being more specific, frustration may occur when J2 < 0 or when 
J\ < K\ · K 2 for which the interactions have a competitive nature. Although 
this domain is not of major interest to us, and it is questional)le whether 
the presented renormalization group transformation is sufficiently equi])])ed to 
handle this S])ecial phase, one does see the eifects of this ])hase in the renormal­
ization group trajectories. As an exami)le, hdg. 1.2 shows the ])hase boundaries 
cis well as the i*ei]oi*malized cou])lings a.ftei· a single iteration of the RCJ trans­
formation along tlie phase l)ounda.ry foi* the isotio|)ic Hamiltonian. All ])oints 
on the [díase boundary eventually renormalize to a fixed j.)oint. However, only 
the points on the l)old portion of the plot aj)|)roach the fixed |)oint in a regular 
fashion, i.e. points closer to the fixed point maj) into even closer points. On 
other parts of the l)oundary, the transformation results in a rather abru])t jump 
onto this regulai* ('rit.ical domain, some j)oint.s transforming to the fixed point 
directly, in a single iteration. As can be seen from Fig.1.2, all jdia.se l)oundary 
points to the left of point V (which corr('sponds to the maximum of the A ' vs. 
J  curve) show this unusual ty|)e of R(i flow charact(M‘istics, an aj)])arent effect 
of the frustrated |.)hase tha.t is ex])ected to occur in tliis domain. Although one 
could classify all ])oints that generate this ty|)e of unusual RC trajectories as 
belonging to the frustrated phase, due to the uncertain amount of accuracy of 
such a classification, this region of the jdia.se sjiace will be excluded from the 
analysis.



Figure 4.2: Plutse diagrain for the isotio|.)i(' t,elralieili’al Ising lattice. The bold 
])ortiou of the ])has(‘ l)ouiidary indicates tlu‘ rc'gioii where the KCJ transfornia- 
tioii is ex|)ected to be relial)le. Dashed curve is a |)lot of A ' (of the transformed 
Hamiltonian) vs J (of the original Hamiltonian) generated after a single RC 
trcinsformation apj^lied to the i)oints with I\ > 0 on the given ])hase boundary. 
The flow towards the fixed point is regular only for the l)old region (left of P) 
where J is positive. For details refer to the text.

Since J2 < 0 is sufficient to induce frustration and < 0 < J] can be 
ma.])ped to another system with Ji, J 2 > 0. it is suitable to investigate the 
phase space for 7] and J2 both ])Ositive. Furthermore, the anisotro])y will 
be introduced through the ?n?-interactions, keeping J\ = J2 · This is a good 
assum])tion if 7?<??-couplings are an order of magnitude (or more) stronger than 
?nu?-couplings whicli is verified by ab initio calculations [45]. Note that the RG 
transformation will still generate une()ual values of J\ and J2 in the succesive 
iterations. The ])ha.se diagrams are obtained l)y following the RG trajc'ctories 
for tl.\e ('orresi)onding initial cou|)ling constants until one gets sufficiently (dose 
to a ])articular high or low tem])eratur(‘ fixed |)oint.

Fig.4.3 shows the critical surface and the fixed ])oint on it corres])onding to 
the S  ])hase. The l)ase plane corres]7onds to 7’ = 0 and the ])hase l)oundaries 
which are exact are sfjown with dashed curves. All ])oints al)ove the critical 
surface flow to the high tem])erature fixed point whereas the ])oints l)elow the 
critical surface arc' in the domain of the corresponding ordered ])hase. The 
bottom of the vafh'vs on the critical surface corres])ond to th(' critical end- 
[)oints of first--order transition lines. Facli slop(' of a valley belongs to the
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J/K1
K2/K1

Figure 4.3: The critical surlace for the a.Misotro])ic tetrailedi*a.l Ising lattice with 
,]\ — J2 > 0 as a result of the' K.Ci analysis. The fixed |)oint of the S ])hase 
is indicated and several RC flows above (solid) and on (dashed) the critical 
surface a.re shown scheinatically.

domain of a different critical fixed ]M)int. The to])ology of the critical surface 
is illustrated in Fig.4.4. The critical fixed ])oints re|)resenting each one of the 
orderings shown in Fig.4.1 are se])arated hy domain walls on which lay relatively 
unstable fixed Hamiltonians with some of the interactions in Eqn.4.1 missing. 
In l')etween them lay still more unstalile fixed |)oints, with more cou])lings to 
l)e fixed. Tlie Hamiltonian for the 2-dimensional triangvdar lattice listed in 
Table 4.3 is one of these.

(-+-+)

Figure 4.4: The topology of the critical surface. On the corners are the four 
most stal)le fixed points corres])onding to ('ach ordering. In l)etween are the 
more unstal)le fixed ])oints (some of them are skipped to avoid complexity).
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Tlie actual tvvo-l.)Ocly interactions lor tli(‘ l)iilk SiCie have been estimated 
])reviously I)y [3ernard and Zunger through ah inilio calculations [45]. Their 
results i^redict K — —2.4SineV and J — 0A!)meV. Tliese couplings, when 
inserted into the phase diagram ])redict a very low transitions temperature 
which supports the belief that the ol.xserved long-range order is induced by 
surfcice elTects rather than the bulk ])ro])erties.



Chapter 5

CO NCLUSIO N

Using RCJ approach, the ])hase diagra,m for the tetrahedral Ising lattice is 
obtained vvitli anisotro])ic nearest neighl)or and next nearest neighl)or interac­
tions. With the allowed anisotropy to l)reak th(' symmetry along a tetrahedral 
bond direction, one can ol)tain four differenl- ordered phases. Fixed ])oints cor­
responding to the ])hases are related to ecicli other by transformations involving 
sign changes of the couplings. The critical exponents for 3D and 2D are cal­
culated hy linearizing the transformation around the* fixed points. Results are 
in agreement with the values olHained for systems in the same universality 
classes.

(Considering the SiCie crystal in this context, and using values of cou] 
obtained through th(̂  crystal energies foi' difrereni- configurations (see [44]), one 
obtains relatively low transition tem])eratures due to tin* small energy differ­
ences [between the different phases. Furthermoi*e, the critical fixed points for 
each one of the phases differ only l)y the signs of some of the couplings, so that 
the isotro]uc fixed ]>oint remains stalde in tins new scheme with an extended 
set of ¡parameters. Therefore, it can Ipe concluded that a. slight anisotropy in 
the bulk interactions is not sufficient for ai)|)ea.rance of a new ordering (SL 
or AL) in SiCie. Our results indicate (in agr('(*ment with the ¡previous work
[44]) that surface-kinetic effects ratlier than the bulk thei’inodynamic effects 
dominate the observed ordering during the growth of Side

A¡)art from the primary motivation concerning SiCJe alloys, the ¡present 
study can Ipe used as a starting point for any RCI a¡)¡PІication on tetrahedra.lly 
coordinated systems. Although the ¡pre.sent structure of the model is not suit­
able for handling spin-glass pliases ¡pro¡perly, it ma.y be develo¡)ed further by 
allowing for more than two s¡pin stcites which ho¡pefıdly will create the ex¡)ect<нl 
chaotic trajectories for the frustrated phases.
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