
.cMiîvIMG ШТВ· Г Г ' f T í ί.Γ '·V· W Ь 5 5:Ѵ<.;Ь

-l·, r̂ T»* T iT’···
vi '¡Λ· -i · *i i y k\m¿ i

Jm Z’İÎE-SIS

s m g l ::

-· -·’ G'O? y - ":v

■*’· * · '■•“'I*' *■·

Q

3 2 S . S

. 6 5 7
/3 3 3

L EA R N IN G W ITH FEA TUR E
PARTITIONS

A THESIS

SUBMITTED TO THE DEPARTMENT OF COMPUTER

ENGINEERING AND INFORMATION SCIENCE

AND THE INSTITUTE OF ENGINEERING AND SCIENCE

OF BILKENT UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF SCIENCE

By
izzet Şirin

August, 1993

...........
.... '/''ît

S 2 5 , 5
• 2 6 V

\Ь32

11

I certify that I have read this thesis and that in my opinion it is fully adequate,
in scope and in quality, as a thesis for the degree of Master of Science.

Asst. Prof. HaftljAltay Güvenir (Advisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,
in scope and in quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Varol Akman

I certify that I have read this thesis and that in my opinion it is fully adequate,
in scope and in quality, as a thesis for the degree of Master of Science.

^j^;;:^sst. PiWT Kemal Oflazer

Approved for the Institute of Engineering and Science:

Prof. Mehmet Banaj^
Director of the Institute

ABSTRACT

LEARNING WITH FEATURE PARTITIONS

İzzet Şirin
M.S. in Computer Engineering and Information Science

Advisor: Asst, Prof. Halil Altay Güvenir
August, 1993

This thesis presents a new methodology of learning from examples, based on
feature partitioning. Classification by Feature Partitioning (CFP) is a particu­
lar implementation of this technique, which is an inductive, incremental, and
supervised learning method. Learning in CFP is accomplished by storing the
objects separately in each feature dimension as disjoint partitions of values. A
partition, a basic unit of representation which is initially a point in the feature
dimension, is expanded through generalization. The CFP algorithm special­
izes a partition by subdividing it into two subpartitions. Theoretical (with
respect to PAC-model) and empirical evaluation of the CFP is presented and
compared with some other similar techniques.

Keywords: Machine learning, inductive learning, incremental learning, super­
vised learning, feature partitioning.

Ill

ÖZET

OZNITELIK bölüntüleri İLE ÖĞRENME

izzet Şirin
Bilgisayar ve Enformatik Mühendisliği, Yüksek Lisans

Danışman: Y. Doç. Dr. Halil Altay Güvenir
Ağustos, 1993

Bu çalışmada öznitelik bölünmesine dayalı yeni bir mekanik öğrenme yöntemi
sunulmuştur. Bu yöntem kullanılarak bir sınıflama algoritması olan Öznitelik
Bölüntüleri ile Sınıflayıct CFP’nin yazılımı hazırlanmıştır. CFP algoritması
mekanik öğrenmeyi tümevarım ve artırımlı öğrenme yöntemlerini kullanarak
sağlar. CFP algoritmasında bölütü elemanları temel gösterim unsurlarıdır.
Başlangıçta bölüntü elemanları bir boyutlu uzayda bir noktayı ifade ederken,
zaman içinde bu elemanlar genişleyerek bir aralığı ifade ederler. Bölüntü el­
emanları parçalanarak özelleştirilirler. CFP algoritmasının kuramsal analizi
yaklaşık olarak doğru kuramına (PAC-model) göre yapılmıştır ve benzer sis­
temlerle uygulama sonuçları karşılaştırılmıştır.

Anahtar Sözcükler: Mekanik öğrenme, tümevarımsal öğrenme, artırımsal
öğrenme, denetimli öğrenme, öznitelik bölüntüleme.

IV

ACKNOWLEDGMENTS

I would like to express my deep gratitude to my supervisor Asst. Prof. Halil
Altay Güvenir for his guidance, suggestions, and invaluable encouragement
throughout the development of this thesis.

I would also like to thank Assoc. Prof. Varol Akman and Asst. Prof.
Kemal Oflazer for reading and commenting on the thesis.

I owe special thanks to Prof. Mehmet Baray for providing a pleasant envi­
ronment for study.

I am grateful to the members of my family for their infinite moral support
and patience that they have sliown, particularly in times I was not with them.

C ontents

1 Introduction 1

2 Previous M odels 6

2.1 Symbolic M o d e ls .. 6

2.1.1 Explanation-Based Learning (E B L).................................... 7

2.1.2 Instance-Based L earning ... 8

2.1.3 Nested Generalized Exemplars.. 10

2.1.4 K Nearest Neighbors (KNN) Algorithm 12

2.1.5 Decision T r e e ... 12

2.1.6 The PLSl A lgorithm ... 13

2.2 Subsymbolic M o d e ls ... 14

2.2.1 Connectionist P a ra d ig m ... 14

2.2.2 Genetic Algorithms.. 15

2.3 Comparison of CFP with Other M odels.. 17

3 Learning with Feature Partitions 21

3.1 The CFP A lg o rith m ... 21

3.2 A noise tolerant version of the C F P ... 30

vi

CONTENTS vii

3.3 Parallelization of the C F P .. 31

3.4 The GA-CFP A lgorithm ... 31

3.5 Limitations of the C F P .. 36

3.5.1 Nonrectangular Concept Descriptions............................... 36

3.5.2 Overlapping Concept Description P ro je c tio n s37

3.5.3 Domain Dependent Parameters of the C F P40

4 Evaluation of the CFP 42

4.1 Theoretical Evaluation of the CFP ... 42

4.2 Empirical Evaluation of the C F P .. 47

4.2.1 Testing M ethodology... 48

4.2.2 Experiments with Artificial Data S e ts 49

4.2.2.1 Changing Domain Characteristics....................... 50

4.2.2.2 Sensitivity of the CFP to its Domain Depen­
dent P a ra m e te rs .. 55

4.2.3 Experiments with Real-world Data S ets............................ 63

5 Conclusion 75

6 Appendix 82

7 Glossary 86

L ist o f F igu res

1.1 Classification of exemplar-based learning algorithm s................... 4

2.1 A skeleton of a simple genetic a lg o r ith m 16

3.1 Partitioning of a feature d im ension ... 22

3.2 Training algorithm of the C F P .. 24

3.3 The Prediction process of CFP ... 25

3.4 The Classification process of C F P .. 26

3.5 Updating a feature p a rtitio n ... 27

3.6 An example concept description in a domain with two features . 28

3.7 Parameter encoding schemes of the G A -C FP................................. 32

3.8 The CFP fitness function of the G A -CFP....................................... 34

3.9 Learning curve of domain dependent param eters........................... 35

3.10 An example of nonrectangular concept descrip tions..................... 37

3.11 An example of nested concept descriptions.................................... 38

3.12 An example of overlapping projection of concept descriptions . . 39

3.13 An example of partially overlapping projection of concept de­
scriptions .. 41

vin

LIST OF FIGURES IX

4.1 Comparison of (GA-)CFP, and C4.5 in terms of accuracy, on a
noisy d o m a in .. 51

4.2 Comparison of (GA-)CFP, and C4.5 in terms of accuracy, on a
domain that contains unknown attribute v a lu e s 52

4.3 Comparison of (GA-)CFP, and C4.5 in terms of accuracy on
domains with many irrelevant a t t r ib u te s 54

4.4 Effects of the generalization limit to the accuracy of the CFP . . 56

4.5 Effects of the generalization limit to the memory requirement of
the C F P .. 56

4.6 Effects of the weight adjustment rate to the accuracy of the CFP 57

4.7 Effects of the confidence threshold to the accuracy of the CFP . 58

4.8 Effects of the confidence threshold to the memory requirement
of the CFP ... 59

4.9 Effects of the confidence threshold to the accuracy of the CFP,
on noisy d o m ain s .. 60

4.10 Effects of the confidence threshold to the memory requirement
of the CFP, on noisy d o m ain s .. 61

4.11 Effects of the confidence threshold to the accuracy of the CFP,
on a domain with many irrelevant a ttr ib u te s 62

4.12 Effects of the confidence threshold to the memory requirement
of the CFP, on a domain with many irrelevant attributes 62

4.13 2-D view of the iris data: Sepal length vs. Sepal w i d t h65

4.14 2-D view of the iris data: Petal length vs. Petal width 66

L ist o f T ables

4.1 Success rates for iris flowers (%) ... 64

4.2 Success rates for breast cancer data (%) 65

4.3 Success rates for Hungarian heart disease data (%)67

4.4 Success rates for Cleveland heart disease data (%) 68

4.5 Success rates for waveform data (%)... 68

4.6 Success rates for congressional voting database (%)69

4.7 Success rates for glass data (%) ... 70

4.8 Success rates for Pima Indians diabetes database (%) 70

4.9 Success rates for ionosphere database (%) 71

4.10 Success rates for liver disorders database (%)............................... 72

4.11 Success rates for wine classification data (%) 72

4.12 Success rates for thyroid data (%) .. 73

4.13 Success rates for mushroom database (%)..................................... 73

L ist of Sym bols

AI Artificial Intelligence.
CFP Classification by feature partitioning.

a· Label of the fth class.
C4 Decision tree algorithm.
C4.5 Decision tree algorithm.
C (n,r) Number of combinations of r object out of n.
C T Confidence threshold parameter of the CFP.
D Probability distribution defined on the instance space

Df Generalization limit for feature / in CFP.
3-DNF Third disjunctive normal form.
E An example.
e An example.

ĉlass Class of example e.
Feature value of example e.

Rn Euclidean n-dimensional space.
EACH Exemplar-aided constructor of hyperrectangles.
EBG Explanation-based generalization.
EBL Explanation-based learning.
GA Genetic algorithm.
GA-CFP Hybrid CFP algorithm.
(GA)-CFP GA-CFP and CFP algorithms.
GA-WKNN Hybrid WKNN algorithm.
h Hypothesis.
H Hyperrectangle.

^Slower Lower boundary of Hk-

^kupper Upper boundary of Hk-

XI

LIST OF SYMBOLS Xll

IBL Instance-based learning.
ID3 Decision tree algorithm.
KA Knowledge acquisition.
KBS Knowledge-based Systems.
KNN К Nearest neighbors algorithm.
In Natural logarithm,
log Logarithm in base two.
M, m The number of training examples.
ML Machine learning.
NGE Nested generalized exemplars.
PAG Probably approximately correct.
PLSl Probabilistic learning algorithm.
votec Voting power of class c.
WKNN Weighted К nearest neighbors algorithm.
wj Weight of feature / .
u)//* Weight of hyperrectangle k.
A Weight adjustment rate of the CFP algorithm.
6 Confidence parameter of the PAC-model.
£ Error parameter of the PAC-model.
7 Probability of distance between to adjacent point is greater than e.
II Absolute value.
{} Comment in the algorithm of CFP.
[x, y\ Closed interval in which boundaries are x and y.
[x] The smallest integer number greater than or equal to x.
X Multiplication.
/ Division.

Chapter 1

In troduction

The development of knowledge-based systems (KBS) is a difficult and often
time consuming task. The acquisition of the knowledge necessary to perform a
certain task (usually through a series of acquisition sessions with a domain ex­
pert) is considered as one of the main bottlenecks in building KBS. Knowledge
acquisition (KA) and machine learning (ML) have been closely linked by their
common application field, namely building up knowledge bases for KBS. Learn­
ing and KA can be viewed as two processes that construct a model of a task
domain, including the systematic patterns of interaction of an agent situated
in a task environment. Learning of an agent involves both learning to solve
new problems and learning better ways to solve previously solved problems.
Carbonell describes machine learning eis follows [6]:

Perhaps the tenacity of ML researchers in light of the undisputed
difficulty of their ultimate objectives, and in light of early disap­
pointments, is best explained by the very nature of the learning
process. The ability to learn, to adapt, to modify behavior is an
inalienable component of human intelligence.

The motivation for applying ML techniques to real-world tasks is strong.
ML offers a technology for assisting in the KA process. There is a potential
for automatically discovering new knowledge in the available on-line databases
which are too large for humans to manually sift through. Furthermore, the
ability of computers to automatically adapt to changing expertise would offer
huge benefits for the maintenance and evolution of expert systems.

1

CHAPTER 1. INTRODUCTION

The success of a learning system is highly related to the ability to cope with
noisy and incomplete data, an adequate knowledge representation scheme, hav­
ing low learning and sample complexities, and the effectiveness of the learned
knowledge [24].

Tradeoffs between learning and programming can also be examined in terms
of their relative utilities. Computer time is now very cheap, whereas human
labor is becoming increasingly expensive. This suggests that learning could
have an immediate economic edge over manual methods of programming the
same information. Of course, there are many situations in which the potential
benefit of developing a knowledge base far exceeds the cost of its capture.

Evaluating the utility of programmed and learned knowledge cannot stop
with a simple human level of effort analysis. However, computational efficiency
of algorithms and the representations they use dramatically affect both the size
of the computers that are required and the size of the problems one can solve.

The most widely studied method for symbolic learning is one of inducing
a general concept description from a sequence of instances of the concept and
(usually) known counterexamples of the concept. The task is to build a con­
cept description from which all previous positive instances can be rederived by
universal instantiation but none of the previous negative instance (counterex­
ample) can be rederived by the same process [6].

Learning from examples has been one of the primary paradigms of ML re­
search since the early days of Artificial Intelligence (AI). Many researchers have
observed and documented the fact that human problem solving performance
improves with experience. In some domains, the principal source of expertise
seems to be a memory to hold a large number of important examples. For
example, in chess human experts seem to have a memory of roughly 50,000 to
70,000 specific patterns. The attempts to build an intelligent (i.e., at the level
of human) system have often faced the problem of memory for too many spe­
cific patterns. Researchers expect to solve this difficulty by building machines
that can learn. This reasoning has motivated many machine learning projects
[31].

Inductive learning is a process of acquiring knowledge by drawing inductive
inference from teacher (or environment) provided facts. Such a process involves
operations of generalizing, specializing, transforming, correcting and refining
knowledge representations. There are several different methods by which a

CHAPTER 1. INTRODUCTION

human (or machine) can acquire knowledge, such as rote learning (or learning
by being programmed), learning from instruction (or learning by being told),
learning from teacher provided examples (concept acquisition), and learning by
observing the environment and making discoveries (learning from observation
and discovery).

Learning a concept usually means to learn its description, i.e., a relation
between the name of the concept and a given set of features. Several differ­
ent representation techniques have been used to describe concepts for super­
vised learning tasks. One of the widely used representation technique is the
exemplar-based representation. The representation of the concepts learned by
the exemplar-based learning techniques stores only specific examples that are
representatives of other several similar instances. Exemplar-based learning was
originally proposed as a model of human learning by Medin and Schaffer [25].

There are many different exemplar-based learning models in the literature
(see Fig. 1.1). All of these models share the property that they use verbatim
examples as the basis of learning. For example, instance-based learning [1]
retains examples in memory as points, and never changes them. The only
decisions to be made are what points to store and how to measure similarity.
Aha, Kibler, and Albert [1] have created several variants of this model, and they
are experimenting with how far they can go with strict point-storage model.
Another example is the nested-generalized exemplars model of Salzberg [34].
This model changes the point storage model of the instance-based learning and
retains examples in the memory as axis-parallel hyperrectangles.

Previous implementation of the exemplar-based models usually extend the
nearest neighbor algorithm in which some kind of similarity (or distance) metric
is used for prediction. Hence, prediction complexity of such algorithms is
proportional to the number of instances (or objects) stored.

This thesis presents another form of exemplar-based learning, based on the
representation of feature partitioning. CFP is a particular implementation of
the feature partitioning technique. The CFP partitions each feature into seg­
ments corresponding to concepts. Therefore, the concept description learned by
the CFP is a collection of feature partitions. In other words, the CFP learns
a projection of the concept on each feature dimension. The CFP algorithm
makes several significant improvements over other exemplar-based learning al­
gorithms, where the examples are stored in memory without any change in

CHAPTER 1. INTRODUCTION

Exemplar-Based Learning

Instance-Based Learning Exemplar-Based Generalization

Nested Generalized
Exemplars

Generalized Feature
Partitions

Figure 1.1. Classification of exemplar-based learning algorithms

the representation. For example, IBL algorithms learn a set of instances (a
representative subset of all training examples), EACH (Exemplar-Aided Con­
structor of Hyperrectangles) learns a set of hyperrectangles of the examples.
On the other hand, the CFP algorithm stores the instances as factored out by
their feature values.

Since the CFP learns projections of the concepts, it does not use any similar­
ity (or distance) metric for prediction. Each feature contributes the prediction
process by its local knowledge. Final prediction is based on a voting among
the predictions of the features. Since a feature partition can be represented
by a sorted list of line segments, the prediction by a feature is simply a search
for the partition corresponding to the instance on that sorted list. Thei'efore,
the CFP algorithm significantly reduces the prediction complexity, over other
exemplar-based techniques. The power of a feature in the voting process is
determined by the weight of that feature. Assigning variable weights to the
features enables the CFP to determine the importance of each feature to re­
flect its relevance for classification. This scheme allows smooth performance
degradation when data set contains irrelevant features.

The issue of unknown attribute values is an unfortunate fact of real-world
data sets, that data often contain missing attribute values. Most of the learning

CHAPTER 1. INTRODUCTION

systems, usually overcome this problem by either filling in missing attribute
values (with most probable value or a value determined by exploiting inter­
relationships among the values of different attributes) or by looking at the
probability distribution of known values of that attribute. Most common ap­
proaches are compared in Quinlan [29], leading to a general conclusion that
some approaches are clearly inferior but no one approach is uniformly superior
to others. In contrast, CFP solves this problem very naturally. Since CFP
treats each attribute value separately, in the case of an unknown attribute
value, it simply leaves the partitioning of that feature intact. That is the
unknown values of an instance are ignored while only the known values are
used.

In the next chapter some of the previous models are presented and several
different properties of the learning method are explored. The precise details
of the CFP algorithm are described in Chapter 3. The process of partitioning
of a feature dimension is illustrated with an example, and several extensions
to the CFP algorithm are described. Chapter 4 presents theoretical and em­
pirical evaluation of the CFP algorithm. A theoretical analysis of the CFP
algorithm with respect to PAC-learning theory is presented. Performance of
the CFP on artificially generated data sets and comparisons with other similar
techniques on real-world data sets are also presented. The final chapter dis­
cusses the applicability of the CFP and concludes with a general evaluation of
the algorithm.

Chapter 2

P rev iou s M odels

It is well known that two major directions of AI research, symbolic and suhsym-
holic models, exhibit their strengths and weakness in an almost complementary
ways. While symbolic models are good in high-level reasoning, they are weak
in handling imprecise and uncertain knowledge and data. On the other hand
subsymbolic models are good in lower-level reasoning such as imprecise classi­
fication and recognition problems. However, they are not good in higher-level
reasoning. Nevertheless, both models contribute important insight to our un­
derstanding of intelligent systems. Fortunately, over the last few years these
two approaches have become less separate, and there has been an increasing
amount of research that can be considered a hybrid of the two approaches
[4, 13, 37].

2.1 Sym bolic M odels

Two of the main types of learning from examples in the history of AI research
are concept learning and explanation-based learning.

Concept Learning: Concept learning tackles the problem of learning con­
cept definitions. A definition is usually a formal description in terms of a set
of attribute-value pairs, often called features. More recently, approaches using
decision trees, connectionist architectures, representative instances, and hyper­
rectangles (exemplar-based learning) have appeared in the literature. These
approaches construct concept description by examining a series of examples.

CHAPTER 2. PREVIOUS MODELS

each of which is categorized as either an example of the concept or a counterex­
ample. A learning system can refine its concept description until it matches
the correct description.

Exemplar-based learning is a kind of concept learning in which the concept
definition is constructed from the examples themselves, using the same repre­
sentation language. In the instance-based learning in fact, the examples are the
concept (no generalizations are formed). Like other concept learning theories,
exemplar-based learning requires little or no domain specific knowledge.

2.1.1 E xplanation-B ased Learning (EBL)

Dejong and Mooney [9] present a general technique for learning by generalizing
explanations. They discuss the differences of their model with the Explanation-
Based Generalization (EBG) [21]. The border term EBL better describes the
approach than does EBG. It seems both possible and desirable to apply the
approach to concept refinement (i.e., specialization) as well as concept gener­
alization. The explanation-based approach uses domain-specific knowledge as
much as possible. This approach has been more commonly used in ML. An
explanation consists of an inference chain (which may be a proof, but may also
be mei'ely plausible reasoning) that identifies one or more of these variables as
the cause of the wrong prediction. This subset of variables is linked by the
inference chain to correct the prediction. Once the variables have been identi­
fied, the system must revise its prediction model in some way to reflect the fact
that a particular set of variables is now associated with the new prediction.

The difficult part of the EBL is the identification of the proper set of the
variables that cause the wrong prediction. The number of possible subsets of
the variables increases exponentially with the number of variables, so this is
intractable. Hence, EBL systems use domain-specific knowledge to select, from
a large set of possible explanations, a few plausible explanations. The domain
knowledge is used to construct a proof that specific variables caused the wrong
prediction. The knowledge that must be provided includes detailed knowledge
about how each variable affect the prediction, and how input variables interact.
Another goal of the EBL methods is that they attempt to construct as concise
a description as possible of the input examples.

CHAPTER 2. PREVIOUS MODELS

The generalization method described in Mitchell [21] EBG, must be pro­
vided with the following information:

1. Goal concept: A definition of the concept to be learned in terms of high-
level or functional properties which are not directly available in the rep­
resentation of an example.

2. Training example: A representation of a specific example of the concept
in terms of lower level features.

3. Domain theory: A set of inference rules and facts sufficient for proving
that a training example meet the high-level definition of the concept.

4. Operationality criterion: A specification of how a definition of a concept
must be represented so that the concept can be efficiently recognized.

Given this information, EBG constructs an explanation of why the training
example satisfies the goal concept by using the inference rules in the domain
theory. This explanation takes the form of a proof tree composed of Horn-
clause inference rules which proves that the training example is a member of
the concept.

2.1.2 Instance-B ased Learning

The primary output of IBL algorithms is a concept description, which is a
function that maps instances to concepts. Instance-based learning technique
[1], has been implemented in three different algorithms, namely IBl, IB2, and
IB3. IBl stores all the training instances, IB2 stores only the instances for
which the prediction was wrong. Neither IBl nor IB2 remove any instance
from concept description after it had been stored. IB3 employs a significance
test (i.e., acceptable or significantly poor) to determine which instances are
good classifiers and which ones are believed to be noisy.

An instance-based concept description includes a set of stored instances and
some information concerning their past performance during the training pro­
cess, e.g., the number of correct and incorrect classification predictions. The
final set of instances can change after each training process. However, IBL
algorithms do not construct intensional concept descriptions Instead, concept

CHAPTER 2. PREVIOUS MODELS

descriptions are determined by how IBL algorithm’s similarity and classifi­
cation functions use the current set of saved instances. The similarity and
classification functions determine how the set of saved instances in the concept
description are used to predict values for the category attribute. Therefore,
IBL concept descriptions contain these two functions along with the set of
stored instances.

Three components of IBL algorithms are:

1. Similarity function: computes the similarity between an instance and
instances in concept description.

2. Classification function: yields the classification for an instance by using
the result of the similarity function and performance record of the concept
description.

3. Concept description updater, maintains records on classification perfor­
mance and decides which instances should be included in the concept
description.

IBL algorithms assume that, instances that have high similarity values ac­
cording to the similarity function, have similar classifications. This leads to
their local bias for classifying novel instances according to their most simi­
lar neighbor’s classification. They also assume that, without prior knowledge,
attributes will have equal relevance for classification decisions (i.e. each fea­
ture has equal weight in similarity function). This assumption may lead to
significant performance degradation if the data set contains many irrelevant
features.

IB3 is the noise tolerant version of the IBL algorithms. It employs wait
and see evidence gathering method to determine which of the saved instances
are expected to perform well during classification. In all IBL algorithms, the
similarity between instances x and y is computed as:

similarity {x.,y) = — - y^y
¿=1

IB3 maintains a classification record (i.e. number of correct and incorrect
classification attempts) with each saved instance. A classification record sum­
marizes an instances’s classification performance on subsequently presented

CHAPTER 2. PREVIOUS MODELS 10

training instances and suggests how it will perform in the future. IB3 employs
a significance test (i.e. acceptable and significantly poor) to determine which
instances are good classifiers and which ones are believed to be noisy. IB3
accepts an instance if its classification accuracy is significantly greater than its
class’s observed frequency and removes an instance from concept description
if its accuracy is significantly less. Confidence intervals are used to determine
whether an instance is acceptable, mediocre, or noisy. Confidence intervals are
constructed around both the current classification accuracy of the instance and
current observed relative frequency of its class.

2.1.3 N ested G eneralized Exem plars

In Nested Generalized Exemplars (NGE) theory, learning is accomplished by
storing objects in Euclidean ?z-space, jE", as hyperrectangles [34]. NGE is also
a variation of exemplar-based learning. In the simplest form of the exemplar-
based learning, every example is stored in memory, with no change in represen­
tation (or without generalization), as in IBl algorithm presented above. NGE
adds generalization on top of the simple exemplar-based learning. It adopts
the position that exemplars, once stored, should be generalized. The learner
compares a new example to those it has seen before and finds the most simi­
lar, according to a similarity metric, which is inversely related to the distance
metric (Euclidean distance in n-space). The term exemplar (or hyperrectangle)
is used to denote an example stored in memory. Over time, exemplars may be
modified (due to generalization) from their original forms. This is similar to
the generalizations of partitions in the CEP algorithm.

Once a theory moves from a symbolic space to Euclidean space, it becomes
possible to nest one generalization inside the other. Its generalizations, which
take the form of hyperrectangles in can be nested to an arbitrary depth,
where inner rectangles act as exceptions to the outer ones.

EACH (Exemplar-Aided Constructor of Hyperrectangles) is a particular
implementation of the NGE technique [34], where an exemplar is represented
by a hyperrectangle. EACH uses numeric slots for feature values of exemplar.
The generalizations in EACH take the form of hyperrectangles in Euclidean
n-space, where the space is defined by the feature values for each example.
Therefore, the generalization process simply replaces the slot values with more
general values (i.e., replacing the range of values [o, 6] with another range [c.

CHAPTER 2. PREVIOUS MODELS 11

c?], where c < a and d > b). EACH compares the class of a new example with
the most similar (shortest distance) exemplar in the memory. The distance
between an example and an exemplar is computed according to the following
distance function:

Distance{E, Hk) =
\

difi
«■=1 maxi — m in i '

where

Hk·.

H k.ref erence:
Hk .correct:

^̂ low.tr *
k u p p e r *

E:

fi-
E fr

WHV
wj,:

maxi, mini:
difi:

hyperrectangle k
the number of reference to Hk
the number of correct prediction made by Hk
lower boundary of Hk
upper boundary of Hk
an example
ith feature
ith feature value of exampleE
weight of Hk{Hk.ref erence/Hk.cor reel)
weight of fi
maximum and minimum feature values, respectively
the distance between E and H on the ith dimension

difi =
E f i — - i ^ i t u p p e r E f ^ > H k upper

Hk lower ^ S i \ i E j , < H k lower

0 otherwise.

If a training example and the nearest exemplar are the same (i.e. a correct
prediction has been made) the exemplar is generalized to include the new
example if it is not already contained in the exemplar. However, if the closest
example has a different class then that of the example, then the second closest
exemplar is tried in the similar way. The idea behind the second minimum
is to apply the second chance heuristic. This heuristic is useful to reduce the
number of exemplars in the memory. If none the closest two exemplars has the
same class as the example, then the algorithm modifies the weights of features
so that the weights of the features that caused the wrong prediction is increased
(in terms of distance).

CHAPTER 2. PREVIOUS MODELS 12

2.1.4 K N earest N eighbors (K N N) A lgorithm

The nearest neighbor classification algorithm is based on the idea that, given
a data set of classified examples, an unclassified instance should belong to the
same class as its nearest neighbors in the data set. A common extension to
the nearest neighbor algorithm is to classify a new instance by looking at its
k nearest neighbors { k > 1). The k nearest neighbors algorithm classifies
a new instance by noting its distance from each of the stored instances and
assigning the new instance to the class of the majority of its nearest neigh­
bors. Different ways of computing similarity or distances between instances
are compared by Salzberg [33]. This algorithm can be quite effective when
the attributes of the data are equally important. However, if the attributes
are not equally important, performance of the algorithm degrades. Usually
to solve this problem feature weights are introduced, resulting in the WKNN
algox’ithm [22]. Assigning variable weights to the attributes of the instances
before applying the KNN algorithm distorts the feature space, modifying the
importance of each attribute to reflect its relevance for classification. In this
way, closeness or similarity with respect to important attributes becomes more
critical than similarity with respect to irrelevant attributes.

The GA-WKNN algorithm [22] combines the optimization capabilities of a
genetic algorithm with the classification capabilities of the WKNN algorithm.
The goal of the GA-WKNN algorithm is to learn an attribute weight vector
which improves the WKNN classification performance. Chromosomes are vec­
tors of real-valued weights. A vector value is associated with each attribute
and one is associated with each of the k neighbors. Thus the length of the
chromosome is the number of features plus k. Another extension to the KNN
is to combine simple KNN with genetic algorithms (GAs)

2.1.5 D ecision Tree

The decision tree is a well-known representation for classification tasks. This
representation has been used in a variety of systems. Among them the most
famous are ID3 [27] and its extension C4.5 [29] of Quinlan.

A decision tree can be used to classify a case by starting at the root of
the tree and moving through it until a leaf is encountered. At each non-leaf

CHAPTER 2. PREVIOUS MODELS 13

decision node, the outcome of the case for the test at the node is determined
and attention shifts to the root of the subtree coi'responding to this outcome.
When this process finally leads to a leaf, the class of the case is predicted to
be that record at the leaf.

A decision tree is global for each attributes, in other words each non-leaf
decision node may specify some test on any one of the attributes. The CFP
algorithm can be seen to produce special kind of decision trees. Unlike IDS,
the CFP probes each feature exactly once. An important difference between
decision tree approach and other approaches mentioned above, including CFP,
is that the classification performance of these systems does not depend critically
on any small part of the model. In contrast, decision trees are much more
susceptible to small alterations.

2.1.6 T he P L S l A lgorithm

Both ID3 [27] and probabilistic learning system (PLSl) [30, 31] use probabilistic
criteria to specialize hypotheses, and start with a single general description
and split into two or more parts. The process of splitting continues, using one
attribute for each split, until some stopping criterion is satisfied.

The PLSl accepts instances of known class membership, and based on
their frequency, divides the instance space into mutually exclusive regions or
probability classes. Like ID3, PLSl also uses specialization. It represents input
instances as points in a fc-dimensional space creates orthogonal hyperrectangles
by inserting boundaries parallel to instance space axes. Each hyperrectangle
r is annotated with values: (1) the probability u of finding a positive example
within r, and (2) an error measure e of u. These annotated hyperrectangles (r,
u, e), called regions.! ^re like nodes of a decision tree annotated with probability
and error measures. PLSl was compared with ID3 and C4 by Rendell [31, 32].
These comparisons show that two algorithms are similar, although they differ
in some striking ways. For example, the splitting criteria are different. C4
prunes its decision tree to eliminate noise, whereas PLSl faces that problem
by splitting only if the statistical significance is high (and never prunes).

CHAPTER 2. PREVIOUS MODELS 14

2.2 Subsym bolic M odels

Both symbolic and subsymbolic models contribute an important insight to
our understanding of intelligent systems. Connectionist models and Genetic
Algorithms (GAs) are the best known examples of subsymbolic computation.
This section presents a brief description of these subsymbolic models. I will
not attempt to define precisely the essential differences between symbolic and
subsymbolic approaches. This is beyond the scope of this thesis.

2.2.1 C onnectionist Paradigm

A neural network (or connectionism) is a kind of computation system in which
the state of a system is represented as a numerical distribution pattern with
many processing units and connections among those units. Learning by neu­
ral networks uses an algorithm for transforming distribution patterns, which
quite different from learning based on symbolic representations. Connectionist
systems have stirred a great deal of excitement for number of reasons.

1. They are novel. Connectionism seems to be a good candidate for a major
new paradigm in AI where there have only been a handful of paradigms.

2. They have cognitive science potential. While connectionist neural nets
are not accurate models of neurons, they do seem brain-like and capable
of modeling a substantial range of cognitive phenomena.

3. Connectionist systems have exhibited non-trivial learning. They are able
to self-organize, given only examples as inputs.

4. Connectionist systems can be made fault-tolerant and error-correcting,
degrading gracefully for cases not encountered previously.

5. An appropriate and scalable connectionist hardware is rapidly becoming
available. This is important for applicability of the connectionist systems
to the large-scale cognitive phenomena.

6. Connectionist architectures also scale well, in that modules can be inter­
connected rather easily. This is because message passed between modules
are generally activation level, not symbolic messages.

CHAPTER 2. PREVIOUS MODELS 15

However, there are considerable difficulties still ahead for connectionist
models. Many different connectionist architectures were proposed in the litera­
ture. It is important to note that there are connectionist architectures beyond
the simple feed-forward, single-hidden-layer neural networks. In particular, re­
current [10] with their feedback loops and ’’memory”, are especially appealing
for application to symbolic tasks that have a sequential nature.

2.2.2 G enetic A lgorithm s

Genetic algorithms (GAs) are adaptive generaie-and-test procedures derived
from principles of natural population genetics. This section presents a high-
level description of one formulation of genetic algorithms. GAs represents a
class of adaptive search techniques that have been intensively studied in recent
years. The key feature of GAs is that adaptation proceeds, not by making
incremental changes to a single structure but by maintaining a population (or
database) of structures from which each structure in the population has an
associated fitness (goal-oriented evaluation). These fitness values are used in
competition to determine which structures are used to form new ones [19].
Genetic algorithms are best viewed as another tool for the designer of learn­
ing systems. The selection of a good feedback mechanism that facilitates the
adaptive search strategy, is critical issue for the effectiveness of GAs. Detailed
descriptions, of genetic algorithms, are given by Goldberg [14]. A skeleton of
a simple genetic algorithm is shown in Fig. 2.1.

During iteration {generation) t, the genetic algorithm maintains a popula­
tion P{t) of structures { x \ ,x l , ..., chosen from the domain of the objective
function / . The initial population P(0) is usually chosen at random. The pop­
ulation size N remains fixed for the duration of the search. Each structure
is evaluated by computing f{x\)· Usually, the term trial is used for each such
evaluation. This provides a measure of fitness of the evaluated structure for
the given problem. When each structure in the population has been evaluated,
a new population of structures is formed in two steps.

First, structures in the current population are selected to reproduce on the
basis of their relative fitness. That is, the selection algorithm chooses structures
for replication by stochastic procedure that ensures that the expected number
of offspring associated with a given structure x\ if f{x\/p,{P,t), where f{x\)

CHAPTER 2. PREVIOUS MODELS 16

Genetic-Algorithm:
begin

t = 0
initialize P{t)
evaluate P(t)
while(not terminating condition)

i = t -|-1
select P{t) from P{t — 1)
recombine P{t)
evaluate P{t)

end
end

Figure 2.1. A skeleton of a simple genetic algorithm

is the observed performance of a:,· and fi(P,t) is the average performance of
all structures in the population. Structures that perform well may be chosen
several times for replication and structures that perform poorly may not be
chosen at all. In the absence of any other mechanisms, this selective pressure
would cause the best performing structures in the initial population, to occupy
a larger portion of the population over time.

In the second step, the selected structures are recombined using idealized
genetic operators to form a new population. The most important genetic op­
erator is crossover^ which combines the features of two parent structures to
foi'm two similar offsprings. Crossover operates by swapping corresponding
segments of the structures representing the parents. In generating new struc­
tures for testing, the crossover operator draws only on the information present
in the structures of the current population. If specific information is missing,
due to storage limitations or loss incurred during the selection process of a pre­
vious generation, then crossover operator is unable to produce new structures
that contain that information. A mutation operator arbitrarily alters one or
more components of a selected structure. It provides a means for introducing
new information into the population. Usually, mutation operator is treated cis
a background operator (i.e. its probability of application is kept very low). Its
presence ensures that all points in the search space can be reached.

CHAPTER 2. PREVIOUS MODELS 17

2.3 Com parison o f C FP w ith O ther M odels

To characterize the feature partitioning method, I will identify several different
properties of the learning methods, and show how CFP differs or is similar to
the other methods. We will use the terms instance and example interchange­
ably.

Knowledge Representation Schemes: One of the most useful and interesting
dimensions in classifying ML methods is the way they represent the knowledge
they acquire. Many systems acquire rules during their learning process. These
rules are often expressed in logical form (i.e., Prolog), but also in other forms,
such as schemata. Typically such systems will try to generalize the left hand
side of the rules (the antecedent in an if-then rule) so that those rules apply
to as large number of situations as possible. Some systems try to generalize
right hand side of the rules. Another way to represent what is learned is with
decision trees. For example, ID3 [27], and several successors. Decision trees
seem to lack of clarity as representations of knowledge. Another knowledge
representation is set of representative instances [1] or hyperrectangles [30, 34].
On the other hand, in CFP algorithm partition is a basic unit of representation.
Learning in CFP is accomplished by storing objects separately in each feature
dimension as partitions of the set of values that it can take.

Underlining Learning Strategies: Most systems fall into one of two main
categories according to their learning strategies. Namely, incremental and non-
incremental learning strategies. Systems that employs incremental learning
strategy attempt to improve an internal model (whatever the representation
is) with each example they process. However, in non-incremental strategies,
system must see all the training examples before constructing a model of the
domain. Most concept learning systems follow an incremental learning strategy,
since the idea is to begin with a rough definition of a concept, and modify that
definition over time. The characteristic problem of these system is that their
performance is sensitive to the order of the instances they process. The CFP
algorithm falls in to the incremental learning category, which means that CFP’s
behavior sensitive to the order of examples.

A non-incremental learning strategy usually assumes random access to the
examples in the training set. The learning systems which follows this strategy
(including ID3 of Quinlan and INDUCE system of Larson) search for patterns
and regularities in the training set in order to formulate decision trees or rules.

CHAPTER 2. PREVIOUS MODELS 18

This approach offers the advantage of not being sensitive to the order of the ex­
amples. However, it introduces additional complexity by requiring the program
to decide when it should stop its analysis.

Domain Independent Learning: EBG requires considerable amounts of do­
main specific knowledge to construct explanations. This results from the fact
that explanation based systems must construct explanations each time they
experience a prediction failure.

Exemplar-based learning, on the other hand, does not construct explana­
tions at all. Instead, it incorporates new examples into its experience by stor­
ing them verbatim in memory. Since it does not convert examples into another
representational form, it does not need any domain knowledge to explain what
conversions are legal, or even what the representations mean. Interpretation
is left to the user or domain experts. Consequently, exemplar-based systems
like CFP, can be quickly adapted to new domains, with a minimal amount of
programming.

Multiple Concept Learning: Machine learning methods have gradually in­
creased the number of concepts that they can learn and the number of variables
they could process. Many early programs could learn exactly one concept (e.g.
initial ID3 can learn only one concept (positive and negative). Successors of
the IDS can learn multiple concepts). Some of the theories that handle multiple
concepts need to be told exactly how many concepts they are learning.

Binary, discrete, and continuous variables: One shortcoming of some learn­
ing programs is that they handle only binary variables, or only continuous
variables, but not both. In Catlett [7] a method of changing continuous-valued
attributes into ordered discrete attributes is presented for the systems that
can only use discrete attributes. The CFP learning program handles variables
which take on any number of values, from two (binary) to infinity (continuous).
However, if most of the features are binary or discrete, the probability of con­
structing overlapping partitions is high. In this case performance of the CFP
depends on the observed frequency of the concepts. In general, CFP learning
system outperforms if the domain has continuous variables.

Problem Domain Characteristic: In addition to characterizing the dimen­
sions along which CFP system offers advantages over other methods, it’s worth­
while to consider the sorts of problem domains it may or may not handle. The
CFP system is domain independent. However, there are some domains in which

CHAPTER 2. PREVIOUS MODELS 19

the target concepts are very difficult for exemplar-based learning, and other
learning techniques will perform better. In general, exemplar-based learning is
best suited for domains in which the exemplars are clusters in feature space.
The CFP algorithm is applicable to concepts, where each feature, indepen­
dent of other features, can be used in the classification of the concept. The
CFP algorithm is a variant of algorithms that learn by projecting into one fea­
ture dimension at a time. For example, ID3 learns that in greedy manner while
building conjunctions. The CFP algorithm retains feature-by-feature represen­
tation and uses voting to categorize, if concept boundaries are nonrectangular,
or projection of the concepts into a feature dimension are overlapping then
CFP performance degrades.

Noise Tolerance: The ability to form general concept description on the
basis of particular examples is an essential ingredient of intelligent behavior.
If examples contain errors, the task of useful generalization becomes harder.
The cause of these errors or ’’noise”, may be either systematic or random.
There two sorts of noise: (1) classification noise, and (2) attribute noise [3].
Classification noise involves corruption of the class value of an instance, and
attributes noise involves replacing of the attribute value of an instance. Missing
attribute values are also treated as attribute noise.

Applicability of a learning algorithm highly depends on the capability of the
algorithm handling noisy instances. Therefore, most of the learning algorithms
try to cope with noisy data. For example, the IB3 algorithm utilizes classi­
fication performance of stored instances to cope with noisy data. It removes
instances from concept description that are believed to be noisy [1]. EACH
also uses classification performance of hyperrectangles. However, it does not
remove any hyperrectangle from concept description [34]. Decision tree algo­
rithms utilize statistical measurements and tree pruning to cope with noisy
data [27, 29].

Connectionist models and Genetic Algorithms (GAs) are relatively noise
tolerant. Robustness of connectionist models naturally arises from distributed
representation. The learned concept is represented as a set of weighted con­
nections between neuron-like units. The key feature of GAs is that adaptation
proceeds with population of structures. The selection of a good feedback mech­
anism is a critical issue for the effectiveness of GAs [14].

The CFP algorithm utilizes representativeness values of partitions, observed

CHAPTER 2. PREVIOUS MODELS 20

frequency of concepts, and a voting scheme to cope with noisy data. Section 3.2
presents noise tolerant version of the CFP algorithm which removes partitions
that are believed to be noisy. Section 4.2.2 presents empirical comparisons of
the CFP with C4.5 on artificially generated noisy data.

Chapter 3

Learn in g with Feature P artition s

This chapter discuss a new incremental learning technique, based on feature
partitioning. First section describes the CFP, that can be used on real-world
data sets. The process of partitioning of a feature dimension is illustrated
with an example. Section 2 presents an extension to the CFP for handling
noisy instances. Section 3 explores a possible parallelization scheme of the
CFP and Section 4 presents a hybrid system (GA-CFP) that combines the
optimization capability of GAs and the classification capability of the CFP.
Finally, limitations of the CFP presented in Section 5.

3.1 T he C FP A lgorithm

This section describes the details of the feature partitioning algorithm used
by CFP. Learning in CFP is accomplished by storing the objects separately in
each feature dimension as disjoint partitions of values. A partition is the basic
unit of representation in the CFP algorithm. For each partition, lower and
upper bounds of the feature values, the associated class, and the number of
instances it represents are maintained. The CFP program learns the projection
of the concepts over each feature dimension. In other words, the CFP learns
partitions of the set of possible values for each feature. An example is defined as
a vector of features values plus a label that represents the class of the example.

Initially, a partition is a point (lower and upper limits are equal) on the line
representing the feature dimension [38]. For instance, suppose that the first ex­
ample Cl of class C\ is given during the training phase (Fig. 3.1.a). If the value

21

CHAPTER 3. LEARNING WITH FEATURE PARTITIONS 22

a)

b)

c)

d)

T W S i
i C (1)
i

1 ®2'

C / 2) 1
55̂ !WS!5=!W5̂

X
1

r ^ 3 - K r ^ 3 '

X2

e = C }
3 ,class 1 *

1 S < 3)

C , (4)

--- f

4 4 , f 4 " 4,class r

I 2̂ ■ ^

e)

■ e :{e, 7= > ®c , = Q); 5 5 , f 5 5,class 2

q (n) C / m)

c ^ d)
q (1 . 3 7) C 2 (l) C /2 .6 3)

Figure 3.1. Partitioning of a feature dimension

CHAPTER 3. LEARNING WITH FEATURE PARTITIONS 23

of Cl for feature f is x \, that is e i j = X\ then the set of possible values for fea­
ture / will be partitioned into three partitions: < [—00, Xi\^undetermined, 0 >,
< [xi, a;i], Cl, 1 >, < [xi, og], undetermined, 0 >; where the first element of the
triple indicates the range of the partition, the second its class, and the third,
called the representativeness value, the number of examples represented by the
partition.

A partition can be extended through generalization with other neighboring
points in the same feature dimension. The CFP algorithm pays attention to the
disjointness of the partitions to avoid over-generalization. In order to generalize
a partition in feature / to cover a point, the distance between them must be
less than a given generalization limit (Dj). Otherwise, the new example is
stored as another point partition in the feature dimension / . Assume that the
second example 62 is close to e\ (i.e., |xi — X2I < Dj) in feature / and also of
the same class. In that case the CFP algorithm will generalize the partition
for Xi into an extended partition < [xi,X2],C i,2 > which now represents two
examples (see Fig. 3.1.b). Generalization of a range partition is illustrated in
Fig. 3.1.d.

If the feature value of a training example falls in a partition with the same
class, then simply the representativeness value (number representing the ex­
amples in the partition) is incremented by one (Fig. 3.1.c).

If the new training example falls in a partition with a different class than
that of the example, the CFP algorithm specializes the existing partition by
dividing it into two subpai'titions and inserting a point partition (corresponding
to the new example) in between them (see Fig. 3.1.e, f). When a partition is
divided into two partitions, it is important to distribute the representativeness
value of the old partition to the newly formed partitions. The CFP distributes
the representativeness of the old partition among the new ones in proportional
to their sizes. For instance, the representativeness value of the newly formed
partitions in Fig. 3.1.e will be

n = 4 X

m = 4 X

X5 -
X4 — Xl ’

X4 - xs
X4 — Xl

For instances, if X4 — xi = 6.7 and X4 — X5 = 4.4, then n = 1.37 and m = 2.63.

CHAPTER 3. LEARNING WITH EEATURE PARTITIONS 24

train(Training Set):
begin

foreach e in Training Set
foreach feature /

if class of partition(/, e/) = Cdasa
th en Wf = (1 + A)w f
else Wf = (1 — A)w /

update-feature-parti tioning(/ , e /)
end

Figure 3.2. Training algorithm of the CFP

In terms of production rules, the partitioning in Fig. 3.1.f can be represented
as:

i f e j > X i and e/ < X5
then ^claaa ~ C \

i f e j = X 5

then ^claaa ~ C \

i f 6 f > X 5 and C f < X 4

then ^claaa ~ C \

The CFP algorithm pays attention to the disjointness of the partitions.
However, partitions may have common boundaries. In this case the repre­
sentativeness values of the partitions are used to determine class value. For
example, in Fig. 3.1.f at e/ = X5, three classes Ci, C2 and Cz are possible,
but since the total representativeness of the class C\ is 4 and that of the other
classes is 1, the prediction for the feature f \s C\.

The training process in CFP algorithm has two steps: learning of feature
weights and feature partitions (Fig. 3.2). For each training example, the pre­
diction of each feature is compared with the actual class of the example. If
the prediction of a feature is correct, then the weight of that feature is incre­
mented by A (global feature weight adjustment rate) percent; otherwise, it is
decremented by the same amount.

CHAPTER 3. LEARNING WITH FEATURE PARTITIONS 25

prediction(e):
begin

VOtCc = 0
foreach feature /

c = class of partition(/, e/)
votcc = vottc A

return class c with highest votCc·
end

Figure 3.3. The Prediction process of CFP

The prediction in the CFP is based on a vote taken among the predictions
made by each feature separately (Fig. 3.3). For a given instance e, the predic­
tion based on a feature / is determined by the value of e/. If e/ falls properly
within a partition with a known class then the prediction is the class of that
partition. If 6/ falls in a point partition then among all the partitions at this
point the one with the highest representativeness value is chosen. If e/ falls
in a partition with no known class value, then no prediction for that feature
is made. The effect of the prediction of a feature in the voting is proportional
with the weight of that feature. All feature weights are initialized to one before
the training process begins. The predicted class of a given instance is the one
which receives the highest amount of votes among all feature predictions.

Fig. 3.4 shows an example of classification process of the CFP on a domain
with four features and two classes. Assume that the test example e has a class
value Cl and features values are xi, X2, X3, and X4 respectively. The prediction
of the first feature is Ci. The second feature predicts undetermined as a class
value. The prediction of the third and fourth features are C2· The fourth
feature value X4 of e falls into two partitions. In this case the representativeness
values are used to determine the class value (e.g., C2 partition has greater
representativeness value than Ci partition, so that prediction of the fourth
feature is C2)· Final prediction of the CFP depends on the values of the
feature weights (r/;,’s). If wi > (103 + W4) then CFP will classify e as a member
of Cl class which is a correct prediction. Otherwise, CFP predicts the class of
the e as C2, which would be a wrong prediction.

The second step in the training process is to update the partitioning of
each feature using the given training example (Fig. 3.5). If the feature value

CHAPTER 3. LEARNING WITH FEATURE PARTITIONS 26

|e:<Xi,X2,X3,X4:Ci>

I f s | ii i III lllllllllllil i l i H 1’"'------- I II

i i iiiiliji i i I ·

Figure 3.4. The Classification process of CFP

of a training example falls in a partition with the same class, then simply
its representativeness value is incremented. If the new feature value falls in
a partition with a different class than that of the example and this partition
is a point partition, then a new point partition (corresponding to the new
feature value) is inserted next to the old one. Otherwise, if the class of the
partition is not undetermined, then the CFP algorithm specializes the existing
partition by dividing it into two subpartitions and inserting a point partition
(corresponding to the new feature value) in between them. On the other hand,
if the example falls in an undetermined partition, the CFP algorithm tries to
generalize the nearest partition of the same class with the new point. If there
exist a partition with the same class in D/ distance, then it is generalized to
cover the new feature value. Otherwise, a new point partition that corresponds
to the new feature value is inserted.

In order to illustrate the form of the resulting concept descriptions learned
by the CFP algorithm, consider a domain with two features / i and / 2. Assume
that during the training phase, positive (+) instances with /j values in [arn, X12]
and /2 values in [3:23, 3:24], and negative (—) instances with /1 values in [3:13, 3:14]
and /2 values in [3:21,^ 22] are given. The resulting concept description is shown

CHAPTER 3. LEARNING WITH FEATURE PARTITIONS 27

update-feat ure-partitioning(/, ey):
begin

if class of partition(/, ey) = edasa
increment representativeness value of partition(/, ey)

else {different class}
if partition(/, ey) is a point partition

insert-new-partition(/, ey)
else {partition(/, ey) is a range partition}

if class of partition(/, ey) is not undetermined
subdivide-partition(partition(/, ey), ey)

else (try to generalize}
if the nearest partition to left or right in Df distance
has the class edass

genera,\ize{partition,e y)
else {there is no partition in Dj distance with the
same class as e}

insert-new-partition(/, ey)
end

Figure 3.5. Updating a feature partition

in Fig. 3.6.

For test instances which fall into the region [—oo, Xn][a:23, X24], for example,
feature /1 has no prediction, while feature /2 predicts as class (-|-). Therefore,
any instance falling in this region will be classified as (-|-). On the other hand,
for instances falling into the region [—00, 00, X2i]> for example, the CFP
algorithm does not commit itself to any prediction.

If both features have equal weight (wi = IV2) then, the description of the
concept corresponding to the class -|- shown in Fig. 3.6 can be written in 3-DNF
as:

class d-:

(aJii < /1 & /1 < x \2 & /2 < 2:21) or
(a:ii < /1 & /1 < x \2 & /2 > 2:22) or
{x23 < /2 & /2 < X24 & /1 < â is) or
{X2Z < /2 & /2 < X24 & /1 > Xu)

More compactly:

CHAPTER 3. LEARNING WITH FEATURE PARTITIONS 28

Tie
Undetermined

EZZZZZZZl·
X X13 - 14

Figure 3.6. An example concept description in a domain with two features

class +:

[(a^ii < fi < xn) & (/2 < X21 or X22 < /2)] or

[{.X23 < /2 < X24) ^ ifi < a:i3 or < /1)]

Similarly, the description for the negative examples can be written as:

class — :

[(a:i3 < / 1 < 3:14) & (/2 < X23 or 0:24 < /2)] or

[(3̂ 21 < /2 < X22) & i f i < x n or X12 < /1)]

The CFP does not assign any classification to an instance if it could not
determine the appropriate class value for that instance. This may result from
having seen no instances for a given set of values or having a tie between two or
more possible contradicting classifications. In case of different weight values for
the features, the ties are broken in favor of the class predicted by the features
with the highest weights during the voting process (with equal feature weights,
it corresponds to the majority voting scheme of feature predictions).

CHAPTER 3. LEARNING WITH FEATURE PARTITIONS 29

If wi > w-i then the ties will be broken in favor of /1 during the voting
process. In that case the concept description of the class + will be as follows.

class +:

[®11 < / 1 < X12] or

[{X2 3 < /2 < 3:24) (/1 < X l3 o r X i 4 < / 1)]

The description of the class — will be as follows.

class —:

[a;i3 < /1 < 3:14] or
[{X2i < /2 < X22) & (/1 < ®11 or X12 < / 1)]

Similarly, if > Wi then the ties will be broken in the favor of /2 during
the voting process. In that case the concept description of the class + will be
as follows.

class +:

[3̂ 23 < /2 < 3:24] or
[(3;n < /1 < 3:12) k (/2 < X21 or 0:22 < / 2)]

Similarly, the description for the negative examples can be written as:

class —:

[3;21 < /2 < X22] or

[(3;i3 < / 1 < 3:14) k (/2 < 0:23 or X2A < /2)]

Having described the basic CFP algorithm, we will now describe several
extensions. These extensions are the noise tolerant version, parallelized ver­
sion, and the version that uses a genetic algorithm to determine the domain
dependent parameters of the CFP algorithm.

CHAPTER 3. LEARNING WITH FEATURE PARTITIONS 30

3.2 A noise tolerant version o f the CFP

There are several types of noise that may exist in a data. One possible type
of noise is the classification noise. Here the attribute values of an instance
represent a valid point in the instance space, however the associated classifica­
tion is incorrect. In order to cope with this type of noise one must be able to
differentiate misclassified instances from correctly classified ones.

This section presents an extension to the CFP algorithm to remove the
partitions that are believed to be introduced by noisy instances. A new pa­
rameter, called confidence threshold (or level) (CT), is introduced to control
the process of removing the partitions from the concept description. The con­
fidence threshold and observed frequency of the classes are used together to
decide that a partition is noisy. The CT is also a domain dependent parameter
of the CFP.

Partition removing operation is used as a background operator and is ac­
tivated when specialization of a partition is performed. Thus, this operation
is simple and does not introduce additional computational cost to the train­
ing process. If the new training example falls in a partition with a different
class than that of the example in a feature, the CFP algorithm specializes the
existing partition by dividing it into two subpartitions and inserting a point
partition, corresponding to the new example, in between and distributes the
representativeness value of the old partition to the newly formed partitions. If
the representativeness values of any of the resulting subpartitions drop below
the confidence threshold times the observed frequency of its class, then that
subpartition is removed from partition list of the feature.

Depending on the noise level of the data set and the number of the irrelevant
attributes, the value of the confidence threshold changes between 0 (do not
remove any partition) and 1 (remove a partition if its representativeness value
drops below the observed frequency of the its class).

The confidence threshold is used to improve accuracy of the CFP and also
to reduce the memory requirement. Empirical evaluation of the confidence
threshold and other domain dependent parameters of the CFP on artificially
generated data sets are given in Chapter 4.

CHAPTER 3. LEARNING WITH FEATURE PARTITIONS 31

3.3 Parallelization o f the CFP

Achieving speed-up through parallelism on multicomputer architectures on
multicomputer architectures is not straightforward. An algorithm must be
designed so that both computations and data can be distributed to the pro­
cessors in such a way that computational task can be run in parallel. The
computational load should be balanced as much as possible. Communication
between processors, in order to exchange data, must be considered as part of
the algorithm design. Unless parallel algorithms reduce both the number and
the volume of the interprocessor communication through problem partitioning
with judicious use of communication, the benefits of parallel processing can be
easily offset by the communication overhead.

If we consider the above issues, the CFP algorithm is naturally suitable for
parallel implementation. Since, the CFP learns one feature at a time, it is very
natural for mapping the training process to parallel architectures. A parallel
algorithm can be developed to learn feature partitions in any fixed number of
dimensions. The formal analysis of the parallelization of the CFP is presented
in Section 4.1.

The main problem in the pai'allel implementation of the CFP is load­
balancing. If the CFP constructs small number of partitions for some features
and too many partitions for others, then the utilization of the processors, corre­
sponding to the features with small number of partitions, will be low. However,
if number of the partitions on each feature dimensions are nearly equal, then
parallelization will result in high efficiency.

3.4 T he G A -C FP A lgorithm

Kelly and Davis have developed a hybrid genetic algorithm for the K Nearest
Neighbors (KNN) classification algorithm [22]. Their algorithm, called the GA-
WKNN (for Genetic Algorithm with Weighted K Nearest Neighbor), combines
the optimization capabilities of a genetic algorithm with the classification capa­
bilities of the weighted KNN algorithm (WKNN). The goal of the GA-WKNN
algorithm is to learn a feature weight vector which improves the common k
nearest neighbor algorithm.

CHAPTER 3. LEARNING WITH FEATURE PARTITIONS 32

a) D D/ 2 D

Chromosome Length

b) D D/ 2 D A n+I

c) q Ц D Cl n+l

d) D D/ 2 D CT A n + 2

e) D D/ 2 D» I W. w 2n

q ц Dn / w CT 2n +I

Figure 3.7. Parameter encoding schemes of the GA-CFP

This section describes a hybrid system, called GA-CFP,^ which combines
a genetic algorithm with the CFP algorithm. The GAUCSD 1.4 genetic algo­
rithm package [36] is used to implement the GA-CFP algorithm. The standard
operators of genetic algorithms were used, namely, reproduction, crossover and
mutation [14]. The chromosomes are treated as rings and crossover is done by
exchanging the sections between two ci'ossover points. The genetic algorithm
is used to determine the domain dependent parameters of the CFP algorithm.
It is a difficult problem to find an optimum setting of these parameters. Em­
pirical results of the GA-CFP are presented in Chapter 4. These results show
that the genetic algorithm was able to find good setting for these parameters.
They are good in the sense that they outperform the cases where the feature
weights are identical, the generalization limits are set to two extremes, and the
confidence threshold is set to zero.

We investigated six different parameter encoding schemes with GA-CFP
shown in Fig. 3.7. In Fig. 3.7 Dj and wj represents the generalization limit
and weight of the / th feature respectively. A represents weight adjustment

preliminary version of this implementation appeared in [17].

CHAPTER 3. LEARNING WITH FEATURE PARTITIONS 33

rate and CT represents confidence threshold. The basic difference between
these encoding schemes is that the learning of the parameters is achieved by
GA or set by the user, consequently size of the search space of the GA-CFP dif­
fers. Chromosomes are vectors of real-valued, and represents feature weights,
generalization limits, and confidence threshold depending on the employed en­
coding scheme. Each chromosome is a vector of decimal numbers between 0
and 1 inclusive. A vector value is associated with the weight, the generalization
limit for each feature, and confidence threshold. Thus the length of the vector
changes between n and n -|-1 on a domain with n features.

In all encoding schemes, generalization limits are learned by GA. Fig. 3.7.a
illustrates a chromosome of the GA-CFP, in which generalization limits are
learned by GA, while A and CT are set by user. A vector value is associ­
ated with the generalization limit for each feature. Thus the length of the
vector is equal to the number of features. With encoding scheme illustrated
in Fig. 3.7.b A is also learned by the GA. On the other hand, in Fig. 3.7.c
confidence threshold is learned by the GA and A is set by user. In both en­
coding schemes, the length of the chromosome is the number of features plus
one. Fig. 3.7.d illustrates another encoding scheme, where both A and con­
fidence threshold are learned by the GA with chromosome length number of
features plus two. Fig. 3.7.e illustrates another encoding scheme where feature
weights are learned by the GA directly and used by CFP. With this encod­
ing scheme incremental learning of the feature weights is not employed by the
CFP. Most general encoding scheme is shown in Fig. 3.7.f in which, in ad­
dition to the feature weights, the confidence threshold is also learned by the
GA. Thus length of the vector is twice the number of features plus one. This
encoding scheme achieves the best accuracy among the others. When learning
the feature weights using A increment the CFP can not find the intermediate
values between the A increments, whereas GA-CFP can find those values. The
tradeoff is that, this encoding scheme doubles the size of the search space, so it
requires more trials to find the good setting of the parameters. If application
domain has many attributes encoding scheme 6,c, or d can be used with GA-
CFP. Empirical results indicate that CFP is not very sensitive to the changes
in these parameters. Reasonable settings can be found by trial and error.

The initial population of chromosomes in each run of the GA-CFP algo­
rithm was randomly generated. The fitness function used to evaluate the chro­
mosomes is the accuracy of the CFP algorithm with the weights, generalization
limits, and confidence threshold encoded in the chromosome (see Fig. 3.8). In

CHAPTER 3. LEARNING WITH FEATURE PARTITIONS 34

CFP(Training Set, Test Set):
begin

{ train }
foreach e in Training Set

foreach feature /
update-feature-partitioning(/, ey)

{ test }
correct-count = 0
foreach e in Test Set

P=prediction(e)
if P = = Cc/oas then

increment correct-count
re tu rn correct-count / Test Set size

end

Figure 3.8. The CFP fitness function of the GA-CFP

order to compute the fitness value of a chromosome, the CFP algorithm is
trained with the examples in the training set using the feature weights, gener­
alization limits, and confidence threshold then tested with the examples in the
test set. The fitness value is computed as the ratio of the correctly predicted
test examples to the size of the test set.

In Chapter 4 the performance of the CA-CFP is tested with various real-
world data sets and compared with I’egular CFP and other similar algorithms.
Although the results of the CA-CFP algorithm are better than other classifi­
cation systems, the use of a genetic algorithm is costly. The computation of
the fitness function requires the execution of the CFP algorithm several times
due to the cross-validation method. However, an important characteristic of
the feature weight and generalization limit parameters of the CFP algorithm is
that these parameters are domain dependent. Therefore, the genetic algorithm
can be used only with a portion of all the data available. As an experiment,
the CA-CFP system was trained with only 1/10, 1/5, 1/4, 1/3, 1/2, 2/3, and
3/4 of the Iris data set, which contains 150 instances. Then, the accuracy
of the CFP algorithm was measured on the complete set of data using the
parameter settings learned by the CA-CFP (Fig. 3.9). The cross-validation
method was used in the test of CFP. For example, 0.92 is the average of 10
runs in each of which a disjoint set of 1/10 of the data is used with CA-CFP

CHAPTER 3. LEARNING WITH FEATURE PARTITIONS 35

Figure 3.9. Learning curve of domain dependent parameters

and the remaining 9/10 in the test with CFP. In determining the fitness value
of a chromosome, to avoid the dependency on the order of the examples in the
data set, leaving-one-out cross-validation method is used. For example, in the
run with 1/10 (15 examples) of data, the fitness value of a chromosome is the
average of 15 runs of the CFP with the parameters it encodes; in each run 14
examples were used in training and the remaining one in the test.

It is clear from these experiments that the genetic algorithm can determine
a very good set of domain dependent parameters of the CFP, even when trained
with a small portion of the data set. Obviously, the larger portion of the data
is used, the better parameters are found.

An algorithm that hybridizes the classification power of the feature par­
titioning CFP algorithm with the search and optimization power of the ge­
netic algorithm is presented. The resulting algorithm GA-CFP requires more
computational capabilities than the CFP algorithm, but achieves improved
classification performance in reasonable time. Experimental results indicate
that in many real-world domains the GA-CFP algorithm outperforms other
classification techniques such as IBL, C4.5, and GA-WKNN.

We have also noticed that the genetic algorithm can be trained with only a
small portion of the data to learn the domain dependent parameters of the CFP
algorithm with satisfactory prediction accuracy. We anticipate that extensions
to the research will improve the algorithm’s performance.

CHAPTER 3. LEARNING WITH FEATURE PARTITIONS 36

3.5 L im itations o f the CFP

The CFP learns a partitioning of values for each feature of the application
domain. The CFP algorithm is applicable to concepts where each feature, in­
dependent of other features, can contribute to the classification of the concept.

This approach is a variant of algorithms that learn by projecting into one
feature dimension at a time. For example, ID3 learns in that greedy manner
while building a conjunction. The novelty of CFP is that it retains a feature-by-
feature representation and uses a voting scheme for categorization. Algorithms
that learn by projecting into one dimension at a time are limited in their ability
to find complex concepts.

3.5.1 N onrectangular Concept D escriptions

Each partition represents two (one if lower and upper values of the partition
are equal) parallel surfaces (hyperplanes) in the description space; these are
orthogonal to the axis of the partition and parallel to all other axes. Conse­
quently, the regions constructed by the CFP are disjoint hyperrectangles.

When actual class regions are not hyperrectangles, the best that CFP can
do is to approximate the regions by small hyper rectangles. This is illustrated^
in Fig. 3.10 by artificial data in which 50 instances of two classes (repre­
sented by — and -|-) are described by two continuous attributes FI and F2,
respectively. Here, the class symbols of range partitions are shown above/right
of the corresponding partition, class symbol of point partitions (exceptions)
are shown below/left of the point. Since the instances are symmetrically dis­
tributed in the feature space and the weight of the features are close to each
other as expected. For higher values of FI class -|- will be predicted and for
higher values of F2 class — will be predicted.

^Fig. 3.10 is a snapshot of the program called ’’show concepts” which is developed to
visualize the example points and constructed partitions on a two-dimensional plane.

CHAPTER 3. LEARNING WITH FEATURE PARTITIONS 37

3.5.2 O verlapping Concept D escription Projections

CFP learns by projecting into one feature dimension at a time. Therefore,
it loses the n-dimensional information of the description space. Fortunately,
this weakness is compensated with the voting scheme and yields significant
reduction in the learning complexity and memory requirement of the CFP.

If the projections of concepts on feature dimensions do not overlap, then
the CFP will classify an instance with a high confidence. However, in some
circumstances, e.g., in the nested concept description, this may not hold. This
is illustrated in Fig. 3.11 on artificial data set in which 100 instances of two

CHAPTER 3. LEARNING WITH FEATURE PARTITIONS 38

classes (represented by — and +) are described by two continuous attributes
FI and F2, respectively. Instances falling into the region < [4,7], [4, 7] > will
be correctly classified, because this region contains 50 instance of class —.
The reset of the feature space contains 50 instances of class +. Consequently,
the representativeness value of the class — partitions will be greater than the
class + partitions. Therefore, the nested concept will be correctly identified.
However, for example, the instances falling into the region < [4, 7], [1,4] > be
classified as class — (since wi > W2).

In some cases, even when concepts descriptions are not nested, the projec­
tion of the concept descriptions overlap. This is illustrated in Fig. 3.12 and

CHAPTER 3. LEARNING WITH FEATURE PARTITIONS 39

Figure 3.12. An example of overlapping projection of concept descriptions

Fig. 3.13 on artificial data in which 80 and 60 instances respectively, of two
classes (represented by — and +) are described by two continuous attributes FI
and F2. In Fig. 3.12 the instances are symmetrically distributed in the feature
space and the weights of the features are close to each other as expected.

An example of partially overlapping projection of concept descriptions is
shown in Fig. 3.13. This artificial data set contains 60 instances which are
members of class + or class —. The CFP algorithm constructs two range par­
titions for the non-overlapping projections of the class —. Therefore, the CFP
will correctly classify the class - examples. However, both projections of the

CHAPTER 3. LEARNING WITH FEATURE PARTITIONS 40

class -f are overlapping with class — projections. Therefore, the classifica­
tion of class + examples depends on representativeness values of constructed
partitions for that part of the feature space.

3.5.3 D om ain D ependent Param eters o f th e CFP

The CFP uses ferture weights to cope with unequally relevant attributes. In
the CFP the feature weights are dynamically adjusted according to the global
weight adjustment rate (A), which is an important parameter for the predictive
accuracy of the algorithm. The generalization process of the CFP is controlled
by the generalization limits for each feature. Another important component of
the CFP is the confidence threshold {CT) parameter, which controls the process
of removing the partitions that are believed to be noisy from the concept
description. The A, Dj, and CT are domain dependent parameters of the
CFP, and their selection affects the performance of the algorithm. Determining
the best values for these parameters is an optimization problem for a given
domain. Fortunately, this problem is solved by GA-CFP algorithm as explained
in Section 3.4.

CHAPTER 3. LEARNING WITH FEATURE PARTITIONS 41

tions

Chapter 4

E valuation o f the C F P

This chapter presents theoretical and empirical analysis of the CFP algorithm.
From the viewpoint of empirical research, one of the main difficulty in com­
paring various algorithms wliicli learn from examples is the lack of a formally
specified model on wliieli tlie alguritlims may lx* (waluated. Typically, differ­
ent learning algorithms and theories arc givini together with examples of their
performance, but without a precise definition of learnabiliiy, it is difficult to
characterize the scope of applicability of an algorithm or analyze the success
of different approaches and techniques.

Informally speaking, a concept is a subset of the objects in a predefined
domain and the problem of learning a concept from examples is the following:
Given some examples for an unknown concept and/or some prior information
on it, compute a good approximation to the concept. The concept for which
examples are provided is known as target concept [26].

4.1 T heoretical Evaluation of the CFP

This section presents an analysis of the Cl'd* algorithm' with respect to PAC-
learning theory [41]. Valiant introduced this theory in 1984, by taking some
simplified notions from statistical pattern recognition, decision theory, and
combining them with approaches from computational complexity theory, he
came up with a notion of learning problems that are feasible in the sense that
there is a polynomial time algorithm that solves them. Valiant was successful

preliminary version of this section will appear in [16].

42

CHAPTER 4. EVALUATION OF THE CEP 43

in his efforts. Since 1984 many theoretical computer scientists and AI re­
searchers have either obtained results in this theory, or criticized about it and
proposed modified theories, or both [20]. The intent of the PAC (Probably Ap­
proximately Correct) model is that successful learning of an unknown target
concept should entail obtaining, with high probability, that it is a good approx­
imation of the concept. In the basic model, the instance space is assumed to be
{0, 1}", the set of all possible assignments to n binary variables (or attributes).
Concepts and hypotheses are Niibset of {0,1}". The notion of approximation is
defined by assuming thal tlmr«! is some probability distribution D defined on
the instance space {0,1}", giving the probability of each instance. Then the
error of hypothesis h with respect to a fixed target concept c is defined as:

error(h) = V D{x).
xEhAc

where Д denotes the symmetric difference. Thus error(h) is the probability
that h and c will disagree on an instance drawn randomly according to D. The
hypothesis Л is a good approximation of the target concept c, if error(h) is
small.

How does one obtain a good hypothesis? In the simplest case one does this
by looking at independent random examples of the target concept c [5]. Each
example consists of an instance selected randomly according to D and a label
that is -f {positive exampli·) if tliat instance is in the target concept c, otherwise
— {negative example). 'IVninlng nnd testing plias<*s n.se the same distribution
of examples, and there is no поЫе in either phase.

The two criticisms most often leveled at the РАС model by AI researchers
interested in empirical machine learning are (1) the worst-case emphasis in the
model makes it unusable in practice, and (2) the notions of target concepts and
noise-free training data are too restrictive in practice [18, 26]. Some extensions
are proposed to the original PAC-model to handle the noisy sample data [3, 20].
These extensions preserve th<‘ gc'iierality of the PAC-model, and do not make
any assumptions on the nature of the noise.

Since the classification in the CFP is based on a voting taken among the
individual classifications of each attribute, it can learn a concept if each at­
tribute, independently from other attributes, can be used in the classification.
We will define what we mean by “learning” in a way that preserves the spirit
of the Valiant’s definition of h'arnability, but modifies it for the voting based

CHAPTER 4. EVALUATION OF THE CEP 44

classification used in the CFP. In order to do this we will first determine the
sample complexity^ that is the minimum number of examples required to learn
a given concept. Then, using this sample complexity, we will derive the train­
ing complexity of the CFP algorithm. In the following analysis we assume that
all feature values are normalized to the interval [0,1], and features are equally
relevant that is they have equal weights.

Definition. Let X be a subset of with a fixed probability distribution
and d is positive integer less than or equal to n. A subset 5 of X is an
< £, 7 , d > —net for A' if, for Jill x in A', with probability greater than 7 , there
exist an s in 5 such that — ;r/| < e at least for d values of / (1 < / < n).

Lem m a 1. Let e, S, and 7 be fixed positive numbers less than one and
d is positive integer less than or equal to n. A random sample S containing
m > (f l /e] /7) X (nln2 + ln ([l/e]/d)) instances, drawn according to any
fixed probability distribution from [0, Ij”, will form an < £, 7 , d >-net with
confidence greater than 1 — d.

Proof. We prove this lemma by partitioning the unit interval for each
feature dimension, into k equal length sub-intervals, each with length less than
£, such that all pairs of points^ in the sub-interval are within e distance of each
other. The idea of the proof is to guarantee that, with high confidence, at least
for d dimensions out of n, each of k sub-intervals contains at least one point of
m instances, with sufficient probability.

Let k = [l/e], Sij lx* tlx* set of sub-intervals with probability greater or
equal to j / k and 82/ be the set of remaining sub-intervals of a dimension
/ . The probability that an nrhitrary point in [0, I] will not lie in a selected
sub-interval of S i/ is (1 — 'y/k). The probability that none of the m sample
points will lie in a selected sub-interval of Si/ is (1 — 'y/k)”̂ . Therefore, the
probability that any sub-interval of Si/ is excluded by all m instances is at
most p = A:(l — 'y/k)^.

The probability that, for more than n - d dimensions, any sub-interval of
^ I’s are excluded by all m instances is at most ^"=„-¿+1 C{n,i)p\^ To make
sure that this probability is small, we force it to be less than 6, that is,

Op ' <
t=n—d-f-1

point here represents the value of an instance for a feature for that dimension.
^C{n, r) represents the number of combinations of r objects out of n.

CHAPTER 4. EVALUATION OF THE CEP 45

Recall the binomial theorem: {a + 6)” = IZ"=o 0^'^"”'· With a = p and
 ̂ = 1, H"=o e'en, i)p' = {p + 1)”. Since n is a positive integer, (p + 1)” — 1 =

Hr=i C'(n, ¿)p’ and it is gre;ater than C (n,i)p \ our requirement can
be written as

(p + 1)” - 1 < 6.

On the other hand, (1 — < e“”*'''/*' and, since the value of p is greater
than zero and less than one, 2"p > (p + 1)" - 1. If we solve the requirement

< 6, for m, and substitute fl/e] for Ar, it yields

m > \l/e \/ '^ X (n In 2+ ln((’l/e]/^)).

Consequently, with confidence greater than 1 — <5, each sub-interval in S \f
of d or more dimensions, contiiins some sample point of cin instance of S. □

T heorem 1. Let £, <3, and 7 be fixed positive numbers less than one and a
sample set S with n features. If of features of the elements of S form an
< e, 7 , >-net then, the CFP algorithm with equal feature weights and
generalization limit Dj > 2e for all features, will learn a concept C for S with
confidence 1 — (3.

Proof. Since, the CFP algorithm does not use a distance metric for classi­
fication, the idea of the proof is to ensure that the CFP can construct e length
partitions with high confidence so that at least one of the m sample instances
lies in each sub-intervals of features with sufficient probability. The CFP
algorithm employs a majority voting scheme in the classification. Hence, only
d = of the features must agree on the classification. If we follow the
proof of the Lemma f, if S form an < £,7 , d >-net, then it guarantees that
each sub-interval contains at least one instance of S with high confidence. The
CFP algorithm will geii<M’ali/<· two points into one partition, if the distance
between them is less than or ('(pial to Dj. 'riKirefore, if Dj > 2e then the
points will be generalized into one partition, corresponding to a projection of
the concept on that feature. □

T heorem 2. Let e, <3, and 7 be fixed positive numbers less than one. If
random sample S with n features forms an < £,7 , >-net with confi­
dence greater than 1 — (3, then CFP with Dj > 2e constructs at most n \\!e \
partitions.

CHAPTER 4. EVALUATION OF THE CEP 46

Proof. Since 5 is an < £,7 , >-net with with confidence greater than
1 — S, each feature line is divided in to e length sub-intervals and each one
contains at least one sample point and the CFP algorithm constructs at most
one (due to Df > 2e) partition for each sub-interval. Thus, for n features, the
CFP constructs at most n[l/£] partitions. □

Theorem 3. Let £, S, and 7 be fixed positive numbers less than one. If
random sample S' is an < £,7 , >-net with confidence greater than 1 — i,
then classification complexity of the CFP with Dj > 2e is 0 (n log(fl/£])) aird
the training complexity is for m sample instances is 0 (mn log([l/£])) .

Proof. Proof of the Theorem 2 shows, that the CFP constructs at most
fl/£] partitions for each feature. In the CFP algorithm the classification is
composed of a search and a voting. The complexity of the search operation
is 0(log((l/£])) for each feature. Since the complexity of voting is 0(n), the
classification complexity of the CFP algorithm is 0{n log([1/fi])) for n features.
Consequently, with m training instances, the training complexity of the CFP
algorithm is 0 (mn log([l/£])). □

The analysis of the CFP shows that, it is applicable to a large class of
concepts, and requires small number of examples (m > f l /£]/7 x (nln 2-j-
In ((’!/£]/¿)) examples) and a small amount of memory (n[l/£] partitions)
to learn a given concept, compare to many other similar algorithms. Another
outcome of the analysis is that, the CFP has a lower learning complexity (
0{m n log([l/£]))) than other similar techniques. For example, sample com­
plexity of the IBl is m > |’-y/n/£]”/ 7 X (ln([>/n/£]"/i)). IBl stores all the
training instances (m instances). Therefore, the training complexity of the IBl
is 0{nw?) for m training instances [1].

The classification process in exemplar-based learning algorithms which use
some form of the nearest neighbor algorithm (such as EACH and IBL) involves
computing the Euclidean distance (or similarity) of the instance to each stored
exemplar in each dimension. If M exemplars are stored in the memory, and n
features are used, then the complexity of the classification is 0{nM). On the
other hand, since the partitions are naturally sorted for each feature dimen­
sion, the classification process in the CFP algorithm is only 0 (n log M), which
significantly reduces the classification complexity.

Another important feature of the CFP algorithm is its low memory re­
quirement. Since, the CFP learns each feature partition independently of the

CHAPTER 4. EVALUATION OF THE CEP 47

others, number of partitions for <>acli feature may be different. If appropriate
Dj generalization limits are dios<!ii, CFP may significantly reduce the memory
requirement. The selection oi Dj values is domain dependent, and it is an
optimization problem.

The CFP algorithm is naturally suitable for parallel implementation. Since,
the CFP learns one feature at a time, it is very natural for mapping the training
process to the parallel architectures. A parallel algorithm can be developed to
learn feature partitions in any fixed number of dimension.

T heorem 4. Let e, and 7 be fixed positive numbers less than one.
If random sample S is an < £,7 , >-net with confidence greater than
1 — then classification complexity of the CFP, with Dj > 2e and using n
processors, is O(log(fl/e])) and the training complexity for m sample instances
is 0 (m log([l/£])) .

Proof. Proof of the '̂ rii<H)i<*m 2 shows, that the CFP constructs at most
[1/e] partitions for each feiitiirr. In CFP algoritlim the classification is com­
posed of a search and a voting. 'I'hc complexity of the search operation is
O(log([l/e])) for each feature. Since, the CFP learns feature at a time, search
of the each feature dimension can be done in parallel. Training process does
not require voting, because in the training process each feature needs a local
feedback. However, the result of the voting can be used as a global feedback.
Hence, the classification complexity of the CFP algorithm is O(log([l/e])) for
n processors. Consequently, with m training instances, the training complexity
of the CFP algorithm is 0 (7/ilog([l/e])). □

4.2 Em pirical Evaluation of the CFP

This section presents the experimental results of the CFP and GA-CFP algo­
rithms. Both algorithms are ti'stixl on widely used real data sets and also on
artificially generated data sets. The use of the artificially generated data sets,
allowed me to test the syst<Mii in a more controlled way, while the real data
sets allowed comparisons with other systems.

The fii'st section describes the methodologies used in the experiments. In
the second section, the performance of the CFP and GA-CFP algorithms on
artificially generated data sets are presented. In the artificially generated data

CHAPTER 4. EVALUATION OF THE CEP 48

sets some of the domain variables (such as number of features, number of
examples, amount of noise, unknown attribute values, irrelevant attributes)
are changed to test the Ixihavior of the system under different conditions [24].
In Section 2 the effects of the domain dependent parameters of the CFP are also
investigated under different settings. Third section presents the performance
of the CFP and GA-CFP on real data sets, and comparisons with other similar
systems.

Parameters of the Genetic Algorithm used by GA-CFP: Each run of the
genetic algorithm maintained a population of size 50-100. Crossover (two
point) probability was 0.6 and mutation probability was 0.008. The maximum
number of fitness function evaluations in each GA run changed between 2000
and 8000 depending on the size of the search-space that is, the length of the
chromosomes.

4.2.1 Testing M ethodology

This section briefly describcH tlie methodologies used for testing. In order to
compare the CFP and GA-Cf'P with other learning systems, we used the same
testing methodologies used in the reported results of these systems. These
methodologies are cross-validation, leave-one-out, and average of randomized
runs, we used the same testing methodologies for precise comparison purpose
with the other learning algorithms.

Cross-validation: Cross-validation involves removing mutually exclusive
test sets of examples from the data set. For each test set, the remaining
examples serve as a training set, and classification accuracy is measured as the
average accuracy on all the test sets. The union of the all test sets equals to
the whole data set.

Leave-one-out: The leave-one-out method involves removing exactly one
example from the data and training on the remaining examples and measuring
the accuracy by using that single instance as the test instance. The technique
is repeated for every examph* in tin; data s(4, and accuracy is measured across
all examples.

Average of Randomized Ihms: This method involves selection of randomly
selected training and test sets. Training and test sets are disjoint. The test is

CHAPTER 4. EVALUATION OF THE CEP 49

repeated for a fixed number of times (usually 50 trials). The final result is the
average accuracy across all trials.

4.2.2 E xperim ents w ith Artificial D ata Sets

The success of a learning sysl.i'iii is highly dependent on the ability to cope
with noisy and incomplete! data, an adequate knowledge representation scheme,
having a low learning and sample complexities, and effectiveness of the learned
knowledge [24]. Most of the real-world data sets are incomplete and inconsis­
tent, therefore handling incomplete and inconsistent data is very important.

The ability to form general concept description on the basis of particular ex­
amples is difficult task, especially if examples contain errors or ’’noise”. There
are various types of noise (e.i. classification noise, attribute noise etc.) that
can be found in real-world data sets. Many researchers tackled this problem
[3, 12, 35].

Another type of noise is the unknown (missing) attribute values. In order to
cope with missing attribute values, many techniques were tried. For example,
in [15] additional instances are generated for all possible values of the missing
attribute and rough set theory is used to solve the conflicts. Obviously, this
approach is only applicable to attributes that have finite number of possible
values. However, it is a costly solution to handle unknown attributes values.

Handling irrelevant attributes is another problem that has to be solved by
a learning algorithm. Most of the real-world data sets contain attributes that
are not equally relevant. To test the performance of the CFP algorithm on
domains which have unequally relevant attributes, we introduced additional
(irrelevant) attributes that are randomly generated (uniform between 0 and
100) into the artificial data sets.

The use of the artificially generated data sets allowed me to test the system
in a more controlled way. In the artificially generated data sets, some of the
domain variables (such as number of features, number of examples, amount
of noise, unknown attribute values, irrelevant attributes) are changed to test
the behavior of the system under different settings. These data sets contain
300 examples, with 4 features and 3 classes (100 examples for each class). 240
(80 %) of the examples are used in training and the remaining 60 are used in

CHAPTER 4. EVALUATION OF THE CEP 50

testing. All the results are the average of 50 runs of the randomly selected
training and test sets. The noise free description of the concepts used in the
artificial data are given below:

if [(0 < / i < 2) & (0 < /2 < 2) & (0 < /3 < 2) & (0 < /4 < 2)]
then class 1
if [(0 < /1 < 2) & (0 < /2 < 2) L· (0 < /3 < 2) & (8 < /4 < 10)]
th en class 1
if [(4 < /1 < 6) & (4 < /2 < C) & (5 < /3 < 7) & (4 < /4 < 6)1
then class 2
if [(7 < /1 < 10) & (7 < /2 < 10) L· (2 < /3 < 4) & (2 < /4 < 4)]
then class 3

4 .2 .2.1 Changing Dom ain C haracteristics

This section presents the results of the experiments conducted to compare the
C4.5, CFP, and GA-CFP algorithms, on incomplete and inconsistent data sets.
The graphs in the sequel depict the results of the algorithms by changing the
domain variables such as classification noise, portion of the unknown attribute
values, and the number of in('l('vaiit attributes. The C4.5 results indicate the
accuracy achieved after tree priiniiig. Usually, after pruning C4.5 achieves
better results.

Learning from Noisy Data

Induction of a concept description from noisy instances is a difficult task. Ap­
plicability of a learning algorithm highly depends on the capability of the algo­
rithm handling noisy instances. There are two sorts of noise: (1) classification
noise, and (2) attribute noise. The cause of these errors may be either system­
atic or random. Classification noise involves corruption of the class value of
an instance, and attribute noise involves replacing of the attribute value of an
instance.

Classification noise is more damaging than attribute noise. One of the
reason of this is that corrupting class value does not destroy information but
reverses it. Whereas, corrupting an attribute value tends to leave enough in­
formation in the uncorrupted attributes for ade(|uate learning. Another reason

CHAPTER 4, EVALUATION OF THE CFP 51

0.0 10.0 20.0 30.0
Noise Level (%)

40.0 50.0

Figure 4.1. Comparison of (GA-)CFP, and C4.5 in terms of accuracy, on a
noisy domain

that attribute noise is less damaging is that incorrect attribute values may
sometimes produce correct examples especially when the corruption is in the
less relevant attributes. In other words, chiHsificatioii noise is worse than at­
tribute noise because changing the class value guarantees that an error is in­
troduced, whereas distorting an attribute value may or may not introduce an
error.

Usually, three metrics are used in the comparison of algorithms on noisy
domains: (1) accuracy, (2) memory requirement, and (3) percentage of the
noise in the learned concept description. Classification noise changing from 0
to 50 percent is introduced into these artificial data sets. Attribute noise is not
used because of the reasons mentioned above.

Fig. 4.1 shows the achieved accuracy of the CFP, GA-CFP, and C4.5 al­
gorithms with different amount of classification noise. Results of the GA-CFP
and CFP are superior to the result of the C4.5; and the GA-CFP achieved
better accuracy than CFP. Classification noise changes the domain character­
istics. Consequently, domain dependent parameters of the CFP are changed.

CHAPTER 4. EVALUATION OF THE CEP 52

0.0 10.0 20 .0 30 .0 4 0 .0
Portion o f Unknown Attribute V alues (%)

50 .0

Figure 4.2. Comparison of (GA-)CFP, and C4.5 in terms of accuracy, on a
domain that contains unknown attribute values

GA-CFP was able to find new settings of these parameters.

The confidence level (or Ihrcahold) parameter is introduced into CFP to re­
duce the percentage of noise in the concept description. Depending of the value
of this parameter CFP removes partitions that are believed to be noisy (ac­
cording to number of instance is represented) from concept description. Higher
value of confidence threshold cause removing partitions more aggressively. If
confidence threshold is zero then percentage of the noise in the concept de­
scription is equal to the noise level of the training set.

Unknown Attribute Values

Most of the real-world data sets contain missing attribute values. Many
authors [15, 27, 28, 29] were presented methods for handling unknown attribute
values. Most of the methods are based on the following ideas:

1. Ignoring examples which have unknown attribute value.

2. Assuming an additional special value for unknown attribute values. This

CHAPTER 4. EVALUATION OF THE CEP 53

can lead to an anomalous situation [27].

3. Using probability theory by utilizing information provided by context.

4. Generating additional instances for all possible values of the unknown
attribute [15].

5. Exploring all branches (on decision trees) remembering that some
branches are more probable than others [28].

Although these methods for handling unknown attribute values sound
promising on paper, they give unconvincing results. However, CFP handles
unknown attributes very naturally, since it learns feature-by-feature in the
case of an unknown attriluiU* value it simi)ly ignores processing of that fea­
ture. The performance degradation of the CFP depends on the information
gain of that attribute.

Fig. 4.2 shows the achieved accuracy of the algorithms with different
amount of unknown (missing) attribute values. GA-CFP and CFP achieved
significantly better accuracy than C4.5. These results justify the fact that the
classification performance of decision tree based algorithms depends critically
on any small part of the model.

Another important point is that CFP simply ignores unknown attribute
values which cause reduction in training and testing time. However, C4.5
tries to determine the value of an unknown attribute value using probability
distribution of the known values of an attribute and during testing it tries to
expand all branches of the tree in the case of a test on unknown attribute value
[29], which introduce additional cost in training and testing process.

Learning with Unequally Relevant Attributes

Most of the real-world data sets contains many unequally relevant features.
For example, in the task of learning diagnosis rules for several different diseases
from the medical records of a large number of patients. These records usually
contain more information than is actually required for describing each disease.
Another example was given in [2] which involves pattern recognition tasks in
which feature detectors automatically extract a large number of features for
the learner. Most probably some of these features are not as relevant as the
others[23]. Therefore, a learning algorithm should be able to cope with many
irrelevant (or unequally relevant) features.

CHAPTER 4. EVALUATION OE THE CEP 54

Number o f Irrelevant Attributes
Figure 4.3. Compai’ison of (GA-)CFP, and C4.5 in terms of accuracy on do­
mains with many irrelevant attributes

CHAPTER 4. EVALUATION OF THE CFP 55

The CFP uses feature weiglits (also successfully used in [22, 34]) to cope
with unequally relevant features. In the CFP a feature weight represents the
predictive success of that feature. Consequently, final value of the feature
weight shows the relevance of that feature in the prediction the projection
of concepts on that dimension. With this point of view, the definition of
relevant is slightly different in this context. A feature may be relevant in
the n-dimensional description space. However, in 1-dimensional space it may
be less relevant than other fecvtures, due to overlapping projection of concept
descriptions. This may seem as a weakness of the CFP, but this weakness is
compensated with the voting scheme. One or two features with high feature
weights is sufficient to correctly classify an instance. This claim is justified
with empirical experiments.

Fig. 4.3 shows the achieved accuracy of the algorithms with different
number of the irrelevant attributes. This data set contains 10 % classification
noise, and 10 % of the all attribute values are unknown. The number of
irrelevant attributes changes from 0 to 20.

The GA-CFP achieved robust accuracy for all cases. This shows the power
of the hybrid approach. On the other hand, CFP and C4.5 results are fluctu­
ated. This is due to the randomness of the classification noise, and values of
the irrelevant attributes. Results of the CFP changes about 2 %. However,
results of the C4.5 changes about 5 %.

4.2.2.2 Sensitivity of the CFP to its Domain Dependent Parameters

This section presents the performance of the CFP algorithm, with different
settings of the domain dependent parameters, namely weight adjustment rate
(A), generalization limits (Dj's), and confidence threshold (CT). The perfor­
mance is measured in terms of achieved accuracy and memory requirement of
the CFP.

Fig. 4.4 shows the achieved accuracy of the CFP with different values of
the generalization limit and classification noise levels. CFP performed poorly
with the zero generalization limit (no generalization). Accuracy of the CFP
reaches its optimum with generalization limit is between 2 and 4 (Fig. 4.4).
CFP performed worse for both extreme cases (no generalization (D/ = 0)
and maximum generalization {Dj — 10)). However, CFP performs better

CHAPTER 4. EVALUATION OF THE CEP 56

Figure 4.4. Effects of the generalization limit to the accuracy of the CFP

Figure 4.5. Effects of the generalization limit to the memory requirement of
the CFP

CHAPTER 4. EVALUATION OF THE CEP 57

Figure 4.6. Effects of the weight adjustment rate to the accuracy of the CFP

with maximum generalization limit than no generalization. Due to the over­
generalization, after some value (e.g. 4) performance of the CFP degrades. As
seen from Fig. 4.4 with different amount of classification noise the optimum
value of the generalization limit changes, since noise causes a change in domain
characteristic.

Fig. 4.5 shows the memory requirements of the CFP in terms of average
number of partitions versus different values of the generalization limit for sev­
eral noise levels. An important point is that, memory requirement of the CFP
significantly is reduced when the accuracy reaches its optimum. Therefore,
when the best setting for generalization limits are found the best performance
in terms of both the prediction accuracy and the memory requirements are
achieved.

Fig. 4.6 shows the achieved accuracy by the CFP with different weight ad­
justment rates (A). CFP performs better with small values of the A. However,
with A = 0 (all features have equal weight) performance of the CFP degrades.
Although we do not know any general rule for the value of A, 0.02-0.05 are
good values to start. In my experiments with real and artificial data, we have

CHAPTER 4. EVALUATION OF THE CEP 58

noticed that the accuracy has a single maximum for different A values. This
px'operty makes genetic algorithms to be a good mechanism to find the best
value for optimum accuracy. After some value of A, performance of the CFP
does not change, because if some of the feature weights grow too much, these
features will dominate the others in the voting process. After this point, in­
creasing the value of A will not improve the accuracy (e.g., see Fig. 4.6 for
A > 0.07).

Fig. 4.7 shows the achieved accuracy of the CFP with different values of the
confidence threshold (CT). The best accuracy is achieved for CT = 0.04. For
higher values of the confidence threshold performance of the CFP degrades, due
to the removal of the informative partitions along with noisy ones. In general
a confidence threshold between 0.02 and 0.05 gives good results depending on
the noise level of the application domain.

Fig. 4.8 shows the memory requirements of the CFP in terms of the average
number of partitions, for different values of the confidence threshold. For higher
values of the confidence threshold memory requirements of the CFP decreases.
Because CFP removes unrepresentative partitions (whose representativeness
value is very small compare to the observed frequency of their class), only the

CHAPTER 4. EVALUATION OE THE CEP 59

Confidence Level

Figure 4.8. Effects of the confidence threshold to the memory requirement of
the CFP

representative partitions are left in the concept description.

Fig. 4.9 shows the achieved accuracy of the CFP with different values
of the confidence threshold on a noisy data. CFP removes partitions more
aggressively for higher values of the confidence level. In Fig. 4.9, for noise level
greater than 20 %, confidence threshold of 0.05 causes accuracy degradation.
For CT = 0 (no partition removing), CT = 0.01, and CT = 0.02, CFP achieved
nearly equal accuracy. An important observation is that, memory requirement
(Fig. 4.10) of the CFP is significantly (about 45 %) reduced for CT = 0.01
and CT = 0.02. This is an expected result since increasing the noise level
causes construction of many unrepresentative partitions. These partitions are
removed from concept descriptions. Consequently, percentage of the noise in
the concept description decreases.

Fig. 4.11 shows the achieved accuracy of the CFP with different values of
confidence threshold on a domain which has many irrelevant attributes. This
data set contains 10 % classification noise, and 10 % of the attribute values
are unknown. The number of irrelevant attributes changes from 0 to 20. The
fluctuations on the accuracy are due to the randomness of the values of the
irrelevant attributes.

CHAPTER 4. EVALUATION OF THE CEP 60

0.0 10.0 4 0 . 0 5 0 . 02 0 . 0 3 0 .0

Noise Level (%)
Figure 4.9. Effects of the confidence threshold to the accuracy of the CFP, on
noisy domains

CHAPTER 4. EVALUATION OF THE CEP 61

Noise Level (%)
Figure 4.10. Effects of the confidence threshold to the memory requirement of
the CFP, on noisy domains

CHAPTER 4. EVALUATION OF THE CEP 62

Figure 4.11. Effects of the confidence threshold to the accuracy of the CFP,
on a domain with many irrelevant attributes

Figure 4.12. Effects of the confidence threshold to the memory requirement of
the CFP, on a domain with many irrelevant attributes

CHAPTER 4. EVALUATION OF THE CEP 63

CFP achieved nearly equal accuracy for confidence thresholds 0 and 0.1.
However, for C T = 0.2 the CFP achieved about 4 % worse accuracy. On
the other hand, CFP achieved significant memory reduction with confidence
threshold 0.1 (Fig. 4.12). The memory requirement of the CFP with C T = 0.1
and C T = 0.2 are almost the same. In both cases, about 50 % reduction in
the memory requirement is achieved with respect to zero confidence threshold.

4.2.3 E xperim ents w ith Real-world D ata Sets

The CFP algorithm has been tested using reaP and artificial data from various
problem domains. The use of real data in these tests provide a measure for the
system’s accuracy on noisy and incomplete data sets, and most importantly,
it allowed comparisons between CFP and other similar systems®. Below, each
data set is described briefly and experimental results are presented.

In order to see the effect of a genetic algorithm in learning domain depen­
dent parameters of the CFP, we compared the GA-CFP with the regular CFP
algorithm. The GA-CFP algorithm was compared with the CFP algorithm,
where the feature weights are identical and the generalization limits are set to
two extremes. In the first extreme, for all feature Dj's are set to zero disabling
any generalization. In the second extreme, for all feature Dj's are set to maxi­
mum value (maxf — m inj), resulting in the maximum possible generalization.

Iris Flowers: Iris flowers data set from Fisher [11] consists of four integer­
valued features and a particular species of iris. There are three different species
(classes): virginica, setosa, and versicolor. The four variables measured were
sepal length, sepal width, petal length, and petal width. The data set contains
150 instances. The accuracy of the CFP in Table 4.1 was obtained for A =
0.015, CT = 0, and Dj's were 0.6, 0.1, 0.4, 0.1, respectively.

The reported results of the EACH [34] and measured results of the C4.5,
CFP, and GA-CFP algorithms are shown in Table 4.1. In testing with C4.5 we
used the decision trees that are generated after pruning, since these trees per­
formed better than the trees before pruning in general. To allow for proper com­
parisons, the experimental design used was the same as that used by Salzberg

'‘All real data sets are taken from UCI repository of machine learning databases
(ics.uci.edu: pub/macliine-learning-databases).

®An empirical comparison of the CFP with similar systems will appear in [39].

CHAPTER 4. EVALUATION OF THE CEP 64

Table 4.1. Success rates for iris flowers (%)

Algorithm .Success Rate (%)
CFP: A = 0, T»/ = 0 88.0
CFP: A = 0, Df = max 92.7
CFP: A = 0.015 96.7
GA-CFP 98.0
EACH 95.3
C4.5 95.3

[34]. For Iris data set the leave-one-out cross-validation accuracy estimation
technique has been used.

Fig. 4.13 shows the two-dimensional view of the instances of the iris flowers
data set, where X-axis represents sepal length and Y-axis represents sepal width
feature of the iris flowers data set. The figure also shows the constructed
partitions respectively. As seen from Fig. 4.13, projection of the concepts
to the feature dimensions overlap. Therefore, CFP algorithm generates many
partitions next to each other. Consequently, weight of these features are small.

Fig. 4.14 shows another two-dimensional view of the instances of the iris
flowers data set, where X-axis represents petal length and Y-axis represents petal
width feature of the iris flowers data set. As seen from the figure projection of
the concepts to the feature dimensions do not overlap. Consequently, weight
of these feature are greater than other features. Hence, petal length and petal
width are the determining features for iris flowers data set according to CFP
algorithm. Constructed partitions for iris data set is given in Appendix.

In the Fig. 4.13 and Fig. 4.14 class virginica, setosa, and versicolor are
represented by -f, —, and o respectively.

Breast Cancel^·. Breast Cancer data set contains 273 patient records. All
the patients underwent a surgery to remove tumors, all of them were followed
up five years later. The objective here is to predict whether or not breast
cancer would recur during that five year period. The recurrence rate is about
30 %, and hence such prognosis is important for determining post-operational
treatment. The data set contains nine variables that were measured, including
both numeric and binary values. The prediction is binary : either the patient
did suffer a recurrence of cancer or not.

^Stuart Crawford of Advanced Decision .Systems provided this data

CHAPTER 4. EVALUATION OF THE CEP 65

Figure 4.13. 2-D view of the iris data: Sepal length vs. Sepal width

Table 4.2. Success rates for breast cancer data (%)

Algorithm Success Rate (%)
CFP: A = 0,D j = 0 73.2
CFP: A = 0, Df = max 74.1
CFP: A = 0.07 77.5
GA-CFP 78.7
EACH 77.6
CN2 71.0
C4.5 70.1

CHAPTER 4. EVALUATION OF THE CEP 66

S h o w C o n c « p t s ^

(Load D a ia) (Load Partitions) (Redisp lay) (O u i)

D a U F U t : iris data

Partition Fit·: iris, partitions

Horizontal axis : 3______Q 3 Vartlcal axis: ^ Clasi: 3______5 3 Symbol: o___

w 2= 5.2113

2.50. 0 00
0 0
0000 000 0

lo
1

0 0 0
0000 0 0

L 0000 0 0
0 00 0 0
0 00 0 00 0 0 0
0 1- 0

0 - - - - 0
0 - _ ----0 0
0 - . - ------------- 0

- - - -

- . -

f . +

*

f +■♦·+ i-

+ -M -+ +

+ + 4 ^ 4 · + + 4

4 4 4 4

-0 09 4 - - ... P --------------. --------------,

0.58 '6 90
0 000

w 1= 3.8658
C lass: 1 2 3

symbol: + _ 0
V ■■ - — = J

Figure 4.14. 2-D view of the iris data: Petal length vs. Petal width

CHAPTER 4. EVALUATION OF THE CEP 67

Table 4.3. Success rates for Hungarian heart disease data (%)

Algorithm Success Rate (%)
CFP: A = 0,D f = 0 68.7
CFP: A = 0, Df = max 75.5
CFP: A = 0.02 82.3
GA-CFP 91.4
IBl 58.7
IB2 55.9
IB3 80.5
C4 78.2

This data set has been also used to test the CN2 [8] algorithm, which
achieved 70-71 % accuracy. The accuracy of the CFP in Table 4.2 was ob­
tained for A = 0.07, CT = 0 and Dj's were 4, 0, 6, 0.5, 0.1, 0.5, 0.5, 0.5, 4,
respectively. The reported results of the EACH [34] and measured results of
the C4.5, CFP, and GA-CFP algorithms are shown in Table 4.2. In testing
with C4.5 we used the decision trees that are generated after pruning, since
these trees performed better than the trees before pruning in general. To allow
for proper comparisons, the experimental design used was the same as that
used by Salzberg [34]. For Breast Cancer data set, for each trial, 70 % of
the examples were randomly chosen for training the rest used in testing. Four
different trials were run, and the final results are an average of those trials.

Predicting Heart Disease: The CFP was tested on two widely used medical
databases, namely the Cleveland and Hungarian databases. The Cleveland
and Hungarian data sets contain heart disease diagnoses collected from the
Cleveland Clinic Foundation and Hungarian Institute of Cardiology, respec­
tively. A diagnosis is described by 13 numeric-valued features (e.g. age, fasting
blood sugar level etc.). The objective here is to determine whether a patient
has a heart disease. The Cleveland data set consists of 303 instances and the
Hungarian data set consists of 294 instances. The performance of the CFP
algorithm is also compared with the reported accuracy of the instance-based
learning algorithms [1]. All results reported in Table 4.3 and Table 4.4 were
averaged over 50 trials. The training and test sets were always disjoint. The
instances were drawn randomly from the data sets.

The accuracy of the CFP for the Hungarian database in Table 4.3 was
obtained for A = 0.02, CT = 0, and Z)/’s were 1.3, 0, 0.2, 19.1, 36.1, 0,
0.6, 22.9, 0, 0.6, 0.03, 0.1, 0.9, respectively. The accuracy for the Cleveland

CHAPTER 4. EVALUATION OF THE CFP 68

Table 4.4. Success rates for Cleveland heart disease data {%)

Algorithm Success Rate (%)
CFP: Д = 0,T»/ = 0 77.6
CFP: Д = 0, Z)/ = max 75.5
CFP: Д = 0.025 84.0
GA-CFP 94.3
IBl 75.2
IB2 69.6
IB3 73.8
C4 70.7

Table 4.5. Success rates for waveform data (%)

Algorithm Success Rate (%)
CFP: Д = 0, T)/ = 0 53.4
CFP: A = 0, Dj = max 62.0
CFP: Д = 0.02 76.0
GA-CFP 86.5
IBl 75.2
IB2 69.6
IB3 73.8
C4 70.7

database in Table 4.4 was obtained for Д = 0.025, CT = 0, and Dj's were 7,
0.3, 0.4, 9, 11, 0.3, 0.4, 7, 0.3, 0.4, 0.4, 0.4, 0.4, respectively.

Classifying Waveforms: The waveform data set is artificial and consists of
21 numeric-valued features, which have values between 0 and 6. There are three
different types of waveforms and they are equally distributed. The objective
here is to determine the type of a given waveform. Each feature includes noise
(with mean 0 and variance 1). Out of 800 instances in the data set, 300 were
used in the training.

The accuracy of the CFP for the waveform databa.se in Table 4.5 was ob­
tained for Л = 0.02 and CT = 0. Generalization limits for the waveform
database were 0.2, 0.3, 0.6, 0.5, 0.8, 0.9, 1.0, 0.9, 0.6, 0.6, 0.7, 0.6, 0.9, 0.8, 0.7,
0.6, 0.5, 0.4, 0.5, 0.5, 0.4, respectively. All results reported in Table 4.5 were
averaged over 50 trials. The training and test sets were always disjoint. The
instances were drawn randomly from the data sets.

CHAPTER 4. EVALUATION OF THE CEP 69

Table 4.6. Success rates for congressional voting database (%)

Algorithm Success Rate (%)
CFP: A = 0,D / = 0 88.9
CFP: A = 0,D / = 2 65.6
CFP: A = 0.04D/ = 0 95.5
GA-CFP 96.2
IBl 91.8
IB2 90.9
IB3 91.6
C4 95.5

Congressional Voting Database: The Congressional Voting database is lin­
early separable. It contains the (known) voting records of the members of the
United States House of Representatives during the second session of 1984. It
is described by 16 boolean attributes and has 288 missing values among the
435 instances. 350 of the voting records are used in training and remaining 85
are used in testing. The value to predict is the political party of a member
(Democrat or Republican) given their voting record.

All results reported in Table 4.6 were averaged over 50 trials. The training
and test sets were always disjoint. The instances were drawn randomly from
the data sets. The accuracy for the voting database in Table 4.6 was obtained
for A = 0.04, CT = 0, and all the D fs were zero.

Classifying Glasses: This data set consists of attributes of glass samples
taken from the scan of an accident.^ Each of the 214 examples is a member of
one of six classes. There are nine features. In comparing GA-CFP with GA-
WKNN, we used cross-validation accuracy estimation technique. Each data
set was divided into five disjoint partitions. The only constraint on otherwise
random partitioning was that classes be represented equally in each partition.
We generated five training/test sets for each data set. Four-fifth of the data
were used for training and the remaining fifth was used for testing. The results
are shown in Table 4.7. The accuracy for the glass database in Table 4.7 was
obtained for A = 0.03 and CT = 0. Generalization limits for the glass database
were 1, 10, .4, 0.5, 2, 0.4, 8, 2, and 1 respectively.

Pirna Indians Diabetes Database: This data set contains diabetes diseases
"Collected by B. German of the Home Office Forensic Service, Aldermaston, Reading,

Berkshire, UK.

CHAi TER 4. EVALUATION OF THE CEP 70

Table 4.7. Success rates for glass data (%)

Algorithm Success Rate (%)
CFP: A = 0, D/ = 0 44.3
CFP: A = 0, D/ = max 58.1
CFP: A = 0.03 55.7
GA-CFP 71.7
GA-WKNN 62.2

8. Success rates for Pima Indians diabetes data

Algorithm Success Rate (%)
CFP: A = 0, £>/ = 0 67.0
CFP: A = 0, £>/ = max 66.5
CFP: A = 0.025 70.7
GA-CFP 74.6

collected from National Institute of Diabetes and Digestive and Kidney Dis­
eases. The diagnostic, binary-valued variable investigated is whether the pa­
tient shows signs of diabetes according to World Health Organization criteria
(i.e., if the 2 hour post-load plasma glucose was at least 200 mg/dl at any sur­
vey examination or if found during routine medical care). The population lives
near Phoenix, Arizona, USA. Several constraints were placed on the selection
of these instances from a larger database. In particular, all patients here are
females at least 21 years old of Pima Indian heritage. The data set contains
records of 768 patients with 8 features. 576 instances are used in training the
remaining 192 instances are used in testing. The objective of this data set is
to determine whether result of the test is positive or negative for diabetes. All
results reported in Table 4.8 were averaged over 50 trials. The training and
test sets were always disjoint. The instances were drawn randomly from the
data sets.

Ionosphere database: David Aha briefly investigated this database. He
found that nearest neighbor attains an accuracy of 92.1 %, that Ross Quinlan’s
C4 algorithm attains 94.0 % (no windowing).

The radar data was collected by a system in Goose Bay, Labrador. This
system consists of a phased array of 16 high-frequency antennas with a total
transmitted power on the order of 6.4 kilowatts. The targets were free electrons
in the ionosphere. Good radar returns are those showing evidence of some

CHAPTER 4. EVALUATION OF THE CEP 71

Table 4.9. Success rates for ionosphere database (%)

Algorithm Success Rate (%)
CFP: A = 0, Z)/ = 0 83.2
CEP: A = 0, £)/ = max 80.2
CFP: A = 0.015 87.6
GA-CFP 92.1
C4 94.0
KNN 92.1

type of structure in the ionosphere. Bad returns are those that do not; their
signals pass through the ionosphere. Received signals were processed using an
autocorrelation function whose arguments are the time of a pulse and the pulse
number. There were 17 pulse numbers for the Goose Bay system. Instances in
this database are described by 2 attributes per pulse number, corresponding
to the complex values returned by the function resulting from the complex
electromagnetic signal.

This data set contains 351 instances. 200 of the instances are used in
training the rest are used in testing. Each instance consist of 34 continuous­
valued features. It is a binary (good or bad) classification problem. All results
reported in Table 4.9 were averaged over 50 trials. The training and test
sets were always disjoint. The instances were drawn randomly from the data
sets. The accuracy for the ionosphere database in Table 4.9 was obtained for
A = 0.015 and CT = 0, and Dj = 0.05.

Liver disorders data set: This data set contains 345 instances and collected
by BUPA Medical Research Ltd. Each instance constitutes the record of a
single male individual. There are 6 attributes and the first 5 variables are all
blood tests which are thought to be sensitive to liver disorders that might arise
from excessive alcohol consumption. The last attribute presents drinks number
of half-pint equivalents of alcoholic beverages drunk per day. The objection of
this data set is to determine whether patient has liver disorders or not. 276
of the instances are used in training the remaining 69 are used in testing. All
results reported in Table 4.10 were averaged over 50 trials. The training and
test sets were always disjoint. The instances were drawn randomly from the
data sets. The accuracy for the liver disorders database in Table 4.10 was
obtained for A = 0.01 and CT = 0, and Dj's were 7, 7, 7, 7, 7, and 0.5
respectively.

CHAPTER 4. EVALUATION OF THE CEP 72

Table 4.10. Success rates for liver disorders database (%)

Algorithm Success Rate (%)
CFP: A = 0,D f = 0
CFP: A = 0, Df = max
CFP: A = 0.025
GA-CFP

56.2
57.3
63.0
68.2

Table 4.11. Success rates for wine classifícation data (%)

Algorithm Success Rate (%)
CFP: A = 0,T>/ = 0
CFP: A = 0, Df = max
CFP: A = 0.01
GA-CFP

77.0
87.1
91.6
95.0

Wine recognition data set: This data is provided by Institute of Pharma­
ceutical and Food Analysis and Technologies. The classes are separable. The
leave-one-out technique is used. In a classification context, this is a well posed
problem with ’’well behaved” class structures. A good data set for first test­
ing of a new classifier, but not very challenging. These data are the results
of a chemical analysis of wines grown in the same region in Italy but derived
from three different cultures. The analysis determined the quantities of 13
constituents found in each of the three types of wines. Data set contains 178
instances and all attributes are continuous-valued. The accuracy for the wine
database in Table 4.11 was obtained for A = 0.01 and CT = 0. Generalization
limits for the wine database were 0.9, 8, 3.4, 0.6, 11, 6, 6, 1.5, 1, 2.5, 1.7, 1.6,
and 16 respectively.

Predicting patient thyroid type: This data set is provided by James Cook
University. Five laboratory test results (continuous-valued) are used to pre­
dict whether a patient’s thyroid to the class euthyroidism, hypothyroidism or
hyperthyroidism. The diagnosis (the class label) was based on a complete med­
ical record, including anamnesis, scan etc. There is 215 patient records in the
data set each of which has one of the three classes (normal, hyperthyroid, or
hypothyroid) and 80 % of the records are used in training. All attributes are
continuous.

All results reported in Table 4.12 were averaged over 50 trials. The training
and test sets were always disjoint. The instances were drawn randomly from

CHAPTER 4. EVALUATION OF THE CFP 73

Table 4.12. Success rates for thyroid data (%)

Algorithm Success Rate (%)
CFP: A = 0,D f = 0
CFP: A = 0, Df = max
CFP: A = 0.025
GA-CFP

80.4
89.2
90.8
95.4

Table 4.13. Success rates for mushroom database (%)

Algorithm Success Rate (%)
CFP: A = 0,D / = 0
CFP: A = 0, Df = max
CFP: A = 0.01T>/ = 0
GA-CFP
STAGGER

87.6
68.52
98.5
99.2
95.0

the data sets. The accuracy for the thyroid database in Table 4.12 was obtained
for A = 0.025 and CT = 0. Generalization limits for the thyroid database were
4, 4, 0.1, 0.1, and 3.5 respectively.

Mushroom Database: Mushroom records were drawn from The Audubon
Society Field Guide to North American Mushrooms. STAGGER [35] asymp-
toted to 95 % classification accuracy after reviewing 1000 instances. This data
set includes descriptions of hypothetical samples corresponding to 23 species
of gilled mushrooms in the Agaricus and Lepiota Family. Each species is iden­
tified as definitely edible, definitely poisonous, or of unknown edibility and not
recommended. This latter class was combined with the poisonous one. There
is no simple rule for determining the edibility of a mushroom. The database
contains 8124 instances with 22 nominally-valued features. 1000 instances are
used in training the remaining 7124 are used in testing. All results reported in
Table 4.13 were averaged over 50 trials. The training and test sets were always
disjoint. The instances were drawn randomly from the data sets. The accuracy
for the mushroom databa.se in Table 4.13 was obtained for A = 0.01, CT = 0,
and T)/ = 0.

In these experiments we noticed that the performance Weis not sensitive to
the small changes in the Dj settings. For binary-valued attributes distance pa­
rameter was set to zero for no generalization. The feature weight adjustment
rate and the generalization limits are domain dependent. In these experiments

CHAPTER 4. EVALUATION OE THE CEP 74

their values (for CFP) are determined by trial and error, separately for each
application domain. It is clear from these experiments that the genetic algo­
rithm can determine a very good set of domain dependent parameters of CFP.
Even the result of the CFP with settings that are found by trial and error are
good enough compare to the other similar algorithms.

Chapter 5

Conclusion

In this thesis I have presented a new methodology of learning based on feature
partitioning, called CFP. It is an inductive, incremental and supervised learn­
ing method. The CFP learns a partitioning of values for each feature of the
application domain. The CFP algorithm is applicable to domains, where each
feature, independent of other features, can be used to classify the instances.

This approach is a variant of algorithms that learn by projecting into one
feature dimension at a time. For example, ID3 learns in that greedy manner
while building a conjunction. The novelty of CFP is that it retains a feature-by­
feature representation and uses a voting scheme in categorization. Algorithms
that learn by projecting into one dimension at a time are limited in their ability
to find complex concepts.

The CFP makes significant modifications to the exemplar-based learning
algorithms. The analysis of the CFP shows that, compared to many other
similar algorithms, it is applicable to a large class of concepts, and requires
small number of examples and a small amount of memory to learn a given
concept. It is also proved that the CFP algorithm has a low training complexity.

Another important improvement is the natural handling of unknown at­
tribute values. Most of the systems use ad hoc methods for handling unknown
attribute values [15, 28, 29]. Since the value of each attribute is handled sepa­
rately, attributes with unknown values are simply ignored by the CFP.

The CFP will clearly fail in some cases. For example, if the projection
of concepts on an axis are overlapping each other, the CFP constructs many

75

CHAPTERS. CONCLUSION 76

partitions of different classes next to each other. In that case, the accuracy of
classification depends on the observed frequency of the concepts.

The CFP uses feature weights to cope with irrelevant attributes. Introduc­
ing feature weights protects the algorithm’s performance, when an application
domain has irrelevant attributes. The idea of feature weights have also been
used successfully in other similar systems [22, 34]. In the CFP the feature
weights are dynamically adjusted according to the global weight adjustment
rate (A), which is an important parameter for the predictive accuracy of the al­
gorithm. Another important component of the CFP is the generalization limit
for each attribute, which controls the generalization process. The confidence
threshold is introduced into the CFP to reduce the percentage of the noise
in the concept descriptions. The confidence threshold controls the removal of
partitions from the concept description. The confidence threshold is used to
improve the accuracy of the CFP and also to reduce the memory requirements.
Empirical results justify this claim.

The weight adjustment rate, generalization limits, and confidence threshold
are domain dependent parameters of the CFP, and their selection affects the
performance of the algorithm. Determining the best values for these param­
eters is an optimization problem for a given domain. In GA-CFP a genetic
algorithm is used to find a good setting of these parameters. The GA-CFP is
a hybrid system, which combines optimization capability of genetic algorithm
with classification capability of the CFP algorithm. The genetic algorithm is
used to determine the domain dependent feature weights, generalization limits,
and confidence threshold. Although the results of the GA-CFP algorithm are
better than other classification systems, the use of genetic algorithm is costly.
This is because the computation of the fitness function requires the execution
of the CFP algorithm several times due to the used methods. However, an
important characteristic of the parameters of the CFP algorithm is that these
parameters are domain dependent. Therefore, the genetic algorithm can be
used with only a portion of all the data available. Then, the CFP algorithm
can be used with settings that are learned by the genetic algorithm. This claim
was empirically justified on the iris flowers data set.

Partition is the basic unit of representation in the CFP algorithm. Each
partition represents two (one, if lower and upper values of a partition is equal)
parallel surfaces (hyperplanes) in feature space, which are orthogonal to the

CHAPTERS. CONCLUSION 77

axis of the partition and parallel to all other axes. Consequently, the re­
gions constructed by the CFP are disjoint hyperrectangles. Since CFP re­
tains feature-by-feature representation, projection of concepts will determine
the applicability of the CFP to a domain. The CFP is not applicable to do­
mains where all of the concept projections overlap, or domains in which concept
descriptions are nested. In other words, it is applicable to domains where each
feature can contribute the classification of an instance independent of others.
In fact, this is the nature of the most real-world data sets. For example, in
stock market applications, there are dozens of factors influencing the market.
However, domain experts predict the future trend by just looking at some key
variables [40].

B ib liograph y

[1] D. W. Aha, D. Kibler, and M. K. Albert. Instance-Bcised Learning Algo­
rithms. Machine Learning, 6:37-66, 1991.

[2] H. Almuallim and T. G. Dietterich. Learning with Many Irrelevant Fea­
tures. In Proceedings of the Ninth National Conference on Artificial In­
telligence, pages 547-552, 1991.

[3] D. Angluin and P. Laird. Learning from Noisy Examples. Machine Learn­
ing, 2:343-370, 1988.

[4] D. Anthony, J. Barham, and D. Taylor. The Use of Genetic Algorithms to
Learn the Most Appropriate Inputs to a Neural Network. In Proceedings
of AINN, pages 223-226, 1990.

[5] A. Blumer, A. EhrenFeucht, D. Haussler, and M. K. Warmuth. Learn-
ability and the Vapnik-Chervonenkis Dimension. Journal of the ACM,
36(4):929-965, 1989.

[6] J. G. Carbonell, editor. Machine Learning: Paradigms and Methods. The
MIT Press, 1990.

[7] J. Catlett. On Changing Continuous Attributes Into Ordered Discrete
Attributes. In Proceedings of European Workshop on Machine Learning,
pages 164-178, 1991.

[8] P. Clark and T. Niblett. The CN2 Induction Algorithm. Machine Learn­
ing, 3:261-283, 1989.

[9] G. Dejong and R. Mooney. Explanation-Based Learning: An Alternative
View. Machine Learning, 1:145-176, 1986.

[10] .1. L. Elman. Distributed Representations, Simple Recurrent Networks,
and Grammatical Structure. Machine Learning, 7:195-225, 1991.

78

BIBLIOGRAPHY 79

[11] R. A. Fisher. The Use of Multiple Measurements in Taxonomic Problems.
Annals of Eugenics, 7:179-188, 1936.

[12] J. M. Fitzpatrick and J. J. Grefenstette. Genetic Algorithms in Noisy
Environments. Machine Learning, 3:101-120, 1988.

[13] S.I. Gallant. Connectionist Expert Systems. Communications of the
ACM, 31(2):152-169, 1988.

[14] D. E. Goldberg. Genetic Algorithms in Search, Optimization, and Ma­
chine Learning. Addison-Wesley, Maryland, 1989.

[15] J. W. Grzymala-Busse. On the Unknown Attribute Values in Learning
from Examples. In Proceedings of Sixth International Symposium Method­
ologies for Intelligent Systems, pages 368-377, October 1991.

[16] H. A. Güvenir and İ. Şirin. The Complexity of The CFP, a Method for
Classification Based on Feature Partitioning. In Lecture Notes in Artificial
Intelligence, 1993. (to appear).

[17] H. A. Güvenir and I. Şirin. A Genetic Algorithm for Classification by
Feature Partitioning. In Proceedings of the Fifth International Conference
on Genetic Algorithms, pages 543-548, 1993.

[18] D. Haussler. Quantifying Inductive Bias: AI Learning Algorithms and
Valiant’s Learning Framework. Artificial Intelligence, 36:177-221, 1988.

[19] K. De Jong. Learning with Genetic Algorithms: An Overview. Machine
Learning, 3:121-138, 1988.

[20] M. J. Kearns. The Computational Complexity of Machine Learning. The
MIT Press, 1989.

[21] T. M. Mitchell R. Keller and S. Kedar-Cabelli. Explanation-Based Gen­
eralization: A Unifying View. Machine Learning, 1:47-80, 1986.

[22] J. D. Kelly and L. Davis. A Hybrid Genetic Algorithm for Classification.
In Proceedings of the Twelfth International Joint Conference on Artificial
Intelligence, pages 645-650, 1991.

[23] N. Littlestone. Learning Quickly When Irrelevant Attributes Abound: A
New Linear-Threshold Algorithm. Machine Learning, 2:285-318, 1988.

BIBLIOGRAPHY 80

[24] H. Lounis and G. Bisson. Evaluation of Learning Systems: An Artificial
Data-Based Approach. In Proceedings of European Working Session on
Learning, pages 463-481, 1991.

[25] D. L. Medin and M. M. Schaffer. Context Theory of Classification Learn­
ing. Psychological Review, 85:207-238, 1978.

[26] B. K. Natarajan. Machine Learning: A Theoretical Approach. Morgan
Kaufmann, California, 1991.

[27] J. R. Quinlan. Induction of Decision Trees. Machine Learning, 1:81-106,
1986.

[28] J. R. Quinlan. Decision Trees as Probabilistic Classifiers. In Proceed­
ings of Fourth International Workshop on Machine Learning, pages 31-37,
June 1987.

[29] J. R. Quinlan. C4-5: Programs for Machine Learning. Morgan Kaufmann,
California, 1993.

[30] L. Rendell. A New Basis for State-Space Learning Systems and Successful
Implementation. Artificial Intelligence, 20:369-392, 1983.

[31] L. Rendell. A General Framework for Induction and a Study of Selective
Induction. Machine Learning, 1:177-226, 1986.

[32] L. Rendell and H. Cho. Empirical Learning as a Function of Concept
Character. Machine Learning, 5:267-298, 1990.

[33] S. Salzberg. Distance Metrics for Instance-Based Learning. In Proceed­
ings of the Sixth International Symposium on Methodologies for Intelligent
Systems, pages 399-408, 1991.

[34] S. Salzberg. A Nearest Hyperrectangle Learning Method. Machine Learn­
ing, 6:251-276, 1991.

[35] J. C. Schlimmer and R. II. Granger. Incremental Learning from Noisy
Data. Machine Learning, 1:317-354, 1986.

[36] N. N. Schraudolph and J. J. Grefenstette. A User’s Guide to GAUCSD
1 .4, July 1992.

[37] J. VV. Shavlik. A Framework for Combining Symbolic and Neural Learn­
ing. Technical Report 1123, Computer Science Department, University of
Wisconsin-Madison, 1992.

BIBLIOGRAPHY 81

[38] i. Şirin and H. A. Güvenir. A Classification Algorithm Based on Feature
Partitioning. In Proceedings of the Second TAINN Symposium, pages 283-
288, 1993.

[39] I. Şirin and H. A. Güvenir. Empirical Evaluation of the CFP Algorithm.
In Proceedings of the Australian Joint Conference on Artificial Intelli­
gence, 1993. (to appear).

[40] I. Şirin and H. A. Güvenir. Prediction of Stock Market Index Changes.
In Adaptive Intelligent Systems, pages 149-159, 1993.

[41] L. G. Valiant. A Theory of the Learnable. Communications of the ACM,
27(11):1134-1142, 1984.

C h ap ter 6

A ppen d ix

Constructed partitions for iris flowers data set are given below. The first two
numbers represent the lower and upper values of the partition, the third number
represents the class value of the partition, and the last number is the represen­
tativeness value of that partition. Classes are enumerated so that classes 1, 2,
and 3 represent virginica, setosa, and versicolor^ respectively.

The CFP constructed 42 partitions for sepal length and weight of this feature
was 1.433420 .

4 . 3 0 4 . 9 0 1 1 9 . 6 0

4 . 9 0 4 . 9 0 3 1 . 0 0

4 . 9 0 4 . 9 0 2 1 . 0 0

4 . 9 0 5 . 0 0 1 3 . 2 7

5 . 0 0 5 . 0 0 2 2 . 0 0

5 . 0 0 5 . 1 0 1 3 . 2 7

5 . 1 0 5 . 1 0 2 1 . 0 0

5 . 1 0 5 . 2 0 1 3 . 2 7

5 . 2 0 5 . 2 0 2 1 . 0 0

5 . 2 0 5 . 4 0 1 6 . 5 3

5 . 4 0 5 . 4 0 2 1 . 0 0

5 . 4 0 5 . 5 0 1 3 . 2 7

5 . 5 0 5 . 5 0 2 5 . 0 0

5 . 5 0 5 . 6 0 1 3 . 2 7

5 . 6 0 5 . 6 0 3 1 . 0 0

5 . 6 0 5 . 6 0 2 5 . 0 0

82

CHAPTER 6. APPENDIX 83

5 . 6 0 5 . 7 0 1 3 . 2 7
5 . 7 0 5 . 7 0 3 1 . 0 0
5 . 7 0 5 . 7 0 2 5 . 0 0
5 . 7 0 5 . 8 0 1 3 . 2 7
5 . 8 0 5 . 8 0 2 3 . 0 0
5 . 8 0 5 . 9 0 3 4 . 0 0
5 . 9 0 6 . 0 0 2 2 . 3 6
6 . 0 0 6 . 0 0 3 2 . 0 0
6 . 0 0 6 . 1 0 2 2 . 3 6
6 . 1 0 6 . 1 0 3 2 . 0 0
6 . 1 0 6 . 2 0 2 2 . 3 6
6 . 2 0 6 . 2 0 3 2 . 0 0

6 . 2 0 6 . 3 0 2 2 . 3 6
6 . 3 0 6 . 3 0 3 6 . 0 0

6 . 3 0 6 . 4 0 2 2 . 3 6
6 . 4 0 6 . 4 0 3 5 . 0 0
6 . 4 0 6 . 5 0 2 2 . 3 6

6 . 5 0 6 . 5 0 3 4 . 0 0
6 . 5 0 6 . 7 0 2 4 . 7 3
6 . 7 0 6 . 7 0 3 5 . 0 0

6 . 7 0 6 . 8 0 2 2 . 3 6

6 . 8 0 6 . 8 0 3 2 . 0 0

6 . 8 0 6 . 9 0 2 2 . 3 6

6 . 9 0 6 . 9 0 3 3 . 0 0

6 . 9 0 7 . 0 0 2 2 . 3 6

7 . 1 0 7 . 9 0 3 1 2 . 00

T he C FP constructed 33 f

was 0 .848582 .

2 . 0 0 2 . 0 0 2 1 . 00

2 . 2 0 2 . 2 0 3 1 . 0 0

2 . 2 0 2 . 3 0 2 5 . 0 0

2 . 3 0 2 . 3 0 1 1 . 0 0

2 . 4 0 2 . 5 0 2 5 . 0 0

2 . 5 0 2 . 5 0 3 4 . 0 0

2 . 5 0 2 . 6 0 2 5 . 0 0

2 . 6 0 2 . 6 0 3 2 . 0 0

CHAPTER 6. APPENDIX 84

2 . 7 0 2 . 7 0 3 4 . 0 0
2 . 7 0 2 . 8 0 2 1 1 . 0 0
2 . 8 0 2 . 8 0 3 8 . 0 0
2 . 9 0 2 . 9 0 3 2 . 0 0
2 . 9 0 2 . 9 0 2 7 . 0 0
2 . 9 0 3 . 0 0 1 6 . 0 0
3 . 0 0 3 . 0 0 3 1 2 . 00
3 . 0 0 3 . 0 0 2 8 . 0 0
3 . 0 0 3 . 1 0 1 6 . 0 0

3 . 1 0 3 . 1 0 3 4 . 0 0
3 . 1 0 3 . 1 0 2 3 . 0 0
3 . 2 0 3 . 2 0 3 5 . 0 0
3 . 2 0 3 . 2 0 2 3 . 0 0
3 . 2 0 3 . 3 0 1 7 . 0 0

3 . 3 0 3 . 3 0 3 3 . 0 0

3 . 3 0 3 . 3 0 2 1 . 0 0
3 . 4 0 3 . 4 0 3 2 . 0 0
3 . 4 0 3 . 4 0 2 1 . 0 0
3 . 4 0 3 . 5 0 1 1 4 . 0 0

3 . 6 0 3 . 6 0 3 1 . 0 0

3 . 6 0 3 . 6 0 1 2 . 0 0

3 . 7 0 3 . 8 0 1 7 . 0 0

3 . 8 0 3 . 8 0 3 2 . 0 0
3 . 9 0 4 . 2 0 1 5 . 0 0
4 . 4 0 4 . 4 0 1 1 . 0 0

The CFP constructed 15 partitions for petal length and weight of this
feature was 3.865773.

1 . 0 0 1 . 9 0 1 4 9 . 0 0

3 . 0 0 3 . 6 0 2 6 . 0 0

3 . 7 0 4 . 2 0 2 1 7 . 0 0

4 . 3 0 4 . 5 0 2 6 . 7 5

4 . 5 0 4 . 5 0 3 1 . 0 0

4 . 5 0 4 . 8 0 2 1 0 . 1 3

4 . 8 0 4 . 8 0 3 2 . 0 0

4 . 8 0 4 . 9 0 2 3 . 3 7

4 . 9 0 4 . 9 0 3 3 . 0 0

CHAPTER 6. APPENDIX 85

4 . 9 0 5 . 0 0 2 3 . 3 7
5 . 0 0 5 . 0 0 3 3 . 0 0

5 . 0 0 5 . 1 0 2 3 . 3 7

5 . 1 0 5 . 4 0 3 1 3 . 0 0
5 . 5 0 6 . 1 0 3 2 2 . 0 0
6 . 3 0 6 . 9 0 3 6 . 0 0

The CFP constructed 19 partitions for petal width and weight of this feature
was 5.211325.

0 . 1 0 0 . 2 0 1 3 3 . 0 0

0 . 3 0 0 . 5 0 1 1 5 . 0 0

0 . 6 0 0 . 6 0 1 1 . 0 0

1 . 0 0 1 . 0 0 2 7 . 0 0

1 . 1 0 1 . 1 0 2 3 . 0 0

1 . 2 0 1 . 3 0 2 1 8 . 00

1 . 4 0 1 . 4 0 3 1 . 0 0

1 . 4 0 1 . 4 0 2 7 . 0 0

1 . 5 0 1 . 5 0 3 2 . 0 0

1 . 5 0 1 . 50 2 1 0 . 0 0

1 . 6 0 1 . 6 0 3 1 . 0 0

1 . 6 0 1 . 6 0 2 3 . 0 0

1 . 7 0 1 . 7 0 3 1 . 0 0

1 . 7 0 1 . 8 0 2 2 . 0 0

1 . 8 0 1 . 8 0 3 1 1 . 0 0

1 . 9 0 1 . 9 0 3 5 . 0 0

2 . 0 0 2 . 1 0 3 1 2 . 00

2 . 2 0 2 . 3 0 3 1 1 . 0 0

2 . 4 0 2 . 5 0 3 6 . 0 0

C h ap ter 7

G lo ssary

This glossary contains machine learning terms that are used in this thesis. The
angle brackets ”< > ” indicate that the term used in a definition is an itself entry
in the glossary.

A daptive System s: Control systems or pattern recognition systems that
achieve desired performance by adjusting their internal parameters.

A ttrib u te : A variable or one-argument descriptor used to characterize an
object or a process. For example, the color (of an object) or the duration (of a
process) are attributes.

Classification: A process of assigning to an instance its appropriate class
label. Many diagnostic problems are basically problems of classification.

C oncept Acquisition: See <Learning from Examples>.

C oncept D escription: A symbolic data structure defining a concept describ­
ing the class of all known instances of the concept.

Crossover: This is the crossing procedure in <Genetic algorithms> where by
portions of existing rules are cut up and spliced together to form a new rule.

Decision Tree: A tree encoding a set of tests to classify a collection of objects
into fixed categories according to predetermined features of the object.

E xem plar-B ased Learning: A kind of <Learning from Examples> in which
the <Concept Description> is constructed from the examples themselves.

86

CHAPTER 7. GLOSSARY 87

Feature: See <Attribute>.

Featu re Space: In a <Learning from Examples> problem, space defined by
<Attributes>.

G eneralization: Extending the scope of a concept description to include more
instances (the opposite of <SpeciaIization>).

G enetic A lgorithm s: A model of the process of natural selection, in which
better adapted parents are more likely to survive and pass on their character­
istic to their children.

Increm ental Learning: Multistage learning in which knowledge learned at
one stage is modified to accommodate new facts provided in subsequent stages.

Inductive Inference: A mode of reasoning that starts with some assertions,
e.g., specific observations, and concludes with more general and plausible as­
sertions.

Inductive Learning: Learning by drawing < Inductive Inferences> from facts
and observations obtained from a teacher or environment.

L earning from Exam ples: Inferring a general < Concept Description> from
examples and (optionally) counterexamples of that concept. This is a form of
<Inductive Learning>.

M achine Learning: A subdomain of artificial intelligence concern with de­
veloping computational theories of learning and constructing machines with
learning capability.

M utation : One of the standard genetic operator of <Genetic Algorithms>.
Arbitrarily alters one more components of a selected structure.

N egative Exam ple: In <Learning from Examples> a counterexample of a
concept that may bound the scope of <Generalization>.

N eural Network: A network of neuron-like elements that performs some
simple logical functions.

P a ram e te r A djustm ent: Changing the relative weight of different terms in
a mathematical expressions, as a function of credit (blame) for past successes
(failures); a kind of incremental curve fitting.

CHAPTER 7. GLOSSARY 88

Positive Exam ple: In <Learning from Examples> an example or instance
of a concept to be learned.

P robab ly approxim ately correct (РАС) m odel: A computational learn­
ing model. An algorithm A is РАС learnable if it can construct description of
of unknown target concept with high confidence, that is good approximation
of the concept, independent of probability distribution of examples.

Specialization: Narrowing the scope of a <Concept Description> thus re­
ducing sets of instances it describes (opposite of <Generalization>).

Supervised Learning:
Examples>.

Examples are pre-classified in <Learning from

Training Set: A database of examples, which are pre-classified, which is given
to a learning system to enable it to construct the <concept description> By
contrast, a test set contains data in a similar form which were not used during
training phase.

