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ABSTRACT

GENERATING A ROBUST MODEL FOR PRODUGTION 
AND INVENTORY GONTROL

Aslı Sencer
M.S. in Industrial Engineering 

Supervisor; Professor Doctor Halim Doğrusöz 
February, 1993

In tills stud}', we generate a production and inventory control model which gives 
h'obust‘ solutions against demand estimation errors. This model is applied to 
a real production and inventory system; howe\’er, it is a general model where 
the demand rate is stochastic with a known probability distribution and other 
parameters of the system are constant. The proposed model is a bi-objective 
chicision making model, with two decision variables. .A ‘compromised* solution 
is found for the problem using the trade-off curve generated by a constrained 
sequential optimization technique, applied on a nonlinear programming model 
parametrically. Robustness against parameter estimation errors is tested by 
sensitivity analysis. Here a new dimension is added to sensitivity analysis 
methodology by including a sensitivity measure as a ‘cost of error* of parameter 
estimation. By so doing, the proposed model is tested against the classical EOQ 
model and it is shown that the proposed model ])erforms far better.

Key words: Production and Inventory Control, Economic Order Quantity, 
.Sensitivity Analysis, Robustness, Cost of Error.
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ÖZET

PARAMETRE TAHMİNİNDEKİ HATALARA DAYANIKLI 
BİR ÜRETİM VE ENVANTER KONTROL MODELİ

Aslı Sencer
Endüstri Mühendisliği Bölümü Yüksek Lisans 

Tez Yöneticisi: Prof. Dr. Halim Doğrusöz 
Şubat, 1993

Bu çalışmada, talep tahminindeki hatalara karşı dayanıklı çözümler üreten 
bir ürctim-stok kontrol modeli geliştirilmiştir. Bu model, gcı çek bir üretim-stok 
kontrol sistemine uygulanmak üzere kurulmuştur. Önerilen model, çift amaçlı 
ve iki karar değişkenli bir karar modeli olup, talebin, yoğunluk fonksiyonu bi­
linen bir rastlantı değişkeni ve diğer parametrelerin sabit olduğu varsayımına 
dayanmaktadır. Modelde öngörülen 1-Maliyet minimizasyonu ve 2-Karşılanan 
talep yüzdesi maksimizasyonu amaçları arasında bir uzlaşık çözüm elde et­
meye bciz olacak bir değiş-tokuş eğrisi, modeli tek kısıtlı bir matematik pro­
gramlama modeli gibi ve parametrik olarak işleterek elde edilmektedir. Mode­
lin ve modelden elde edilen çözümün parametre tahminlerindeki hatalara karşı 
dayanıklılığı (robustness) duyarlık analizi ile ölçülüyor. Burada duyarlık ölçüsü 
olarak parametre tahminlerindeki ’hatanın maliyeti’ kullanılmakla, duyarlık 
analizi metodolojisine yeni bir boyut getirilmektedir. Böylelikle, önerilen model, 
klasik BOQ (ekonomik sipariş miktarı) modeliyle karşılaştırılmakta ve EOQ 
modeline göre daha iyi .sonuç verdiği gösterilmektedir.

Anahtar sözcükler. Üretim ve Stok Kontrolü, Ekonomik Sipariş Miktarı, 
Duyarlık Analizi, Dayanıklılık, Hata Maliyeti.
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Chapter 1

IN T R O D U C T IO N

Developing models for controlling production and inventory systems has been a 
major area for many researchers since the beginning of this century. As defined 
by Hax and Candea [14], production and inventory systems are concerned with 
the effective management of the total flow of goods from the acquisition of raw 
materials to the delivery of finished goods to the final customer.

In this thesis, we try to generate a production and inventory control model 
which gives insensitive solutions against demand estimation errors. The inspi­
ration for this thesis subject came from a project conducted for production and 
inventory control in a process industry, a state enterprise PETKIM. Here, our 
aim is to design a control system which can be applied to this real system and 
used in the long run.

Very briefly, the problem of a plant manager in PETKIM is a specific pro­
duction and inventory control problem. PETKIM is a huge complex with 
several factories; recently most of the managers are faced with the problem of 

increasing inventory levels and they can not cope with the financial burden of 
those inventory. What they need is a control system that provides an effec­
tive management of the elements (stocks, products, working staff, etc.,) of the 
system in order to deliver the final products in appropriate quantities, at the 
desired time, quality and at a reasonable cost.

1



In fact the aforementioned problem can be solved by using a general pro­
duction and inventory control model; however when we look over the literature, 
we can see that most of the theoretical production and inventory control mod­
els were either misunderstood or not accepted by the managers in the past. 
The essence of implementation -especially for cases, that propose a change in 
ways of thinking- is to achieve wser acceptance and comfort. No matter how a 
powerful system is created, it will be useless unless it is well understood and 
appreciated by the decision maker (DM). T hat’s why in this thesis we will 
start by developing an in\'entory control model which will enable the DM to 
understand the benefits of the decision system, the decisions that are being 
made and results of those decisions in terms of the meaningful performance 
measures. This subject is analyzed by many researchers in the literature and 
are discussed in the next chapter [15] [19] [2.3] [26].

In this thesis we try to design a control system which has the basic prop­
erties discussed in the following paragraphs. Accordingl}', a production and 
inventory control system should primarily

• Guide the decision maker to decide.

DM is the person who controls the production and inventory system. He needs 
an assistance while deciding on when, at what rate and how much to produce, 
etc. to achieve a certain service level. In this thesis, our aim is to develop a 
system which will give that assistance to the DM. By ’assistance’, we mean 
that the DM should not be kept out of the decision process; quite the con­
trary, he should actively be involved in the decision process, rather than being 
rejjlaced by an inventory control model. Thus, we should design a production 
and inventory control system that will generate solutions that incorporate the 

intuition of the DM.

CHAPTER 1. INTRODUCTION 2

The reason for searching for an information system-rather than a mathe­
matical optimization model- is derived from the observation that,a mathemat­
ical model is only an approximation of the real world. An optimization model 
is characterized by the decision variables that optimize a well-defined goal (i.e..



objective function) with respect to a set of constraints. The optimum solution 
of the model provides the ’best’ vector of decisions, which means any other 
solution will be inferior to that of the optimum provided that the model is 
a ’perfect’ representation of the real system. However, we know that these 
models involve a lot of initial assumptions and estimates. Thus any change 
in the initial estimates of the parameters of the model for instance may lead 
to incorrect decisions. The DM should be able to explain the reasons of the 
deviations from the expected outcome. In other words, he should be able to 
control the system by guessing what inputs provide what outputs and what 
are effects of a change. In this sense, a production and inventory control model 
should provide an effective assistance for the DM to help him/her learn the 
production system. Then we should, state that another important property of 
our system is to

• Assist DM to learn how the system works.

As we have discussed in the above paragraphs, if a change occurs in the initial 
assumptions made, inventory control models may lead to misleading solutions. 
As we have repeated earlier, in this thesis our aim is to generate a model 
that gives insensitive solutions to changes in the initial estimates of the input 
parameters. Thus the model itself gives adaptive decisions while assisting the 
DM. We define these models as robust inventory control models and introduce 
a concept as the robxistness of a model. This property is analyzed in detail in 
the next chapters. Thus another significant property of our model is to

• Generate adaptive decisions due to changes in the initial estimates of the 
parameters.

CHAPTER 1. INTRODUCTION 3

Our model is a bi-objective decision making model with two decision vari­
ables. We try to build up a control mechanism which enables the DM to make a 
trade-off between two conflicting objectives of minimizing the total cost (set-up 

cost and the inventory holding cost) and maximizing the service level, which is 
measured in terms of the ratio of the customers satisfied on time. The model



generates a control mechanism similar to that of (s,S) policy type inventory 
control models. Thus, the decision variables are the maximum inventory level 
(produce up to level) and the reorder inventory level.

Our model originates from the classical EOQ model with a finite produc­
tion rate. We know that EOQ model is based on the ‘constant‘ demand rate 
assumption. When the demand rate is stochastic with a known distribution, it 
is likely that the solution is in error due to random fluctuations. In literature, 
it is shown that the optimal solution of EOQ model is insensitive to parameter 
estimation errors in demand rate. However, we now show that the cost, associ­
ated with a demand estimation error may be significantly large in EOQ model 
when the demands are stochastic. Thus we modify the classical EOQ model 
by changing the decision variable from the production quantity Q to maximum 
inventory level /  and show that this new model is insensitive to dejiiand esti­
mation errors when compared to the classical EOQ model. Using this model, 
we generate a reorder level model by incorporating the decisions related to the 
choice of the reorder level into the model. Thi.s optimization model is used 
to find the optimum values of the reorder level and maximum inventory level 
that minimizes the total cost function and provide a service level whose lower 
bound is defined by the DM. Thus our model generates an interactive control 
mechanism in which the intuition of the DM is activelv involved.

CHAPTER 1. INTRODUCTION 4

In the next chapters, we try to explain our methodology while generating 
a robust and adaptive decision making model that will assist the DM while 
giving production and inventory control decisions. In chapter 2, we give a brief 
literature review of the inventory control models and then state the literature 
related to the difficulties encountered in iniplementing the theoretical models. 
In chapter 3, we define the properties of our production and inventory con­
trol system and discuss the main elements of our system of objectives that are 
considered in thesis work. Then in chapter 4, we state the steps followed in 
constructing the production and inventory control model. Chapter 5 includes 
the sensitivity analysis of our generated model to the estimation errors in the 
input parameters of the model and also includes the comparison of the perfor­
mance of this model to that of the classical EOQ model. In chapter 6, we state



CHAPTER 1. INTRODUCTION

the significant conclusions that we derive out of this thesis work.



Chapter 2

LITERATURE R EV IEW

The earliest known analysis of inventory systems is made by Ford Whitman 
Harris, who first presented the ‘economic order quantity‘ EOQ model in a 
publication in 1913 [13]. Harris‘s basic EOQ model became a paradigm for 
order quantity analysis, for at least the next 30 years. During this period, 
much confusion developed over Hie origin of the EOQ model. Most people 
know the EOQ formula as the Wilson'' ,̂ lot size formula -as R.H.Wilson is 
claimed to be the first to use this formula in practice- while the others know it 
as Greenes formula and until thirties, for many Europeans it had been known 
as Ca7ii]/s formula. Although the original article may have been unknown for 
many years, the chapter version has been cited since 1931. In 1931, Raymond 
F.E. (see [11] for reference) gave Harris as the source of the EOQ formula; but 
the confusion about the formula‘s origin has persisted until its rediscovery in 
1988 by Erlenkotter [10] [11].

During this period, the original EOQ model is developed by Taft (1918) 
(see [11] for reference) and used by many others like Green, Wilson , Alford, 
etc. Taft and Cooper analyzed a production and inventory system in which the 
production rate was finite. In 1928, Thornton C. Eiw introduced the probability 
theory into the inventory models. He studied the cases where the demand rate 
is not known precisely.



Interest in the study of inventory systems has increased since World War II 
and numerous publications have been devoted solely to this subject. Wagner 
and Whiiin [27] published an extension of the EOQ model in 1958 in which 
time phased dynamic demand and infinite production capacity over a finite 
planning horizon is considered.

With the advance of the mathematical inventory theory and easy availabil­
ity of cheaper computer time, many researchers started to work on different 
types of inventory control models. Actually, the classical EOQ models have 
too many ‘static‘ assumptions like ‘constant' demand rate, constant production 
rate and lead time, etc. and therefore designated as a static model. However in 
the world these static assumptions hardly ever hold. Aggarwall [4] divides the 
inventory systems into two main categories in his ‘review of current inventory 
theory and applications' paper (1974);

• Static inventory control models

• Dynamic inventory control models.

Dynamic models, which require a considerable amount of computation effort 
are obtained by varying ’constant' assumption for one or more of the variables 
of the static model. Other classification schemes are provided by Silver [23] 
and Nahrnias [21]; but they all agree on such basic classifications. Dynamic 
models are stochastic if there is randomness in the process; otherwise they are 
deterministic. Thus we introduce a sub-classification:

• Stochastic vs. Deterministic dynamic inventory control models

These classifications can be further developed by considering the following 

properties of the inventory models;

CHAPTER 2. LITERATURE REVIEW 7

• Single vs. Multiple items

• Single vs. Multiple echelon
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• Backorders vs. Lost sales

• Zero vs Constant vs Random lead times

• Finite vs. Infinite planning horizon

• Various types of constraints and others.

More complex inventory systems are formed with several combinations of the 
above properties. We may give some well known examples from the literature: 
In 1971, Lasdon and Terjung investigated the multi-item inventory systems. 
In seventies, Zangwill [4] among others considered linking together of several 
single facilities and multiple products. Zangwill analyzed a deterministic multi­
period production and inventory model that had concave production costs with 
backlogging allowed. Porteus [22] considered single product, periodic review, 
stochastic inventory model with concave cost function. Next, he advanced his 
previous results to prove that a generalized (s,S) policy would be optimal in a 
finite horizon problem, where demands were uniform.

While the deterministic inventory models were being developed by many 
other researchers, several others started working on stochastic inventory mod­
els. Apparently, when the parameter values vary stochastically with time, we 
can no longer assume that the best strategy is the one obtained from the de­

terministic model. This prevents us from using simple average costs over a 
finite or infinite planning horizon as was possible in EOQ derivation. Instead, 
we now have to use the information on the random parameter over a finite 
period, extending from the present when determining the appropriate value 

of current replenishment quantity. Another element of the problem that is 

important in selecting appropriate replenishment quantities is whether replen­
ishments should be scheduled at specified discrete points in time or whether 
they can be scheduled at any point in continuous time. Thus the stochastic 
inventory control models can be •

• Periodic review models or Continuous review models.
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Still another factor that can materially influence the logic in selecting replen­
ishment quantities is the information about the distribution of the random 
variable. In this thesis we specifically deal with models where the demand is 
random with a known distribution. We try to develop a production and in­
ventory control model which allow for variations of the demand rate and still 
assure a proper control of the inventory levels. In the literature we encounter 
three basic types of stochastic inventory models:

A frequently used control procedure in practice is what is called an (s,Q) or 
two-bin system: it involves continuous review, a fixed reorder level (s) and fixed 
order quantity (Q). Decision rules have been developed for finding Q and s for 
a wide of choice of shortage costing methods and types of service constraints.

Another common control system is an (R,.S) or periodic replenishment sys­
tem in which an order is placed every R units of time sufficient to raise the 
inventory position to an order-up-to level S. .Although the physical operation 
and costs of (R..S) and (s,Q) systems are likely to be quite different, it can be 
shown that the determination of S in (R,S) system is equivalent mathematically 
to finding the value of s in (s,Q) systems [24].

The third frequently used type of control system is (R,s,S) or periodic 
review, reorder level, order-up-to level system. In each R units of time an 
order is placed only if the stock position is below the reorder level s. Under 
general conditions it is shown that (R,s,S) system minimizes the expected total 
cost of replenishment, carrying and shortage cost [21].

However, through the years, difficulty of finding these three control param­
eters has made the mathematical optimality property of questionable value. 

Fortunately, effective heuristic procedures have been developed that permit 
relatively easy determination of good values of s and S [20].

We should note that these stochastic inventory control models are basicly 
developed for inventory systems where there is no production. In our thesis 
problem we have a stochastic production and inventory system with a constant 

production rate. Instead of incorporating the finite production rate assumption
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to these models, we try to generate an (s,S) type inventory control model by 
modifying the classical EOQ model and incorporating a.service level constraint. 
By so doing, we try to eliminate the difficulties arising from implementation 
of a theoretical model in practice. In subsequent paragraphs we give some 
literature review related to the types and causes of problems that arise in the 
implementation phase of inventory control models.

Little [19] argues that a model that is to be used by a manager should be 
simple, robust, easy to control, adaptive, as complete as possible and easy to 
communicate with. By simple is meant easy to understand; by robust, hard to 
get absurd answers from; by easy to control, that the user knows what input 
data would be required to produce desired outputs; adaptive means that the 
model can be adjusted as new information is acquired. Completeness implies 
that important phenomena will be included even if the}' require judgemental 
estimates of their effect.

Similar discussion is made by Silver [23] where he makes some suggestions 
for bridging this gap between theory and practice. Just like Little, he suggests 
that more attention should be devoted to the aggregate consequences of inven­
tory decision rules. Additionally, he states that ‘exchange‘ curves are useful 

tools in this aspect, as they show the trade-offs between aggregate measures of 
interest for different possible decision systems.

The use of trade-off curves in generating interactive decision models is dis­
cussed by several researchers. Dogrusoz used this approach while developing an 
interactive decision making model for military equipment where the trade-off 

is made between the cost and effectiveness [9].

Wagner [26] published a paper in 1980, where the central theme was an 
enumeration of practical ])roblems that needed research and analytic attention 
in inventory management systems. He stresses that the ’exact’ assumption 
of parameters of demand distribution or the distribution itself often leads to 

misleading solutions. In order to overcome such difficulties, generally, the total 
cost function is optimized parametrically and the sensitivity anal}'sis is made 
to test the rate of change in the optimal solution due to changes in input
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parameters. Note that, this way of approach requires two step calculations. 
Wagner suggests generating a trade-off function between the inventory invest­
ment level and required service level, which is actually our point of view in this 
thesis study. Commonly in literature, this service level is measured in terms 
of immediate stock availability; but there are many others as explained in the 
next chapter.

While developing a production and inventory control model, we try to con­
sider all the ideas and suggestions given in the above paragraphs (see also [1] 
[2]). In light of these explanations, we try to generate a robust inventory control 
decision model that assists the decision maker while making decisions. How­
ever,we use the term ’robustness’ in a different sense from Little. Actually we 
try to build-up a model which generates a robust inventory control strategy. In 
other words, the ’decisions' suggested by the model should be insensitive to the 
errors made in estimating the parameters of the model. More specifically, we 
define a ’robust’ model as one for which the cost associated with a parameter 
estimation error is small. In this sense, our robustness definition differs from 
the ’robust estimator’ definition in statistics too, i.e., according to our defini­
tion, when we have a robust model, even if the demand estimator is not robust, 
we still achieve an insensitive total cost function to demand fluctuations. Thus, 
what we are really concerned with is the robustness of the ‘decisions' given by 
the model, rather than the estimation technique.

Huber [18] (a statistician) argues that the word ’robust’ is loaded with 
many, sometimes inconsistent connotations. He uses this term in a relatively 
narrow sense as ’insensitivity against small deviations from the assumptions’. 
Our definition of ’robustness’ is somewhat similar to this definition.

In this thesis, we measure the robustness of the generated model in terms 
of the costs associated with a demand rate estimation error. In the literature, 
we seldom come across the the term ’cost of an error’ while making sensitivity 
analysis. In 1960’s Ackoff [3] used this term to define the cost of any specified 
error due to search procedures. Later on in 1985, Silver and Peterson [24] used 
the ’PC P’ (percent cost penalty) criteria as the % ratio of the cost of error to
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optimum total cost, while making sensitivity analysis.

In our thesis problem and in most real case problems, demands are random 
processes; for this reason we will stress on generating a robust model; where 
the cost of a demand rate estimation error is small. On the other hand, the 
inventory control process is maintained by generating a trade-off curve between 
the minimum total cost and required service level as suggested by Wagner 
[26] and Dogrusoz ;t)]. Thus we consider the problems encountered in the 
implementation phase and develop an inventory control model that ’assists’ 
the decision maker, rather than one that replaces him.



Chapter 3

PR O D U C TIO N  A N D  
IN V EN TO R Y  CONTROL  
PROBLEM  U N D E R  
CO NSIDERATIO N

3.1 SYSTEM ANALYSIS

Inventory .systems differ from organization to organization in size and complex­
ity, in types of items they carry, in the costs associated with the system, in the 
nature of the stochastic process associated with the system and the nature of 
information available to decision makers at any point of time. These variations 
have an important bearing on the type of operating doctrine that should be 
used in controlling the system [12]. For this reason PETKIM inventory system 

will be analyzed in the following basic elements;

Production and Inventory Control Activities in PETKIM.

PETKIM is the only petrochemical complex of Turkey. At the present, they 
hold 60% of the domeslic market share, which is below the current production

13
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capacity. In Turkey, the domestic market for petrochemical products is shared 
by the ’foreign’ competitors. Domestic customers usually prefer to purchase 
the required products from PETKIM because of the ’quicker delivery’, ’easier 
contact‘ facilities.

In the past years, the demand to PETKIM products in the domestic market 
has been exceeding the production as the import and export activities were 
limited due to government protection by means of import taxes. Bearing on 
the advantage of being the only producer with a high demand for petrochemical 
products, they were able to sell every item they could produce. Hence for this 
reason, they used to produce at full capacity.

However, the market share of PETKIM was deeply affected when the import 
taxes were lowered by the government in recent years. As a result, the overall 
domestic demand for petrochemical products has decreased and furthermore 
shared by the competitors. Tlie entrance of the foreign competitors to the 
domestic market decreased the market share and forced PETKIM to determine 
new production and inventory control policies in this competitive market.

PETKIM tries to survive among all these negative effects, by updating the 
pricing policy. They try to keep the price of the items at a ‘lower' level than 
the prices of competing imported products so as to avoid the losses in customer 
demands. For this reason, import prices of PETKIM products are continuously 
followed cuid recorded. Essentially, PETKIM aims to satisfy demand in the 
‘domestic' market and use excess production for the 'foreign' market.

Production plans are prepared annually by the plant managers. Then this 
plan is sent to the ‘sales' department which deals with the marketing of the 
items. Aggregate production plan does not include the production plan for 
’different types’ of a specific end item. For this purpose, detailed production 
plans are prepared monthly with the consideration of the current market de­
mand. Revisions are made according to the estimated demand rates forecasted 

by the ‘sales department'.

Briefly, we can say that, items are produced in plants and stored in stocks
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under the control of plant managers. Then the stocked items are offered for 
sale by the sales department. Here, one should note the lack of ’coordination’ 
between ’sales’ and ’production’ departments in production management.

The production and inventory control policy of PETKIM, leads to great 
losses at the present. The causes lie behind the following facts:

The assumption of ’every produced item is salable is an ’acceptable’ one, 
when the demand rate is higher than the production rate. However, the changes 
in the market environment brought the necessity of a revision in the ’produc­
tion and inventory control activities’ too. Obviously the demand rate is no 
more greater than the production rate and the market share of PETKIM hcis 
decreased to 60% (which is below the production capacity). That means, it 
may not be possible to sell all that is produced at the present, if they keep 
producing at full capacity. Producing at a rate higher than the demand rate 
leads to an accumulation of excessive stocks and increases the inventory holding 
costs or conversely, producing below the demand rate may lead to stockouts. 
This means that, production activities should be controlled by establishing a 
balance between counteracting phenomena.

Ignoring this fact is one of the major reasons of the current production and 

inventory control problems of PETKIM. The production rate should have been 
lowered (or stopped), when a decline was detected in the demand rate. Insisting 
on producing at the maximum production rate sharply increased the inventory 
levels and consequently lead to bank borrowing to finance these inventories at 
high interest rates.

This unfavorable situation can be remedied by establishing an effective 

production and inventory control system. The interaction and coordination 
between the production and sales departments is essentially important in this 
sense. In the next sections, a mathematical model is constructed for designing 
such a system; the system so designed is presented and discussed.
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Demand and ordering processes :

As already stated, demand is not seriously forecasted in PETKIM. However, 
orders and sales are recorded in database files which would facilitate an attempt 
to forecast future demand.

PETKIM products are not demanded by large number of customers; the 
name of the customers for each item can be listed and their demand quan­
tities can be followed. That’s why the forecasted demand do not show large 
deviations.

In general, orders are delivered as soon as the payment is made. In fact, 
this is the usual case for most of the items; as the production rate is kept 
higher than the demand rate and the items accumulate in the stocks. On 
the other hand, stockouts may occur on occasions when an unexpectedly high 
demand occurs for an item which cannot be satisfied by production or on-hand 
inventory. Although this does not occur very often in PETKIM, managers tend 
to avoid such cases, as frequent stockouts may lead to demand losses.

’Demands are totally backordered in stockout cases’. We can argue that, the 
customers order products with the purpose of obtaining them from PETKIM. 
The reasoning lies behind the fact that, importing takes some time and also it 
is more costly. Thus, the customers usually ])iefer to wait some time; instead 
of purchasing from an ’import company’ in case of stockouts. However, we 
should add that, backorder period has never bi;en more than 1 or 2 months. 
The customers would probably prefer to purchase the products from the im­
porting firms, if they know that the demand can not be satisfied within 1 or 
2 months. For this reason there is an essential need for plant managers to 
establish a measure for customer satisfaction and develop an inventory control 
policy accordingly.

Production properties :

Production process is usually continuous in petrochemical industries. Raw
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materials are converted into ’end items’ by passing through fixed routings. Al­
though, items flow in batches through some production facilities, the quantity 
of these batches are reasonably small and thus the whole process can be viewed 
as a ’continuous’ production process. Using this property, a processing unit 
in PETKIM can be considered as a ’single machine, single item’ production 
system.

Production rate : Production rate is determined by the plant managers 
between allowable limits. Producing below and above these limits is not allowed 
as the former rate lowers the quality of the products (or practically not possible) 
and the latter is infeasible. It is important to note that the ranges (in which 
the production rate is flexible) are small and it is technologically possible to 
keep the production rate at a chosen ‘constant* level between these allowable 
limits. Thus in our calculations, we will assume that the production rate is 
‘constant*.

Obviously the production should be equal to demand rate when the de­
mand rate is between the minimum and maximum levels of production rate. 
If the demand rate is greater than the maximum production rate, then every 
produced item is sold and no inventory build up occurs. On the other hand, 

periodic-shut downs and start-ups are necessary if the demand rate is less than 
the production rate. We should also note here that, if the demand process is 
stochastic, stockouts may occur from time to time due to the stochastic fluc­
tuations of the demand rate. For this reason, a reorder point inventory control 
policy should be developed to avoid stockouts in lead time as much as possi­
ble. The amount of inventory that is left at the end of the lead time (i.e. the 
safety stock) is the difference between the reorder in\’entory level and the total 
demand during lead time. Note that stockouts occur if this value is less than 

zero.

Production lead time : We shall define the ■production lead time (or simply 
the lead time) for a production and inventory system as ’the interval between 
the time when the decision maker gives an order to start production and the 
time that production actually starts.



CHAPTER 3 PROBLEM UNDER CONSIDERATION 18

In petrochemical processes, a certain level of temperature, pressure or ma­
terial balance, etc., is required in the process so as to produce the right items in 
the right quality. Otherwise either a different end item is obtained or the qual­
ity of the items is different than the required level. For this reason, after giving 
an order to start production, a certain lead time is required in each factory to 
make necessary preparations to establish these necessary process conditions. 
In PETKIM production system, lead time is not more than 10 days in most of 
the factories.

Generally, the production lead time is not constant; however in PETKIM 
production system, the variations in the lead times are small enough so that in 
the mathematical model lead times are assumed to be constant. That is to say, 
the lead times in PETKIM factories may deviate 1-2 days from the expected 
length of the lead time which is not very significant.

Lead time is a critical factor which should be considered in production 
and inventory control as ignoring it may lead to stockouts or delays in the 
production schedule. Together with this well known property, we should also 
emphasize the significance of the ratio of the lead time to the cycle time. Com­
paratively ’long’ lead times to the cycle times may lead to modifications or 
rearrangements in the production plan. If the lead time is greater than the 
depletion time, then the reorder inventory level comes out to be greater than 
the maximum inventory level. However we initially assume that the maximum 
inventory level (produce up to level) is always greater than the reorder level. 

Thus, the production and inventory control model (which is discussed in the 
next chapters) probably ’fails’ when the lead time is longer than the depletion 
time. However, it will be seen that the lead times are to be very small in 
PETKIM, when compared to the cycle times. For instance, the longest lead 

time is 10 days (in laktam factory) and the cycle time usually is 2-4 months 

depending on the demand rate.

We will consider these properties while analyzing the production system of 
PETKIM.
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Cost properties :

The costs incurred in operating an inventory system play a major role in 
determining what the operating doctrine should be. The costs which influ­
ence the operating doctrine are the ones which vary as the operating doctrine 
Vciries. According to this classification, costs that are independent of the oper­
ating doctrine need not be included in any analysis as they will not affect the 
inventory control model.Fundamentally, there are three types of costs of the 
former classification:
- Production Costs
- Costs cissociated with the existence of inventories (when supply exceeds de­
mand)
- Costs associated with stockouts (when demand exceeds supply) [14]

PETKIM production system can be analyzed in terms of these basic costs:

Production costs in a production cycle can be divided into two parts: Those 
which depend on the quantity produced in a cycle and those which are inde­
pendent of the production quantity.

First is the cost of raw materials, chemicals, utilities (like electricity, water 
etc.) consumed while producing a unit quantity (ton) of an item. The sum 
of these costs simply represent the cost of the units produced in the planning 
horizon (which is a constant) assuming sales equals demand and demand is 
constant. Note that these costs will not be considered in modelling, as they 
do not affect the ’production quantity’ decisions (they are independent of the 
decision variables) in a cycle. This fact is analyzed in detail in section 3.2.

The second type of such costs are the costs incurred in making a ’set-up’; 

which are independent of the quantity produced, but their value per unit time 
depends upon the cycle time. Set-up costs are incurred by a shut-down and 
start-up of the production system. We have discussed that the right quality 
of items are obtained when the system works at a certain state (temperature, 
pressure, etc.). Thus a certain lead time is necessary to prepare the production
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unit and start the production from a previously inactive system. Set-up costs 
are incurred during these lead times. At every set-up in a PETKIM factory, 
some amount of materials (raw materials, end items, chemicals etc.), and util­
ities (electricity, water, water vapor, etc.) are consumed. If we note that the 
lead time in some factories are about 10 days, these unavoidable losses and the 
incurred costs may be significantly large (may go up to 0.5 billion TL). We 
will simply refer such costs as the set-up costs while modelling the production 
system.

Setup costs are very high in most of the factories in PETKIM. T hat’s why 
frequent start-ups and shut-downs are avoided by the plant managers. We need 
to emphasize once more that such a production policy leads to high inventory 
holding costs, which constitutes the greatest financial burden at present.

Inventory Holding Costs: When the production rate is higher than the 
demand rate, inventories start to accumulate. Costs associated with the exis­
tence of inventories are due to a number of causes like storage, handling, taxes, 
insurance, spoilage, rent, capital costs, etc. Similar to the discussion for the 
production costs, not all the costs of carrying inventory vary with the inven­
tory level in the same way. Indeed those costs which are proportional with the 
inventory level should be brought in to analysis.

In PETKIM, inventory holding costs are expressed as the sum of capital 
costs and corporate taxes ( analyzed in section 3 .2 ). Other factors like storage, 
handling, insurance are insignificant when compared to these or invariant with 
the inventory level. For instance, as the whole complex belongs to PETKIM 
no payment is made to outside agents for rent, handling etc,. Most of the items 
can stay for a long time in the stocks without any damage, thus the spoilage 
etc., do not incur a significant cost.

Stockout costs: A stockout situation arises whenever demand occurs and 
the production system is out of stock. In such cases, orders are either backo­
rdered or lost. It is also possible to substitute the demanded item with another 
available suitable substitute in stockout cases; but this kind of a treatment is 
not applicable for PETKIM products. The problem of quantifying stockout



CHAPTER 3 PROBLEM UNDER CONSIDERATION 2 1

costs has long been a difficult question to answer; because of the intangibles 
such as the loss of customer’s goodwill, loss of profits due to loss of customers, 
etc,.

In PETKIM generally, demands can be ’totally’ backordered in case of 
stockouts. But it should be noted that frequent stockouts probably leads to 
loss of goodwill and customer losses, consequently adverse effects on future 
demands in the long run. T hat’s why we generate a production and inventory 
control model in the next chapters in which we introduce a measure for setting 
the expected level of customer satisfaction and minimize the total costs at the 
same time.

Further details of cost structures and their relations with each other are 
discussed in section .3 .2 .
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3.2 OBJECTIVES

The purpose of an effective management is to determine the rules that man­
agement can use to minimize the costs associated with producing goods and 
maintaining inventories while satisfying the customer demand. Two fundamen­
tal questions that must be answered in controlling a production and inventory 
system are how long and how much to produce. Actually, production dura­
tion, production rate, when to start and when to stop production are the basic 
controllable variables of any type of production system.

Briefly speaking, DM‘s objectives in PETKIM are

1 . To keep production cost and inventory holding cost as low as possible 
and

2. Realize a high customer satisfaction.

Customer Satisfaction:
Here, the ’customer satisfaction’ is measured in terms of the capability of the 
firm to deliver the products to the customers in the agreed quality, quantit}' and 
time. There may be different value measures for the customer satisfaction like 
the ratio of total customer demand met on time, expected number of stockouts 
per unit time (to be minimized), expected number of cycles in which a stockout 
occurs etc, [3], [23], [26]. However in our model we will introduce the most 
commonly used measure SLM  as the fraction of customer demand satisfied 
on time. Here, we will assume that the produced items satisfy the quality 
requirements. Low customer service level leads to loss of customer goodwill 
and loss of sales revenues resulting from the shortage situation. Obviously, 
it is generally difficult to measure the service level (or degree of customer 
satisfaction) in monetary units. That’s why, it is usually preferred to express 
it in nonmonetary terms.

Production Costs:
As stated in the previous section, ‘production costs‘ ca,n be seen as composed
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of two parts: costs which are independent of the quantity produced and costs 
which depend on the quantity produced. Thus the production costs in a ’cycle’ 
are

ProductionCostsI Cycle — S + pQ

where S  is the fixed cost of production which is independent of the production 
quantity Q per cycle, and p is the marginal cost of production which is ’constant’ 
in our system. According to this formulation, the total production costs in the 
planning horizon will be

TotalProductionCosts = SD /Q  T pD 

where D fQ  is total number of cycles per unit time.

(3,1)

It is important to note that the second term in 3.1 can not influence the 
decision on (i.e., independent of) order size as they can be defined by pD where 
p is the ’constant’ unit purchasing (or unit manufacturing) cost and D is the 
total demand in the planning horizon. Since the mean demand rate can be 
accepted to be constant, pD constitutes a constant term in the expected total 
cost function. Thus it can be dropped from consideration in the analysis.

On the other hand, the cost in the first term of 3.1 is highly relevant in 
the decision process, since it depends upon the order size Q. If the cost of a 
production unit’s ’shut-down and start-up’ in a production system is S  -called 
the set-up cost- and if Q units of items are produced in a cycle, then the set­

up cost per unit item in every cycle is S/Q , meaning that it is beneficial to 
produce the items in large batches as ’per unit share of set-up cost’ is decreased 
in the total cost function. In PETKIM, set-up costs are calculated as the sum 
of utility costs, loss of raw materials and loss of end items during a unit shut­
down and start-up (as explained in section 3.1).

S = utility  costs -f loss o f raw materials -|- loss o f end items 

where .Srunit set-up cost
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Inventory Holding Costs:
The second category of costs are the ’inventory holding costs’ that are asso­
ciated with keeping inventories. As explained in section 3.1, these are due to 
a number of reasons among which storage and handling costs (including rent 
for the storing facilities), property taxes, insurance and capital costs are essen­
tial. The capital costs represents either interest on loans to finance inventory 
or opportunity cost. Of all the above components, only those which change 
proportionately as the level of inventory level changes should be brought into 
analysis. In PETKIM, unit inventory holding costs are calculated by the fol­
lowing formula:

h = | ( - E  + (CTR) (e) 1 (,,} 
1 + e

where
h\ inventory holding cost per unit quantity, per }'ear 
/ :  rate of cost of capital (annual interest rate)
e: annual rate of increase in the price (or in marginal production cost) 

of a unit quantity of item
CTR: corporate tax rate
p: current marginal cost of a unit quantity of an item

The first term in the bracket is the cost incurred by producing and storing 
the items in the inventory instead of investing the capital in another area. For 
instance, the capital on hand can be invested in a bank with an annual interest 
rate of / ;  however, if this capital is used for producing and storing items in the 
inventory, then the total interest charged over the capital is lost!. This loss can 
be partially compensated by the increase in the price of the material stocked.

The second term of unit inventory holding cost formula is due to the ’corpo­
rate tax’ charged over the capital value of the items in the stocks. The annual 
increase in the unit price (or marginal cost) of the produced items is actually 
a ’fictitious revenue’; because, if the firm is making profits, a corporate tax is 
charged over the unit price (or marginal cost) of the item; thus any increase 

in the marginal cost (or price) of an item increases this corporate tax. This 
second term is the ’extra’ corporate tax paid for the items as a result of the 
increase in their marginal prices or costs.
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Analysis of the Related System of Objectives:
Using the above explanations, main objectives of a decision maker in PETKIM 
can be summarized as (figure 3.1):

• (9i: Minimize set-up cost per unit time

• O2 : Minimize inventory holding cost per unit time

• O3: Maximize SLM

; MINIMIZE SET-UP COST O · MINIMIZE INVENT. HOLD. C

O3: MAXIMIZE SLM

conflict between objectives

reciprocal contribution between objectives

Figure 3.1: Relations between the system of objectives under consideration

These measures can be defined as a function of the maximum inventory 
level and the reorder level which will be stated as the decision variables in the 
next chapter. The relations between these objectives are given in figure 3.1.
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Total cost function is written as the sum of production and inventory hold­
ing cost. In order to keep up a certain service level, demand can be satisfied 
both by the production and by the inventory held. If more frequent start-ups 
and shut-downs are made by decreasing the production duration (lot size), then 
the total set-up cost is increased, but the inventory holding cost is decreased as 
the ’maximum (and hence the average) inventory level’ is decreased. .Similarly 
-at a predefined service level- decreasing the number of set-ups decreases the 
cost of production, but increases the cost of holding inventory as the average 
inventory level is increased this time. That means, 0 i and O2 are in con­
flict meaning that the attempt of achieving one of these objectives ‘adversely‘ 
affects the achievement of the other.

Obviously, one of the purposes of producing goods and holding in inventory 
is to satisfy the customer demand on time! Higher customer service level can 
be obtained by decreasing the number of stockouts in a planning horizon. Now 
let’s consider the ways of achieving this objective:

• One way of achieving less stockouts is to decrease the stockout pi'obabil- 
ity in lead time by keeping a ’higher’ level of inventory against stockout 
situations during the lead time. We know that this is achieved by increas­
ing the reorder level. This strategy increases the total cost as inventory 
holding costs are increased by keeping a higher level of safety stock. .A.s 
a result increasing the service level measure leads to an increase in the 
inventory holding cost. Thus O3 and O2 are in conflict. •

• Another way of decreasing the total number of stockouts is to decrease 
the number of cycles in a planning horizon. We know that in every 

cycle, stockouts may occur in lead times; thus decreasing the number of 
cycles will decrease the total number of stockouts in the planning horizon. 
Here we should note that, such a strategy will lead to long production 
durations and increased cycle times; which will decrease the total set-up 
cost in return. That means, increasing the service level measure leads 
to a decrease in the set-up cost. As a result, we should say that there 
is a reciprocal contribution between 0\ and O3 . i.e., the pursuit of 0\
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‘favorably‘ aiTects the achievement of O3 or vice versa. On the other 
hand, note that increasing the maximum inventory level again leads to 
increased inventory holding costs. Thus we show once more that O3 and 
O2 are in conflict.

An important economic problem is caused by the fact that the total cost 
(as the sum of production cost and inventory holding cost) can not be mini­
mized while the customer satisfaction is maximized. These two objectives are 
again in conflict. More specifically, minimizing the total cost and maximizing 
the customer satisfaction can not be achieved at the same time. When the 
total cost is decreased (increased), then the customer satisfaction decreases 
(increases) too or vice versa. Hence a balance between these two objective 
variables should be established.

Briefly, main elements of our system of objectives that will be considered 
in throughout this thesis can be written of the form:

M in Total cost = Production cost T Inventory holding cost 

M ax SLM  = Percentage o f demand satisfied  per unit time

The above discussion briefly describes the problem of a plant manager (DM) 
in PETKIM. More specifically, as the set-up costs are too high in PETKIM, 
the plant managers avoid frequent shut-downs and start-ups so as to decrease 
production costs. However, long production duration causes increasing stock 
problems. Thus decreasing the total set-up costs in a planning period increases 
the inventory holding costs. However, the service level is rather high for the 
time being as any demand for an item can be immediately satisfied from the 
high level of inventory held.

Decision Variables:
What is needed in PETKIM is to make a trade-off between these objectives and 
develop an optimum control strategy that will minimize the sum of production 
cost and inventory holding cost while satisfying the customer demand. Thus
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a mathematical model will be developed in which the decision variable(s) can 
be chosen among the state variables like:

1. Production Quantity

2. Production Duration

3. Cycle Time

4. Maximum Inventory Level

5. Reorder Level

6. Safety Stock Level, etc.

Depending on the properties of the inventory system and modelling tech­
nique, decision variable(s) can be any of the state variables defined above. 
Actually the production and inventory control mechanism is based on the de­
cisions about when to stop production and when to start again. In most of 
the inventory control models, the production duration is indirectly controlled 
by controlling the other state variables like the production quantity, maximum 
inventory level, reorder level etc. Actually, it may be easier for the decision 
maker to observe the incurring values of certain type of state variables. For 
instance in our problem, we suggest a production and inventory control model 
which works on the maximum inventory level and the reorder level. Production 
is stopped when the inventory level reaches a maximum level and it is started 
again when it drops to reorder level.

Note that if the decision variable is the production duration, all other state 
variables will stand for the consequence variables; that means the production 
quantity, cycle time, maximum inventory level etc. will take values as a func­
tion of the production duration. Similarly, depending on the mathematical 
relations between these state variables, safety stock comes out to be a conse­
quence variable which is evaluated according to the value of the reorder level.

For the PETKIM production and inventory system, we take the maximum 
inventory level and the reorder level as the decision variables, instead of any
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other state variables. This enables us to establish a robust production and 
inventory control model where the losses incurred by parameter estimation 
errors are very low. The details of this analysis is given in the next chapters.



Chapter 4

MODEL C O N STR U C TIO N

In this section we deal with sizing and timing decisions for production lots and 
more precisely with mathematical models which offer an optimum production 
plan, nainely a lot sizing strategy.

Our mam model is a ’’bi-objective decision making’ model. The first objec­
tive is to minimize the sum of production and inventory holding costs whereas 
the second objective is to maximize the customer sati.sfaction using a service 
level measure. In this approach, total cost can be expressed as a function of 
two decision variables: maximum inventory level (7) and the reorder level (g)

Total Cost = TC{I ,g)

For any inventory control plan, it is possible to find a value measure for the 
ratio of demand satisfied per unit time. In other words, SLM is again a function 
of maximum inventory level and the reorder level.

Service Level Measure = SLA4{I,g)

Then the main elements of our system of objectives comes out to be two dif­
ferent functions of the same decision variables /  and g.

Depending on the values of the decision variables, a production and inven­
tory control model is defined. This main model is somewhat similar to an (S,s)

30
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inventory control policy model, which operates on the inventory position. A re­
generative process -as in the case of (S,s) systems- exists in the so-called ’main 
model’, which operates in the following way: An order to start producing an 
item is given when the inventory level drops to a ’reorder’ level, g (figure 4.1 ). 
Production starts after a lead time and the difference between production and 
demand is added to the inventory. Production continues until the inventory 
level reaches a ’maximum’ level {—I + ss), then it is stopped until the inventory 
level drops to the reorder level {g) and a new cycle begins and so on.

inventory level

Figure 4.1: Change in the inventory level when the S P I L  model is applied.

In this proposed model, the inventory control mechanism is based on two 
decision variables: the m axim um  inventory  level and the reo rd er level.
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level. For this reason this proposed model will be referred to as S top  P ro ­
duction  Inven to ry  Level M odel or shortly SPIL  M O D EL.

Development of the SPIL Model originates from the classical EOQ Model 
with finite production rate and constant demand rate. In this approach, an 
inventory control strategy is set which is based on the minimization of the total 
cost i.e., the sum of production and inventory holding costs.

However note that, it is almost never possible to predict the demand rate 
for certain. Actually, it is the ’expected value’ of the demand rate which is 
considered when the classical EOQ Model is utilized. It is known that, in the 
classical EOQ Model, the relative change in the optimum production quantity 
due to change in the mean demand rate is small (explained in detail in the next 
chapter). However, if the cost associated with a change in the mean demand 
rate is considered, the classical EOQ model is not that much ’insensitive to the 
changes in demand rate’. T hat’s why, the classical EOQ Model is modified by 
changing the decision variable from the ’production quantit}’’ to the ’maximum 
inventory level’ and a new model is obtained. Furthermore, sensitivity analysis 
shows that it is possible to decrease the cost of error due to a ’demand rate 
estimation error’ by this change of the decision variable of the EOQ model.

The objective of ’maximizing the demand satisfaction’ is incorporated into 
the model by introducing a ’reorder inventory level’ which is based on the 
’service level measure’ defined by the decision maker. In this way, it is possible 
to avoid the stockout situations in lead time resulting from the probabilistic 
character of the demand rate. The expected ’safety-stock level’ is determined 
as a function of the reorder level and the expected demand during lead time (i.e. 
expected safety stock level=reorder level - expected demand during lead time); 
while the stop production inventory level {Imax in figure 4.1 ) is the sum of /  
and safety stock level. In order to achieve a higher service level measure, the 

maximum inventory level and/or the reorder level should be increased. Note 
that the increase in the safety stock level (as a function of the reorder level) 
leads to an increase in the average inventory level and hence increases the total 
cost. However this facilitates the achievement of the service level measure.
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whose value is set by the plant manager (or DM). This relation enables the 
DM to make a trade olF between the objectives and develop a 'compromised' 
production and inventory control strategy.

Briefly speaking, the SPIL Model finds a compromised strategy. The reason­
ing behind a ’compromised solution’ lies in the fact that, it is not theoretically 
possible to maximize the SLM and minimize the total cost at the same time as 
they are in conflict. On the other hand developing a mathematical model, that 
will support the DM while making a trade-off between the objectives requires 
a comparison of objectives with the ’same unit of measurement’. However, the 
SLM cannot be expressed in monetary terms. T hat’s why, we can only seek for 
a ’compromising solution’ by developing a trade-off curve after solving the fol­
lowing mathematical programming model parametrically, for varying the value 
of a.

M in Total Cost = TC{I ,g)  

subject to

SLM{I ,g)  > a  a = constant (a compromized satisf icer)

that means,for a ’given’ minimum service level measure, it is possible to· 
find the values of /  and g which minimizes the total cost function TC{I,g) .  
The minimum value of the service level measure is set by the decision maker 
after making a trade-off between the selected service level measure and the 
associated minimum total cost. An example trade-off curve is generated in 
figure 4.5. The steps followed in generating the trade-off curve is explained in 
the following sections. The trade-off between the .SLM and the related total 
cost, i.e, the compi'omise needs the decision maker’s ’judgement’. In this way 
the DM is actively involved in the decision process.

Finally it should be added that, we suggest an inventor}· and production 
control method which requires a continuous review of the inventory level. Oth­
erwise, deviations from the control plan is unavoidable. However, in PETKIM, 
it is not difficult to check the inventory level continuously. There are about 20
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factories in a PETKIM complex, each of which has 4-5 end items. Note that 
the S P I L  model is applied to each factory respectively and it is not too diffi­
cult to continuously follow the inventory level for the end items as the number 
of end items per factory is not excessive. Thus, this can not be a handicap for 
our system.

4.1 REVIEW OE CLASSICAL EOQ MODEL

The earliest known analysis of an inventory system was by F.W.Harris [13] 
in 1915. The basic model formulation assumes a continuous and infinite time 
axis, a constant demand rate, no backlogging possibilities, as well as constant 
set-up and inventory holding costs. It is also assumed that the quantity ordered 
is delivered to the inventory location in one lot at a specified time. Harris is 
assumed to be the first person who developed a lot sizing strategy, by drawing 
upon the economic order quantity (EOQ) formula,

Q* =
I2SD

h
(4.1)

Here, Q* is the optimal lot size which minimizes the total cost function 
given b}· tlie below formula as the sum of set-up and inventor}' holding costs.

T C { Q , D ) ^
Q

+ \ k Q (4.2)

Se t -u pCos t /Un i tT ime  Inv.Hotd .Cos t /Uni t rune

In this formula,
S : Cost of unit set-up
h : Inventory holding cost of a unit item per unit time 
D : Demand rate (Quantity of an item demanded per unit time)

In the past, this formula has had more applications than any other method
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which gives single control strategy. Relaxations of the basic model assumptions 
are discussed by Hax and Candea [Max] [14] and include models that allow for 
finite production rates, backlogging and quantity discounts.

The system for which this formula holds is a very special system, based on 
the above assumptions of the classical EOQ model. However, these may not 
actually fit to the production system of PETKİM. The initial assumptions of 
the theoretical and actual system can be analyzed in the· following points;

While defining the properties of the PETKİM production system, it is 
stated that the demand rate has a stochastic pattern; that’s why the assump­
tion of constant demand rate is violated in practical applications. Instead, the 
’expected value’ of the demand rate is obtained by a ’forecast’ based upon the 
demand history for the item under consideration. Hence the optimum solution 
of the model may not give the actual minimum total cost.

Production rate, r is also assumed to be constant. Actually, in PETKIM 
production system there is a short range in which the production rate can be 
changed, however it is possible to keep the production rate at a ’constant’ level, 
once it is set at the beginning of the planning horizon. For our purposes, the 
determination of the production rate that will be valid throughout the planning 
horizon will be outside the scope of modelling. Thus, without loss of generality, 
we assume that the the production rate is ’constant’.

The assumption of ’delivery in lots’ should also be relaxed so as to have a 
more realistic model that will fit to the production system of PETKIM. When 
a ’finite’ production rate assumption is incorporated into the original EOQ 
Model, the total cost formula takes the form

TC(Q,D)= i ' l  -f \ h Q ( l - ^ )

Set-upcI^tJunitTim e Inv.Hold.Cost/UniiTime

(4.3)

where r is the production rate.
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Since this is a continuous process industiy, the end products outflow from 
the production unit continuously at a constant rate.

Here, the optimum value of the production quantity which minimizes the 
total cost function is;

\
2 SD

h { \ - P ) (4.4)

It is assumed that the supply process is continuous and takes place at a 
constant rate until Q units are delivered to the stock-then it is stopped until 
the inventory level drops to zero again.

In the original EOQ model ’no shortages are allowed’. This can be achieved 
with certainty as the system is based on constant production and demand rate 
assumption. This means that, stochastic demand pattern may lead to stockouts 
in real applications. However, this situation is analyzed and the original EOQ 
model is modified so as to allow backlogging (see [14] ); but it should be added 
that it is not easy to consider this model in real application; as the ’unit cost 
of a stockout’ can not be easily defined for the system of PETKIM. Instead, we 
try to compensate for this weakness by introducing a ’service level’ approach 
that will be a measure of the effectiveness of the model.

It is clear that, classical EOQ formula with constant demand rate defines a 
deterministic production and inventory control strategy, which is incompatible 
with the situation in PETKIM. However, the EOQ Model is suited to the 
PETKIM situation, by certain modifications as in section 4.2.
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4.2 DERIVATION OF THE SPIL MODEL

Changing the Decision Variable of the Classical EOQ Model:

In the classical EOQ models , the decision variable is taken to be the pro­
duction quantity per cycle, Q. The time behavior of the inventory level during 
the cycle is depicted in figure 4.2 for the case with a finite production rate r 
and demand rate D.

inventory level

time

Tp

T

Figure 4.2: Change in the inventory level of the classical EOQ model with 
fixed production rate

In this figure T  represents the ’cycle time’ and Tp is the period of time over 
which the production takes place. Production starts with zero inventory level 
and continues at a constant rate of 7’, until Q units are produced in Tp time
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units. During this production period, Tp, inventory level increases at a rate of 
r — D as items are input to the inventory at a rate of r and removed at a rate 
of D simultaneously. The inventory level reaches at its maximum /  at the end 
of production period, then starts to decrease at a rate of D and reaches to zero 
level at which the production starts once again.

Here the relation between the maximum inventory level, /, and product! 
quantity Q is given by

ion

/  = 0 (1 - 7 ) (4^5)

The ’pro]josed’ model is based on the hypothesis that a robust model can 
be constructed by taking the maximum inventory level, I , instead of the pro­
duction quantity, Q, as the decision variable. The total cost function of the 
proposed model is formed by expressing Q in terms of /  ( as in 4.5) and 
substituting in 4.3,

TCy,D)  = S j ( l - j ) + ^ - h I

where, I  is the maximum inventory level

(4.6)

The optimum value, /*, of I, which minimizes this total cost function is 
given by the formula

P  ^  .p o ( i  -  ? ) (4.7)

Interpretation of this ’proposed’ strategy is the following: Production starts 
with zero inventory level and continues at a rate of r until the inventory level 

reaches to /*, then stops until the inventoiy level drops back to zero level again. 
The cycles continue in the same manner.

Generally speaking, it would be possible at this stage, to determine a pro­
duction and inventory control strategy based on the ’maximum inventory level’
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(i.e., by using the formulation in 4.6 and 4.7 ), if demand were deterministic. 
Thus, taking the randomness of the demand into account, a control mecha­
nism is required to take care of the ’customer demand satisfaction’ by setting 
a ’reorder inventory level’ and a ’safety stock level’ against demand rate fluc­
tuations. In the next section, the SPIL Model will be developed to incorporate 
the R eo rder Level M odel.

SPIL  M odel w ith  a R eorder Point:

In a production and inventory system, whenever the inventory drops down 
to a certain level called the reorder level, ¿in order to start production is given. 
This reorder inventory level should be sufficient to meet demand through the 
lead time. When demand is uncertain as in our case, it is obvious that the re­
order point should be set to a reasonably high level to take precautions against 
stockouts. This reasonable higli level is obtained by adding an ’allowance’ to 
the mean demand during the lead time for protection against the uncertainty 
inherent in any forecast. This allowance is called the safety stock [14]. It is 
stated in section 3.2 that the quantity of this allowance should be increased in 
order to increase the customer satisfaction during the lead time.

in this section, we introduce a ’service level measure’ for developing a re­

order level model. .AlS stated previously, our aim is lo balance the ’service 
level’ of the system against the increased production and inventory holding 
costs. The DM, drawing upon the graphical and tabular representation of 
trade-offs between those two objectives, determines a service level and applies 
the related plan to the production system on hand. For this purpose the service 
level measure is defined as:

- SLM : Expected fraction of all demand that is met on time.

For any fixed value of SLM, there may be different inventory control strate­
gies in terms of the maximum inventory level and the safety stock level. Each 
of these reorder level strategies can be evaluated according to their associated 
total cost. Note that the objectives of ’increasing the service level measure’ 

and ’decreasing the total costs’ are in conflict with each other. Besides, it is
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not possible to express SLM in monetary terms (as previously stated). For 
this reason the trade-ofF between these objectives is subjected to the decision 
maker’s judgement of choice.

Information on ’manufacturing lead time’ and ’distribution of demand dur­
ing the lead time’ are essentially required for such an evaluation.

D em and  ra te  estim ation: The number of units demanded in lead time 
depends on the number of orders and size of each order. If we assume that the 
number of orders in lead time (N) is a Poisson process, N  ~  Po{\) and the 
size of (number of units demanded in) each order (Yi) is normally distributed, 
Yi ~  N{p,',s‘̂) then the total· number of units demanded during the lead time 
will be a compound Poisson process with mean = Xp,' and variance = As  ̂+ A//'·.

It is important however to recognize that when the demand is treated as 
continuous, the most frequently used distribution to describe the quantity de­
manded in a given time interval is the normal distribution [12]. Empirical 
studies have shown that, quite often the normal distribution seems to approxi­
mate the demand distributions very well over the relevant time intervals which 
are encountered in practice. Besides for large means, the Poisson distribu­
tion can be approximated by the normal distribution [17]. So without loss of 
generality, it is not wrong to assume that the demand rate during lead time 
is approximately ’normally’ distributed with mean p (=A//') and variance cr̂  
(=As2^-A/F^).

Mathematical formulation of the reorder level model:

• For a given value of the reorder level (^), the probability of satisfying 
demand in lead time {PSD)  is

P S D = P{x < < / ) = /  f{x)d{x) where x ~  N{p,a^)  (4.S)
J  — OO

here,
X is a r.v. showing the total demand during lead time and f {x)  is the
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normal pdf.
is the expected value of the total demand in lead time and 
is the variance of the total demand in lead time.

• B{g) is the expected quantity of stockouts in a cycle, when the reorder 
level is g

too
B{g)= {x -  g)f{x)d{x)

^9
(4.9)

Note that this function is not easy to evaluate, thus it is necessary to make 
use of the normal loss function (i.e., NL(t) tables where t = {g — ¡j,)fa ). 
This is valid under the ’normality’ assumption of the lead time demand, 
where reorder level is defined by g = g + ta.

Thus 4.9 can be written as

B{g) = a N  L{t) and t = 9 -  tJ· (4.10)

• ’Safety stock is the expected inventory level at the end of the lead time’. 
We have discussed in section 3.1 that whole demand is backordered in 
case of stockouts. .Assuming no loss of customer demand, the safety stock 
level can be calculated by

/ OO

{9 -  x)f{x)d{x)
-OO

by simplification ss can be expressed as

(4.11)

ss = (J- n (4.12)

• The service level measure (SLM)  is the expected ratio of demand met 
on time. .Assuming a planning horizon of one year and expected demand 
rate per year D, we can write

S L M  =
Exp. Tot. demand/year — Exp. quantity o f  stockouts ¡year

Exp. Total demand I year
(4.13)
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If Q is the production quantity/cycle, then the Expected quantity of stock- 
outs/year will be

E[stock outs/year) = B{g) —
Q

(4.14)

where B{g) is the expected quantity of stockouts/cycle and D/Q is the 
expected number of cycles/year.

Substituting 4.14 in 4.13 gives

S L M  = 1 -
Q

(4.15)

Using the relation 4.5 and 4.9, S L M  can be written as a function of 
the decision variables I  and g

f°°ix -  g)f (x)dix) D
SLM{I. ,g)  = 1 -  j   ̂ ^(1 -  (4.16)

Note that here
/  — Ijnax  '5'5 (4.17)

where ss is defined bv 4.12.

In SPIL Model, total cost is expressed by 4.6 as the sum of production 
and inventory holding costs. However, when it takes the form of a reorder level 
model with a reorder level included, the expected cost of holding safety stock 
should be added; then the expected value of the total cost takes the following 

form:

SD . D . I
TC{I,  ss) = —7- { l ----- ) +  h -  + h ss

I r  Z

where, D is the mean demand rate in the planning horizon.

(4.18)

Here, we should note once more that, SPIL Model is a bi-objective mathe­
matical model with two decision variables 1 and g. When both objectives are 
expressed in terms of the decision variables, SPIL model will be
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M I N  TC{I ,g)  = -  - )  + h d  + g -  ix)
1 V Z (4.19)

M A X  SLM{I , g)  =  1 -  (, f) (4.20)

In this expression, it is assumed that the demand rate and production 
rate are held constant. The value of expected safety stock level ss and stop 
production inventory level I,nax Э'Ге determined as a function of the decision 
variables I and g, by using the equalities 4.12 and 4.17.

As we have emphasized several times, it is not possible to find an optimum 
solution for the cost minimization problem when the SLM  is maximized. How­
ever, if we are able to fix (or at least give a lower bound) for the value of SLM,  
then it is possible to find the optimum values of /  and g, which minimizes 
total cost for that given value of S L M . The solution will be compromised, as 
the second objective is bounded -rather than optimized- by the value of S L M  
determined by the DM. Thus the SPIL Model will be

Mi n TC{I ,g)  = ^ ( 1  -  — ) + h + g -  ft)
1 V Z

subject to

SLM{l^g)  > a  , (0 < a  < 1)
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4.3 SOLUTION TECHNIQUE

We use the sequential optimization technique suggested by Dogrusoz [8] to solve 
the SPIL Model stated· above. That means, the total cost function is ’sequen­
tially’ minimized over I  and g, subject to a service level measure constraint.

min TC{I ,g)  = min [ min TC{I ,g)  

subject to

S L M { I , g ) > a  , (0 < a  < 1) ( « 1 )

In other words, SPIL Model is optimized by solving the following system

• r ·mm [ mm — (1 ----- ) + h{- + g -  g) J
1 9 1 V Z

subject to

[1 -  ■4 ~ 9)f{^)d{^) 2̂ _  > a , 0 < Q' < 1 (4.22)

Substituting B{g) = 4.22 simplifies into

(4.23)
( r - D )

Note that the LHS of this inequality is a function of /; but constant for a given 

value of I. Let,

H i )  =
(1 — a )r l  
(’■ -  D)

Hence, 4.23 can be written as

m  > B(s) (4.24)

B{g) is a decreasing function of g. Thus 4.24 is satisfied for those values 

of g which are greater than B~^{k{I)),  i.e.,

g > B - \ k { i ) )
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should be satisfied. This fact can be visualized in figure (4.3). For every 
fixed value of I, k{I) defines an upper bound for B{g). Our aim is to find 
the optimum value of g for a given value of I, under the S L M  constraint. 
It is possible to minimize the total cost function over / ,  after expressing the 
optimum value of ^ as a function of I.

Thus the SPIL Model defined in 4.21 takes the simplified form as equation 
4.25 as follows:

min TC{ I , g ) =  min [ min TC(I , g) (4.25)

mm/>0 ...... — (1 ----- ) + H ^ T g  -  ¡Ag>B-' (̂k(I)) I   ̂ r '  ^2 ^
mill (4.26)

Total cost function is an increasing function of g\ thus it takes its minimum 
value at the lower bound B~^{k{I)) of g. That means in the optimum solution 
g should be equal to B~^{k{I))^ i.e., 4.26 will be

, SD D I  , (1 — a ) r /
) - / ' ) ! (4.27)

Remember that, the unconstrained case of the total cost minimization prob­
lem has an unbounded solution; the above discussion shows that the constraint 
S L M  > 0 is a binding constraint; hence g is not allowed to take values less 
than B~^[k{I))  (see figure 4.3).

The last step of sequential optimization is to minimize 4.27 over /. Note 

that the function B{g) is not invertible; thus the optimum value of I  which 
minimizes the total cost function is found numerically by evaluating 4.27 for 
varying values of /. The solution found by this method gives the unique opti­
mum of the SPIL model as the total cost function in 4.27 is convex. Convexity 

of the total cost function is obvious as it is the sum of the convex total cost 
function of the classical EOQ model and another convex term hB~^{k{I)) — hg. 
Here hg is a constant term; thus it may not be considered in calculations.
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Actually we expect the optimum value of I  in the S P I L  model to be greater 
than the optimum solution of the classical EOQ model. It can also be followed 
from the figure (4.4) that, if a decreasing function of /  {k(I)) — hfx =
h ss) is added, the cost function of the classical EOQ model shifts rightward. 
Thus the optimum value of I  which minimizes the total cost function in 4.27 
is greater than the optimum solution found from the classical EOQ model 
(equation 4.7).

That means for economy of computations the iterations should start with

/o =
12SD{1 -  f )

Ji ^
and the value of /  should be iteratively increased until an increase is detected 
in the total cost function.
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Figure 4.4: Total cost function versus I (a —0.95)

Selection of a:

The SPIL Model is actually based on the judgement of the a  value by the 
decision maker. This value is determined by making a trade-off between dif­

ferent values of a  and the minimum total cost associated with each. As we 
have repeated earlier, in this way the decision maker is actively involved in the 
decision process [9] (see table 4.1). In order to facilitate setting an a  value and 
give an insight to the DM, an example problem is solved for different values 

of a and the results are summarized in the form of a trade-off curve in figure 4.5.
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Parameters:
COSTS: 5 =  514,000,000 TL/set-up 
STATISTICS:T»=30 toiis/day

7’=65.15 tons/day

Л=17,678 TL/unit/day 
//=300 tons/TL 
o-=47.4 tons/TL

SLM MIN TO 
(TL/DAY)

3
(TONS)

I m a x

(TONS)
0.90 13,605,309 74 1519
0.91 14,000,332 102 1486
0.92 14,384,556 129 1453
0.93 14,758,868 154 1425
0.94 15,124,870 178 1397
0.95 15,485,454 201 1371
0.96 15,846,462 223 1352
0.97 16,222,136 246 1325
0.98 16,636,746 270 1313
0.99 17,173,112 301 1293

Table 4.1: Optimum solution of the S P I L  model for different values of a

Figure 4.5: The trade-off curve showing the min total cost versus a



Chapter 5

SE N SIT IV IT Y  ANALYSIS ON  
THE EOQ A N D  SPIL 
MODELS TO FACILITATE  
LEARNING

In this chapter we discuss, why there is a need to generate the SPIL model, 
instead of using the EOQ model with finite production rate for PETKIM pro­
duction system. For this reason, we evaluate them according to some perfor­
mance criteria and show that the SPIL Model is superior to the EOQ Model 
(-with finite production rate-) in all types of sensitivity analysis.

In the literature, the meaning of ’sensitivity analysis’ is usually conceived 

as:

• How does the optimal solution vary as the parameter varies?

• How does the optimum value of the objective function vary when the 
decision variable is non-optimal?

However in this thesis, we introduce another point of view for the sensi­
tivity analysis. In other words, sensitivity analysis is conceived as

49
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What is lost by the error in parameter estimation?

Actually, our concern in making a sensitivity analysis is to understand 
whether the losses (or the costs) due to a parameter estimation error is great or 
small. Note that, almost all kinds of inventory control models are based on the 
’estimated’ values of some parameters. That means, the optimal values of the 
objective function and the decision variables found by using these ’estimated’ 
parameters are in fact the ’expected optimum’ values. In other words, an 
inventory control model can be validated (i.e., the model represents the real 
system on hcind), provided that the ’true’ values of the parameters of the model 
are identical with (if not closer to) the ’estimated’ ones. This is of course an 
idealistic statement as real life is generally undeterministic. As a matter of fact, 
if one can show that the costs associated with an estimation error is relatively 
’small’ than, the model can be still ’validated’. In other words, even if the true 
values of the parameters are different than the expected ones, this may not 
cause a trouble, unless tire cost associated with such errors is very large.

‘Cost of an estimation error' is one of the properties that characterize the 
adaptability of the decisions given by the model. If the cost of the estimation 
errors is reasonably small, then we can say that ‘the model is adaptive to 
the changing conditions of the environment’. Note that, as a result of this 
characteristic, it will be possible for the DM to operate the inventory system 

in a confident manner; as the resulting total cost (at the end of the planning 
horizon) will not be too far from the expected optimum. This will be achieved 
by generating a model that adapts itself to the changes in the environment. 
Little [19] defines the adaptability as a ‘model that is capable of being updated 

as new information becomes available. This is especially true of the parameters; 

but to some extend of structure too.

More specifically, we want to show in this chapter that the cost of a pa­
rameter estimation error in S P I L  model is ’not’ very ’significant’. For this 
purpose, we compare the performance of the S P I L  model with that of the 

classical EOQ model. Our mathematical and numerical analysis show that
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The cost of an error in parameter estimations in S P I L  model is always less 
than (or at most equal to) the classical EOQ model.

We know that in literature, classical EOQ model is recognized as a ’robust’ 
model in the sense that the optimum solution and optimum value of the objec­
tive function is ’insensitive’ to the parameter estimation errors. Although this 
is the case, we show in this chapter that, the cost associated with a demand rate 
estimation error \s ’not’ that much insignificant in the classical EOQ models.

Solomon (see [25] for reference) showed that the total cost in the neigh­
borhood of the optimum lotsize is relatively insensitive to the small variations 
in the quantity ordered. Brown [5] argues that, if the lotsize is within the 
range 70-140 % of the true optimum, the total annual costs rise less than 6% 
above the true optimum. By sensitivity tests, Zimmerman and Sovereign [29] 
conclude that the sensitivity of the total cost with respect :o errors in set-up 
and inventory holding costs is very small in classical EOQ models, if the errors 
are made in the same direction. Sensitivity of the extensions EOQ models are 
analyzed by several researchers in the recent years and they all found that, the 
sensitivity of the EOQ to the forecast errors is negligible small [7], [16]. If we 
incorporate the ’finite production rate’ assumption to their analysis we have

(5.1)

and the optimum value of Q which minimizes 5.1 is

2SD

Ml -  ? )
(5.2)

However, in the S P I L  model total cost function is

where the optimum value of 7 which minimizes 5.3 is

7* =
l2SD{\ -  f )

(5.3)

(5.4)
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Note that if we substitute 5.4 in 5.3 or 5.2 in 5.1, then we find the 
expression for the optimum total cost TC* as

D.TC* =  TC{Q*, D) = TC{I*, D) = \ 2SDh{l  -  - ) (5.5)

In tlie following two sections classical EOQ model and the S P I L  model 
is analyzed and compared by the traditional way of sensitivity analysis, i.e., 
according to the sensitivity of the optimum solution and the objective function 
to the changes in the parameters.

These analysis show that,

• The optimum solution of the S P I L  model is less sensitive to the changes 
in the demand rate than the classical EOQ model.

• They are equivalently insensitive to the changes in other parameters of 
the system.

In the last section we introduce a different way of sensitivity analysis, i.e., 
we compare both models according to the cost associated by a parameter esti­
mation error.

5.1 SENSITIVITY OF THE OPTIM UM  SO­
LUTION Q* OR r  TO THE CHANGES 
IN PARAMETERS

5.1.1 S en sitiv ity  o f th e optim al so lu tion  to th e  changes 

in D:

In order to find out how the optimal value of production quantity and the 
maximum inventory level changes when the ’true’ value of D, {D*) comes out
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to be different than the ’estimated’ value of D, {D) , let 
Q* and I* be the ’true’ optimum value of Q and / , while 
Q and I be the ’estimated’ optimum value of Q and /, 
then by using 5.2 and 5.4 we can write

91
Q

2SD*

2Sb
h(\-A) i

D‘(r -  D) 
b { r -  D·)

(5^6)

25D*(1-^)
h

2Sb{l-A) i
D*{r -  D') 
b{r -  b)

(5.7)

• Using 5.6, we can see that the rate of increase in the optimum value 
of Q is an increasing function of D*. On the other hand, using 5.7, 
we see that the rate of increase in the optimum value of /  is a concave 
function of D*. Thus, the optimum value of I  is less sensitive than Q to 

the changes in D.

5.1.2 S en sitiv ity  of th e  optim al solution  to  th e  changes 

in r:

By using the above argument, the rate of change in the exj^ected optimum 
solution due to a change in the production rate r will be :
In the classical EOQ model.

91
Q

2SD

2SD
lEJ^)

( 1 - 7 )
( i - B )

(5.8)

In the S P IL  model.

2 5 £ > ( l - ^ )  
. h

2 S D ( \ - ^ )
h

( 1 - ^ )
( 1 - f )

(5.9)
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Using 5.8 and 5.9, we can see that

• The rate of change in the optimum solution Q and r are in opposite 
directions; in other words Q decreases by any increase in the value of 7·. 
However the rate of change in the optimum Q value is smaller than that 
of V.

• The rate of change in the optimum solution I  and r are in the same 
direction, i.e., the optimum value of /  increases by any increase in r.

• Both in S P I L  model and the EOQ model, the rate of change in the 
optimum solution is less than the rate of change in r·.

5.1.3 S en sitiv ity  o f the optim al so lu tion  to  th e changes 

in S and h :

Using the above procedure, the rate of change in the optimal solution due to 
a change in S  is given as follows

91
Q

2S*D

2SD
(5.10)

I I
1

2 S ' D { \ - ^ )
h

h

(5.11)

.Similarly it can be shown that

91
Q

I*
1 (5.12)

/S A* A A

where Q*, /*, 5*, / r  are the ’true' values and Q, / ,  .S', h are the ’estimated’ 
values of the production quantity, production rate, set-up cost and unit inven­

tory holding cost respectively.
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Note that

• The relative change in the optiimim value of the production quantity is 
identical with that of maximum inventory level due to a change in S  or 
h.

• Both Q and /  change in the same direction with S, but in the opposite 
direction with h.

• The relative changes in the optimum value of Q and /  are ’less’ than the 
rate of change in S  and h respectively.

5.2 CHANGE IN THE TOTAL COST FU N C ­
TION W HEN (3 OR /  IS NONOPTI- 
MAL

If Q*, Q denote the ’true’ and ’estimated’ values of the optimum production 
quantity and TC* (as given in equation 5.5) , TC  (using 5.1) denote their 
respective total costs, then

TC f  + \hQ f  + ihQ

TC·  f  + l/.(3* ^2SD h( l  -  2 ) 

where all the parameters other than Q and TC  are,the ’true’ values.

By simplification one can show that

TC* 2^

Similarly, if we use the S P lL  model instead of the classical EOQ model

f c  ^  f ( i - f )  + |A/ ^ 1 3 * C
TC* ^ { l - ^ )  + lhI* 2 ^ / '^ / * ^

Thus,
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• The effect of a change in the optimum value of the decision variable on 
total cost function is identical in both the classical EOQ model and the 
S P IL  model. However, considering I* being less sensitive to D than Q*, 
we should conclude that the S P I L  model is less sensitive to the changes 
in demand rate than the classical EOQ model.

• Total cost function increases as Q (or I) gets far from the true optimum 
value of the production quantity, Q* (or maximum inventory level /*). 
In other words, total cost ’increases’ with an estimation error in ’both’ 
directions.

• The relative increase in the total cost function is ’less’ than the rate of 
change in Q or /  for the EOQ and S P I L  models respectively.

The above discussion shows that, in the classical EOQ model, a great deal 
of accuracy is unnecessary in estimating the parameters involved in the calcu­
lations. Such characteristics of the EOQ lotsize formula have made it widely 
used in practice. However we have also showed by comparing the results of the 
sensitivity analysis that, the performance of the S P I L  model is equivalent to 
(or even better than) that of the classical EOQ model.

.After stating the performance criteria of sensitivity analysis in the litera­
ture, we compare the S P I L  model and the EOQ  model in terms of the cost 
of a parameter estimation error in the following sections. More specifically, we 
find out what is lost by a demand rate, production rate, set-up cost, unit in­
ventory holding cost estimation error? As a result we conclude that, the S P I L  
model is ‘superior’ to classical EOQ models in the following senses;

• In S P I L  model, the cost of an error in demand rate (D) estimation is 
’significcuitly’ smaller than the classical EOQ model.

• In S P I L  model, the cost of an error in other parameters of the system, 
(namely set-up cost, unit inventory holding cost and production-rate) is 

exactly the same as the classical EOQ model.
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As we have discussed at the beginning of this chapter, these characteristics 
enables us to define the S P IL  model as more ’’adaptive' than the classical 
EOQ] because in spite of the changes in the inputs, the model gives robust 
solutions and in a way, adapts itself to the changes in the system.

5.3 COST OF AN ESTIMATION ERROR

5.3.1 Cost of an E stim ation  Error in D em and R ate

Both the SPIL model and the classical EOQ models are based on deterministic 
demand rate assumption. However, it is the ’estimate’ oi the future demand 
rate that is considered, when the models are applied to the actual system. 
That is to say, any deviation from the forecasted demand rate will usually lead 
to an incorrect decision rule. Thus, it is reasonable to compare both models in 
terms of the ’cost associated with an error in demand estimation’.

Cost of Error due to an error in Estimated Demand Rate in EOQ 
Model

Imputed production plan: Let us say, for a given planning period, the DM 
estimates the demand rate as D. Based on this value, the optimum production 
quantity and production duration are found to be Q (equation 5.2) and Tp 
respectively. Inventory build up and decline in the imputed production plan is 

represented in figure 5.1. The rate of increase in the inventory level is estimated 
to be r — D with the same assumption. It is planned to stop production after 
Q amount of an item are produced until the inventory level drops to zero. 
Production continues with the similar cvcles.

True optiimim production plan: Our concern at this point is the effect of 
an error in the demand rate estimation on this imputed scenario of figure 5.1. 
If the true demand rate comes out to be D* -instead of D-, then the opti­
mum value of production quantity in a cycle will be Q* -instead of Q- which is 
found bv substituting the true demand rate D* in formula 5.2. Therefore the
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total cost associated with Q may not be the ’minimum attainable cost. Inven­
tory build up and decline for the true optimum plan is again given in figure 5.1.

Parameters (from the PETKIM production system):
5=415,249,640 TL 
/i=16,720 TL/unit/day 
7’=65.15 tons/day
Z)=30 tons/day (estimated demand rate)
/7'=40 tons/day (true demand rate)

Figure 5.1: Change in the production plan due to an error in estimating D, 
when the decision variable is Q

It follows from this figure that, if the true demand rate is greater than 

the estimated value {D* > D), then the true optimum production quantity is 
greater than the imputed optimum production quantity {Q* > Q). However, 
we should add that due to the given values of the estimated and true values
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of the demand rates, true value of the production quantity is less than the 
imputed value if D* < D.

Applied productio7i plan : However, the DM, being unaware of this true 
demand rate D* will try to apply the imputed scenario and produce Q instead 
of Q* (note the difference between the applied and true optimum plan in terms 
of the changes of inventory level in figure 5.1).

Let us briefly repeat what we have discussed so far: The DM estimates the 
demand rate to be D in the planning horizon. Using this value he computes the 
optimum value of the production quantity to be Q and applies this plan to the 
production system, i.e., he produces Q then stops until the inventory level drops 
to zero... However, the true demand rate turns out to be D*, which is different 
from the estimated value D: thus the time optimum value of the production 
quantity/cycle is Q* is different from Q with the same methodology. This 
means that, the DM applies the ’nonoptimal’ production policy by producing 
Q instead of the true optimum quantity Q* and this certainly leads to a higher 
total cost in the classical EOQ model.

The difference between the total costs of applied and true optimum pro­
duction plan is the cost of error due to a demand rate estimation eimor. If 
the EOQ model is utilized, this cost of error will be referred to as Classical 
M odel C ost of E rro r or shortly, CMCE, which is found by using the below 
formula:

where.

C M C E  = TC{Q, D*) -  T C { Q \  D*)

Q =
2SD

NA(1 -  £ )

(5.13)

(5.14)

and

<5* =
2SD^

\
(5.15)
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The second term in 5.13 is the true optimum value of the total cost defined 
by 5.5 and by using the total cost formula of the EOQ model in equation 5.1 
we can write

C F)̂  1 n* / 7̂*
CMCE = 1 - y  + -  i^) (5.16)

The C M C E  can be expressed as function of the estimated and true values 
of demand rate, when 5.14 is substituted in 5.16.

SD* 1
C M C E = [  r--  r - T  - h  

' 2SD 2
M i-f) N

2SD D* / D*
-------- ^  (1 -  — )] -  \ 2SDCi{l -  — )/i(l - R )   ̂ r  ' '  V r ^

Algebraic operations and manipulations simplify into

C , , C B  = M  (5.17)
V 2’ · b )

The graphical representation of C M C E  for different values of estimated 
demand rate D and true demand rate D* for a PETKIM product is given in 
figure 5.2. It is apparent from these curves that, C M C E  strictly increases if 
the true demand rate D* is different than the expected demand rate D.
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Same values of the cost parameters are used with the previous figure. 
D='S0, 45, 50 tons/day

Figure 5.2: C M C E  versus true demand rate {D*)

Cost of Error due to a Change in Estimated Demand Rate in 
SPIL Model

VVe apply the same argument to the SPIL model this time. Remember that 

total cost of SPIL Model is expressed as a function of the maximum inventory 
level /  and demand rate D.

Imputed production plan: The DM estimates the demand rate to be D and 
finds the corresponding optimum value of maximum inventory level I  (equa­
tion 5.19), which minimizes the total cost function. The production starts with 
zero inventory level and continues until the inventory level reaches /. During 
this production period, inventory level should increase at a rate oi r — D and 
decrease at a rate oi —D after the production is stopped. Each cycle begins 
when the inventory level is zero and continues in this manner during the plan­

ning horizon (figure 5.3 represents the variation of the inventory level for the
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imputed production plan).

Using the same values of the parameters used in figure 5.1

Figure 5.3: Change in the production plan due to an error in estimating D, 
when the decision variable is 1

True optimum plan: What if the true demand rate D* turns out to be 
different from the estimated value DI Briefly in this case, optimum value of 
’maximum inventory level’ should be I* (using 5.20), where the actual demand 
rate is D*. The variation of the inventory level in true optimum plan is given in 
figure 5.3. Using the same parameters as in the case of classical EOQ model, 
it follows from this figure that if the estimated demand rate is less than the 
true demand rate, the maximum inventory level of the true optimum plan is 
less than the imputed plan. However we should note that this is not always 
the case: The optimum value of the maximum inventory level is a concave 
function of the demand rate (equation 5.20); thus depending on the values of
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the estimated and true demand rates, the true optimum value of the maximum 
inventory level may be less than or greater than the imputed optimum value.

Applied plan: Because of the error in demand rate estimation, the DM will 
consider /  in the production plan instead of I* which is the ’true’ optimum 
value of maximum inventory level. The production will continue until 1 then 
will be stopped as shown in figure 5.3. (unlike the classical EOQ model (figure 
5.1), when the S P I L  model is used, note the similarity between the applied 
and true optimum plan in terms of the changes of inventory level in figure 5.3).

Similar to the case in the classical EOQ model, what actually happens 
is the following: The DM estimates the demand rate to be D and finds the 
related optimum value of the maximum inventory level to be I  (using 5.19). 
He builds up a production, and inventory control strategy using these values 
and applies this plan to the system on hand. However, the true value of the 
demand rate turns out to be D* (which is different from D) and in this case 
the true optimum value of the maximum inventory level should be 7* (using 
5.20). Note that as a result of an error in the demand rate estimation, the 
DM applies the ‘nonoptimaf maximum inventory level 7, instead of the true 

optimum maximum inventory level 7”. Obviously, we should expect an increase 
in the total cost by applying the nonoptimal plan.

When we use the S P I L  model, the difference between the total cost func­
tions of the applied and true optimum production plans is referred to as the 
SPIL M odel Cost of E rro r or SM C E .  In other words, S M C E  is the cost 

incurred by producing up to 7 instead of 7* (the true optimum value), when 
the true demand rate is D* (equation 5.18).

S M C E  =  rC (7 , D*) -  T C { I \  D*) (5.18)

where.

7 =
2SD{1 -  fi)

h
(5.19)
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and

/* =
_ J 2 S D * { 1 - ^ )  

h (5.20)

Actually the second term in 5.18 {TC{I*, D')) is the true optimum value 
of the total cost function which is simply defined in 5.5 and by using the total 
cost formula of the S P I L  model in equation 5.3 we can write

D* D* \ - D*
SMCE = [6’y (1 -  y )  + -hi] -  j2SD*h{l -  — ) (5.21)

The S M C E  can be expressed a function of the estimated and true values 
of the demand rate, when 5.19 is substituted in 5.21.

SD* D* 1 
S M C E  = [ - ^ = ^ ( 1 -  )+ /n

. I2SD{1-^) i 2 \|
25Z^(1 -  f ) / D*

l2SD*h{\ -  — )

Algebraic operations and manipulations simplify into

S M C E  =  T p '  . p  + T ' l  _  2 ^ D ‘(r -  D*)l (5.22)
V 2>- ^D(, ·  -  D)

The SPIL Model is applied on the production of a PETKIM product and the 
cost of error due to a demand rate estimation error is calculated for different 
values of D. Graphical representation is given in figure 5.4. The result is 
charming in the sense that, unlike CM CE, S M C E  is not strictly increasing. 
It is minimized for more than one value of the true demand rate D* and is 
rather ’flat’ between these roots.
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B}' using the same parameters in figure 5.1 
D=30, 45, 50 tons/day respectively

Figure 5.4; S M C E  versus true demand rate {D*)

Basic properlies of the SMCE Function

The roots of the S M C E  function is analyzed by taking the first derivative 
of equation 5.22 with respect to true demand rate D* and equating to zero. 
As a result it is found that the function has three roots:

1- D*
2- D* 
.3- D*

D
r - D

Cost of error is minimized (actually it takes its zero value) at the first 
and second roots. The first root is obvious since when the estimated demand 

rate (D) and the true demand rate {D*) are the same , the imputed and the
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true optimum plans as well as associated costs are the same and therefore the 
cost of error is zero. However the second root brings the flexibility that it is 
possible to  loose no th ing  by an estim ation  e rro r, if th e  sum  of tru e  
and estim ated  dem and ra te s  is equal to  the  p roduction  ra te  r (i.e..D*+ 
D) . Even if the DM makes a production plan based on a wrong estimate 
D, he/she may be able to catch the true optimum total cost. Mathematical 
analysis shows that, the optimum value of the maximum inventory level /  is a 
concave function of the demand rate D. For this reason, when the S P I L  model 
is used it is possible to have the same optimal solution for /, for different values 
of D. On the other hand note that, the optimal value of the order quantity Q in 
the classical EOQ model is an increasing function of D. For this reason, unless 
D* =  D, Q* is always different from Q. Thus, we show that, starting with the 
classical EOQ Model, a robust m odel against dem and es tim atio n  errors 
can be constructed. In fact, this property is the core point of the SPIL Model 
as well as this thesis work.

Another important property of the S M C E  is the ’maximum’ cost of error 
between the given ’minimizing’ roots of the S M C E  function which occurs at 

the third root D* =  ̂ .
The third root does not depend on the value of the estimated demand rate D. 
A bump up of the function is observed when the true demand is half of the 
production rate (figure 5.4). The height of this bump (i.e., the maximum cost 

of error between the roots D and r — D) can be found by substituting D" = r/2  

in 5.22 as follows:

S M C E . . . . ,  -  > / -
i b C - D )Y r

C 1
S M C E d*=̂  = \ I —

,.2

2'· 2 y j D { r  -  b )
-  r\

It is also obvious from the curves of figure 5.4 that the height of this bump- 

up between the roots increases as the distance between them {r — 2D) increases
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toward the limits of the domain (0,r). However we will show in this section 
that this global maximum value of SMCE at D * = t/ 2  can never exceed CMCE.

At this stage, we need to emphasize a special caise of the S P I L  model i.e., 
when b  = ^: According to our initial assumption, demand rate is always less 
than the production rate. For this reason, while making sensitivity analysis we 
consider only those values of D* where 0 < 77* < 7\ In figure 5.5, the three 
roots of the S P I L  model is located as a function of b.

D r- 2 D D
pit

0 D
root 1

r / 2  
root 3

r- D 
root 2

Figure 5.5: Roots of the Cost of Error function in S P I L  model

Note that the first root D* = b  and the second root D" = r — b  are 

equidistant (= D) from the limits of the domain (0,7·). The third root, D* = ^ 
is just in the middle of this range. It follows from the discussion in the above 
paragraph that, these three roots are equal to each other when the estimated 
demand rate is r/2, i.e.,

b  =  -  — 7 roo i l  =  b  =  -  , voot2 =  V — b  =  -  , roots  =  -
2 2 2 2

Thus the shape of the S P IL  model is a convex function if D = | .

Comparison of the Cost of an Estimation Error in the Classical 
EOQ Model and SPIL Model

• The above analysis of both models shows that the cost of an error in 
demand estimation is zero when the estimated demand rate is the same
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By
r = 
D=

as the true demand rate (figure 5.6).

using the same values of the cost parameters in the previous figures 
65.15 tons/day,
45 tons/day,

Figure 5.6: Comparison of the cost of a demand rate estimation error in the 
classical EOQ model and the S P I L  model

However there exists a second value of actual demand rate (where true 
demand rate =  production rate - estimated demand rate) in SPIL Model 
for which the cost of an estimation error is still zero! This brings a high 
flexibility and adaptation capability to the SPIL Model. The graphical 
comparison of both models in terms of the cost of a demand estimation 
error is given in figure 5.6.

Cost of an estimation error in classical EOQ Model is always greater 
than .(or equal to) the SPIL Model. This fact is shown by the analysis 
of the difference between costs of error associated with these models. 
Subtracting SMCE from CMCE given in 5.22 and 5.17 respectively, we
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obtain

C M C E - S M C E =  \ [ ^  [ — p_*) + D{r—
V 2r ^£)(r -  D)

D*(r - D )  + D(r -  D*) ! — -̂-------------—

-------- -̂----T = = = ------- - + -  D*)
^JD{r -  D)

(5.23)

C M C E  -  S M C E  =
\

Sh
2vD{r -  D)

{D* -  jby (5.24)

By using the same values of the cost parameters in the previous figures D=30, 
45, 60 tons/day respectively

Q
rr
b-
LU
o

111
o
s
o

35

30

25
'in
J  20

D=60 tons/day

\
D=45 tons/dayK

5 10 15 20 25 30 35 40 45 50 55 60
TRUE DEMAND RATE (TONS/DAY)

Figure 5.7: Difference of ‘the cost associated due to a demand rate estimation 
error' in the classical EOQ and S P IL  model versus the true demand rate, (i.e, 
C M C E  -  S M C E  versus D*)

The first multiplier of 5.24 in the square-root is always positive, since we 
assume that production rate is greater than the demand rate (i.e., r > D).
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The second multiplier of the expression is the ’square’ of the demand 
rate estimation error, which is always nonnegative. Thus the difference 
of the C M C E  and S M C E  turns out to be nonnegative, meaning that 
C M C E  > SM C E .  Graphical representation of this fact is given for 
different values of D and D* in figure 5.7.

• Another aspect that should be considered is the ratio of ’cost of an esti­
mation error’ and the ’true optimum total cost’. We need to determine 
’how significant the cost of error' is when compared to the ’true opti­
mum total cost’. Although the SPIL Model gives more ’robust’ solutions 
against demand estimation errors than the classical EOQ Model, this fact 
will be of less value if they are not significantly different when compared 
to the true optimum total cost.

The ratio of cost of error to true optimum total cost is stated in the 
following way for both models using 5.21 and 5.5

S M C E  TC{I, D ‘̂) -  TC{I*, D*)
TC{H, D*) TC{H, D*)

| 5 y ( l - g )  + l / , / l - y - 2 5 £ | . / , ( l - g )

y'2SB*A(i -

by substituting 5.19 in place of /, the above equation will be

S M C E  _  { \ l D * { r - b ) - ^ J b { r - D - )  f
(5.25)

T C { I \ D - )  2^JD*b{r -  D-){r -  b )

Similarly, by using 5.16 and 5.5 same ratio is calculated for the classical 

EOQ models as

C M C E  TC(Q, D*) -  T C [Q \  D*)
TC{Q\. D*) TC {Q \D *)

l ^  + i h Q { l - ^ ) ] - ^ 2 S D - h { l - ^ )  

^ 2 S D ‘k{l -  a )
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By substituting 5.14 in place of Q, the above equation will be

C M C E  _  -  D*) -  \/D{r -  b )  f

TC{Q*,D*) 2yjD*D{r -  D*){r -  D)
(5.26)

When these ratios are plotted against the % error in demand estimation 
as in fig 5.8, we see that the ratio of the cost of a demand estimation 
error to true optimum total cost is significantly smaller when the SPIL 
Model is utilized instead of the classical EOQ Model.

.Same values of the cost parameters are used with the previous figure.
D —Ab tons/day

Figure 5.8: Ratio of the cost of a demand rate estimation error versus the % 
error in demand rate estimation in the classical EOQ and S P IL  model.
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5.3.2 Cost o f an Error in E stim atin g  th e  O ther Param ­

eters o f th e S ystem

We have already discussed the cost associated with a demand rate (D) estima­
tion error for both models. However, it is also necessary to perfoi'm a similar 
analysis for the other parameters of the system like set-up cost S ,unit inventory 
holding cost (h), and the production rate (r). Note that the sensitivity analysis 
is again based on the ’cost associated with an estimation error’ in one of these 
parameters of the production system.

The value of the cost parameters S  and h are inferred by the management by 
deriving on some statistical techniques and the production rate r is determined 

by the plant managers in the technical limits (as explained in section(3.1)).

Actually, we show in this section that, the cost of error due to estimation 
errors in other parameters of the system (i.e.. S', h, r ) are ’exactly’ the same 
as the classical EOQ model.

Cost of an e rro r in estim ating  th e  set-up  cost p a ra m e te r , S':

Using the same methodology as in the previous section, cost of error due 

to an estimation error in the set-up cost, .? can be written for both models as

C M C E  = TC{Q, S ’ ) -  T C {Q \  .S'*) (5.27)

where

and

Q =
1̂

2SD
M i - f )

(5.28)

Q* =
2S-D

(5.29)

and similarly.
SMCE = TC{i, S’) -  TC{I’, S*) (5.30)
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where

I =
2SD{1 - -S )

(5.31)

and

(5.32)

These formulas are similar to those of the costs associated with demand 
rate estimation errors. However the estimated parameter is changed from D to 
,S'. Note that in 5.27 and 5.30 the second terms are the same as both define 
the optimal value of the total cost with the true value of the parameter S  given 
in equation ( 5.5).

Thus it will be enough to find the difference between TC{Q, S*) and TC{I, S*) 
in order to compare the cost of error due to the set-up cost, S  estimation error. 
Now we show that this difference ( 5.33) is always zero.

C M C E  -  S M C E  =  TC{Q, S*) -  TC{I, S*) (5.33)

,.?*£> 1 , A, ,  D,, ,S 'D ,^  D,  1 , ; ,
+ 5 /»« 1 -  - )  -  - p f i  -  7 ) +Q Z r I r Z

(5.34)

Note that we can define Q as

Q
I

( 1 - ? )

where Q and /  are given as 5.28 and 5.31.

(5.35)

Substituting 5.35 in 5.34 gives 

,S*D,  1, 7 ,,
I— 0 - 7 )  + 2' ‘ ( r 3 ^ < ' - 7 > l - l — “

= 0

Thus we conclude that,
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• The cost of error due to an estimation error in S is the same for both the 
classical EOQ model and S P I L  model.

Using the same example (from the PETKIM production system) in the 
previous section, the cost of error associated with a set-up cost estimation 
error is given in figure 5.9 .

5=415,249,640 TL

TRUE 'S’ (TL)
(Times 10E9)

Figure 5.9: Cost of an error due to a set-up cost estimation error vs the true 
value of set-up cost (5*) in the classical EOQ model and S P IL  model
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C ost of an e rro r in e stim atin g  the  un it inven to ry  holding cost, h:

While defining the cost due to an estimation error in /i, we carry out the 
similar discussion for S. By changing the estimation parameter horn S  to h in 
5.33, we can write

C M C E  -  S M C E  = TC{Q, IP) -  TC{Î,  h*) (5.36)

(5.37)

Q and i  are again defined as in 5.28 and 5.31 by changing the estimated 
parameter from S  to h.

Q =
\

2SD

Ml -  f )
(5.38)

and

/  =
2SD{1 -  f  )

h
(5.39)

We can define Q as a function of /  using equation 5.35, thus 5.37 can be 
written as

Q =
( i - f )

where Q and I  are given as 5.38 and 5.39.

(5.40)

Substituting 5.40 in 5.37 gives

I

(iT=7)

Thus we make the same conclusion that
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• The cost of error due to an estimation error in h is the same for both the 
classical EOQ- model and S P I L  model.

This result can be seen graphically in figure 5.10 , where the values of the 
parameters are identical with the previous figure.

/i=16,720 TL/unit/day

Figure 5.10: Cost of an error due to a unit inventory holding cost estimation 
error vs the true value of unit inventory holding cost (/i*) in the classical EOQ 
model and S P I L  model

Cost of an error in estimating the value of the production rate, r:

In section 3.1, we have discussed that it is technologically possible in PETKIM 
to keep the production rate at a ’constant’ value. T hat’s why, once the value of 

r is set by the decision maker, it will be valid all through the planning horizon.

However, we still need to test the performance of the SPIL model against 
the changes in the production rate in order to generate a better understanding 
of how the system behaves when a change occurs in r. Besides, such analysis
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is essentiall}' needed to learn about the ’applicability’ of the SPIL Model to 

other type of production systems, where production rate is not constant.

Using the same argument in the previous parts, we can write

C M C E  -  S M C E  = r c ( g , r * )  -  r c ( / , r * ) (5.41)

Now we show that the difference of the cost of estimation errors in r between 
the classical EOQ model and the S P I L  model is zero. .Actually, it is enough 
to show that

C M C E  = S M C E

-4 TC{Q,N) = TC{I,r*)
.SD D.,  ,SD.^  l , p ,
( -J -  + 2^Q(^ -  —)I -  2 (5.42)

Here, Q and I  are defined as

Q =
2SD

M i - f )
(5.4.3)

and

7 =
I2SD{\ -  

h ^
(5.44)

We define Q in terms of I  as

Q =
( i - f )

(5.45)

Substituting 5.45 in .5.42 gives

, S D , ,  D ,  l , f ,
|-r(> +

SD„  0 , 1 , ;  „  ,SD 1 ,  /  ,
— (1 -  - )  -  j W  =  (1 -  1—  -  2 ' ‘ ( r r 7 ) l
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h 2 S D { 1 - ^ )  . 2 5 D ( l - f )
h '  J -  ( ! _ : ? )  I h2/ - / 1

=0 =0

In the RHS and LHS of this equality, two multipliers are identical and equal 
to zero as /  is defined by 5.44. Thus we show that

• The cost of an error due to an estimation error in r is the same for both 

the classical EOQ model and the S P I L  model.

The cost associated with an error in estimating the production rate, r is given 
in figure 5.11. using the same values of the parameters as in the previous 

figures.

f=65.15 TL/day

Figure 5.11: Cost of an error due to a production rate estimation error vs the 
true value of production rate (?·*) in the classical EOQ model and S P I L  model



Chapter 6

SUM M ARY A N D  
CONCLUSION

In this study, we propose a ‘robust* production and inventory control model. 
The SPIL model is implemented in a real system PETKIM; however, it is a 
general model that can be applied to any production and inventory system 
where there is a constant production rate with random demand pattern. Cost 
parameters related to set-up and inventory holding costs are constant. Backo­

rder is allowed; but the related cost is intuitively evaluated by the DM.

SPIL model originates from the classical EOQ model with finite produc­
tion rate. By certain modifications on the EOQ model, we derive a bi-objective 
model with two decision variables. Decisions are subject to a service level con­
straint which requires user involvement. A ‘compromised* solution is obtained 

by using the sequential optimization technique. Solution is in the form of a 

trade-off curve, which shows the relation between the service level measure 
(SLM) and the associated minimum total cost. The DM selects a production 
and inventory control strategy using the trade-off curve. The optimal values of 
the decision variables are the ‘ma.ximum inventory level* (produce up to level) 

and the reorder inventory level that minimize the total cost (as the sum of 

set-up and inventory holding costs) for the required level of SLM.

79
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The ‘robustness* of the SPIL model is measured by testing its sensitivity 
against demand estimation errors and comparing with those of classical EOQ 
model. We show in this study that, by changing the decision variable of the 
classical EOQ model from ‘production quantity* to ‘maximum inventory level*, 
we obtain a ‘robust* model against demand estimation errors. Thus SPIL 
model is more insensitive to the demand estimation errors than the classical 
EOQ model. In order to enhance the ‘generality* of the SPIL model, sensi­
tivity analysis is made due to changes in other parameters of the model i.e., 
production rate, unit inventory holding cost and set-up cost. The results are 
again compared with those of the classical EOQ model and it is concluded that 
the sensitivity of the SPIL model to other parameters is ‘identical* with the 
classical EOQ model.

Initially, sensitivity analysis of both models are based on the criteria of ‘cost 
of a parameter estimation error*, which is very seldom used in literature. We 
emphasize in this thesis work that, this way of approach to sensitivity analysis 
makes more sense than the classical approach which is based on the ‘rate of 
change in the optimal solution due to a change in one of the input parameters*. 
We need to stress that, ‘even if the rate of change of the optimal solution* 
due to a parameter estimation error is large, a robust model can still generate 
robust decisions where the cost of error is small.

Additional!}', we also compare both models by testing their sensitivity due 
to parameter estimation errors using the classical way of sensitivity analysis. 
The results obtained from this analysis are ‘consistent* with ones obtained by 
our new approach.

One of the core points of this thesis study is the introduction of a ‘robust 
model* concept. Robustness is measured in terms of the ‘cost of a parameter 
estimation error*. SPIL model is a robust model against demand estimation 
errors, meaning that it generates ‘robust decisions' due to errors made in es­
timating demand rate. From this point of view, SPIL model is an ‘adaptive* 
control model. Actually, it adapts itself to the changing conditions by gener­

ating a robust inventory control strategy.



CHAPTER 6. SUMMARY AND CONCLUSION 81

Finally, SPIL model is an interactive decision making model where the DM 
is actively involved in the decision process, b}' making a trade-ofF between the 
SLM and the minimum total cost.

We conclude this chapter by restating that, robust inventory control models 
can be derived by using the theoretical models in literature. Eventually, the aim 
of the researchers involved in this area should be generating adaptive models 
that assist the DM while giving decisions related to production and inventory 
control. This is the central theme of this stud}'.
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