SLICWe APPROACH TO SPECIHCATIOA
FR'WPLWiT LWLOTCS

THE314

TO THE DETAHTHIEKT OF Ceb5&FUNSK

ENOCIAE3ECT® NM3 infoehatiom scieizde

ii'">NTUIB BK3ITOEBBIINO kY -D SCLSTN
jQ-mZ.SC- " -E + i oiicorua
T\~ E "E-T ® 'TT"' P 1..[.%mmeV [."A ‘T0EMP y'pliT o e *
JA 0
mmn
1
;40 o ro"m

~p'p:

SLICING APPROACH TO
SPECIFICATION FOR TESTABILITY IN
LOTOS

A THESIS
SUBMITTED TO THE DEPARTMENT OF COMFPUTER
ENGINEERING AND INFORMATION SCIENCE
AND THE INSTITUTE OF ENGINEERING AND SCIENCE
OF BILKENT UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
MASTER OF SCIENCE

By
Ahmet Feyzi ATES

August, 1993
Ak Frugi ATes

tarafincen Leli; fonmigtir,

bOiqu

A
Y
Héy

1932

I certify that I have read this thesis and that in my opinion it 1s fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Poecloje

Assoc. Prof. Behget ban(&rfla (Advisor)

[certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

/P

Prof. Melmet BW

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

A

Asst. P#61/ Cevdet Aykanat

Approved for the Institute of Engineering and Science:

%/ﬁ/%

Prof. Mehmet Barj
Director of the Institute

ABSTRACT

SLICING APPROACH TO SPECIFICATION FOR
TESTABILITY IN LOTOS

Ahmet Feyzi ATES
M.S. in Computer Engineering and Information Science
Advisor: Assoc. Prof. Behget Sarikaya
August, 1993

With the recent increase in the use of formal methods in specification of
communication protocols, there is a need to base the conformance testing of
protocol implementations on formal specifications. This brings in the prob-
lem of finding out special design issues to be used in the specification of such
systems that facilitate test generation. This aspect is called Specification For
Testability, and it is investigated in this study for the particular formal de-
scription technique LOTOS. Specification for testability is approached from
the perspective of designing formal base protocol specifications, and then de-
riving functional specifications from base specifications in order to use in test
generation. The method utilized for the derivation of functional specifica-
tions i1s called slicing. As inspired from previous work in software engineering,
slices of protocol specifications are obtained systematically according to the
hierarchically designed test snite structures, where each slice corresponds to a
particular function of the protocol, and subsequent test generation is based on
the obtained slices. The techniques developed are demonstrated on the sim-
ple state-oriented specifications of INRES and ACSE protocols along with a
real base specification of the OSI Transport Protocol written in the constraint-
oriented specification style. The results indicate that tests derived from func-

tional specifications have some remarkable properties with respect to test case

analysis and representation.

i

v

Keywords: Conformance Testing, Specification For Testability, LOTOS, Slic-

ing.

OZET

LOTOS’DA TEST EDILEBILIRLIK ICIN BELIRTIME
DILIMLEME YAKLASIMI

Ahmet Feyzi ATES
Bilgisayar ve Enformatik Mihendisligi, Yiiksek Lisans
Danigsman: Do¢. Dr. Behget Sarikaya
Agustos, 1993

Yakin zamanlarda iletigim protokollarimin belirtiminde bigimsel metod-
larin kullaniminin artmasiyla, protokol uyarlamalarmin uygunluk testlerinin
de bicimsel belirtimlere dayandirilmas: geregr dogmustur. Bu durum, protokol
belirtimlerinde, test iiretmeyi kolaylagtiracak tasarim ilkeleri bulma problemini
ortaya gikarmigtir. Bu konuya test edilebilirlik i¢in belirtim adi verilmektedir,
ve bu caliymada bigimsel bir tamimlama teknigi olan LOTOS igin incelenmigtir.
Test edilebilirlik 1¢in belirtim konusuna, temel protokol belirtimleri tasarlama
ve daha sonra test liretmede kullamlmak iizere iglevsel belirtimleri temel be-
lirtimlerden elde etme perspektifinde yaklagilmigtir. Islevsel belirtimleri elde
etmede kullamilan yonteme dilimleme adi verilmektedir. Yazilim mihendisligi
dalinda daha once yapilan calismalardan esinlenerek, protokol belirtimlerinin
dilimleri, hiyerarsik bigimde tasarlanan test yapilarina gore, ve her dilim be-
lirli bir protokol iglevine karsihk gelecek sekilde sistematik olarak elde edilmis
ve daha sonraki test iiretme safhasi elde edilen dilimlere dayandirlmistir.
Geligtirilen teknikler, basit, sistem-durumuna yonelik INRES ve ACSE pro-
tokollarr ile birlikte, kistasa yonelik belirtim tarzinda yazilmis gergek bir temel
belirtim olan OSI Transport Protokolu uzerinde gésterilmistir. Sonuglar sunu
gostermektedir ki, iglevsel belirtimlerden ¢ikarilan testler, test durum analizi

ve temsili agisindan bazr dikkate deger ozellikler tasimaktadir.

v

Anahtar Sézcikler: Uygunluk testi, Test edilebilirlik i¢in belirtim, LOTOS,

Dilimleme.

ACKNOWLEDGEMENTS

[would like to express my deep gratitude to my supervisor Assoc. Prof. Behget
Sarikaya for his guidance, suggestions, and invaluable encouragement through-
out the development of this thesis. I would also like to thank to Prof. Mehmet
Baray and Asst. Prof. Cevdet Aykanat for reading and commenting on the
thesis. [am grateful to my friends for their infinite moral support and help.
Finally I want to thank my family for their invaluable support during my whole

academic life.

Contents

1 INTRODUCTION

1.1 OSI Architectural Concepts
Service Definitions and Protocol Specifications
1.3 Conformance Testing

1.4 Overview.

2 FORMAL METHODS IN CONFORMANCE TESTING

2.1 Introduction to LOTOS

2.2 Labelled Transition Systems

2.3 Theory of Conformance

2.4 Implementation Relations and Conformance

2.5 Language Based Systematic Test Suite Derivation
2.5.1 Test Dertvation From Iinite Systems
2.5.2 Test Derivation with Infinite Branching

2.6 Chart Based Test Generation

2.6.1 Normalization

2.6.2 ldentification of the [Functions to be Tested

Vi

12

13

16

18

20

26

27

31

CONTENTS vil

2.6.3 Generation and Analysis of Test Cases 36
2.6.4 Test Selection and Representation 37
2.6.5 Application L L. 38

3 SPECIFICATION FOR TESTABILITY 39
3.1 Base Specification Development 40
3.1.1 Parameterizing Specifications 41

3.1.2 Behaviour Specification. 43

3.2 Functional and Profile Specifications 44
3.2.1 Hierarchical Test Selection 44
3.2.2 Protocol Slicing According to Test Suite Structure 47
3.2.3 Slicing and Bebaviour Reductions 48
3.2.4 Systematic Protocol Slicing 50
3.2.4.1 Definitions 50

3.2.4.2 The Algorithm oo 52

3.3 Related Work 54
4 BASE SPECIFICATION DEVELOPMENT 57
4.1 INRES Protocol, 58
4.1.1 PICS Parameterization 60
4.1.2 Behaviour Specification L0 61

12 ACSE Protocol 64
4.2.1 PICS Parameterization 67

4.2.2 Behaviour Specification oL 69

CONTENTS vill

5 DERIVATION OF FUNCTIONAL SPECIFICATIONS 72
5.1 Behaviour Reductions On State-Oriented Specifications 73
5.1.1 Behaviour Reductions On INRES 73
5.1.2 Behaviour Reductions On ACSE 79

5.2 Behaviour Reductions On Constraint-Oriented Transport Pro-

tocol Specification.o L 83

5.2.1 Introduction To The Transport Protocol And Its Base
Specification L 83

5.2.2 Behaviour Reductions 91

6 TEST DESIGN USING BASE AND FUNCTIONAL SPECI-

FICATIONS 104
6.1 Test Generation From Base Specifications 106
6.2 Test Generation From Functional Specifications 111

6.2.1 Chart Generation 111
6.2.2 Generation Of Test Cases 113
6.2.3 Test Case Reductions 115
6.2.4 Infeasible Test Cases 116

7 CONCLUSIONS 117

8 APPENDICES 124

A INRES Base Protocol Specification In LOTOS 125

B PICS Proforma For INRES 137

B.1 Date of Statement e 137

CONTENTS ix
B.2 Implementation Details 137
B.3 Global Statement of Conformance 138
B.4 Initiator/Responder Capability 138
B.5 Supported PDUso L. 138
B.6 Supported PDU Parameters 139

B.6.1 Data Transter [IPDU(DT) 139
B.6.2 Acknowledgement IPDU (AK) 139
B.7 Timers e 140

C Test Suite Structure and Test Purposes for INRES 141

C.1 Initiator (1) . o v v ooe e e e 141
C.1.1 1/Basic Interconnection and Capability Tests (BIC) . . . 141
C.1.2 I/Valid Behaviour Tests (BV) 142

C.1.2.1 I/BV/Connection Establishment (CE) 142

¢.1.2.2 1/BV/Data Transfer (DT) 142

C.1.2.3 1/BV/Disconnection (DC) 143

C.1.3 [/Invalid & Inopportune Behaviour Tests (BIO) 143
C.1.3.1 1/BIO/Disconnected State (STA0) 144

C.1.3.2 I/BIO/WaitforCC State (STAL). 144

C.1.3.3 I/BIO/Connected State (STA2) 144

C.1.3.4 I/BIO/Sending State (STA3) 144

C.2 Responder (R) 145
. 145

C.2.i R/Basic Interconnection and Capability Tests (BIC)

CONTENTS

C.2.2 R/Valid Behaviour Tests (BV).

C.2.2.1 R/BV/Connection Establishment (CE)

C.2.2.2 R/BV/Data Transfer (DT) . ..

©.2.2.3 R/BV/Disconnection (DC) . . .

C.2.3 R/Invalid & Inopportune Behaviour Tests (BIO).

C.2.3.1 R/BIO/Disconnected State (STA0)

C.2.3.2 R/BIO/Waitfor[CONresp State (STA1)

C.2.3.3 R/BIO/Connected State (STA2)

aiiet

D ACSE Base Protocol Specification In LOTOS

146

146

146

147

147

. 147

147

149

List of Figures

l.

1.2

L.

1.4

[0

2.

3.

W14

<t

1

3

2

1

o

OSI Reference Model

Layer Concept of OSI Reference Model
Encapsulationof PDUs

Conceptual Testing Architecture

Action Tree of a Simple System

Sample Test Case
Behaviour Reduction Algorithm

Test Suite Structure for INRES
Test Suite Structure for ACSE

Test Suite Structure for Transport Protocol Class 2

X1

18

28

el |
&7

List of Tables

6.1

6.2

6.3

6.4

Notation for Labelled Transition Systems 17
Axioms and Inference Rules for Basic LOTOS 19
Compositional Computation of Acceptance Sets 26
Compositional Computation of Acceptance Sets for Infinite Sys-

tems e e e e e e 29
Compositional Computation of Subsequent Behaviour for Infi-

nite Systems Lo 30
INRESIPDUs 58
State Table for Initiator Protocol 62
State Table for Responder Protocol 62
ACSE APDUs 65
Transport TPDUs 34
Chart Sizes Of Functional Specifications IFor INRES 112
Chart Sizes Of Functional Specifications For ACSE 112

Test Cases Generated From Functional Specifications Of INRES 113

Test Cases Generated [From Functional Specifications Of ACSE 114

xi

Chapter 1

INTRODUCTION

In recent years, information technology (IT) has become a major part of hu-
man civilization. The sheer variety of IT has created the significant problem
of interconnecting systems to form networks. Networks make the information
available wherever it is most useful, thus increasing the value of information.
One of the most challenging issues in the past few years has been the intercon-

nection of multi-vendor network products to allow applications from different

networks to inter-work with each other [1].

In an Open System Environment (OSE), the computer systems and software
of different vendors are interchangeable and can be combined into an integrated
operating environment. Open system standards, i.e. non-proprietary standards
play the most important role in the realization of an OSE. They provide a
standardized operating infrastructure for OSE. First, architectural standards
are needed to build an OSE model. Second, base standards are needed to
provide the specification of the different components of the model. Finally,

functional standards are needed to adapt to specific environments.

In 1977, International Organization for Standardization (ISO) established
a subcommittee to develop a structure (or architecture) that defines commu-
nication tasks. The aim was to establish a framework for coordinating the
development of existing and future standards for the interconnection of het-
erogeneous computer systems. The result of the study of that subcommittee
was the so called Open System Interconnection (OSI) Reference Model, which

became an international standard, [SO 7498 [2], in 1984.

CHAPTER 1.

INTRODUCTION

Open System

Open System

7 Application Aplication 7
6 Presentation Presentation 6
bt Session Session 5
4 Transport Transport 4
3 Network Network 3
2 Data Link Data Link 2
1 Physical Physical 1

Physical Media

I'igure 1.1. OSI Reference Model

To provide the communication among computer applications in a hetero-
geneous environment, complex hardware and software components are needed
to provide the networking services. Using the divide and conquer principle,
ISO divides the overall communication functions hierarchically into seven lay-
ers (Figure 1.1). Each layer provides services to the layer above by using the
services provided by the layers beneath i1t. Applications access OSI communi-
cation services from the highest layer, i.e., layer seven. Ior each layer, protocols

are defined to provide the specific set of services.

Layer one, the Physical Layer, is concerned with transmission of unstruc-
tured bit streamn over physical medium; deals with the mechanical, electrical,
functional, and procedural characteristics to access the physical medium. Layer
two, the Data Link Layer, provides the reliable transfer of information across
the physical link; sends blocks of data with the necessary synchronization, er-
ror control, and flow control. Layer three, the Network Layer, provides the
interconnection service. It provides transparency over the topology of the un-

derlying network as well as transparency over the transmission media used in
each subnetwork comprising the network. Layer four, the Transport Layer,
is responsible for moving data reliably form one end system to another end
system. [t provides end-to-end error recovery and flow control. The Session
Layer is primarily responsible for the coordination of the communication. The
Presentation Layer is responsible for the representation of data. Finally, Ap-
plication Layer provides access to the OSI environment for users and also gives

distributed information services.

CHAPTER I. INTRODUCTION 3
(N+1) ® ? ? @ (N)-SAP
layer /
/ Interface

(N)

layer

(N-1) \

layer (N-1)-SAP

Figure 1.2. Layer Concept of OSI Reference Model

1.1 OSI Architectural Concepts

The OSI Reference Model provides a framework within which protocol stan-
dards can be specified for each layer. More fundamental to the framework are
the OSI architectural concepts that are formulated independent of the layers

and the associated protocols within each layer.

Layering divides the overall communication functions of an open system
into a succession of smaller subsystems. Subsystems of the same rank (N)
collectively form the (N)-layer of the reference model. The objects in the (N)-
layer are called (N)-entities. These (N)-entities use the services provided by
the (N-1)-layer in order to collectively provide the services of the (N)-layer.

Sntities in the same layer but in different open systems are called peer entities.

Cooperation among the peer (N)-entities is governed by one or more (N)-
protocols. An (N)-protocol is a set of rules and formats that govern the ex-
change of information between two peer (N)-entities during an instance of com-
munication. Entities in adjacent layers within an open system communicate
with each other through their common boundary, across an interface. This
interface is called the Service Access Point (SAP). Figure 1.2 shows the layer

concept of the OSI Reference Model.

CHAPTER I. INTRODUCTION 4

The service provided by (N)-entities to the layer above is called the (N)-
service. The (N)-entities provide this service via invocation of service primi-
tives. An (N)-SAP is characterized by the set of service primitives or abstract

operations that can be invoked by an (N+1)-entity at that point.

The service offered by the (N)-layer can be connection-oriented, or con-
nectionless. For connection-oriented communication, an (N)-association be-
tween the two communicating (N+41)-entities is set by establishing an (N)-
connection between the two (N)-SAPs. The lifetime of a connection has three
distinct phases: connection establishment, data transfer, and connection re-
lease. Once the connection is established, the service provider at each end
provides a connection endpoint identifier to its local service user. Subsequent
requests to transfer data may refer to the assigned connection endpoint iden-
tifier. In connectionless mode communication, there is neither connection es-
tablishment phase nor connection release phase. Each transmitted data unit

is self-contained, and is independent of each other.

The information units exchanged among the peer (N)-entities are called
(N)-protocol-data-units ((N)-PDUs). Every (N)-PDU has two major com-
ponents: an (N)-protocol-control-information (N)-PCI and user-data. The
user-data component is what an (N)-entity receives from its user, i.e., some
(N+1)-entity. On receiving the user-data, the (N)-entity prefixes it with an
(N)-protocol-control-information ((N)-PCI) to form its (N)-PDU and passes it
down to (N-1)-entity. For an (N-1)-entity the (N)-PDU is treated as an (N)-
service-data-unit ((N)-SDU, i.e., user-data). Each time when a PDU passes
down to a lower layer in the source system, the provider of the lower layer pre-
fixes a PCI to the PDU. By the time the PDU reaches the lowest layer, it has
already been encapsulated with layers of PCls (Figure 1.3). The encapsulated
PDU at the physical layer is then ready to be transmitted across the transmis-
sion media to the lowest layer of the target system. At the target system, the
encapsulated PDU is moved upwards towards the receiving (N)-entity. Each
time the encapsulated PDU goes up a layer, one of its PCIs is stripped off.

Precisely, a layer in the target system strips off PCI added carlier by the same

layer in the source system.

[\ |

CHAPTER 1. INTRODUCTION

(N-1)-PCI | (N)-PCI | (N+1)-PDU

(N)-PDU

(N-1)-PDU

Figure 1.3. Encapsulation of PDUs

1.2 Service Definitions and Protocol Specifications

Every OSI protocol standard comprises two sets of documents : the Service Def-
inition and the Protocol Specification. A service definition is used to describe
the functional boundary between two adjacent layers. The major components
of service definitions define service elements which consist of service primitives.
Service primitives are classified as follows: The Request service primitive type
is issued when a higher layer is requesting a service from the next lower layer.
The Indication primitive type is issued by a layer providing the service to notify
its user. The Response primitive type is issued by a layer to acknowledge the
receipt of an indication primitive. The Confirm primitive type is issued by the
layer providing the previously requested service to confirm that the activity has
been completed. A user-initiated service primitive is one initiated by a service
user (e.g. Request or Response), whereas a provider-initiated service primitive

is one that is initiated by the service provider (e.g. Indication or Confirm).

A protocol specification is the specification which must be satisfied by all
protocol entities in a layer [3]. The major components of a protocol specifica-

tion document includes the following:

- definition of PDUs,

- elements of procedures,

- mapping to underlying services,
- the description of a protocol,

- the conformance requirements.

Finite State Machine (FSM) description is the most common tool to de-

scribe the behaviour of a protocol, which is the most important component

CHAPTER 1. INTRODUCTION 6

of a protocol specification. In short, an FSM description identifies a finite set
of states to describe the operation of the protocol machine. This definition is
augmented with explanation of the other components of the protocol specifi-
cation with the aid of figures, tables, and English text. Protocol standards for
Application Layer protocols often use the semi-formal notation called Abstract
Syntax Notation One (ASN.1) [4] for the definition of the parameters and data
structures of the PDUs.

However, protocol specifications written in natural language often contain
ambiguities which must be resolved in implementations. For this reason, in
the design, specification and analysis of protocols the use of formal methods
increases. Most of the methods of protocol validation and testing require the
protocols be specified in a formal language. The Formal Description Techniques
(FDTs) that are presently considered for application in this area are Estelle
[5, 6], LOTOS [7, 8], and SDL [9, 10]. Estelle and LOTOS are developed within
ISO for application to OSI, but can also. be used in other areas. SDL was
originally developed by CCITT for the description of switching systems, but is
also used in the description of communication protocols. Estelle and SDL are
based on an Extended Finite State Machine (EFSM) model. Estelle is enhanced
with Pascal data structures, expressions and statements for the description of
interaction parameters, additional state variables, and related processing. SDL

is largely oriented towards graphical representation, and supports abstract data

types.

LOTOS, which is the main specification formalism used in this thesis, is
a combination of a variation of Milner’'s CCS [11] and a particular notation
for abstract data types, ACT ONE [12]. In LOTOS, a system is specified as a
hierarchy of process definitions. The behaviour of each process is expressed by a
behaviour expression. The formation rules for the behaviour expressions are an
integral part of LOTOS. In general, the behaviour expressions can be expressed
as possibly infinite tree-like structures. Synchronous communication among
processes is handled by applying operators to processes, where semantics of
the operators are expressed in terms of the behaviour expressions. This topic

will be elaborated in Chapter 2.

CHAPTER 1. INTRODUCTION 7

1.3 Conformance Testing

A division of OSI objects into layers and entities allows protocol standards
to be specified independent of actual implementations. However, to have suc-
cessful communication among open systems it is not sufficient to specify and
standardize communication protocols. It must also be possible to ascertain
that the implementations of these protocols really conform to the standard
protocol specifications. One way to do this is by testing. The activity of test-
ing these protocol implementations against the relevant protocol specifications

is known as Protocol Conformance Testing.

The component of protocol specifications related to conformance testing is
the conformance requirements stated within the specifications. There are two
types of conformance requirements. Static conformance requirements specify
the limitations on the combinations of implemented capabilities permitted in
an implementation which is claimed to conform to a protocol specification. Dy-
namic conformance requirements on the other hand, specify what observable
behaviour is allowed by the relevant protocol standard. Conformance testing
involves testing both the capabilities and behaviour of an implementation, and
checking what is observed against both the conformance requirements in the
relevant standard(s), and what the implementor states the implementation’s
capabilities are [13]. The purpose of conformance testing is to increase the
probability that different implementations are able to inter-work, and gives
confidence that an implementation has the required capabilities and its be-

hlaviour conforms consistently in representative instances of communication.

Conformance testing is a kind of functional testing. An implementation
of a protocol entity is solely tested with respect to its specification. With
functional testing externally observed functionality of an implementation is
tested by using tests that are derived from the specification. It is also called
black-bozx testing: a system is treated as a black box, whose functionality is
determined by observing it, i.e., no reference is made to the internal structure of
the implementation. Only the interactions of the system with the environment

are available. The main goal is to determine whether the right product has

been built or not.

ISO has lead the development of a standard methodology and framework
for the conformance testing of OSi systems. This effort resulted in a stan-
dard called Conformance Testing Methodology and Framework (CTMF) which

oo

CHAPTER 1. INTRODUCTION

cousists of seven parts [14, 15, 16, 17, 18, 19, 20]. Part 1 introduces the gen-
eral concepts and describes the test architectures. Part 2 defines the abstract
test suite development methodology. Part 3 defines a language for specify-
ing the abstract test suites, called the Tree and Tabular Combined Notation
(TTCN). Part 4 is on test realization which consists of test selection and pa-
rameterization. Part 5 puts requirements on test laboratories and clients for
the conformance assessment process. Various conformance test reports are de-
fined in this part. Part 6 is about profile testing. Part 7 develops a number of
proformas called implementation conformance statements in order to define the
implementation flexibility allowed by the base protocol standards. According
to CTMF, standard test suites are developed for each OSI protocol in order to
be used by supplier or implementors in self-testing, by user of OSI products,

by telecommunication administrations, or by third party testing organizations.

According to the terminology of CTMF [14], the implementation to be
tested is called the Implementation Under Test (IUT). A number of tests de-
signed to establish conformance of the IUT is called an Abstract Test Suite
(ATS). Test suites are made up of Test Cases, each of which tests for the
satisfaction of one or more Test Purposes, where a test purpose corresponds
to a conformance requirement stated in the specification. Specifically, a test
case consists of a test purpose, a preamble which is a sequence of events that
transfers the IUT into the desired initial state for testing, a test body consisting
of the actual events that test for the satisfaction of the purpose, and a verdict
assignment formulated as the result of the application of the test case to the

[UT, which can be pass, fail or inconclusive.

Testing an [UT requires a conceptual testing architecture in which the
tester makes stimuli from the bottom and top SAPs and observes the results
from these two SAPs. Sequences of interactions occurring at these Points
of Control and Observation (PCOs) form the essential basis for determining
whether or not an implementation conforms to the protocol standard. This
brings a natural functional division for the testing functions : Lower Tester for
ASP and PDU inputs/outputs at the bottom SAP, and Upper Tester for ASP
inputs/outputs at the top SAP. Figure 1.4 illustrates the conceptual testing
architecture. Based on this conceptual test architecture, ISO defines one local
and three external abstract test methods for conformance testing. These are
Local Test Method, Distributed Test Method, Coordinated Test Method, and
Remote Test Method [14, 15].

CHAPTER 1. INTRODUCTION 9

Upper

Tester

ASPs

Tester 10T

ASPs
PDUs

Lower
Tester

Figure 1.4. Conceptual Testing Architecture

The following types of tests are defined by [SO to be applied to protocol

implementations:

|. Static Conformance Review: A review of the extent to which the

static conformance requirements are met by the [UT.

2. Basic Interconnection Tests: Tests of an IUT which have limited

scope to determine whether or not there is sufficient conformance to the
relevant protocols for interconnection to be possible, without trying to

perform thorough testing.

3. Capability Tests: Tests to verify the existence of one or more claimed

capabilities of an TUT.

4. Behaviour Tests: Tests to determine the extent to which one or more

dynamic conformance requirements are met by the IUT.

CHAPTER 1. INTRODUCTION 10

1.4 Overview

Protocol standardization is performed on a variety of levels. Base standards
developed by international bodies define fundamental and generalized proce-
dures along with a number of options. On regional or national level, functional
standards are derived from the base standards according to the needs of specific
applications. Since the aim of conformance testing is to test the satisfaction of
the requirements corresponding to the implemented capabilities of a protocol,

the derivation of test suites must be based on functional standards.

While on one hand the use of formal methods in the specification of dis-
tributed systems increases; on the other hand this brings in the question of how
these formal specifications can be used in conformance testing. Since the speci-
fication of the same protocol can be made in many different forms and styles, a
similar question arises on which form to use in order to facilitate conformance

testing. This approach is called specification for testability.

Specification for testability deals with the development of completely de-
composable formal specifications called base specifications. The test suite gen-
cration step must be taken into account at the initial design stage of a system
while developing formal base specifications. Base specifications must be devel-
oped in such a way that the features that must be tested separately should be
identifiable, and functional specifications can be systematically derived from
the base specifications in order to be used as the basis of subsequent test gen-

eration.

The main contribution of this thesis is on the systematic derivation of func-
tional specifications from base specifications written in the formal description
technique LOTOS. The approach adopted for this purpose is called slicing
which has been previously defined and used in software engineering. By making
some transformations on protocol specifications, called behaviour reductions,
slices of such specifications are obtained which define the behaviour corre-
sponding to a specific function of the protocol. The functions are extracted
according to the hierarchically structured test suites of the base protocols. The
techniques developed are applied on some OSI protocols written in different

specification styles.

Chapter 2 starts the discussion by introducing LOTOS and its underlying

semantics. It gives the formal framework of conformance testing, along with the

CHAPTER 1. INTRODUCTION 11

some formal approaches from the literature. Chapter 3 is on specification
for testability. It gives a design trajectory which results in testable protocol
specifications. Chapters 4 and 5 are about the application of the methods
described in Chapter 3 on some protocol specifications written in LOTOS.
Specifically, Chapter 4 is on the development of base specifications whereas
Chapter 5 gives examples on the derivation of functional specifications from
base specifications. The steps covered in the derivation of complete test suites
from base and functional specifications are explained and compared in Chapter
6 with several examples. Finally, Chapter 7 contains the conclusions and some

comments on future work.

The contribution in Chapter 2 is the in depth comparison of the two major
approaches to LOTOS based test design, namely the labelled transition system
based approach of [21] and the EFSM-Chart based approach of [30]. In Chapter
3, several techniques that can be used while developing formal base specifica-
tions, including parameterization and behaviour specification, are given. Var-
ious types of behaviour reductions (horizontal, vertical, diagonal) are defined
and an original algorithm is developed in order to perform the reductions in a
systematic manner. In Chapter 4 previously developed specifications of INRES
and ACSE protocols are taken, and several enhancements are carried out in
order to obtain their formal base specifications. Specifically, the specifications
are parameterized, behaviour and data types related to the static conformance
review process are added, and the features that must be tested are included.
In addition to its base specification, two documents for INRES protocol are
developed. One of them (PICS proforma) is used in parameterizing the spec-
ification, and the other one which defines a test suite structure is used in the
derivation of functional specifications. The contributions in Chapter 5 are the
original applications of the behaviour reduction algorithm developed in Chap-
ter 3 on three base protocol specifications. The most notable among these is
the application of our methodology on the relatively large standard base spec-
ification of the Transport Protocol. The contribution in Chapter 6 is mainly

the analysis of the tests generated from the functional specifications obtained

by the techniques of this thesis.

Chapter 2

FORMAL METHODS IN
CONFORMANCE TESTING

As a result of the recent increase in the use of formal methods for the spec-
ification of OSI protocols there is a need to systematically derive tests from
such formal specifications. Formal methods in protocol conformance testing
concern testing of protocol implementations for conformance with respect to
their formal specifications, where testing is based on a formal definition of what

constitutes conformance [21].

Using formal methods in conformance testing brings in some benefits. First,
the concepts of conformance testing can be defined formally, and thus more pre-
cisely. Secondly, the use of FDTs makes it possible to do formal test validation,
i.e., checking whether a test really tests what it is intended for. Thirdly, the use

of formal methods allows the definition and use of test generation algorithms.

For the purpose of examining the consequences of the use of FDTs on con-
formance testing, ISO and CCITT started a joint project around 1983: Formal
Methods in Conformance Testing (FMCT) [22]. The scope of the project is
to define a general methodology on how to perform conformance testing of a

protocol implementation given a formal specification of the protocol.

The aim of this chapter is to introduce the formal approach to conformance
testing. Section 2.1 summarizes the main concepts of the Formal Description
Technique LOTOS which is used throughout the thesis. Section 2.2 contin-

ues the discussion with the theory of processes, and gives the definition of a

CHAPTER 2. FORMAL METIIODS IN CONFORMANCE TESTING 13

labelled transition system which can be seen as a first formalization of the no-
tion of a process. Section 2.3 introduces the theory of conformance and defines
what constitutes conformance in a formal context. Section 2.4 describes some
relations which can be used as the basis of conformance testing. Section 2.5
gives some methods from the literature for the systematic derivation of test
suites from formal specifications that allow a semantic interpretation in terms
of labelled transition systems. [Finally, Section 2.6 discusses a relatively differ-
ent approach to automatic derivation of test cases from LOTOS specifications

based on the Chart formalism.

2.1 Introduction to LOTOS

LOTOS [8] is one of the two Formal Description Techniques developed within
ISO for the formal specification of open distributed systems, and in particular
for those related to the Open Systems Interconnection (OSI) computer network
architecture [7]. In LOTOS a distributed and concurrent system is described
in terms of a set of interacting processes. A process is an abstract entity that
is able to perform internal events and communicates with other processes via
external events at interaction points called gates. An event is an elementary
unit of synchronization among processes [23]. The static picture of a process
can be imagined as that of a black box capable of communicating with other
processes. The mechanisms inside this box are not observable. Thus, all events
occurring inside a process (i.e., internal events) are unobservable and denoted
by 1. In LOTOS, processes can be defined by the temporal relations between
the events constituting their externally observable behaviour, and are expressed
by behaviour expressions . The formation rules of the behaviour expressions
are essential parts of LOTOS, and are based on a modification of the Calculus
of Communicating Systems (CCS) [L1]. In the case that an event involves
exchange of data, the description of data structures and value expressions is

based on the algebraic specification of abstract data types (ADTs) [12].

In LOTOS interactions (i.e., event structures) take the form gaya; . . . ey [c],
where ¢ is the interaction point (gate) name and each «; is either value or
variable declaration. A value declaration has the form !E, where E is a LOTOS
expression describing a data value, and a variable declaration takes the form
Tx : t, where x is a name of a variable and ¢ is its sort (i.e, type) identifier.

An action denotation may terminate with -a predicate ¢, called the sclection

CHAPTER 2. FORMAL METHODS IN CONFORMANCE TESTING 14

,

predicate, which is used to impose restrictions on the values that may be bound

to the variables. The syntax of a process definition header in LOTOS is :

process P[gate list](zy : £),...,2, : ;) : functionality

with variables z,,z,,...,r, occurring as free variables in the behaviour ex-
pression defining the process P. The functionality of a process is the list of the

sorts of the values offered at the successful termination of that process.

A behaviour expression is produced by applying an operator to other be-
haviour expressions. A behaviour expression may also include instantiations
of other processes. Given a behaviour expression B, for convenience B may

also be called a process. There are several operators in LOTOS to describe

behaviour expressions as follows.

e inaction (denoted by ‘stop’)
stop means that a process can execute no event.

e successful termination (denoted by ‘exit’)
exit is a process whose purpose is solely that of performing the successful
termination action denoted by &, after which it transforms into the dead

process stop.

e action prefix (denoted by *;’)
The behaviour of a; B is considered to be event « followed by the be-

haviour of B, where B is a behaviour expression.

e choice (denoted by ‘[])
The behaviour of B, [] By will be the behaviour of either By or B,, where

B, and B, are behaviour expressions. The choice offered is resolved in

the interaction of the process with its environment.

e parallel composition (denoted by ‘|[g1, 92, --.,9.]]")
The behaviour of Bi|(g1,¢2,---,]| B2 will be a composition in which
B, and B, must synchronize with respect to the set of gates S =
{91,92,---,9n}.- When the set of synchronization gates .5 is empty, then
the parallel composition operator is denoted as |||, and when S is the set

of all gates, the parallel composition operator is written as ||.

e hiding (denoted by ‘hide ¢, ¢2,...,9, in B’)
Hiding allows one to transform some observable actions performed on

CHAPTER 2. FORMAL METHODS IN CONFORMANCE TESTING 15

=4

the gates ¢1,¢2,...,¢, of a process given by the behaviour expression
B into unobservable ones. These actions are thus made unavailable for

synchronization with other processes.

¢ process instantiation (denoted by ‘P[g1,¢2,...,9x]")
A process instantiation is formed by a process identifier P with an as-
sociated list [g1,92,...,9x] Of actual gates which correspond to the list
of formal gates given in the respective process definition. Such a pro-
cess instantiation occurs in the behaviour expression defining some other
process, or process P itself. The instantiation of a process in LOTOS
resembles the invocation of a procedure in a conventional programming

language such as Pascal.

¢ guarding (denoted by ‘[p] — B’)
Any behaviour expression B may be preceded by a predicate (i.e., a
guard) and an arrow. The interpretation is that if the predicate holds,
then the behaviour described by the behaviour expression is possible,

otherwise the whole expression is equivalent with stop.

e sequential composition (denoted by ‘B >> B,’)
The informal interpretation of this construct is that if B; terminates
successfully, then the execution of B, is enabled. Parameters can be

passed from the enabling process to the enabled process by using the

accept construct.

e disabling (denoted by ‘B,[> B,’)
Process By, may be disabled by the first action of process B, and the

control is irreversibly transferred from the interrupted B; to the inter-
rupting B,. In the case that the interruptible By performs a successful

termination action, the disabling process B, disappears.

o let (denoted by ‘let z; : t; = Ey,... 2, : t, = E, in B(zy,...,2,)")
Let construct of LOTOS is used to associate value expressions Fy, ..., E,

to the free variables xy,...,z, of a behaviour expression B(zy,...,z,).

o generalized choice (denoted by ‘choice z; : ty,...,2, : 1, [] B’, or
. . ,
‘choice g in [a}, ay,...,a,] [| B’)
Using the binary choice operator ‘[]’ only finite number of alternatives
can be expressed. Generalized choice allows an unknown number of al-

ternatives to be specified. Sets of gate identifiers or variable declarations

inay be used for indexing.

CHAPTER 2. FORMAL METHODS IN CONFORMANCE TESTING 16

A number of specification styles have been defined for LOTOS specifica-
tions [24]. In the monolithic style only observable interactions of a system are
presented and ordered as a collection of alternative sequences of interactions
in branching time. In the constraint-oriented style again only observable inter-
actions are presented, but their temporal ordering is defined by a conjunction
of different constraints. Monolithic and constraint oriented styles are exten-
sional description styles in that they define a system in terms of its external
observable behaviour, viz. their concern is what of the system. With the state-
oriented style the system is regarded as a single resource whose internal state
space is explicitly defined. In the resource-oriented style both observable and
internal interactions are presented. The behaviour in terms of the observable
interactions is defined by a composition of separate resources in which the
internal interactions are hidden. In turn, these resources may be specified us-
ing any style. Both state-oriented and resource-oriented styles are intensional

description styles, i.e., their concern is the how of a system.

LOTOS has the following two models; labelled transition systems as models
for behaviour expressions, and many sorted algebras as models for data types.
The model for behaviour expressions is not dependent upon the way data types
are interpreted. The subsequent discussion in this chapter 1s mainly about

behaviour expressions and labelled transition systems.

2.2 Labelled Transition Systems

The formalism of labelled transition systems is used for representing the be-
haviour of processes, so they are suitable for modelling distributed systems.

Labeled transition systems serve as the semantic model for a number of speci-

fication languages, including LOTOS.

Definition 2.1 A labelled transilion system is a 4-tuple < S, L, T, so > with

- 5 is a (countable) non-empty set of states;
- L is a (countable) set of observable actions;
ST CSx(LU{r}) x5 is the transition relation;

- s9 € 5 is the initial state.

CHAPTER 2. FORMAL METHODS IN CONFORMANCE TESTING 17

>4

Notation Meaning

BAC (BuwC)eT
B"=5"C 3By...B,:B=B5% B 5% .. 8B,=C
B 3c: B ¢

K1 eectin L
B 4+ -3C : B ¢
B=C B=Cor B™™5 C
B3C dB,B;: B= B, 5 B, = C,a€ L
Bal“ﬁgnc aBanB:'Bo—{_l—i‘Blg-a:?*Bn:C
B == aC = O
B'UET 3wt g
out(B) {eel|B=}
Tr(B) {cel*| B3}
B afteroc {B'| B3 B'}

Bis stable B4

Table 2.1. Notation for Labelled Transition Systems

The labels in L represent the observable interactions of a system; the special
label 7 & L represents the unobservable, internal action. Table 2.1 introduces
some notation and definitions for labelled transition systems. A trace is a
sequence of observable actions. The traces of a labelled transition system
specification S, T'r(.5), are all sequences of visible actions that .S can perform.
The set out(.5) contains traces of length 1. .S after o collects all states that can
be reached after having performed o. A stable process accepts only external
events, and can not perform internal action. A finile state process is one in

which the number of reachable states is finite.

Simple labelled transition systems can be represented by (action-) trees or
graphs, where nodes represent states and edges labelled with actions represent

transitions. Figure 2.1 illustrates the representation of a simple system.

It is cumbersome to represent complex systems such as protocols directly
by action trees as labelled transition systems. A more sophisticated way of
representation than graphs or trees is needed. That is a language that allows
concise representation of (possibly infinite) labelled transition systems. The
operational semantics of LOTOS, which can be obtained by a system of infer-

ence rules, generate a labelled transition system for each behaviour expression

CHAPTER 2. FORMAL METHODS IN CONFORMANCE TESTING 18

d

.

Figure 2.1. Action Tree of a Simple System

of the language. Table 2.2 gives the inference rules corresponding to the oper-
ators of the subset of the language employing a finite alphabet of observable

actions with no exchange of data, which is called Basic LOTOS [7].

The simple labelled transition system in Figure 2.1 can be represented by

a behaviour expression in LOTOS as :

a; (b; d; stop [] ¢; ¢;stop) [] «; b; d; stop. (2.1)

In the following, no distinction will be made between B as a behaviour
expression, or B as the initial state of its semantics labelled transition system.
A process is identified with the labelled transition system modelling it, with

the behaviour expression representing the labelled transition system, and with

its initial state.

2.3 Theory of Conformance

The starting point for developing a formal approach to conformance testing
is the definition of what constitutes conformance. Regarding the fact that
the relevance of a protocol specilication with respect to testing is its set of
conformance requirements, a specification can be considered as the collection of

conformance requirements. Formally, a specification S in a particular standard

CHAPTER 2. FORMAL METHODS IN CONFORMANCE TESTING 19

Combinator Axioms or Inference Rules

stop none
exit exit > stop
a; B a;B-5 B (a€ L)
1, B 1,85 B
B || B, B, = B+ B, [| B, = B
By, = By b By | B, = B
B || B, By = Bj,B: 5 By & By||B, 5 Bl BS (e #7)

By = Bj + Bi||B, = Bj|| B,
B, = By + By||B; = B B,
B\[> B, B, 5 Bk Bi[> By % Bl[> B, (a # 6)
B, % Bk Bi[> B, 5 B
B, BLF Bi[> B; % B
B\(g1s--->9n) B B'F B\(g1,---90) = B\(g1,--50n) a € {g1,-.., 0}
B =% B'F B\(g1,- -5 00) = B'\(¢1,-- -1 0) @ {g1,--,9n}

Note : B\g1,...,9n ts a short notation for hide ¢,,...,¢g, in B.

Table 2.2. Axioms and Inference Rules for Basic LOTOS

can be written as
S={ri,reyrs...}
where each r; is a conformance requirement [21]. A conforming implementation

then is the one which satisfies all requirements specified by the standard:

VreS : Isatr (2.2)

The formal language in which requirements are expressed is denoted by Lrg.
Languages that express requirements or properties are called Logical Languages.
Although they are powerful, logical languages are not constructive. For this
reason current standardized FDTs (Estelle, LOTOS, SDL) are not based on
logical languages. Formal descriptions written in these FDTs do not define
requirements, but observable behaviour. For conformance testing, however, it is
important to know which requirements are implicitly defined by the expressions

in the formal descriptions.

Let Lrpr be the formal language of the FDT. By introducing the relation

spec, the set of all requirements implicitly specified by an expression B € Lrpr

CHAPTER 2. FORMAL METHODS IN CONFORMANCE TESTING 20

1s defined as:
Sg={r € Lr| Bspecr} (2.3)

Combining (2.2) and (2.3), we have for an implementation / that conforms

to B :

I conforms —to B =4y Vr € Lr: B spec rimplies [sat r (2.4)

In this way, conformance can be defined as a relation between implementa-
tions and behaviour specifications, with the meaning that an implementation
conforms to a specification if every requirement specified by the behaviour
specification is satisfied by the implementation. Conformance as a relation is

referred to as an implementation relation.

2.4 Implementation Relations and Conformance

An implementation relation formalizes the notion of correctness of an imple-
mentation [with respect to a specification S [21]. Implementation relations
can be obtained by comparing observations made of I with observations made
of S. For an implementation relation it is sufficient that observations of the
implementation can be related to the observations of the specification, in the
sense that, the behaviour of the implementation can be ’explained’ from the
behaviour of the specification. An implementation is considered to be correct

if all observations made of it by any environment can be expiained from the

behaviour of the specification.

The definition of the conformance relation given in (2.4) depends on the
language Lp and the relations spec and sat. Different choices for these al-
low the definition of different implementation relations, and result in different
classes of conforming implementations with the same language Lrpr. Many
implementation relations have been proposed in the literature. They are either
equivalences, in which case one must show that the implementation provides ez-
actly the behaviour stipulated by the specification, or preorders, in which case

one shows that the implementation provides at least the behaviour required.

If we choose the same language Lppr as the formal language of the class
of implementations, i.e., if the underlying semantics of implementations with

respect to behaviour is the same as that of specifications, a basic relation

CHAPTER 2. FORMAL METHODS IN CONFORMANCE TESTING 21

between processes is that of trace preorder <,,.. Formally,
1< S =gy Yo L™ : IS implies S = (2.5)

Informally, when defined in an observational way, the relation <,, specifies that
traces observed by an implementation should also be observed by the specifica-
tion. Equivalently, it specifies that any trace which is not in the specification
shall not be in the implementation. A tester consisting of a single test case
can be constructed for each specification in order to test for the satisfaction of
the <;, relation [25]. This test case reaches a state marked with verdict fail
whenever the first action of a trace that is not present in the specification is

observed. For an infinite set of possible actions, this tester will be very large

for practical specifications.

To judge the validity of an implementation it is not sufficient to consider
only the sequences of actions it can perform, what an implementation can refuse
to do must also be considered [25]. The deadlocks observed by I after having
performed a certain sequence of actions must also be observed by S. The
resulting implementation relation is called testing preorder or failure preorder
<ie (reduction red in [26]). Formally,

I < S =des Voe L*, VACL: (2.6)

(3

if (IS NVac A: ' %)
then 35" : (S5 S AN Vae A: S 7(4;)

By introducing a specific requirement language L£,,,q;
Loust =def {afteromust A|o e L, AC L} (2.7)

which states the requirement that after having performed o, at least one of the

actions in A must be performed, the relation given in (2.6) can be reformulated

as .

I <. S iff Voe L"VACL: (2.8)

S after o must A implies I after o must A

Like <; , <. has a severe disadvantage for conformance testing. It is char-
acterized using a quantification over all ¢ € L*, which poses the problem of

having to verify that the implementation does not have unspecified deadlocks

for all o € L~.

CHAPTER 2. FORMAL METHODS IN CONFORMANCE TESTING 22

In [26] the implementation relation conf was introduced to reduce this
problem. The relation conf reduces the quantification to traces in the speci-
fication, so it checks only the deadlock behaviour of an implementation after
those sequences of actions that the specification is able to perform. By using
conf it is not checked whether an implementation has extra traces not specified
in the specification, i.e., extensions in the functionality of the implementation

with respect to the specification remain undetected. Formally,

Iconf S =4 VoeTr(S), VACL: (2.9)
3 (IS AVae A I #)
then 357 : (S5 &' A Vae A: S)

By using the requirement language L,,,s, the implementation relation conf

can be defined as :

I conf S iff VoeTr(S),VACL: (2.10)

S after o must A implies I after 0 must A

Considered in itself, the conf relation is not attractive as an implementation
relation. It is not transitive, and therefore not a preorder. However, this
relation plays an important role in incremental testing: in order to test for <,,
correctness with respect to <;, and conf can be separately checked because

when taken together relations <;, and conf exactly give <. [21].

2.5 Language Based Systematic Test Suite Derivation

In the realm of labelled transition systems the implementation relation conf,
defined in the previous section, is a reasonable candidate to formalize the notion
of conformance for the purpose of conformance testing [21]. Therefore, the next
question is how to derive test suites for conf systematically from a labelled
transition system specification 5. This section introduces some test derivation
algorithms starting from the fact that for a complete test suite the requirements

specified by a specification should be exactly those tested by the test suite.

The Canonical Tester T(S) for a specification .S consists of the test suite
needed to establish the implementation relation conf. An implementation
I conforms to a specification S according to conf if all required behaviour
of S is implemented in I [27]. The Canonical Tester can be regarded as a

CHAPTER 2. FORMAL METHODS IN CONFORMANCE TESTING 23

process which 1s the ‘inverse’ of the specification in the sense that the Canon-
ical Tester of the Canonical Tester of a specification is the specification itself
(i.e., T(T(S)) = T(S5)). It runs in parallel with the IUT and communicates

with it with full synchronization. According to [26], the basic idea behind the

Canonical Tester T'(.S) is:

e it is capable of exploring all and only traces in .5, i.e., Tr(T'(S)) = Tr(S);

e [conforms to S if and only if every deadlock between I and the tester

T'(S) can be explained by the tester having reached a terminal state.

If a representation is given by a behaviour expression with labeled transi-
tion system semantics, then there are two possibilities for the derivation of test
cases. Either the behaviour expression is replaced by its semantics, from which
tests are derived using algorithms for labelled transition systems, or the algo-
rithms are transformed to work on behaviour expressions as well. The second
option is more natural because behaviour expressions give finite, implementable

representations of infinite labelled transition systems.

In the literature two main approaches to the construction of T'(S) from S
can be found in [26] and [28]. The first one elaborated in [26] is an example
of the first option stated above. It uses a model of processes (failure trees)
identifying processes that are equivalent with respect to testing. This leads
up to a complete algorithm that constructs canonical testers T'(.5) which are
unique for testing equivalent processes. The second one is the syntactical
approach explored in [28], which is based on the second option of deriving
tests from behaviour expressions. Here the tests are derived directly from
the specifications’ syntaxes. The method is named the CO-OP method after
its main components. The three main attributes used in the compositional

derivation of the canonical tester T'(B) of a behaviour expression B in Basic

LOTOS are:

e Compulsory(B), which is the set of sets of actions that may not be
refused by B after it has reached any possible stable state, 1.e., a state

from which no internal action is possible.

o Options(B), which is the set of actions that may be refused by B because

of the presence of an alternative internal action i in an unstable state.

CHAPTER 2. FORMAL METHODS IN CONFORMANCE TESTING 24

e B after a, which is the subsequent behaviour of B after having performed

the action a.

The construction of the tester 1s compositional in the sense that the attributes
needed to compute the tester T'(B; * B,) can be obtained from the attributes
of the testers T'(B;) and T(B;) where x is any Basic LOTOS operator. The
approach developed in [28] results in a completely inverse behaviour of the

specification, which consists of a single process, aud in which it is difficult to

identify individual test cases.

A recently developed method given in [21] extends the CO-OP method to
a small subset of full LOTOS and makes it possible to obtain individual test
cases. The method is based on the idea that, in order to derive complete sct
of test cases from a labelled transition system .S, the requirements tested by
these test cases must be exactly the requirements specified by S. Hence for

every requirement of type after o must A specified by 5, 1.e., for every o, A

with
S S and S after o must A (2.11)

there must be after o must A among the tested requirements.

The first step in generating test cases is the derivation from .S of the re-
quirements after ¢ must A, according to (2.11). This procedure can start
with ¢ = ¢, and then proceeds recursively. All A C L with .5 after ¢ must A

are determined, and for each A there must be a test case {4:
ta=S{a;t, | a € A}

where t, is the behaviour of the test case after a (¥ operator represents the
LOTOS choice operator among multiple behaviour expressions). It suffices to
derive test cases for those sets A that are minimal with respect to C because
if a test case t, tests requirement after ¢ must A, then it also tests the re-
quirements for after ¢ must A’ with A C A’. Since for each A satisfying .5
after ¢ must A, always ANout(S) C A, and S after ¢ must (AN out(5)), it

is sufficient to consider only A C out(\5).

The next step in the construction of the behaviour of the test case after a,
i.e., t,. t, must test the requirements after a must A. The above procedure
can be recursively applied if the calculation can be repeated with o = ¢, i.e. if

there is an S’ such that;

S after « must A iff S’ after ¢ must A.

CHAPTER 2. FORMAL METHODS IN CONFORMANCE TESTING 25

For any process S, the behaviour of the tester after interaction in an event
is fully dependent on the behaviour of .5 after interaction in this event. If
there is more than one state .S’ with § = S’, then, after interaction in «, it is
not known to the tester which transition has been chosen within the process
under test. The behaviour of S after interaction in « can then be seen as a

non-deterministic choice, which is given by the expression:
choice 5 after a =45 ¥ {7;5] 5" € S after «}

The expression choice S after a defines the non-deterministic choice among
all states that are reachable by S after having performed « (¥ represents the

generalized choice operator).

So, the three attributes needed to derive a test case are ouit(5),
choice S after a, and sets A that are minimal with respect to C. In or-
der to facilitate the construction of sets A {rom behaviour expressions, the
concept of acceptance sets, denoted Ly C,, is introduced in [21]. These sets
are defined using existential quantification over states, and each set consists of
sets of external actions that can occur in a state, i.e., they represent the action
capability of a state. In order to obtain acceptance sets that are minimal with
respect to C, some optimization steps are performed on C,, which is denoted

by the relation C. The resulting sets are called reduced acceptance sets.

Based on the definitions presented above, the following algorithm generates

a test case for a specification 5 (v represents the verdict associated with the

particular state of the test case):

Algorithm 2.1 (Test Case Generation) A test case ¢ for a specification 5
is obtained by:

e Step 1. Choose M C Wo(C) where C C C;
(The transformation ¥o(C') defines a set of sets formed by taking one (or

more) element from each set in C)

o Step 2. Choose A € M and v(t) = falil,
or if M = ¢ then A = out(S) and v(t) = pass,

e Step 3. t4 =X {a;{, | @ € A}, where 1, is a test case for choice § after

A.

CHAPTER 2. FORMAL METHODS IN CONFORMANCE TESTING 26

B out(B) st(B) C(B) choice B after ¢

stop é true {¢} stop

a; By {a} true {{a}} LB ifa=yg
stop if a #yg

i; By out(B,) false C(By) choice B, after ¢

B, [| B, out(By) st(B) {out(B)} choice B, after g

Uout(B;) and st(B;) Uif not(st(B;)) [Jchoice B, after ¢
then C(B))
Uzf not(st(B,))
then C(B;)

Table 2.3. Compositional Computation of Acceptance Sets

A reduced acceptance set is related to the set Compulsory of the CO-OP
method, the difference being that for a reduced acceptance set C, always

UC = out(S). As a consequence of this property, Options of the CO-OP

method is not needed any more.

2.5.1 Test Derivation From Finite Systems

Having acceptance sets as a way to derive test cases, compositional rules can
be defined with which acceptance sets can be compositionally derived from a
restricted class of LOTOS behaviour expressions. Table 2.3 gives such rules. In
order to obtain the compositional rule for [], information about the stability of
the operands is required. The stability of a behaviour expression B is defined by

the predicate st(B), and is added as an extra attribute, which is also computed

compositionally.

Example 2.1 If we consider the example behaviour expression given in (2.1)

representing the process of Figure 2.1:

B = a; (b;d;stop [] ¢; e;stop) [] a; b; d; stop

CHAPTER 2. FORMAL METHODS IN CONFORMANCE TESTING 27

The test case in Figure 2.2 is derived following Algorithm 2.1 as follows, using

B = B, [] B,, with:

By = a; (b; d;stop [] ¢; ¢; stop)
B, = «; b;d; stop

e out(B) = {a}, st(By) = st(B,) = st(B) = true,
C(B) = {{a}}, ¥o(C(B)) = {{a}}.
Choose A = {a}, and v = fail.
choice B after a = 1;(b; d;stop [] ¢; ¢;stop) [] i; (b; d;stop)

o Let B’ = choice B after « = i;(b;d;stop [] ¢; e;stop) {] 1;(b; d; stop)
out(B') = {b,c}, st(B’) = false,
C(B') = {out(B")}
UC(: (b dsstop] cs c; stop))
UC(i; b; d; stop)
= {{b,c}, {b}}, Wo(C(B')) = {{b,c},{b}}.
Choose A = {b}, and v = fail.
choice B’ after b = choice i;(b; d;stop [] ¢; ¢; stop) after b
[| choice i; b; d; stop after b

= 1;d;stop

e Let B” = choice B’ after b = 1,;d;stop
out(B") = {d}, st(B") = false,
C(B") = {{d}}, Wo(«(B")) = {{d}}.
Choose A = {d}, and v = fail.
choice B" after d = i;stop

o Let B" = choice B” after d = i;stop
out(B") = ¢, C(B") = {4}, and ¥o(C(B")) = ¢.
A = out(B") = ¢, and v = pass.

2.5.2 Test Derivation with Infinite Branching

A language that allows infinite branching is accomplished by introducing ac-
tions that consist of a pair of gates and values, denoted by < g,v >. The

usual interpretation of such actions is that of wvalue communication. A gate

CHAPTER 2. FORMAL METHODS IN CONFORMANCE TESTING 28

Figure 2.2. Sample Test Case

represents a place where communication takes place, e.g. a SAP, and the value
represents the message that is communicated at that place. This is the kind of

communication that occurs in the FDT LOTOS.

When non-finite systems are considered, the method proposed in [21] de-
rives the test cases in two steps. First, the initial behaviour of test cases, i.e.,
how to determine the set A in the test case t4 = ¥ {«;t, | « € A} is considered,

and then the subsequent behaviour of the tester, viz., the part ¢, is determined.

The initial behaviour of a test case involves determining a set A C L such
that A € M C Wo(C) where C C C,(S). Test derivation from behaviour
expressions with value communication suffers from the problem of infiniteness.
Because of infinite branching, although finite reduced acceptance sets exist,

elements of such sets, also sets, turn out to be infinite.

To deal with these infinite sets while computing ¥o(C), the elements of
the acceptance set (' can be divided into subsets. Each element A of C is
represented by the union of sets D” € D', where sets D’ together form a
larger set D, to which a bijection can be defined from C. This brings in the
computation of Wo(C) in two steps. The first step is the computation of Wo(D)
where D is a set of sets of sets of actions. The next step involves, for each £ €
Vo(D), the computation of Wo(E). This set has a simpler structure; it is a set of
sets of actions. For the derivation of test cases, an A € Wo(E) is required. Such
an A is always finite and has the form {< g1,v1 >, < g2,v2 >,...,< gn,vn >}.

The corresponding test case is:

Eajt, |a € {< g1,m1 >, < g2,v2>,...,< gny Uy >}}

CHAPTER 2. FORMAL METHODS IN CONFORMANCE TESTING 29

out(B) st(B) D(B)

sy

stop ¢ true {¢}
g'z [pl; Br {g?z [p]} truc {{g?= [p]}}
1; By out(By) falsc D(By)

B, [| B, out(B) st(B) {out(B))
Uout(B,) and st(By) Uif not(st(By)) then D(By)
Uef not(st(B,)) then D(B;)

‘able 2.4. Compositional Computation of Acceptance Sets for Infinite Systems

which can be written as
g] !'U]; t<gl W > ” gz!v2; t<!]2v'u2> [] e “ g”!vn; t!]n-"n>

Compositional rules for the derivation of the attributes out(B), st(B), and

D(B) are given in Table 2.4.

For the subsequent behaviour of test cases 1t is sufficient to consider finite

number of test cases t,, where t, = choice B after < g,v >. Table 2.5
gives compositional rules for choice B after < g,v > which is analogous
to choice B after ¢ in Table 2.3 (B[v/x] denotes the expression B where
each free occurrence of z is replaced by the value v, and p[v/z] denotes the

substitution of a value v for a variable 2 in a predicate p.)

Example 2.2 A test case for the following behaviour expression B is derived

in detail :

B = gtz [x < 20]; h!(z + 2);stop [] i; g7y [y > 10]; kly; stop

o out(B) = {g?z [x < 20],9%y [y > 10]},
st(g?z [z < 20); h!(x + 2);stop) = true,
st(i; g7y [y > 10]; hly; stop) = false,
D(B) = {out(B)}U D(i; gy [y > 10]; hly; stop)
= {{g7x [z < 20], 9%y [y > 10]}} U{{g?y [y > 10]}}
= {{g7x [« < 20], 97y [y > 10]}, {97y [y > 10]} }.

CHAPTER 2. FORMAL METHODS IN CONFORMANCE TESTING 30

B choice B after A

stop stop

g’z [p); By i;Bi[v/z] if g = hand plv/a]
stop il g # hor not p [v/ax]

1 By choice B, after < h,v> ilp
stop if not p

By {] B2 choice B, after < h,v >
choice B, after < h,v >

Table 2.5. Compositional Computation of Subsequent Behaviour for Infinite

Systems

Choose E € ¥o(D(B)) and A € ¥o(L):
Wo(D(B)) = {{g7z [z < 20}, g%y [y > 10]}, {97y [y > 10]}},
E = {g?y[y > 10]}, and A = {< g,15 >}.

The test case then is: ¢ = ¢'15;1c 155, Where tcg 155 Is a test case for

choice B after < ¢,15 >.

¢ choice B after < g,15 >
= choice g7z [z < 20]; h!(x + 2);stop after < g,15>
[] choice i; g%y [y > 10]; hly; stop after < g,15>
= i;h!17;stop [] i; h!15; stop.

Let B’ = choice B after < ¢,15 > = i;h!17;stop [] i; h!15;stop
out(B') = {h17, h!15}, st(i; A!17;stop) = st(1; h!15; stop) = false,
D(B') = out(B')U out(i; h!17; stop) U out(i; h!15; stop)

= {{R117,R115}, {R11T}, {R!15}}.

Choose E € Wo(D(B')) = {{h117, 115} }
E = {h'17,h115}, and A € Vo(E) = {< h,15 >, < h, 17 >}.

The test case t¢g155 15 :

CHAPTER 2. FORMAL METHODS IN CONFORMANCE TESTING 31

Elajty |a € {< b, 15>, < b 17 >} = M55 tcnass [BT tenars.
Both equations choice B’ after < A,15 >, and choice B’ after

< h, 17 > are equal to 1;stop.

Taking the parts together a test case for B is :

t = g'15; (A!15;stop [] A!17;stop)

2.6 Chart Based Test Generation

The framework presented in [21] for formal specification based test generation,
is by no means complete, and some open questions remain. At some points
simplifications and choices for formalizations are made. These choices are open
for further discussion, depending on investigations whether the presented for-
malizations are workable ones. An example is the relation between physical
objects (the IUT) and formal objects (the specification, requirements). It is
assumed that implementations and test application can be formally modelled,
and that observations calculated for the class of models are also valid for the
physical implementations. For validation of the usefulness of the framework it
should also be applied to other specification formalisms. The method is ap-
plied to toy specifications formed by a restricted class of LOTOS behaviour
expressions. The extension of the method to handle full LOTOS behaviour

expressions needs further study.

This section introduces another approach to the generation of test cases
which is based on the idea that data flow as well as the control flow of the
implementation must be tested. It combines FSM-based techniques with func-
tional software testing and analysis [29]. The following phases are distinguished

in the derivation of test suites from LOTOS specifications.

- Normalization of the specification,
- Identification of the functions to be tested,
- Generation and analysis of test cases,

- Test selection and representation.

The operational semantics of LOTOS is used to convert the specifications into

an intermediate form, and then data and control flow is extracted from this

CHAPTER 2. FORMAL METHODS IN CONFORMANCE TESTING 32

intermediate form. The second and fourth phases deal with the data flow as-
pect whereas the third phase deals with the control flow aspect of testing. In
the following each of the above phases are explained in detail based on the
ideas found in [30]. The applications of the methodology will be examined in

Chapter 6.

2.6.1 Normalization

Individual test cases that make up a test suite can be seen as part of the
behaviour defined in the specification which is then inverted to specify the
behaviour of the tester. Therefore, it is necessary to identify the control and
data flow in the specification. In order to identify the control and data flow,
an intermediate representation called the normalized specification is needed.
The intermediate representation for full LOTOS specifications is called the
EFSM-Chart. Chart is originally introduced by Milner as a sequential nonde-

terministic interleave model for parallel computation [31].

Definition 2.2 A chartis a 7-tuple m = < J,N,V, R, 30, Z, ho > where

- J is a finite set, the control states of m,

- N is a finite set, the transitions of m,

- Vis a finite set, the variables of m,

- R is a finite set, the rules of m,

- jo € J 1s the initial control state of m,

- Z C J is a finite set, the terminal control states of m,

- ho is the initial assignment to the variables of m.

The possible transitions of a chart are defined by a set of rules whereby

each rule defines a class of transitions.

Definition 2.3 A rule of a chart is an 8-tuple » = < «,3,7,n,p,¢, [, >

where

- a is an action, the when clause of r,
- 7 € J 1s a control state, the from clause of r,
- 3 € J is a control state, the to clause of r,

-n € N is a transition number, the transition clause of r,

CHAPTER 2. FORMAL METHODS IN CONFORMANCE TESTING 33

- pis a predicate, the guard clause of r,
- ¢ 1s a predicate, the condition clause of r,
- f1s a function, the action clause of r,

- h is a function, the assignment clause of r.

The semantic interpretation of EFFSM-Chart is that; the transition n oc-
curs when the chart is in the control state 5, and the predicate p is true for the
current assignment of the variables. Then it may participate in an event that
matches the when clause of a if the condition c is satisfied. This leads the sys-
tem to the new control state ;. The action clause of r represents the variables
that are updated by the function f due to value passing in the interprocess

communication, whereas the assignment clause h represent value passing due

to process instantiations.

A LOTOS specification can be converted mmto EFSM-Chart in two phases.
In the first phase the following syntactic transformations are performed on the

input specification in order to facilitate the chart construction.

e All occurrences of full parallel composition are transformed into general

parallel composition on all of the synchronized gates.

e All occurrences of sequential composition are replaced by a generalized

parallel composition on a gate which is hidden.

e Generalized choice expressions on gate lists are converted into normal

choice expressions on multiple instances of the same behaviour actualized

with a different element of the gate list.

e Process instantiations are expanded in-line until actual gate parameters

are found identical to formal ones.

e Internal events which are not the first action in a choice expression are

removed.

o Since variables in LOTOS have local significance, they are renamed

uniquely to avoid global conflicts in the chart.

In the second phase this resulting specification is converted into a chart by

bottom-up synthesis. The chart corresponding to a behaviour B is recursively

CHAPTER 2. FORMAL METHODS IN CONFORMANCE TESTING 34

built from the sub-charts corresponding to sub-behaviours contained in B. Be-

haviour operators are eliminated one by one by constructing the corresponding

state machines.

The chart for exit and stop has only one state and no transition. Since all
sequential compositions are transformed into parallel compositions in the first

phase, exit and stop behaviours are treated in the same way while constructing

the chart.

The chart corresponding to the action prefix operator a[c|; B is obtained
by generating a new state and adding a transition from this state to the initial
state of the chart for B, with a when clause of « and a condition clause of
¢. The chart corresponding to the behaviour expression z; B is constructed in
the same way with the exception that the when clause of the new transition
is 7, qualifying it as a spontaneous transition. The chart corresponding to the
behaviour expression [p] — B is obtained by generating a new state and adding
a new transition form this state to the initial state of the chart for B, whose
when and guard clauses are ¢ and [p], respectively. In all of the above cases the

initial assignment hg of the chart for B is stored in the assignment clause of

the added transition.

For the choice operator, the transitions of the two machines are merged
and a single machine with an initial state corresponding to the initial states
of the merged machines, is obtained. The disable operator is interpreted like
the choice operator, and a new machine is formed by adding the initial rules

of the disabling process to every state of the disabled process as alternative

behaviour.

The chart corresponding to the let z; : t; = Fy,...,2, : {, = E, in B and
choice z, : ty,...,z, : t, [| B is obtained by updating the initial assignment
ho of the chart for B. For the hide operator, all interactions that are hidden

become internal, and only the resulting data flow in terms of assignments to

the variables 1s kept.

For interleaved parallel composition, a Cartesian product of the two ma-
chines is calculated. While constructing the chart corresponding to the syn-
chronized parallel composition, all possible execution paths are not considered,
and a single sequence of actions is obtained. During this construction different

synchronization features of LOTOS, i.e., value matching, value passing and

value generation are handled separately.

ar

CHAPTER 2. FORMAL METHODS IN CONFORMANCE TESTING 35

’

Translation of process instantiations depends on whether the instantia-

tion is recursive or not. No new transition is created for non-recursive in-
stantiations, and the parameters passed in the instantiation are stored in the

wnitial assignment of the chart. For recursive instantiations a new transition

1s created with a when clause of z,.

Example 2.3 If we consider the behaviour expression given in Example 2.2 :
B = gTx [z < 20]; h)(z + 2);stop [] §; 97y [y > 10]; hly; stop

The corresponding chart is :

m =< {l,...,5},{nl,n2,... .05}, {z,y}, R, 1,{3,6},¢ > where

R =< {g?z: Nat,1,2,nl,true, [v < 20],¢, ¢},
{15,1,3,n2,true, true, €, €},
{Rl(z + 2),2,4,n3, true, true, ¢, €},
{97y : Nat,3,5,nd,true, [y > 10],¢,¢},
{hly,5,6,n5, true, true, ¢, ¢} >.

2.6.2 Identification of the Functions to be Tested

Data flow analysis which is widely used in code optimization [32] plays an
important role in software testing [33]. When applied to protocol testing,
the flow of data reflects how input primitive parameters determine the values
of context variables, and they in turn affect the values of output primitive
parameters. Input/Output primitives are ASPs and PDUs. A Data Flow
Graph (DFG) models the flow of data in the chart. In [30] an algorithm is

given which constructs the data flow graph from the EFSM-Chart.

In order to obtain the protocol functions to be tested, the data flow graph
must be decomposed into slices according to a user-defined criteria. Each

slice thus obtained consists of a number of transitions from the chart which

collectively represents a protocol function.

CHAPTER 2. FORMAL METHODS IN CONFORMANCE TESTING 36

2.6.3 Generation and Analysis of Test Cases

A test case generated from a deterministic finite-state machine consists of se-
quence of events, i.e., it is linear; whereas the presence of the action 7, in the
chart makes it highly nondeterministic. This necessitates the generation of
nonlinear test cases. The algorithm proposed in [30] to generate unparame-

terized test cases from EFSM-Chart take nondeterminism into account. An

outline of the algorithm is as follows:

First a transition tour of the EIFSM-Chart is obtained. Transition tour
generation is based on converting the EFSM-Chart into an Euler graph and
then performing a depth-first traversal of this graph while each time passing
through a node including a distinct edge into the tour. The tour is then divided
into sequences that start from the initial state and end in the initial state or
one of the final states. These sequences are called partial test cases. A partial
test case may contain spontaneous transitions (z, transitions). Next, the partial
test case is checked if there exists a spontaneous transition which is not present
in the partial test case, but is an alternative to any of the transitions in it. If
so, the partial test case is updated by adding a sequence of transitions that
start with the alternative spontaneous transition and ends in a final state or
a state belonging to the partial test case. This procedure is repeated until
no spontaneous transition exists that is alternative to the updated partial test
case. An edge is virtually added from each final state to the initial state and

the partial test case becomes a completed test case.

Since the above algorithm may generate redundant, uninteresting or infea-
sible test cases, the next step is the analysis of the generated test cases. In
order to facilitate the analysis process, a graph which reveals the control struc-
ture of, as well as the data dependencies within test cases, is produced. This
is called the Test Case Dependence Graph (TCDG) [34]. In some of the test
cases, predicates can never be satisfied on a path due to the existence of an
assignment on that path which causes the predicates always evaluate to false.
By using TCDG, the slice of each predicate in a test case is obtained in order to
be evaluated to detect any infeasibilities. The slice of a predicate with respect
to a test case consists of all statements in the test case whose execution possi-
bly affect the boolean value of the predicate. Since, the detection of infeasible
test cases is an undecidable problem, the produced predicate slices must be

evaluated by the test designer.

CHAPTER 2. FORMAL METHODS IN CONFORMANCE TESTING 37

Some of the generated test cases may contain redundant assignments which
do not have any aflect on the function of the tester. So the next step is the
reduction of the test cases. By using TCDG, every assignimment in a test case
onto which no data dependence is present (i.e., which has no effect on the
subsequent behaviour) is dropped. Since any infeasibilities are already removed
in the previous step, all predicates in a test case which do not depend on the

parameter values of input primitives can also be dropped.

2.6.4 Test Selection and Representation

Specification of tester’s behaviour in a test case is completed by test selection
and representation [34]. Send event parameters left unassigned in the previous

steps are also assigned to specific values.

If functional test selection is used, the protocol functions identified by using
the data flow graph must be tested using the test cases obtained from the
chart. For this purpose, it is necessary to extract the transition labels of each
slice of the data flow graph. Generated test cases are then selected using
transition labels of each of the data flow functions. Alternatively, hierarchical
test selection of ISO [15] can also be used at this step. The generated test cases
are placed in a test suite hierarchy, a test purpose is assigned to each test case,
and using this information a verdict is associated with each final event of the

test cases. A closely related approach with this method will be introduced in

Chapter 3.

Final step in the derivation of test suites is test case representation. Since
the standard notation for specifying conformance test suites defined within ISO
is TTCN [16], the aim at this step is to obtain suitable representations of test
cases according to TTCN. The behaviour of the tester is the dual of IUT’s be-
haviour, and can be obtained by behaviour inversion. Except internal actions,
the direction of all of the events in a test case are inverted, that is input events
are converted to output events and vice versa. ‘Pass’ verdicts are assigned for
each final event of the test cases, and in order to deal with unforeseen responses
from the IUT, an OTHERWISE event with an associated verdict of ‘Fail’ is
added as alternative to each receive event of tester. ‘Inconclusive’ verdicts are
assigned to events resulting from internal transitions. Any constraints imposed
on the values of ASPs and PDUs are determined, and event parameters left

unassigned during previous steps are assigned to specific values.

CHAPTER 2. FORMAL METHODS IN CONFORMANCE TESTING 38

Since the behaviour specification in LOTOS is not state-machine oriented
but algebraic, LOTOS has no built in unidirectional input /output type of inter-
actions. Instead LOTOS interactions are multi-directional with value passing,
generation and matching. This raises some problems in performing behaviour
inversion automatically because the directions of the events are not evident
from the specifications. In order to overcome this problem additional value

declarations can be added to every interaction to make the direction of the

interactions explicit.

2.6.5 Application

When we apply the chart based test design methodology to the sample be-
haviour expression for which a test case is derived in Example 2.2 by using the
approach given in [21], and for which the chart is produced in Example 2.3,

we obtain the following two unparameterized test cases represented in TTCN

form.

Test Case 1:

g! x [x<20]
h? y [y=(x+2)] Pass
h? y [y=x] Inconclusive
70THERWISE Fail

Test Case 2:

g! x [x>10]
h? y [y=x] Pass
?0therwise Fail

The first test case tests for the correct execution of the path beginning with the
external action ‘g?x’ while at the same time considering the internal transition
that the implementation can make at any time. The second transition tests
only for the execution of the spontaneous transition. Since, in the case of a
value offer at gate ‘g’ which is less than 20 but greater than 10, it is possible
for the implementation to reject the first case due to an internal transition, the
second test case is needed. The parameter values of send and receive events

can be varied to try sending the same events with different parameter values

according to the constraints.

Chapter 3

SPECIFICATION FOR
TESTABILITY

A standardized protocol specification is the first step in a complete develop-
ment process that will eventually result in a piece of hardware or software, or
a mixture of both, that can be called an implementation of the protocol stan-
dard [35]. An important aspect that should be considered in the specification
of protocols is to ensure that the specifications will result in testable implemen-

tations, where testable in this context means facilitating testing. This aspect

is called Specification For Testability.

Specification for testability deals with finding out special design issues that
must be obeyed by protocol specifiers in order to end up with testable protocol
specifications [36]. On one hand, high quality specifications are an essential
ingredient of any automated or semi-automated process of test generation,
while on the other hand, a specification of the same protocol can be made in
many different forms and styles [24]. Not all of these styles are equivalent in
terms of testability, 1.e., one may facilitate conformance testing more than the
other. Therefore, it is necessary that an FDT must be used in conjunction with
a methodology and/or style which ensures that the resulting specifications are

not only concise, correct and complete, but they are also testable and suitable

for automated test case generation.

Within this perspective, specification {or testability deals with the following

activities:

39

CHAPTER 3. SPECIFICATION FOR TESTABILITY 40

developing formal base specifications using certain styles that help ob-

taining testable specifications,

including in the specifications the aspects of the protocols that need to

be tested,

e deriving functional and profile specifications from base specifications,

designing tests from functional specifications.

This chapter starts the discussion on to the concept of specification for
testability by introducing a design trajectory based on the activities stated
above. This first section i1s about the development of formal base specifica-
tions. It defines what a base specification is and presents some methods on
obtaining formal base specifications from the respective base standards. An im-
portant use of base specifications is the systematic derivation of functional and
profile specifications. Functional and profile specifications, and their relation-
ship with test selection is discussed in the Section 3.2. This section introduces
an alternative approach called specification selection which is based on the idea
that selection of tests can be done before actually generating them. It also in-
troduces our approach to specification selection which is referred to as slicing.
Finally Section 3.3 is about the related approaches to specification selection
from the literature. The concepts developed in this chapter are illustrated with
a number of examples from some protocols specified in LOTOS, in chapters 4

and 5. Designing tests from functional specifications is the subject of Chapter

6.

3.1 Base Specification Development

Protocol standardization is done on a variety of levels. On an international

level, base standards are developed by ISO and CCITT for each layer according

to The Basic Reference Model given in [2]. Base standards, as developed

by international bodies, define fundamental and generalized procedures, an
infrastructure that can be used by a variety of applications. Most informal OSI
base standards do not define the hehaviour of a protocol entity uniquely, but
by allowing multiple choices in service elements, service parameters, functional
units, and elements of procedures, they leave some space for implementors.

The requirements on a minimum set of capabilities to be satisfied by all of

CHAPTER 3. SPECIFICATION FOR TESTABILITY 41

the implementations are stated in the static conformance requirements of the
standards. There is a need to reflect these in the formal specifications. For
this purpose, base specifications are developed by considering mandatory and

optional features of a system at all levels.

Development of base specifications that provide a suitable basis for test
suite generation is an incremental process. The first step is the reflection of

implementation capabilities in the specifications. This can be achieved by

parameterizing the specification. Then comes the incorporation of the confor-
mance requirements into the specifications, i.e., behaviour specification. Base

specifications must be developed in such a way that features tested separately

should be identifiable.

3.1.1 Parameterizing Specifications

For each protocol standard a Protocol Implementation Conformance Statement
Proforma (PICS Proforma) has to be defined and standardized [20]. A PICS
proforma states explicitly the implementation flexibility allowed by the proto-
col standard. It is a document in the form of a questionnaire which details
the implementation options by listing all the possibilities for selection, and the
legitimate range of variation of the global parameters controlling the imple-
mentation of the functions. The implementor states the implemented options
of a protocol by filling in the entries in the standard proforma, which then

becomes the Protocol Implementation Conformance Statement (PICS) of that

particular implementation.

Appendix B defines a PI('S Proforma for the INRES Protocol [37], for
which the complete base specification in LOTOS 1s given in Appendix A. In
compliance with the requirements for PICS proformas stated in [20], the PICS
proforma for INRES contains prose entries identifying the implementation, the
implementor, “yes/no” entries indicating the implementation of each optional
and conditional capability. The required support for conditional capabilities
depends on how the implementor completéd particular optional entries. Fur-

thermore, for PDU fields there are entries indicating the range of values imple-

mented.

PICS proforma information must be incorporated into formal base specifica-

tions. The allowance for different capabilities and options in standards means

CHAPTER 3. SPECIFICATION FOR TESTABILITY 42

that specifications can be parameterized. The PICS proforma is the formal
parameter of the specification, and the PICS for a particular implementation
defines actual parameters of the specilication for that particular implementa-

tion. Static conformance requirements (SCR) define constraints on the values

of the PICS parameters.

Thus, a protocol specification .S can be written as a parameterized spec-
ification with formal parameters PICS-Proforma of the type SCR-type, i.e.,

the set of all possible correct values, determined by the static conformance

requirements. This can be expressed as:
S(PICS — Proforma : SCR — type)

The instantiation of S for a particular implementation / with its associated

PICS; is given by;
S(PI1CST)
The set of requirements derived from the behaviour specified by S(PICS))

define the dynamic conformance requirements for the implementation /.

Before conformance testing starts, the capabilities of the IUT should be
checked for conformity to the static conformance requirements stated in the
standard. This process is called the Static Conformance Review. Within the
above framework, static conformance review can easily be implemented in base
specifications. It corresponds to checking whether the PICS has a valid value

with respect to the static conformance requirements, i.e., whether the PICS is

of the type defined by SCR.

Since LOTOS allows the definition of specification parameters, base speci-
fications in LOTOS can easily be parameterized. Implementation capabilities
are defined in terms of predicates, and the names assigned to these predicates
are made parameters of the specification. Static conformance review can be
implemented as an ADT function which takes an instance of PICS proforma as
input, and returns a boolean value which determines whether or not the value
satisfies the static conformance requirements of the protocol. Only if static
conformance requirements are satisfied does the specification describe active

behaviour, viz. it provides the implementor or tester with an abstract model

of the protocol dynamic conformance requirements.

CHAPTER 3. SPECIFICATION FOR TESTABILITY 43

3.1.2 Behaviour Specification

The base specification has to cover all mandatory and optional features de-

scribed in the protocol standard. It should be developed in a hierarchical

manner, and features tested separately should be identifiable. [38].

The normal (valid) behaviour is specified based on the state tables given in
the informal standard using traditional techniques. As mentioned previously,
PICS parameters can be used to specify conditions related to the optional

features of the protocol wherever appropriate.

Like valid behaviour, invalid and inopportune behaviour specification is im-
portant with respect to conformance testing [39]. Invalid behaviour specifies
the implementation’s response to badly constructed incoming events (PDUs
and/or ASPs), and events are called inopportune if they occur when not al-
lowed by the protocol specification. Both invalid and inopportune behaviour
specify the behaviour of the protocol machine when operating against an en-
vironment that behaves incorrectly. This kind of behaviour is important when

the implementations are subject to robustness testing which can be seen as part

of conformance testing.

Since the default behaviour of LOTOS specifications in response to unspec-
ified events is to run into deadlock, both invalid and inopportune behaviour
must be explicitly defined in the base specifications. This can be done on a state
by state basis. The response of the protocol entities to invalid/inopportune
events is specified with the consideration of such inputs in each state. Obwvi-

ously, this can be achieved more easily if the state-oriented specification style

[24] of LOTOS is used.

It is not possible to distinguish a normal bebaviour from an in-
valid/inopportune behaviour without additional constructs such as predicates,
comments, or keywords. Since new keywords require modification in the lan-
guage, invalid/inopportune behaviour can be specified as alternative choice

branches in LOTOS processes, and distinguished by using comments.

CHAPTER 3. SPECIFICATION FOR TESTABILITY 44

’

3.2 Functional and Profile Specifications

The existence of base standards does not make the design of an OS] system
straightforward. OSI base standards, as discussed in the previous section, allow
multiple choices in service elements, service parameters, functional units, and
elements of procedures. It is not expected that an OSI product would provide
the implementation of every possible feature stated in the base standard. A
careful selection of such choices is required by any OSI implementation. An

implementation for a special area must therefore be restricted to a certain

subset of the base standard.

On a regional level, e.g. Europe, the selection of options is harmonized
in order to facilitate interoperation [36]. The resulting protocol standards are
called profiles. A profile i1s a set of one or more base standards and the iden-
tification of the chosen classes, subsets , options and parameters of those base
standards necessary for accomplishing a particular function [39]. In order to
ascertain interoperability among different]jl'oﬁles, standardized profiles called
International Standardized Profiles (ISP) are defined to identify groups of re-

lated profiles.

A profile may cover a number of protocols from different layers. A funec-
tional standard defines, for a particular layer and its associated base standard,
a precise combination of options and procedures to be used in a given profile.
Functional standards are currently developed by regional or national standard-
ization bodies based on the informal base standards. Functional specifications
are the corresponding formal definitions of functional standards. In order to
base the test generation process on functional specifications, a systematic way
of deriving functional specifications from base specifications is needed. The

ways to achieve this and its advantages are discussed in the sequel.

3.2.1 Hierarchical Test Selection

Through conformance testing, conformance to only those implemented func-
tions of a protocol which have been chosen from a number of options, can be
shown. Therefore, the test generation methods have to consider the idea of

choosing from options. Such a reduction of the size of the generated test suite

by choosing an appropriate subset is called test selection.

CHAPTER 3. SPECIFICATION FOR TESTABILITY 4!

The standardized approach to conformance testing given in the OSI Con-
formance Testing Methodology and Framework suggests the hierarchical de-
velopment of test suites [15]. The initial development stage for any protocol
test suite is the Test Suite Structurc and Test Purposes (TSS&TP) standard,
where the test suite structure is designed in terms of nested test groups in a
top down manner, and the test purposes are explained in plain English. This
document forms a stable basis for the development of the abstract test suites.
A good test suite structure has to satisfy several needs in order to be used as
the basis of a suitable test suite. It is important in ensuring the coverage of
the resulting test suites, and needs to demonstrate that it is possible to map

any feature which has a conformance requirement to at least one appropriate
test purpose.

In order to be used in test selection it 1s also important that the test suite
structure is capable of being subsetted in some convenient manner [40]. That is,
if parts of the protocol are optional then it must be convenient to exclude from
the test suite all test cases for those features which are not implemented. In
turn this implies that the structure must be expandable to an arbitrary level
of detail. The standardized method of achieving this is by a tree structure
where each non-leaf node, representing a test group, contains basic structuring

information on how its branches are to be developed, and where the leaves of

the tree are the test purposes themselves.

Appendix C contains the test suite structure and test purposes document
developed for the INRES protocol, the detailed operation of which is explained
in Chapter 4. The standard testing methodology gives guidance on what struc-
ture is required at the highest levels of a test suite. It identifies three require-
ments: Basic Interconnection Tests, Capability Tests and Behaviour tests [40)].
The latter subdivides into three categories; Valid Bebaviour tests, Invalid be-
haviour tests, and Inopportune behaviour tests. The meaning of these cate-
gories is that Basic Interconnection tests are used simply to see if a tester can
establish communication with the implementation it is testing, Capability tests
are intended to discover if the implementation of the protocol shows any signs
of actually supporting each unit of functionality that it is claimed to support.
The intention is to save unnecessary testing if a given feature is clearly unsup-
ported. As there are only a small number of Capability tests for the INRES
protocol, it is considered unnecessary to identify a subset of these to be used
as Basic Interconnection tests; and Basic Interconnection tests and Capability

tests are grouped in a single category. Since such tests can be achieved by a

CHAPTER 3. SPECIFICATION FOR TESTABILITY 46

selection of Behaviour tests, no special tests are devised for this category, but
appropriate references to Behaviour tesls are given, as recommended by the

standard methodology given in [15].

As will be explained in detail in the following chapter, INRES is an asym-
metric protocol in that an implementation can function as an initiator or re-
sponder, each role being quite different from each other. As this is a major
consideration of an implementation it follows that this division forms the top

level of the structure for the test suite.

For INRES TSS&TP the decision was made to place the subdivisions of
Invalid and Inopportune Behaviour tests in a single group alongside the Valid
Behaviour tests. This was based on the fact that PDUs do not contain large
number of parameters, and the practical consideration that an extra subdivi-

sion would convey no useful information but would add an unnecessary depth

of complexity to the tree.

For the valid behaviour section of the INRES TSS&TP it was found nec-
essary to add a new substructure for clarity. This comprises the three phases
of the protocol: Connection Establishment, Data Transfer, and Disconnection.
On the other hand, the substructure for invalid/inopportune behaviour tests
were divided on a state by state basis. These elements exercise the ability of

the implementation to correctly perform state event transitions when given an

appropriate stimulus.

Test selection can be based on the developed TSS&TP, by parameteriz-
ing the test suite, and then selecting those applicable tests according to the
test suite structure. But, this means that test cases must exist for the whole
protocol including all options. The number of test cases generated may be
very large, or even infinite. This implies that the execution of all generated
test cases is impossible, or simply too expensive. Alternatively, tests can be
generated from functional speciﬁcatibns instead of base specifications, which
will largely simplify the generation and selection of test cases. So there is a

need to the systematic generation of the functional specifications from base

specifications.

Since the two step procedure of first generating too many test cases and
then making a selection from this set may be undesirable; this overproduction
can be aveided by performing the selection on the specification instead. Before

test generation, some transformations can be applied to the base specification

HAPTER 3. SPECIFICATION FOR TESTABILITY 47

such that tests derived from the transformed, partial specification correspond

to a selection of the tests from the original specification. This process is called

Specification Selection.

3.2.2 Protocol Slicing According to Test Suite Struc-

ture

The approach to specification selection investigated in this thesis performs the
transformations on base specifications according to the hierarchically struc-
tured test suite trees defined and standardized for each base protocol. It is
based on the idea that before generating the test cases, an appropriate test
suite structure has to be designed, and a base specification has to be decom-

posed into abridged specifications reflecting the nodes of the test suite struc-

ture tree on a suitable level. The nodes of the test suite structure tree are
test groups, and decomposition stops at the test case level. This approach to
specification selection can be considered as a kind of slicing applied to protocol

specifications written in the formal description technique LOTOS.

The notion of program slicing, originally introduced in [41], is the process of
finding all statements in a program that directly or indirectly affect the value of
a variable at a specific point in the program. The statements selected constitute
a slice of the original program with respect to that variable occurrence. A slice
is a self-contained executable program with the simple meaning that it should
evaluate the variable occurrence identically to the original program for all test
cases [42]. Slicing is useful in program debugging, automatic parallelization,

and program integration.

The established method of automatically obtaining program slices accord-
ing to some user-defined criteria is based on the use of a particular program
representation called the Program Dependence Graph (PDG). The PDG of a
program has one node for each simple statement (assignment, read, write etc.),
and one node for each control predicate expression (if-then-else, while-do etc.).
It has two types of directed edges, namely data dependence edges, and con-
trol dependence edges. Data dependence edges reveal the relationship between
the definition and use of each of the program variables. Control dependence
edges on the other hand identify the possible execution paths in the program

[42]. Once a program is represented by its program dependence graph, the

CHAPTER 3. SPECIFICATION FOR TESTABILITY 48

slicing problem is simply a vertex-reachibility problem, and thus slices may be

computed in linear time [43].

The slicing method used in decomposing base specifications for the pur-
pose of obtaining functional specifications is similar to program slicing in the
sense that, the aim is to obtain self-contained and executable functional spec-
ifications which describe only the required behaviour with respect to a test
group objective. But since LOTOS is not procedural language developed to
write programs, but an algebraic specification formalism defined to describe
observable behaviour of distributed systems, it is not straightforward to obtain
the data and control dependencies within LOTOS specifications directly. An
intermediate form called EIF'SM-Chart which corresponds to the normalized
specification is devised for this purpose. But since the transformation of a
LOTOS specification into state machine requires much effort, it is of no use

when the aim is to obtain the protocol slices before the actual test generation

procedure starts.

3.2.3 Slicing and Behaviour Reductions

Protocol slicing according to a specific test suite structure is a hierarchical pro-
cess and leads to a tree of specifications. Each node of this tree corresponds
to a non-leaf node of the related test suite structure tree, and the abridged
specification describes only those dynamic conformance requirements that the
objective of the test group focusses on. Since the functionally decomposed
specification directly provides the behaviour related to the test cases consti-
tuting the corresponding test group, to base the generation of conformance test

suites on functional specifications rather than base specifications can play an

important role in automating the test generation process.

The derivation of subsets from a specification by slicing for the purpose of
obtaining functional specifications, is referred to as behaviour reduction. The
three types of transformations that can be defined on base specifications are;

vertical reduction, horizontal reduction and diagonal reduction.

Vertical behaviour reductions deal with specification modularity and omit
some of the processes completely which are not of interest to a specific func-
tional specification. Reductions based on classes, functional units, entity roles,

regimes and phases of protocols are mainly done by vertical reductions. As

CHAPTER 3. SPECIFICATION FOR TESTABILITY 49

an example, for asymmetric protocols each role (e.g. Initiator and Responder)

can be considered as a separate protocol, and vertical reduction is applied to

obtain the behaviour specific to each role.

While performing horizontal reductions, processes are not omitted com-
pletely but some behaviour expressions within the processes can be excluded.
For example valid and invalid/inopportune behaviour are usually specified as
alternative choice branches, and functional specifications consisting only of
valid behaviour or invalid/inopportune behaviour can be obtained by applying
horizontal reductions to choice branches such that irrelevant branches are sim-

ply discarded. Horizontal reductions can be applied to other LOTOS operators,
as well.
Diagonal reductions on the other hand, do the reductions at much more

lower levels in a more selective manner. Some specification constructs which

can be subject to diagonal reductions are as follows:

Optional PDUs, and PDU parameters,

Formal variable parameters in the definition, and the corresponding ac-

tual variables in the instantiation of the processes,

e Formal gate parameters in the definition and the corresponding actual

gate parameters in the instantiation of the processes,

Some value and variable declarations of event structures.

Furthermore, diagonal reductions performed on the constructs stated above

necessitate further reductions (horizontal, vertical, or diagonal) within the pro-

cess bodies in the resulting specifications.

All of the three types of reductions performed on base specifications result in
some of the data type definitions to become completely or partially redundant.
Since the presence of redundant data types does not cause any problem with
respect to LOTOS semantics, this situation has no effect on the executability
of the obtained specifications. These redundant data types can be the subject
of other reduction procedures which have to consider the data part as well as

the behaviour part of the LOTOS specifications. These kinds of reductions are

not discussed in this thesis.

CHAPTER 3. SPECIFICATION FOR TESTABILITY 50

3.2.4 Systematic Protocol Slicing

When we consider horizontal and vertical behaviour reductions, it is observed
that they are closely related. A horizontal reduction performed within a process
body which causes the elimination of, for example, a choice branch, will in most
cases result in the removal of another process completely which happens to be
a vertical reduction. Diagonal reductions on the other hand must be performed
more selectively within the bodies and definitions of the processes that are to
be included in the final reduced specification. By using these relationships
among the three types of reductions, a method (actually a heuristic) can be
defined to perform behaviour reductions on input specifications based on some
user defined criteria. The complicated nature of the application of all types

of reductions requires human expertise, and thus it is hard to automate these

transformations.

This section presents our method to perform simple behaviour reductions
on base protocol specifications, which is applied to sample protocols in Chapter

5. First some definitions and assumptions about the method is given, and then

the algorithm is presented.

3.2.4.1 Definitions

As defined in Chapter 2, a behaviour expression in LOTOS is built by applying
operators to other behaviour expressions. The following definition introduces

the notion of composite behaviour expression which is used as the main con-

struct in the reduction algorithm.

Definition 3.1 A composite behaviour ezpression (CBE) within the body of a
process in a LOTOS specification is recursively defined by the following rules:

1. Each of the following are composite behaviour expressions, and also the

base actions of their respective CBEs.

i) inaction (stop),
ii) successful termination (exit),

iii) process instantiation.

CHAPTER 3. SPECIFICATION FOR TESTABILITY 51

2. If B is a composite behaviour expression, then so is;

1) a;B , where a is any LOTOS event structure, and,

ii) [{] — B, where [t] is a guard expression.

The composite behaviour expressions of a process are separated with the

following LOTOS operators which are called horizontal constructors.

- binary choice ([]),
- parallel composition (|[L]], |||),
- disabling ([>).

The following operators can be applied to a single composite behaviour expres-

sion or multiple composite behaviour expressions separated by the horizontal

constructors.

- hide,
- generalized choice,
- let.

The following example illustrates the typical use of CBEs in LOTOS pro-

cesses.
Example 3.1 Within the following process definition :

process WaitforICONresp2[ISAP,MSAP] :noexit:=
ISAP?sp:SP[isICONresp(sp)];MSAP!MDATreq(CC);
Dataphase_Res[ISAP,MSAP] (succ(1))

1
MSAP?sp:MSP[isMDATind(sp)] ;WaitforICONresp2 [ISAP,MSAP]

(¥ System errors are ignored (Invalid/Inopportune Beh.) %)

endproc (* WaitforICONresp2 *)

The two behaviour expressions separated by the choice operator are

composite behaviour expressions with Dbase actions Dataphase_Res, and

WaitforICONresp2, respectively.

<
[N

CHAPTER 3. SPECIFICATION IFOR TESTABILITY

The starting point for the subsequent discussion is a flattened LOTOS
specification 5 which consists of a data part D and a behaviour part B, i.c,
S = {D, B}. The behaviour part B is defined as the set of all process defini-
tions in the specification, where the processes are uniquely identified and are

statically independent from each other.
B ={Fy, P,...,P.} with, Vi,jand ¢ # 5, P, # P,

Each process body is made up of one or more composite behaviour expressions
separated by horizontal constructors. If a composite behaviour expression in-
cludes a guard, then the guard must be the first expression in the CBE. For the
sake of simplicity the specification itsell can also be considered as a process,

the root process of the specification, and the behaviour part defines its body.

3.2.4.2 The Algorithm

Before the actual behaviour reduction procedure starts the following transfor-

mations must be carried out on the input base specification in order to obtain

a flat specification.

1. Carry out the first phase of the chart construction algorithm on the input

base specification.

2. Redefine all processes in the base specification so that they are uniquely

identified and are statically independent from each other.

3. Transform the guards depending on interaction primitives which are not

the first expressions in their respective CBEs, into selection predicates.

The first step is the application of the first phase of the chart construction
algorithm given in Section 2.6. This results in the elimination of sequential and
full parallel composition constructs from the specification. Then all processes
are redefined with unique identifiers, and are made statically independent from
each other, i.e., no process apart from the root process includes the definition
of any other process in its ‘where’ clause. In the third step, all guards which
depend on the parameters of interaction primitives, and which are not the
first expressions in a composite behaviour expression are eliminated, and their
boolean expressions are placed in the selection predicates of the preceding

external events. The following example illustrates the third step.

CHAPTER 3. SPECIFICATION FOR TESTABILITY

Example 3.2 The LOTOS code given below is from the Initiator part of the
INRES protocol specification.

process Disconnected_Ini[ISAP,MSAP,d2]:exit:=

ISAP?sp:SP;
([isICONreq(sp)]-> MSAP!MDATreq(CR);d2's(0);exit

(]
[not (isICONreq(sp))]-> Disconnected_Ini[ISAP,MSAP,d2])

(* User errors are ignored (Invalid/Inopportune Beh.) *)

endproc (* Disconnected_Ini *)

Since the the guards are not the first expressions of their respective CBEs,
and they depend on the values of interaction variables, they are dropped and
their boolean expressions are put into the selection predicates of the preced-
ing events. Since there are two guard expressions, two event structures and

selection predicates must be created. The result of this transformation is given

below.

process Disconnected_Ini[ISAP,MSAP,d2] :exit:=
ISAP?sp:SP[isICONreq(sp)];MSAP!MDATreq(CR);d2!s(0);exit
(]

ISAP?sp:SP[not(isICONreq(sp))];
Disconnected_Inil[ISAP,MSAP,d2]

(* User errors are ignored (Invalid/Inopportune Beh.) *)

endproc (* Disconnected_Ini *)

The main ingredient of the behaviour reduction algorithin given in Figure
3.1 is the test suite structure (TSS) of the relevant base protocol. By taking
the specification corresponding to their parent nodes as input, the algorithm
produces a smaller functional specification for each node of the TSS tree. In
this way every node defines the base specification for its successor nodes. The
behaviour reductions corresponding to the TSS nodes are performed according
to the externally provided abstract constraints that are assumed to be defined

for each node of the TSS tree. These constraints are abstract in the sense that

CHAPTER 3. SPECIFICATION FFOR TESTABILITY

neither any specific requirements are placed on, nor any way of realizing them

are explicitly given. They can be annotations used to distinguish different
types of behaviour, names assigned to service primitives and PDUs, sclection

predicates, guard expressions, PICS parameters, etc.

The algorithm starts with the root process, and inspects its every compos-
ite behaviour expression. Any composite behaviour expression satisfying the
constraints 1s included in the functionally reduced specification, and then the
process instantiated by the base action of the CBE is put in a list for subse-
quent consideration for possible inclusion in the output reduced specification.
The algorithm proceeds recursively until all of the CBEs of the processes are
inspected. Since this procedure may disrupt the functionalities of some of the
processes in the resultant specification, the last step is the correction of these

functionalities according to the rules of LOTOS.

If the total number of processes in a specification is p and the average
number of CBEs within a process is n, then the time complexity of the
algorithm given above in the worst case is O(np). Line 1, and 2 of Be-
haviour_Reduction take time O(1) irrespective of the number of processes
and CBEs. If we do not consider the time spent in the actual process of per-
forming vertical, horizontal, and diagonal reductions because they depend on
the abstract constraints, the time spent in Reduce, exclusive of the recursive
call to itself, is O(1). Since line 2 can be executed at most n times for a pro-
cess, and the total number of processes is p, the total time spent in Reduce
is O(np). The last step of Behaviour_Reduction takes O(np) time, so the

worst case time complexity of the whole algorithm is O(np).

A number of examples of the application of the above algorithm on some

OSI protocol specifications can be found in Chapter 5.

3.3 Related Work

Specification selection is elaborated in [21] for test case generation from spec-
ifications based on labelled transition systems with infinite branching, using
the implementation relation conf. By using a restriction operator on labelled
transition systems which prunes all branches with labels from a specific set, the

specified behaviour is constrained to be finite, and this results in finite number

CHAPTER 3. SPECIFICATION FOR TESTABILITY 55

Algorithm 3.1 Behaviour_Reduction

Inputs : Flattened Base Specification, TSS (expressed as a set of abstract

constraints)

Output : Reduced Specification

Method : The methodology employed is based on extracting relevant be-
haviour expressions and including them in the resultant specification.

Procedure Behaviour_Reduction

. Let P be the root process defining the behaviour of the base specification.

. Define the body of process P in the reduced specification.

1
2
3. Reduce(P).
4

. Correct any functionality mismatch in the resultant specification.

Procedure Reduce(P:Process);

1. For each CBE within the process P of the base specification do the
following steps :
1.1. If the CBE satisfies the related abstract constraints Then
1.1.1. Perform any diagonal reductions on the CBE according to

the abstract constraints.
1.1.2. Include the CBE in the reduced specification within the body

of the process P
1.1.2. If the base action associated with CBE is a non-recursive pro-
cess instantiation and the instantiated process is not defined in

the reduced specification Then
1.1.2.1. Define the body of the instantiated process in the reduced

specification.
1.1.2.2. Perform any diagonal reductions on the definition of the

process.
1.1.2.3. Put the instantiated process in an Included List.

1.2. Else
1.2.1. Apply a horizontal reduction to the CBE.
1.2.2. If the base action associated with the CBE is a process instan-

tiation Then
1.2.2.1. Apply a vertical reduction to the body of the instantiated

e

process.

2. For cach Process P in the Included List :

2.1. Reduce(P)

Figure 3.1. Behaviour Reduction Algorithm

"HAPTER 3. SPECIFICATION FOR TESTABILITY 56

of test cases to be generated. The obtained results reveal that apart from avoid-
ing overproduction of test cases, performing test selection by transforming the
specifications has the advantage that information about the structure of the
specification can be used in the selection process. A specification written as a
behaviour expression has a certain structure in terms of how the specification
is built from simpler behaviour expressions, such as a process is composed in
parallel or in sequence with another process. If it can be assumed that this
structure is reflected in the structure of the implementation, it can be used to
guide the test selection procedure. For example, if a process is composed of two
independently parallel processes,'it may not be necessary to test all possible
interleavings of actions of those processes. Such structure information is lost

if selection is performed from a set of test cases.

Another related approach to specification selection can be found in [44],
which uses the structure information of LOTOS specifications to develop a
framework for deriving test cases to consider only parts of the behaviour de-
scription that corresponds to the chosen test purposes. In order not to loose
important structure information that can serve to reduce the efforts for test
case generation and for determining test purposes, a notation called minimal-
hierarchical specification is introduced. A specification is minimal-hierarchical
if it satisfies the orthogonality condition defined in [24], which requires inde-
pendent architectural requirements to be specified by independent definitions;
and it consists of the minimum number of processes which are necessary to ex-
press the intended behaviour of the specification. An algorithm is presented in
[44] to convert an arbitrary LOTOS specification into an equivalent minimal-
hierarchical specification in two steps, each step producing a specification as

output that satisfies one of the conditions stated above.

The minimal-hierarchical specification is used in the derivation of the test
cases while not considering the whole specification, but only parts of it corre-
sponding to specific test purposes. One of the main differences with our ap-
proach arises here when a test purpose in the context of a minimal-hierarchical
specification is defined as the successful execution of a subprocess of the spec-
ification. According to our approach it is not possible to isolate the behaviour
corresponding to a specific test purpose within the body of a single process,
because the desired functionality may be spread over the whole specification.

Thus the whole specification must be considered when the intention is to iden-

tify specific functions.

Chapter 4

BASE SPECIFICATION
DEVELOPMENT

In case of formal specification based protocol engineering the starting point is a
formal specification of the protocol. Formal specifications are written following
certain basic structuring principles [39]. Concurrency and multiplicity are for
modelling multiple independent connections. Recurrence and sequentiality are
for the use of subsequent connections on the same connection endpoint, and
for the distinct phases that compose a connection, respectively. In LOTOS,
concurrency/multiplicity is expressed as interleaved parallel composition; re-
currence/sequentiality is mapped to recursion and successful termination with
value passing. A language dependent structuring principle is the definition of
constraints as processes, and constraint-oriented specifications in LOTOS use

this feature extensively to express mutual satisfaction of the constraints by

multi-way synchronized parallel composition.

This chapter consists of the applications of base specification development
principles discussed in the previous chapter, on some protocols specified in LO-
TOS. The principles are built on the basic structuring principles given above.
Section 4.1, introduces the INRES protocol, and the its base specification.

Similarly Section 4.2 is about the development of the ACSE base specification

from the respective base protocol.

CHAPTER 4. BASE SPECIFICATION DEVELOPMENT 58

PDU Meaning Parameter Respective SPs
CR | Connection Establishment | none ICONreq,ICONind
CC | Connection Confirmation | none ICONresp,ICONconf
DT | Data Transfer sequence number,ISDU | IDATreq,IDATind
AK | Acknowledgement sequernce number
DR | Disconnection none IDISreq,IDISind

Table 4.1. INRES IPDUs

4.1 INRES Protocol

The first exan.ple that we will consider is the fairly simple OSI-like Initiator-
Responder (INRES) protocol [37], for which the complete flattened LOTOS

specification in state-oriented style can be found in Appendix A.

INRES is a connection-oriented protocol that operates between two proto-
col entities, Initiator and Responder. The protocol entities communicate by

exchanging the protocol data units CR, CC, DT, AK, and DR. The meaning

of the INRES PDUs (IPDUs) are given in Table 4.1.

The communication between the two protocol entities takes place in three
distinct phases: the connection-establishment phase, the data transmission

phase, and the disconnection phase. In each phase only certain PDUs are

meaningful.

Connection-Establishment: A connection establishment is initiated by
the user of the Initiator entity with an ICONreq service primitive. The entity
then sends a CR to the Responder entity. Responder answers with CC or
DR. In the case of C'C, Initiator issues an ICONconf to its user, and the data
transfer phase can be entered. If Initiator receives a DR from the Responder,

the disconnection phase is entered. If the Initiator receives nothing at all within

5

seconds, CR is transmitted again. If, after four attempts, still nothing is
received by the Initiator, it enters the disconnection phase.

When Responder receives a CR from the Initiator, it issues a ICONind to
its user. The user can respond with [CONvesp or IDISreq. ICONresp indicates
the willingness of the user to accept the connection, Responder entity thereafter

sends a CC to Initiator, and the data transfer phase is entered. Upon receipt

of an IDISreq, Responder enters the disconnection phase.

CHAPTER 4. BASE SPECIFICATION DEVELOPMENT 59

Data Transfer : When the Initiator user issues an IDATreq primitive, the
Initiator sends a DT to the Responder and is then ready to receive another
IDATreq from the user. IDATreq has one parameter that is a service data
unit (ISDU), which is the information that the user wants to transmit to the
peer user. This user data is transmitted transparently by the Initiator protocol
entity as a parameter of the protocol data unit DT. After having sent a DT to
the Responder, Initiator waits for 5 seconds for a respective acknowledgement
AK. If AK is not received, the DT is sent again. After four unsuccessful

transmissions, Initiator enters the disconnection phase.

DT and AK carry a one-bit sequence number as a parameter. Initiator,
after having entered the data transmission phase, starts with the transmission
of a DT with sequence number 1. A correct acknowledgement of a DT has the
same sequence number. After receipt of a correct acknowledgement, the next
DT with the next sequence number can be sent. If Initiator receives an AK
with incorrect sequence number, it sends the last DT once again. A DT can
only be sent four times. Afterwards, Initiator enters the disconnection phase.

Disconnection phase is also entered upon receipt of DR.

Following the establishment of the connection, Responder expects the first
DT with sequence number 1. After the receipt of a DT with the expected
number, Responder gives the ISDU as a parameter of an IDATind service
primitive to its user and sends an AK with the same sequence number to the
Initiator. A DT with an unexpected sequence number is acknowledged with
an AK with the sequence number of the last correctly received DT. The user
data of an incorrect DT is ignored. If Responder receives a CR, it enters the

connection establishment phase, and upon receipt of an IDISreq from its user,it

enters the disconnection phase.

Disconnection : An IDISreq from the Responder user results in the send-
ing of a DR by the Responder. Afterwards Responder can receive another

connection establishment attempt CR from Initiator.

At the Initiator side, the DR results in an IDISind to be sent to the user. An

IDISind is also sent to the user after DT or CR have not been sent successfully

to the Responder. Then a new connection can be established.

CHAPTER 4. BASE SPECIFICATION DEVELOPMENT 60

4.1.1 PICS Parameterization

INRES is an asymmetric protocol, i.e., one side, the initiator, can only establish
connections and send data while the other side, the responder, can accept
connections, release them and receive data. An implementation may either
behave as the initiator or the responder entity, but not both. This fact is
reflected in the PICS Proforma for INRES given in Appendix B.

For the parameterization of the base specification based on the PICS Pro-
forma, “yes/no” entries related to the conditional capabilities can be taken into
consideration as boolean entries. Entries indicating the range of values are not

taken as parameters, and the following specification definition is obtained :

specification Inres_Protocol[ISAP,MSAP] (c1, c2 : Bool):noexit

(* c1, c2 : PICS parameters. *)
(* c1 : Initiator capability is supported *)
(* c2 : Responder capability is supported *)

The behaviour part, i.e, the main body of the specification starts with the

static conformance review. It is expressed as an ADT function as follows :

behaviour

(* Static Conformance Review. *)
[CapabilityConform (ct, c2)] -> INRES [ISAP,MSAP](c1,c2)

Ounly if static conformance requirements are satisfied does the specification
describe active behaviour, viz. it provides the implementor or tester with an

abstract model of the protocol dynamic conformance requirements described

by the process named INRES.

CapabilityConform is a boolean valued function which returns true if and
only if exactly one of the roles mentioned in the PICS proforma (i.e., either
initiator or responder) is implemented, and returns false otherwise. This is

formally expressed in the type declarations part of the specification by defining

a particular data type for this function.

CHAPTER 4. BASE SPECIFICATION DEVELOPMENT 61

type StaticConformance is Boolean
opns CapabilityConform : Bool, Bool -> Bool
eqns forall c1, c2 : Bool

ofsort Bool
CapabilityConform (c1,c2) =
((c1 and not(c2)) or (not(cl) and c2))

endtype (* StaticConformance *)
The parameters cl and c2 can be used in the behaviour part as follows:

process INRES[ISAP,MSAP](c1,c2 :Bool) :noexit:=
[c1]-> Initiator[ISAP,MSAP]
(]
[c2]-> Responder [ISAP,MSAP]

endproc (* INRES *)

which divides the whole specification into two disjoint parts, the part specifying
the behaviour of the initiator entity, and the part specifying the behaviour of
the responder entity. Since the predicates cl and c2 can not be both true at the
same time for a particular implementation, either one of the paths defined by

the guard expressions is selected, and therefore no deadlock possibility exists.

4.1.2 Behaviour Specification

The valid behaviour is specified based on the state tables given in the informal
standard using traditional techniques. The state tables for the initiator and
Responder protocol entities are given in Table 4.2 and Table 4.3, respectively.
The state tables show the interrelationship between the state of the protocol
machines, the incoming events that occur, the actions taken, and finally, the
resultant state of the protocol machines. The intersection of an incoming event
(row) and a state (column) forms a cell. Some cells contain predicate expres-
sions comprising boolean variable ‘p’, which is equivalent to the expression
‘c=4" (= represents the boolean not). Blank cells represent the combination

of incoming events and states that are not defined for the respective state

machines, i.e, they represent inopportune behaviour.

CHAPTER 4. BASE SPECIFICATION DEVELOPMENT

State STAO STA1l STA2 STA3
Event | (Disconnected) | (WaitforCC) | (Connected) | (Sending)
ICONreq | CR
c=1
STAl
CcC ICONconf
STA2
IDATreq DT
c=1
STA3
AKY
STA2
AK~™ p:DT
c=c+l1
STA3
=p1:IDISind
STAO
Timeout p:CR p:DT
c=c+1 c=c+l
STAlL STA3
-p L1:IDISind -pl:IDISind
STAO STAQ
DR IDISind IDISind IDISind IDISind
STAO STAOQ STAO STAO
Table 4.2. State Table for Initiator Protocol
State STAO STA1 STA2
Event | (Disconnected) | (WaitforICONresp) | (Connected)
CR ICONind ICONind
STA1 STAI
ICONresp CC
STA2
DT+ AK, IDATind
STA2
DT~ AK
STA2
IDISreq DR DR DR
STAO | $TAO STAO

Table 4.3. State Table for Responder Protocol

CHAPTER 4. BASE SPECIFICATION DEVELOPMENT 63

The top level structure of the specification for each entity reveals the de-

composition of the protocol into three distinct phases; namely connection es-

tablishment, data transfer, and disconnection.

process Responder[ISAP,MSAP] :noexit:=
(hide 4 in
Connectionphase_Res[ISAP,MSAP,d]
| [d]] d;Dataphase_Res[ISAP,MSAP] (succ(1)))
[>Disconnection_Res[ISAP,MSAP]

endproc (* Responder *)

Since a state-oriented specification style has been employed, each state of
the protocol at each side is represented by a separate process. For example,
the following piece of code describes the the behaviour of the Initiator protocol
machine when it receives an Acknowledgement (AK) PDU in the Sending state.
It inspects the sequence number of the incoming AK-PDU and if it is the

expected number, the machine returns to its previous state where it is ready

for another send-data request. If the number is incorrect according to the

protocol, then the data is retransmitted and the current state is not changed.

process Sending[ISAP,MSAP]
(z:DecNumb,number :Sequencenumber, olddata:ISDU):noexit:=

MSAP?sp:MSP

[isMDATind(sp) and not(isDR(data(sp))) and
isAK(data(sp)) and (num(data(sp)) eq number)];

Dataphase_Ini[ISAP,MSAP] (succ(number))

(]

MSAP?sp : MSP
[isMDATind(sp) and not(isDR(data(sp))) and isAK(data(sp))

and (num(data(sp)) ne number) and (z < 4)];
MSAP'MDATreq (DT (number,olddata));
Sending [ISAP ,MSAP] (s(z) ,number,olddata)

(1

endproc (* Sending *)

CHAPTER 4. BASE SPECIFICATION DEVELOPMENT 64

The default behaviour of the INRES protocol entities in response to invalid
and inopportune behaviour at each state, represented by the blank entries in
the respective state tables, is to ignore such inputs. In the base specification,
this is specified by alternative choice branches at each state, where no action

is taken when an invalid or inopportune PDU is received.

process WaitforICONrespl[ISAP,MSAP,d] :exit:=

0
MSAP7sp:MSP[isMDATind(sp)] ;WaitforICONresp1[ISAP,MSAP,d]

(* System errors are ignored (Invalid/Inopportune Beh.) *)

endproc (* WaitforICONrespl *)

4.2 ACSE Protocol

For the second example we consider the protocol specification for the Associa-
tion Control Service Element (ACSE) [45]. The state-oriented LOTOS speci-

fication of the behaviour part of this protocol is given in Appendix D.

ACSE is defined for the purpose of the management of application asso-
ciations. It provides facilities for the establishment and release of application
associations between Application Entities (AEs). Association is the term used
for the connections established at the Application layer. An application associ-
ation is a presentation connection with additional application layer semantics.
There is a one-to-one mapping between application associations and presenta-
tion connections. Because the sole purpose of ACSE is to manage application

associations, it does not provide any data transfer service elements.

The ACSE Protocol Machine (ACPM) operates in either the normal mnode
or the X.410-1984 mode. When operating in the X.410-1984 mode, the ACPM
does not exchange any ACSE APDUs with its peer. The following discussion

and the base specification in Appendix D assumes that the ACPM operates in
the normal mode.
The ACPM is driven by the receipt of input events from its ACSE service

user or the presentation service provider. It uses five APDUs (Table 4.4),

and three procedures. These procedures are association establishment, normal

CHAPTER 4. BASE SPECIFICATION DEVELOPMENT 65

PDU Name

AARQ | A-ASSOCIATE.request PDU
AARE | A-ASSOCIATE.response PDU
RLRQ | A-RELEASE.request PDU
RLRE | A-RELEASE.response PDU
ABRT | A-ABORT .request PDU

Table 4.4. ACSE APDUs

release, and abnormal release.

Association Establishment: A.ASSOCIATE service element is used
in by an AE to establish an application association with a peer AE. This service

element uses over thirty parameters. Some of them are described below.

e Application Context Name: This parameter identifies the application
context used for the application association. An application context de-
fines the rules governing the communication of the two AEs used for the
entire application association. The initiating ACSE user first proposes
an application context. The accepting user returns either the same or a

different one. If the initiator can not operate in the acceptor’s application

context, it issues an A.ABORTrequest primitive.

mode: This parameter specifies the mode in which the ACSE service will

operate for the association. Its value can be either normal or X.410-1984.

AP Titles/Qualifiers: An application entity is identified by AET (ap-
plication entity title) which consists of APT (application process title)

and an AE qualifier.

Result and Result Source: The result parameter is provided by ei-
ther the acceptor, the ACSE service-provider, or the presentation service
provider. Its value can be ”accepted”, "rejected(permanent)”, or "re-
jected(transient)”. The result source parameter identifies the source of
the result parameter, and the diagnostic parameter, if present. The value
of the result sonurce parameter can be either ”ACSE service-user”, "ACSE

. . . . "
service-provider”, or "presentation service-provider”.

CHAPTER 4. BASE SPECIFICATION DEVELOPMENT 66

e Diagnostic: This parameter is used only if the result parameter has
the value “rejected”. It gives the reason behind the rejection of the

association.

e User information: Either the initiating AE or the responding AE may

include the user information. Its meaning depends on the application

context that accompanies the request.

The AARQ APDU is used in the association establishment procedure.
Upon receiving an A.ASSOCIATErequest primitive from its ACSE service
user, the requesting ACPM forms an AARQ APDU. The AARQ APDU
is then sent as the user data parameter of a P.CONNECTrequest primi-
tive. When the accepting ACPM receives an AARQ APDU, it checks if
the AARQ APDU is acceptable syntactically. If not, the association estab-
lishment procedure is disrupted and no A.ASSOCIATEindication is issued.

If the accepting ACPM does not support the protocol version requested by
the initiating ACPM, it will respond with an AARE APDU and indicate
When the accepting ACPM re-

the result value of "rejected(permanent)”.
ceives an A.ASSOCIATEresponse primitive, the result parameter should spec-
ify whether its user has accepted or rejected the association. The accepting
ACPM forms an AARE APDU and sends it to the requesting ACPM using a
P.CONNECTresponse primitive. If its user accepted the association request,
the accepting ACPM sets the result parameter of P.CONNECTresponse to "ac-

ceptance”, otherwise it is set to "user-rejection” to indicate that its user has

rejected the association.

Normal Release: An application association can be released in an orderly
manner by means of A.RELEASE service element. The RLRQ and RLRE
APDUs are used in the normal release of an association. When an ACPM
receives a A.RELEASErequest primitive, it forms a RLRQ APDU and sends
it as the user data of a P.RELEASErequest primitive. When the accepting
ACPM receives an A.RELEASErespounse primitive, it forms a RLRE APDU
and sends it as the user data of a P.RELEASEresponse primitive. Thus, the

purpose of RLRE is to acknowledge the received RLRQ.

Abnormal Release: If an AE detects an unrecoverable error, it uses

A.ABORT service element to abort an application association with possible
loss of data that are in transit. The ABRT APDU is used in the abnor-

mal release procedure There are only two. fields in an ABRT APDU: abort

CHAPTER 4. BASE SPECIFICATION DEVELOPMENT 67

source (mandatory) and user information (optional). When an ACPM receives
A.ABORTrequest, it forms an ABRT APDU with the abort source field set to
"ACSE service user”. It then sends the ABRT APDU as the user data of a

P-U.ABORTrequest primitive to release the association. When an ACPM de-
tects a protocol error, it issues an A.ABORTindication primitive to its service
user, forms an ABRT APDU with the abort source field set to ”ACSE service
provider”, and sends 1t as the user data of a P-U.ABORTrequest primitive.

The ACSE service provider can also abort an application association us-

img A-P.ABORT. A-P.ABORT is a pass through service element from the
Presentation layer, i.e., it is semantically identical to P-P.ABORT. When an

ACPM receives a P-P.ABORTindication primitive, the ACPM issues an A-

P.ABORTindication primitive to its user, and the association is released.

4.2.1 PICS Parameterization

[46] defines the PICS proforma for ACSE. Apart from the standard entries
identifying the implementation, the implementor, and the entries indicating
the range of PDU parameters, there are a number of boolean entries indicating
the implementation of optional and conditional capabilities. The five condi-

tional entries which are the possible candidates in parameterizing the base

specification are:
1. ¢l : Association initiator capability is supported,

2. ¢2 : Association responder capability is supported,

3. ¢} : The implementation can behave as the requestor of the release of
the association,

4. ¢4 : The underlying session protocol supports Version 2,

¢5 : The described ACSE protocol version is greater than 1.

St

Since the test suite structure developed in [47] on which the behaviour
reductions given in Chapter 5 are based, does not take into account the different
types of behaviour resulting from the choice of options c4 and c5; only cl, ¢2

and ¢3 are used in parameterizing the base specification as shown below.

CHAPTER 4. BASE SPECIFICATION DEVELOPMENT 68

specification ACSE_Protocol[A,P] (c1,c2,c3 : Bool): noexit
(* c1, c2, c3 : PICS parameters. *)

(* c1 : Association in%tiator capability is supported *)
(* c2 : Association responder capability is supported *)
(* ¢3 : RLRQ APDU is sypported for transmission *)

The static conformance review part is the same as that of INRES, whereas the
ADT function checking the satisfaction of the static conformance requirements

is slightly different reflecting the fact that ACSE is not an asymmetric protocol.

type StaticConformance is Boolean
opns CapabilityConform : Bool, Bool -> Bool
eqns forall cl, c2 : Bool

ofsort Bool
CapabilityConform(cl, c2) = (cl or c2)
endtype (* StaticConformance *)

behaviour

(* Static Conformance Review *)
[CapabilityConform (c1, c2)] -> ACSE[A,P](c1,c2,c3)

A major difference between the protocol specifications of ACSE and INRES
is that, the implementations of the ACSE protocol can behave both as initiator
and responder of the associations. Since ACSE is not an asymmetric protocol,
the use of the parameters related to the role of the implementation, i.e, cl and
c2, in the behaviour part is quite dilferent when compared with INRES. This
time cl and c2 can not be defined as guard expressions, because in the case that
they are both true for a particular implementation, according to the semantics
of LOTOS, one of the paths can be chosen nondeterministically before engaging
in an interaction. This brings in the possibility of the protocol entity running
into deadlock in case of an mteraction request for which it is not ready for.
For this reason, boolean parameters which do not represent the choice among
mutually exclusive options must be used in selection predicates, not in guard

expressions, while specifying alternative behaviour, as shown below:

process Unassociated[A,P](c1,c2,c3 : Bool):exit:=

A ? x : primitive [IsAASCreq(x) and c1];

CHAPTER 4. BASE SPECIFICATION DEVELOPMENT 69

]
P ! Input ? x : primitive
[IsPCONind(x) and IsAARQ(user_data(x)) and
not (common_prot_version(get_AARQ(user_data(x)))) and c2];

endproc (* Unassociated *)

4.2.2 Behaviour Specification

As an Application layer protocol, the PDU structures of ACSE are defined in
ASN.1. Therefore transformation of PDU type definitions from ASN.1 into
the data type definition language ACT-ONE of LOTOS has to be done in
order to obtain a complete base specification. The transformation scheme
adopted is based on the approach developed in [48]. The size of the resulting
data type definitions 1s much larger than the original ASN.1 definitions. Since
ASPs and PDUs for Application layer protocols contain a large number of
parameters, instead of writing the same interaction primitives every time within
the behaviour part, they are defined in the data type part of the LOTOS
specification as ADT functions, and names assigned to these functions are used
in the behaviour part. The following example illustrates the behaviour of the

ACSE protocol machine when it has been requested to initiate an association.

process Unassociated[A,P,d](c1,c2,c3 : Bool):exit:=
A ? x : primitive [IsAASCreq(x) and ci];

P ! Out ! PCONreq(make_AARQ(get_AASCreq(x)));
awaitAARE[A,P,d] (c1,c2,c3)

[]

endproc (* unassociated *)

The ADT function PCONreq{(make AARQ(get-AASCreq(x))) represents the

formation of the AARQ PDU by using the parameters of the input service prim-
itive AASCreq, and enclosing it in the user data of the P.CONNECTindication

CHAPTER 4. BASE SPECIFICATION DEVELOPMENT 70

primitive. The actual definition of the function is placed in the data type part.

type primitive is
AASCreq, AASCind, AASCrsp, AASCcnf, ARLSreq, ARLSind,

opns
PCONreq : ACSE_apdu -> primitive

make_AARQ : AASCreq -> ACSE_apdu

egns

(*kx* make_AARQ **¥*x*)

(* AASCreq -> ACSE_apdu *)

ofsort ACSE_apdu
forall AASC : AASCreq

make_AARQ(AASC) = ACSE_apdu(AARQ_apdu(
Bit (1) ,app_context_name(AASC),
called_ap_title(AASC),
called_ae_qualifier (AASC),
called_ap_invocation_id(AASC),
called_ae_invocation_id (AASC),
calling_ap_title(AASC),
calling_ae_qualifier(AASC),
calling_ap_invocation_id(AASC),
calling_ae_invocation_id(AASC),
type_genere010(Not_Present),
user_info (AASC)

))

ofsort ACSE_apdu
forall apdu : ACSE_apdu

CHAPTER 4. BASE SPECIFICATION DEVELOPMENT 71

user_data(PCONreq(apdu)) = apdu;
endtype (* primitive *)

According to [47], since each ACSE PDU is carried as the user data of
a different presentation service primitive, and the PDU and the presentation
service primitive carrying it together form the protocol, no inopportune tests
are defined for ACSE, but only invalid tests. In each state, only one PDU as the
user data of a specific presentation service primitive is considered to be valid,
so combinations of the same presentation service primitive with other ACSE
PDUs are considered to be invalid protocol behaviour. The code given below
is specifies the behaviour of the protocol to invalid inputs in the associated
state, which is represented by the process ‘associated’. According to ACSE
protocol definition, when an unexpected PDU is received, the abnormal release
procedure is invoked. The abnormal release procedure is represented by the

process ‘protocol_error’ in the hase specification.

process Associated[A,P](c1,c2,c3 : Bool):exit :=

[]

P ! Input 7 x : primitive

[IsPRLSind(x) and not(IsRLRQ(user_data(x)))];
protocol_error[A,P](c1,c2,c3)

(* Invalid Behaviour *)

endproc (* Associated *)

process protocol_error[A,P](c1,c2,c3 : Bool):noexit :=
A ' make_AABRind;
P ! Out ! PUABreq(make_ABRT);

ACSE[A,P](c1,c2,c3)
endproc (* protocol_error *)

Chapter 5

DERIVATION OF FUNCTIONAL
SPECIFICATIONS

An important use of base specifications is the systematic derivation of func-
tional specifications. In this chapter, the slicing approach developed in Chapter
3 to the derivation of functional specifications is applied to sample base proto-
cols. First state-oriented specifications are considered. In Section 5.1 functional
specifications of INRES and ACSE protocols are obtained for each of the test
groups defined on their respective test suite structures. Section 5.2 considers
the more complicated transport protocol, and illustrates the application of di-

agonal reductions along with horizontal and vertical reductions on the base

specification of this protocol.

The kind of behaviour reductions to be carried out depend on the test
groups defined on the related test suite structure. As will be evident from the
application examples given in this chapter, most of the test suites designed for

OSI protocols are subdivided into the following test groups at the highest level:

e Basic Interconnection Tests,

Capability Tests,

e Valid Behaviour Tests,
e [nopportune Behaviour Tests,

Invalid Behaviour Tests.

-1
o

CHAPTER 5. DERIVATION OF FUNCTIONAL SPECIFICATIONS 73

Test cases for basic interconnection and capability tests can be obtained by
selecting tests from valid behaviour group. Therefore, at the highest level, it
is reasonable to consider only valid and invalid/inopportune behaviour tests,
while decomposing base specifications. So, generally, the first step in behaviour
reductions is the extraction of the parts from the specifications which define
valid and invalid/inopportune behaviour. The test groups related to valid and
invalid /inopportune behaviour tests are generally divided further into specific
test groups depending on the nature of the base protocol in question. Behaviour

reductions are performed for all test groups of the test suite structure.

5.1 Behaviour Reductions On State-Oriented Specifi-

cations

5.1.1 Behaviour Reductions On INRES

Figure 5.1 shows the test suite hierarchy of INRES protocol. Appendix C
contains the full test suite structure and test purposes document. INRES is an
asymmetric protocol in that an implementation can function as an initiator or
as a responder, each role being different from each other. Since this is a major
consideration of an implementation it follows that this division forms the top
level of the structure for the test suite. Accordingly, the first application of the

behaviour reduction algorithm is to obtain separate protocol specifications for

each of the roles.

Before applying the behaviour reduction algorithm given in Chapter 3 to
the base specification, some syntactic transformations have to be carried out.
These are the first phase of the chart construction, redefinition of the processes
so that they are syntactically independent form each other, and elimination
of the guards which are not the first expressions in their respective CBEs.

Appendix A contains the hase specification of INRES obtained after having

performed these transformations.

The two protocols corresponding to each of the roles can be obtained by
performing a horizontal reduction inside the process named ‘INRES’, and then
a vertical reduction to exclude all process definitions which do not describe

the intended behaviour. For example, the specifications of the Initiator and

CHAPTER 5. DERIVATION OF FUNCTIONAL SPECIFICATIONS 74

Basic Interconnection

P o vy
& Capability Tests
Connection
Establishment
. Valid Behaviour
— Initiator — 1T —— Data Transfer
Tests
— Disconnection
— Disconnected State
' — WaitforCC State
| Invalid & Inopportune |
INRES Behaviour Tests y]
TEST — Connected State
SUITE

— Sending State

Basic Interconnection
[& Capability Tests
Connection
Establishment

Valid Behaviour
—— Responder—1— .
Tests

—+— Data Transfer

Disconnection

— Disconnected State

Invalid & Inopportune o _
T Pl —4— WiaitforICONresp State
Behaviour Tests

L— (onnected State

Figure 5.1. Test Suite Structure for INRES

CHAPTER 5. DERIVATION OF FUNCTIONAL SPECIFICATIONS 175

Responder protocols can be obtained by eliminating the branches conditioned
by the PICS parameters ‘c2’ and ‘cl’, respectively. Since when a process is
vertically reduced from the specification its body is not considered, if they are
not instantiated elsewhere ,all other processes which are directly or indirectly
instantiated by the reduced process are omutted, too. Since PICS parame-
ters differentiating between the two roles are not needed any more, they can

be dropped. The resulting specifications corresponding to the two separate

protocols have the following top level structure:

specification Inres_Protocol_I[ISAP,MSAP] :noexit

(* Data types *)

behaviour

INRES [ISAP,MSAP]

where

process INRES[ISAP,MSAP]:noexit:=
Initiator [ISAP,MSAP]
endproc (* INRES x)

endspec

specification Inres_Protocol R[ISAP,MSAP]:noexit
(x Data types *)

behaviour
INRES [ISAP,MSAP]

where

process INRES[ISAP,MSAP]:noexit:=
Responder [ISAP,MSAP]
endproc (* INRES *)

CHAPTER 5. DERIVATION OF FUNCTIONAL SPECIFICATIONS 176

endspec

After extracting out the behaviour specific to a particular role, valid
behaviour and invalid/inopportune behaviour descriptions must obtained as
two separate specifications. The reduced specifications for valid and in-
valid/inopportune behaviour can be produced by evaluating the annotations
distinguishing the two types of behaviour, and performing horizontal reduc-
tions based on these annotations.. The specification of valid behaviour can be
obtained by omitting the branches describing invalid/inopportune behaviour.
Since INRES takes no action in response to invalid/inopportune test events,
and does not change its current state, such behaviour must be augmented with
some valid behaviour expressions in order to end up with an executable spec-
ification. The following LOTOS code gives part of the specification of the

invalid/inopportunc behaviour of Initiator entity.

specification Inres_Protocol_I_BIO[ISAP,MSAP] :noexit

process Connectionphase_Ini[ISAP,MSAP,d]:exit:=
hide dd in
Disconnected_Ini[ISAP,MSAP,dd]
| [dd] | dd?z:DecNumb;WaitforCC[ISAP,MSAP,d](z)

endproc (* Connectionphase_Ini *)

process Disconnected_Ini[ISAP,MSAP,dd]:exit:=
ISAP?sp:SP[isICONreq(sp)];MSAP!MDATreq(CR) ;dd!s(0);exit
(* CBE added to provide with functionality exit *)

(]

ISAP?sp:SP[not (isICONreq(sp))];
Disconnected_Ini[ISAP,MSAP,dd]

(*x User errors are ignored (Invalid/Inopportune Beh.) *)
(1

MSAP7sp:MSP[isMDATind(sp) and not(isDR(data(sp)))];
Disconnected_Ini[ISAP,MSAP,dd]

(* DR is only accepted by process Disconnection *)

(* System errors are ignored (Invalid/Inopportune Beh.) *)

endproc (* Disconnected_Ini *)

CHAPTER 5. DERIVATION OF FUNCTIONAL SPECIFICATIONS 77

endspec

The reduced specification corresponding to the valid behaviour tests is sub-
divided into three test groups each corresponding to one of the phases of the
protocol, namely connection establishment, data transfer, and disconnection.
Accordingly, the corresponding slices are obtained for each phase. A specifi-
cation for each phase can be obtained by considering the modular structure
of the specification. By performing horizontal and vertical reductions, a sep-
arate protocol for each phase can be obtained. Below is the specification of
the valid behaviour of the initiator entity during disconnection phase. It is
obtained from the respective base specification by horizontally reducing the
instantiations of the processes ‘Connectionphase_Ini’ and ‘Dataphase_Ini’ from
the body of the process ‘Initiator’; and vertically reducing their definitions

from the specification. In this case the abstract constraints refer to the names

of the processes.
specification Inres_Protocol_I_BV_DC[ISAP,MSAP]:noexit

(x Data types *)

behaviour

INRES [ISAP,MSAP]

where

process INRES[ISAP,MSAP] :noexit:=
Initiator [ISAP,MSAP]
endproc (* INRES *)

process Initiator[ISAP,MSAP]:noexit:=
Disconnection_Ini[ISAP,MSAP]

endproc (* Initiator *)

process Disconnection_Ini[ISAP,MSAP]:noexit:=
MSAP?sp:MSP[isMDATind(sp) and isDR(data(sp))];ISAP!IDISind;

CHAPTER 5. DERIVATION OF FUNCTIONAL SPECIFICATIONS 178

Initiator[ISAP,MSAP]

endproc (* Disconnection_Ini *)
endspec

The subsequent division under the invalid/inopportune behaviour test
group 1is state based, i.e., the behaviour of the protocol entity is tested for
invalid and inopportune behaviour in each state. The respective slices corre-
spond to the behaviour described by each of the processes in the base spec-
ification. Below is the specification of the initiator entity in response to in-

valid/inopportune behaviour in its connected state.
specification Inres_Protocol_I_BIO_STA2[ISAP,MSAP]:noexit

(* Data types *)
behaviour

INRES [ISAP,MSAP]

where

process INRES[ISAP,MSAP] :noexit:=
Initiator [ISAP,MSAP]
endproc (* INRES *)

process Initiator[ISAP,MSAP] :noexit:=
hide d in
d;Dataphase_Ini[ISAP,MSAP] (succ(0))

endproc (* Initiator *)

process Dataphase_Ini[ISAP,MSAP]
(number : Sequencenumber):noexit:=
hide d in
Connected_Ini[ISAP,MSAP,d] (number)
(* 1 is the first Sequencenumber *)

endproc (* Dataphase_Ini *)

CHAPTER 5. DERIVATION OF FUNCTIONAL SPECIFICATIONS 179

process Connected_Ini[ISAP,MSAP,d]
(number : Sequencenumber) :noexit:=

ISAP?sp:SP[not (isIDATreq(sp))];
Connected_Ini[ISAP,MSAP,d] (number)

(* User errors are ignored (Invalid/Inopportune Beh.) x)
(]

MSAP7sp:MSP[isMDATind(sp) and not(isDR(data(sp)))];
Connected_Ini[ISAP,MSAP,d] (number)

(* DR is only accepted by process Disconnection *)

(* System errors are ignored (Invalid/Inopportune Beh.) *)

endproc (* Connected_Ini *)

endspec

5.1.2 Behaviour Reductions On ACSE

Iligure 5.2 shows the test suite hierarchy defined for the ACSE protocol which
is obtained from the complete test suite structure and test purposes document
given in [47]. Since the base specification developed describes only the normal
mode operation of the protocol, the parts related to the X-410.1984 mode of

the protocol are omitted from the test suite structure.

Appendix D contains the flattened base specification of the ACSE protocol
from which the functional specifications are obtained. As in the case of INRES,
functional specifications corresponding to valid and invalid behaviour are ob-
tained by considering each CBE in each of the processes. Since CBEs defining
invalid behaviour are already distinguished by comments, each specification
can be obtained by eliminating the irrelevant choice branches horizontally.
The subsequent division under the invalid behaviour test group is state based.
The code below is the specification of the invalid behaviour of ACSE protocol
machine in its associated state. A diagonal reduction is applied to the event
structure at internal gate d within the process ‘ACSE’, and also to the first

parameter of the process ‘Norm_Rel’. PICS parameters have been dropped,

too.

specification ACSE_Protocol_BI_STA5[A,P]:noexit

CHAPTER 5. DERIVATION OF FUNCTIONAL SPECIFICATIONS

ACSE
TEST
SUITE

Valid

Tests

—— Basic Interconnection Tests

{— Capability Tests

L — Behaviour——

Invalid

L Behaviour —
Tests

80

— Initiator

Assoclation L
Establishment
— Responder
— Requestor
Normal .
Release
—— Acceptor
— A-ABORT Request
Abnormal
. —+— P-U-ABORT Request
Release

— STAO (Idle)
— STAI (Awaiting AARE)
L— STA2 (Awaiting A-ASCrsp)
— STA3 (Awaiting RLRE)
— STA4 (Awaiting A-RLSrsp)
(
(
(

— P-P-ABORT Request

—— STADB (Associated)
| STAG (Collision-IUT is Association Initiator)

L STA7 (Collision-IUT is Association Responder)

Figure 5.2. Test Suite Structure for ACSE
4

CHAPTER 5. DERIVATION OF FUNCTIONAL SPECIFICATIONS 8l

(* Data Types *)
behaviour
ACSE[A,P]
where

process ACSE[A,P] :noexit:=
hide d in
d; (Normal_Rell[A,P]
[> Abort[A,P])
endproc (* ACSE *)

process Normal_Rel[A,P]:noexit:=
hide d in
Associated[A,P,d]

endproc (* Normal_Rel *)

process Associated[A,P,d] :noexit:=

P ! Input 7 x : primitive

[IsPRLSind(x) and not (IsRLRQ (user_data(x)))];
protocol_error(A,P]

(* Invalid Behaviour *)

endproc (* Associated *)

process Abort[A,P]:noexit:=

P ! Input 7 x : primitive

[IsPUABind(x) and not (IsABRT (user_data(x)))1;
protocol_error[A,P]

(* Invalid Behaviour *)

endproc (* Abort *)

process protocol_error[A,P]:noexit:=
A ! make_AABRind;
P ! Out ! PUABreq(make_ABRT);

ACSE[A,P]
endproc (* protocol_error *)

CHAPTER 5. DERIVATION OF FUNCTIONAL SPECIFICATIONS 82

’

endspec

The reduced specification corresponding to the valid behaviour tests is first
subdivided into three tests groups each corresponding to one of the phases of
the operation of the protocol, and then to individual test groups according to
specific roles or service primitives. A specification for each phase of the protocol
can be obtained by considering the modular structure of the specification, and
a specification for each role can be extracted by performing the reductions
based on the PICS parameters. In other words the PICS parameters serve as
the abstract constraints in this case. The specification given below is for the
valid behaviour of the ACSE entity as the acceptor in the normal release phase
of the protocol. Based on the PICS parameter ‘c3’, all but one of the choice
branches within the process ‘Associated’ are horizontally reduced, and their

definitions are vertically reduced from the resultant specification.

specification ACSE_Protocol_BV_NR_AC[A,P]:noexit
(* Abstract Data Types *)
behaviour
ACSE[A,P]
where
process ACSE[A,P]:noexit:=
hide d in

d;Normal_Rel([A,P]
endproc (* ACSE *)

process Normal _Rel[A,P]:noexit:
hide 4 in

Associated[A,P,d]
I[d]] d;AwaitARLSrsp[A,P]

endproc (* Normal_Rel *)

process Associated[A,P,d]:exit:

CHAPTER 5. DERIVATION OF FUNCTIONAL SPECIFICATIONS 83

P ! Input ? x : primitive
[IsPRLSind(x) and IsRLRQ(user_data(x))];
A ! make_ARLSind(get_RLRQ(user_data(x)));
d;exit
endproc (* Associated *)

process AwaitARLSrsp[A,P]:noexit:=

A 7 x : primitive

[IsARLSrsp(x) and (result(get_ARLSrsp(x)) eq affirmative)];
P ! Out ! PRLSrspA(make_RLRE(get_ARLSrsp(x)));

ACSE[A,P]

(]

A7 x : primitive

[IsARLSrsp(x) and (result(get_ARLSrsp(x)) eq negative)];

P ! Out ! PRLSrspR(make_RLRE(get_ARLSrsp(x)));

Normal_Rel[A,P]
endproc (* AwaitARLSrsp *)

endspec

5.2 Behaviour Reductions On Constraint-Oriented

Transport Protocol Specification

5.2.1 Introduction To The Transport Protocol And Its

Base Specification

The purpose of the transport layer is to provide transparent and reliable data

transfer between transport service users. Like all other connection-oriented

protocols, the operation of the transport protocol consists of three distinct

phases: connection-establishment, data transfer, and connection release.

A transport service user uses T-CONNECT service element to set up a
full duplex transport connection with its peer. During transport connection
establishment, the two users and the transport service provider can negoti-

ate the quality of the service to be provided. There are two data transfer

CHAPTER 5. DERIVATION OF FUNCTIONAL SPECIFICATIONS 84

PDU Name

CR | connection request

CC | connection confirm
DR | disconnect request

DC | disconnect confirm

DT | data

ED | expedited data

AK | data acknowledge

EA | expedited acknowledge
RJ | reject
ERR | TPDU error

Table 5.1. Transport TPDUs

service elements, T-DATA, and T-EXPEDITED DATA. T-DATA ser-
vice element delivers the data reliably between transport users. If the expe-
dited data option has been selected during connection establishment, then the
T-EXPEDITED-DATA service element is used to convey expedited data,
1.e., data which is not subject to normal flow control restrictions. After a
connection has been established, either the service users or the provider may
use the T-DISCONNECT service element to release the transport connec-
tion. Once this service is invoked, any TSDU in transit may be lost. Thus
T-DISCONNECT is destructive. It can also be used for connection rejection
by either the transport service user or the called user. The transport standard

defines a total of ten TPDUs which are explained i Table 5.1.

[f the underlying network is fairly reliable, then the transport protocol that
is required to accomplish the data transfer does not need to do much work. But
if the underlying network is unreliable, then some elaborate transport protocol

mechanisms are required to cope with the deficiency. ISO defined three types

of network services:

o Type A Network Service: Type A network service is essentially per-
fect. The fraction of packets that are lost, duplicated, or garbled is

negligible. Network resets are so rare that they can be ignored.

o Type B network service: Type B network service provides network

connections with an acceptable residual error rate but an unacceptable

CHAPTER 5. DERIVATION OF FUNCTIONAL SPECIFICATIONS 85

signalled failure rate. Residual errors are those that are not corrected,
and for which the transport service is not notified. On the other hand,

a signalled failure is a failure detected by the network layer which then

signals the transport entity for recovery.

e Type C network service: Type C network service is not reliable
enough to be trusted at all; residual error rate is unacceptable. These

networks do not detect the errors resulting from the loss, duplication,

re-ordering and corruption of data.

Based on the three kinds of network services, ISO defines five transport

classes:

e TP 0: TP 0 provides the simplest protocol mechanism to support a Type

A network.

e TP 1: TP 1 provides a connection with minimal service to recover from

network signalled failures.

e TP 2: TP 2 is basically an enhancement to TP 0, and permits multiplex-
ing of transport connections, i.e., more than one transport connection can

be provided by using a single network connection. It is used to support

Type A networks.

e TP 3: TP 3 is basically a combination of TP 1 and TP 2. It allows an
explicit flow control and has the ability to recover from a network failure.

It is also used to support a Type B network.

o TP 4: TP 4 1s designed for Type C network service. It is the most so-
phisticated transport protocol. It must be able to handle lost, duplicate,

and garbled packets, as well as network failures.

When a transport entity processes an event, it will call a transport proce-

dure. The transport standard defines a total of 23 procedures. Each transport

class uses only a subset of these procedures.

e Assignment to a network connection : This procedure, common

to all classes, assigns either an cxisting or a new connection to a new

transport connection.

CHAPTER 5. DERIVATION OF FUNCTIONAL SPECIFICATIONS 86

e Transfer of TPDUs : This procedure, common to all classes, uses the

normal and expedited data services provided by the Network layer to

transfer TPDUs.

e Segmentation and reassembly : Because of system constraints, a
sending transport entity (TE) may need to segment a TSDU into an
ordered sequence of TPDUs. Reassembly is performed by the receiving

TE.

e Connection establishment : In all transport classes but TP 4, a two
way handshake protocol is used for connection establishment. This in-
volves the sending of a CR TPDU by the initiating TE followed by the
sending of a CC TPDU by the responding TE.

e Implicit normal release : This procedure applies to TP 0 only. A
transport connection is released implicitly by releasing the underlying

network connection. No TPDUs are exchanged in this procedure.

e Error release : When a signalled failure or a disconnect indication is
received from the network service provider, the simple protocol mecha-

nism used by TP 0 and TP 2 simply releases the transport connection

without providing any recovery actions.

e Association of TPDUs with transport connections : Whenever a
TE receives a TPDU from the Network layer, it will map the TPDU to

an appropriate transport connection.

e Treatment of protocol errors : If the received TPDU can not be

mapped to a transport connection, it is considered to be a protocol error.

e Concatenation and separation : The purpose of concatenation is
to improve efficient use of a network connection. In this procedure, a
number of TPDUs are concatenate into a single NSDU for transmission,

and later on separated by the receiving TE.

¢ Explicit normal release : The explicit normal release procedure is used
by a TE to terminate a transport connection. It involves the exchange

of DR and DC TPDUs between the TEs.

e Numbering of DT TPDUs : To facilitate the use of synchronization,
flow control, and resequencing procedures, it is necessary for each DT

TPDU carry a sequence number.

CHAPTER 5. DERIVATION OF FUNCTIONAL SPECIFICATIONS 87

e Expedited data transfer : This procedure places expedited user data
into the data filed of ED TPDU. All transport classes but TP 1 use the

normal data transfer service to deliver expedited transport data.

o Reassignment after failure : When a TE receives a network sig-
nalled failure, it calls this procedure to take care of the problem. The
result is that the transport connection is assigned to a different network
connection. When the reassignment is achieved , the resynchronization

procedure is invoked.

¢ Retention until acknowledgement of TPDUs : This procedure,
applying to TP1, TP3, and TP4, provides a mechanism for the sending
TE to retain copies of the TPDUs which were sent, until it receives
an acknowledgement. Should no acknowledgement be received before

a certain period of time has elapsed, the unacknowledged TPDUs are

retransmitted.

e Resynchronization : This procedure is used by TP 1 and TP 3 to
restore a transport connection upon receipt of an N.RESETindication

from the Network layer.

e Frozen references : This procedure i1s used to prevent re-use of
source/destination references because the TPDUs associated with the

old references may still exists somewhere in the network.

e Multiplexing and demultiplexing of transport connections : The
multiplexing procedure allows multiple transport connections to share a
single network connection. The receiving TE must perform demultiplex-

ing.

e Explicit flow control : This procedure is used to regulate the flow of
DT TPDUs between the TEs. This flow control is independent of the

flow control present in the Network layer.

e Checksum : This procedure is mandatory for the CR TPDU which

is used during the connection establishment phase. Its use is optional

during data transter phase.

e Retransmission on timeout : A sending TE uses a local retransmis-

sion timer to determine the appropriate time to retransmit an unacknowl-

edged TPDU.

CHAPTER 5. DERIVATION OF FUNCTIONAL SPECIFICATIONS 88

e Resequencing : This procedure is used to sort any misordering of DT

TPDUs which may be caused by the underlying network.

e Inactivity control : This procedure deals with the unsignalled termi-
nation of a network connection or the failure of the peer TE (half open

connections). It is invoked upon the expiration of an inactivity timer.

e Splitting and recombining : To achieve a higher throughput or a
; :
greater resilience against network failures, this procedure allows a trans-

port connection to be assigned to multiple network connections.

e Three way handshake connection establishment : Unlike other
transport classes which use a two way handshake for connection estab-
lishment, TP 4 uses a three way handshake. The only addition is that

after receiving a CC, the iitiator must respond with DT (ED) or AK

(RJ) TPDUs.

The transport base protocol specification considered in this study is the
constraint-oriented specification given in [49]. It describes the transport pro-
tocol, (Classes 0, 1, 2, 3) using the formal description technique LOTOS. Full
account is taken of the multiplicity aspects of the protocol, and the behaviour
of a never terminating transport entity capable of supporting multiple connec-

tions, is described. Encoding related behaviour specification and data types

are also included.

According to the definition of the specification, some of the component
processes describe constraints that apply to, and depend upon, the behaviour
of the protocol entity at only one of the two service service boundaries (i.e.,
transport and network service boundaries). This class of constraints are re-
ferred to as service constraints, whilst the term protocol constraints refer to
those which are described by the other components. The service constraints
ensure, for instance, that the identification of a connection by means of a con-
nection endpoint identifier is unique within the scope of any given address.
Since the provision of multiple connections, and encoding related behaviour is
not an immediate concern while deriving the abstract test cases, some transfor-
mations have been applied to the base specification, in order to eliminate the
behaviour related to the provision of multiple connections and TPDU encoding.

The resulting structure of the base specification is as follows:

CHAPTER 5. DERIVATION OF FUNCTIONAL SPECIFICATIONS 89

specification TransportProtocolEntity[t,n]
(tpeo : TPEOptions) :noexit

(* Global Type Definitions *)

behaviour

[Conform(tpeo)] -> TPEntity[t,n](tpeo)

where
(* Local Type Definitions *)

process TPEntity[t,n] (tpeo:TPEOptions) :noexit:=
TPEConnections[t,n] (tpeo)
endproc (* TPEntity *)

A formal data type is provided for the implementor’s declaration of classes
and options that are defined in the conformance clause of the protocol. A
boolean-valued function (Conform) is applied to the value of this parame-
ter, that determines whether or not the value satisfies the static conformance
requirements of the standard. The process ‘TPEntity’ specifies the valid be-
haviour of transport protocol entities. This process describes the relationship
between provision of transport connections and usage of network connections

by instantiating the process named ‘TPEConnections’.

The further decomposition of the protocol constraints, represented by the
process TPEConnections, exploits the usage of internal gates. The form of
the definition of TPEConnections, and the design of event structures at the

internal gates, are aimed at facilitating the representation of distinct protocol

constraints by distinct processes.

process TPEConnections[t,n](tpeo:TPEOptions):noexit:=
hide p,a,d,s 1in
TSTP[t,p,a,d,s,n] (tpeo)

Ilp,a,d,s]l|
TPNS[p,a,d,s,n]

endproc (* TPEConnections *)

CHAPTER 5. DERIVATION OF FUNCTIONAL SPECIFICATIONS 90

At p TPDU transfers are described, together with related information. The

events at p have the following structure:

p?cl:Class?d:Dir?c:CSpy?tpdu:ETPDU?err:TPErr

e cl:Class is the protocol class in which the TPDU is handled.

d:Dir tells whether the TPDU is transmitted or received.

c:Copy tells whether or not the TPDU is considered a duplicate.

tpdw: ETPDU is the TPDU to be transferred.

err:TPErr significant for received TPDUs, qualifies protocol errors.

The internal gates a and d facilitate the formal representation of assignment
to an existing network connection. At a (re)assignment to network connec-
tion, and at d deassignment from network connection occurs. The information
passed at a consists of network connection ownership, and parameters as de-

termined upon successful connection establishment.

a?own:NCO?ncp:NCPar

The information passed at d consists of a qualifier indicating whether or not

the network connection is to be disconnected.

d?w:Deassign

The reason for the internal gate s consists in transferring the information

about occurrences of a reset of a network connection to the transport entity.

There is no event structure defined for this gate.

Process ‘TSTP’ specifies the constraints that refer to the provision of trans-
port connections, i.e., class and options negotiation, segmenting and reassem-
bling, flow control, connection release, splitting and recombining; while process
“TPNS’ specifies the constraints that refer to the usage of network connections

including concatenation and separation, usage of network expedited.

CHAPTER 5. DERIVATION OF FUNCTIONAL SPECIFICATIONS 91

The process ‘TSTP’ accesses the network service boundary in order to pro-
vide the TPDU acknowledgement by receipt confirmation option. The defini-
tion of TSTP includes the instantiation of the process ‘TCs’ that formulates
the constraints local to a transport connection, and TCNAccess which is an
auxiliary process by means of which the network service access by transport
connection instances is restricted to the interactions of their concern (TPDU

acknowledgement by the Receipt Confirmation option by the Class 1 transport

connection instances).

process TSTP[t,p,a,d,s,n](tpeo : TPEOptions):noexit:=
hide r in
TCs(t,p,a,d,s,r,n] (tpeo)
| [p]I
TCNAccess([p,d,n]
endproc (* TSTP *)

The internal gate r is introduced to indicate the release of a transport connec-
tion. Any interaction at r consists of the reason why the connection is released,

which is needed for the release procedures.

r?w:RelReason

The constraints on the usage of network connections can be formulated

locally to a network connection. Process ‘TPNS’ therefore consists of successive

instances of process ‘N(C’.

process TPNS[p,a,d,n] :noexit:=
hide dd in
NC[p,a,d,n,dd]
| [ad] |
dd;TPNS [p,a,d,n]
endproc (* TPNS x)

5.2.2 Behaviour Reductions

In this section the slicing approach is applied to a real base specification de-

veloped by protocol experts in the constraint oriented style. The behaviour

CHAPTER 5. DERIVATION OF FUNCTIONAL SPECIFICATIONS 92

recuctions are performed based on the test suite hierarchy shown in Figure
5.3, which is obtained from the test suite developed for transport protocol
Class 2, within the CTS-WAN Project [50]. Due to the size of the base specifi-
cation, only a part of the TSSJS considered, and our aim is to obtain a separate
protocol specification describing the behaviour of Class 2 protocol entity during

the release of a transport connection.

Since the base specification given in [49] defines the behaviour of all classes
but Class 4, the first reduced specification corresponds to the behaviour of
the Class 2 transport protocol entity. Amoung the 23 transport procedures

explained above, the following are the ones that are applicable to Class 2

protocol entities.

e Assignment to a network connection,

o Transfer of TPDUs,

e Segmentation and reassembly,

e Connection establishment,

e Error release,

e Association of TPDUs with transport connections,

e Treatment of protocol errors,

e Concatenation and separation

e Explicit normal release,

¢ Numbering of DT TPDUs,

o Expedited data transfer (with normal network data transfer service),

e Multiplexing and demultiplexing,

e Explicit flow control.

Since Class 2 protocol operates on Type A network service where network
resets are ignored, this fact must be reflected in the definition of the process

“T'PEConnections’ and the subsequent hehaviour specification by dropping the

internal gate s, which happens to be diagonal reduction.

CHAPTER 5. DERIVATION OF FUNCTIONAL SPECIFICATIONS 93

— Basic Interconnection Tests

— Connection [Establishiment
— Capability Tests—T— Data Transfer
—— Connection Release
— Connection Establishment
Valid
Emuund B(}l]ﬂ.ViOlll' —_— Data Tra,nsfel'
Tests
TRANSPORT — (Connection Release
CLASS 2 —
TEST SUITE —— Connection Establishment
Invalid
— Behaviour ——— Data Transfer
Tests
— (Connection Release
— Connection Establishment
— Multiplexing —— Data Transfer
— Establishment Valid
—— Negotiation —1—— Establishment Invalid

—— Behaviour Invalid

Figure 5.3. Test Suite Structure for Transport Protocol Class 2

CHAPTER 5. DERIVATION OF FUNCTIONAL SPECIFICATIONS 94

process TPEConnections[t,n] (tpeo:TPEOptions) :noexit:=
hide p,a,d in
TSTP[t,p,a,d] (tpeo)
| (p,a,d] |
TPNS[p,a,d,n]

endproc (* TPEConnections *)

As a consequence of this, the actual and corresponding formal gate parame-
ters of the two instantiated processes, ‘TSTP’ and “TPNS’| have undergone a
diagonal reduction process. The arguments of the parallel operator no longer
contain the s gate. By the way the gate n in the instantiation of the process
“‘TSTP’ is dropped because a Class 2 protocol entity does not need to access
the network service boundary in order to acknowledge data by the receipt con-
firmation option. Accordingly, the instantiation of the process “TCNAccess’ is
horizontally reduced from the body of the process ‘TSTP’. Since it is not used

elsewhere in the specification, its definition is also vertically reduced.

process TSTP[t,p,a,d] (tpeo:TPEOptions) :noexit:=
hide r in

TCs([t,p,a,d,r](tpeo)
endproc (* TSTP *)

Another diagonal reduction is applied to the event structure at gate p.
Since only Class2 protocol is specified, there is no need to include a separate
event to indicate the class of the particular transport connection. So the events

at gate p in the resultant specification have the following structure:
p?d:Dir?c:Copy?tpdu:ETPDU?err: TPErr

Process ‘TCs’, consists of the instantiation of the process ‘“T'C’ which actu-
ally describes the behaviour of the transport protocol entity. According to the
definition of the process given below, one connection has to be released (by the
process ‘T'C’ performing an interaction at gate dd and exiting), in order for

the next one to be supported by the transport entity.

process TCs[t,p,a,d,r](tpeo:TPEOptions):noexit:=
hide dd in

CHAPTER 5. DERIVATION OF FUNCTIONAL SPECIFICATIONS 95

TC[t,p,a,d,r,dd] (tpeo)
i [dd] |
dd;TCs[t,p,a,d,r] (tpeo)
endproc (* TCs *)

Protocol constraints specified by the process ‘TC’ are classified as follows:
1 y 1

L. Service constraints, i.e, constraints at t only, are specified by TCEP.
2. Relationship between TSPs and TPDUs, specified by TSPTPDU,

3. Normal exchange of TPDUs between the two peer entities, specified by
TPDUFlowProcedures independently at events at t and error recovery

procedures,

4. (re)assignment of the transport connection to one (or more) network
connection(s), specified by TCA. This process specifies also connection

release that follows the expiration of the reassignment/resynchronization

timers.

Connection release, specified by TCRelease,

21

6. Exception handling, specified by TCIS. This comprises error recovery pro-
cedures, specified by NSErrorRecovery, and treatment of protocol errors,

specified by ProtocolErrorHandling.

process TC[t,p,a,d,r,dd] (tpeo:TPEOptions):exit:=
TCEP([t] (TSCall ingRole) [J TCEP[t](TSCalledRole)

I [t11
(hide k in
(TSPTPDU[t,p,k] [> exit
I [p,k]I
TPDUFlowProcedures[p,k] (tpeo) [> exit)
I [t,p,k]I
TCA[t,p,a,d,r,k,dd] (tpeo)
I[t,p,d,r, k]|
(TCRelease[t,p,r,dd]
I[p,r]l

TCE(p,d,r,k,n] [> exit))
endproc (* TC *)

CHAPTER 5. DERIVATION OF FUNCTIONAL SPECIFICATIONS 96

process TCE[p,d,r,k,n]:noexit:=
NSErrorRecovery[p,d,k,n]

| [p,d]!
ProtocolErrorHandling[p,d,r]
endproc (¥ TCE *)

The internal gate k, introduced by the definition of TC, serves the purpose of
separating concerns in the description of error recovery mechanisms, particu-
larly relating to retention of TPDUs until acknowledgement and retransmis-

sion.

The procedures relating to normal flow of TPDUs between the two peer
entities, described by the process ‘TPDUFlowProcedures’ is further structured

as follows:

process TPDUFlowProcedures([p,k] (tpeo:TPEOptions) :noexit:=
(SupportedOptions[p] (tpeo)
| Cp1 |
TPNegotiations[p]
| Cp] |
TPDUNumbering[p]
| [pll
ExplicitFlowControl [p]
| [pll
Checksum(p])
| [p]|
DTRetransmission([p,k]
endproc (* TPDUFlowProcedures *)

Fach instantiated process describes the required actions to be carried out dur-

ing the execution of the respective transport procedure.

Various types of reductions are performed in the process ‘TC’. Since there
are no error recovery procedures specified i the Class 2 protocol, the internal
gate k which is introduced to serve the purpose of separating concerns in the
description of such procedures, can be dropped. Additionally, horizontal re-
duction is applied to the instantiation of the process ‘NSErrorRecovery’ within
the process TCE. This further results in the vertical reduction of the definition

of the process ‘NSErrorRecovery’ from the specification.

CHAPTER 5. DERIVATION OF FUNCTIONAL SPECIFICATIONS 97

process TC[t,p,a,d,r,dd] (tpeo:TPEOptions) :exit:=
TCEP[t] (TSCallingRole) [] TCEP[t](TSCalledRole)
[[t]1
((TSPTPDU[t,p] [> exit
| [p] |
TPDUFlowProcedures[p] (tpeo) [> exit)
I [t,p]l
TCA[t,p,a,d,r,dd] (tpeo)
I [t,p,d,r]l
(TCReleasel[t,p,r,dd]
| [p,r]l
TCE[p,d,r,n] [> exit))
endproc (* TC *)

process TCE[p,d,r,n]:noexit:=
ProtocolErrorHandlinglp,d,r]
endproc (* TCE *)

Since checksum and retransmission procedures are not applicable in Class
2, horizontal reduction is applied to their instantiations within the process
‘TPDUFlowProcedures’, and the respective process definitions are vertically

reduced from the resulting specification.

process TPDUFlowProcedures([p,k](tpeo:TPEOptions) :noexit:=
SupportedOptions[p] (tpeo)

| Cpd |
TPNegotiations[p]

| Cpli
TPDUNumbering[p]

| [p] |
ExplicitFlowControl(p]
endproc (* TPDUFlowProcedures *)

Since there is no retransimission procedure, there does not exist any possibility
of receiving a duplicate TPDU, and the iuteraction at gate p related to the

reception of duplicate TPDUS (i.e., ?c:Copy) can be diagonally reduced.

The behaviour of the base protocol in response to invalid inputs is specified

by the process ‘ProtocolErrorHandling’. So, valid behaviour specification can

CHAPTER 5. DERIVATION OF FUNCTIONAL SPECIFICATIONS 98

be obtained by vertically reducing this process, and the process ‘TCE’ which
instantiates only this process. So, the resulting structure of the process ‘TC’

1s as follows:

process TC[t,p,a,d,r,dd] (tpeo:TPEOptions) :exit:=
TCEP[t] (TSCallingRole) [] TCEP[t](TSCalledRole)
([t
((TSPTPDU[t,p] [> exit
| [p] |
TPDUFlowProcedures[p] (tpeo) [> exit)
I [t,p]l
TCAlt,p,a,d,r,dd] (tpeo)
I{t,p,d,r]l
TCRelease[t,p,r,dd])
endproc (* TC *)

Additionally, the event structure at the p gate is diagonally reduced one step
more by dropping the value with type TPErr, which qualifies incoming TPDUs

for protocol errors. The resulting event structure at gate p is as as follows:
p?d:Dir?tpdu:ETPDU

The last step in behaviour reductions is to obtain the specification of the
Class 2 transport protocol during connection release phase. The specification
defining the connection release procedure can be obtained by performing some

horizontal reductions within the process ‘TC’, resulting in the final form given

below.

process TC[t,p,a,d,r,dd] (tpeo:TPEOptions):exit:=
TCEP[t] (TSCallingRole) [] TCEP[t](TSCalledRole)
I [t,p,a,d,r]l
((TSPTPDU[t,p] [> dd;exit)
I [t,p,d,s,r]l
(TCRelease([t,p,r,dd]))
endproc (* TC x*)

The release of a transport connection is initiated under any of the following

cases:

CHAPTER 5. DERIVATION OF FUNCTIONAL SPECIFICATIONS 99

e Transport connection refusal by responder, following an internal decision.

e Network connection failure, because error recovery and reassignment is

not made use of in Class 2.

¢ The internal decision of releasing the transport connection upon detection

of a protocol error which is part of the invalid behaviour.

e Transport connection release by the transport service user.

The release at the transport service interface, in relationship to events at gate
r, is described by TCRelS, whereas the ordering of events at the entity internal

gates, as determined by the peer-to-peer release procedures, is described by

TCRelP.

process TCRelease[t,p,r,dd]:exit:=
TCRelS[t,r,dd]

| [x] |

TCRelP[p,r,dd]

endproc (* TCRelease *)

The following constraints are described by TCRelS:

e if the transport connection is to be released with no previous execution
of a T.CONNECT primitive by the entity, then no service primitive is

executed by the entity.

e Otherwise,

— T.DISCONNECT primitive is to be executed, and

— the release indicator passed at gate r shall be User if and only if a
T.DISCONNECTrequest was previously executed.

process TCRelS[t,r,dd]:exit:=
r?w:RelReason;dd;exit
(]

t?tc:TSP[IsSTCON(tc)] ;
(r?rr:RelReason[rr ne Normal]; TCEPRelease([t]

[]

CHAPTER 5. DERIVATION OF FUNCTIONAL SPECIFICATIONS 100

t7tdr:TSP[IsTDISreq(tdr)] ;
r'Normal of RelReason;dd;exit)
endproc (* TCRelS %)

The service constraints related to the release of a connection are specified by
the process ‘TCEPRelease’.

process TCEPRelease[t]:exit:=
t?tsp:TSP[ISTDIS(tsp)];exit
endproc (* TCEPRelease *)

TCRelP describes the connection release procedures but with no concern
for the interactions with the TS user. These procedures define constraints

relating to the following cases:

e Connection refusal by responder (TCRespRefusal),
o Release at responder (TCRespRelP),
e Release at initiator (TCInitRelP),

e Connection Release due to protocol error.

process TCRelP[p,r,dd]:exit:=
p?cl:Class!Recv?CR:ETPDU[IsCR(CR)] ;
(TCRespRefusalP[p,r,dd] (cl)

(]

TCRespRelP[p,r,dd] (cl)

(]
Class2ErrorRelease[p,r,dd])

(]
p?cl:Class!Send?CR:ETPDU[IsCR(CR)];
(TCInitRelP[p,r,dd](cl)

(]
Class2ErrorRelease[p,r,dd])

(]
r?w:RelReason;dd;exit
(* Release due to protocol_error *)

endproc (* TCRelP *)

CHAPTER 5. DERIVATION OF FUNCTIONAL SPECIFICATIONS 101

Since we eliminated the interaction related to the class of the protocol (i.e.,
?cl:Class) previously, there is no need to pass this value as parameter to the
instantiated processes. This is another type of diagonal reduction which is
applied to the formal and corresponding actual process parameters. After
eliminating the branch related to the release of transport connection due to
protocol error (since we deal only with valid behaviour), the resulting body of
the process ‘TCRelP’ is:

process TCRelP[p,r,dd]:exit:=
p!Recv?CR:ETPDU[IsCR(CR)];
(TCRespRefusalP[p,r,dd]
{1
TCRespRelP[p,r,dd]
]
Class2ErrorRelease[p,r,dd])
[]
p!Send?CR:ETPDU[ISCR(CR)];
(TCInitRelP(p,r,dd]
(]
Class2ErrorRelease[p,r,dd])
endproc (* TCRelP *)

Following is the final reduced specification related to connection release

procedure under the valid behaviour category of Class 2 transport protocol.

process TCRespRefusalP[p,r,dd]:exit:=
choice etp:ETPDU,drr:DRReason []
[IsDR(DR) and (drr IsReasonOf DR)] ->
p'!Send!etp;
(AwaitDC[p,r]
11
r?w:RelReason;dd;exit)
(]
Class2ErrorRelease[p,r,dd]
endproc (* TCRespRefusalP *)

process TCRespRelP[p,r,dd]:exit:=
choice ecc:ETPDU [] [IsCC(ecc)] ->

CHAPTER 5. DERIVATION OF FUNCTIONAL SPECIFICATIONS

p!Send!ecc;
TCDataRelease[p,r,dd]
{1
Class2ErrorRelease[p,r,dd]
endproc (* TCRespRelP *)

process TCInitRelP[p,r,dd]:exit:=
p'Recv?DR:ETPDU[(IsDR(DR) or IsSER(DR))];

r?’w:RelReason;dd;exit

(]

p 'Recv 7CC:ETPDU[IsCC(CC)];
TCDataRelease([p,r,dd]

(]

Class2ErrorRelease([p,r,dd]
endproc (* TCInitRelP *)

process TCDataRelease[p,r,dd]:exit:=
r?w:RelReason;Release(p,r,dd]

]

Class2ErrorReleasel[p,r,dd]

endproc (* TCDataRelease *)

process Release[p,r,dd]:exit:=
ExplicitRelease[p,r,dd]

endproc (* Release *)

process ExplicitRelease([p,r,dd]:exit:=
choice edr:ETPDU [] [IsDR(edr)] ->
p'!Send!edr;
p'Recv?et:ETPDU[(IsDR(et) or IsDC(et))];
dd;exit

endproc (* ExplicitRelease *)

process Class2ErrorRelease([p,r,dd]:exit:=
r?rr:RelReason[rr eq NoReass or (rr eq NoResyn)];
dd;exit

endproc (* Class2ErrorRelease *)

102

CHAPTER 5. DERIVATION OF FUNCTIONAL SPECIFICATIONS 103

process AwaitDC[p,r,dd]:exit:=
p'Recv?dct:ETPDU[IsDC(dct)];
r 7w:RelReason;dd;exit
endproc (* AwaitDC *)

Chapter 6

TEST DESIGN USING BASE AND
FUNCTIONAL SPECIFICATIONS

As defined in Chapter 1, TTCN is the standardized specification language of
test suites. It combines a tree notation for dynamic behaviour with a tabular

representation of various language constructs [51]. An abstract test suite (ATS)

in TTCN consists of 4 parts:

e Test suite overview: The test suite overview section first names the
test suite and defines its context with respect to the appropriate [UT
protocol standard, PICS, and test methods. It describes the structure of

the abstract test suite and provides an index of its test cases.

e Declarations: An abstract test suite is composed of objects of many
types, such as timers, PCQOs, messages. Declarations of such objects are

the next major component of a test suite specified in TTCN.

e Constraints: In the constraints section of an ATS, particular data val-
ues are specified for PDU fields and ASP parameters as used in the

constrained test events in the dynamic behaviour part of the test suite.

¢ Dynamic Behaviour: The dynamic behaviour section of a TTCN ab-

stract test suite comprises the main body of the ATS including the test

cases, test steps and default behaviours.

A abstract test suite in TTCN can be generated {from protocol specifications

by following the steps given below.

104

CHAPTER 6. TEST DESIGN USING BASE AND FUNCTIONAL SPECIFICATIONS105

1. Generation of the declarations part. Largely, this can be done by syntac-

tic transformations.
2. Generation of base constraints using the PDU and ASP definitions.
3. Generation of modified constraints.
4. Generation of test cases.

Representing the selected test cases according to the syntax and seman-

tics of TTCN.

N>

6. Completion of the test suite overview.

This chapter is about the applications of the chart based test design
methodology introduced in Chapter 2 within the perspective of testable spec-
ifications developed in the previous chapters. Test cases are derived from the
respective base and functional specifications of INRES and ACSE protocols.
Section 6.1 applies the methodology to base specifications, and Section 6.2 in-

cludes some important results on the generation of test cases from the reduced

specifications.

The results given in this chapter are obtained by the computer-aided soft-
ware tool LOTEST [27] which implements the test design methodology dis-
cussed in Chapter 2 Section 2.6 to derive test cases from LOTOS specifications.
LOTEST is an interactive tool and includes a number of modules that facili-
tate various steps of test design. It has been developed on SUN workstations

using the X_Window programming environment.

The backbone of the LOTEST environment is the formal notation of EFSM-
Chart which has a mathematically precise semantics, and simple representation
of data flow. The first step applied to a LOTOS specification is compilation.
The compiler does lexical syntactic and semantic analysis, and produces an
internal representation of the LOTOS specification in the Prolog clause form.
After compilation, the chart generator is activated, which translates the inter-
mediate form of the specification into a chart by bottom-up synthesis. Then
input for data flow graph and test cases can be generated. There are four in-
teractive tools: ctool, dfgtool, edittest, and testgen. The chart is displayed
in the form of a finite state machine by ctool. The dfgtool displays the data
flow graph with automatic blocking and offers several facilities for block merg-

ing. Edittest is used to help the test designer to interactively go through the

CHAPTER 6. TEST DESIGN USING BASE AND FUNCTIONAL SPECIFICATIONS106

test cases and identify uninteresting ones. It is also used to eliminate redun-
dant assignment and predicates from the test cases with the help of the data
flow graph. Finally testgen is for selecting the unparameterized test sequences

based on the data flow information.

6.1 Test Generation From Base Specifications

Before the actual test generation procedure can start, a LOTOS specification
must be normalized in order to identify the control flow and data flow within
the specification. As an EFSM representation, the chart reveals the control
structure of the specification. The size of the chart generated depends on the
size of the specification as well as how it is structured. For example, the chart
generated from the ACSE base specification consists of 141 states and 194
transitions, while the charts obtained from the INRES Initiator and Respon-

der protocol specifications contain 36 states, 50 transitions, and 26 states, 34

transitions, respectively.

Once the control structure of the specification is obtained, test cases can be
generated by using the transition-tour method [52]. As explained in Chapter 2
the algorithm proposed in [30] generates the test cases from the EFSM-Chart
by taking nondeterminism into consideration. rom their respective charts, the

algorithm generates 53 test cases for ACSE, and 16 test cases for the Initiator

base specifications.

The generated test cases must be inspected in order to detect any infeasi-
bilities and redundancy. The test case generation algorithm may also generate
uninteresting test cases. Analysis of test cases is done by using the interactive
tool edittest. Edittest displays the test cases in one text window, the rules
that occur in the test case in one text window, and finally the EFSM chart in
another text window. By editing the text windows, infeasible and uninteresting
tests cases can be eliminated or replaced with feasible and meaningful ones.
Out of the 53 test cases generated for the ACSE protocol, 6 test cases happened
to be infeasible, and 17 of them found to be uninteresting and meaningless.
When the infeasibilities have been resolved, all of them become equivalent to
existing test cases, so they can also be considered as redundant. In the case of
the Initiator protocol, none of the test cases are found to be infeasible, but 3

of them are redundant test cases, i.e., their functions can be achieved by using

CHAPTER 6. TEST DESIGN USING BASEAND FUNCTIONAL SPECIFICATIONS107

others.

The last step in the analysis of the generated test cases is the elimination
of unnecessary assignments and predicates, which is referred to as test case
reduction. Most of the test cases generated from the ACSE base specification
contain redundant assignment statements which have no effect on the function-
ality of the tester, and they have been dropped. The assignment statements
in the test cases result from value passing in LOTOS specifications due to
interprocess communications and process instantiations. The following is an
example of the test cases that contain redundant assignments. Given in the
from of the rules of the chart, it tests the IUT for the correct implementation of
the abnormal release procedure in the ‘Associated State’ by stimulating it with
a P-U.ABORTrequest primitive. The assignment statements ‘c(22):=calling’
and ‘c(19):=c(22)’ have no effect on the functionality of the test case, so they

can be dropped.

<A7x(9) :primitive,188,191,3,true, [IsAASCreq(x(9))],e,e>,
<P!0ut 'PCONreq(make_AARQ(get_AASCreq(x(9)))) :primitive,
191,192,7,true,true,e,e>,
<P!Input?x(4) :primitive,192,196,11,true,
[and (and (IsPCONcnfA(x(4)),IsAARE(user_data(x(4)))),
eq(result(get_AARE(user_data(x(4)))),accepted))],e,e>,
<A'make_AASCcnfU(get_AARE(user_data(x(4)))),196,207,26,
true,true,e,e>,
<1,207,223,41,true,true,c(22) :=calling,c(19) :=c(22)>,
<P!Input?x(21):primitive,223,242,58,true,
[and (IsPUABind (x(21)),IsABRT(user_data(x(21))))],e,e>,
<A'make_AABRind(get_ABRT(user_data(x(21)))),242,265,72,

true,true,e,e>,

<ir,265,188,79,true,true,e,e>.

Before being represented the tests must be selected according to some user-
defined criteria. There are two approaches to the selection of tests generated
from base specifications. The first approach is to apply the functional test
selection, and to base the selection process on the protocol functions identified
by the user. In order to identify the protocol functions, the flow of data in the
specification must be extracted. The flow of data in a LOTOS specification
reflects how input primitive parameters determine the values of the context

variables, and they in turn determine the values of the output primitives [30].

CHAPTERG. TLEST DESIGN USING BASE AND FUNCTIONAL SPECIFICATIONS10S

A data flow graph (DFG) models the flow of data in the chart. Four types of

nodes are used in DFG:

i-nodes represent input primitives,
d-nodes represent variables and data,
f-nodes represent ADT functions,

o-nodes represent output primitives.

The edges of the DFG are used to represent the flow of information and labelled

with the transition number on which the flow is achieved.

Generation of the data flow graph from the chart is performed by using
the algorithm proposed in [30]. The when, action and assignment clauses of
each rule in the chart are scanned statically, and various types of nodes and
arcs are created that reveal the flow of data within the chart. Generation of
DFG is only possible when PDUs and ASPs are explicitly identified. Also, it
is necessary to identify operations associated with different kinds of PDUs and
ASPs, which is achieved by processing the abstract data type definitions. The

structure of the PDUs and ASPs must be provided by the user.

In order to identify the individual protocol functions from the data flow
graph, it must be sliced according to some user-defined criteria. Data flow
graph slicing i1s performed in two phases by using the dfgtool. The first step
1s called blocking and the second step is called merging where the criteria must
be provided by the user based on the knowledge of the specification. Related
to test selection, protocol functions obtained from the data flow graph must
be tested using the test cases obtained from the chart. [For this purpose, it
is necessary to extract the transition labels of each function of the data flow
functions. If a single test case covers all the labels in a given function, it 1s this
test case which is selected, otherwise more than one test case is selected for
full coverage. The testgen tool gets test cases {from the data flow graph and

then generates full coverage of cach of the data flow functions by test cases.

In the second approach to test selection, test cases are placed in a test suite
hierarchy, and a test purpose is assigned to every test case. Ounce the hierarchy
and the purposes are determined, for each test purpose one or more test cases
must be selected from the generated test cases. If the specification defines
invalid and inopportune behaviour along with valid behaviour, the resulting

test cases must be considered regarding invalid and inopportune behaviour, as

CHAPTER 6. TEST DESIGN USING BASEAND FUNCTIONAL SPECIFICATIONS109

well.

The test suite structure and test purposes document for ACSE [47] contains
a total of 88 test purposes. Among the 53 test cases generated from the base
specification, 30 of them are meaningful and can be used to cover 60 of the test
purposes. For example, the following test case represented in the rules of the
chart satisfies the purpose of testing the IUT in state ‘Await AARE’ when it
receives an A.ABORTrequest from the user. It is actually the first test purpose
within the ACSE/BV/AR/AA test group objective as defined in [47].

<A?x(9):primitive,188,191,3,true, [IsAASCreq(x(9))],e,e>,
<P!0ut !PCONreq(make_AARQ(get_AASCreq(x(9)))),191,192,7,
true,true,e,e>,
<A?x(3) :primitive,192,203,18,true, [IsAABRreq(x(3))],e,e>,
<P!0Out'PUABreq(make_ABRT (get_AABRreq(x(3)))),203,212,34,

true,true,e,e>,

<ir,212,188,49,true,true,e,e>.

Due to the specification of invalid behaviour by using negation in selec-
tion predicates rather than specifying the related cases explicitly one test case
can be interpreted to cover more than one test purpose. Also, by interpreting
some of the generated test cases in different ways according to their pream-
bles, bodies and postambles, some test cases can be interpreted to cover more
than one test purpose. For example, the following test case which tests the
hehaviour of the ACSE protocol implementation in response to invalid inputs
in its ‘Unassociated’ state covers all four of the test purposes under the group
ACSE/BI/STA0. That is, ‘not(IsAARQ(user_data(x(9))))’ is a short way of
saying ‘IsAARE.. or IsRLRQ.. or IsSRLRE.. or [SABRT..".

<P!Input?x(9),188,190,2,true,

[and (IsPCONind (x(9)) ,not (IsAARQ(user_data(x(9)))))],e,e>,
<A'make_AABRind,190,195,6,true,true,e,e>,
<P'!'0ut'PUABreq(make_ABRT),195,206,10,true,true,e,e>,
<ir,206,188,25,true,true,e,e>.

Since the chart construction algorithm implemented within LOTEST treats
the disable operator specially by creating an alternative transition not ema-

nating from every state of the chart corresponding to the disabled behaviour

CHAPTER 6. TEST DESIGN USING BASEAND FUNCTIONAL SPECIFICATIONS110

’

expression, but only the first state of it, some test purposes remain uncovered

by the generated test cases.

When we consider the Initiator protocol, 14 meaningful test cases cover
16 test purposes of the TSS&TP for INRES given in Appendix C, and 3 test
purposes remain uncovered due to the treatment of the disable operator as
mentioned above. For example, the test case given below satisfies the only test

purpose under the test group INRES/I/BIO/STAL.

<ISAP?sp(1),215,149,1,true,true,e,e>,
<MSAP!'MDATreq(CR),149,152,5,true,true,e,e,>,
<i,152,155,9,true,true,z(3) :=s(0),z(2) :=z(3)>,
<MSAP7sp(2),155,160,13,true,

[and(and (isMDATind(sp(2)) ,not (isDR(data(sp(2))))),
not(isCC(data(sp(2)))))],
e,e>,

<is,155,161,14,true,true,e,e>,
<ir,160,155,17,true,true,e,z(2):=2(2)>,
<i,161,166,19,[z(2)==4] ,true,e,e>,
<ISAP'IDISind,166,171,22,true,true,e,e>,
<ir,171,215,27,true,true,e,e>.

Since INRES protocol ignores any invalid and inopportune bhehaviour and does
not change its state, test cases for such behaviour must be augmented with
extra sequences that bring the [UT in its initial state. This makes the tests

for invalid/inopportune behaviour longer.

Events and assignments in a test case comprise the dynamic behaviour of
the test case. The flow of control is sequential except when there is a spon-
taneous transition. Before representing the test cases, except internal events,
all other events are inverted, which means that input events are converted to

output events and vice versa.

Any constraints on the initial values of ASPs, PDUs and other substructures
are defined as base constraints. Each test case imposes other constraints which
are called dynamic constraints or modified constraints. Default values and
other information that are nnchanged in many constraints are considered in
base constraints. Base constraints can be modified by re-specifying a number

of fields. For each ASP and PDU two base constraints are defined, one for

CHAPTER 6. TEST DESIGN USING BASE AND FUNCTIONAL SPECIFICATIONSI111

mput events and another for output events.

When test case generation is based on base specifications, usually large
number of test cases are produced where many of them are uninteresting or
meaningless. This necessitates the selection of the generated tests based on
some user-defined criteria. As mentioned above, test selection is either done
by using functional analysis, or hierarchical test selection is employed. If hier-
archical test selection is employed, an alternative way is to generate the test
cases from functionally reduced specifications. By this way selection of the
tests can be done before actually generating them, while at the same time the

number of generated test cases can be minimized.

6.2 Test Generation From Functional Specifications

Once the base specification is sliced into reduced specifications, test cases can
be generated, and depending on the level of subdivision, a reduced specifica-
tion provides several test cases that represent the corresponding test group.
The steps involved in the application of the methodology are almost the same
as in the case of base specifications. But, as discussed above test selection
step is omitted, and the technique used in the generation of test cases may
be changed. Regarding the test case reduction, some reductions may not be
needed any more. The steps involved in the generation of test cases from

functional specifications is outlined in the following subsections.

6.2.1 Chart Generation

The first step is again normalization, i.e., chart generation. This time, since the
specifications have much smaller sizes than the original base specification, the
corresponding charts are also smaller in size. Table 6.1 and 6.2 give the sizes
of the resulting charts for every functional specification of ACSE and INRES

in terms of the number of transitions and states.

CHAPTER 6. TEST DESIGN USING BASE AND FUNCTIONAL SPECIFICATIONS112

Func. Spec. | # Of States | # Of Trans.
I/BV/CE Il 13
I/BV/DT 15 19
I/BV/DC 3 3
I/BIO/STAO 3 4
I/BIO/STA1 { 5
I/BIO/STA2 1 5
1/BIO/STA3 H 6
R/BV/CE 6 6.
R/BV/DT 9 11
R/BV/DC 3 3
R/BIO/STAO 3 4
R/BIO/STA1 3 3
R/BIO/STA2 4 5

Table 6.1. Chart Sizes Of Functional Specifications For INRES

Func. Spec. | # Of States | # Of Trans.
BV/AE/I 12 15
BV/AE/R 10 12
BV/NR/RQ 20 24
BV/NR/AC 9 10
BV/AR/AA 3 3
BV/AR/PUA 3 3
BV/AR/PPA 3 3
BI/STAO 4 4
BI/STAL 7 9
BI/STA2 4 4
BI/STA3 12 14
BI/STA4 4 4
BI/STA5 8 9
BI/STAG 4 4
BI/STAT 11 12

Table 6.2. Chart Sizes Of [Ffunctional Specifications I'or ACSE

CHAPTERG. TEST DESIGN USING BASEAND FUNCTIONAL SPECIFICATIONS113

Func. Spec. | # Of Test Cases | # Of Purposes Covered
[/BV/CE 3 3
I/BV/DT 5 5
[/BV/DC 1 4
I/BIO/STAO 3 4
I/BIO/STA1 - -
I/BIO/STA2 - -
I/BIO/STA3 - -
R/BV/CE 1 1
R/BV/DT 3 3
R/BV/DC 1 3
R/BIO/STAO l 1
R/BIO/STALI - -
R/BIO/STA2 - -

Table 6.3. Test Cases Generated From Functional Specifications Of INRES

6.2.2 Generation Of Test Cases

The next step is the application of the test case generation algorithm to the
charts derived from each of the reduced specifications. Tables 6.3 and 6.4
contain some results related to the test cases generated from the functional
specifications of INRES and ACSE, respectively. As seen from the data, most
of the test cases are useful in the sense that they can be used to test for the
satisfaction of the purposes defined in the related TSS&TP documents. Since
the test cases consist only of test bodies, one test case may be used to test
for the satisfaction of more than one test purpose by prefixing it with different
preambles. This is usually the case for state-oriented test groups where each
test purpose corresponds to a particular state of the protocol machine. The
test group INRES/I/BV/DC is an example of this kind of test group.

The algorithm proposed in [30] and implemented in LOTEST requires a
fully connected state-machine in order to derive the test cases. Related to
separate phases and states of the protocols, the EFSMs of the reduced specifi-
cations need not be strongly connected, i.e., their initial and final states may be
different. in order to apply the method implemented in LOTEST to such spec-
ifications, virtual transitions must be added from each final state to the initial

state of the charts. In other words, the final states must be converted to initial

CHAPTER 6. TEST DESIGN USING BASE AND FUNCTIONAL SPECIFICATIONS114

Func. Spec. | # Of Test Cases | # Of Purposes Covered.
BV/AE/I 4 6
BV/AE/R 3 3
BV/NR/RQ 5 4
BV/NR/AC 2 2
BV/AR/AA | 6
BV/AR/PUA I 6
BV/AR/PPA 1 6
BI/STAO 1 4
BI/STAL1 2 3
BI/STA2 1 4
BI/STA3 3 12
BI/STA4 1 4
BI/STAS 2 8
BI/STA6 | 4
BI/STA7 2 8

Table 6.4. Test Cases Generated From Functional Specifications Of ACSE

states. In spite of this, some entries in the table for INRES, such as the ones
corresponding to INRES/I/BIO/STA1, INRES/R/BIO/STA2 test groups, are
empty. The reason behind this is the fact that INRES protocol ignores in-
valid and inopportune test events. Since no state change occurs in response
to invalid/inopportune behaviour, the fully connectedness requirement of the

algorithm is violated, and no test cases are generated.

In order to overcome this problem, a different approach can be adopted
while generating the test cases, and a straightforward mapping from the chart
to TTCN can be applied. The EFSM can be mapped to a tree describing
the possible sequences of input and output events. Test cases can be derived
directly from the EFSMs representing the reduced specifications by developing
the tree of possible valid sequences while each branch of the tree forms a sep-
arate test case. This tree can be described in the standardized test notation
TTCN, and ‘Pass’ verdicts can be attached to the nodes corresponding to the
final states of the EFSM.. The test cases are specified from the point of view
of the tester. while the specification describes the behaviour of the IUT; there-
fore the direction of events must be inverted. Input events for the IUT are

output events for the tester, output events sent by the TUT are input events,

CHAPTERG6. TEST DESIGN USING BASE AND FUNCTIONAL SPECIFICATIONS115

1.e., receive events for the tester. For each receive event for the tester an alter-
native OTHERWISE event has to be specified with verdict ‘Fail’ in order to
deal with unforeseen responses from the [UT, and with verdicts ‘Inconclusive’
to deal with spontaneous transitions that result from non-determinism within
the IUT. Since there is no inherent directionality in LOTOS interactions, input
and output events must be made explicit in the specifications. As mentioned
at the end of Chapter 2, this can be achieved by adding extra event structures

to the external gates of the specification.

6.2.3 Test Case Reductions

The generated test cases must again be inspected for any redundancy with re-
spect to the assignments and predicates. When we consider the ACSE protocol,
it is observed that test cases derived from the reduced specifications still con-
tain redundant assignments. This is due to the absence of diagonal reductions
on the parameters of the processes comprising the body of the ACSE specifica-
tion. For example, the test case given below in TTCN form is generated from
the reduced specification corresponding to the test group ACSE/BV/NR/RQ.
It tests the correct operation of the [UT during the normal release procedure
by stimulating it an A.RELEASErequest primitive and accepting the release of
the association. Since the assignment statements ‘c(2):=c(6)’, and ‘c(6):=c(7)’
are redundant, they can be eliminated from the test case without disrupting

its functionality. The preamble contains the necessary actions to put the IUT

in the desired state.

+ Preamble

A' ARLSreq C1
P? PRLSreq Cc2
c(6)=c(7)
c(2)=c(6)
P! PRLScnfA C3
A? ARLScnfA C4 Pass
7 OTHERWISE Fail

? OTHERWISE Fail

CHAPTER 6. TEST DESIGN USING BASEAND FUNCTIONAL SPECIFICATIONS116

As stated in the previous section, the presence of the assigninent statements
in the rules of the chart is mainly due to value passing in interprocess synchro-
nizations and process instantiations in LOTOS specifications. When diagonal
reductions are performed on the instantiations and definitions of processes by
removing some of the formal and corresponding actual process parameters, test
case reductions carried out on the tests derived from base specifications might

become irrelevant. In such cases, test case reduction step can also be skipped.

6.2.4 Infeasible Test Cases

When we consider the generated test cases with respect to infeasibility, it is
observed that none of the test cases obtained from the reduced specifications
of the ACSE protocol contain any infeasibilities. This is mainly due to the
fact that, the test cases derived from functional specifications define the only
the body of the actual tests to be executed on the specification without the
specification of the preambles. Since the reason behind the infeasibility of a test
case is an assignment statement within the preamble which causes a predicate
to always evaluate to false; by prefixing the generated test bodies with suitable
preambles, feasible test cases can be obtained. For example, the following test
case given in TTCN form can be made teasible by assigning a proper value to

the variable ‘c(6)’ in the preamble.

+ Preamble

A! ARLSreq C1
P? PRLSreq Cc2
P! PRLSind C3
A7 ARLSind Cc4
[c(6)=called]

A!' ARLSrsp C5

P? PRLSrspA Cé Pass

7 OTHERWISE Fail

? OTHERWISE Fail

7? OTHERWISE Fail

Chapter 7

CONCLUSIONS

A design trajectory that results in testable protocol specifications is proposed,
and applied to some protocol specifications written in the formal description
technique LOTOS. The steps followed are the development of formal base spec-
ifications, systematic derivation of functional specifications from the base spec-

ifications, and test design from {unctional specifications.

Base specifications are developed in a hierarchical manner by defining the
implementation options as parameters, and including the behaviours that
must be tested. Several techniques are proposed that can be used in de-
veloping formal base specifications including PICS parameterization and in-
valid /inopportune behaviour specification along with valid behaviour specifi-
cation. The proposed methods are applied on two protocols. Formal base
specifications of the INRES and ACSE protocols are developed, and the prob-
lems encountered while applying the techniques are stated. The PICS proforma

utilized in the development of the INRES protocol is defined according to the

OSI standards.

The approach adopted in the derivation of functional specifications is slic-
ing. By performing various types of behaviour reductions on base specifica-
tions, slices of those specifications are obtained in a sy ..tic manner where
each slice corresponds to a particular function of the protocol. The criteria
on which the behaviour reductions are based are obtained from the hierarchi-
cally designed test suite structures of the base protocols. The behaviour slices
of the developed base specifications INRES and ACSE protocols are obtained
according to their respective test suite structures. A test suite structure and

test purposes document is defined according to suggestions of the OSI standard

117

CHAPTER 7. CONCLUSIONS 118

methodology and framework for conformance testing.

Since the charts obtained from the resulting reduced specifications are
smaller in size when compared with those obtained from base specifications,
the test generation process is simplified. The results indicate that the tests gen-
erated from the functional specifications by using the standard tools exhibit
some important properties regarding the analysis and representation of test
cases. Some problems arise with respect to the connectedness of the resulting
EFSMs and this necessitates the application of a different methodology while
deriving the test cases from reduced specification. A possible solution of deriv-

ing tests directly in TTCN form from the respective functional specifications

is outlined in Chapter 6.

Possible future work includes the automation of the behaviour reduction
algorithm given in Chapter 3 by using knowledge based techmques. Also, re-
search is needed in the representation of the test cases generated from reduced
specifications. This includes PDU/ASP identification, and constraint gener-
ation from the behaviour of the particular test cases by taking the dynamic
nature of the test cases into account. Handling nondeterminism within the
context of reduced specifications also deserves study. Since abstract data type
definitions comprise the important part of LOTOS specifications, a similar
study can be conducted by performing reductions on abstract data types along
with behaviour reductions. The behaviour reductions considered in this study
are executed on base specifications according to the hierarchically structured
test suites up until the outermost test groups of the hierarchy. A possible ex-
tension of the methodology can be the generation of more refined specifications

where each specification provides the behaviour of exactly the individual test

cases rather than test groups.

Bibliography

[1]

[2]

[3]

(7]

3]

[10]

A. Tang and S. Scoggings, Open Networking with OSI, Prentice Hall Inc.,
New Jersey, 1992.

International Organization for Standardization, Basic reference Model for

Open System Interconnection, ISO 7498, 1984.

G.V. Bochmann, Specification of a Simplified Transport Protocol Using
Different Formal Description Techniques, Computer Networks and ISDN

Systems, vol. 18, pp.335-377, 1990.

Information Technology - OSI - Specification for the Abstract Syntax No-
tation One (ASN.1), International Standard ISO/IEC 8824, 1990.

S. Budkowski, P. Dembinski, An Introduction to Estelle : A Specifica-
tion Language For Distributed Systems, Computer Networks and ISDN
Systems, vol. 14, pp. 3-23, 1987.

ISO/IEC 9074, Estelle : A Formal Description Technique Based on an
Extended State Transition Model, 1988.

T. Bolognesi, E.Brinksma, Introduction to the ISO Specification Language
LOTOS, Computer Networks and ISDN Systems, vol. 14, pp.25-59, 1987.

ISO , LOTOS - A [ormal Description Technique Based on the Tempo-
ral Ordering of Observational Behaviour, ISO/IEC JTC1/SC21, 1S 8807,

1988.

F. Belina, D. Hogrefe, The CCITT Specification and Description Language
SDL, Computer Networks and ISDN Systems, vol. 16, pp. 311-341, 1989.

CCI'TT , Specification and Description Language (SDL), Recommendation
Z.100, CCITT SG X, 1992, 218p.

119

BIBLIOGRAPHY 120

[11]

[12]

[13]

[14]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

R. Milner, A Calculus of Communicating Systen . Lecture Notes in Com-

puter Science 92, (Springer, Berlin, 1980).

H. Ehrig, B. Mahr, Fundamentals of Algebraic Specification I, (Springer,
Berlin, 1985).

B. Forghani, Automatic Test Suite Derivation From Estelle Specifications,

MS thesis, Concordia University, 1990.

ISO. ISO/IEC 9646-1 : Conformance Testing Methodology and Frame-
work - Part 1 : General Concepts, pages 1-31.ISO/IEC JTC/SC21, 1991.

ISO. ISO/IEC 9646-2 : Conformance Testing Methodology and Frame-
work - Part 2 : Abstract Test Suite Specification, pages 1-28.1SO/IEC

JTC/SC21, 1991.

[SO. ISO/IEC 9646-3 : Conformance Testing Methodology and Frame-
work - Part 3 : The Tree and Tabular Combined Notation, pages 1-

176.1SO/IEC JTC/SC21, 1991.

[SO. ISO/IEC 9646-4 : Conformance Testing Methodology and Frame-
work - Part 4 : Test Realization, pages 1-10.ISO/1IEC JTC/SC21, 1991.

[SO. ISO/IEC 9646-5 : Conformance Testing Methodology and Frame-
work - Part 5 : Requirements on Test Laboratories and Clients for the
Conformance Assessment Process, pages 1-25.1SO/IEC JTC/SC21, 1991.

>

[SO. ISO/IEC 9646-6 : Conformance Testing Methodology and Fraine-
work - Part 6 : Profile Test Specification, pages 1-28.1SO/IEC JTC/SC21,
1991.

[SO. ISO/IEC 9646-7 : Conformance Testing Methodology and Frame-

work - Part 7 : Implementation Conformance Statements, pages |-
53.ISO/IEC JTC/SC21, 1992.
G. J. Tretmans, A Formal Approach to Conformance Testing, PhD thesis,

University of Twente, 1992.

ISO/IEC/JTC1/SC2L/P.54, Formal Methods in Conformance Testing,
November 1992.

N. Shiratori, H. Kaminaga, K. Takahashi, S. Noguchi, A verification
Method for LOTOS Specifications and its application, PSTV IX, North-
Holland, pp. 59-70, 1990.

BIBLIOGRAPHY 191

[24]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

33]

C. A. Vissers, G. Scollo, M. Sinderen, [. Brinksma, Specification Styles
in Distributed Systems Design and Verification, Theoretical Computer

Science, vol. 89, pp. 179-206, 1991.

E. Brinksma, R. Alderen, R. Langerak, J.V. De Lagemaat, J. Tretmans, A
Formal Approach To Conformance Testing, [FIP Protocol Test Systems,
North-Holland, pp. 349-363, 1990.

E. Brinksma, A Theory for the Derivation of Tests, IFIP PSTV VIII,
North-Holland, pp.63-74, 1988.

P. Tripathy, B. Sankaya, LOTEST : A LOTOS Test Case Generation
Tool, Technical Report, Bilkent University, 1992.

C. Wezeman, The C'O-OP Method for Compositional Derivation of Canon-
ical Testers, IFIP PSTV IX, North-Holland, Twente, Holland, pp.145-158,

1990.

W. E. Howden, Functional program testing nd analysis, McGraw-Hill,

1987.

P. Tripathy, B. Sarikaya, Test Generation from LOTOS specifications,
IEEE Transactions on Computers, vol. 40, pp.543-552, 1991.

R. Milner, A Complete Inference System for a Class of Regular Behaviours,
Journal of Computer and System Sciences, 24, pp.439-466, 1984.

M. S. Hecht, Flow Analysis of Computer Programs, New York, North-
Holland, 1984.

S. Rapps, E. J. Weyuker, Selecting Software Test Data Using Data Flow
Information, ILEE Transactions on Software Engineering, vol. 11, pp. 367-

375, 1985.

B. Sarikaya, Principles of Protocol Engineering and Conformance Testing,

Simon & Schuster, 1993.
A. Wiles, Specification Styles for SDL in order to Develop Testable Spec-
ifications, ETSI TC-ATM, pp. 1-16, 1992.

D. Hogrefe, Ou the development of a standard for conformance testing

based on formal specifications, Computer Standards & Interfaces, vol. 14,

pp-185-190, 1992.

BIBLIOGRAPHY 122

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

46]

[47]

(48]

D. Hogrefe, OSI Formal Specification Case Study : the INRES Protocol
and Service, report IAM-91-0/2, University of Bern, 1991.

O. Henniger, B. Sarikaya, 5. Biedlingmaier, Test suite generation for ap-
plication layer protocols from formal specifications in Estelle, Proceedings

of 6** IWPTS, Pau, France, September 1993.

B. Sarikaya, OSI Conformance Abstract Test Suite Design, to be published
in Computer Networks and ISDN Systems,1993.

G. Cowin, Experiences in developing a test suite structure and test pur-

poses document for open systems, Technical Report, National Physical

Laboratory, 1991.

M. Weizer, Program Slicing, IEEE Transactions on Software Engineering,

vol. 10, pp. 352-357, 1984.

H. Agrawal, J. R. Horgan, Dynamic Program Slicing, Proceedings of the
ACM SIGPLAN’ 90 Conference, White Plains, New York, pp. 246-256,
1990.

S. Horwitz, T. Reps, D. Binkley, Interprocedural Slicing Using Dependence
Graphs, ACM Transactions on Programming Languages and Systems, vol.

12, pp.26-60, 1990.

A. Ulrich, H. Konig, Test derivation from LOTOS using structure infor-
mation, Proceedings of 6** IWPTS, Pau, France, September 1993.

Information Processing Systems-OSI-Protocol Specification for the Asso-

ciation Control Service Element, International Standard, IS 8650, 1988.

Information Technology-OSI-Protocol Specification for the Association
Control Service Element ACSE - Part 2: Protocol Implementation Confor-

mance Statement (PICS) Proforma, Draft International Standard 8650-2,

1990.

Information Technology-OSI-Conformance test suite for the ACSE proto-

col - Part | : Test suite structure and test purposes, Draft International

Standard, 1990.

G. V. Bochmann, M. Deslauriers, Combining ASN.1 support with the
LOTOS language, PSTV IX, North-Holland, pp.175-186, 1990.

BIBLIOGRAPHY 123

[49] ISO/IEC TR 10024, Information Technology - Telecommunications and
information exchange between systems - Formal description of I1SO 8073

(Classes 0,1,2,3) in LOTOS, 1992.

[50] Abstract Test Suite for Transport Class 2, The National Computing Cen-
ter Limited, Manchester, UK, 1988.

[51] B. Sarikaya, A. Wiles, Standard conformance test specification language
TTCN, Computer Standards & Interfaces, vol. 14, pp.117-144, 1992.

[52] A.T.Dahbura, K. K. Sabnani, M. U. Uyar, Formal methods for generating
protocol conformance test sequences, Proceedings of IEEE, vol. 78, pp.

1317-1325, 1990.

Chapter 8

APPENDICES

24

Appendix A

INRES Base Protocol Specification In
LOTOS

The following LOTOS code is the state-oriented formal base specification of
INRES Protocol. The specification is relatively different than the one given in
[37]. Some modifications have been performed on the original specification in
order to bring it in a suitable form for further processing according to the meth-
ods defined in previous chapters. The definition of the Medium Service is not
included in order to obtain a specification which describes only the behaviour
of a protocol entity. The specification is parameterized according to the param-
eters defined in the PICS Proforma given in Appendix B, and the behaviour
and the associated data types related to the Static Conformance Review pro-
cess, are added. The process named ‘Coder’, responsible for coding the INRES
PDUs in Medium Service Primitives, is removed and its functionality is dis-
tributed into the other parts of the specification. The specification is flattened
by applying the steps given in Chapter 3. Specifically, the first phase of the
chart construction algorithm is applied, the process definitions are rewritten
in order to make them statically independent, and guards which are not the
first expressions in their composite behaviour expressions, and which depend
on input variables are replaced by selection predicates. Finally, in the complete

specification given below process identifiers are renamed according to the state

tables given in Chapter 4.

APPENDIX A. INRES BASE PROTOCOL SPECIFICATION IN LOT0S126

specification Inres_Protocol [ISAP,MSAP](c1,c2 : Bool):noexit
(* c1, c2 : PICS parameters. *)

(* c1 : Initiator capability is supported x)

(* c2 : Responder capability is supported *)

library Boolean
endlib

type DecNumb is Boolean

sorts DecNumb

opns
0 : => DecNumb
s : DecNumb ~> DecNumb
1,2,3,4,5,6,7,8,9 : => DecNumb
==’ _<—9
<= >= > : DecNumb , DecNumb -> Bool

egns forall x,y: DecNumb

ofsort Bool

X == X = true;
S(X) == S(y) = x == y;
0 = false;

s(x) =
== s(y) = false;

x < x = false;

s(x) < s(y) = x <y;

0 < s(y) = true;

s(x) < 0 = false;

x <=y = (x <y)or (x ==y);
x >y =not (x<y);

x>y =mnot (x<=y);

ofsort DecNumb

1 = s(0);

2 = s(s(0));

3 = s(s(s(0)));

4 = s(s(s(s(0))));

APPENDIX A. INRES BASE PROTOCOL SPECIFICATION IN LOTOS127

= 5(s(s(s(s(0)))));

= s(s(s(s(s(s(0))))));
s(s(s(s(s(s(s(0)))))));

= s(s(s(s(s(s(s(s(0))))))));

= s(s(s(s(s(s(s(s(s(0)))))))));
endtype (* DecNumb *)

© 0 N o o»m
"

type ISDUType 1is
sorts ISDU
opns datal,data2,data3,datad4,data5 : -> ISDU

endtype (* ISDUType *)

type Sequencenumber is Boolean
sorts Sequencenumber

opns
0 : -> Sequencenumber
1 : -> Sequencenumber
succ : Sequencenumber -> Sequencenumber
-eq_, _ne_ : Sequencenumber,Sequencenumber -> Bool

eqns forall a,b : Sequencenumber
ofsort Sequencenumber
succ(0) = 1;
succ(1) = 0;

ofsort Bool

0 eq 0 = true;
1 eq 1 = true;
0 eq 1 = false;
1 eq 0 = false;
0 ne 1 = true;
1 ne 0 = true;
0 ne 0 = false;
1 ne 1 = false;

endtype (* Sequencenumber *)

type InresSpType i1s Boolean, ISDUType, DecNumb

APPENDIX A. INRES BASE PROTOCOL SPECIFICATION IN LOTOS128

sorts SP

opns
ICONreq, ICONconf,IDISind,
ICONind,ICCNresp,IDISreq : -> SP
IDATreq, IDATind : ISDU -> SP

1sICONreq,isICONconf,isIDISind,isIDATreq,
1sIDATind,isICONind, 1sICONresp,isIDISreq: SP -> Bool

data . Sp -> ISDU
map : SP -> DecNumb
eqns forall 4 : ISDU, sp : SP

ofsort DecNumb
map (ICONreq) = 0;
map (ICONconf) = 1;
map (IDISind) = 2;
map(IDATreq(d)) = 3;
map (IDATind(d)) = 4;
map (ICONind) = 5;
map(ICONresp) = 6;
map (IDISreq) =7;

ofsort ISDU
data(IDATreq(d)) = d;
data(IDATind(d)) = d;

ofsort Bool
iSICONreq(Sp) = map(sp) == 0;
isICONconf(sp) = map(sp) == 1;
isIDISind(sp) = map(sp) == 2;
isIDATreq(sp) = map(sp) == 3;
isIDATind(sp) = map(sp) == 4;
isICONind(sp) = map(sp) == 5;
isICONresp(sp) = map(sp) == 6;
isIDISreq(sp) = map(sp) == 7;

endtype (* InresSpType *)

type IPDUType is Boolean, ISDUType, DecNumb, Sequencenumber
sorts IPDU

APPENDIX A. INRES BASE PROTOCOL SPECIFICATION IN LOTOS129

opns
CR,CC,DR : -> IPDU
DT : Sequencenumber,ISDU -> IPDU
AK : Sequencenumber -> IPDU
1sCR,1sCC,isDT,
1sAK,isDR : IPDU -> Bool
data : IPDU -> ISDU
num : IPDU -> Sequencenumber
map : IPDU => DecNumb

eqns forall f: Sequencenumber, d : ISDU, ipdu : IPDU !
ofsort DecNumb
map(CR) = 0;
map(CC) = 1;
map(DT(£,d)) = 2;
map (AK(£)) = 3;
map(DR) = 4;

ofsort ISDU
data(DT(f,d)) = d;

ofsort Sequencenumber
num(DT(f,d)) = f;

num(AK(£)) = f;

ofsort Bool

isCR(ipdu) = map(ipdu) == 0;
isCC(ipdu) = map(ipdu) == 1;
isDT(ipdu) = map(ipdu) == 2;
isAK(ipdu) = map(ipdu) == 3;
isDR(ipdu) = map(ipdu) == 4;

endtype (* IPDUType *)

type MediumSpType is Boolean, IPDUType, DecNumb
sorts MSP
opns
MDATreq,MDATind : IPDU -> MSP
isMDATreq,isMDATind : MSP -> Bool

APPENDIX A. INRES BASE PROTOCOL SPECIFICATION IN LOT0S130

data : MSp -> IPDU
map : MSP -> DecNumb

eqns forall d : IPDU, sp : MSP
ofsort DecNumb
map (MDATreq(d)) = 8;
map (MDATind(d))

1
©0

ofsort IPDU
data(MDATreq(d)) = d;
data(MDATind(d))

[}
jo N

ofsort Bool
isMDATreq(sp) = map(sp) == 8;
isMDATind(sp) = map(sp) == 9;
endtype (* MediumSpType *)

type StaticConformance is Boolean
opns CapabilityConform : Bool, Bool -> Bool

eqns forall c1, c2 : Bool
ofsort Bool
CapabilityConform (cl, c2) =
((c1 and not(c2)) or (not(cl) and c2))

endtype (* StaticConformance *)

behaviour

(* Static Conformance Review. *)
[CapabilityConform (c1, c2)] -> INRES [ISAP,MSAP](c1,c2)

where

process INRES [ISAP,MSAP] (c1,c2 : Bool) :noexit:=
[c1]-> Initiator[ISAP,MSAP]

]
[c2]-> Responder [ISAP,MSAP]

endproc (* INRES *)

APPENDIX A. INRES BASE PROTOCOL SPECIFICATION IN LOTOS131

process Initiator[ISAP,MSAP] :noexit:=
(hide d in
Connectionphase_Ini[ISAP,MSAP,d]
| [d]] d;Dataphase_Ini[ISAP,MSAP] (succ(0)))
[>Disconnection_Ini[ISAP,MSAP]

endproc (* Initiator x)

process Connectionphase_Ini[ISAP,MSAP,d]:exit:=
hide dd in
Disconnected_Ini[ISAP,MSAP,dd]
| [dd] | dd?z:DecNumb;WaitforCC[ISAP,MSAP,d](z)

endproc (* Connectionphase_Ini *)

process Disconnected_Ini[ISAP,MSAP,dd] :exit:=
ISAP?sp:SP[isICONreq(sp)];MSAP!MDATreq(CR) ;dd's(0);exit
(]

ISAP?sp:SP[not(isICONreq(sp))];
Disconnected_Ini[ISAP,MSAP,dd]

(* User errors are ignored (Invalid/Inopportune Beh.) *)
L]

MSAP?sp:MSP[isMDATind(sp) and not(isDR(data(sp)))];
Disconnected_Ini[ISAP,MSAP,dd]

(* DR is only accepted by process Disconnection *)

(* System errors are ignored (Invalid/Inopportune Beh.) *)

endproc (* Disconnected_Ini *)

process WaitforCC[ISAP,MSAP,d] (z:DecNumb) :exit:=
MSAP?sp:MSP
[isMDATind(sp) and not(isDR(data(sp))) and isCC(data(sp))];
ISAP!ICONconf;d;exit

1
MSAP?sp:MSP[isMDATind(sp) and not(isDR(data(sp)))

and not(isCC(data(sp)))];
WaitforCC[ISAP,MSAP,d](z)
(* System errors are ignored (Invalid/Inopportune Beh.) *)

(* DR is only accepted by process Disconnection *)

(]

APPENDIX A. INRES BASE PROTOCOL SPECIFICATION IN LOT0OS132

i; (* Timeout *)
({z < 4]~> MSAP'MDATreq(CR);WaitforCC[ISAP,MSAP,d] (s(z))

(1

[z =

4]-> ISAP!IDISind;Connectionphase_Ini[ISAP,MSAP,d])
(]

ISAP?sp:SP[not(isIDISind(sp))];WaitforCC[ISAP,MSAP,d] (z)

(* User errors are ignored (Invalid/Inopportune Beh.) *)

endproc (* WaitforCC *)

process Dataphase_Ini[ISAP,MSAP]

(number : Sequencenumber) :noexit:=

hide d in
Connected_Ini[ISAP,MSAP,d] (number)
(¥ 1 is the first Sequencenumber *)

|{d]| d7z:DecNumb?number:Sequencenumber?olddata:ISDU;
Sending[ISAP,MSAP] (z,number,olddata)
(* z is number of sendings. At the beginning z=1 %)

endproc (* Dataphase_Ini *)

process Connected_Ini[ISAP,MSAP,d]
(number:Sequencenumber):éxit:=
ISAP?sp:SP[isIDATreq(sp)];
MSAP!'MDATreq (DT (number,data(sp)));
d!'s(0) 'number!data(sp);exit
(]
ISAP?sp:SP[not(isIDATreq(sp))];

Connected_Ini[ISAP,MSAP,d] (number)
(* User errors are ignored (Invalid/Inopportune Beh.) *)

(]

MSAP?sp:MSP[isMDATind(sp) and not(isDR(data(sp)))];
Connected_Ini[ISAP,MSAP,d] (number)

(* DR is only accepted by process Disconnection *)

(¥ System errors are ignored (Invalid/Inopportune Beh.) *)

endproc (* Connected_Ini *)

process Sending[ISAP,MSAP]
(z:DecNumb,number:Sequencenumber, olddata:ISDU) :noexit:=

MSAP?sp:MSP

APPENDIX A. INRES BASE PROTOCOL SPECIFICATION IN LOTOS133

[isMDATind(sp) and not(isDR(data(sp))) and
isAK(data(sp)) and (num(data(sp)) eq number)];
Dataphase_Ini[ISAP,MSAP] (succ(number))
(]
MSAP7sp:MSP
(isMDATind(sp) and not(isDR(data(sp))) and isAK(data(sp))
and (num(data(sp)) ne number) and (z < 4)];
MSAP!MDATreq (DT (number,olddata)) ;
Sending[ISAP,MSAP] (s(z) ,number,olddata)
]
MSAP?sp :MSP
[isMDATind(sp) and not(isDR(data(sp))) and isAK(data(sp))
and (num(data(sp)) ne number) and (z == 4)];
ISAP!'IDISind;Initiator[ISAP,MSAP]
(* The Initiator shall not resend more than 4 times *)

(* in case of faulty transmission *)

(]

MSAP7sp:MSP

[isMDATind(sp) and not(isDR(data(sp)))
and not(isAK(data(sp)))];

Sending [ISAP ,MSAP] (z,number,olddata)

(* System errors are ignored (Invalid/Inopportune Beh.) *)
]
i; (* Timeout *)
([z < 4]-> MSAP'MDATreq(DT (number,olddata));
Sending[ISAP ,MSAP] (s(z) ,number,olddata)
(]
[z == 4]-> ISAP!'IDISind;Initiator[ISAP,MSAP])
(]
ISAP?sp:SP[not(isIDATreq(sp))];
Sending [ISAP,MSAP] (z,number,olddata)
(* User errors are ignored (Invalid/Inopportune Beh.) *)

endproc (* Sending *)

process Disconnection_Ini[ISAP,MSAP] :noexit:=
MSAP?sp:MSP[isMDATind(sp) and isDR(data(sp))];ISAP!IDISind;
Initiator[ISAP,MSAP]

endproc (* Disconnection_Ini *)

APPENDIX A. INRES BASE PROTOCOL SPECIFICATION IN LOTOS134

process Responder [ISAP,MSAP] :noexit:=
(hide d in
Connectionphase_Res[ISAP,MSAP,d]
| fd] |l d;Dataphase_Res[ISAP,MSAP] (succ(1)))
[>Disconnection_Res[ISAP,MSAP]

endproc (* Responder *)

process Connectionphase_Res[ISAP,MSAP,d]:exit:=
hide dd in
Disconnected_Res[ISAP,MSAP,dd]
| [dd]| dd;WaitforICONresp1[ISAP,MSAP,d]

endproc (* Connectionphase_Res *)

process Disconnected_Res[ISAP,MSAP,dd]:exit:=
MSAP7sp:MSP[isMDATind (sp) and isCR(data(sp))];
ISAP'!'ICONind;dd;exit

]

MSAP?sp:MSP[isMDATind(sp) and not(isCR(data(sp)))];
Disconnected_Res[ISAP,MSAP,dd]

(* System errors are ignored (Invalid/Inopportune Beh.) *)

(]
ISAP?sp:SP[isICONresp(sp)];Disconnected_Res[ISAP,MSAP,dd]

(* User errors are ignored (Invalid/Inopportune Beh.) *)

endproc (* Disconnected_Res *)

process WaitforICONrespl[ISAP,MSAP,d]:exit:=
ISAP?sp:SP[isICONresp(sp)];MSAP!MDATreq(CC) ;d;exit

(]
MSAP?sp:MSP[isMDATind(sp)];WaitforICONrespl [ISAP,MSAP,d]

(* System errors are ignored (Invalid/Inopportune Beh.) *)

endproc (* WaitforICONrespl *)

process Dataphase_Res[ISAP,MSAP]
(number : Sequencenumber) :noexit:=
(* number is the last acknowledged Sequencenumber *)
hide d in
Connected_Res[ISAP,MSAP,d] (number)

APPENDIX A. INRES BASE PROTOCOL SPECIFICATION IN LOTOS135

I[d]| d;WaitforICONresp2[ISAP,MSAP]

endproc (* Dataphase_Res *)

process Connected_Res[ISAP,MSAP,d]
(number : Sequencenumber):exit:=
MSAP7?sp:MSP
[1isMDATind(sp) and isDT(data(sp))
and (num(data(sp)) eq succ(number))];
ISAP!IDATind(data(data(sp)));
MSAP !MDATreq (AK (num(data(sp))));

Connected_Res[ISAP,MSAP,d] (succ(number))
0]

MSAP?sp :MSP
[isMDATind(sp) and isDT(data(sp))
and (num(data(sp)) eq number)];
MSAP!MDATreq (AK (num(data(sp))));
Connected_Res[ISAP,MSAP,d] (number)
(]
MSAP?sp:MSP[isMDATind(sp) and isCR(data(sp))];
ISAP!'ICONind;d;exit
]
MSAP7sp:MSP
[isMDATind(sp) and not(isDT(data(sp)) or isCR(data(sp)))];
Connected_Res[ISAP,MSAP,d] (number)

(* System errors are ignored (Invalid/Inopportune Beh.) *)

(]
ISAP?sp:SP[isICONresp(sp)];
Connected_Res[ISAP,MSAP,d] (number)

(* User errors are ignored (Invalid/Inopportune Beh.) *)
endproc (* Connected_Res *)

process WaitforICONresp2[ISAP,MSAP] :noexit:=
ISAP?sp:SP[isICONresp(sp)];MSAP!MDATreq(CC) ;
Dataphase_Res[ISAP,MSAP] (succ(1))

(]

MSAP?sp:MSP[isMDATind(sp)];WaitforICONresp2 [ISAP,MSAP]
(* System errors are ignored (Invalid/Inopportune Beh.) *)
endproc (* WaitforICONresp2 *)

APPENDIX A. INRES BASE PROTOCOL SPECIFICATION IN LOTOS136

process Disconnection_Res[ISAP,MSAP] :noexit:=
ISAP?sp:SP[isIDISreq(sp)];MSAP !MDATreq(DR) ;
Responder [ISAP,MSAP]

endproc (* Disconnection_Res %)

endspec

Appendix B

PICS Proforma For INRES

B.1 Date of Statement

1 | Date of statement yy-mm-dd

B.2 Implementation Details

The information necessary to uniquely identify the implementation and the

system in which it may reside.

a) Supplier, implementation name, operating system, suitable hardware.
b) System supplier and/or client of the test laboratory.
¢) Information on whom to contact concerning the contents of the PICS.

137

APPENDIX B. PICS PROFORMA FOR INRES 138

B.3 Global Statement of Conformance

1 | Are all mandatory features implemented ? Yes or No

NOTE - If a positive response is not given to this box, then the implemen-

tation does not confirm to the INRES protocol.

B.4 Initiator/Responder Capability

No | Capability | D I

I | Initiator o.l

2 | Responder | o.1

NOTE - o.1 : Exactly one of the capabilities is mandatory for a system

claiming conformance.

B.5 Supported PDUs

Transmission Reception
No | IPDU
D 1 D I
1 | Connect Request IPDU (CR) cl c2
2 | Connect Confirm IPDU (CC) c2 cl
3 | Data Transfer IPDU (DT) cl c2
4 | Acknowledgement IPDU (AK) | ¢2 cl
5 | Disconnect Request IPDU (DR) | ¢2 cl

NOTE - ¢l : if 4/1 then m else -
c2 : if 4/2 then m else -

APPENDIX B. PICS PROFORMA FOR INRES 139

B.6 Supported PDU Parameters

This section identifies the parameters supported in INRES PDUs. The supplier
shall indicate all of the parameters supported for which conformance is claimed,

and also list any associated limitations.

B.6.1 Data Transfer IPDU (DT)

. Value
No | Sending Parameter
D I Allowed Supported
1 | Sequence Number | m
2 | User Information m
. Value
No | Receiving Parameter
D 1 Allowed Supported
3 | Sequence Number m
4 | User Information m
B.6.2 Acknowledgement IPDU (AK)
_ Value
No | Sending Parameter
D 1 Allowed Supported
1 | Sequence Number | m
o Value
No | Receiving Parameter 7
D I Allowed Supported
2 | Sequence Number m

APPENDIX B. PICS PROFORMA FOR INRLS

B.7 Timers

No

Timer

Value

Allowed

Supported

Retransmission Timer

m

140

Appendix C

Test Suite Structure and Test
Purposes for INRES

C.1 Initiator (I)

Test Group Objective : To test the IUT in the role of initiator.

Subgroups :

1. Basic Interconnection and Capability Tests (BIC)

2. Valid Behaviour Tests (BV)
3. Invalid & Inopportune Behaviour Tests (BIO)

C.1.1 I/Basic Interconnection and Capability Tests
(BIC)

Test Group Objective : To provide limited testing of each of the confor-
mance requirements for INRES, to ascertain what capabilities of the IUT can
be observed, and to check that those observable capabilities are valid with
respect to the static conformance requirements and the PICS.

Test Purposes :

1. Test the IUT’s ability to issue a CR and receive a CC (1/BV/CE/1).

2. Test the IUT’s ability to issue a DT and receive an AK (I/BV/DT/1).

141

APPENDIX C. TEST SUITESTRUCTURE AND TEST PURPOSES FOR INRES142

C.1.2 1I/Valid Behaviour Tests (BV)

Test Group Objective : Behaviour tests test an implementation as throughly
as 1s practical, over the full range of dynamic conformance requirements. Tests

are included to check valid behaviour by the IUT in response to valid behaviour

by the real tester.
Subgroups :

1. Connection Establishment (CE)
2. Data Transfer (DT)
3. Disconnection (DC)

C.1.2.1 1I/BV/Connection Establishment (CE)

Test Group Objective : To test the connection establishment procedures

by having the IUT generate a CR.

Test Purposes :

1. Respond with CC.Check that the IUT established the connection.
2. Respond with DR. Check that the [UT did not establish the connection.

3. Wait until the related timer expires. Check that the IUT retransmits

the CR.

4. Cause the timer expire four times. Check that the IUT releases the

connection

C.1.2.2 I/BV/Data Transfer (DT)

Test Group Objective : To test the data_transfer procedures of the IUT in

the role of sender, by having it generate a DT.

APPENDIX C. TEST SUITESTRUCTURE AND TEST PURPOSES FOR INRES143

Test Purposes :

1. Accept the data sent and send an AK IPDU. Check that IUT behaves
accordingly.

2. Reject the data sent by the IUT and respond with a negative AK IPDU.
Check that the IUT retransmits the same piece of data.

3. Reject the data sent by the IUT four times. Check that the IUT releases

the connection.
4. Wait until the related timer expires. Check that the IUT retransmits

the data.
5. Cause the timer expire four times. Check that the IUT releases the

connection.

C.1.2.3 1I/BV/Disconnection (DC)

Test Group Objective : To test the release of a connection by having the
IUT receive a DR IPDU for each ICPM (Inres Control Protocol Machine) state.

Test Purposes :

1. Disconnected State.
2. WaitforCC State.
3. Connected State.
4. Sending State.

C.1.3 I/Invalid & Inopportune Behaviour Tests (BIO)

Test Group Objective : To check valid behaviour by the IUT in response
to invalid and inopportune behaviour by the real tester. The subgroups are on

a state by state basis. For each state the IPDUs which are not valid for the

given state will be presented to the IUT.
Subgroups :

1. Disconnected State (STAO)
2. WaitforCC State (STAL)
3. Connected State (STA2)
4. Sending State (5STA3)

APPENDIX C. TEST SUITESTRUCTUREA D TEST PURPOSES FOR INRES144

C.1.3.1 I/BIO/Disconnected State (STAO)

Test Group Objective: Test the [UT’s reaction to invalid/inopportune
IPDUs in the Disconnected State.

Test Purposes :

1. CC IPDU.
2. AK IPDU.

C.1.3.2 I/BIO/WaitforCC State (STA1)

Test Group Objective : Test the [UT’s reaction to invalid/inopportune
IPDUs in the WaitforCC State.

Test Purposes :

1. AK IPDU.

C.1.3.3 I/BIO/Connected State (STA2)

Test Group Objective: Test the IUT’s reaction to invalid/inopportune

[PDUs in the Connected State.

Test Purposes :

1. CCIPDU.
2. AK IPDU.

C.1.3.4 1/BIO/Sending State (STA3)

Test Group Objective: Test the IUT’s reaction to invalid/inopportune

IPDUs in the Sending State.
Test Purposes :

1. CCIPDU.
2. AK IPDU with an invalid parameter value.

APPENDIX C. TEST SUITESTRUCTURE AND TEST PURPOSES FOR INRES145

C.2 Responder (R)

Test Group Objective : To test the IUT in the role of responder.
Subgroups :

1. Basic Interconnection and Capability Tests (BIC)
2. Valid Behaviour Tests (BV)
3. Invalid & Inopportune Behaviour Tests (BIO)

C.2.1 R/Basic Interconnection and Capability Tests
(BIC)

Test Group Objective : To provide limited testing of each of the confor-
mance requirements for INRES, to ascertain what capabilities of the IUT can
be observed, and to check that those observable capabilities are valid with

respect to the static conformance requirements and the PICS.

Test Purposes :

1. Test the IUT’s ability to receive a CR and issue a CC (R/BV/CE/1).
2. Test the IUT’s ability to receive a DT and issue an AK (R/BV/DT/1).
3. Test the IUT’s ability to issue a DR (R/BV/DC).

C.2.2 R/Valid Behaviour Tests (BV)

Test Group Objective : To test the valid behaviour of the IUT in response

to valid behaviour by the real tester.

Subgroups :

n

1. Connection Establishment (CE)
2. Data Transfer (DT)
3. Disconnection (DC)

APPENDIX C. TEST SUITESTRUCTURE AND TEST PURPOSES FOR INRES146

C.2.2.1 R/BV/Connection Establishment (CE)

Test Group Objective : To test the connection establishment procedures

by attempting to establish a connection to the IUT (by sending a CR IPDU).

Test Purposes :

1. The service user at the IUT side accepts the connection. Check the [UT

sends a CC, and establishes the connection.
2. The service user at the IUT side rejects the connection. Check the IUT

sends a DR.

C.2.2.2 R/BV/Data Transfer (DT)

Test Group Objective : To test the data_transfer procedures of the IUT in
the role of receiver (by sending a DT IPDU).

Test Purposes :

1. Present the I[UT an in_sequence data (DT IPDU), and check the IUT
responds with appropriate AK IPDU and delivers the data to its service_user.

2. Present the IUT an out_of_sequence data item, and check the IUT be-

haves appropriately.
3. Present the IUT with a CR IPDU. Check that it informs its user for the

(new) connection request.

C.2.2.3 R/BV/Disconnection (DC)

Test Group Objective : To test the release of a connection by having the

IUT receive an IDISreq primitive for each [CPM state.

Test Purposes :

I. Disconnected State.
2. WaitforICONresp State.
3. Connected State.

APPENDIX C. TEST SUITESTRUCTURE AND TEST PURPOSES FOR INRES147

C.2.3 R/Invalid & Inopportune Behaviour Tests
(BIO)

Test Group Objective : To check valid behaviour by the IUT in response
to invalid and inopportune behaviour by the real tester. The subgroups are on
a state by state basis. For each state the IPDUs which are not valid for the

given state will be presented to the IUT.
Subgroups :

1. Disconnected State (STAOQ)
2. WaitforICONresp State (STAL)
3. Connected State (STA2)

C.2.3.1 R/BIO/Disconnected State (STAO)

Test Group Objective: Test the [UT’s reaction to invalid/inopportune

IPDUs in the Disconnected State.

Test Purposes :

1. DT IPDU.

C.2.3.2 R/BIO/WaitforICONresp State (STA1)

Test Group Objective : Test the IUT’s reaction to invalid/inopportune
IPDUs in the WaitforlCONresp State.

Test Purposes :

1. DT IPDU.
2. CR IPDU.

C.2.3.3 R/BIO/Connected State (STA2)

Test Group Objective: Test the IUT’s reaction to invalid/inopportune

IPDUs in the Connected State.

APPENDIX C. TEST SUITE STRUCTURE AND TEST PURPOSES FOR INRES148

Test Purposes :

1. DT IPDU with an invalid parameter- value.

Appendix D

ACSE Base Protocol Specification In
LOTOS

This Appendix contains the behaviour part of the LOTOS code of the ACSE
protocol. The given specification is in the state-oriented style defined in [24].
Since it has a total of about 2500 lines of LOTOS code, out of which 90%
consists of abstract data types, only the behaviour part is reproduced here. As
in the case of INRES protocol, the specification is flattened by applying the
steps mentioned in Chapter 3, and some behaviour expressions and data types

related to PICS parameterization have been added.

specification ACSE_Protocol[A,P](c1,c2,c3 : Bool):noexit
(* c1, c2, c3 : PICS parameters. *)

(* c1 : Association initiator capability is supported *)
(* c2 : Association responder capability is supported *)
(* c3 : RLRQ APDU is supported for transmission *)

(* Abstract Data Types *)

behaviour

(* Static Conformance Review *)
[CapabilityConform (c1, c2)] -> ACSE[A,P](c1,c2,c3)

where

149

APPENDIX D. ACSE BASE PROTOCOL SPECIFICATION IN LOTOS150

process ACSE[A,P](c1,c2,c3 : Bool):noexit:=
hide d in
Assoc_Estab[A,P,d] (c1,c2,c3)
I[d]| d7c:calltype; (Normal_Rel[A,P](c,c1,c2,c3)
[> Abort[A,P](c1,c2,c3))
endproc (* ACSE *)

process Assoc_Estab[A,P,d](c1,c2,c3 : Bool):exit:=

hide dd in
Unassociated[A,P;dd](c1,c2,c3)

I[dd]| (dd?f:calltypelf = calling];
AwaitAARE[A,P,d](c1,c2,c3)
[]
dd?f:calltypel[f = called];
AwaitAASCrsp([A,P,d](c1,c2,c3))

endproc (* Assoc_Estab *)

process Unassociated[A,P,dd](c1,c2,c3 : Bool):exit:=
A 7 x : primitive [IsAASCreq(x) and cl1];

P ! Out ! PCONreq(make_AARQ(get_AASCreq(x)));
dd'!calling;exit

(]

P ! Input 7 x : primitive

[IsPCONind(x) and IsAARQ(user_data(x))

and not(common_prot_version(get_AARQ(user_data(x))))

and c2];

P ! Out ! PCONrspR(make_AARE(get_AARQ(user_data(x))));
Unassociated[A,P,dd] (c1,c2,c3)

(]

P ! Input ? x : primitive

[IsPCONind(x) and IsAARQ(user_data(x))

and common_prot_version(get_AARQ(user_data(x)))

and c2];

A ' make_AASCind(get_AARQ(user_data(x)));
dd'called;exit
(]

P ! Input ? x : primitive

[IsPCONind(x) and not(IsAARQ(user_data(x)))];

APPENDIX D. ACSE BASE PROTOCOL SPECIFICATION IN LOTOS151

protocol_error[A,P](c1,c2,c3)
(* Invalid Behaviour x)

endproc (* Unassociated *)

process AwaitAARE[A,P,d](c1,c2,c3 : Bool):exit:=
(P ! Input 7 x : primitive
[IsPCONcnfA(x) and IsAARE(user_data(x)) and
(result(get_AARE(user_data(x))) eq accepted)];
A ! make_AASCcnfU(get_AARE(user_data(x)));
d'calling;exit
[1 (* Source : AC-peer (ACSE Service User Rejection) *)
P ! Input ? x : primitive
[IsPCONcnfUR(x) and IsAARE(user_data(x)) and
not(result(get_AARE(user_data(x))) eq accepted)
and IsAssociate_source_diagnostic_genere_0
(result_source_diagnostic(get_AARE(user_data(x))))];
A ! make_AASCcnfU(get_AARE(user_data(x)));
Assoc_Estab[A,P,d] (c1,c2,c3)
[] (* Source : AC-peer (ACSE Service Provider Rejection) *)
P ! Input 7 x : primitive
[IsPCONcnfUR(x) and IsAARE(user_data(x)) and
not (result(get_AARE(user_data(x))) eq accepted)
and IsAssociate_source_diagnostic_genere_1
(result_source_diagnostic(get_AARE(user_data(x))))];
A ! make_AASCcnfP(get_AARE(user_data(x)));
Assoc_Estab[A,P,d] (c1,c2,c3)
[J (* Source : PS-provider (Provider Rejection) *)
P ! Input ! PCONcnfPR;
A ! make_AASCcnf;
Assoc_Estab[A,P,d] (c1,c2,c3)
(i
P ! Input ? x : primitive
[IsPCONcnfA(x) and not(IsAARE(user_data(x)))];
protocol_error[A,P](cl,c2,c3))
(* Invalid Behaviour x*)
>
Abort[A,P](c1,c2,c3)
endproc (* AwaitAARE *)

APPENDIX D. ACSE BASE PROTOCOL SPECIFICATION IN LOTOS152

process AwaitAASCrsp[A,P,d](c1l,c2,c3 : Bool):exit:=
(A7 x : primitive
[IsAASCrsp(x) and (result(get_AASCrsp(x)) eq accepted)];
P ! Out ! PCONrspA(make_AARE(get_AASCrsp(x)));
d!called;exit
(]
A 7 x : primitive
[IsAASCrsp(x) and not(result(get_AASCrsp(x)) eq accepted)];
P ! Out ! PCONrspR(make_AARE(get_AASCrsp(x)));
Assoc_Estab[A,P,d](c1,c2,c3))
>
Abort[A,P](c1,c2,c3)
endproc (* AwaitAASCrsp *)

process Normal_Rel[A,P](c:calltype,cl,c2,c3:Bool) :noexit:=
hide d in

Associated[A,P,d] (c1,c2,c3)
I[d]} (d7f:calltypelf = calling];

WaitforRLRE[A,P] (c,c1,c2,c3)

(]
d?7f:calltypelf = called];

AwaitARLSrsp[A,P](c,c1,c2,c3))

endproc (* Normal_Rel *)

process Associated[A,P,d](c1,c2,c3 : Bool):exit:=
A ? x : primitive [IsARLSreq(x) and c3];

P ! Out ! PRLSreq(make_RLRQ(get_ARLSreq(x)));
d'calling;exit

(]

P ! Input ? x : primitive

[IsPRLSind(x) and IsRLRQ(user_data(x))];

A ! make_ARLSind(get_RLRQ(user_data(x)));
d!called;exit

(]

P ! Input ? x : primitive
[IsPRLSind(x) and not(IsRLRQ(user_data(x)))];
protocol_error[A,P](c1,c2,c3)

APPENDIX D. ACSE BASE PROTOCOL SPECIFICATION IN LOTOS153

(* Invalid Behaviour *)

endproc (* Associated *)

process WaitforRLRE[A,P] (c:calltype,cl,c2,c3:Bool) :noexit:=
hide d in
AwaitRLRE[A,P,d] (c,c1,c2,c3)
I[dll d;([c = calling] ->
Collision_association_initiator[A,P](c1,c2,c3)

(]
[c = called] ->
Collision_association_responder[A,P](c1,c2,c3))

endproc (* WaitforRLRE *)

process AwaitRLRE[A,P,d](c:calltype,cl,c2,c3 : Bool):exit:=
P ! Input 7 x : primitive

[IsPRLScnfA(x) and IsRLRE(user_data(x))];

A ! make_ARLScnfA(get_RLRE(user_data(x)));
ACSE[A,P](c1,c2,c3)

(]

P ! Input ? x : primitive

[IsPRLScnfR(x) and IsRLRE(user_data(x))];

A ! make_ARLScnfR(get_RLRE(user_data(x)));
Normal_Rel[A,P](c,c1,c2,c3)

(]

P ! Input ? x : primitive

[IsPRLSind(x) and IsRLRQ(user_data(x))];

A ! make_ARLSind(get_RLRQ(user_data(x)));
d;exit

[]

P ! Input ? x : primitive

[IsPRLSind(x) and not(IsRLRQ(user_data(x)))];
protocol_error[A,P](c1,c2,c3)

(* Invalid Behaviour *)
(]

P ! Input 7 x : primitive

[IsPRLScnfA(x) and not(IsRLRE(user_data(x)))];
protocol_error[A,P](c1,c2,c3)

(* Invalid Behaviour *)

APPENDIX D. ACSE BASE PROTOCOL SPECIFICATION IN LOTOS154

endproc (* AwaitRLRE *)

process Collision_association_initiator[A,P]
(c1,c2,c3 : Bool):noexit:=
A 7 x : primitive
[IsARLSrsp(x) and (result(get_ARLSrsp(x)) eq affirmative)];
P ! Out ! PRLSrspA(make_RLRE(get_ARLSrsp(x)));
WaitforRLRE[A,P] (calling, c1,c2,c3)
endproc (* Collision_association_initiator *)

process Collision_association_responder[A,P]
(c1,c2,c3 : Bool) : noexit :=
P ! Input 7 x : primitive
[IsPRLScnfA(x) and IsRLRE(user_data(x))];
A ' make_ARLScnfA(get_RLRE(user_data(x)));
AwaitARLSrsp[A,P](called,cl1,c2,c3)
(1
P ! Input ? x : primitive
[IsPRLScnfA(x) and not(IsRLRE(user_data(x)))];
protocol_error[A,P](c1,c2,c3)

(* Invalid Behaviour *)
endproc € Collision_association_responder *)

process AwaitARLSrsp[A,P](c:calltype, c1,c2,c3:Bool) :noexit:=
A ? x : primitive
[IsARLSrsp(x) and (result(get_ARLSrsp(x)) eq affirmative)];
P ! Qut ! PRLSrspA(make_RLRE(get_ARLSrsp(x)));
ACSE[A,P](c1,c2,c3)

(]

A 7 x : primitive
[IsARLSrsp(x) and (result(get_ARLSrsp(x)) eq negative)];

P ! Out ! PRLSrspR(make_RLRE(get_ARLSrsp(x)));
Normal_Rel[A,P](c,cl,c2,c3)

endproc (* AwaitARLSrsp *)

process Abort[A,P](c1,c2,c3 : Bool):noexit:=
A ? x : primitive [IsAABRreq(x)];
P ! Out ! PUABreq(make_ABRT(get_AABRreq(x)));

APPENDIX D. ACSE BASE PROTOCOL SPECIFICATION IN LOTOS155

ACSE[A,P](c1,c2,c3)

(1

P ! Input 7 x : primitive

[IsPUABind(x) and IsABRT(user_data(x))];
A ! make_AABRind(get_ABRT(user_data(x)));
ACSE[A,P](c1,c2,c3)

(]

P ! Input ! PPABind;

A ! make_APABind;

ACSE[A,P](c1,c2,c3)
(]

P ! Input ? x : primitive

[IsPUABind(x) and not(IsABRT(user_data(x)))];
protocol_error[A,P](c1,c2,c3)

(* Invalid Behaviour)

endproc (* Abort *)

process protocol_error[A,P](cl,c2,c3 : Bool):noexit:=
A ! make_AABRind;
P ! Out ! PUABreq(make_ABRT);

ACSE[A,P](cl1,c2,c3)
endproc (* protocol_error *)

endspec

