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ABSTRACT

LEARNING WITH FEATURE PARTITIONS

İzzet Şirin
M.S. in Computer Engineering and Information Science 

Advisor: Asst, Prof. Halil Altay Güvenir 
August, 1993

This thesis presents a new methodology of learning from examples, based on 
feature partitioning. Classification by Feature Partitioning (CFP) is a particu
lar implementation of this technique, which is an inductive, incremental, and 
supervised learning method. Learning in CFP is accomplished by storing the 
objects separately in each feature dimension as disjoint partitions of values. A 
partition, a basic unit of representation which is initially a point in the feature 
dimension, is expanded through generalization. The CFP algorithm special
izes a partition by subdividing it into two subpartitions. Theoretical (with 
respect to PAC-model) and empirical evaluation of the CFP is presented and 
compared with some other similar techniques.

Keywords: Machine learning, inductive learning, incremental learning, super
vised learning, feature partitioning.
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ÖZET

OZNITELIK bölüntüleri İLE ÖĞRENME

izzet Şirin
Bilgisayar ve Enformatik Mühendisliği, Yüksek Lisans 

Danışman: Y. Doç. Dr. Halil Altay Güvenir 
Ağustos, 1993

Bu çalışmada öznitelik bölünmesine dayalı yeni bir mekanik öğrenme yöntemi 
sunulmuştur. Bu yöntem kullanılarak bir sınıflama algoritması olan Öznitelik 
Bölüntüleri ile Sınıflayıct CFP’nin yazılımı hazırlanmıştır. CFP algoritması 
mekanik öğrenmeyi tümevarım ve artırımlı öğrenme yöntemlerini kullanarak 
sağlar. CFP algoritmasında bölütü elemanları temel gösterim unsurlarıdır. 
Başlangıçta bölüntü elemanları bir boyutlu uzayda bir noktayı ifade ederken, 
zaman içinde bu elemanlar genişleyerek bir aralığı ifade ederler. Bölüntü el
emanları parçalanarak özelleştirilirler. CFP algoritmasının kuramsal analizi 
yaklaşık olarak doğru kuramına (PAC-model) göre yapılmıştır ve benzer sis
temlerle uygulama sonuçları karşılaştırılmıştır.

Anahtar Sözcükler: Mekanik öğrenme, tümevarımsal öğrenme, artırımsal 
öğrenme, denetimli öğrenme, öznitelik bölüntüleme.
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Chapter 1

In troduction

The development of knowledge-based systems (KBS) is a difficult and often 
time consuming task. The acquisition of the knowledge necessary to perform a 
certain task (usually through a series of acquisition sessions with a domain ex
pert) is considered as one of the main bottlenecks in building KBS. Knowledge 
acquisition (KA) and machine learning (ML) have been closely linked by their 
common application field, namely building up knowledge bases for KBS. Learn
ing and KA can be viewed as two processes that construct a model of a task 
domain, including the systematic patterns of interaction of an agent situated 
in a task environment. Learning of an agent involves both learning to solve 
new problems and learning better ways to solve previously solved problems. 
Carbonell describes machine learning eis follows [6]:

Perhaps the tenacity of ML researchers in light of the undisputed 
difficulty of their ultimate objectives, and in light of early disap
pointments, is best explained by the very nature of the learning 
process. The ability to learn, to adapt, to modify behavior is an 
inalienable component of human intelligence.

The motivation for applying ML techniques to real-world tasks is strong. 
ML offers a technology for assisting in the KA process. There is a potential 
for automatically discovering new knowledge in the available on-line databases 
which are too large for humans to manually sift through. Furthermore, the 
ability of computers to automatically adapt to changing expertise would offer 
huge benefits for the maintenance and evolution of expert systems.

1
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The success of a learning system is highly related to the ability to cope with 
noisy and incomplete data, an adequate knowledge representation scheme, hav
ing low learning and sample complexities, and the effectiveness of the learned 
knowledge [24].

Tradeoffs between learning and programming can also be examined in terms 
of their relative utilities. Computer time is now very cheap, whereas human 
labor is becoming increasingly expensive. This suggests that learning could 
have an immediate economic edge over manual methods of programming the 
same information. Of course, there are many situations in which the potential 
benefit of developing a knowledge base far exceeds the cost of its capture.

Evaluating the utility of programmed and learned knowledge cannot stop 
with a simple human level of effort analysis. However, computational efficiency 
of algorithms and the representations they use dramatically affect both the size 
of the computers that are required and the size of the problems one can solve.

The most widely studied method for symbolic learning is one of inducing 
a general concept description from a sequence of instances of the concept and 
(usually) known counterexamples of the concept. The task is to build a con
cept description from which all previous positive instances can be rederived by 
universal instantiation but none of the previous negative instance (counterex
ample) can be rederived by the same process [6].

Learning from examples has been one of the primary paradigms of ML re
search since the early days of Artificial Intelligence (AI). Many researchers have 
observed and documented the fact that human problem solving performance 
improves with experience. In some domains, the principal source of expertise 
seems to be a memory to hold a large number of important examples. For 
example, in chess human experts seem to have a memory of roughly 50,000 to 
70,000 specific patterns. The attempts to build an intelligent (i.e., at the level 
of human) system have often faced the problem of memory for too many spe
cific patterns. Researchers expect to solve this difficulty by building machines 
that can learn. This reasoning has motivated many machine learning projects 
[31].

Inductive learning is a process of acquiring knowledge by drawing inductive 
inference from teacher (or environment) provided facts. Such a process involves 
operations of generalizing, specializing, transforming, correcting and refining 
knowledge representations. There are several different methods by which a
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human (or machine) can acquire knowledge, such as rote learning (or learning 
by being programmed), learning from instruction (or learning by being told), 
learning from teacher provided examples (concept acquisition), and learning by 
observing the environment and making discoveries (learning from observation 
and discovery).

Learning a concept usually means to learn its description, i.e., a relation 
between the name of the concept and a given set of features. Several differ
ent representation techniques have been used to describe concepts for super
vised learning tasks. One of the widely used representation technique is the 
exemplar-based representation. The representation of the concepts learned by 
the exemplar-based learning techniques stores only specific examples that are 
representatives of other several similar instances. Exemplar-based learning was 
originally proposed as a model of human learning by Medin and Schaffer [25].

There are many different exemplar-based learning models in the literature 
(see Fig. 1.1). All of these models share the property that they use verbatim 
examples as the basis of learning. For example, instance-based learning [1] 
retains examples in memory as points, and never changes them. The only 
decisions to be made are what points to store and how to measure similarity. 
Aha, Kibler, and Albert [1] have created several variants of this model, and they 
are experimenting with how far they can go with strict point-storage model. 
Another example is the nested-generalized exemplars model of Salzberg [34]. 
This model changes the point storage model of the instance-based learning and 
retains examples in the memory as axis-parallel hyperrectangles.

Previous implementation of the exemplar-based models usually extend the 
nearest neighbor algorithm in which some kind of similarity (or distance) metric 
is used for prediction. Hence, prediction complexity of such algorithms is 
proportional to the number of instances (or objects) stored.

This thesis presents another form of exemplar-based learning, based on the 
representation of feature partitioning. CFP is a particular implementation of 
the feature partitioning technique. The CFP partitions each feature into seg
ments corresponding to concepts. Therefore, the concept description learned by 
the CFP is a collection of feature partitions. In other words, the CFP learns 
a projection of the concept on each feature dimension. The CFP algorithm 
makes several significant improvements over other exemplar-based learning al
gorithms, where the examples are stored in memory without any change in
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Exemplar-Based Learning

Instance-Based Learning Exemplar-Based Generalization

Nested Generalized 
Exemplars

Generalized Feature 
Partitions

Figure 1.1. Classification of exemplar-based learning algorithms

the representation. For example, IBL algorithms learn a set of instances (a 
representative subset of all training examples), EACH (Exemplar-Aided Con
structor of Hyperrectangles) learns a set of hyperrectangles of the examples. 
On the other hand, the CFP algorithm stores the instances as factored out by 
their feature values.

Since the CFP learns projections of the concepts, it does not use any similar
ity (or distance) metric for prediction. Each feature contributes the prediction 
process by its local knowledge. Final prediction is based on a voting among 
the predictions of the features. Since a feature partition can be represented 
by a sorted list of line segments, the prediction by a feature is simply a search 
for the partition corresponding to the instance on that sorted list. Thei'efore, 
the CFP algorithm significantly reduces the prediction complexity, over other 
exemplar-based techniques. The power of a feature in the voting process is 
determined by the weight of that feature. Assigning variable weights to the 
features enables the CFP to determine the importance of each feature to re
flect its relevance for classification. This scheme allows smooth performance 
degradation when data set contains irrelevant features.

The issue of unknown attribute values is an unfortunate fact of real-world 
data sets, that data often contain missing attribute values. Most of the learning
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systems, usually overcome this problem by either filling in missing attribute 
values (with most probable value or a value determined by exploiting inter
relationships among the values of different attributes) or by looking at the 
probability distribution of known values of that attribute. Most common ap
proaches are compared in Quinlan [29], leading to a general conclusion that 
some approaches are clearly inferior but no one approach is uniformly superior 
to others. In contrast, CFP solves this problem very naturally. Since CFP 
treats each attribute value separately, in the case of an unknown attribute 
value, it simply leaves the partitioning of that feature intact. That is the 
unknown values of an instance are ignored while only the known values are 
used.

In the next chapter some of the previous models are presented and several 
different properties of the learning method are explored. The precise details 
of the CFP algorithm are described in Chapter 3. The process of partitioning 
of a feature dimension is illustrated with an example, and several extensions 
to the CFP algorithm are described. Chapter 4 presents theoretical and em
pirical evaluation of the CFP algorithm. A theoretical analysis of the CFP 
algorithm with respect to PAC-learning theory is presented. Performance of 
the CFP on artificially generated data sets and comparisons with other similar 
techniques on real-world data sets are also presented. The final chapter dis
cusses the applicability of the CFP and concludes with a general evaluation of 
the algorithm.



Chapter 2

P rev iou s M odels

It is well known that two major directions of AI research, symbolic and suhsym- 
holic models, exhibit their strengths and weakness in an almost complementary 
ways. While symbolic models are good in high-level reasoning, they are weak 
in handling imprecise and uncertain knowledge and data. On the other hand 
subsymbolic models are good in lower-level reasoning such as imprecise classi
fication and recognition problems. However, they are not good in higher-level 
reasoning. Nevertheless, both models contribute important insight to our un
derstanding of intelligent systems. Fortunately, over the last few years these 
two approaches have become less separate, and there has been an increasing 
amount of research that can be considered a hybrid of the two approaches 
[4, 13, 37].

2.1 Sym bolic M odels

Two of the main types of learning from examples in the history of AI research 
are concept learning and explanation-based learning.

Concept Learning: Concept learning tackles the problem of learning con
cept definitions. A definition is usually a formal description in terms of a set 
of attribute-value pairs, often called features. More recently, approaches using 
decision trees, connectionist architectures, representative instances, and hyper
rectangles (exemplar-based learning) have appeared in the literature. These 
approaches construct concept description by examining a series of examples.
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each of which is categorized as either an example of the concept or a counterex
ample. A learning system can refine its concept description until it matches 
the correct description.

Exemplar-based learning is a kind of concept learning in which the concept 
definition is constructed from the examples themselves, using the same repre
sentation language. In the instance-based learning in fact, the examples are the 
concept (no generalizations are formed). Like other concept learning theories, 
exemplar-based learning requires little or no domain specific knowledge.

2.1.1 E xplanation-B ased Learning (EBL)

Dejong and Mooney [9] present a general technique for learning by generalizing 
explanations. They discuss the differences of their model with the Explanation- 
Based Generalization (EBG) [21]. The border term EBL better describes the 
approach than does EBG. It seems both possible and desirable to apply the 
approach to concept refinement (i.e., specialization) as well as concept gener
alization. The explanation-based approach uses domain-specific knowledge as 
much as possible. This approach has been more commonly used in ML. An 
explanation consists of an inference chain (which may be a proof, but may also 
be mei'ely plausible reasoning) that identifies one or more of these variables as 
the cause of the wrong prediction. This subset of variables is linked by the 
inference chain to correct the prediction. Once the variables have been identi
fied, the system must revise its prediction model in some way to reflect the fact 
that a particular set of variables is now associated with the new prediction.

The difficult part of the EBL is the identification of the proper set of the 
variables that cause the wrong prediction. The number of possible subsets of 
the variables increases exponentially with the number of variables, so this is 
intractable. Hence, EBL systems use domain-specific knowledge to select, from 
a large set of possible explanations, a few plausible explanations. The domain 
knowledge is used to construct a proof that specific variables caused the wrong 
prediction. The knowledge that must be provided includes detailed knowledge 
about how each variable affect the prediction, and how input variables interact. 
Another goal of the EBL methods is that they attempt to construct as concise 
a description as possible of the input examples.
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The generalization method described in Mitchell [21] EBG, must be pro
vided with the following information:

1. Goal concept: A definition of the concept to be learned in terms of high- 
level or functional properties which are not directly available in the rep
resentation of an example.

2. Training example: A representation of a specific example of the concept 
in terms of lower level features.

3. Domain theory: A set of inference rules and facts sufficient for proving 
that a training example meet the high-level definition of the concept.

4. Operationality criterion: A specification of how a definition of a concept 
must be represented so that the concept can be efficiently recognized.

Given this information, EBG constructs an explanation of why the training 
example satisfies the goal concept by using the inference rules in the domain 
theory. This explanation takes the form of a proof tree composed of Horn- 
clause inference rules which proves that the training example is a member of 
the concept.

2.1.2 Instance-B ased Learning

The primary output of IBL algorithms is a concept description, which is a 
function that maps instances to concepts. Instance-based learning technique 
[1], has been implemented in three different algorithms, namely IBl, IB2, and 
IB3. IBl stores all the training instances, IB2 stores only the instances for 
which the prediction was wrong. Neither IBl nor IB2 remove any instance 
from concept description after it had been stored. IB3 employs a significance 
test (i.e., acceptable or significantly poor) to determine which instances are 
good classifiers and which ones are believed to be noisy.

An instance-based concept description includes a set of stored instances and 
some information concerning their past performance during the training pro
cess, e.g., the number of correct and incorrect classification predictions. The 
final set of instances can change after each training process. However, IBL 
algorithms do not construct intensional concept descriptions Instead, concept
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descriptions are determined by how IBL algorithm’s similarity and classifi
cation functions use the current set of saved instances. The similarity and 
classification functions determine how the set of saved instances in the concept 
description are used to predict values for the category attribute. Therefore, 
IBL concept descriptions contain these two functions along with the set of 
stored instances.

Three components of IBL algorithms are:

1. Similarity function: computes the similarity between an instance and 
instances in concept description.

2. Classification function: yields the classification for an instance by using 
the result of the similarity function and performance record of the concept 
description.

3. Concept description updater, maintains records on classification perfor
mance and decides which instances should be included in the concept 
description.

IBL algorithms assume that, instances that have high similarity values ac
cording to the similarity function, have similar classifications. This leads to 
their local bias for classifying novel instances according to their most simi
lar neighbor’s classification. They also assume that, without prior knowledge, 
attributes will have equal relevance for classification decisions (i.e. each fea
ture has equal weight in similarity function). This assumption may lead to 
significant performance degradation if the data set contains many irrelevant 
features.

IB3 is the noise tolerant version of the IBL algorithms. It employs wait 
and see evidence gathering method to determine which of the saved instances 
are expected to perform well during classification. In all IBL algorithms, the 
similarity between instances x and y is computed as:

similarity {x.,y) = — -  y^y
¿=1

IB3 maintains a classification record (i.e. number of correct and incorrect 
classification attempts) with each saved instance. A classification record sum
marizes an instances’s classification performance on subsequently presented
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training instances and suggests how it will perform in the future. IB3 employs 
a significance test (i.e. acceptable and significantly poor) to determine which 
instances are good classifiers and which ones are believed to be noisy. IB3 
accepts an instance if its classification accuracy is significantly greater than its 
class’s observed frequency and removes an instance from concept description 
if its accuracy is significantly less. Confidence intervals are used to determine 
whether an instance is acceptable, mediocre, or noisy. Confidence intervals are 
constructed around both the current classification accuracy of the instance and 
current observed relative frequency of its class.

2.1.3 N ested  G eneralized Exem plars

In Nested Generalized Exemplars (NGE) theory, learning is accomplished by 
storing objects in Euclidean ?z-space, jE", as hyperrectangles [34]. NGE is also 
a variation of exemplar-based learning. In the simplest form of the exemplar- 
based learning, every example is stored in memory, with no change in represen
tation (or without generalization), as in IBl algorithm presented above. NGE 
adds generalization on top of the simple exemplar-based learning. It adopts 
the position that exemplars, once stored, should be generalized. The learner 
compares a new example to those it has seen before and finds the most simi
lar, according to a similarity metric, which is inversely related to the distance 
metric (Euclidean distance in n-space). The term exemplar (or hyperrectangle) 
is used to denote an example stored in memory. Over time, exemplars may be 
modified (due to generalization) from their original forms. This is similar to 
the generalizations of partitions in the CEP algorithm.

Once a theory moves from a symbolic space to Euclidean space, it becomes 
possible to nest one generalization inside the other. Its generalizations, which 
take the form of hyperrectangles in can be nested to an arbitrary depth, 
where inner rectangles act as exceptions to the outer ones.

EACH (Exemplar-Aided Constructor of Hyperrectangles) is a particular 
implementation of the NGE technique [34], where an exemplar is represented 
by a hyperrectangle. EACH uses numeric slots for feature values of exemplar. 
The generalizations in EACH take the form of hyperrectangles in Euclidean 
n-space, where the space is defined by the feature values for each example. 
Therefore, the generalization process simply replaces the slot values with more 
general values (i.e., replacing the range of values [o, 6] with another range [c.
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c?], where c < a and d > b ). EACH compares the class of a new example with 
the most similar (shortest distance) exemplar in the memory. The distance 
between an example and an exemplar is computed according to the following 
distance function:

Distance{E, Hk) =
\

difi
«■=1 maxi — m in i '

where

Hk·.

H k.ref erence: 
Hk .correct:

^̂ low.tr * 
k u p p e r *

E:

fi-
E fr

WHV
wj,:

maxi, mini:
difi:

hyperrectangle k
the number of reference to Hk
the number of correct prediction made by Hk
lower boundary of Hk
upper boundary of Hk
an example
ith feature
ith feature value of exampleE 
weight of Hk{Hk.ref erence/Hk.cor reel) 
weight of fi
maximum and minimum feature values, respectively 
the distance between E and H on the ith dimension

difi =
E f i  —  - i ^ i t u p p e r  E f ^  >  H k  upper

Hk lower ^ S i  \ i E j , < H k lower

0 otherwise.

If a training example and the nearest exemplar are the same (i.e. a correct 
prediction has been made) the exemplar is generalized to include the new 
example if it is not already contained in the exemplar. However, if the closest 
example has a different class then that of the example, then the second closest 
exemplar is tried in the similar way. The idea behind the second minimum 
is to apply the second chance heuristic. This heuristic is useful to reduce the 
number of exemplars in the memory. If none the closest two exemplars has the 
same class as the example, then the algorithm modifies the weights of features 
so that the weights of the features that caused the wrong prediction is increased 
(in terms of distance).
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2.1.4 K N earest N eighbors (K N N ) A lgorithm

The nearest neighbor classification algorithm is based on the idea that, given 
a data set of classified examples, an unclassified instance should belong to the 
same class as its nearest neighbors in the data set. A common extension to 
the nearest neighbor algorithm is to classify a new instance by looking at its 
k nearest neighbors { k > 1 ). The k nearest neighbors algorithm classifies 
a new instance by noting its distance from each of the stored instances and 
assigning the new instance to the class of the majority of its nearest neigh
bors. Different ways of computing similarity or distances between instances 
are compared by Salzberg [33]. This algorithm can be quite effective when 
the attributes of the data are equally important. However, if the attributes 
are not equally important, performance of the algorithm degrades. Usually 
to solve this problem feature weights are introduced, resulting in the WKNN 
algox’ithm [22]. Assigning variable weights to the attributes of the instances 
before applying the KNN algorithm distorts the feature space, modifying the 
importance of each attribute to reflect its relevance for classification. In this 
way, closeness or similarity with respect to important attributes becomes more 
critical than similarity with respect to irrelevant attributes.

The GA-WKNN algorithm [22] combines the optimization capabilities of a 
genetic algorithm with the classification capabilities of the WKNN algorithm. 
The goal of the GA-WKNN algorithm is to learn an attribute weight vector 
which improves the WKNN classification performance. Chromosomes are vec
tors of real-valued weights. A vector value is associated with each attribute 
and one is associated with each of the k neighbors. Thus the length of the 
chromosome is the number of features plus k. Another extension to the KNN 
is to combine simple KNN with genetic algorithms (GAs)

2.1.5 D ecision  Tree

The decision tree is a well-known representation for classification tasks. This 
representation has been used in a variety of systems. Among them the most 
famous are ID3 [27] and its extension C4.5 [29] of Quinlan.

A decision tree can be used to classify a case by starting at the root of 
the tree and moving through it until a leaf is encountered. At each non-leaf
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decision node, the outcome of the case for the test at the node is determined 
and attention shifts to the root of the subtree coi'responding to this outcome. 
When this process finally leads to a leaf, the class of the case is predicted to 
be that record at the leaf.

A decision tree is global for each attributes, in other words each non-leaf 
decision node may specify some test on any one of the attributes. The CFP 
algorithm can be seen to produce special kind of decision trees. Unlike IDS, 
the CFP probes each feature exactly once. An important difference between 
decision tree approach and other approaches mentioned above, including CFP, 
is that the classification performance of these systems does not depend critically 
on any small part of the model. In contrast, decision trees are much more 
susceptible to small alterations.

2.1.6 T he P L S l A lgorithm

Both ID3 [27] and probabilistic learning system (PLSl) [30, 31] use probabilistic 
criteria to specialize hypotheses, and start with a single general description 
and split into two or more parts. The process of splitting continues, using one 
attribute for each split, until some stopping criterion is satisfied.

The PLSl accepts instances of known class membership, and based on 
their frequency, divides the instance space into mutually exclusive regions or 
probability classes. Like ID3, PLSl also uses specialization. It represents input 
instances as points in a fc-dimensional space creates orthogonal hyperrectangles 
by inserting boundaries parallel to instance space axes. Each hyperrectangle 
r is annotated with values: (1) the probability u of finding a positive example 
within r, and (2) an error measure e of u. These annotated hyperrectangles (r, 
u, e), called regions.! ^re like nodes of a decision tree annotated with probability 
and error measures. PLSl was compared with ID3 and C4 by Rendell [31, 32]. 
These comparisons show that two algorithms are similar, although they differ 
in some striking ways. For example, the splitting criteria are different. C4 
prunes its decision tree to eliminate noise, whereas PLSl faces that problem 
by splitting only if the statistical significance is high (and never prunes).
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2.2 Subsym bolic M odels

Both symbolic and subsymbolic models contribute an important insight to 
our understanding of intelligent systems. Connectionist models and Genetic 
Algorithms (GAs) are the best known examples of subsymbolic computation. 
This section presents a brief description of these subsymbolic models. I will 
not attempt to define precisely the essential differences between symbolic and 
subsymbolic approaches. This is beyond the scope of this thesis.

2.2.1 C onnectionist Paradigm

A neural network (or connectionism) is a kind of computation system in which 
the state of a system is represented as a numerical distribution pattern with 
many processing units and connections among those units. Learning by neu
ral networks uses an algorithm for transforming distribution patterns, which 
quite different from learning based on symbolic representations. Connectionist 
systems have stirred a great deal of excitement for number of reasons.

1. They are novel. Connectionism seems to be a good candidate for a major 
new paradigm in AI where there have only been a handful of paradigms.

2. They have cognitive science potential. While connectionist neural nets 
are not accurate models of neurons, they do seem brain-like and capable 
of modeling a substantial range of cognitive phenomena.

3. Connectionist systems have exhibited non-trivial learning. They are able 
to self-organize, given only examples as inputs.

4. Connectionist systems can be made fault-tolerant and error-correcting, 
degrading gracefully for cases not encountered previously.

5. An appropriate and scalable connectionist hardware is rapidly becoming 
available. This is important for applicability of the connectionist systems 
to the large-scale cognitive phenomena.

6. Connectionist architectures also scale well, in that modules can be inter
connected rather easily. This is because message passed between modules 
are generally activation level, not symbolic messages.
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However, there are considerable difficulties still ahead for connectionist 
models. Many different connectionist architectures were proposed in the litera
ture. It is important to note that there are connectionist architectures beyond 
the simple feed-forward, single-hidden-layer neural networks. In particular, re
current [10] with their feedback loops and ’’memory”, are especially appealing 
for application to symbolic tasks that have a sequential nature.

2.2.2 G enetic A lgorithm s

Genetic algorithms (GAs) are adaptive generaie-and-test procedures derived 
from principles of natural population genetics. This section presents a high- 
level description of one formulation of genetic algorithms. GAs represents a 
class of adaptive search techniques that have been intensively studied in recent 
years. The key feature of GAs is that adaptation proceeds, not by making 
incremental changes to a single structure but by maintaining a population (or 
database) of structures from which each structure in the population has an 
associated fitness (goal-oriented evaluation). These fitness values are used in 
competition to determine which structures are used to form new ones [19]. 
Genetic algorithms are best viewed as another tool for the designer of learn
ing systems. The selection of a good feedback mechanism that facilitates the 
adaptive search strategy, is critical issue for the effectiveness of GAs. Detailed 
descriptions, of genetic algorithms, are given by Goldberg [14]. A skeleton of 
a simple genetic algorithm is shown in Fig. 2.1.

During iteration {generation) t, the genetic algorithm maintains a popula
tion P{t) of structures { x \ ,x l , ..., chosen from the domain of the objective 
function / .  The initial population P(0) is usually chosen at random. The pop
ulation size N  remains fixed for the duration of the search. Each structure 
is evaluated by computing f{x\)· Usually, the term trial is used for each such 
evaluation. This provides a measure of fitness of the evaluated structure for 
the given problem. When each structure in the population has been evaluated, 
a new population of structures is formed in two steps.

First, structures in the current population are selected to reproduce on the 
basis of their relative fitness. That is, the selection algorithm chooses structures 
for replication by stochastic procedure that ensures that the expected number 
of offspring associated with a given structure x\ if f{x\/p,{P,t), where f{x\)
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Genetic-Algorithm: 
begin

t = 0
initialize P{t) 
evaluate P(t)
while( not terminating condition) 

i =  t -|-1
select P{t) from P{t — 1) 
recombine P{t) 
evaluate P{t)

end
end

Figure 2.1. A skeleton of a simple genetic algorithm

is the observed performance of a:,· and fi(P,t) is the average performance of 
all structures in the population. Structures that perform well may be chosen 
several times for replication and structures that perform poorly may not be 
chosen at all. In the absence of any other mechanisms, this selective pressure 
would cause the best performing structures in the initial population, to occupy 
a larger portion of the population over time.

In the second step, the selected structures are recombined using idealized 
genetic operators to form a new population. The most important genetic op
erator is crossover^ which combines the features of two parent structures to 
foi'm two similar offsprings. Crossover operates by swapping corresponding 
segments of the structures representing the parents. In generating new struc
tures for testing, the crossover operator draws only on the information present 
in the structures of the current population. If specific information is missing, 
due to storage limitations or loss incurred during the selection process of a pre
vious generation, then crossover operator is unable to produce new structures 
that contain that information. A mutation operator arbitrarily alters one or 
more components of a selected structure. It provides a means for introducing 
new information into the population. Usually, mutation operator is treated cis 
a background operator (i.e. its probability of application is kept very low). Its 
presence ensures that all points in the search space can be reached.
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2.3 Com parison o f C FP w ith  O ther M odels

To characterize the feature partitioning method, I will identify several different 
properties of the learning methods, and show how CFP differs or is similar to 
the other methods. We will use the terms instance and example interchange
ably.

Knowledge Representation Schemes: One of the most useful and interesting 
dimensions in classifying ML methods is the way they represent the knowledge 
they acquire. Many systems acquire rules during their learning process. These 
rules are often expressed in logical form (i.e., Prolog), but also in other forms, 
such as schemata. Typically such systems will try to generalize the left hand 
side of the rules (the antecedent in an if-then rule) so that those rules apply 
to as large number of situations as possible. Some systems try to generalize 
right hand side of the rules. Another way to represent what is learned is with 
decision trees. For example, ID3 [27], and several successors. Decision trees 
seem to lack of clarity as representations of knowledge. Another knowledge 
representation is set of representative instances [1] or hyperrectangles [30, 34]. 
On the other hand, in CFP algorithm partition is a basic unit of representation. 
Learning in CFP is accomplished by storing objects separately in each feature 
dimension as partitions of the set of values that it can take.

Underlining Learning Strategies: Most systems fall into one of two main 
categories according to their learning strategies. Namely, incremental and non- 
incremental learning strategies. Systems that employs incremental learning 
strategy attempt to improve an internal model (whatever the representation 
is) with each example they process. However, in non-incremental strategies, 
system must see all the training examples before constructing a model of the 
domain. Most concept learning systems follow an incremental learning strategy, 
since the idea is to begin with a rough definition of a concept, and modify that 
definition over time. The characteristic problem of these system is that their 
performance is sensitive to the order of the instances they process. The CFP 
algorithm falls in to the incremental learning category, which means that CFP’s 
behavior sensitive to the order of examples.

A non-incremental learning strategy usually assumes random access to the 
examples in the training set. The learning systems which follows this strategy 
(including ID3 of Quinlan and INDUCE system of Larson) search for patterns 
and regularities in the training set in order to formulate decision trees or rules.
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This approach offers the advantage of not being sensitive to the order of the ex
amples. However, it introduces additional complexity by requiring the program 
to decide when it should stop its analysis.

Domain Independent Learning: EBG requires considerable amounts of do
main specific knowledge to construct explanations. This results from the fact 
that explanation based systems must construct explanations each time they 
experience a prediction failure.

Exemplar-based learning, on the other hand, does not construct explana
tions at all. Instead, it incorporates new examples into its experience by stor
ing them verbatim in memory. Since it does not convert examples into another 
representational form, it does not need any domain knowledge to explain what 
conversions are legal, or even what the representations mean. Interpretation 
is left to the user or domain experts. Consequently, exemplar-based systems 
like CFP, can be quickly adapted to new domains, with a minimal amount of 
programming.

Multiple Concept Learning: Machine learning methods have gradually in
creased the number of concepts that they can learn and the number of variables 
they could process. Many early programs could learn exactly one concept (e.g. 
initial ID3 can learn only one concept (positive and negative). Successors of 
the IDS can learn multiple concepts). Some of the theories that handle multiple 
concepts need to be told exactly how many concepts they are learning.

Binary, discrete, and continuous variables: One shortcoming of some learn
ing programs is that they handle only binary variables, or only continuous 
variables, but not both. In Catlett [7] a method of changing continuous-valued 
attributes into ordered discrete attributes is presented for the systems that 
can only use discrete attributes. The CFP learning program handles variables 
which take on any number of values, from two (binary) to infinity (continuous). 
However, if most of the features are binary or discrete, the probability of con
structing overlapping partitions is high. In this case performance of the CFP 
depends on the observed frequency of the concepts. In general, CFP learning 
system outperforms if the domain has continuous variables.

Problem Domain Characteristic: In addition to characterizing the dimen
sions along which CFP system offers advantages over other methods, it’s worth
while to consider the sorts of problem domains it may or may not handle. The 
CFP system is domain independent. However, there are some domains in which
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the target concepts are very difficult for exemplar-based learning, and other 
learning techniques will perform better. In general, exemplar-based learning is 
best suited for domains in which the exemplars are clusters in feature space. 
The CFP algorithm is applicable to concepts, where each feature, indepen
dent of other features, can be used in the classification of the concept. The 
CFP algorithm is a variant of algorithms that learn by projecting into one fea
ture dimension at a time. For example, ID3 learns that in greedy manner while 
building conjunctions. The CFP algorithm retains feature-by-feature represen
tation and uses voting to categorize, if concept boundaries are nonrectangular, 
or projection of the concepts into a feature dimension are overlapping then 
CFP performance degrades.

Noise Tolerance: The ability to form general concept description on the 
basis of particular examples is an essential ingredient of intelligent behavior. 
If examples contain errors, the task of useful generalization becomes harder. 
The cause of these errors or ’’noise”, may be either systematic or random. 
There two sorts of noise: (1) classification noise, and (2) attribute noise [3]. 
Classification noise involves corruption of the class value of an instance, and 
attributes noise involves replacing of the attribute value of an instance. Missing 
attribute values are also treated as attribute noise.

Applicability of a learning algorithm highly depends on the capability of the 
algorithm handling noisy instances. Therefore, most of the learning algorithms 
try to cope with noisy data. For example, the IB3 algorithm utilizes classi
fication performance of stored instances to cope with noisy data. It removes 
instances from concept description that are believed to be noisy [1]. EACH 
also uses classification performance of hyperrectangles. However, it does not 
remove any hyperrectangle from concept description [34]. Decision tree algo
rithms utilize statistical measurements and tree pruning to cope with noisy 
data [27, 29].

Connectionist models and Genetic Algorithms (GAs) are relatively noise 
tolerant. Robustness of connectionist models naturally arises from distributed 
representation. The learned concept is represented as a set of weighted con
nections between neuron-like units. The key feature of GAs is that adaptation 
proceeds with population of structures. The selection of a good feedback mech
anism is a critical issue for the effectiveness of GAs [14].

The CFP algorithm utilizes representativeness values of partitions, observed
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frequency of concepts, and a voting scheme to cope with noisy data. Section 3.2 
presents noise tolerant version of the CFP algorithm which removes partitions 
that are believed to be noisy. Section 4.2.2 presents empirical comparisons of 
the CFP with C4.5 on artificially generated noisy data.



Chapter 3

Learn in g with Feature P artition s

This chapter discuss a new incremental learning technique, based on feature 
partitioning. First section describes the CFP, that can be used on real-world 
data sets. The process of partitioning of a feature dimension is illustrated 
with an example. Section 2 presents an extension to the CFP for handling 
noisy instances. Section 3 explores a possible parallelization scheme of the 
CFP and Section 4 presents a hybrid system (GA-CFP) that combines the 
optimization capability of GAs and the classification capability of the CFP. 
Finally, limitations of the CFP presented in Section 5.

3.1 T he C FP A lgorithm

This section describes the details of the feature partitioning algorithm used 
by CFP. Learning in CFP is accomplished by storing the objects separately in 
each feature dimension as disjoint partitions of values. A partition is the basic 
unit of representation in the CFP algorithm. For each partition, lower and 
upper bounds of the feature values, the associated class, and the number of 
instances it represents are maintained. The CFP program learns the projection 
of the concepts over each feature dimension. In other words, the CFP learns 
partitions of the set of possible values for each feature. An example is defined as 
a vector of features values plus a label that represents the class of the example.

Initially, a partition is a point (lower and upper limits are equal) on the line 
representing the feature dimension [38]. For instance, suppose that the first ex
ample Cl of class C\ is given during the training phase (Fig. 3.1.a). If the value

21
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Figure 3.1. Partitioning of a feature dimension
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of Cl for feature f  is x \, that is e i j  = X\ then the set of possible values for fea
ture /  will be partitioned into three partitions: < [—00, Xi\^undetermined, 0 >, 
< [xi, a;i], Cl, 1 >, < [xi, og], undetermined, 0 >; where the first element of the 
triple indicates the range of the partition, the second its class, and the third, 
called the representativeness value, the number of examples represented by the 
partition.

A partition can be extended through generalization with other neighboring 
points in the same feature dimension. The CFP algorithm pays attention to the 
disjointness of the partitions to avoid over-generalization. In order to generalize 
a partition in feature /  to cover a point, the distance between them must be 
less than a given generalization limit (Dj). Otherwise, the new example is 
stored as another point partition in the feature dimension / .  Assume that the 
second example 62 is close to e\ (i.e., |xi — X2I < Dj) in feature /  and also of 
the same class. In that case the CFP algorithm will generalize the partition 
for Xi into an extended partition < [xi,X2],C i,2 > which now represents two 
examples (see Fig. 3.1.b). Generalization of a range partition is illustrated in 
Fig. 3.1.d.

If the feature value of a training example falls in a partition with the same 
class, then simply the representativeness value (number representing the ex
amples in the partition) is incremented by one (Fig. 3.1.c).

If the new training example falls in a partition with a different class than 
that of the example, the CFP algorithm specializes the existing partition by 
dividing it into two subpai'titions and inserting a point partition (corresponding 
to the new example) in between them (see Fig. 3.1.e, f). When a partition is 
divided into two partitions, it is important to distribute the representativeness 
value of the old partition to the newly formed partitions. The CFP distributes 
the representativeness of the old partition among the new ones in proportional 
to their sizes. For instance, the representativeness value of the newly formed 
partitions in Fig. 3.1.e will be

n = 4 X

m  = 4 X

X5 -
X4 — Xl ’

X4 -  xs
X4 — Xl

For instances, if X4 — xi = 6.7 and X4 — X5 = 4.4, then n =  1.37 and m  = 2.63.
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train(Training Set): 
begin

foreach e in Training Set 
foreach feature /

if class of partition(/, e/) =  Cdasa 
th en  Wf = (1 + A)w f 
else Wf = (1 — A)w / 

update-feature-parti tioning(/ ,  e /)
end

Figure 3.2. Training algorithm of the CFP

In terms of production rules, the partitioning in Fig. 3.1.f can be represented 
as:

i f e j  > X i  and e/ < X5
then ^claaa ~  C \

i f e j  = X 5

then ^claaa ~  C \

i f 6 f  > X 5  and C f  < X 4

then ^claaa ~  C \

The CFP algorithm pays attention to the disjointness of the partitions. 
However, partitions may have common boundaries. In this case the repre
sentativeness values of the partitions are used to determine class value. For 
example, in Fig. 3.1.f at e/ = X5, three classes Ci, C2 and Cz are possible, 
but since the total representativeness of the class C\ is 4 and that of the other 
classes is 1, the prediction for the feature f  \s C\.

The training process in CFP algorithm has two steps: learning of feature 
weights and feature partitions (Fig. 3.2). For each training example, the pre
diction of each feature is compared with the actual class of the example. If 
the prediction of a feature is correct, then the weight of that feature is incre
mented by A (global feature weight adjustment rate) percent; otherwise, it is 
decremented by the same amount.
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prediction(e):
begin

VOtCc =  0 
foreach feature /

c =  class of partition(/, e/) 
votcc = vottc A

return class c with highest votCc·
end

Figure 3.3. The Prediction process of CFP

The prediction in the CFP is based on a vote taken among the predictions 
made by each feature separately (Fig. 3.3). For a given instance e, the predic
tion based on a feature /  is determined by the value of e/. If e/ falls properly 
within a partition with a known class then the prediction is the class of that 
partition. If 6/ falls in a point partition then among all the partitions at this 
point the one with the highest representativeness value is chosen. If e/ falls 
in a partition with no known class value, then no prediction for that feature 
is made. The effect of the prediction of a feature in the voting is proportional 
with the weight of that feature. All feature weights are initialized to one before 
the training process begins. The predicted class of a given instance is the one 
which receives the highest amount of votes among all feature predictions.

Fig. 3.4 shows an example of classification process of the CFP on a domain 
with four features and two classes. Assume that the test example e has a class 
value Cl and features values are xi, X2, X3, and X4 respectively. The prediction 
of the first feature is Ci. The second feature predicts undetermined as a class 
value. The prediction of the third and fourth features are C2· The fourth 
feature value X4 of e falls into two partitions. In this case the representativeness 
values are used to determine the class value (e.g., C2 partition has greater 
representativeness value than Ci partition, so that prediction of the fourth 
feature is C2)· Final prediction of the CFP depends on the values of the 
feature weights (r/;,’s). If wi > (103 + W4) then CFP will classify e as a member 
of Cl class which is a correct prediction. Otherwise, CFP predicts the class of 
the e as C2, which would be a wrong prediction.

The second step in the training process is to update the partitioning of 
each feature using the given training example (Fig. 3.5). If the feature value
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Figure 3.4. The Classification process of CFP

of a training example falls in a partition with the same class, then simply 
its representativeness value is incremented. If the new feature value falls in 
a partition with a different class than that of the example and this partition 
is a point partition, then a new point partition (corresponding to the new 
feature value) is inserted next to the old one. Otherwise, if the class of the 
partition is not undetermined, then the CFP algorithm specializes the existing 
partition by dividing it into two subpartitions and inserting a point partition 
(corresponding to the new feature value) in between them. On the other hand, 
if the example falls in an undetermined partition, the CFP algorithm tries to 
generalize the nearest partition of the same class with the new point. If there 
exist a partition with the same class in D/ distance, then it is generalized to 
cover the new feature value. Otherwise, a new point partition that corresponds 
to the new feature value is inserted.

In order to illustrate the form of the resulting concept descriptions learned 
by the CFP algorithm, consider a domain with two features / i  and / 2. Assume 
that during the training phase, positive (+) instances with /j  values in [arn, X12] 
and /2 values in [3:23, 3:24], and negative (—) instances with /1 values in [3:13, 3:14] 
and /2 values in [3:21,^ 22] are given. The resulting concept description is shown
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update-feat ure-partitioning(/, ey): 
begin

if class of partition(/, ey) =  edasa
increment representativeness value of partition(/, ey) 

else {different class}
if partition(/, ey) is a point partition 

insert-new-partition(/, ey) 
else {partition(/, ey) is a range partition}

if class of partition(/, ey) is not undetermined 
subdivide-partition(partition(/, ey), ey) 

else (try to generalize}
if the nearest partition to left or right in Df distance 
has the class edass

genera,\ize{partition,e y)
else {there is no partition in Dj distance with the 
same class as e}

insert-new-partition(/, ey)
end

Figure 3.5. Updating a feature partition

in Fig. 3.6.

For test instances which fall into the region [—oo, Xn][a:23, X24], for example, 
feature /1 has no prediction, while feature /2 predicts as class (-|-). Therefore, 
any instance falling in this region will be classified as (-|-). On the other hand, 
for instances falling into the region [—00, 00, X2i]> for example, the CFP
algorithm does not commit itself to any prediction.

If both features have equal weight (wi = IV2) then, the description of the 
concept corresponding to the class -|- shown in Fig. 3.6 can be written in 3-DNF 
as:

class d-:

(aJii < /1 & /1 < x \2 & /2 < 2:21) or
(a:ii < /1 & /1 < x \2 & /2 > 2:22) or
{x23 < /2 & /2 < X24 & /1 < â is) or
{X2Z < /2 & /2 < X24 & /1 > Xu)

More compactly:
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Figure 3.6. An example concept description in a domain with two features

class +:

[(a^ii < fi  < xn)  &  (/2  <  X21 or X22 < /2)] or 

[{.X23 <  /2  <  X24) ^  ifi < a:i3 or <  /1 ) ]

Similarly, the description for the negative examples can be written as:

class — :

[(a:i3 <  / 1  <  3:14) &  (/2 <  X23 or 0:24 <  /2)] or 

[(3̂ 21 <  /2  <  X22) &  i f i  <  x n  or X12 <  /1)]

The CFP does not assign any classification to an instance if it could not 
determine the appropriate class value for that instance. This may result from 
having seen no instances for a given set of values or having a tie between two or 
more possible contradicting classifications. In case of different weight values for 
the features, the ties are broken in favor of the class predicted by the features 
with the highest weights during the voting process (with equal feature weights, 
it corresponds to the majority voting scheme of feature predictions).
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If wi > w-i then the ties will be broken in favor of /1 during the voting 
process. In that case the concept description of the class + will be as follows.

class +:

[®11 <  / 1  <  X12] or

[{X2 3  <  /2  <  3:24) ( /1  <  X l3  o r  X i 4  <  / 1 )]

The description of the class — will be as follows.

class —:

[a;i3 < /1 < 3:14] or
[{X2i < /2 < X22) & (/1 < ®11 or X12 < / 1)]

Similarly, if > Wi then the ties will be broken in the favor of /2 during 
the voting process. In that case the concept description of the class + will be 
as follows.

class +:

[3̂ 23 < /2 < 3:24] or
[(3;n < /1 < 3:12) k  (/2 < X21 or 0:22 < / 2)]

Similarly, the description for the negative examples can be written as:

class —:

[3;21 <  /2  <  X22] or

[(3;i3 <  / 1  <  3:14) k  (/2 <  0:23 or X2A <  /2)]

Having described the basic CFP algorithm, we will now describe several 
extensions. These extensions are the noise tolerant version, parallelized ver
sion, and the version that uses a genetic algorithm to determine the domain 
dependent parameters of the CFP algorithm.
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3.2 A noise tolerant version o f the CFP

There are several types of noise that may exist in a data. One possible type 
of noise is the classification noise. Here the attribute values of an instance 
represent a valid point in the instance space, however the associated classifica
tion is incorrect. In order to cope with this type of noise one must be able to 
differentiate misclassified instances from correctly classified ones.

This section presents an extension to the CFP algorithm to remove the 
partitions that are believed to be introduced by noisy instances. A new pa
rameter, called confidence threshold (or level) (CT), is introduced to control 
the process of removing the partitions from the concept description. The con
fidence threshold and observed frequency of the classes are used together to 
decide that a partition is noisy. The CT  is also a domain dependent parameter 
of the CFP.

Partition removing operation is used as a background operator and is ac
tivated when specialization of a partition is performed. Thus, this operation 
is simple and does not introduce additional computational cost to the train
ing process. If the new training example falls in a partition with a different 
class than that of the example in a feature, the CFP algorithm specializes the 
existing partition by dividing it into two subpartitions and inserting a point 
partition, corresponding to the new example, in between and distributes the 
representativeness value of the old partition to the newly formed partitions. If 
the representativeness values of any of the resulting subpartitions drop below 
the confidence threshold times the observed frequency of its class, then that 
subpartition is removed from partition list of the feature.

Depending on the noise level of the data set and the number of the irrelevant 
attributes, the value of the confidence threshold changes between 0 (do not 
remove any partition) and 1 (remove a partition if its representativeness value 
drops below the observed frequency of the its class).

The confidence threshold is used to improve accuracy of the CFP and also 
to reduce the memory requirement. Empirical evaluation of the confidence 
threshold and other domain dependent parameters of the CFP on artificially 
generated data sets are given in Chapter 4.
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3.3 Parallelization o f the CFP

Achieving speed-up through parallelism on multicomputer architectures on 
multicomputer architectures is not straightforward. An algorithm must be 
designed so that both computations and data can be distributed to the pro
cessors in such a way that computational task can be run in parallel. The 
computational load should be balanced as much as possible. Communication 
between processors, in order to exchange data, must be considered as part of 
the algorithm design. Unless parallel algorithms reduce both the number and 
the volume of the interprocessor communication through problem partitioning 
with judicious use of communication, the benefits of parallel processing can be 
easily offset by the communication overhead.

If we consider the above issues, the CFP algorithm is naturally suitable for 
parallel implementation. Since, the CFP learns one feature at a time, it is very 
natural for mapping the training process to parallel architectures. A parallel 
algorithm can be developed to learn feature partitions in any fixed number of 
dimensions. The formal analysis of the parallelization of the CFP is presented 
in Section 4.1.

The main problem in the pai'allel implementation of the CFP is load
balancing. If the CFP constructs small number of partitions for some features 
and too many partitions for others, then the utilization of the processors, corre
sponding to the features with small number of partitions, will be low. However, 
if number of the partitions on each feature dimensions are nearly equal, then 
parallelization will result in high efficiency.

3.4 T he G A -C FP A lgorithm

Kelly and Davis have developed a hybrid genetic algorithm for the K Nearest 
Neighbors (KNN) classification algorithm [22]. Their algorithm, called the GA- 
WKNN (for Genetic Algorithm with Weighted K Nearest Neighbor), combines 
the optimization capabilities of a genetic algorithm with the classification capa
bilities of the weighted KNN algorithm (WKNN). The goal of the GA-WKNN 
algorithm is to learn a feature weight vector which improves the common k 
nearest neighbor algorithm.
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Figure 3.7. Parameter encoding schemes of the GA-CFP

This section describes a hybrid system, called GA-CFP,^ which combines 
a genetic algorithm with the CFP algorithm. The GAUCSD 1.4 genetic algo
rithm package [36] is used to implement the GA-CFP algorithm. The standard 
operators of genetic algorithms were used, namely, reproduction, crossover and 
mutation [14]. The chromosomes are treated as rings and crossover is done by 
exchanging the sections between two ci'ossover points. The genetic algorithm 
is used to determine the domain dependent parameters of the CFP algorithm. 
It is a difficult problem to find an optimum setting of these parameters. Em
pirical results of the GA-CFP are presented in Chapter 4. These results show 
that the genetic algorithm was able to find good setting for these parameters. 
They are good in the sense that they outperform the cases where the feature 
weights are identical, the generalization limits are set to two extremes, and the 
confidence threshold is set to zero.

We investigated six different parameter encoding schemes with GA-CFP 
shown in Fig. 3.7. In Fig. 3.7 Dj and wj represents the generalization limit 
and weight of the / th  feature respectively. A represents weight adjustment

preliminary version of this implementation appeared in [17].
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rate and CT  represents confidence threshold. The basic difference between 
these encoding schemes is that the learning of the parameters is achieved by 
GA or set by the user, consequently size of the search space of the GA-CFP dif
fers. Chromosomes are vectors of real-valued, and represents feature weights, 
generalization limits, and confidence threshold depending on the employed en
coding scheme. Each chromosome is a vector of decimal numbers between 0 
and 1 inclusive. A vector value is associated with the weight, the generalization 
limit for each feature, and confidence threshold. Thus the length of the vector 
changes between n and n -|-1 on a domain with n features.

In all encoding schemes, generalization limits are learned by GA. Fig. 3.7.a 
illustrates a chromosome of the GA-CFP, in which generalization limits are 
learned by GA, while A and CT  are set by user. A vector value is associ
ated with the generalization limit for each feature. Thus the length of the 
vector is equal to the number of features. With encoding scheme illustrated 
in Fig. 3.7.b A is also learned by the GA. On the other hand, in Fig. 3.7.c 
confidence threshold is learned by the GA and A is set by user. In both en
coding schemes, the length of the chromosome is the number of features plus 
one. Fig. 3.7.d illustrates another encoding scheme, where both A and con
fidence threshold are learned by the GA with chromosome length number of 
features plus two. Fig. 3.7.e illustrates another encoding scheme where feature 
weights are learned by the GA directly and used by CFP. With this encod
ing scheme incremental learning of the feature weights is not employed by the 
CFP. Most general encoding scheme is shown in Fig. 3.7.f in which, in ad
dition to the feature weights, the confidence threshold is also learned by the 
GA. Thus length of the vector is twice the number of features plus one. This 
encoding scheme achieves the best accuracy among the others. When learning 
the feature weights using A increment the CFP can not find the intermediate 
values between the A increments, whereas GA-CFP can find those values. The 
tradeoff is that, this encoding scheme doubles the size of the search space, so it 
requires more trials to find the good setting of the parameters. If application 
domain has many attributes encoding scheme 6,c, or d can be used with GA- 
CFP. Empirical results indicate that CFP is not very sensitive to the changes 
in these parameters. Reasonable settings can be found by trial and error.

The initial population of chromosomes in each run of the GA-CFP algo
rithm was randomly generated. The fitness function used to evaluate the chro
mosomes is the accuracy of the CFP algorithm with the weights, generalization 
limits, and confidence threshold encoded in the chromosome (see Fig. 3.8). In
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CFP(Training Set, Test Set): 
begin

{ train }
foreach e in Training Set 

foreach feature /
update-feature-partitioning(/, ey) 

{ test }
correct-count = 0 
foreach e in Test Set 

P=prediction(e) 
if P = =  Cc/oas then  

increment correct-count 
re tu rn  correct-count /  Test Set size

end

Figure 3.8. The CFP fitness function of the GA-CFP

order to compute the fitness value of a chromosome, the CFP algorithm is 
trained with the examples in the training set using the feature weights, gener
alization limits, and confidence threshold then tested with the examples in the 
test set. The fitness value is computed as the ratio of the correctly predicted 
test examples to the size of the test set.

In Chapter 4 the performance of the CA-CFP is tested with various real- 
world data sets and compared with I’egular CFP and other similar algorithms. 
Although the results of the CA-CFP algorithm are better than other classifi
cation systems, the use of a genetic algorithm is costly. The computation of 
the fitness function requires the execution of the CFP algorithm several times 
due to the cross-validation method. However, an important characteristic of 
the feature weight and generalization limit parameters of the CFP algorithm is 
that these parameters are domain dependent. Therefore, the genetic algorithm 
can be used only with a portion of all the data available. As an experiment, 
the CA-CFP system was trained with only 1/10, 1/5, 1/4, 1/3, 1/2, 2/3, and 
3/4 of the Iris data set, which contains 150 instances. Then, the accuracy 
of the CFP algorithm was measured on the complete set of data using the 
parameter settings learned by the CA-CFP (Fig. 3.9). The cross-validation 
method was used in the test of CFP. For example, 0.92 is the average of 10 
runs in each of which a disjoint set of 1/10 of the data is used with CA-CFP
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Figure 3.9. Learning curve of domain dependent parameters

and the remaining 9/10 in the test with CFP. In determining the fitness value 
of a chromosome, to avoid the dependency on the order of the examples in the 
data set, leaving-one-out cross-validation method is used. For example, in the 
run with 1/10 (15 examples) of data, the fitness value of a chromosome is the 
average of 15 runs of the CFP with the parameters it encodes; in each run 14 
examples were used in training and the remaining one in the test.

It is clear from these experiments that the genetic algorithm can determine 
a very good set of domain dependent parameters of the CFP, even when trained 
with a small portion of the data set. Obviously, the larger portion of the data 
is used, the better parameters are found.

An algorithm that hybridizes the classification power of the feature par
titioning CFP algorithm with the search and optimization power of the ge
netic algorithm is presented. The resulting algorithm GA-CFP requires more 
computational capabilities than the CFP algorithm, but achieves improved 
classification performance in reasonable time. Experimental results indicate 
that in many real-world domains the GA-CFP algorithm outperforms other 
classification techniques such as IBL, C4.5, and GA-WKNN.

We have also noticed that the genetic algorithm can be trained with only a 
small portion of the data to learn the domain dependent parameters of the CFP 
algorithm with satisfactory prediction accuracy. We anticipate that extensions 
to the research will improve the algorithm’s performance.
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3.5 L im itations o f the CFP

The CFP learns a partitioning of values for each feature of the application 
domain. The CFP algorithm is applicable to concepts where each feature, in
dependent of other features, can contribute to the classification of the concept.

This approach is a variant of algorithms that learn by projecting into one 
feature dimension at a time. For example, ID3 learns in that greedy manner 
while building a conjunction. The novelty of CFP is that it retains a feature-by- 
feature representation and uses a voting scheme for categorization. Algorithms 
that learn by projecting into one dimension at a time are limited in their ability 
to find complex concepts.

3.5.1 N onrectangular Concept D escriptions

Each partition represents two (one if lower and upper values of the partition 
are equal) parallel surfaces (hyperplanes) in the description space; these are 
orthogonal to the axis of the partition and parallel to all other axes. Conse
quently, the regions constructed by the CFP are disjoint hyperrectangles.

When actual class regions are not hyperrectangles, the best that CFP can 
do is to approximate the regions by small hyper rectangles. This is illustrated^ 
in Fig. 3.10 by artificial data in which 50 instances of two classes (repre
sented by — and -|-) are described by two continuous attributes FI and F2, 
respectively. Here, the class symbols of range partitions are shown above/right 
of the corresponding partition, class symbol of point partitions (exceptions) 
are shown below/left of the point. Since the instances are symmetrically dis
tributed in the feature space and the weight of the features are close to each 
other as expected. For higher values of FI class -|- will be predicted and for 
higher values of F2 class — will be predicted.

^Fig. 3.10 is a snapshot of the program called ’’show concepts” which is developed to 
visualize the example points and constructed partitions on a two-dimensional plane.
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3.5.2 O verlapping Concept D escription  Projections

CFP learns by projecting into one feature dimension at a time. Therefore, 
it loses the n-dimensional information of the description space. Fortunately, 
this weakness is compensated with the voting scheme and yields significant 
reduction in the learning complexity and memory requirement of the CFP.

If the projections of concepts on feature dimensions do not overlap, then 
the CFP will classify an instance with a high confidence. However, in some 
circumstances, e.g., in the nested concept description, this may not hold. This 
is illustrated in Fig. 3.11 on artificial data set in which 100 instances of two
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classes (represented by — and +) are described by two continuous attributes 
FI and F2, respectively. Instances falling into the region < [4,7], [4, 7] > will 
be correctly classified, because this region contains 50 instance of class —. 
The reset of the feature space contains 50 instances of class +. Consequently, 
the representativeness value of the class — partitions will be greater than the 
class + partitions. Therefore, the nested concept will be correctly identified. 
However, for example, the instances falling into the region < [4, 7], [1,4] > be 
classified as class — (since wi > W2).

In some cases, even when concepts descriptions are not nested, the projec
tion of the concept descriptions overlap. This is illustrated in Fig. 3.12 and
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Figure 3.12. An example of overlapping projection of concept descriptions

Fig. 3.13 on artificial data in which 80 and 60 instances respectively, of two 
classes (represented by — and +) are described by two continuous attributes FI 
and F2. In Fig. 3.12 the instances are symmetrically distributed in the feature 
space and the weights of the features are close to each other as expected.

An example of partially overlapping projection of concept descriptions is 
shown in Fig. 3.13. This artificial data set contains 60 instances which are 
members of class + or class —. The CFP algorithm constructs two range par
titions for the non-overlapping projections of the class —. Therefore, the CFP 
will correctly classify the class -  examples. However, both projections of the
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class -f are overlapping with class — projections. Therefore, the classifica
tion of class + examples depends on representativeness values of constructed 
partitions for that part of the feature space.

3.5.3 D om ain D ependent Param eters o f th e CFP

The CFP uses ferture weights to cope with unequally relevant attributes. In 
the CFP the feature weights are dynamically adjusted according to the global 
weight adjustment rate (A), which is an important parameter for the predictive 
accuracy of the algorithm. The generalization process of the CFP is controlled 
by the generalization limits for each feature. Another important component of 
the CFP is the confidence threshold {CT) parameter, which controls the process 
of removing the partitions that are believed to be noisy from the concept 
description. The A, Dj, and CT  are domain dependent parameters of the 
CFP, and their selection affects the performance of the algorithm. Determining 
the best values for these parameters is an optimization problem for a given 
domain. Fortunately, this problem is solved by GA-CFP algorithm as explained 
in Section 3.4.



CHAPTER 3. LEARNING WITH FEATURE PARTITIONS 41

tions



Chapter 4

E valuation  o f the C F P

This chapter presents theoretical and empirical analysis of the CFP algorithm. 
From the viewpoint of empirical research, one of the main difficulty in com
paring various algorithms wliicli learn from examples is the lack of a formally 
specified model on wliieli tlie alguritlims may lx* (waluated. Typically, differ
ent learning algorithms and theories arc givini together with examples of their 
performance, but without a precise definition of learnabiliiy, it is difficult to 
characterize the scope of applicability of an algorithm or analyze the success 
of different approaches and techniques.

Informally speaking, a concept is a subset of the objects in a predefined 
domain and the problem of learning a concept from examples is the following: 
Given some examples for an unknown concept and/or some prior information 
on it, compute a good approximation to the concept. The concept for which 
examples are provided is known as target concept [26].

4.1 T heoretical Evaluation of the CFP

This section presents an analysis of the Cl'd* algorithm' with respect to PAC- 
learning theory [41]. Valiant introduced this theory in 1984, by taking some 
simplified notions from statistical pattern recognition, decision theory, and 
combining them with approaches from computational complexity theory, he 
came up with a notion of learning problems that are feasible in the sense that 
there is a polynomial time algorithm that solves them. Valiant was successful

preliminary version of this section will appear in [16].

42
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in his efforts. Since 1984 many theoretical computer scientists and AI re
searchers have either obtained results in this theory, or criticized about it and 
proposed modified theories, or both [20]. The intent of the PAC (Probably Ap
proximately Correct) model is that successful learning of an unknown target 
concept should entail obtaining, with high probability, that it is a good approx
imation of the concept. In the basic model, the instance space is assumed to be 
{0, 1}", the set of all possible assignments to n binary variables (or attributes). 
Concepts and hypotheses are Niibset of {0,1}". The notion of approximation is 
defined by assuming thal tlmr«! is some probability distribution D defined on 
the instance space {0,1}", giving the probability of each instance. Then the 
error of hypothesis h with respect to a fixed target concept c is defined as:

error(h) = V  D{x).
xEhAc

where Д denotes the symmetric difference. Thus error(h) is the probability 
that h and c will disagree on an instance drawn randomly according to D. The 
hypothesis Л is a good approximation of the target concept c, if error(h) is 
small.

How does one obtain a good hypothesis? In the simplest case one does this 
by looking at independent random examples of the target concept c [5]. Each 
example consists of an instance selected randomly according to D and a label 
that is -f {positive exampli·) if tliat instance is in the target concept c, otherwise 
— {negative example). 'IVninlng nnd testing plias<*s n.se the same distribution 
of examples, and there is no поЫе in either phase.

The two criticisms most often leveled at the РАС model by AI researchers 
interested in empirical machine learning are (1) the worst-case emphasis in the 
model makes it unusable in practice, and (2) the notions of target concepts and 
noise-free training data are too restrictive in practice [18, 26]. Some extensions 
are proposed to the original PAC-model to handle the noisy sample data [3, 20]. 
These extensions preserve th<‘ gc'iierality of the PAC-model, and do not make 
any assumptions on the nature of the noise.

Since the classification in the CFP is based on a voting taken among the 
individual classifications of each attribute, it can learn a concept if each at
tribute, independently from other attributes, can be used in the classification. 
We will define what we mean by “learning” in a way that preserves the spirit 
of the Valiant’s definition of h'arnability, but modifies it for the voting based
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classification used in the CFP. In order to do this we will first determine the 
sample complexity^ that is the minimum number of examples required to learn 
a given concept. Then, using this sample complexity, we will derive the train
ing complexity of the CFP algorithm. In the following analysis we assume that 
all feature values are normalized to the interval [0,1], and features are equally 
relevant that is they have equal weights.

Definition. Let X be a subset of with a fixed probability distribution 
and d is positive integer less than or equal to n. A subset 5  of X is an 
< £, 7 , d > —net for A' if, for Jill x in A', with probability greater than 7 , there 
exist an s in 5 such that — ;r/| < e at least for d values of /  ( 1 < /  < n).

Lem m a 1. Let e, S, and 7 be fixed positive numbers less than one and 
d is positive integer less than or equal to n. A random sample S  containing 
m > ( f l /e ] /7 ) X (nln2 + ln ([l/e]/d)) instances, drawn according to any
fixed probability distribution from [0, Ij”, will form an < £, 7 , d >-net with 
confidence greater than 1 — d.

Proof. We prove this lemma by partitioning the unit interval for each 
feature dimension, into k equal length sub-intervals, each with length less than 
£, such that all pairs of points^ in the sub-interval are within e distance of each 
other. The idea of the proof is to guarantee that, with high confidence, at least 
for d dimensions out of n, each of k sub-intervals contains at least one point of 
m instances, with sufficient probability.

Let k = [l/e ], Sij lx* tlx* set of sub-intervals with probability greater or 
equal to j / k  and 82/ be the set of remaining sub-intervals of a dimension 
/ .  The probability that an nrhitrary point in [0, I] will not lie in a selected 
sub-interval of S i/ is (1 — 'y/k). The probability that none of the m sample 
points will lie in a selected sub-interval of Si/ is (1 — 'y/k)”̂ . Therefore, the 
probability that any sub-interval of Si/ is excluded by all m instances is at 
most p = A:(l — 'y/k)^.

The probability that, for more than n -  d dimensions, any sub-interval of 
^ I’s are excluded by all m instances is at most ^"=„-¿+1 C{n,i)p\^ To make 
sure that this probability is small, we force it to be less than 6, that is,

Op ' <
t=n—d-f-1

point here represents the value of an instance for a feature for that dimension. 
^C{n, r) represents the number of combinations of r objects out of n.



CHAPTER 4. EVALUATION OF THE CEP 45

Recall the binomial theorem: {a + 6)” =  IZ"=o 0^'^"”'· With a = p and 
 ̂ = 1, H"=o e'en, i)p' = {p + 1)”. Since n is a positive integer, (p +  1)” — 1 = 

Hr=i C'(n, ¿)p’ and it is gre;ater than C (n,i)p \ our requirement can
be written as

(p + 1)” -  1 < 6.

On the other hand, (1 — < e“”*'''/*' and, since the value of p is greater
than zero and less than one, 2"p > (p + 1)" -  1. If we solve the requirement 

< 6, for m, and substitute fl/e] for Ar, it yields

m > \l/e \/ '^  X (n In 2+ ln((’l/e ]/^ )).

Consequently, with confidence greater than 1 — <5, each sub-interval in S \f 
of d or more dimensions, contiiins some sample point of cin instance of S. □

T heorem  1. Let £, <3, and 7 be fixed positive numbers less than one and a 
sample set S  with n features. If of features of the elements of S  form an
< e, 7 , >-net then, the CFP algorithm with equal feature weights and
generalization limit Dj > 2e for all features, will learn a concept C for S  with 
confidence 1 — (3.

Proof. Since, the CFP algorithm does not use a distance metric for classi
fication, the idea of the proof is to ensure that the CFP can construct e length 
partitions with high confidence so that at least one of the m sample instances 
lies in each sub-intervals of features with sufficient probability. The CFP
algorithm employs a majority voting scheme in the classification. Hence, only 
d = of the features must agree on the classification. If we follow the
proof of the Lemma f, if S  form an < £,7 , d >-net, then it guarantees that 
each sub-interval contains at least one instance of S  with high confidence. The 
CFP algorithm will geii<M’ali/<· two points into one partition, if the distance 
between them is less than or ('(pial to Dj. 'riKirefore, if Dj > 2e then the 
points will be generalized into one partition, corresponding to a projection of 
the concept on that feature. □

T heorem  2. Let e, <3, and 7 be fixed positive numbers less than one. If 
random sample S  with n features forms an < £,7 , >-net with confi
dence greater than 1 — (3, then CFP with Dj > 2e constructs at most n \\!e \ 
partitions.
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Proof. Since 5 is an < £,7 , >-net with with confidence greater than
1 — S, each feature line is divided in to e length sub-intervals and each one 
contains at least one sample point and the CFP algorithm constructs at most 
one (due to Df > 2e) partition for each sub-interval. Thus, for n features, the 
CFP constructs at most n[l/£] partitions. □

Theorem 3. Let £, S, and 7 be fixed positive numbers less than one. If 
random sample S' is an < £,7 , >-net with confidence greater than 1 — i,
then classification complexity of the CFP with Dj > 2e is 0 (n  log(fl/£])) aird 
the training complexity is for m  sample instances is 0 (mn log([l/£])) .

Proof. Proof of the Theorem 2 shows, that the CFP constructs at most 
fl/£] partitions for each feature. In the CFP algorithm the classification is 
composed of a search and a voting. The complexity of the search operation 
is 0(log((l/£])) for each feature. Since the complexity of voting is 0(n), the 
classification complexity of the CFP algorithm is 0{n  log( [1/fi])) for n features. 
Consequently, with m training instances, the training complexity of the CFP 
algorithm is 0 (mn log([l/£])). □

The analysis of the CFP shows that, it is applicable to a large class of 
concepts, and requires small number of examples ( m > f l /£ ]/7  x (nln 2-j- 
In ((’!/£ ]/¿)) examples) and a small amount of memory (n[l/£] partitions) 
to learn a given concept, compare to many other similar algorithms. Another 
outcome of the analysis is that, the CFP has a lower learning complexity ( 
0{m n  log([l/£])) ) than other similar techniques. For example, sample com
plexity of the IBl is m > |’-y/n/£]”/ 7 X (ln([>/n/£]"/i)). IBl stores all the 
training instances (m instances). Therefore, the training complexity of the IBl 
is 0{nw?) for m  training instances [1].

The classification process in exemplar-based learning algorithms which use 
some form of the nearest neighbor algorithm (such as EACH and IBL) involves 
computing the Euclidean distance (or similarity) of the instance to each stored 
exemplar in each dimension. If M  exemplars are stored in the memory, and n 
features are used, then the complexity of the classification is 0{nM ). On the 
other hand, since the partitions are naturally sorted for each feature dimen
sion, the classification process in the CFP algorithm is only 0 (n  log M), which 
significantly reduces the classification complexity.

Another important feature of the CFP algorithm is its low memory re
quirement. Since, the CFP learns each feature partition independently of the
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others, number of partitions for <>acli feature may be different. If appropriate 
Dj generalization limits are dios<!ii, CFP may significantly reduce the memory 
requirement. The selection oi Dj values is domain dependent, and it is an 
optimization problem.

The CFP algorithm is naturally suitable for parallel implementation. Since, 
the CFP learns one feature at a time, it is very natural for mapping the training 
process to the parallel architectures. A parallel algorithm can be developed to 
learn feature partitions in any fixed number of dimension.

T heorem  4. Let e, and 7 be fixed positive numbers less than one. 
If random sample S  is an < £,7 , >-net with confidence greater than
1 — then classification complexity of the CFP, with Dj > 2e and using n 
processors, is O(log(fl/e])) and the training complexity for m sample instances 
is 0 (m log([l/£])) .

Proof. Proof of the '̂ rii<H)i<*m 2 shows, that the CFP constructs at most 
[1/e] partitions for each feiitiirr. In CFP algoritlim the classification is com
posed of a search and a voting. 'I'hc complexity of the search operation is 
O(log([l/e])) for each feature. Since, the CFP learns feature at a time, search 
of the each feature dimension can be done in parallel. Training process does 
not require voting, because in the training process each feature needs a local 
feedback. However, the result of the voting can be used as a global feedback. 
Hence, the classification complexity of the CFP algorithm is O(log([l/e])) for 
n processors. Consequently, with m training instances, the training complexity 
of the CFP algorithm is 0 (7/ilog([l/e])). □

4.2 Em pirical Evaluation of the CFP

This section presents the experimental results of the CFP and GA-CFP algo
rithms. Both algorithms are ti'stixl on widely used real data sets and also on 
artificially generated data sets. The use of the artificially generated data sets, 
allowed me to test the syst<Mii in a more controlled way, while the real data 
sets allowed comparisons with other systems.

The fii'st section describes the methodologies used in the experiments. In 
the second section, the performance of the CFP and GA-CFP algorithms on 
artificially generated data sets are presented. In the artificially generated data
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sets some of the domain variables (such as number of features, number of 
examples, amount of noise, unknown attribute values, irrelevant attributes) 
are changed to test the Ixihavior of the system under different conditions [24]. 
In Section 2 the effects of the domain dependent parameters of the CFP are also 
investigated under different settings. Third section presents the performance 
of the CFP and GA-CFP on real data sets, and comparisons with other similar 
systems.

Parameters of the Genetic Algorithm used by GA-CFP: Each run of the 
genetic algorithm maintained a population of size 50-100. Crossover (two 
point) probability was 0.6 and mutation probability was 0.008. The maximum 
number of fitness function evaluations in each GA run changed between 2000 
and 8000 depending on the size of the search-space that is, the length of the 
chromosomes.

4.2.1 Testing M ethodology

This section briefly describcH tlie methodologies used for testing. In order to 
compare the CFP and GA-Cf'P with other learning systems, we used the same 
testing methodologies used in the reported results of these systems. These 
methodologies are cross-validation, leave-one-out, and average of randomized 
runs, we used the same testing methodologies for precise comparison purpose 
with the other learning algorithms.

Cross-validation: Cross-validation involves removing mutually exclusive 
test sets of examples from the data set. For each test set, the remaining 
examples serve as a training set, and classification accuracy is measured as the 
average accuracy on all the test sets. The union of the all test sets equals to 
the whole data set.

Leave-one-out: The leave-one-out method involves removing exactly one 
example from the data and training on the remaining examples and measuring 
the accuracy by using that single instance as the test instance. The technique 
is repeated for every examph* in tin; data s(4, and accuracy is measured across 
all examples.

Average of Randomized Ihms: This method involves selection of randomly 
selected training and test sets. Training and test sets are disjoint. The test is
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repeated for a fixed number of times (usually 50 trials). The final result is the 
average accuracy across all trials.

4.2.2 E xperim ents w ith  Artificial D ata Sets

The success of a learning sysl.i'iii is highly dependent on the ability to cope 
with noisy and incomplete! data, an adequate knowledge representation scheme, 
having a low learning and sample complexities, and effectiveness of the learned 
knowledge [24]. Most of the real-world data sets are incomplete and inconsis
tent, therefore handling incomplete and inconsistent data is very important.

The ability to form general concept description on the basis of particular ex
amples is difficult task, especially if examples contain errors or ’’noise”. There 
are various types of noise (e.i. classification noise, attribute noise etc.) that 
can be found in real-world data sets. Many researchers tackled this problem 
[3, 12, 35].

Another type of noise is the unknown (missing) attribute values. In order to 
cope with missing attribute values, many techniques were tried. For example, 
in [15] additional instances are generated for all possible values of the missing 
attribute and rough set theory is used to solve the conflicts. Obviously, this 
approach is only applicable to attributes that have finite number of possible 
values. However, it is a costly solution to handle unknown attributes values.

Handling irrelevant attributes is another problem that has to be solved by 
a learning algorithm. Most of the real-world data sets contain attributes that 
are not equally relevant. To test the performance of the CFP algorithm on 
domains which have unequally relevant attributes, we introduced additional 
(irrelevant) attributes that are randomly generated (uniform between 0 and 
100) into the artificial data sets.

The use of the artificially generated data sets allowed me to test the system 
in a more controlled way. In the artificially generated data sets, some of the 
domain variables (such as number of features, number of examples, amount 
of noise, unknown attribute values, irrelevant attributes) are changed to test 
the behavior of the system under different settings. These data sets contain 
300 examples, with 4 features and 3 classes (100 examples for each class). 240 
(80 %) of the examples are used in training and the remaining 60 are used in
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testing. All the results are the average of 50 runs of the randomly selected 
training and test sets. The noise free description of the concepts used in the 
artificial data are given below:

if [(0 < / i  < 2) & (0 < /2 < 2) & (0 < /3 < 2) & (0 < /4 < 2)] 
then  class 1
if [(0 < /1 < 2) & (0 < /2 < 2) L· (0 < /3 < 2) & (8 < /4 < 10)]
th en  class 1
if [(4 < /1 < 6) & (4 < /2 < C) & (5 < /3 < 7 ) & (4 < /4 < 6)1 
then  class 2
if [(7 < /1 < 10) & (7 < /2 < 10) L· (2 < /3  < 4) & (2 < /4 < 4)] 
then  class 3

4 .2 .2.1 Changing Dom ain C haracteristics

This section presents the results of the experiments conducted to compare the 
C4.5, CFP, and GA-CFP algorithms, on incomplete and inconsistent data sets. 
The graphs in the sequel depict the results of the algorithms by changing the 
domain variables such as classification noise, portion of the unknown attribute 
values, and the number of in('l('vaiit attributes. The C4.5 results indicate the 
accuracy achieved after tree priiniiig. Usually, after pruning C4.5 achieves 
better results.

Learning from Noisy Data

Induction of a concept description from noisy instances is a difficult task. Ap
plicability of a learning algorithm highly depends on the capability of the algo
rithm handling noisy instances. There are two sorts of noise: (1) classification 
noise, and (2) attribute noise. The cause of these errors may be either system
atic or random. Classification noise involves corruption of the class value of 
an instance, and attribute noise involves replacing of the attribute value of an 
instance.

Classification noise is more damaging than attribute noise. One of the 
reason of this is that corrupting class value does not destroy information but 
reverses it. Whereas, corrupting an attribute value tends to leave enough in
formation in the uncorrupted attributes for ade(|uate learning. Another reason
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Figure 4.1. Comparison of (GA-)CFP, and C4.5 in terms of accuracy, on a 
noisy domain

that attribute noise is less damaging is that incorrect attribute values may 
sometimes produce correct examples especially when the corruption is in the 
less relevant attributes. In other words, chiHsificatioii noise is worse than at
tribute noise because changing the class value guarantees that an error is in
troduced, whereas distorting an attribute value may or may not introduce an 
error.

Usually, three metrics are used in the comparison of algorithms on noisy 
domains: (1) accuracy, (2) memory requirement, and (3) percentage of the 
noise in the learned concept description. Classification noise changing from 0 
to 50 percent is introduced into these artificial data sets. Attribute noise is not 
used because of the reasons mentioned above.

Fig. 4.1 shows the achieved accuracy of the CFP, GA-CFP, and C4.5 al
gorithms with different amount of classification noise. Results of the GA-CFP 
and CFP are superior to the result of the C4.5; and the GA-CFP achieved 
better accuracy than CFP. Classification noise changes the domain character
istics. Consequently, domain dependent parameters of the CFP are changed.
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Figure 4.2. Comparison of (GA-)CFP, and C4.5 in terms of accuracy, on a 
domain that contains unknown attribute values

GA-CFP was able to find new settings of these parameters.

The confidence level (or Ihrcahold) parameter is introduced into CFP to re
duce the percentage of noise in the concept description. Depending of the value 
of this parameter CFP removes partitions that are believed to be noisy (ac
cording to number of instance is represented) from concept description. Higher 
value of confidence threshold cause removing partitions more aggressively. If 
confidence threshold is zero then percentage of the noise in the concept de
scription is equal to the noise level of the training set.

Unknown Attribute Values

Most of the real-world data sets contain missing attribute values. Many 
authors [15, 27, 28, 29] were presented methods for handling unknown attribute 
values. Most of the methods are based on the following ideas:

1. Ignoring examples which have unknown attribute value.

2. Assuming an additional special value for unknown attribute values. This
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can lead to an anomalous situation [27].

3. Using probability theory by utilizing information provided by context.

4. Generating additional instances for all possible values of the unknown 
attribute [15].

5. Exploring all branches (on decision trees) remembering that some 
branches are more probable than others [28].

Although these methods for handling unknown attribute values sound 
promising on paper, they give unconvincing results. However, CFP handles 
unknown attributes very naturally, since it learns feature-by-feature in the 
case of an unknown attriluiU* value it simi)ly ignores processing of that fea
ture. The performance degradation of the CFP depends on the information 
gain of that attribute.

Fig. 4.2 shows the achieved accuracy of the algorithms with different 
amount of unknown (missing) attribute values. GA-CFP and CFP achieved 
significantly better accuracy than C4.5. These results justify the fact that the 
classification performance of decision tree based algorithms depends critically 
on any small part of the model.

Another important point is that CFP simply ignores unknown attribute 
values which cause reduction in training and testing time. However, C4.5 
tries to determine the value of an unknown attribute value using probability 
distribution of the known values of an attribute and during testing it tries to 
expand all branches of the tree in the case of a test on unknown attribute value 
[29], which introduce additional cost in training and testing process.

Learning with Unequally Relevant Attributes

Most of the real-world data sets contains many unequally relevant features. 
For example, in the task of learning diagnosis rules for several different diseases 
from the medical records of a large number of patients. These records usually 
contain more information than is actually required for describing each disease. 
Another example was given in [2] which involves pattern recognition tasks in 
which feature detectors automatically extract a large number of features for 
the learner. Most probably some of these features are not as relevant as the 
others[23]. Therefore, a learning algorithm should be able to cope with many 
irrelevant (or unequally relevant) features.
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Number o f Irrelevant Attributes
Figure 4.3. Compai’ison of (GA-)CFP, and C4.5 in terms of accuracy on do
mains with many irrelevant attributes
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The CFP uses feature weiglits (also successfully used in [22, 34]) to cope 
with unequally relevant features. In the CFP a feature weight represents the 
predictive success of that feature. Consequently, final value of the feature 
weight shows the relevance of that feature in the prediction the projection 
of concepts on that dimension. With this point of view, the definition of 
relevant is slightly different in this context. A feature may be relevant in 
the n-dimensional description space. However, in 1-dimensional space it may 
be less relevant than other fecvtures, due to overlapping projection of concept 
descriptions. This may seem as a weakness of the CFP, but this weakness is 
compensated with the voting scheme. One or two features with high feature 
weights is sufficient to correctly classify an instance. This claim is justified 
with empirical experiments.

Fig. 4.3 shows the achieved accuracy of the algorithms with different 
number of the irrelevant attributes. This data set contains 10 % classification 
noise, and 10 % of the all attribute values are unknown. The number of 
irrelevant attributes changes from 0 to 20.

The GA-CFP achieved robust accuracy for all cases. This shows the power 
of the hybrid approach. On the other hand, CFP and C4.5 results are fluctu
ated. This is due to the randomness of the classification noise, and values of 
the irrelevant attributes. Results of the CFP changes about 2 %. However, 
results of the C4.5 changes about 5 %.

4.2.2.2 Sensitivity of the CFP to its Domain Dependent Parameters

This section presents the performance of the CFP algorithm, with different 
settings of the domain dependent parameters, namely weight adjustment rate 
(A), generalization limits (Dj's), and confidence threshold (CT). The perfor
mance is measured in terms of achieved accuracy and memory requirement of 
the CFP.

Fig. 4.4 shows the achieved accuracy of the CFP with different values of 
the generalization limit and classification noise levels. CFP performed poorly 
with the zero generalization limit (no generalization). Accuracy of the CFP 
reaches its optimum with generalization limit is between 2 and 4 (Fig. 4.4). 
CFP performed worse for both extreme cases (no generalization (D/ = 0) 
and maximum generalization {Dj — 10)). However, CFP performs better
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Figure 4.4. Effects of the generalization limit to the accuracy of the CFP

Figure 4.5. Effects of the generalization limit to the memory requirement of 
the CFP
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Figure 4.6. Effects of the weight adjustment rate to the accuracy of the CFP

with maximum generalization limit than no generalization. Due to the over
generalization, after some value (e.g. 4) performance of the CFP degrades. As 
seen from Fig. 4.4 with different amount of classification noise the optimum 
value of the generalization limit changes, since noise causes a change in domain 
characteristic.

Fig. 4.5 shows the memory requirements of the CFP in terms of average 
number of partitions versus different values of the generalization limit for sev
eral noise levels. An important point is that, memory requirement of the CFP 
significantly is reduced when the accuracy reaches its optimum. Therefore, 
when the best setting for generalization limits are found the best performance 
in terms of both the prediction accuracy and the memory requirements are 
achieved.

Fig. 4.6 shows the achieved accuracy by the CFP with different weight ad
justment rates (A). CFP performs better with small values of the A. However, 
with A = 0 (all features have equal weight) performance of the CFP degrades. 
Although we do not know any general rule for the value of A, 0.02-0.05 are 
good values to start. In my experiments with real and artificial data, we have
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noticed that the accuracy has a single maximum for different A values. This 
px'operty makes genetic algorithms to be a good mechanism to find the best 
value for optimum accuracy. After some value of A, performance of the CFP 
does not change, because if some of the feature weights grow too much, these 
features will dominate the others in the voting process. After this point, in
creasing the value of A will not improve the accuracy (e.g., see Fig. 4.6 for 
A > 0.07).

Fig. 4.7 shows the achieved accuracy of the CFP with different values of the 
confidence threshold (CT). The best accuracy is achieved for CT  = 0.04. For 
higher values of the confidence threshold performance of the CFP degrades, due 
to the removal of the informative partitions along with noisy ones. In general 
a confidence threshold between 0.02 and 0.05 gives good results depending on 
the noise level of the application domain.

Fig. 4.8 shows the memory requirements of the CFP in terms of the average 
number of partitions, for different values of the confidence threshold. For higher 
values of the confidence threshold memory requirements of the CFP decreases. 
Because CFP removes unrepresentative partitions (whose representativeness 
value is very small compare to the observed frequency of their class), only the
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Confidence Level

Figure 4.8. Effects of the confidence threshold to the memory requirement of 
the CFP

representative partitions are left in the concept description.

Fig. 4.9 shows the achieved accuracy of the CFP with different values 
of the confidence threshold on a noisy data. CFP removes partitions more 
aggressively for higher values of the confidence level. In Fig. 4.9, for noise level 
greater than 20 %, confidence threshold of 0.05 causes accuracy degradation. 
For CT  = 0 (no partition removing), CT = 0.01, and CT  = 0.02, CFP achieved 
nearly equal accuracy. An important observation is that, memory requirement 
(Fig. 4.10) of the CFP is significantly (about 45 %) reduced for CT = 0.01 
and CT = 0.02. This is an expected result since increasing the noise level 
causes construction of many unrepresentative partitions. These partitions are 
removed from concept descriptions. Consequently, percentage of the noise in 
the concept description decreases.

Fig. 4.11 shows the achieved accuracy of the CFP with different values of 
confidence threshold on a domain which has many irrelevant attributes. This 
data set contains 10 % classification noise, and 10 % of the attribute values 
are unknown. The number of irrelevant attributes changes from 0 to 20. The 
fluctuations on the accuracy are due to the randomness of the values of the 
irrelevant attributes.
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Figure 4.9. Effects of the confidence threshold to the accuracy of the CFP, on 
noisy domains
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Noise Level (%)
Figure 4.10. Effects of the confidence threshold to the memory requirement of 
the CFP, on noisy domains
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Figure 4.11. Effects of the confidence threshold to the accuracy of the CFP, 
on a domain with many irrelevant attributes

Figure 4.12. Effects of the confidence threshold to the memory requirement of 
the CFP, on a domain with many irrelevant attributes
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CFP achieved nearly equal accuracy for confidence thresholds 0 and 0.1. 
However, for C T  = 0.2 the CFP achieved about 4 % worse accuracy. On 
the other hand, CFP achieved significant memory reduction with confidence 
threshold 0.1 (Fig. 4.12). The memory requirement of the CFP with C T = 0.1 
and C T  =  0.2 are almost the same. In both cases, about 50 % reduction in 
the memory requirement is achieved with respect to zero confidence threshold.

4.2.3 E xperim ents w ith  Real-world D ata Sets

The CFP algorithm has been tested using reaP and artificial data from various 
problem domains. The use of real data in these tests provide a measure for the 
system’s accuracy on noisy and incomplete data sets, and most importantly, 
it allowed comparisons between CFP and other similar systems®. Below, each 
data set is described briefly and experimental results are presented.

In order to see the effect of a genetic algorithm in learning domain depen
dent parameters of the CFP, we compared the GA-CFP with the regular CFP 
algorithm. The GA-CFP algorithm was compared with the CFP algorithm, 
where the feature weights are identical and the generalization limits are set to 
two extremes. In the first extreme, for all feature Dj's are set to zero disabling 
any generalization. In the second extreme, for all feature Dj's are set to maxi
mum value (maxf — m inj), resulting in the maximum possible generalization.

Iris Flowers: Iris flowers data set from Fisher [11] consists of four integer
valued features and a particular species of iris. There are three different species 
(classes): virginica, setosa, and versicolor. The four variables measured were 
sepal length, sepal width, petal length, and petal width. The data set contains 
150 instances. The accuracy of the CFP in Table 4.1 was obtained for A = 
0.015, CT = 0, and Dj's were 0.6, 0.1, 0.4, 0.1, respectively.

The reported results of the EACH [34] and measured results of the C4.5, 
CFP, and GA-CFP algorithms are shown in Table 4.1. In testing with C4.5 we 
used the decision trees that are generated after pruning, since these trees per
formed better than the trees before pruning in general. To allow for proper com
parisons, the experimental design used was the same as that used by Salzberg

'‘All real data sets are taken from UCI repository of machine learning databases 
(ics.uci.edu: pub/macliine-learning-databases).

®An empirical comparison of the CFP with similar systems will appear in [39].
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Table 4.1. Success rates for iris flowers (%)

Algorithm .Success Rate (%)
CFP: A = 0, T»/ =  0 88.0
CFP: A = 0, Df =  max 92.7
CFP: A = 0.015 96.7
GA-CFP 98.0
EACH 95.3
C4.5 95.3

[34]. For Iris data set the leave-one-out cross-validation accuracy estimation 
technique has been used.

Fig. 4.13 shows the two-dimensional view of the instances of the iris flowers 
data set, where X-axis represents sepal length and Y-axis represents sepal width 
feature of the iris flowers data set. The figure also shows the constructed 
partitions respectively. As seen from Fig. 4.13, projection of the concepts 
to the feature dimensions overlap. Therefore, CFP algorithm generates many 
partitions next to each other. Consequently, weight of these features are small.

Fig. 4.14 shows another two-dimensional view of the instances of the iris 
flowers data set, where X-axis represents petal length and Y-axis represents petal 
width feature of the iris flowers data set. As seen from the figure projection of 
the concepts to the feature dimensions do not overlap. Consequently, weight 
of these feature are greater than other features. Hence, petal length and petal 
width are the determining features for iris flowers data set according to CFP 
algorithm. Constructed partitions for iris data set is given in Appendix.

In the Fig. 4.13 and Fig. 4.14 class virginica, setosa, and versicolor are 
represented by -f, —, and o respectively.

Breast Cancel^·. Breast Cancer data set contains 273 patient records. All 
the patients underwent a surgery to remove tumors, all of them were followed 
up five years later. The objective here is to predict whether or not breast 
cancer would recur during that five year period. The recurrence rate is about 
30 %, and hence such prognosis is important for determining post-operational 
treatment. The data set contains nine variables that were measured, including 
both numeric and binary values. The prediction is binary : either the patient 
did suffer a recurrence of cancer or not.

^Stuart Crawford of Advanced Decision .Systems provided this data
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Figure 4.13. 2-D view of the iris data: Sepal length vs. Sepal width

Table 4.2. Success rates for breast cancer data (%)

Algorithm Success Rate (%)
CFP: A  = 0,D j = 0 73.2
CFP: A = 0, Df = max 74.1
CFP: A = 0.07 77.5
GA-CFP 78.7
EACH 77.6
CN2 71.0
C4.5 70.1
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Table 4.3. Success rates for Hungarian heart disease data (%)

Algorithm Success Rate (%)
CFP: A = 0,D f = 0 68.7
CFP: A  = 0, Df = max 75.5
CFP: A = 0.02 82.3
GA-CFP 91.4
IBl 58.7
IB2 55.9
IB3 80.5
C4 78.2

This data set has been also used to test the CN2 [8] algorithm, which 
achieved 70-71 % accuracy. The accuracy of the CFP in Table 4.2 was ob
tained for A = 0.07, CT  = 0 and Dj's were 4, 0, 6, 0.5, 0.1, 0.5, 0.5, 0.5, 4, 
respectively. The reported results of the EACH [34] and measured results of 
the C4.5, CFP, and GA-CFP algorithms are shown in Table 4.2. In testing 
with C4.5 we used the decision trees that are generated after pruning, since 
these trees performed better than the trees before pruning in general. To allow 
for proper comparisons, the experimental design used was the same as that 
used by Salzberg [34]. For Breast Cancer data set, for each trial, 70 % of 
the examples were randomly chosen for training the rest used in testing. Four 
different trials were run, and the final results are an average of those trials.

Predicting Heart Disease: The CFP was tested on two widely used medical 
databases, namely the Cleveland and Hungarian databases. The Cleveland 
and Hungarian data sets contain heart disease diagnoses collected from the 
Cleveland Clinic Foundation and Hungarian Institute of Cardiology, respec
tively. A diagnosis is described by 13 numeric-valued features (e.g. age, fasting 
blood sugar level etc.). The objective here is to determine whether a patient 
has a heart disease. The Cleveland data set consists of 303 instances and the 
Hungarian data set consists of 294 instances. The performance of the CFP 
algorithm is also compared with the reported accuracy of the instance-based 
learning algorithms [1]. All results reported in Table 4.3 and Table 4.4 were 
averaged over 50 trials. The training and test sets were always disjoint. The 
instances were drawn randomly from the data sets.

The accuracy of the CFP for the Hungarian database in Table 4.3 was 
obtained for A = 0.02, CT  = 0, and Z)/’s were 1.3, 0, 0.2, 19.1, 36.1, 0, 
0.6, 22.9, 0, 0.6, 0.03, 0.1, 0.9, respectively. The accuracy for the Cleveland
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Table 4.4. Success rates for Cleveland heart disease data {%)

Algorithm Success Rate (%)
CFP: Д = 0,T»/ = 0 77.6
CFP: Д = 0, Z)/ = max 75.5
CFP: Д = 0.025 84.0
GA-CFP 94.3
IBl 75.2
IB2 69.6
IB3 73.8
C4 70.7

Table 4.5. Success rates for waveform data (%)

Algorithm Success Rate (%)
CFP: Д = 0, T)/ = 0 53.4
CFP: A = 0, Dj = max 62.0
CFP: Д = 0.02 76.0
GA-CFP 86.5
IBl 75.2
IB2 69.6
IB3 73.8
C4 70.7

database in Table 4.4 was obtained for Д = 0.025, CT = 0, and Dj's were 7, 
0.3, 0.4, 9, 11, 0.3, 0.4, 7, 0.3, 0.4, 0.4, 0.4, 0.4, respectively.

Classifying Waveforms: The waveform data set is artificial and consists of 
21 numeric-valued features, which have values between 0 and 6. There are three 
different types of waveforms and they are equally distributed. The objective 
here is to determine the type of a given waveform. Each feature includes noise 
(with mean 0 and variance 1). Out of 800 instances in the data set, 300 were 
used in the training.

The accuracy of the CFP for the waveform databa.se in Table 4.5 was ob
tained for Л = 0.02 and CT  = 0. Generalization limits for the waveform 
database were 0.2, 0.3, 0.6, 0.5, 0.8, 0.9, 1.0, 0.9, 0.6, 0.6, 0.7, 0.6, 0.9, 0.8, 0.7, 
0.6, 0.5, 0.4, 0.5, 0.5, 0.4, respectively. All results reported in Table 4.5 were 
averaged over 50 trials. The training and test sets were always disjoint. The 
instances were drawn randomly from the data sets.
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Table 4.6. Success rates for congressional voting database (%)

Algorithm Success Rate (%)
CFP: A = 0,D / = 0 88.9
CFP: A = 0,D / = 2 65.6
CFP: A = 0.04D/ = 0 95.5
GA-CFP 96.2
IBl 91.8
IB2 90.9
IB3 91.6
C4 95.5

Congressional Voting Database: The Congressional Voting database is lin
early separable. It contains the (known) voting records of the members of the 
United States House of Representatives during the second session of 1984. It 
is described by 16 boolean attributes and has 288 missing values among the 
435 instances. 350 of the voting records are used in training and remaining 85 
are used in testing. The value to predict is the political party of a member 
(Democrat or Republican) given their voting record.

All results reported in Table 4.6 were averaged over 50 trials. The training 
and test sets were always disjoint. The instances were drawn randomly from 
the data sets. The accuracy for the voting database in Table 4.6 was obtained 
for A = 0.04, CT  = 0, and all the D fs  were zero.

Classifying Glasses: This data set consists of attributes of glass samples 
taken from the scan of an accident.^ Each of the 214 examples is a member of 
one of six classes. There are nine features. In comparing GA-CFP with GA- 
WKNN, we used cross-validation accuracy estimation technique. Each data 
set was divided into five disjoint partitions. The only constraint on otherwise 
random partitioning was that classes be represented equally in each partition. 
We generated five training/test sets for each data set. Four-fifth of the data 
were used for training and the remaining fifth was used for testing. The results 
are shown in Table 4.7. The accuracy for the glass database in Table 4.7 was 
obtained for A = 0.03 and CT  = 0. Generalization limits for the glass database 
were 1, 10, .4, 0.5, 2, 0.4, 8, 2, and 1 respectively.

Pirna Indians Diabetes Database: This data set contains diabetes diseases
"Collected by B. German of the Home Office Forensic Service, Aldermaston, Reading, 

Berkshire, UK.
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Table 4.7. Success rates for glass data (%)

Algorithm Success Rate (%)
CFP: A = 0, D/ = 0 44.3
CFP: A = 0, D/ = max 58.1
CFP: A = 0.03 55.7
GA-CFP 71.7
GA-WKNN 62.2

8. Success rates for Pima Indians diabetes data

Algorithm Success Rate (%)
CFP: A = 0, £>/ = 0 67.0
CFP: A = 0, £>/ = max 66.5
CFP: A = 0.025 70.7
GA-CFP 74.6

collected from National Institute of Diabetes and Digestive and Kidney Dis
eases. The diagnostic, binary-valued variable investigated is whether the pa
tient shows signs of diabetes according to World Health Organization criteria 
(i.e., if the 2 hour post-load plasma glucose was at least 200 mg/dl at any sur
vey examination or if found during routine medical care). The population lives 
near Phoenix, Arizona, USA. Several constraints were placed on the selection 
of these instances from a larger database. In particular, all patients here are 
females at least 21 years old of Pima Indian heritage. The data set contains 
records of 768 patients with 8 features. 576 instances are used in training the 
remaining 192 instances are used in testing. The objective of this data set is 
to determine whether result of the test is positive or negative for diabetes. All 
results reported in Table 4.8 were averaged over 50 trials. The training and 
test sets were always disjoint. The instances were drawn randomly from the 
data sets.

Ionosphere database: David Aha briefly investigated this database. He 
found that nearest neighbor attains an accuracy of 92.1 %, that Ross Quinlan’s 
C4 algorithm attains 94.0 % (no windowing).

The radar data was collected by a system in Goose Bay, Labrador. This 
system consists of a phased array of 16 high-frequency antennas with a total 
transmitted power on the order of 6.4 kilowatts. The targets were free electrons 
in the ionosphere. Good radar returns are those showing evidence of some
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Table 4.9. Success rates for ionosphere database (%)

Algorithm Success Rate (%)
CFP: A = 0, Z)/ = 0 83.2
CEP: A = 0, £)/ =  max 80.2
CFP: A = 0.015 87.6
GA-CFP 92.1
C4 94.0
KNN 92.1

type of structure in the ionosphere. Bad returns are those that do not; their 
signals pass through the ionosphere. Received signals were processed using an 
autocorrelation function whose arguments are the time of a pulse and the pulse 
number. There were 17 pulse numbers for the Goose Bay system. Instances in 
this database are described by 2 attributes per pulse number, corresponding 
to the complex values returned by the function resulting from the complex 
electromagnetic signal.

This data set contains 351 instances. 200 of the instances are used in 
training the rest are used in testing. Each instance consist of 34 continuous
valued features. It is a binary (good or bad) classification problem. All results 
reported in Table 4.9 were averaged over 50 trials. The training and test 
sets were always disjoint. The instances were drawn randomly from the data 
sets. The accuracy for the ionosphere database in Table 4.9 was obtained for 
A = 0.015 and CT = 0, and Dj = 0.05.

Liver disorders data set: This data set contains 345 instances and collected 
by BUPA Medical Research Ltd. Each instance constitutes the record of a 
single male individual. There are 6 attributes and the first 5 variables are all 
blood tests which are thought to be sensitive to liver disorders that might arise 
from excessive alcohol consumption. The last attribute presents drinks number 
of half-pint equivalents of alcoholic beverages drunk per day. The objection of 
this data set is to determine whether patient has liver disorders or not. 276 
of the instances are used in training the remaining 69 are used in testing. All 
results reported in Table 4.10 were averaged over 50 trials. The training and 
test sets were always disjoint. The instances were drawn randomly from the 
data sets. The accuracy for the liver disorders database in Table 4.10 was 
obtained for A = 0.01 and CT  = 0, and Dj's were 7, 7, 7, 7, 7, and 0.5 
respectively.
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Table 4.10. Success rates for liver disorders database (%)

Algorithm Success Rate (%)
CFP: A = 0,D f = 0 
CFP: A  = 0, Df = max 
CFP: A = 0.025 
GA-CFP

56.2
57.3 
63.0 
68.2

Table 4.11. Success rates for wine classifícation data (%)

Algorithm Success Rate (%)
CFP: A = 0,T>/ = 0 
CFP: A = 0, Df = max 
CFP: A = 0.01 
GA-CFP

77.0
87.1 
91.6 
95.0

Wine recognition data set: This data is provided by Institute of Pharma
ceutical and Food Analysis and Technologies. The classes are separable. The 
leave-one-out technique is used. In a classification context, this is a well posed 
problem with ’’well behaved” class structures. A good data set for first test
ing of a new classifier, but not very challenging. These data are the results 
of a chemical analysis of wines grown in the same region in Italy but derived 
from three different cultures. The analysis determined the quantities of 13 
constituents found in each of the three types of wines. Data set contains 178 
instances and all attributes are continuous-valued. The accuracy for the wine 
database in Table 4.11 was obtained for A = 0.01 and CT  = 0. Generalization 
limits for the wine database were 0.9, 8, 3.4, 0.6, 11, 6, 6, 1.5, 1, 2.5, 1.7, 1.6, 
and 16 respectively.

Predicting patient thyroid type: This data set is provided by James Cook 
University. Five laboratory test results (continuous-valued) are used to pre
dict whether a patient’s thyroid to the class euthyroidism, hypothyroidism or 
hyperthyroidism. The diagnosis (the class label) was based on a complete med
ical record, including anamnesis, scan etc. There is 215 patient records in the 
data set each of which has one of the three classes (normal, hyperthyroid, or 
hypothyroid) and 80 % of the records are used in training. All attributes are 
continuous.

All results reported in Table 4.12 were averaged over 50 trials. The training 
and test sets were always disjoint. The instances were drawn randomly from
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Table 4.12. Success rates for thyroid data (%)

Algorithm Success Rate (%)
CFP: A  = 0,D f = 0 
CFP: A = 0, Df = max 
CFP: A = 0.025 
GA-CFP

80.4 
89.2 
90.8
95.4

Table 4.13. Success rates for mushroom database (%)

Algorithm Success Rate (%)
CFP: A = 0,D / = 0 
CFP: A  = 0, Df = max 
CFP: A = 0.01T>/ = 0 
GA-CFP 
STAGGER

87.6
68.52
98.5
99.2
95.0

the data sets. The accuracy for the thyroid database in Table 4.12 was obtained 
for A = 0.025 and CT  =  0. Generalization limits for the thyroid database were 
4, 4, 0.1, 0.1, and 3.5 respectively.

Mushroom Database: Mushroom records were drawn from The Audubon 
Society Field Guide to North American Mushrooms. STAGGER [35] asymp- 
toted to 95 % classification accuracy after reviewing 1000 instances. This data 
set includes descriptions of hypothetical samples corresponding to 23 species 
of gilled mushrooms in the Agaricus and Lepiota Family. Each species is iden
tified as definitely edible, definitely poisonous, or of unknown edibility and not 
recommended. This latter class was combined with the poisonous one. There 
is no simple rule for determining the edibility of a mushroom. The database 
contains 8124 instances with 22 nominally-valued features. 1000 instances are 
used in training the remaining 7124 are used in testing. All results reported in 
Table 4.13 were averaged over 50 trials. The training and test sets were always 
disjoint. The instances were drawn randomly from the data sets. The accuracy 
for the mushroom databa.se in Table 4.13 was obtained for A = 0.01, CT  = 0, 
and T)/ =  0.

In these experiments we noticed that the performance Weis not sensitive to 
the small changes in the Dj settings. For binary-valued attributes distance pa
rameter was set to zero for no generalization. The feature weight adjustment 
rate and the generalization limits are domain dependent. In these experiments
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their values (for CFP) are determined by trial and error, separately for each 
application domain. It is clear from these experiments that the genetic algo
rithm can determine a very good set of domain dependent parameters of CFP. 
Even the result of the CFP with settings that are found by trial and error are 
good enough compare to the other similar algorithms.



Chapter 5

Conclusion

In this thesis I have presented a new methodology of learning based on feature 
partitioning, called CFP. It is an inductive, incremental and supervised learn
ing method. The CFP learns a partitioning of values for each feature of the 
application domain. The CFP algorithm is applicable to domains, where each 
feature, independent of other features, can be used to classify the instances.

This approach is a variant of algorithms that learn by projecting into one 
feature dimension at a time. For example, ID3 learns in that greedy manner 
while building a conjunction. The novelty of CFP is that it retains a feature-by
feature representation and uses a voting scheme in categorization. Algorithms 
that learn by projecting into one dimension at a time are limited in their ability 
to find complex concepts.

The CFP makes significant modifications to the exemplar-based learning 
algorithms. The analysis of the CFP shows that, compared to many other 
similar algorithms, it is applicable to a large class of concepts, and requires 
small number of examples and a small amount of memory to learn a given 
concept. It is also proved that the CFP algorithm has a low training complexity.

Another important improvement is the natural handling of unknown at
tribute values. Most of the systems use ad hoc methods for handling unknown 
attribute values [15, 28, 29]. Since the value of each attribute is handled sepa
rately, attributes with unknown values are simply ignored by the CFP.

The CFP will clearly fail in some cases. For example, if the projection 
of concepts on an axis are overlapping each other, the CFP constructs many
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partitions of different classes next to each other. In that case, the accuracy of 
classification depends on the observed frequency of the concepts.

The CFP uses feature weights to cope with irrelevant attributes. Introduc
ing feature weights protects the algorithm’s performance, when an application 
domain has irrelevant attributes. The idea of feature weights have also been 
used successfully in other similar systems [22, 34]. In the CFP the feature 
weights are dynamically adjusted according to the global weight adjustment 
rate (A), which is an important parameter for the predictive accuracy of the al
gorithm. Another important component of the CFP is the generalization limit 
for each attribute, which controls the generalization process. The confidence 
threshold is introduced into the CFP to reduce the percentage of the noise 
in the concept descriptions. The confidence threshold controls the removal of 
partitions from the concept description. The confidence threshold is used to 
improve the accuracy of the CFP and also to reduce the memory requirements. 
Empirical results justify this claim.

The weight adjustment rate, generalization limits, and confidence threshold 
are domain dependent parameters of the CFP, and their selection affects the 
performance of the algorithm. Determining the best values for these param
eters is an optimization problem for a given domain. In GA-CFP a genetic 
algorithm is used to find a good setting of these parameters. The GA-CFP is 
a hybrid system, which combines optimization capability of genetic algorithm 
with classification capability of the CFP algorithm. The genetic algorithm is 
used to determine the domain dependent feature weights, generalization limits, 
and confidence threshold. Although the results of the GA-CFP algorithm are 
better than other classification systems, the use of genetic algorithm is costly. 
This is because the computation of the fitness function requires the execution 
of the CFP algorithm several times due to the used methods. However, an 
important characteristic of the parameters of the CFP algorithm is that these 
parameters are domain dependent. Therefore, the genetic algorithm can be 
used with only a portion of all the data available. Then, the CFP algorithm 
can be used with settings that are learned by the genetic algorithm. This claim 
was empirically justified on the iris flowers data set.

Partition is the basic unit of representation in the CFP algorithm. Each 
partition represents two (one, if lower and upper values of a partition is equal) 
parallel surfaces (hyperplanes) in feature space, which are orthogonal to the
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axis of the partition and parallel to all other axes. Consequently, the re
gions constructed by the CFP are disjoint hyperrectangles. Since CFP re
tains feature-by-feature representation, projection of concepts will determine 
the applicability of the CFP to a domain. The CFP is not applicable to do
mains where all of the concept projections overlap, or domains in which concept 
descriptions are nested. In other words, it is applicable to domains where each 
feature can contribute the classification of an instance independent of others. 
In fact, this is the nature of the most real-world data sets. For example, in 
stock market applications, there are dozens of factors influencing the market. 
However, domain experts predict the future trend by just looking at some key 
variables [40].
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A ppen d ix

Constructed partitions for iris flowers data set are given below. The first two 
numbers represent the lower and upper values of the partition, the third number 
represents the class value of the partition, and the last number is the represen
tativeness value of that partition. Classes are enumerated so that classes 1, 2, 
and 3 represent virginica, setosa, and versicolor^ respectively.

The CFP constructed 42 partitions for sepal length and weight of this feature
was 1.433420 .

4 . 3 0 4 . 9 0 1 1 9 . 6 0

4 . 9 0 4 . 9 0 3 1 . 0 0

4 . 9 0 4 . 9 0 2 1 . 0 0

4 . 9 0 5 . 0 0 1 3 . 2 7

5 . 0 0 5 . 0 0 2 2 . 0 0

5 . 0 0 5 . 1 0 1 3 . 2 7

5 . 1 0 5 . 1 0 2 1 . 0 0

5 . 1 0 5 . 2 0 1 3 . 2 7

5 . 2 0 5 . 2 0 2 1 . 0 0

5 . 2 0 5 . 4 0 1 6 . 5 3

5 . 4 0 5 . 4 0 2 1 . 0 0

5 . 4 0 5 . 5 0 1 3 . 2 7

5 . 5 0 5 . 5 0 2 5 . 0 0

5 . 5 0 5 . 6 0 1 3 . 2 7

5 . 6 0 5 . 6 0 3 1 . 0 0

5 . 6 0 5 . 6 0 2 5 . 0 0
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5 . 6 0  5 . 7 0 1 3 . 2 7
5 . 7 0  5 . 7 0 3 1 . 0 0
5 . 7 0  5 . 7 0 2 5 . 0 0
5 . 7 0  5 . 8 0 1 3 . 2 7
5 . 8 0  5 . 8 0 2 3 . 0 0
5 . 8 0  5 . 9 0 3 4 . 0 0
5 . 9 0  6 . 0 0 2 2 . 3 6
6 . 0 0  6 . 0 0 3 2 . 0 0
6 . 0 0  6 . 1 0 2 2 . 3 6
6 . 1 0  6 . 1 0 3 2 . 0 0
6 . 1 0  6 . 2 0 2 2 . 3 6
6 . 2 0  6 . 2 0 3 2 . 0 0

6 . 2 0  6 . 3 0 2 2 . 3 6
6 . 3 0  6 . 3 0 3 6 . 0 0

6 . 3 0  6 . 4 0 2 2 . 3 6
6 . 4 0  6 . 4 0 3 5 . 0 0
6 . 4 0  6 . 5 0 2 2 . 3 6

6 . 5 0  6 . 5 0 3 4 . 0 0
6 . 5 0  6 . 7 0 2 4 . 7 3
6 . 7 0  6 . 7 0 3 5 . 0 0

6 . 7 0  6 . 8 0 2 2 . 3 6

6 . 8 0  6 . 8 0 3 2 . 0 0

6 . 8 0  6 . 9 0 2 2 . 3 6

6 . 9 0  6 . 9 0 3 3 . 0 0

6 . 9 0  7 . 0 0 2 2 . 3 6

7 . 1 0  7 . 9 0 3 1 2 . 00

T he  C FP  constructed  33 f 

was 0 .848582 .

2 . 0 0  2 . 0 0 2 1 . 00

2 . 2 0  2 . 2 0 3 1 . 0 0

2 . 2 0  2 . 3 0 2 5 . 0 0

2 . 3 0  2 . 3 0 1 1 . 0 0

2 . 4 0  2 . 5 0 2 5 . 0 0

2 . 5 0  2 . 5 0 3 4 . 0 0

2 . 5 0  2 . 6 0 2 5 . 0 0

2 . 6 0  2 . 6 0 3 2 . 0 0
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2 . 7 0 2 . 7 0 3 4 . 0 0
2 . 7 0 2 . 8 0 2 1 1 . 0 0
2 . 8 0 2 . 8 0 3 8 . 0 0
2 . 9 0 2 . 9 0 3 2 . 0 0
2 . 9 0 2 . 9 0 2 7 . 0 0
2 . 9 0 3 . 0 0 1 6 . 0 0
3 . 0 0 3 . 0 0 3 1 2 . 00
3 . 0 0 3 . 0 0 2 8 . 0 0
3 . 0 0 3 . 1 0 1 6 . 0 0

3 . 1 0 3 . 1 0 3 4 . 0 0
3 . 1 0 3 . 1 0 2 3 . 0 0
3 . 2 0 3 . 2 0 3 5 . 0 0
3 . 2 0 3 . 2 0 2 3 . 0 0
3 . 2 0 3 . 3 0 1 7 . 0 0

3 . 3 0 3 . 3 0 3 3 . 0 0

3 . 3 0 3 . 3 0 2 1 . 0 0
3 . 4 0 3 . 4 0 3 2 . 0 0
3 . 4 0 3 . 4 0 2 1 . 0 0
3 . 4 0 3 . 5 0 1 1 4 . 0 0

3 . 6 0 3 . 6 0 3 1 . 0 0

3 . 6 0 3 . 6 0 1 2 . 0 0

3 . 7 0 3 . 8 0 1 7 . 0 0

3 . 8 0 3 . 8 0 3 2 . 0 0
3 . 9 0 4 . 2 0 1 5 . 0 0
4 . 4 0 4 . 4 0 1 1 . 0 0

The CFP constructed 15 partitions for petal length and weight of this 
feature was 3.865773.

1 . 0 0 1 . 9 0 1 4 9 . 0 0

3 . 0 0 3 . 6 0 2 6 . 0 0

3 . 7 0 4 . 2 0 2 1 7 . 0 0

4 . 3 0 4 . 5 0 2 6 . 7 5

4 . 5 0 4 . 5 0 3 1 . 0 0

4 . 5 0 4 . 8 0 2 1 0 . 1 3

4 . 8 0 4 . 8 0 3 2 . 0 0

4 . 8 0 4 . 9 0 2 3 . 3 7

4 . 9 0 4 . 9 0 3 3 . 0 0
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4 . 9 0 5 . 0 0 2 3 . 3 7
5 . 0 0 5 . 0 0 3 3 . 0 0

5 . 0 0 5 . 1 0 2 3 . 3 7

5 . 1 0 5 . 4 0 3 1 3 . 0 0
5 . 5 0 6 . 1 0 3 2 2 . 0 0
6 . 3 0 6 . 9 0 3 6 . 0 0

The CFP constructed 19 partitions for petal width and weight of this feature 
was 5.211325.

0 . 1 0 0 . 2 0 1 3 3 . 0 0

0 . 3 0 0 . 5 0 1 1 5 . 0 0

0 . 6 0 0 . 6 0 1 1 . 0 0

1 . 0 0 1 . 0 0 2 7 . 0 0

1 . 1 0 1 . 1 0 2 3 . 0 0

1 . 2 0 1 . 3 0 2 1 8 . 00

1 . 4 0 1 . 4 0 3 1 . 0 0

1 . 4 0 1 . 4 0 2 7 . 0 0

1 . 5 0 1 . 5 0 3 2 . 0 0

1 . 5 0 1 . 50 2 1 0 . 0 0

1 . 6 0 1 . 6 0 3 1 . 0 0

1 . 6 0 1 . 6 0 2 3 . 0 0

1 . 7 0 1 . 7 0 3 1 . 0 0

1 . 7 0 1 . 8 0 2 2 . 0 0

1 . 8 0 1 . 8 0 3 1 1 . 0 0

1 . 9 0 1 . 9 0 3 5 . 0 0

2 . 0 0 2 . 1 0 3 1 2 . 00

2 . 2 0 2 . 3 0 3 1 1 . 0 0

2 . 4 0 2 . 5 0 3 6 . 0 0



C h ap ter  7

G lo ssary

This glossary contains machine learning terms that are used in this thesis. The 
angle brackets ”< > ” indicate that the term used in a definition is an itself entry 
in the glossary.

A daptive System s: Control systems or pattern recognition systems that 
achieve desired performance by adjusting their internal parameters.

A ttrib u te : A variable or one-argument descriptor used to characterize an 
object or a process. For example, the color (of an object) or the duration (of a 
process) are attributes.

Classification: A process of assigning to an instance its appropriate class 
label. Many diagnostic problems are basically problems of classification.

C oncept Acquisition: See <Learning from Examples>.

C oncept D escription: A symbolic data structure defining a concept describ
ing the class of all known instances of the concept.

Crossover: This is the crossing procedure in <Genetic algorithms> where by 
portions of existing rules are cut up and spliced together to form a new rule.

Decision Tree: A tree encoding a set of tests to classify a collection of objects 
into fixed categories according to predetermined features of the object.

E xem plar-B ased Learning: A kind of <Learning from Examples> in which 
the <Concept Description> is constructed from the examples themselves.
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Feature: See <Attribute>.

Featu re  Space: In a <Learning from Examples> problem, space defined by 
<Attributes>.

G eneralization: Extending the scope of a concept description to include more 
instances (the opposite of <SpeciaIization>).

G enetic  A lgorithm s: A model of the process of natural selection, in which 
better adapted parents are more likely to survive and pass on their character
istic to their children.

Increm ental Learning: Multistage learning in which knowledge learned at 
one stage is modified to accommodate new facts provided in subsequent stages.

Inductive  Inference: A mode of reasoning that starts with some assertions, 
e.g., specific observations, and concludes with more general and plausible as
sertions.

Inductive  Learning: Learning by drawing < Inductive Inferences> from facts 
and observations obtained from a teacher or environment.

L earning from  Exam ples: Inferring a general < Concept Description> from 
examples and (optionally) counterexamples of that concept. This is a form of 
<Inductive Learning>.

M achine Learning: A subdomain of artificial intelligence concern with de
veloping computational theories of learning and constructing machines with 
learning capability.

M utation : One of the standard genetic operator of <Genetic Algorithms>. 
Arbitrarily alters one more components of a selected structure.

N egative Exam ple: In <Learning from Examples> a counterexample of a 
concept that may bound the scope of <Generalization>.

N eural Network: A network of neuron-like elements that performs some 
simple logical functions.

P a ram e te r A djustm ent: Changing the relative weight of different terms in 
a mathematical expressions, as a function of credit (blame) for past successes 
(failures); a kind of incremental curve fitting.
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Positive Exam ple: In <Learning from Examples> an example or instance 
of a concept to be learned.

P robab ly  approxim ately  correct (РАС) m odel: A computational learn
ing model. An algorithm A is РАС learnable if it can construct description of 
of unknown target concept with high confidence, that is good approximation 
of the concept, independent of probability distribution of examples.

Specialization: Narrowing the scope of a <Concept Description> thus re
ducing sets of instances it describes (opposite of <Generalization>).

Supervised Learning:
Examples>.

Examples are pre-classified in <Learning from

Training Set: A database of examples, which are pre-classified, which is given 
to a learning system to enable it to construct the <concept description> By 
contrast, a test set contains data in a similar form which were not used during 
training phase.


