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ABSTRACT

GRAPH AND HYPERGRAPH PARTITIONING

All Da§dan
M.S. in Computer Engineering and Information Science 

Advisor: Asst. Prof. Cevdet Aykanat 
September, 1993

Graph and hypergraph partitioning have many important applications in var­
ious areas such as VLSI layout, mapping, and graph theory. For graph and 
hypergraph partitioning, there are very successful heuristics mainly based on 
Kernighan-Lin’s minimization technique. We propose two novel approaches 
for multiple-way graph and hypergraph partitioning. The proposed algorithms 
drastically outperform the best multiple-way partitioning algorithm both on 
randomly generated graph instances and on benchmark circuits. The proposed 
algorithms convey all the advantages of the algorithms based on Kernighan- 
Lin’s minimization technique such as their robustness. However, they do not 
convey many disadvantages of those algorithms such as their poor performance 
on sparse test cases. The proposed algorithms introduce very interesting ideas 
that are also applicable to the existing algorithms without very much effort.

Keywords: Graph Partitioning, Hypergraph Partitioning, Circuit Partitioning, 
Local Search Heuristics, Partitioning Algorithms
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ÖZET

ÇİZGE VE HİPERÇİZGE PARÇALAMA

Ali Daşdan
Bilgisayar ve Enformatik Mühendisliği, Yüksek Lisans 

Danışman: Yrd. Doç. Dr. Cevdet Aykanat 
Eylül, 1993

Çizge ve hiperçizge parçalama, çok büyük ölçekli tümleşik devre tasarımı, 
paralel bilgisayarlarda hesaplama yükünün işlemcilere dağıtımı, çizge kuramı 
gibi bir çok alanda önemli uygulamaları olan işlemlerdir. Çizge ve hiperçizge 
parçalama işlemleri için, Kernighan-Lin’in tekniğine dayanan çok başarılı 
buluşsal algoritmalar vardır. Biz bu çalışmamızda, çok yollu çizge ve hiperçizge 
parçalamak için iki tane yeni yaklaşım önerdik. Önerilen algoritmalar, rastgele 
üretilmiş çizge örneklerinde ve algoritmaları karşılaştırmak için kullanılan stan­
dart devrelerde şu anda çok yollu çizge ve hiperçizge parçalamak için kullanılan 
en iyi algoritmadan çok daha iyi sonuçlar verdi. Önerilen algoritmalar, eski 
algoritmaların çizge ve hiperçizge problemlerindeki yeni ve değişik gereklere 
kolayca uyarlanabilme gibi iyi özelliklerini taşımalarına rağmen, eski algorit­
maların yoğunluğu çok seyrek olan çizge ve hiperçizge problemleri üzerinde 
kötü sonuçlar vermesi gibi kötü özelliklerini taşımamaktadırlar. Önerilen 
yaklaşımların getirdiği çok ilginç fikirler, eski algoritmalara da çok büyük bir 
çaba gerektirmeden uygulanabilir.

Anahtar Sözcükler: Çizge Parçalama, Hiperçizge Parçalama, Devre Parçalama, 
Buluşsal Algoritmalar, Parçalama Algoritmaları
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C hapter 1

IN TR O D U C TIO N

1.1 C om binatorial O ptim ization  Problem s

Many problems that arise in practical situations are combinatorial optimiza­
tion problems which involve a finite set of configurations from which solutions 
satisfying a number of rigid requirements are selected. The goal is to find a 
solution of the minimum or maximum cost (or the optimum cost) provided 
that a cost can be assigned to each solution.

Many combinatorial optimizations problems are hard in the sense that they 
are NP-hard or harder [13]. There are no known deterministic polynomial time 
algorithms to find the optimal solution to any of those hard problems. The 
algorithms employing the complete enumeration techniques are not reasonable 
to use because the complexity of these techniques is usually exponential in the 
size of the problem and hence, they require a great amount of time to find the 
optimal solution for even very small problem instances. As a result, heuristic 
algorithms (or heuristics) that run in a low-order polynomial time have been 
employed to obtain good solutions to these hard problems, where, by a good 
solution, we mean a solution that is hopefully close to the optimal solution to 
the problem.

The methods used for designing heuristic algorithms tend to be rather prob­
lem specific. Local search is one of the few general approaches to solving hard 
combinatorial optimization problems. Local search is based on trial and error 
method, which is probably the oldest optimization method.
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Before deriving a local search algorithm for a problem, a neighborhood 
structure for any solution must be chosen. For each potential solution to the 
problem, this structure specifies a neighborhood which consists of a set of 
solutions that are in some sense close to that solution. A rule as to how a 
neighbor solution can be generated by modifying a given solution is associated 
with the neighborhood structure.

Starting from some given initial solution, a local search algorithm tries to 
find a better solution which is a neighbor of the first. If a better neighbor is 
found, a search starts for a better neighbor of that one, and so on. Since the set 
of solutions is finite, this search must halt, that is, the local search algorithm 
must end at a locally optimum solution, which does not have a better neighbor 
solution. Local search algorithms are also called iterative improvement algo­
rithms because they iteratively improve an initial solution so as to find a locally 
optimal solution.

Suppose that the problem is a minimization problem and so the smaller 
the cost of the solution found, the better the solution. The modification of a 
given solution to obtain a neighbor in the neighborhood of the given solution 
is called a move. If the move results in a neighbor with a better cost, the move 
is a downhill move. On the other hand, if the move results in a neighbor with 
a worse cost, the move is an uphill move. The bcisic local search algorithm 
employs only downhill moves.

1.2 G raph and H ypergraph P artition ing Problem s

Graph partitioning problem is an example of the problems to which the local 
search method has been successfully applied. Given a graph, graph partitioning 
problem is concerned with finding a partition of the graph into a predetermined 
number of nonempty, pairwise disjoint parts such that the sizes of the parts 
are bounded and the total size, cutsize, of the edges in the cut, those edges 
that connect different parts, is minimized. Graph partitioning problem is an 
NP-hard combinatorial optimization (minimization) problem [13].

The importance of the graph partitioning problem is mostly due to its con­
nection to the problems whose solutions depend on the divide-and-conquer 
paradigm [26]. A partitioning algorithm partitions a problem into semi­
independent subproblems, and tries to reduce the interaction between these
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subproblems. This division of a problem into simpler subproblems results in a 
substantial reduction in the search space [34].

Graph partitioning has many important applications in various areas such 
as VLSI layout [2, 21, 22, 33, 40], mapping of computation to processors in 
a parallel computer environment [7, 8, 30], sparse matrix calculations [14, 15, 
24], and so on. There are also some theoretical justifications for the usage of 
graph partitioning in VLSI layout. For example, it is shown that a provable 
good graph partitioning algorithm can be tailored into a provable good layout 
algorithm [2].

A hypergraph is a generalization of a graph such that an edge, called a net in 
a hypergraph, of a hypergraph can connect more than two vertices. Hypergraph 
partitioning problem is exactly the same as graph partitioning problem except 
that the structure to be partitioned here is a hypergraph. Since an edge in a 
graph can only connect two vertices, edges do not properly represent electrical 
interconnections. As a result, a hypergraph is better suited to electrical circuits 
in which some of the nets have three or more connected devices [32]. Hence, 
not surprisingly, hypergraph partitioning has important applications in VLSI 
layout [4, 9, 11, 12, 28, 35, 36]. The hypergraph partitioning problem is also 
NP-hard [13].

If a graph (hypergraph) is to be partitioned into more than two parts, then 
the problem is referred to as multiple-way graph (hypergraph) partitioning 
problem. When there is only two parts in the partition, the problem is called 
graph (hypergraph) bipartitioning problem.

1.3 P revious Approaches

Since both graph and hypergraph partitioning problems are unfortunately hard 
problems, we should resort to heuristics to obtain at least a near-optimal solu­
tion. The most successful heuristic algorithm proposed for graph partitioning 
problem is due to Kernighan-Lin [19]. Kernighan-Lin (KL) algorithm is a very 
sophisticated improvement on the basic local search procedure, involving an 
iterated backtracking procedure that typically finds significantly better solu­
tions [17].

KL algorithm was adopted to hypergraph partitioning problem by
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Scliweikert-Kernighan [32]. KL algorithm uses a swap-neighborhood structure 
in which a neighbor of a given solution is obtained by interchanging a pair of 
vertices between two distinct parts in the solution. Given a graph (hypergraph) 
KL algorithm associates each vertex with a property called the gain of the ver­
tex which is exactly the reduction in the cutsize when the vertex is moved in the 
partition. The swap-neighborhood structure happens to increase the running 
time of KL algorithm since a pair of vertices must be found to interchange. 
Fiduccia-Mattheyses [12] introduces the move-neighborhood structure in which 
a neighbor of a given solution is obtained by moving a vertex from one part 
to another in the solution. They also devise a very sophisticated data struc­
ture called the bucket list data structure which reduces the time complexity of 
KL algorithm to linear in the size of the hypergraph by keeping the vertices 
in sorted order with respect to their gains and by making the insertion and 
deletion operations cheaper. Krishnamurthy [20] adds the level gain concept 
which helps to break ties better in selecting a vertex to move. The first level 
gain in Krishnamurthy’s (KR) algorithm is exactly the same as the gain in 
Fiduccia-Mattheyses’ (FM) algorithm. Sanchis [31] generalizes KR algorithm 
to a multiple-way partitioning algorithm. Note that all the previous approaches 
before Sanchis’ (SN) algorithm are originally bipartitioning algorithms. SN al­
gorithm is a direct multiple-way partitioning algorithm in which, at any time 
during iterative partitioning, a vertex can be moved into any of the parts in the 
partition. However, the move should be legal, that is, it should not violate the 
balance condition which imposes certain bounds on the sizes of the parts in the 
partition. SN algorithm exploits the local minimization technique of KL al­
gorithm, the move-neighborhood structure, balance condition, and bucket list 
data structure of FM algorithm, and the level gain approach of KR algorithm.

Now, since the minimization technique of KL algorithm is the basis of the 
many partitioning algorithms that have followed it, we explain this technique 
as it is used in Fiduccia-Mattheyses’ algorithm, that is, in terms of vertex 
moves. First, an initial partition is generated. The gains of the vertices are 
also determined. The first move includes the legal move of the vertex with the 
maximum gain. This vertex is then tentatively moved and locked. A locked 
vertex is set aside and not considered again until all the vertices are moved 
and locked once, which corresponds to a pass of the algorithm. After the first 
move, the next legal move with the maximum gain is moved and locked. This 
process goes in the same manner until the end of the pass. Note that there is 
a recorded sequence of the moves and their respective gains at the end of the 
first pass. At the end of the pass, a subsequence of moves from the recorded
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sequence that yields the maximum reduction in the cutsize is selected and 
realized permanently but starting with the first move in the recorded sequence. 
This operation is called the prefix sum calculation. Using the current partition 
obtained at that pass, another pass goes on in exactly the same manner. These 
passes are performed until there is not any improvement in the cutsize, which 
corresponds a locally minimum partition. Since a pass involv'es the move of 
each vertex once, there may exist uphill moves during the pass. The permission 
of uphill moves in a pass makes this minimization technique better.

All the previous partitioning algorithms use the minimization technique 
above. Vijayan [40] extends this technique so that a vertex is not locked as 
soon as it is moved. The vertex is allowed to reside in each part once before it 
is locked.

Henceforth when we say that a move is selected, we mean that the move is 
performed or the vertex associated with the move is actually moved. In other 
words, selecting a move has the same meaning as performing a move.

1.4 M otivation

When we examine the Kernighan-Lin’s minimization technique, it reveals that 
moves with positive gains, those that decrease the cutsize, become more useful 
during the early stages of the sequence of the moves performed during a p«iss 
and that moves with negative gains, those that increase the cutsize, become 
more useful towards the end of the sequence of the moves performed during a 
pass. Hence, we should perform as more moves with positive gains as we can 
during a pass as long as this process does not lead us to become stuck in a 
poor local minimum. After some experimentation, we can observe that moves 
with positive gains, especially those performed in the first péiss, occur actually 
during the early stages of the move sequence. However, we can also observe 
that, after some point in a pass, the moves that are selected to be moved 
mostly consist of those with negative gains. Experiments indicate that a move 
performed at an earlier stage in a pass can have positive gain again in a later 
stage such that its move gain is larger than those of the moves remaining but 
it cannot be performed because it is locked. The rea.son why this move is not 
performed has been to prevent the cell-moving process from thrashing or going 
into an infinite loop [12, 20, 40]. We think that this reason is not plausible
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because we can find some other means to avoid thrashing or infinite number of 
moves during partitioning. Therefore, we make the following claim, on which 
all our work is based. Our claim states that given a hypergraph with N  vertices, 
allowing each vertex to be moved (possibly) more than once in a pass with the 
requirement that the occurrence of infinite number of moves having no profit 
be prevented improves the cutsize more than allowing each vertex to be moved 
exactly once in a pass.

We bring the move-and~lock phase concept for the sake of simplicity of 
the discussion of this claim. A move-and-lock phase contains a sequence of 
temporary moves and their respective locks. A pass may consist of one or 
more move-and-lock phases. If a move-and-lock phase is not the last one in a 
pass, then all the vertices that are temporarily moved during this phase are 
unlocked and reinserted into the appropriate bucket lists, according to their 
recomputed gains, for the succeeding move-and-lock phases in that pass. On 
the other hand, if a move-and-lock phase constitutes the last such phase in 
a pass, the prefix subsequence of moves which maximizes the prefix sum of 
move gains in that pass is realized permanently. We now propose three novel 
approaches exploiting the basic claim:

1. During a pass, we can make more than one move-and-lock phase such 
that each move-and-lock phase consists of N  moves.

2. During a pass, we can make more than one move-and-lock phase such 
that each move-and-lock phase consists of less than N  moves.

3. During a pass, we can make more than N  moves but we do not employ 
the locking mechanism at all. Yet, there should still be some means to 
restrict the repeated selections of moves.

We considered all of these ways for partitioning. The items (1) and (2) es­
tablish the basis of multiple-way partitioning-by-locked-moves method, which 
also subsumes SN algorithm, (in Section 4.11) and the item (3) establishes 
the basis of multiple-way partitioning-by-free-moves method (in Section 4.12). 
Both of these methods are proposed and implemented in this work for graph 
partitioning as well as hypergraph partitioning. We expect that these methods 
explore the search space of the problem better.



1.5 E xperim ents and R esu lts

We evaluated the graph partitioning algorithms on the graph instances that 
were randomly generated using the algorithms in the literature. The types 
of graph instances included random, geometric, grid, ladder, and tree graphs. 
The random and geometric graphs are standard test beds for graph partition­
ing algorithms [17, 3]. The other types of graphs were used to evaluate the 
partitioning algorithms because the KL algorithm is observed to fail badly 
on these types of graphs [6, 15]. We evaluated the hypergraph partitioning 
algorithms on the real VLSI circuits which had been taken from ACM/SIGDA 
Design Automation Benchmarks. We also did experiments to determine the 
best setting of the parameters in the proposed algorithms.

The proposed partitioning algorithms performed drastically better than SN 
algorithm, which is the best KL-like multiple-way partitioning algorithm at 
the moment, on both the graph and hypergraph instances. The results on the 
benchmark circuits correlate favorably with those in the existing partitioning 
literature.
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1.6 O utline

We present some preliminaries from graph theory, a formal definition of the 
graph partitioning problem, and bcisic concepts related to graph partitioning 
and graph partitioning algorithms in Section 2. The analogous issues for hy­
pergraphs are given in Section 3. An explanation concerned with the local 
search technique which constitutes the basis for the algorithms we considered, 
the previous approaches to the partitioning problem, a detailed investigation 
of the proposed algorithms and their analysis are all presented in Section 4. 
The following section. Section 5, includes the algorithms which were used to 
generate the graph instances, the details of each group of experiments that 
we conducted, and the results and general observations obtained from the re­
sults. Finally, the main conclusions are in Section 6. Since we still have a large 
number of tables and plots giving the results of the experiments although we 
skipped most of them, these tables are all given in appendices for the sake of 
clarity while presenting the text.



C hapter 2

G R A PH  PARTITIO NING

This chapter establishes the basic concepts on Graph Partitioning. It includes 
some preliminary concepts from graph theory, the definition of the graph par­
titioning problem, and the concepts related to the partitioning algorithms, 
which are examined in Chapter 4. We utilized the references [23, 38] for the 
definitions and notations.

2.1 In trod u ction

The importance of the graph partitioning problem is mostly due to its con­
nection to the problems whose solutions depend on the divide-and-conquer 
paradigm [26]. A partitioning algorithm partitions a problem into semi­
independent subproblems, and tries to reduce the interaction between these 
subproblems. This division of a problem into simpler subproblems results in a 
substantial reduction in the search space [34]. Graph partitioning is the basis 
of hypergraph partitioning, which is more general and more difficult. Graph 
partitioning has a number of important applications. An exhaustive list of 
these applications combined with the relevant references is given below.

• VLSI placement [2, 21, 22, 33].

• VLSI routing [40].

• VLSI circuit simulation [1, 10].

• memory segmentation to minimize paging [19].



• mapping of computation to processors and load balancing [7, 8, 30].

• efficient sparse Gaussian elimination [14, 15, 24].

• solving various graph problems [25].

• laying out of machines in advanced manufacturing systems [39].

• computer vision [16].

Some researchers have also utilized the graph partitioning problem as a test 
bed to evaluate the search and optimization algorithms they proposed.
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2.2 B asic C oncepts

A graph G = (y, E) consists of a finite set V  of verfices (or nodes) and a finite 
set E  of edges. Each edge is identified with a pair of vertices. We use the 
symbols u, V, vi,V2 , · · · to represent the vertices and the symbols e, ej, C2 , · · · to 
represent the edges of a graph unless otherwise specified. The term graph here 
denotes undirected graphs, i.e., the edge e,· = {u,u} and the edge ej = {t»,u} 
represent the same edge.

Given an edge e =  {u,u}, we say that the edge e is incident to its end 
vertices u and v, and that the vertices u and v are adjacent or neighbors. If 
two edges have a common end vertex, then those edges are said to be adjacent.

The number of edges incident to a vertex u, is called the degree of the vertex 
and is denoted by ¿(u,) or simply d,. A vertex of degree 0 is called an isolated 
vertex.

A graph G — (y, E) has | y  |=  A vertices and ] E\= M  edges. Each vertex 
u in y  has a positive integer weight w{v) {w for weight) and each edge e \n E 
has a positive integer weight c(e), (c for capacity).

Given a graph G =  (K £·), we say that IT = (P i,---,P ft) is a K-way 
partition of G if each part Pk is a nonempty subset of the vertex set y , all 
the parts are pairwise disjoint, and the union of the K  parts is equal to V. 
Formally, FI =  (Pi, · · ·, Pfc) is a A-way partition of G = (E, P) if

1. Pjt C y, Pa: ^ 0 for each k e {1, · · ·, /\ },
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2. Pjt n P/ =  0 for each k ,l e  {1, · · ·, /i'} and {k ^  /),

3. u L .  Pt = y-

Note that the number K  of parts in a partition of G is bounded above by the 
number of vertices in G.

For simplicity, we say that i € A/”(Ni, Â2 ) if Ni < i < N2 and i, Â i, Â 2 € jV" 
where Ai is the set of natural numbers. Then, when we say that i 6 A/’(l, N) 
for a vertex v, in the vertex set V  with N  vertices, we mean that u,· is any 
vertex in V. Similarly, when we say that k 6 A i{l,K )  for a part Pk in the 
/•i-way partition FI, we mean that Pk is any part in FI.

Consider a /t'-way partition FF = (Pj, · · ·, P/̂ -) of a graph G = {V̂  E) with 
N  vertices and M edges. Then,

• s[Pk) denotes the size of the part Pjt for ^ € .^(1, K). The size of the 
part Pfc equals the sum of the weights of the vertices in Pjt. That is.

v€Pk
(2.1)

• The total vertex weight wt is the sum of the weights of all the vertices 
in the vertex set V. That is.

K
WT = X)u;(u) =  Y s{P k ).

v£V k=l
(2.2)

• The total edge weight c j is the sum of the weights of all the edges in the 
edge set E. That is,

CT =  E  <'=)■ (2-3)
eeE

• € P  I e =  {u,u} A € F  A u € Pjt A u ^ Pk} is the set of
external edges of the part Pk for all k 6 A i{\,K ). The set of external
edges of a part Pk consists of those edges whose one end vertex lies in the 
part Pk and the other end vertex lies in another part in the partition FF.

• /* =  {e € P  I e =  {u,u} A m, u € F A u, u € Pk} is the set of internal
edges of the part Pk for all k € A/’(l, K). The set of internal edges of a
part Pk consists of those edges whose both end vertices lie in P,·.
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• The edges that connect dilTerent parts in the partition IT, that is, the 
external edges, are said to contribute to the cut or cross the cut.

• The cost x(IT) of the partition is also called the cutsize. The cutsize is 
the sum of the weights of all the edges contributing to the cut. That is.

х ( п ) = 5 1 ; E  Ф ) .
 ̂k=i ceEk

or
к

х(П) =  ст -  x ;  x ;  c(e).
fc=le€/fc

(2.4)

(2-5)

• A K-vfa.y partition is also a multiple-way partition, and the partitioning 
operation is called K-way partitioning or multiple-way partitioning. If 
there are only two parts, i.e., K  =  2, then FI is called also a bipartition 
or a 2-way partition.

• A partition is balanced if the parts have about the same size. A partition 
is perfectly balanced if the parts have exactly the same size. A perfectly 
balanced partition is highly unlikely in a multiple-way partitioning if the 
vertex weights are not equal.

• The average (vertex) degree Dy of the graph G can be found by the 
equation

Dy =
2M
N

(2.6)
where 2M  is equal to the sum of the degrees of all the vertices in G.

• The maximum (minimum) vertex degree of the graph G is the maximum 
(minimum) of the set of the degrees of the vertices in G and is denoted 
b y  Dy,max { D  v,min)·

• The maximum (minimum) vertex weight is the maximum (minimum) of 
the set of the weights of the vertices in G and is denoted by Wmax (tUmin)· 
The maximum (minimum) edge weight is the maximum (minimum) of 
the set of the weights of the edges in G and is denoted by с^ах (cm.n)·

2.3 Graph Partition ing Problem

A formal definition of the Graph Partitioning Minimization Problem (GPP) is 
given below. In this definition, an instance is obtained by specifying particular 
values for all the problem parameters.
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Problem : The Graph Partitioning Minimization Problem.
Instance: A graph G = (V, E), a vertex weight function w :V  Af, an edge 
weight function c: E Af, a number K  > 2, A' G maximum and minimum 
part sizes B{k) G A/" and b{k) G A/*, respectively, for k G A/*(l, K). 
Configurations: All A'-way partitions fl = (Pi, · · ·, Pa )·
Solutions: All feasible configurations, i.e., all K-way partitions FI = (P i, · · ·, Pa ) 
such that

b{k) < s{Pk) < B{k) for all k G .V(l, K)

Question: Find a solution such that the cutsize

x(n) = i E  E  <<̂ )
^ Jt=l e€£*

is minimum over all the solutions.

Intuitively, we are given a graph G = (V ,E). Each vertex and each edge 
have a positive weight. Each K-vf&y partition If =  (Pi, · · ·, P/̂ -) of the vertex 
set V into nonempty, pairwise disjoint parts Pk (for k G A/^(l, A')), is a configu­
ration. Given an upper bound B{k) and a lower bound h{k) on the size of each 
part Pfc, we regard as solutions those partitions (or feasible configurations) in 
which the size of each part Pjt is in the range between b{k) and B{k). We are 
then asked to find the partition (or partitions) that has the minimum cutsize 
over all the solutions.

The graph partitioning minimization problem is NP-hard [13]. In order to 
see how large the search space of GPP is, let us simplify the problem. Suppose 
that G = {V,E) is a graph with N  vertices each of which has unit weight, 
and that the number N  of the vertices is a perfect multiple of the number K  
of partitions and so let N jK  = s, i.e., each part has a part size of s. Then,

, /  N  ] r , . , n (  \  . , .there are I I ways of choosing the first part, I I ways of choosing
\  ^ /  , . V  ̂ A .

the second part, and so on. Since the ordering of the parts is immaterial, the 
number of feasible partitions is

m
(2.7)

For N  = 100 and K  = 2, the number of feasible partitions is greater than 10^ ,̂ 
and for N  = 100 and K  = 4, it is greater than 10'’''. Today, there are graph 
partitioning instances with N  — 50000. Hence, it is clear that the number of 
feasible partitions is too large to search exhaustively.
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2.4 M ult iple-way Graph P artition in g

2.4.1 Gain Concept

Let G = {V^E) be a graph with N  vertices and IT = {Pi,· · · ■, Pk ) a A'-way 
partition of G. Let f , t  Q Af { \ ,K)  be two numbers ( /  represents the part 
from  which a vertex is moved, and t represents the part to which the vertex is 
moved.) The cost Cm{f, t)  of a vertex in Pj with respect to a part Pt (m 
for moved vertex) is defined as

r  ( f  f ) = i  if / 7̂ <
" 1 otherwise

(2.8)

where
Em{f, t) = {e e Ef \ e = u} Au e Pt} (2.9)

is the subset of the set of the external edges of the part Pj whose one end 
vertex is and the other end vertex lies in the part Pt, and

Im{f, f)  = { e e  If \e =  {Um,n} A u e  Pf] (2.10)

is the subset of the set of the internal edges of the part Pj whose one end 
vertex is and the other end vertex lies in the part Pj. The edges in the sets 
Em(f , t )  and Im{f , f )  are called the external edges and internal edges of the 
vertex Vm with respect to the part Pt, respectively.

The move gain Gm{f, t)  of the vertex Vm in the part Pj with respect to the 
part Pt is given by the equation

G „ U A  = C M , t ) - c „ u , f ) . (2. 11)

That is, the gain Gm{f, t)  of a vertex Vm in the part Pj with respect to the 
part Pt is the difference between the sum of the weights of the external edges 
of Vm. whose the other end vertex is in Pt and the sum of the weights of the 
internal edges of Vm- The gain of a vertex represents the decrease that results 
in the cutsize when the vertex is moved. The gain of a vertex with respect to 
the part where the vertex is present is zero.

In the A'-way partition, each vertex has K  costs. These costs constitute 
the cost vector of the vertex. For each vertex Vm in Pj, the entry Cm{f , f )  is 
the internal cost of Vm and the other (A" — 1) entries are the external costs of 
Vm with respect to each part other than Pj in 11.
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Algorithm: Initial Cost Computation Algorithm
Input: a graph G = (V, E)  with N  vertices, a i\-way partition IT =  (Pi, 
Output: vertices in V  with all cost vectors computed

•,PA')ofG

1. for each vertex v, , where r,· E Pj and i G A/ (̂l, N),  do

1.1. for each part number t, where t G A^(l, A') do

1.1.1. let ^  0 /*  initialize the cost * /

1.2. endfor

1.3. for each edge e =  {i>, , u} do

1.3.1. find the part P< such that u G Pt
1.3.2. \ e t C M t ) ^ C m { f J ) - l · c { e )

1.4. endfor

2. eiid for

Figure 2.1. An algorithm for initial cost computation in a graph

Figure 2.1 illustrates the pseudocode for the algorithm which computes 
the initial cost vectors of the vertices in a graph assuming an initial feasible 
partition. Note that the computation of the initial gains of the vertices can be 
done easily by using Equation 2.11 provided that the initial costs are given.

2.4.2 Effects o f a V ertex  M ove

Let G = (V, E) be a graph and FI =  (Pi, · · ·, Pk ) a A'-way partition of G. Let 
/ ,  i € Af{ l ,K )  be two numbers. Consider the move of the vertex in the 
part Pf to the part Pt, where f  We now give the effects of this move.

1 . Effect on C utsize : The cutsize should be updated by the equation

x{n)^x{n) -Gm{f . t ) (2.12)

where Gm{fi 0  vertex Vm before the move. Hence, the decrease
in the cutsize is equal to Gmifit)·, which is expected by the definition of the 
gain concept. Note that a negative gain value (i.e., Gm{f, t) < 0) increases the 
cutsize.

2. E ffec t on  P a r t S iz e s  : The part size of the part Pj decreases and the part

size of the part Pt increases by the move of Vm- Hence, The following changes
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in the parts sizes should be done.

s(P)) t -  s{Pj) -  

s{P,) <- s(P |) +

(2.13)

(2.14)

3. Effect on V ertex  Moved : There is no change in the entries of the cost
vector of the vertex Vm, which is moved. The only change in the cost vector is 
in the interpretation of some entries. The entry C m (/,/)  was the internal cost 
of v,n before the move and the entry was the external cost of u„, to
the part Pt before the move. After the move, the entry Cm{t,t) becomes the 
internal cost of Vm and the entry Cm{E f )  becomes the external cost of t»,,, to 
the part Pj where Cm{fi f)  before the move is equal to Cm{tif) after the move 
and Cmifii)  before the move is equal to after the move. However,
since the internal cost of Vm is changed, the gains of to every part (other 
than Pt) in n  must be recomputed using Equation 2 .1 1 .

4. Effect on N eighbor V ertices : The algorithm in Figure 2 . 2  calculates 
the changes in the costs and gains of the neighbor vertices that result from 
the vertex moved. The move of the vertex from the part Pj to the part 
Pt affects only the costs C'r(^,/ )  and Cr{k,t) of a vertex Vr € Pk adjacent to 
Vm- li k ^  f  and k ^  t, this means that there is no change in the internal 
cost Cr{k,k) and hence, only two gain values Gr{k,f )  and Gr{k,t) should be 
updated using Equation 2 .1 1 . However, if either k = f  or k = t, this means 
that there is a change in the internal cost of Vr and hence, all the gain values 
for all the moves of Vr from Pk to all the other parts in the partition should be 
recomputed using Equation 2.11.

It should be noted that partitioning algorithms existing in the literature 
lock the vertex moved, thus preventing the further moves of such vertices. In 
such algorithms, the gain updates mentioned in the item (3) should not be 
considered at all. Similarly, the cost and gain updates mentioned in the item
(4) should be considered only for the unlocked vertices adjacent to the vertex 
moved. However, one of the proposed algorithms (to be discussed later) does 
not lock a vertex after it is moved, and <issociates an attribute, referred here 
as the freedom value, with each vertex. This freedom value is a function of the 
current gain of a vertex. Thus, an update in the gain of a vertex results in an 
update in the freedom value of that vertex. The gain updates in the item (3) 
and the cost and gain updates in the item (4) should be carried out for the 
vertex moved and all its neighbor vertices in the proposed algorithm.
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Algorithm: Gain Update Algorithm
Input: a graph G = (K with N vertices, a A"-way partition 0 = (Pi, · ·, Pk) of G, 
move of Vm 6 Pj to P<
Output: updated costs and gains of neighbors of v,rx

1. for each edge e incident to Vm do

1.1. find Vr G Pk such that e = and P̂  G 0
1.2. letG,(fc,/)-Gr(ib,/)-c(e)
1.3. let Cr{k,t) Cr{k,t)c{e)
1.4. if (f ^ k A t k) then

1.4.1. update only Gr{k f̂)
1.4.2. update only Gr(Jt, <)

1.5. else /* there is change in internal cost of neighbor vertex */
1.5.1. update all (K — 1) gains of iv> 1·̂ ·, all gains other than Gr{k,k)

1.6. endif

2. eiidfor

Figure 2 .2 . An algorithm for gain updates in a graph

2.4 .3  B alance C onditions

It is possible that the total weight w j  of all the vertices is not a perfect multiple 
of the number of parts. Even if there is a partition where the part sizes are the 
same, the balance on the part sizes is broken with the first move. In addition, 
if the vertices do not have the same weight, then it is also a hard problem to 
divide these vertices into parts such that the sum of the pairwise differences 
between the part sizes is minimized. Therefore, some changes in the part sizes 
should be tolerable. This tolerance is established by means of imposing lower 
and upper bounds on the part sizes. These bounds constitutes the balance 
condition.

The main idea behind any balance condition should be that, during the 
course of the graph partitioning algorithm, there always exists at least one 
vertex to move without violating the balance condition and that the move is 
not exactly the opposite of the previous move [20]. This idea is good but it 
may be difficult to guarantee it.

Now, we define our balance condition: Let G = {V,E) be a graph and 
IT = {Pi, · · ·, Pk ) a K-way partition of G. Then, we have b{k) < s{Pk) < B{k) 
for each Pf. in TI by the definition of the graph partition problem. What remains
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is to specify the values of these lower and upper bounds. We define

m  = L ^ ( l  -  a ) J

and

m = \ Y { l + a ) ]

(2.15)

(2.16)

where a , ( 0  < a  < 1 ), is a constant. Thus, we allow a part size to be 100«% 
more or 1 0 0 «% less than its value in a perfectly balanced partition. Moreover, 
during initial partitioning, we can increase a  to relax the balance condition. 
We call a move legal if it does not violate the balance condition [.31].



C hapter 3

H Y PER G R A PH  PARTITIONING

This chapter establishes the underlying concepts for Hypergraph Partitioning. 
It includes some preliminary concepts from hypergraph theory, the definition 
of the hypergraph partitioning problem, and the concepts related to the par­
titioning algorithms, which are examined in Chapter 4. We utilized the refer­
ences [23, 38] for the definitions and notations.

3.1 Introduction

The applications of the Hypergraph Partitioning Problem can be listed exhaus­
tively as follows:

• VLSI placement [4, 9, 1 1 , 1 2 , 28, 35, 36].

• VLSI routing [4, 28].

VLSI circuit simulation [27, 37, 41].

3.2 Basic C oncepts

A hypergraph H — {V., E) consists of a finite set V of vei'tices (or cells) and a 
finite set £■ C 2 '̂  of hyperedges (or nets), where 2 ^ is the power set of the vertex 
set V. Each net e in £  is a subset of V. The elements of a net e in are called 
its terminals. We use the symbols u, u,ui, U2 i ’ ' ’ represent the vertices and

18
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the symbols c, ei, 6 2 , · · · to represent the nets of a hypergrapli unless otherwise 
specified.

Given a net e in E, we say that the net e is incident to the vertex v if 
•u € e, and that the terminals of the net e are adjacent or neighbors. If a net e 
is incident to a vertex v then we say that the net e is on the vertex v and the 
vertex V is on the net e. A net with two-terminals is called a two-terminal net 
and a net with more than two terminals is a multi-terminal net. Terminals are 
also called pins.

The degree of a vertex n, in V  is equal to the number of nets incident to t;,· 
and is denoted by d(u,) or simply d,·. A vertex of degree 0 is called an isolated 
vertex. The degree of a net e in is equal to the number of its terminals and 
is denoted by |e |. We assume that, for any net e in E, the degree |e |>  2.

A hypergraph H = [V, E) has | K |= vertices and | E |= A/ nets. Each 
vertex V in y  has a positive integer weight w{v) and each net e in E has a 
positive integer weight c(e). The total number of terminals in H is denoted by 
p which can be calculated by the equation

P = S  |e |
e^E

or

(.3.1)

(3.2)P = Y ,  d(v)·
v€V

Note that M  = 0{p) since every net is at least a two-terminal net. If we further 
assume that every vertex is contained in at least one net, namely, if the degree 
of each vertex is at least 1, then we have N  = 0{p). The latter assumption is 
not imposed unless otherwise specified.

A graph G =  (V, E) is also a hypergraph H = (K, E) with the property that 
every net in / /  is a two-terminal net. That is, hypergraphs are generalization 
of graphs. If / /  is a graph, the total number p of terminals in H becomes equal 
to 2M, where M  is the number of nets in H.

Given a hypergraph H = (V, E), we say that FI =  (Pi, · · ·, Pk ) is a K-way 
partition of H if each part Pk is a nonempty subset of the vertex set K, all 
the parts are pairwise disjoint, and the union of the K  parts is equal to V . 
Formally, FI = (Pi, · · ·, Pk ) is a K-way partition of H = (F, E) if

1. Pfc C F, Pjfe 7  ̂ 0 for each € ^/"(1, /t) .



CHA FTEIt :i HYPERGRA PR PA RTITIONING 20

2. Pk n P/ = 0 for each k,l  E Af{ 1, K) and {k ^  /),

3 - U L ,  P i.  =  y -

Note that the number K  of parts in a partition of / /  is bounded above by the 
number of vertices in H.

Consider a /f-way partition IT = (Pi, · · ·, Pk ) of a hypergraph H = (K, E) 
with N  vertices, M  nets, and p terminals. For the sake of completeness, we 
repeat some definitions from Chapter 2. Then,

• s{Pk) denotes the size of the part Pk for k 6 A^(l, f\). The size of the 
part Pk equals the sum of the weights of the vertices in Pjt. That is,

4Ph) =
v€Pk

The total vertex weight wj  is defined as

(3.3)

K

W T = Y  w{v) = Y s { P k ) .
v^V k=l

(3.4)

• The total net weight Ct is defined as

O T = Y  c(e). 
eeE

(3.5)

• Pjt =  {e € P  I e n Pjt /  0 A e — P)t ^  0} is the set of external nets of 
the part Pk for all k € A )· The set of external nets of a part Pk 
consists of those nets that have at least one terminal in Pk and at least 
one terminal in another part in the partition 0.

• /jt = {e € P  I e n Pit ^  0 A e — Pjt =  0} is the set of internal nets of the 
part Pk for all k € ^/"(1, K). The set of internal nets of a part Pk consists 
of those nets that have all its terminals in Pk.

• 6{{k) =1 {y € e, I y € Pit) I is the number of terminals of the net e, that 
are present in the part Pk-

• If there are k parts such that a net e has at least one terminal in each of 
these parts, the net e is said to connect k parts in the partition. •

• The nets that connect different parts in the partition 0 , that is, the 
external nets, are said to contribute to the cut or cross the cut.
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• The cost с(П) of the partition is also called the cutsize. The cutsize is 
the sum of the weights of all the nets contributing to the cut. That is,

Х(П) = cr -  X; X; c(e). (3.6)
/:=! e€/jk

Each net e crossing the cut contributes an amount of c(e) to the cutsize 
regardless of the number of parts that e connects. However, this is not 
the only possible definition of the cutsize for hypergraphs. For example, if 
the net e connects k parts then e can contribute an amount of [k — l)c(e) 
to the cutsize. Note that Equation 3.6 reduces to Equation 2.4 when / /  
is a graph.

• A K-'N&y partition is also a multiple-way partition, and the partitioning 
operation is called K-way partitioning or multiple-way partitioning. If 
there are only two parts, i.e., K = 2, then П is called also a bipartition 
or a 2-way partition.

• We say that a partition is balanced if the parts have about the same 
size. A partition is perfectly balanced if the parts have exactly the same 
size. A perfectly balanced partition is highly unlikely in a multiple-way 
partitioning if the vertex weights are not equal.

• The average vertex degree of the hypergraph H can be found by the 
equation

D. = (3.7)
The average net degree De of the hypergraph / /  can be found by the 
equation

D. = ^ .  (.3.8)

Hence, the following equation holds:

D J I  =  D ,N (3.9)

• The maximum (minimum) vertex degree of the hypergraph H is the 
maximum (minimum) of the set of the degrees of the vertices in / /  and 
is denoted by Dy^max {Dv,min)· The maximum (minimum) net degree of 
H is the maximum (minimum) of the set of the degrees of the nets in П 
and is denoted by T>e,m«x (T>e,mm)·

• The maximum (minimum) vertex weight is the maximum (minimum) of 
the set of the weights of the vertices in H and is denoted by u'max (ii-’,,,,,,). 
The maximum (minimum) net weight is the maximum (minimum) of the 
set of the weights of the nets in II and is denoted by c„,ax (<%„,„).
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3.3 Hypergraph P artition ing Problem

A formal definition of the Hypergraph Partitioning Minimization Problem 
(HPP) is given below.

Problem : The Hypergraph Partitioning Minimization Problem.
Instance: A hypergraph H =  {V, E), a vertex weight function w : V  Af, 
a net weight function c : E Ai, a number K  > 2, K  £ Ai, maximum and 
minimum part sizes B{k) € Af and b{k) € Af, respectively, for k £ Af{l, K).  
Configurations: All A'-way partitions H = (Pi, · · ·, Pk )·
Solutions: All feasible configurations, i.e., all /iT-way partitions H = (Pi, · · ·, P/,-) 
such that

b{k) < s{Pk) < B{k) for all k e A i { l ,  K)

Question: Find a solution such that the cutsize

X(H) =  CT -  X; X; c(e) 
k=i eelk

is minimum over all the solutions.

Intuitively, we are given a hypergraph H = (V, E). Each vertex and each 
net have a positive weight. Each K-way partition H = (P i , - - - ,P a') of the 
vertex set V into nonempty, pairwise disjoint parts P^, (for k € A/’( l , / \ ) ) ,  is 
a configuration. Given an upper bound B{k) and a lower bound b{k) on the 
size of each part Pk, we regard as solutions those partitions in which the size 
of each part Pk is in the range between b{k) and B{k). We are then asked 
to find the partition (or partitions) that has the minimum cutsize over all the 
solutions.

The hypergraph partitioning minimization problem is NP-hard [13]. Since 
graphs are special versions of hypergraphs, GPP is a special version or a re­
stricted version of HPP. Any partitioning algorithm that can produce a solution 
to HPP can produce a solution to GPP without any modifications in the algo­
rithm. However, an algorithm for GPP may not be used for HPP. Some parts 
of the algorithm need to be altered.

Additional constraints [29] that can be imposed in HPP are itemized below.

• The number of parts in a partition is minimized provided that there are 
bounds on the part sizes.
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• The total number of external nets of each part is bounded.

• A certain set of nets must contribute to the cut.

• A certain set of nets must not contribute to the cut.

The algorithms we investigated can be modified to handle these constraints 
without too much additional effort. We did not consider to meet these con­
straints, however.

3.4 M ultiple-w ay Hypergraph P artition ing

3.4.1 Gain C oncept

Let H = (V,E)  be a hypergraph with N  vertices and IT =  (P\,· · · ,  Pk ) a, 
A-way partition of H. Let f , t E  Af{ \ ,K)  be two numbers ( /  represents the 
part from which a vertex is moved, and t represents the part to which the 
vertex is moved.) The cost Cm{fi t) of a vertex Vm in Pj with respect to a part 
Pt {m for moved vertex) is defined as

^  ( f  . ) _ !  Е е е а д ,о < е )  i i f ^ t
1 Eee/.(/./)c(e) otherwise

where

(3.10)

(3.11)= (e, e  Ey I !>„ € e,· A Si{t) = |e , | -1}

is the subset of the set of external nets of the part Pj whose one terminal is 
Vjn and all the other terminals lie in the part Pt, and

= {e,· € / /  1 v,n € e,· Л Si{f) = |e ,|} (3.12)

is the subset of the set of internal nets of the part Pf whose one terminal is 
and all the other terminals lie in the part Pf.

The move gain G,„(/, t) of the vertex Vm in the part Pj with respect to the 
part Pi is given by the equation

(3.13)

That is, the gain G,n{f,t) of a vertex in the part Pj with respect to the 
part Pt is the difference between the sum of the weights of the nets who.se the
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only terminal in Pj is Vm and all the other terminals are in P«, and the sum of 
the weights of the nets that include Vm and that have all their terminals in Pj. 
The gain of a vertex represents the decrease that results in the cutsize when 
the vertex is moved. The gain of a vertex with respect to the part where the 
vertex is present is zero.

In the AT-way partition, each vertex has K  costs. These costs constitute 
the cost vector of the vertex. For each vertex Vm in P/, the entry C m if i f )  is 
the internal cost of Vm and the other {K — \) entries are the external costs of 
Vm with respect to each part other than Pf in II.

The cutstate of a net indicates whether the net contributes to the cut or 
not. A net is critical if there exists a vertex on it such that the vertex would 
change the cutstate of the net if it is moved. Specifically, a net e,· is critical if 
and only if either there exists a part P* in the partition such that Si{k) = | e, | 
or there exist two different parts Pjt and P/ in the partition such that Si(k) = 1 
and Si{l) =1 e,· | —1. The gain of a vertex in a hypergraph depends only on 
the critical nets incident to the vertex. Figure 3.1 illustrates the pseudocode 
for the algorithm which computes the initial cost vectors of the vertices in a 
hypergraph assuming an initial feasible partition. Note that the computation 
of the initial gains of the vertices can be done easily by using Equation 3.13 
provided that the initial costs are given.

3.4.2 Effects o f a V ertex M ove

Let H = (V, E) be a hypergraph and IT = (P i,· · ·, Pk ) a /I-way partition of
H. Let / ,  i G V ( l , K)  be two numbers. Consider the move of the vertex Vm in 
the part P/ to the part Pi, where f  ^ t .  We now give the effects of this move.

I . Effect on Cutsize : The cutsize should be updated by the equation

x ( n ) . - x ( n ) - G 4 / , i ) (3.14)

where Gmif, t) is the gain of the vertex Vm before the move. Hence, the decrease 
in the cutsize is equal to Gm{f,t), which is expected by the definition of the 
gain concept.

2. E ffec t o n  P a r t S izes  : The part size of the part P / decreases and the part

size of the part Pi increases by the move of Vm̂ Hence, The following changes
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Algorithm: Initial Cost Computation Algorithm
Input: a hypergraph H = (K, E) with N vertices, a AT-way partition II = (Pi, · · *, Pk) of H 
Output: vertices in V with all costs computed

1. for each vertex v, , where v,· 6 Pj and i G do

1.1. for each part number i, where t G -̂ (1, /f), do
1.1.1. let Cmifyl) ^  0 /* initialize the cost */

1.2. endfor
1.3. for each net Cj incident to r, do

1.3.1. if(5;(/) = 1) then
1.3.1.1. look for the part Pt such that 6j(t) =\ej\ -1
1.3.1.2. if Pt is found then
1.3.1.2.1. let C,(/,0 ^ C,(/, 0 -f c(e,·)

1.3.1.3. endif
1.3.2. else if {Sj{f) |) then 

I.3.2.I. leta(/,/)-C,(/,/) + c(e,)
1.3.3. endif

1.4. endfor

2. endfor

Figure 3.1. An algorithm for initial cost computation in a hypergraph

in the parts sizes should be done.

4 P / )  <- 4 P i )  -  “ ("m)

s(Pl) <- s{P,) +  w{v„)

(3.15)

(3.16)

3. Effect on V ertex Moved : There is no change in the entries of the cost
vector of the vertex Vm, which is moved. The only change in the cost vector 
is in the interpretation of some entries. The entry was the internal
cost of Vm before the move and the entry Cm{f,t) was the external cost of Vm 
with respect to the part Pi before the move. After the move, the entry Cm(t, t) 
becomes the internal cost of Vm and the entry Cmit·,/) becomes the external 
cost of to the part Pj where before the move is equal to CmiUf)
after the move and 0  before the move is equal to Cm{ii 0  after the move.
However, since the internal cost of Vm is changed, the gains of u„, to every part 
(other than Pt) in H must be recomputed using Equation 3.13.

4. Effect on N eighbor Vertices : Consider the move of the vertex u,„ from 
the part Pj to the part Pt. The cutstate of a net that is not incident to u„,
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cannot change by the move. The cutstate of a net that is incident to can 
change by the move if the net is critical. Moreover, a net which is not critical 
either before or after the move cannot affect the gains of any of the vertices to 
which the net is incident. We now derive the updates to be done both before 
and after the move.

1. Using the definition of the criticality of a net, a net e,· incident to Vm is 
critical before the move of if and only if one (or more) of the following 
cases holds:

l.a. Si{f) = 0 and there exists a part Pk such that Si(k) = | e,· |,

l.b. Si{f) = 1 and there exists a part Pk such that = | e,· | —1,

l.c. Si(f) =1 e,· I —1 and there exists a part Pk such that Si{k) = 1,

1. d. «,(/) =1 e; |.

Before the move of € Pj, it must be valid that ¿ ,(/) > 1. Thus, the 
case (l.a) is not possible at all, and can be eliminated.

2. Using the definition of the criticality of a net, a net e,· incident to Vm is 
critical after the move of Vm if and only if one (or more) of the following 
cases holds:

2. a. Si{t) = 0 and there exists a part Pk such that Si{k) = | e, |,

2.b. 8i(t) = 1 and there exists a part Pk such that Si{k) =| e, | — 1,

2.C. 6i{t) =1 e, I — 1 and there exists a part Pk such that 6i(k) = 1,

2.d. Si(t) =1 6i |.

After the move of t»„, € Pj, it must be valid that i,(f) > 1. Thus, the 
case (2.a) is not possible at all, and can be eliminated.

Considering the cases above for the net e,·, it reveals that before the move 
of Vm in the item (1), the part Pk is either identical to the part to which 
Vm is moved, or not. Hence, if Pk is identical to Pt {t = A·), then the following 
table summarizes the resulting cases with the move:
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Before the move of Vm After the move of Vm
Case <.·(/) m m Case

l.b 1 e. | -1 0 |e .| 2.d
l.c e . l - 1 1 |e.'l - 2 2 -
l.d |e .| 0 e, —1 1 2.b

Hence, the case (l.b) is equivalent to the case (2.d), and the case (l.d) is 
equivalent to the case (2.b). Only the cases (l.c), (l.d), (2.c), and (2.d) should 
then be considered during the cost and gain updates. But, if P^ is not identical 
to Pt (t ^  k), then the following table summarizes the resulting cases with the 
move:

Before the move of Vm After the move of vm
Case i .( / ) m m m H i ) Case

l.b 1 0 e, | -1 0 1 e, l -1 2.b

l.c e, -1 0 1 e,· —2 1 1 -

l.d |e.· 0 0 e, -1 1 0 2.b

Hence, the case (l.b) is equivalent to the case (2.b), and the case (l.d) is 
equivalent to the case (2.b). Only the cases (l.c), (l.d), (2.c), and (2.d) should 
then be considered during the cost and gain updates.

Considering the cases above, it reveals that after the move of Vm in the item
(2), the part is either identical to the part Pj, from which n„, is moved, or 
not. Hence, if Ft is identical to Pj ( /  =  k)^ then the following table summarizes 
the resulting cases with the move:

Before the move of v>m After the move of Vm
Case m Case

l.d k .l 0 e . l - 1 1 2.b

- 2 e, - 2 1 e, -1 2.C

l.b 1 e, -1 0 e, 2.d

Hence, the case (2.b) is equivalent to the case (l.d), and the case (2.d) is 
equivalent to the case (l.b). Only the cases (l.c), (l.d), (2.c), and (2.d) should
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then be considered during the cost and gain updates. But, if if P* is not 
identical to Pj ( f  ^  k), then the following table summarizes the resulting 
cases with the move:

Before the move of v„ After the move of v„
Case H f ) Si(t) Si(k) H f ) m 6,(k) Case

l.b 0 e, | -1 e, | -1 2.b
- 2 e . l - 1 2.C

l.b e.· -1 e.l 2.d

Hence, the case (2.b) is equivalent to the case (l.b), and the case (2.d) is equiv­
alent to the case (l.b). Only the cases (l.c), (l.d), (2.c), and (2.d) should then 
be considered during the cost and gain updates. Therefore, after examining 
the data tabulated in the last four tables, we recognize that the move of Vm 
from Pf to Pt affects the vertices on the nets satisfying any number of the four 
cases (l.c), (l.d), (2.c), and (2.d).

In the case (l.d), before the move of Vm, the net e,· is an internal net of the 
part Pf. The move makes e, cross the cut. Hence, the contribution of e,· to 
the internal cost of each terminal of e, should be eliminated before the move. 
Note that if locking is used, this case can occur at most once for e, in a pass 
involving the move of each vertex in a hypergraph at most once.

In the case (l.c), before the move of v,„, the net e,· contributes to the 
external cost of a vertex tv € Ci which is not present in the part P/. Since the 
move causes e, to make no contribution to the external cost of tv any more, 
the contribution should be eliminated before the move. Note that if locking 
is used, this case can occur at most three times for e, in a pass involving the 
move of each vertex in a hypergraph at most once.

In the case (2.d), after the move of Vm, the net e,· becomes an internal net 
of the part The move removes e,· from the cut. Hence, e, should be made 
to contribute to the internal costs of all its terminals. Note that if locking is 
used, this case can occur at most once for e, in a pass involving the move of 
each vertex in a hypergraph at most once.

In the case (2.c), after the move of u,„, the net e, becomes critical and so 
contributes to the external cost of a vertex rv € e, which is not present in the
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part Pt. Note that if locking is used, this case can occur at most three times 
for e,· in a pass involving the move of each vertex in a hypergraph at most once.

The algorithm in Figure 3.2 calculates the changes in the costs and gains 
of the neighbor vertices that result from the vertex moved in the light of the 
above discussion. As mentioned in Section 2, any update in the costs and gains 
of a vertex should be forwarded to an update in the freedom value of the vertex 
if the algorithm does not use locking.

3.4.3 B alance C onditions

The balance conditions are the same as given in Section 2.4.3. However, the 
value of the constant a can be different for a hypergraph. We specify the exact 
values of this constant when we present the experiments in Section 5.
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Algorithm: Gain Update Algorithm
Input: a hypergraph H = (U, E) with N vertices, a AT-way partition П = (Pi, · · ·, Pk ) of Я,
move of Vm G Pj to P<
Output: updated costs and gains neighbors of Vm

1. for each net Cj incident to Vm do

1.1. if =\ej I) then /* before the move (the case l.d) */
1.1.1. for each vertex Vr G Cj, where Vr G Р/ and m  ̂r do

1.1.1.1. \ e tC r i f , f ) ^C r( fJ ) -c (e j )
1.1.1.2. update all (K — 1) gains of Гг, i.e., all gains other than Gr(/,/)

1.1.2. endfor
1.2. else if {6j{f) =\ej | —1) then /* before the move (the case l.c) */

1.2.1. find the vertex Vr G ej, Vr G Pk such that тф r and f  ф k
1.2.2. let Cr(ib,/)^a(ib,/)-c(e,)
1.2.3. update only Gr(ib,/)

1.3. endif
1.4. let bj{f) ^  ¿j(/) — 1 /* updates to indicate the move */
1.5. let 6j{t)
1.6. if (5; (0 —\ î I) then /* after the move (the case 2.d) */

1.6.1. for each vertex Vr G ê·, where Vr G Р% and rn ф r do
1.6 .1.1. l e t C r { t , t ) ^ C r { t J )  +  c{ej)

1.6.1.2. update all {K -  1) gains of i.e., all gains other than Gr{tJ)
1.6.2. endfor

1.7. else if (Sj{t) =\ej | —1) then /* after the move (the case 2.c) */
1.7.1. find the vertex Vr G ej, tv G Pk such that m ф r and t ф k
1.7.2. Ы Cr{kJ) ^Cr{k,t) + c{ej)
1.7.3. update only Gr(kyt) and anything depending on Gr(kyt)

1.8. endif

2. endfor

Figure 3.2. An algorithm for gain updates in a hypergraph



Chapter 4

PARTITIONING ALGORITHM S

This chapter first gives the basic ideas of the local search technique since we 
restricted our attention to only local search partitioning algorithms. It also 
contains the previous graph and hypergraph partitioning algorithms. After 
this background information, the proposed algorithms along with the data 
structures come. The time and space complexity analysis of the algorithms is 
also discussed.

4.1 Local Search

A combinatorial optimization problem is either a minimization problem or a 
maximization problem and consists of the following three features:

• a set of instances, (an instance is obtained by specifying particular values 
for all the problem parameters),

• for each instance, a finite set of feasible configurations,

• a function that assigns a cost to each instance and each solution (or 
feasible configuration).

The goal is to find a solution of minimum cost or maximum cost, that is, the 
optimal solution [13].

Many combinatorial optimization problems are hai'd in the sense that they 
are NP-hard or harder. There are no deterministic known polynomial time

31
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algorithms to find the optimal solution to any of those hard problems. The 
algorithms employing the complete enumeration techniques are not reasonable 
to use the complexity of these techniques is usually exponential in the size 
of the problem and hence, they require a great amount of time to find the 
optimal solution for even very small problem instances. As a result, heuristic 
algorithms (or heuristics) that run in a low-order polynomial time have been 
employed to obtain good solutions to these hard problems, where by a good 
solution, we mean a solution that is hopefully close to the optimal solution to 
the problem.

The methods used for designing heuristic algorithms tend to be rather prob­
lem specific. Local search is one of the few general approaches to solving hard 
combinatorial optimization problems. Local search is usually based on trial 
and error. All the algorithms that we consider in this study are local search 
algorithms.

The first choice that must be made in order to derive a local search algo­
rithm for a combinatorial optimization problem is the choice of a neighborhood 
structure. This structure specifies a neighborhood for each solution, that is, a 
set of solutions that are in some sense close to that solution. For example, our 
algorithms use a move-neighborhood structure as explained in Section 4.2.

The second choice is the choice of devising an algorithm to generate an 
initial solution to the problem. The algorithm must be a polynomial time 
algorithm and the initial solution must be a feasible configuration although it 
can be generated randomly and can have a very poor cost. However, there are 
algorithms that allow infeasible configurations to occur but they penalize their 
occurrence by utilizing certain measures.

Starting from some given initial solution, a local search algorithm tries to 
find a better solution which is a neighbor of the first. If a better neighbor is 
found, a search starts for a better neighbor of that one, and so on. Since the set 
of solutions is finite, this search must halt, that is, the local search algorithm 
must end at a locally optimum solution, which does not have a better neighbor 
solution. Local search algorithms are also called iteratix'e improx'ement algo­
rithms because they iteratively improve an initial solution in search of a locally 
optimal solution. In fact, we use these algorithms to find the global optimum 
but this goal seems to be impossible to reach because of the hardness of the 
problem.
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During the search for a locally optimal solution, we use two more algo­
rithms: one polynomial-time algorithm is needed to modify the current solution 
so as to generate a new solution in the neighborhood of the current solution. 
The other polynomial-time algorithm is needed to find the cost of a given so­
lution. The number of iterative steps to arrive at a locally optimal solution is 
not known. For some local search algorithms associated with certain problem 
instances, the number of steps can be exponentially dependent on the size of 
the problem on these instances [18].

Assume that s denotes a solution to a certain combinatorial optimization 
problem and that N{s) denotes the neighborhood of s. A neighbor solution in 
N{s) can usually be found in three different ways [8|:

1. in the first descent method, the neighbor solution is the first solution in 
N{s) that has a better cost than that of s,

2. in the steepest descent method, all the solutions in N{s) are examined 
and the neighbor solution is chosen to be the one with the best cost in 
N{s),

3. in the random descent method, the neighbor is randomly chosen among 
the solutions in N{s).

Neighbor selection in the steepest descent method takes more time than 
the first descent method. The random descend method comes in between on 
the average. In our algorithms, we use the steepest decent method. However, 
the search time to find a neighbor solution is significantly decreased by using 
appropriate data structures. A neighbor solution is found without examining 
all the solutions at each iteration step.

Modification of a solution s to obtain another solution s' in N{s) is called 
a move. Suppose that the problem is a minimization problem and that x(s) 
denotes the cost of s. In a move, if \(5 ') < x{s), then we obtained a solution 
with a better cost. This is a downhill move. On the other hand, if \ { s  ') > 
then we have a solution with a worse cost. This is a uphill move. Allowing 
uphill moves is an attempt to escape from being trapped in a poor locally 
optimal solution.

We now give a general local search algorithm (in Figure 4.1) that subsumes 
the algorithms investigated in this work. Note that our partitioning problems
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Algorithm: A Local Search Algorithm 
Input: a combinatorial optimization problem 
Output: a locally optimum solution to the problem

1. generate initial solution 8
2. find cost x(s) of initial solution s
3. repeat

3.1. for K\ iterations (vertex moves) do
3.1.1. select the best neighbor s' in N{s)

/* The solutions in N{s) are obtained by vertex moves */
/* prevent selection of previously selected solutions as much as possible */

3.1.2. let s ^  s'
3.2. endfor
3.3. find the subsequence of vertex moves from the sequence with K\ vertex moves 

such that those vertex moves in the subsequence enable us to arrive at the best 
solution in this pass

3.4. if the subsequence is not empty then
3.4.1. execute the vertex moves in the subsequence

/* if it is empty then local optimum is found */
3.4. endif

4. until a locally optimum solution has been found

Figure 4.1. A general local search algorithm

are minimization problems and we partition graphs and hypergraphs. This is 
why we use the term vertex move in the local search algorithm. The constant 
K\ depends on the partitioning algorithm. For example, it is equal to the 
number of vertices of the input graph in Kernighan-Lin algorithm. In the 
algorithm in Figure 4.1, we move from a solution to a neighboring solution 
by a sequence of (at most K\) vertex moves. When we regard each move in 
the algorithm in Figure 4.1 as a sequence of (at most K\) vertex moves, i.e., 
a move is not equivalent to a vertex move but to a sequence of vertex moves, 
this algorithm employs only downhill moves. The algorithm arrives at a locally 
optimal solution with respect to the neighborhood structure that uses this move 
definition to obtain neighboring solutions. Since we do not know how many 
vertex moves we should perform to get the best improvement in a pass, (a 
pass is a single iteration of the repeat loop in the algorithm in Figure 4.1), we 
execute a sequence of K\ vertex moves and then determine the subsequence 
that contains the vertex moves yielding the best improvement in the pass. That 
is, we determine the set of the vertex moves which constitutes one move. Note
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that the number of the vertex moves in the subsequence computed in the step
3.3 in the algorithm in Figure 4.1 is usually different for each pfiss.

However, when we regard ecich move in the algorithm in Figure 4.1 as a 
vertex move, this algorithm employs downhill moves as well as uphill moves 
since, in step 3.1.1, there may be no neighbors that have a lower cost than that 
of s and hence, the neighbor with the smallest cost increase is selected, which 
corresponds to an uphill move. After performing a sequence of Ki vertex moves 
in a pass, we find the subsequence of vertex moves whose execution yields the 
best improvement in the pass. If the subsequence is empty, then a locally 
optimum solution is found. On the other hand, if there is a cost improvement, 
we find the new solution and proceed to another pass on this solution. The 
first move in the subsequence is also the first move among the Ki moves in the 
recorded sequence and the moves in the subsequence must be executed in the 
same order as in the record.

The algorithms we considered in this work have the same structure as the 
local search algorithm in Figure 4.1. They all perform a number of passes until 
a locally optimum solution is found. You should notice that a solution is a 
locally optimum solution in these algorithms with respect to the neighborhood 
structure that employs the moves each of which contains all the vertex moves 
performed in a pass. That is, each pass corresponds to exactly one move in 
this neighborhood structure. However, all the moves performed in a pass are 
vertex moves. Henceforth by a move, we mean a vertex move, and, by a move- 
neighborhood structure, we mean the neighborhood structure with respect to 
vertex moves instead of the moves containing a sequence of vertex moves.

4.2 N eighborhood Structure

The algorithms that we investigate in this study are all based on the move- 
neighborhood structure. A partition H has a neighbor partition Ĥ  if H' can 
be obtained from H by moving a vertex from one part to another in H. For­
mally, let H = (K, E) be a hypergraph with N  vertices, and H and H' be two 
/v-way partitions of H. Then, the partition H' =  (Fj, · · ·, A- — {u}, · · ·, F; U 
{u}, · · ·, Pk ) is a neighbor of the partition H = (Fi, · · ·, Ft, · · ·, F/, · · ·, Fa ) 
for some k,l  E A f{ l ,K)  and {k ^  /), and for some vertex v in Ft € H. The 
partition n  has at most A"(/\ — l)(A^//\") =  N{I\ — 1) neighbors if each part
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has N / K  vertices.

4.3 Previous Approaches

We now review the local search partitioning algorithms existing in the litera­
ture. These heuristics and the proposed heuristics carry the bcisic minimization 
feature of the Kernighan-Lin algorithm and hence, they are called Kernighan- 
Lin style algorithms. We do not consider other types of algorithms that have 
been used for the HPP or the GPP.

Kernighan-Lin’s Approach :

This algorithm (or heuristic) [19] was originally proposed for the graph 
bipartitioning problem. Kernighan-Lin (KL) Algorithm is also a local search 
algorithm and has become the basis of many graph and hypergraph partitioning 
algorithms. Our algorithms are also partially based on KL algorithm.

KL algorithm uses a swap-neighborhood structure. In this neighborhood 
structure, two partitions are neighbors if one partition can be obtained from 
another by swapping two vertices between different parts in one of the parti­
tions. Formally, let G = (V,E) be a A-vertex graph and If, II' two /\-way 
partitions of G. Then, the partition IT = (Pi, · · ·, Pk, · · ·, P/, · · ·, Pa ) and the 
partition n  =  (P i,··· , (Pi: -  {u}) U {u},---,(P i -  {u}) U {u}, · · ·, Pa ) are 
neighbors for some k,l  £ A i{ \ ,K)  and for some vertices v € Pk, u € Pi- The 
partition n  has {K{K — l) f2 ){N/KV  neighbors if each part has N / K  vertices. 
A solution has more neighbors in a swap-neighborhood stnicture than those in 
a move-neighborhood structure.

This algorithm assumes that every vertex has the same weight. It works as 
follows: first, an initial partition is generated. We then determine the vertex 
pair whose swap results in the largest swap gain, i.e., the largest decrease in 
the cutsize or the smallest increase (if no decrease is possible). This pair is 
tentatively interchanged and locked. The locking prohibits them from taking 
part in any further swaps. After that, we look for a second pair of vertices 
whose interchange improves the cutsize the most, and do the same for this 
pair also. We continue in this way, but we keep a record of all tentative swaps 
and their gains. We finish when all the vertices are locked. At this time, 
we have interchanged both parts and are back to the original (initial) cutsize.
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Starting with the first swap in the record, we perform the subsequence of swaps 
which result in the smallest cutsize. The following pjiss begins with unlocking 
all vertices and proceeds in the same manner. These pcisses are repeated until 
there is no improvement in the cutsize which corresponds to a locally minimum 
partition.

This algorithm allows uphill moves to reduce the danger of being trapped 
in a poor local minimum. This feature of the algorithm enables the algo­
rithm produce better partitions than the algorithms that employ only downhill 
moves. Also, this algorithm is quite robust. We can accommodate additional 
constraints such as partitioning into unequal-sized parts, required parts for 
certain vertices. However, it has some disadvantages. The algorithm handles 
only identical vertex weights. This restriction is not suitable for real applica­
tions. The algorithm has a complexity of 0{N ^  log N)  per pass for a graph 
with N  vertices. It has been observed that the algorithm performs poorly on 
sparse graphs and on some special types of graphs such as ladder graphs [6]. 
Furthermore, the quality of the solution generated by this algorithm strongly 
depends on the initial partition. However, this feature is common to all the 
local search partitioning algorithms.

Schweikert-Kernighan’s Approach :

This approach [32] is an enhancement to KL algorithm in order to handle 
hypergraphs easily and correctly. Before this study, KL algorithm were applied 
to hypergraph problem instances by first representing the hypergraph in terms 
of a graph.

Feduccia-Mattheyses’ Approach :

Feduccia-Mattheyses (FM) Algorithm [12] was originally proposed for the 
hypergraph partitioning problem but it can be applied to the graph partition­
ing problem equally well. This algorithm introduces the move-neighborhood 
structure instead of the swap-neighborhood structure. In addition, an efficient 
data structure called the bucket list data structure is proposed. This data 
structure helps to sort the vertices with respect to their move gains in time 
linear in the number of the vertices and keep the vertices in a sorted order 
according to their move gains during the partitioning iterations. Moreover, it 
also reduces the time complexity of the KL algorithm to linear in the num­
ber of the vertices and the edges (or the size of the hypergraph). Becau.se of 
these features of FM algorithm, many following algorithms are based on this
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algorithm.

Krishnamurthy’s Approach :

KL and FM algorithms choose arbitrarily between vertices that have equal 
gain and equal weight. Krishnamurthy (KR) algorithm [20] introduces more 
look-ahead into the gain computation so that we can distinguish between such 
vertices with respect to the gains they make possible in later moves [23]. KR 
algorithm is a bipartitioning algorithm and generalizes the gain concept in KL 
and FM algorithms. In KR algorithm, each vertex has more than one gain, 
called level gains. The first level gain of a vertex is the same as its gain in KL 
and FM algorithms.

Sanchis’ Approach :

Sanchis (SN) algorithm [31] is the generalization of KR algorithm for di­
rect multiple-way hypergraph partitioning. Since graphs are special cases of 
hypergraphs, SN algorithm can also be used for graph partitioning. SN algo­
rithm exploits the local minimization technique of KL algorithm, the move- 
neighborhood structure, balance condition, and bucket list data structure of 
FM algorithm, and the level gain approach of KR algorithm.

Vijayan’s Approach :

Vijayan (VI) algorithm [40] is a direct multiple-way hypergraph partitioning 
algorithm similar to SN algorithm with the following minor exception. SN 
algorithm locks a vertex as soon as it moves but VI algorithm allows a vertex 
to reside in each part once and then it locks the vertex.

4.4 B ipartitioning versus M ultiple-w ay P artition in g

When designing a multiple-way partitioning algorithm, we either start from 
scratch or adapt a 2-way partitioning algorithm to a multiple-way algorithm. 
Adapting a 2-way partitioning algorithm to a multiple-way algorithm is orig­
inally proposed in Kernighan-Lin [19]. This adaptation can be done in two 
ways. Both of these ways involve the repeated uses of a 2-way partitioning 
algorithm.

In Partitioning by Recursive Bipartition (PRB) [19], we first create a 2-way
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partition of the given graph. Then, we perform 2-way partitioning on each of 
these two parts. By repeatedly bipartitioning a part obtained in the previous 
partitioning step, we can obtain as many parts as required. But, if the number 
of parts required is not a power of 2, then the partitioning becomes difficult 
because at each bipartitioning step, the part sizes must be bounded in such 
a way that the final part sizes satisfy a particular balance condition. This 
algorithm also suffers from a serious drawback. Partitioning at a particular 
level of hierarchy ignores connections to the vertices in the other parts. A 
partition at an earlier step biases a partition at a later step. Besides, the first 
partitioning tries to minimize the cutsize and hence, tends to maximize the 
internal connections of the parts. However, this makes further bipartitioning 
of these parts more difficult. PRM algorithm can be used to improve the initial 
partitions that are generated randomly.

In Partitioning by Pairwise Min-cut (PPM) [19], we first create a direct 
multiple-way initial partitioning of the given graph. Then, for each pair of 
parts, we apply a bipartitioning algorithm to reduce the cutsize between these 
pairs. Passes are performed until there is no improvement in the cutsize be­
tween the parts in each pair. This method produce better partitions than 
PRM does. PPM algorithm can be used to improve the partitioning results 
of a multiple-way partitioning algorithm. The disadvantage of this method is 
that this method still needs an initial multiple-way partition which must be 
generated by other means.

In PRB and PPM, any of KL algorithm, FM algorithm or KR algorithm can 
be used as the bipartitioning algorithm. We can generate an initial bipartition 
randomly, next convert this initial bipartition to multiple-way partition with 
PRB, and then improve this multiple-way partition with PPM.

In direct multiple-way partitioning [31], we start from scratch, i.e., we do 
not use a bipartitioning algorithm. At each step in a pass, a vertex in a part 
can move into any of the other parts in the partition. Note that only SN and VI 
algorithms are direct multiple-way partitioning algorithms. All other heuristics 
were originally proposed for bipartitioning and can be used as bipartitioning 
algorithms in either PRM or PPM approaches for multiple-way partitioning. 
Direct multiple-way partitioning algorithms are capable of handling partitions 
involving an arbitrary number of parts. In this work, we propose novel direct 
multiple-way partitioning algorithms for both graphs and hypergraphs.
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4.5 D ata  Structures

We now provide the data structures that are common to all of the algorithms 
proposed and implemented in this work. Instead of giving the details of the 
data structures, we enumerate the type of information that is inserted into or 
extracted from the data structures during partitioning. This way of presenting 
the data structures is taken from Krishnamurthy [20]. We do this enumeration 
by listing two sets of operations such that the operations in one of the sets are 
primitive, i.e., we should be capable of performing them in constant time, and 
the operations in the other set are not primitive.

Given a graph G =  (V, E) (hypergraph H =  (V, E)) with N  vertices and 
M  edges, and IT = (Pj, · · ·, P/<·) a K-way partition of G (H). Suppose that 
i € Ai( l ,N) ,  j  € and k € Af{l ,K).  The primitive operations are
itemized below:

• given a vertex u,, return its degree d, and its weight tv{vi),

• given an edge ej, return its weight c(e_,·),

• return the total vertex weight wt ·,

• given a part Pk, return its upper bound B(k), lower bound b(k), size 
w{Pk), and number of vertices in Pk,

• given a vertex u,, return the part P^ such that v, € Pk,

• given a vertex u,, determine whether t>,· is locked or not,

• given a vertex u,, return the number n, of moves that i;, has done up to 
a given point during partitioning,

• given a vertex u,, return its cost with respect to a given part,

• given a vertex u,, determine whether its move to a part is legal or not,

• given a bucket array, return a vertex with the maximum gain, a vertex 
with the minimum gain, and the number of non-empty buckets,

• given a vertex n,·, insert it into a bucket list according to its move gain,

• given an iteration step in a pass, obtain the vertex that is moved at 
this step and such information about it as its move gain, its source and 
destination parts.
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The non-primitive operations are itemized below:

• given a vertex u„ find the edges (nets) incident to v, (the complexity of 
this step if 0(di)),

• given a edge (net) e ,̂ find its end vertices (terminals) (the complexity of 
this step if 0{\ej\),  which is constant for graphs),

• given a vertex n,, delete it from a bucket list (the complexity of deleting 
a vertex from a bucket array depends on the size of the array),

A bucket list for a move direction is depicted in F'igure 4.2. For K-way 
partitioning, there are K ( K  — 1) bucket arrays each of which corresponds to 
a move direction. Each bucket array has such a size that the move with the 
maximum possible gain (or freedom value) and the move with the minimum 
possible gain (or freedom value) can be inserted into the bucket. Each bucket 
points to a doubly linked list (bucket list) which contains the moves (or vertices) 
having the same gain proportional to the index of the bucket. Each bucket 
array has a maximum index pointer (maix-inx in Figure 4.2) pointing to the 
bucket list that contains the moves with the maximum move gain in the move 
direction of the array. The search time for a move with the maximum move 
gain in the move direction of the bucket array is made constant by this index 
pointer. A move can be inserted into a bucket list in constant time because 
the insertion is made to the head of the bucket list connected to the bucket 
with the index calculated according to the gain of the move. After an insertion 
to a bucket list in a bucket array, the maximum index pointer of the array 
should be updated if the gain of the inserted move creates a bucket index 
larger than the current maximum index pointer. This update operation of 
the maximum index pointer requires constant time since it only involves an 
assignment operation. The deletion of a move from a bucket list in a bucket 
array also takes constant time but the update of the maximum index pointer 
of the array causes the deletion operation to have a worst-case time complexity 
proportional to the size of the array since the bucket list, from which a deletion 
is performed, may be the bucket list pointed to by the maximum index pointer, 
and it may become empty after the deletion and hence, the maximum index 
pointer is required to be updated to point to the next non-empty bucket list in 
the array. In the worst-case, this update operation involves a scan down from 
one bucket at the top of the array to another at the bottom. The minimum
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index pointer (min_inx in Figure 4.2) is only helpful during the update of the 
maximum index pointer. It is not strongly required.

Bucket Array

Vertex Array

Figure 4.2. Bucket data structure for a part in a given partition

4.6 R eading H ypergraphs and Graphs

Suppose that H = (G, E) is a hypergraph with N  vertices, M  nets, and p 
terminals to be partitioning into K  parts. We store a hypergraph in the format 
given in Section A. Then, the hypergraph H can be read in 0 { N  + M K  + p) 
time. This time also includes the time to initialize the data structure keeping 
the number of terminals of each net in the parts. Also, since M = 0(p), the 
reading time becomes 0 { N  + pN)·

Suppose that G = {V,E) is a graph with N  vertices and M  edges to be 
partitioned into K  parts. We store a graph in the format given in Section A. 
Then, the graph G can be read in 0 { M  + N)  time.
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When reading the input hypergraph (or graph), we determine many prop­
erties of the hypergraph (or graph) such as the number of vertices, the number 
of nets (or edges), the maximum vertex degree, the maximum vertex weight, 
the maximum net (or edge) weight, and so on. These properties are used later 
in the partitioning algorithms.

4.7 In itial P artitions

Our partitioning algorithms like all the other local search partitioning algo­
rithms require an initial solution. Usually, in partitioning problems, initial 
partitions are generated randomly. That is, vertices are assigned to parts ran­
domly. The only constraint is to produce a feasible initial partition, the one 
that does not violate the balance condition. In general, the quality of the final 
partition of a partitioning algorithm depends strongly on the quality of the 
initial partition.

We now give an algorithm in Figure 4.3 to generate an initial partition for 
a K-way partitioning algorithm. Our algorithms use this initial partitioning 
algorithm. This algorithm can be used for both hypergraph partitioning algo­
rithms and graph partitioning algorithms with very minor modifications which 
are shown in the algorithm. We assume that the weights of vertices do not 
differ considerably from one another, and that the partition becomes feasible 
when a  < 1. This restriction is due to the requirement that each part in the 
partition be nonempty. If there is very large differences among the weights of 
vertices, then a values may be defined to be different for each part. In our case, 
the maximum vertex weight should be less than the upper bound on the size 
of a part. The time complexity of the initial partitioning algorithm depends 
on the type of partitioning. For graph partitioning, we do not consider Step 
4.6 in the algorithm. Then, the time complexity of the algorithm becomes 
0 { K  +  N K  -h Ka)  = 0 { N K )  since the value of a is at most 1. For hyper­
graph partitioning, we do consider Step 4.6 in the algorithm. Then, the time 
complexity of the algorithm becomes 0 { K  -f N K  -f- p -f- Ka) = 0{N I \  -f p).

Because of the balance condition, all the parts can not be at their upper 
bound or at their lower bound at the same time. To enable every vertex to be 
present in any part, we must have, for each part Pk·,

B{k) — b(k) >  w„ (4.1)
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Algorithm: Initial Partitioning Algorithm
Input: a hypergraph H with N vertices, AT, wr
Output: a feasible initial partition II = (Pi, · · ·, Pk) of H

1. for each part Pk, k £ A/̂ (l, K) do

1.1. let s(Pjb) 0 /* initialize part sizes */

2. endfor
3. let n ^ (Pi, · · ·, Pf() /* initialize partition */
4. for each vertex t;,·, i £ A/̂ (l, N) do

/* assign Vi to a randomly selected part with minimum size */

4.1. find the part Pjt with minimum weight
4.2. construct the set Smin = {P | P G II, s(P) = s(Pjb)}
4.3. select Pmin from the set Smin randomly
4.4. assign Vi to P m in

4.5. let s(̂ Pmin)  ̂ (̂Pmin) H" î î)
4.6. for each net ej incident to t;, do /* this is necessary only for hypergraphs */

4.6.1. let 6j{min) 6j{min) -f 1
4.7. endfor

5. endfor
6. let a ^  0.1
7. repeat

7.1. for each part Pk, k £ A/̂ (l, ̂ V) do
7.1.1. let b{k) ^  L^(l -o)J
7.1.2. let B{k) ^  f^ ( l  + a)l

7.2. endfor
7.3. if b{k) < w(Pk) < B{k) for each k £ N) then

7.3.1. n is feasible
7.4. else

7.4.1. let a a-f 0.05 /* II is not feasible */
7.5. endif
7.6. if a > 1.0 then exit /* assumption is violated */

8. until n is feasible

Figure 4.3. An initial partitioning algorithm
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Algorithm: Cutsize Calculation Algorithnn
Input: a graph G with M edges, a /f-way partition II, cj
Output: the cutsize x(II)

1. let incost ^  0 /* the sum of weights of internal edges of parts */
2. for each edge ey, j G AT(1, M) do

2.1. if there exists a part Pjt, k G AT(1, K), such that ey is in R then 
/* if both end vertices of ej are in Pk */

2.1.1. let incost incost -f
2.2. endif

3. endfor
4. let x(n) ^  ct — incost

Figure 4.4. A cutsize calculation algorithm for graphs

where Wmax is the maximum vertex weight. Moreover, during partitioning, we 
should have at least one part Pk such that

s{Pk) -  w max ^  m  

and at least one part Pt such that

s{Pt) + Wmax < B{1)

Otherwise, we may not make any more moves.

(4.2)

(4.3)

4.8 C utsize Calculation

The cutsize of a given hypergraph (or a graph) can be calculating w'hile the 
gains of the vertices are computed. However, we now give two algorithms, one 
for hypergraphs and one for graphs, to calculate the cutsize. These algorithms 
can be used either to calculate the initial cutsize or to verify the cutsize after 
each pass of the partitioning algorithm. Thus, we can be sure that the parti­
tioning algorithm does its job correctly. In fact, we used these algorithms to 
verify the cutsize after each pa.ss of our partitioning algorithms. The algorithm 
in Figure 4.4 is for graphs and the algorithm in Figure 4.5 is for hypergraphs. 
The time complexity of the algorithm in Figure 4.4 is 0{M )  and the time 
complexity of the algorithm in Figure 4.5 is 0 {M K ) .
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Algorithm: Cutsize Calculation Algorithm
Input: a hypergraph H with M nets, a /f-way partition II, ct
Output: the cutsize x(II)

1. let incost ^  0 /* the sum of weights of internal nets of parts */
2. for each net , j G do

2.1. if there exists a part Pjt, k G Ai{ly K), such that Ni{k) =\cj | then 
/* if all terminals of Cj are in Pk */

2.1.1. let incost ^  incost c { c j )

2.2. endif

3. endfor
4. let x(n) ^  Ct — incost

Figure 4.5. A cutsize calculation algorithm for hypergraphs

4.9 Prefix Sum  Calculation

The maximum prefix sum is the sum of the total improvement of the moves 
selected to be performed permanently from the recorded sequence of moves 
during a pass. Assume that Q moves are attempted in a pass and let 7 , 
denote the move gain of the <7'* temporary move, for q € A/’(l, (5 ), in this move 
sequence. Then, the sum of the move gains of all prefix move sequences are 
computed as

= ^ 7 , for all 9  € (4.4)
t=l

Note that, (T, denotes the overall decrease (or increase if a , < 0) in the cutsize 
resulting from the first q moves. Then, the maximum prefix stim, referred 
hereafter as gainsum, is computed as

gainsum = maxi<g<Q{crg}. (4.5)

Here, let qmax denote the value of <7 that maximizes the prefix sum. The 
gainsum can be positive, zero, or negative. Zero or negative gainsum values 
terminate the algorithm indicating that the initial solution given to the current 
pass is a local minimum. If gainsum is positive, the algorithm proceeds to 
the next pass after making the first moves permanent. In the previous 
partitioning algorithms, the constant Q equals the number of the vertices in 
the input hypergraph (or graph). In the proposed algorithms, Q can be greater 
than the number of vertices.
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Figure 4.6. Change of gains of selected moves in Sanchis’ Algorithm (one pass 
contains 250 moves)

4.10 M ain Claim

When we examine the Kernighan-Lin’s minimization technique, it reveals that 
moves with positive gains, those that decrease the cutsize, become more useful 
during the early stages of the sequence of the moves performed during a pass 
and that moves with negative gains, those that increase the cutsize, become 
more useful towards the end of the sequence of the moves performed during 
a pass. Hence, we should perform as more moves with positive gains as we 
can during a pass as long as this process does not lead us to become stuck 
in a poor local minimum. After some experimentation, we can observe that 
moves with positive gains, especially those performed in the first pass, occur 
actually during the early stages of the move sequence. However, we can also 
observe that, after some point in a pass, the moves that are selected mostly 
consist of those with negative gains. (Recall that selecting a move has the 
same meaning as performing a move.) These observations are illustrated in 
Figure 4.6. Experiments indicate that a move performed at an earlier stage in 
a pass can have positive gain again in a later stage such that its move gain is 
larger than those of the moves remaining but it cannot be reselected because it 
is locked. The reason why this move is not reselected has been to prevent the 
cell-moving process from thrashing or going into an infinite loop [12, 20, 40].
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We think that this гeгıson is not plausible because we can find some other means 
to avoid thrashing or infinite number of moves during partitioning. Therefore, 
we make the following claim, on which all our work is based.

M ain Claim: Given a hypergraph with N  vertices, allowing each vertex to 
be moved (possibly) more than once in a pass with the requirement that the 
occurrence of infinite number of moves having no profit be prevented improves 
the cutsize more than allowing each vertex to be moved exactly once in a pass.

We bring the move-and-lock phase concept for the sake of simplicity of 
the discussion of this claim. A move-and-lock phase contains a sequence of 
temporary moves and their respective locks. A pass may consist of one or 
more move-and-lock phases. If a move-and-lock phase is not the last one in a 
pass, then all the vertices that are temporarily moved during this phase are 
unlocked and reinserted into the appropriate bucket lists, according to their 
recomputed gains, for the succeeding move-and-lock phases in that pass. On 
the other hand, if a move-and-lock phase constitutes the last such phase in 
a pass, the prefix subsequence of moves which maximizes the prefix sum of 
move gains in that pass is realized permanently. We now propose three novel 
approaches exploiting the main claim:

1 . During a pass, we can make more than one move-and-lock phase such 
that each move-and-lock phase consists of N  moves.

2. During a pass, we can make more than one move-and-lock phase such 
that each move-and-lock phase consists of less than N  moves.

3. During a pass, we can make more than N  moves but we do not employ 
the locking mechanism at all. Yet, there should still be some means to 
restrict the repeated selections of moves.

We considered all of these ways for partitioning. The items (1 ) and (2) es­
tablish the basis of multiple-way partitioning-by-locked-moves method (in Sec­
tion 4.11) and the item (3) establish the basis of multiple-way partitioning-by- 
free-moves method (in Section 4.12). Both of these methods are proposed and 
implemented in this work. We expect that these methods explore the search 
space of the problem better. Experimental results support the expectation. 
These methods are explained in detail in the following sections.
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4.11 P artition ing by Locked M oves

Partitioning by Locked Moves (PLM) algorithm is a direct multiple-way par­
titioning algorithm. Hence, a vertex can move into any of {K — 1 ) parts in a 
K-\vay partition but this move should obviously not violate the balance condi­
tion, i.e., it should be a legal move. At any time, there are at most K { K  — 1 ) 
move directions to select from. A vertex is prevented from being reselected by 
locking it. Notice that a vertex is removed from the bucket lists as soon as it 
is locked.

Hereafter when we refer to SN algorithm, we mean the SN algorithm with 
only first level gains allowed. The SN algorithm does a number of passes until 
a locally minimum partition is obtained. In each pass, all the vertices in the 
given hypergraph (or graph) are locked as soon as they are moved. Assuming 
that we have N  vertices, we move N  vertices in a pass and then stop the 
pass and start another peiss after calculating the move gain and updating the 
cutsize. In our terms, SN algorithm makes one move-and-lock phase consisting 
of N  moves in a pass.

We propose the direct multiple-way Partitioning-by-Locked-Moves (K-PLM) 
algorithm to realize the first two approaches to our main claim. The generic 
K-PLM algorithm is given in Figure 4.7. The algorithm employ two constants 
K\ and K 2 · The constant K\ determines the number of move-and-lock phases 
in a pass, and the constant K 2 determines the number of vertices moved in a 
single move-and-lock phase. In each pass of the K-PLM algorithm, we thus 
do K \K 2 vertex moves. After a move-and-lock phase, we unlock all the K 2 

vertices moved, and start another move-and-lock phase until we do K\I \ 2  ver­
tex moves. For Ki = 1 and K 2 = N,  the K-PLM algorithm reduces to SN 
algorithm. Usually, the exact values of these constants are dependent on the 
input hypergraph (or graph). However, we let K\ depend on K  and K 2 on N. 
These constants may depend on the other properties of the input hypergraph 
(or graph), for example, w'e can have that K 2 is proportional to N  or to the 
average (vertex or net) degree of the input hypergraph. The main idea in de­
termining the values of these constants is letting K\I \ 2  '> N  and K 2 < N.  The 
exact values of these constants are given in Section 5.

We now explain the steps of the algorithm in Figure 4.7 in detail and give 
the time complexity of each step. We explain the steps in terms of hypergraphs 
but give the necessary modifications for graphs also. Suppose that H =  (V, E)
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Algorithm: Multiple-way Partitioning-by-Locked-Moves Algorithm
Input: an initial K-way partition of the hypergraph H with N vertices, M nets, and p pins 
Output: a locally minimum partition IT = (Pi, · · ·, Pfc) of H

1. initialize buckets
2. repeat

2.1. obtain temporary copy of some data structures to work on
2.2. for A"i iterations do

2.2.1. compute gains and initialize vertices as unlocked
2.2.2. insert vertices into buckets on basis of their gains
2.2.3. for K2 iterations do

2.2.3.1. select a vertex to move
2.2.3.2. delete the vertex from bucket lists and lock it
2.2.3.3. if the move does not violate the balance condition then
2.2.3.3.1. make a tentative move of the vertex and record the move
2.2.3.3.2. update costs and gains of neighbor vertices, and the bucket lists

2.2.3.4. endif
2.2.4. endfor
2.2.5. if I\ 2  < N then free the buckets list nodes

2.3. endfor
2.4. find the maximum prefix sum gainsum of move gains of / \2  moves
2.5. if gainsum > 0 then /* there is an improvement in cutsize */

2.5.1. permanently move vertices yielding gainsum
2.5.2. decrease cutsize by gainsum

2.6. endfor

3. u n til gainsum < 0 /*  II is locally minimum * /

Figure 4.7. The generic direct multiple-way partitioning-by-locked-moves al­
gorithm
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is a hypergraph with N  vertices, M  nets, and p terminals to be partitioned 
into K  parts. Similarly, suppose that G =  (V,E)  is a graph with N  vertices 
and M  edges to be partitioned into K  parts.

• (step 1 ) We initialize the buckets by initializing the indices for each bucket 
array and by initializing the bucket list pointers in the bucket arrays. 
Since there are K {K  — 1 ) bucket arrays each of which has 2Gmax +  1 
buckets, we can initialize all the arrays in O(K^Gmax) time.

• (step 2 .1 ) Since we make tentative moves in a pass, we should not de­
stroy the information contained in some data structures at the beginning 
of the pass. These data structures are the array holding the partition 
information, the array holding the number of terminals of each net in 
each partition (this array does not exist for graphs), and the array hold­
ing the information indicating the parts of each vertex. Thus, we should 
obtain temporary copies of these data structures. If K 2 < N,  this step 
requires 0 { K  + M K + N )  = 0 { M K + N )  time for the hypergraph /f, and 
0 { K  + N)  time for graphs. If K 2 = W, i.e., the case in the SN algorithm, 
this step requires 0 { K  -|- M K )  = 0 { M K )  time for the hypergraph H, 
and 0 (K )  time for graphs.

• (step 2.2.1) The initial gains of vertices in the hypergraph H are com­
puted using the algorithm in Figure 3.1, and those of vertices in the graph 
G are calculated using the algorithm in Figure 2.1. Although these al­
gorithms compute the cost vectors of the vertices, the move gains of 
the vertices can easily be obtained from the cost vector by the defini­
tion of the move gain. Initial gain computations take 0 { N K  + pK)  and 
0 { N K  + M)  time for hypergraphs and graphs, respectively.

• (step 2.2.2) We insert the vertices into bucket arrays by first calculating 
the indices of the buckets that correspond to the gains of the vertices. 
We then place each vertex to the head of {K — 1 ) bucket lists each of 
which is connected to a bucket in the bucket arrays. We pass over each 
vertex once and insert each vertex into {K — 1 ) bucket lists each of which 
requires constant time. Thus, this step requires 0 { N K )  time. •

• (step 2.2.3.1) There are K{K — 1 ) move directions for the A'-way parti­
tioning. We can make a move in each of these move directions or not. We 
search these move directions and select the first move that has the max­
imum gain and that does not violate the balance condition. Since each
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bucket array has a index pointer indicating the bucket list correspond­
ing to the moves with the maximum gain, the search only involves these 
index pointers and we only examine the nodes at the head of the bucket 
lists, i.e., there is not a search along the bucket lists. Moreover, if there is 
no move which does not violate the balance condition, we then select the 
move with the maximum gain anyway but set a variable indicating that 
the move is not possible. Considering the number of move directions and 
the constant time to reach the vertices in a move direction, we can select 
a move in O(K^) time. This selection time can be reduced by utilizing a 
heap but we did not do so [31].

• (step 2 .2 .3 .2 ) After selecting a move, we delete from the bucket lists all 
the moves associated with the vertex of the selected move, and lock the 
vertex. Thus, the deletion of a vertex from (K  — 1 ) bucket lists needs 
O(KGmax) time.

• (step 2.2.3.3.1) If there is a possible move that does not violate the bal­
ance condition, then we make this move. We record the properties of 
this move such as the move gain. We also update the part sizes in the 
partition structure and change the part where the vertex is present. This 
step can be done in constant time. •

• (step 2 .2.3 .3 .2 ) If there is a possible move, we update the costs and move 
gains of the neighbor vertices of the vertex moved and also update the 
bucket arrays and lists so as to correct the information in them. We 
update the move gains of the neighbor vertices in the hypergraph II 
using the algorithm in Figure 3.2, and those of the neighbor vertices in 
the graph G using the algorithm in Figure 2 .2 . Note that this update 
process is applied to only the unlocked neighbors of the vertex moved. 
The update process results in a number of insertions into and deletions 
from the bucket lists. The algorithm in Figure 3.2 runs in O(pKGmax) 
for N  vertex moves since each net can have a constant number of update 
operations during N  vertex moves. The algorithm in Figure 2.2 requires 
0{MKGmax) time for N  vertex moves.

• (step 2.2.5) If K 2 < N  then there remain vertices in the bucket lists at 
the end of a move-and-lock phase. Since we recompute the vertex gains 
and insert the moves associated with the vertices into the bucket lists 
again, we should remove the moves associated with the vertices that are 
present in the bucket lists at this point in the algorithm. The nodes in
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all the bucket lists can be deallocated in 0{K'^Gmax +  K N )  time.

• (step 2.4 and step 2.5) We now have K 1 K 2 =  0 { K iN )  successive moves 
recorded. We should select from the beginning of the record those moves 
whose execution produces the maximum decrease in the cutsize. That is, 
we calculate the prefix sum, gainsum, of the move gains of the moves in 
the recorded sequence, and perform the subsequence of moves yielding 
the maximum prefix sum. The step 2.4 and the step 2.5 both require 
0{K iN )  time for the graph G, but the step 2.4 requires 0 { K \N )  time 
and the step 2.5 requires 0{K\p)  time for the hypergraph H.

4.12 Partition ing by Free Moves

The proposed direct multiple-way Partitioning by Free Moves (K-PFM), brings 
in different concept from all the other iterative improvement partitioning algo­
rithms that employ locking. In the K-PFM algorithm, locking is not used at 
all. Each vertex can move as freely as possible in a pass. Each vertex can make 
different number of moves. The move capability of a vertex is only restricted 
by the number of moves that the vertex has performed. This is done to prevent 
the vertices from doing a lot of moves without any significant decrease in the 
cutsize. The move capability of a vertex is dependent on a new concept called 
freedom value of the vertex as previously mentioned in Section 2.4.2. We also 
call the number of moves that a vertex has performed as the move count of 
the vertex. The freedom value of a vertex depends on its move count and its 
current move gain. The larger the move count of a vertex is, the lower the 
chance the vertex is selected to move again in a pass (and thus, the smaller 
the freedom value is), and the higher the gain of the vertex is, the higher the 
chance the vertex is selected to move again in a pass (and thus, the larger the 
freedom value is.)

In the generic K-PFM algorithm given in Figure 4.8 the vertices are not 
inserted into the bucket lists on the basis of their gains but on the basis of 
their freedom values. Any update in a cost of the vertex propagates to the 
corresponding gain and freedom value of the vertex also. We do K\ vertex 
moves in a pass of the K-PFM algorithm. The constant A'l is usually dependent 
on N  and K  but larger than N. The main idea, which is similar to the one in 
the K-PLM algorithm, is letting K\ > N. As in the generic K-PLM algorithm, 
move-and-lock phases can also be employed but we did not try it.
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We now define the freedom value concept for hypergraphs. The definition 
of the freedom value for graphs is the same as its definition for hypergraphs. 
Let H  =  (V, E) be a hypergraph and IT =  {Pi ,- - · , Px) a A'-way partition of 
H. The cost and gain concepts are defined as in Section 3.4.1. The freedom 
value of a vertex Vm in the part Pf with respect to the part Pt is
defined as

Фт( / , 0  =
1

and
1 +  е(-От(/,<)Д) 

1

if n™ = 0

*».(/. 0  -  , ^  'f

(4.6)

(4.7)

where is the move count of Vm·, Gm{fi t) is the gain of Vm in Pj with respect 
to Pi, and A is a constant to ensure that the value of $ ^ ( / > 0  range
(0,1). The move count of Vm is incremented by 1 but we can change the way 
the move count is incremented. Other freedom value functions with similar 
properties are examined in Section 5.

The value of the constant R can be calculated as follows: Let $ ^ (/> 0  
in the interval [e, 1 — e] for a very small positive constant c (e.g., c =  0 .0 1 ). 
Then,

Л = (:
1

-)ln (— ) (4.8)
Gmax C

where Gmax is the maximum gain that a vertex can have. It is equal to the 
product of the maximum net weight Cmax and the maximum vertex degree 
Dy^max in the hypergraph H , i.e., Gmax — Hy^max^nax-

We cannot map the Ф values of the vertices as in Equation 4.7 into the 
buckets because these values fall in the range between 0 and 1. We multiply 
the Ф value of a vertex with a scale factor S  and then map the vertex into 
the bucket list connected to the bucket with the index equal to this new scaled 
value that is also floored to be converted into an integer. That is, we map the 
vertex Vm with the freedom value Фт(/» 0  bucket list of the bucket with
the index equal to [5'Фщ(/, <)J. We later present experiments to determine the 
values of the scale factor S  in Section 5.

Let the vertex u, in the part Р/ and Vj in the part Pj have the move counts 
n, and rij respectively. Consider the gains and freedom values with respect to 
the part Pt in the partition П. Then, if щ = rij then

G,(/,()< <?,(/.<) «Ф,(/,()< Ф,(/.0· (4.9)
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However, since the freedom value of a vertex is also floored to make it inte­
ger, the above order between the move gains and the freedom values is not 
preserved. This brings some randomization into the K-PFM algorithm.

Since the scale factor S  restricts the size of the bucket arrays, it helps 
control the space requirement of the algorithms. It also affects the running 
time of the algorithms.

Instead of calculating the values corresponding to the exponential function 
in Equation 4.7 each time a freedom value is required, we used a table lookup 
technique to speed up the calculation of the freedom value function since expo­
nentiation is an expensive operation. The table is implemented with an array, 
called eval (Exponential VALues array), containing the values of the exponen­
tial function in the range from the minimum possible gain to the maximum 
possible gain. Note that the values in the array are not approximations to the 
exponential values but the true values. However, they would be approximate 
values if the gains were not integer numbers. The usage of the array is eis 
follows: For a gain value G in the range [0,2(7,„ai], we have

eval[G] =

Then, for a gain value G in the range [—Gmax·, Gmax],

= et;a/[G,na. -  G]

(4.10)

(4.11)

and so the freedom value $„,(/,<) of the vertex in the part Pj with respect 
to the part Pt becomes

1
4>m(/,i) = TT-----nn ' r  1 = » (‘‘•>2)1 Gjn\f^  ijj

^  '— -77-77711 (■»■13)
1 d” y^n.„,CUG/[CjTnox G jnyf^  O j

We now explain the steps of the algorithm in Figure 4.8 in detail and give 
the time complexity of each step. We explain the steps in terms of hypergraphs 
but give the necessary modifications for graphs also. Suppose that H = (V, E) 
is a hypergraph with N  vertices, M  nets, and p terminals to be partitioned 
into K  parts. Similarly, suppose that G = (V,E)  is a graph with N  vertices 
and M  edges to be partitioned into K  parts. •

• (step 1) We initialize the buckets by initializing the indices for each bucket 
array and by initializing the bucket list pointers in the bucket arrays.
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Algorithm: Multiple-way Partitioning-by-Free-Moves Algorithm
Input: an initial A'-way partition of the hypergraph H with N vertices, M nets, and p ter­
minals, the array eval filled
Output: a locally minimum partition II = (Pi, · · ·, Pk ) of H

1. initialize buckets
2. repeat

2.1. obtain temporary copy of the partition data structure to work on
2.2. compute gains and initialize move counts of vertices
2.3. insert vertices into buckets on basis of their freedom values
2.4. for K\ iterations do

2.4.1. select a vertex to move
2.4.2. if the move violate the balance condition then exit this loop
2.4.3. make a tentative move of the vertex, record the move and increment the 

move count
2.4.4. insert previously moved vertex (if one exists) into bucket lists
2.4.5. update costs, gains and freedom values of the vertex moved and neighbor 

vertices, and the bucket lists
2.4.6. delete currently moved vertex from bucket lists
2.4.7. make currently moved vertex as previously moved vertex

2.5. endfor
2.6. find the maximum prefix sum gainsum of move gains of I\2 moves
2.7. if gainsum > 0 then /* there is an improvement in cutsize */

2.7.1. permanently move vertices yielding gainsum
2.7.2. decrease cutsize by gainsum

2.8. endfor

3. u n til gainsum <  0 /*  II is locally minimum * /

Figure 4.8. The generic direct multiple-way partitioning-by-free-moves algo­
rithm
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Since there are K {K  — 1) bucket arrays each of which has S  buckets, we 
can initialize all the bucket arrays in 0{K^S)  time. (Notice that since 
the freedom value of a vertex can be at most S' — 1 and at least 0 , a 
bucket array has S  buckets.)

• (step 2 .1 ) Since we make tentative moves in a pass, we should not de­
stroy the information contained in some data structures at the beginning 
of the pass. These data structures are the array holding the partition 
information, the array holding the number of terminals of each net in 
each partition (this array does not exist for graphs), and the array hold­
ing the information indicating the parts of each vertex. Thus, we should 
obtain temporary copies of these data structures. If K 2 < N ,  this step 
requires 0 { K  + M K + N )  = 0 { M K  + N)  time for the hypergraph /7, and 
0 { K  N) time for graphs. If K 2 = N^ i.e., the case in the SN algorithm, 
this step requires 0 { K  +  M K ) — 0 { M K )  time for the hypergraph //, 
and 0{K)  time for graphs.

• (step 2.2) The initial gains of vertices in the hypergraph H are computed 
using the algorithm in Figure 3.1, and those of vertices in the graph G are 
calculated using the algorithm in Figure 2.1. Although these algorithms 
compute the cost vectors of the vertices, the move gains of the vertices 
can easily be obtained from the cost vector by the definition of the move 
gain. Initial gain computations take 0 { N K  + p A ) and 0 { N K  +  M)  time 
for hypergraphs and graphs, respectively.

• (step 2.3) We insert the vertices into bucket arrays by first calculating 
the indices corresponding to the freedom values of the vertices. We then 
place each vertex to the head of (7\ — 1 ) bucket lists each of which is 
connected to a bucket in the bucket arrays. We pass over each vertex 
once and insert each vertex into (7\ — 1 ) bucket lists each of which requires 
constant time. Thus, this step requires 0 { N K )  time. •

• (step 2.4.1) There are K {K  — 1 ) move directions for the 7\-way partition­
ing. We can make a move in each of these move directions or not. We 
search these move directions and select the first move that has the max­
imum gain and that does not violate the balance condition. Since each 
bucket array has a index pointer indicating the bucket list correspond­
ing to the moves with the maximum gain, the search only involves these 
index pointers and w’e only examine the nodes at the head of the bucket 
lists, i.e., there is not a search along the bucket lists. Moreover, if there is
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no move which does not violate the balance condition, we then select the 
move with the maximum gain anyway but set a variable indicating that 
the move is not possible. Considering the number of move directions and 
the constant time to reaeh the vertices in a move direction, we can select 
a move in O(K^) time. This selection time can be reduced by utilizing a 
heap but we did not do so [31].

• (step 2.4.2) When we cannot find a move after searching all the K ( K  — 
1) move directions, we exit the inner loop. Instead of exiting, we can 
temporarily delete a vertex at the head of the bucket lists and search for 
a new move. This deletion and search step can be continued by inserting 
the previously deleted vertex into the bucket lists and deleting another 
vertex. However, we prefer exiting. This step takes constant time.

• (step 2.4.3) We move the selected vertex. We record the properties of this 
move such as the move gain. We also update the part sizes in the partition 
structure, change the part where the vertex is present, and increment the 
move count of the vertex. This step can be done in constant time.

• (step 2.4.4, step 2.4.6 and step 2.4.7) If a vertex is selected to move, we 
then prevent this vertex to be reselected in the very next selection step 
by deleting the vertex from the bucket lists after it is moved and the 
necessary updates are performed on the cost, gain and freedom values of 
the vertex moved and its neighbor vertices. This action seems to improve 
the partitioning results. Thus, the currently moved vertex is not present 
in the bucket lists at the very next selection step. After a new vertex is 
selected, the previously selected vertex must be inserted into the bucket 
lists to perform correct updates. Of these three steps, step 2.4.4. requires 
0 ( K )  time, step 2.4.6. requires 0 ( K S )  time, and step 2.4.7. requires 
constant time. •

• (step 2.4.5) If there is a possible move, we update the costs, the move 
gains, and the freedom values of the neighbor vertices of the vertex moved 
and also update the bucket arrays and lists so as to correct the informa­
tion in them. We update the gains of the neighbor vertices in the hy­
pergraph H using the algorithm in Figure 3.2, and those of the neighbor 
vertices in the graph G using the algorithm in Figure 2.2. The update 
operation for the vertex moved is done by the steps 2.4.4, 2.4.6 and 
2.4.7. The update process results in a number of insertions into and 
deletions from the bucket lists. The algorithm in Figure 3.2 runs in
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C{Dv,maxDe^maxHS) time where D̂ r̂nax is the maximum vertex degree 
and De,max is the maximum net degree. The algorithm in Figure 2 . 2  re­
quires 0{Dy^maxNS) time where Dv^max is the maximum vertex degree. 
In the K-PLM algorithm, we are sure that all the N  vertices are moved 
once and locked, and we know the sum of their degrees. In K-PFM 
algorithm, we do not know the move count of each vertex. The move 
counts are different for each vertex. We can obtain only a worst-case 
time complexity of the gain update algorithms. Moreover, since we do 
not know the probability distribution of the move counts of the vertices, 
it seems very difficult to obtain an average-case time complexity of the 
gain update algorithms.

• (step 2.6. and step 2.7) We now have A'l successive moves recorded. 
We should select from the beginning of the record those moves whose 
execution produces the maximum decrease in the cutsize. That is, we 
calculate the prefix sum, gainsum, of the move gains of the moves in the 
recorded sequence, and perform the subsequence of moves yielding the 
maximum prefix sum. The step 2.6 and the step 2.7 both require O(A'i) 
time for the graph G, but the step 2 . 6  requires 0 (K j )  time and the step 
2.7 requires 0{K\Dy^max) time for the hypergraph H.

4.13 C om plexity  A nalysis

4.13.1 T im e C om plexity A nalysis

We now present a time complexity analysis of the algorithms we investigate. 
We give the time complexity analysis of each algorithm both for hypergraphs 
and graphs. Moreover, the time complexities of reading the input and creating 
an initial partition are given in this section for the sake of completeness. These 
time complexities are not included in the time complexity of any partitioning 
algorithm examined below.

Suppose that G = (F, E) is a graph with N  vertices and M  edges to be 
partitioned into K  parts.

1 . The graph G can be read in 0 {M  -|- Â ) time.
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2 . An initial A-way partitioning for G can be obtained using the algorithm 
in Figure 4.3 in 0{N K ).

3. If {K2 < N) then the K-PLM algorithm has a time complexity of 
0 { K \K { N K  + Gmax{N + M  + K))). For K  = 2, this time complex­
ity reduces to 0{KiGmax{N -|- A/)).

4. If (K2 = N) then the K-PLM algorithm has a time complexity of 
0{lOGmax + K iK { N K  + Gmax{N -|- M))). For K = 2, this time com­
plexity reduces to 0{K\Gmax{N -f- M)).

5. The time complexity of the SN algorithm is 0(K^Gmax +  K { N K  -|- 
G^.ax{N + M))) = 0{K{NKAGmax{N + M +  K))). This time complex­
ity is obtained by letting /Ti = 1 in the time complexity of the K-PLM 
algorithm for K 2 = N. The time complexity of the SN algorithm for 
K  = 2 reduces to 0{Gmax{N -I- M)).

6 . The time complexity of the K-PFM algorithm without the time of filling 
the array eval becomes 0 { lO S  + M N K  K iK {K  + SDy^rnax)) where 
Dv,max is the maximum vertex degree in G. This time complexity reduces 
to 0 { M  + N  + KlSD,,max) for K  =  2 .

Suppose that H = (G, E) is a hypergraph with N  vertices, M  nets, and p 
terminals to be partitioned into K  parts.

1 . The hypergraph H can be read in 0 { N  -f M K  + p) = 0 { N  4- pK)  time. 
If we further assume that N = 0{p), then the time complexity becomes 
0(pK).

2 . An initial A'-way partitioning for H can be obtained using the algorithm 
in Figure 4.3 in 0 { N K  + p) time. If we further assume that N  =  0(p), 
then the time complexity becomes 0{pK).

3. If {K2 < -N) then the K-PLM algorithm has a time complexity of 
0 { M K  -h l u K ( N K  + GmaxiN A p A  K))). With M = 0{p),  we 
have the time complexity 0 { K \K { N K  -f Gmax{N + p + A'))). If we 
further assume that N = 0(p), then the time complexity becomes 
0{KiK{pK  + Gmax{p-I- f'")))· For K  = 2, this time complexity reduces 
to 0{M  -f- K\Gmax{N + p)) = 0{K\Gr,iax{N -f p)). If we further assume 
that N  = C9(p), then the time complexity becomes 0{K\GmaTp)·



CHAPTER 4. PARTITIONING ALGORITHMS 6 1

4. If (K2 — N)  then the K-PLM algorithm has a time complexity of
0{K'^Gmax + M K  A K^K{NK  + + p))). With M = 0(p),
we have the time complexity 0 { K ‘̂Gmax + K \K { N K  + Gmax{N +  p))). 
If we further assume that N  =  0{p), then the time complexity becomes 
0{K'^Gmax + KiKp{K  + Gmax))· For K = 2, this time complexity re­
duces to 0 { M  -H KiGmax{N -|- p)) = 0{KiGmax(N -f p)). If we further 
assume that N = 0(p), then the time complexity becomes O(KiGmaxP)·

5. The time complexity of the SN algorithm is 0(/i(M-(-A^A'+(7TOaj:(-^+P+ 
R))) = 0(K(NKAGmax(RApAR))) ·  This time complexity is obtained 
by letting Ki = 1 in the time complexity of the K-PLM algorithm for 
K 2 =  R- If we further assume that N  = 0(p), then the time complexity 
becomes 0{K{pK  -|- Gmax{p + R)))· The time complexity of the SN 
algorithm for R  = 2 reduces to 0 { M  + Gmax{R + p)) = 0{Gmax{R + p))· 
If we further assume that N = 0{p), then the time complexity becomes 
O(GmaxP), which is the same as the time complexity of FM algorithm, 
which assumes that both M = 0{p) and N  =  0{p) hold.

6 . The time complexity of the K-PFM algorithm is 0 { R { M  + p + N  + R S  + 
R \{ R  -f Dy^maxJ)e,maxS))) where Dv.mai IS the maximum vertex degree 
and De,max IS the maximum net degree in H. With M = 0(p), we have 
the time complexity 0(R {p  + N  + R S  + R \{R  -f- Dv^rnaxDe,maxS))). If 
we further assume that N  = C?(p), then the time complexity becomes 
0{R{p + R S  4 - R i{R  + Dv,maiDe,maxS))). For R  = 2 , this time com­
plexity reduces to 0 { M  + p + N  + R\Dy^rnaxDe,maxS) — 0{p + N  + 
R\Dv^rnaxDe,maxS). If we further assume that N  = C?(p), then the time 
complexity becomes 0 { p A  R\D^,^rnaxDe,maxS).

4.13.2 Space C om plexity Analysis

Suppose that G = {V,E) is a graph with N  vertices and M  edges to be 
partitioned into R  parts. The graph N  can be stored in 0 { N  + M) space. 
We can hold the information about the R  parts in the partition in 0 { R )  
space. The array mapping each vertex to a part in the partition requires 0 { N )  
space. We also maintain an array storing the cost vector of each vertex, and the 
pointers to the bucket lists for each vertex. This array has 0 { N R )  space. Each 
vertex is inserted into {R — 1) bucket lists, so the bucket lists have 0 { N R )  
list nodes. We have R { R  — 1) bucket arrays. For the K-PLM algorithm, the
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bucket arrays need 0{l0Gmax) space, and the array recording the moves in a 
pass needs 0 { K \N )  space. For the K-PFM algorithm, the bucket arrays need 
0{ lO S)  space, the array recording the moves in a pass needs 0{K\)  space, 
and the array eval needs 0{Gmax) space. Therefore, we have the following:

1 . the K-PLM algorithm for graphs requires 0 { M  + H^Gmax + N K + K\N)
space,

2 . the SN algorithm for graphs requires 0 ( M  + K'^Gmax + NK )  space,

3. the K-PFM algorithm for graphs requires 0 { M +  K'^S+NK+Ki + Gmax) 
space.

Suppose that H = {G, E) is a hypergraph with N  vertices, M  nets, and p 
terminals to be partitioned into K  parts. The hypergraph H along with the 
information holding the number of terminals in each part of each net can be 
stored in 0 { N  -f- M K  -|- p) space. We can hold the information about the K  
parts in the partition in 0 {K )  space. The array mapping each vertex to a part 
in the partition requires 0{N )  space. We also maintain an array storing the 
cost vector of each vertex, and the pointers to the bucket lists for each vertex. 
This array has 0 { N K )  space. Each vertex is inserted into (K  — 1 ) bucket 
lists, so the bucket lists have 0 { N K )  list nodes. We have K{K  — 1) bucket 
arrays. For the K-PLM algorithm, the bucket arrays need 0{K^Gmax) space, 
and the array recording the moves in a pass needs 0 {K \N )  space. For the 
K-PFM algorithm, the bucket arrays need 0{K^S)  space, the array recording 
the moves in a pass needs 0{K\)  space, and the array eval needs O(Gmax) 
space. Therefore, we have the following:

1 . the K-PLM algorithm for hypergraphs requires 0 { M K  -\-p-\- K^Gmax +
N K  -h KiN)  space. With M — 0{p), this complexity reduces to 0{pK  -|- 
K^Gmax + + KiN )  space. If we further assume that N  = 0{p) then
the complexity becomes 0{K^Gmax Ap{K\  -f K)).

2. the SN algorithm for hypergraphs requires 0 { M K  -f-p-f K^Gmax + N K )  
space. With M  = 0{p), this complexity reduces to 0{pK + K^Gmax + 
NK).  If we further assume that N  = 0{p) then the complexity becomes 
0{pK  -f K^G,nax)·

3. the K-PFM algorithm for hypergraphs requires 0{ . \ IK  + p + K^S  -f 
N K  -|- A'l -f- G ,n a x )  space. With M = 0{p), this complexity reduces to
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0{pK  + K^S  + N K  -f A'l + Gmax)· If we further assume that N  = 0{p) 
then the complexity becomes 0{pK  + K^S  + K\ + Gmax)·



Chapter 5

EXPERIM EN TS A N D  RESULTS

This chapter includes all test problems, the details of experiments done and 
the results obtained.

5.1 Im plem entation  o f  A lgorithm s

The SN algorithm, the generic K-PFM algorithm, the generic K-PLM algo­
rithm, and the other utility programs were all implemented in the C program­
ming language. Most of the functions used in the programs are common to all 
the programs. All the experiments were carried out on a SUN SPARC s ta t io n  
ELC  ̂ under SunOS Release 4 .1 .3   ̂ operating system.

5.2 B alance C ondition

In all our experiments on both graph and hypergraph instances, we initially set 
a  = 0.10 in the balance condition, given in Section 2.4.3, of the partitioning 
algorithms. Surprisingly, the initial partitions of all the graph and hypergraph 
instances became feasible at this value of q . Hence, we allowed a part size to be 
10% more or 10% less than its value in a perfectly balance partition. Also, all 
the final partitions obtained by the algorithms we evaluated were also feasible 
and satisfied the balance condition with this value of a since only legal moves

'SUN Workstation is a registered trademark of Sun Microsystems, Inc. 
“SunOS is an unregistered trademark of Sun Microsystems, Inc.
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are allowed during the iterative partitioning process. We expect that setting 
larger values to a  in the balance condition yields partitions with lower cutsizes. 
We performed too few experiments to check this expectation, however.

5.3 K -PFM  A lgorithm s

Recall that the generic K-PFM algorithm in Figure 4.8 has the parameter K^. 
We obtained different K-PFM-like algorithms by setting various values to this 
parameter. The algorithms obtained were also renamed so that we could refer 
to them more easily. The settings and the algorithms obtained are tabulated 
below:

Ki Resulting Algorithm

N K-PFMl
N K K-PFM2
NK^ K-PFM3

In the above table, N  is the number of the vertices in the input hypergraph 
(or graph), and K  is the number of parts in the required partition.

By setting other values to A'l, any other K-PFM-like algorithms are also 
possible. Note that the parameter Ki denotes the number of moves performed 
in a pass of the generic K-PFM algorithm. In every pass, the value of this 
parameter was held constant during our experimentation. We can employ an 
adaptive scheme such that the value of this parameter varies from one pass to 
another. The time and space complexities of these K-PFM-like algorithms can 
easily be obtained by putting the value of in the time and space complexity 
expressions of the generic K-PFM algorithm in Section 4.13. Notice that the 
rank order of these algorithms with respect to their time complexities from the 
smallest to the largest is K-PFM I, K-PFM2, and K-PFM3.

5.4 K -PLM  A lgorithm s

Recall that the generic K-PLM algorithm in Figure 4.7 uses two parameters 
Ki and A'2 · We obtained different K-PLM-like algorithms by setting various



CHAPTER 5. EXPERIMENTS AND RESULTS 66

values to these parameters. The algorithms obtained were also renamed so that 
we could refer to them more Ccisily. The settings and the algorithms obtained 
are tabulated below:

K IK 2 K 2 Resulting Algorithm

N 47V/4 K-PLMl
N 3A /̂4 K-PLM2
N 2N/A K-PLM3
N 17V/4 K-PLM4

N K 4AT/4 K-PLM5
N K 3iV/4 K-PLM6

N K 2N/A K-PLM7
N K lAf/4 K-PLM8

N K^ 4N/4 K-PLM9
N K^ 3N/4 K-PLMIO
N K^ 2N/A K-PLMl 1
N K^ lAf/4 K-PLM12

In the above table, N  is the number of the vertices in the input hypergraph 
(or graph), and K  is the number of parts in the required partition. Note that 
K-PLMl algorithm is identical to SN algorithm and henceforth we use the label 
K-PLMl instead of SN when we refer to SN algorithm.

By setting other values to these parameters, any other K-PFM-like algo­
rithms are also possible. Note that the parameter A'l denotes the number of 
move-and-lock phases in a pass of the generic K-PLM algorithm and that the 
parameter K 2 denotes the number of moves in a single move-and-lock phase. 
As in experiments with the K-PFM-like algorithms, the values of these pa­
rameters were held constant during our experimentation. We can employ an 
adaptive scheme such that the value of these parameters vary from one pass 
to another. The time and space complexities of these K-PLM-like algorithms 
can easily be obtained by putting the value of 7\i in the time and space com­
plexity expressions of the generic K-PLM algorithm in Section 4.13. Note that 
K 2 — 0{N),  which is already incorporated into the time complexiU' of the 
generic K-PLM algorithm.
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5.5 C om m ents on N eighborhood Structure o f  A lgo­
rithm s

Recall that all the algorithms we investigated in this study use the move- 
neighborhood structure. If the input hypergraph (or graph) has N  vertices 
and it is to be partitioned into K  parts, then the number of solutions in a 
neighborhood is bounded above by N {K  — 1). Although these algorithms use 
the same neighborhood structure, they need not perform the same on a problem 
instance. The function that is employed to select one solution over another 
also counts. Besides, the total number of solutions in all the neighborhoods 
throughout the operation of the algorithm affects the performance.

Notice that all the K-PLM-like algorithms use the move gain function to 
move one solution to another whereas the K-PFM-like algorithms use the free­
dom value function. Now, let us examine the the number of solutions inspected 
during a pass of the generic K-PLM and K-PFM algorithms.

The generic K-PFM algorithm has the same number of solutions, namely, 
at most N{K — 1 ), in all the neighborhoods explored during a pass. Since a 
pass consists of Ki moves, the total number of solutions is bounded above by 
K iN {K  — 1). Particularly, the K-PFM 1 algorithm examines at most A^^(/\ — 1 ) 
solutions.

The generic K-PLM algorithm does not examine the same number of solu­
tions at each move in a pass. The neighborhood shrinks at each move. Thus, it 
examines at most N{K — 1 ) solutions at the first move, at most {N — 1){K — 1 ) 
solutions in the second move, and so on. At the end of a move-and-lock neigh­
borhood, that is, at the move, it examines (Â —(A'2 —1 ))(K —1 ) solutions.
Hence, during a pass involving K 1 K2 moves, the generic K-PLM algorithm ex­
amines at most KiK^iK — 1){2N — K 2 + l)/2  solutions. Particularly, the 
K-PLMl algorithm examines at most {K — 1 )Â (Â  -)- l ) / 2  solutions.

From these calculations, the following observations reveal.

• The respective bounds for K-PFM 1 and K-PLMl are equal asymptoti­
cally but the bound for K-PFMl is twice that for K-PLMl when N  is 
large.

• The bounds for the K-PFM-like algorithms are larger by a constant factor
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than those for the K-PLM algorithms if the algorithms perform the same 
number of moves in a pass.

• The bounds for the K-PFM-like algorithms with K\ > N K  are larger by 
a factor depending on K  than those for K-PLM 1 algorithm.

• The algorithms with more than one move-and lock phase examine more 
solutions than K-PLMl algorithm even if the number of moves in a pass 
is held to be the same as that of K-PLMl algorithm. For example, the 
bound for K-PLM3 algorithm is larger by a factor of 3 / 2  than that for 
K-PLMl algorithm. This may be one of the reasons why the results 
obtained by these algorithms seem to be better than those by K-PLMl 
algorithm.

5.6 N otation

We now explain in the following table the meanings of the column headings used 
in the tables giving the data about the test graphs and hypergraphs because 
most of these headings are common to all tables.

Heading Meaning

N number of vertices
M number of edges

P total number of terminals

W t total vertex weight

Ct total edge weight

D̂ xp expected average vertex degree before generation of graph

Dact actual average vertex degree after generation of graph

Dŷ rnax maximum vertex degree (also Dv,x)

D. average vertex degree

Dê max maximum net degree (also Dc,x)

De average net degree

^max maximum vertex weight (also lOx)

^min maximum vertex weight (also u^,)

^max maximum edge weight

1 ^min maximum edge weight
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5.7 Test Graphs

We have used as our test beds 5 different types of graphs: random, geometric, 
grid, ladder, tree. The random and geometric graphs are standard test beds for 
graph partitioning algorithms [17, 3]. The other types of graphs were used to 
evaluate the partitioning algorithms because the KL algorithm was observed 
to fail badly on these types of graphs [6 , 15]. The vertices and edges in all 
the graphs are weighted. The vertex weights in the test graphs are uniformly 
distributed in the range from 1 to 4. The edge weights in the test graphs are 
uniformly distributed in the range from 1 to 5. When the vertex weights are 
selected from a pool of uniformly distributed random numbers, we ensure that 
the variance between the weights remain small and thus a more balanced initial 
partition is easily generated. We now present the definitions of the test graphs 
and the algorithms to generate them. Moreover, the properties of these test 
graphs are given in tables as mentioned in the following sections.

5.7.1 Random  Graphs

A random graph [17] is a graph with N  vertices, where each pair of vertices

. A 'constitutes an edge with probability p. Since can have at most p

edges, the sum of the degrees of the vertices of Gjq̂ p is equal to 2p
N

by

Equation 2.6. Then, the expected average vertex degree in the random graph 
I  N  \

Gy^p is 2 p I I /N  = p{N — 1). We generated 15 random graphs whose 

properties are depicted in Table C.l.

The algorithm in Figure 5.1 generates a random graph Gy^p. It flips a coin 
with probability p for all N{N  — l)/2  potential edges. The time complexity of 
the algorithm is O(N^).

5.7 .2  G eom etric Graphs

A geometric graph Uy^o,, [l"j a graph with N  vertices and with an average 
vertex degree Z)„, and generated as follows: first, pick 2N independent numbers
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Algorithm: Random Graph Generator
Input: number N of vertices, expected average vertex degree 
Output: a random graph Gn,p with p = D„/(N — 1)

1. generate N vertices but 0 edges
2. letp^£»„/(AT- 1)
3. for each vertex v,, i 6 N{l,N) do

3.1. for each vertex vj, j  £ N(i, N) do
3.1.1. add the edge {i, j} to Gs,p with probability p if this edge is not present in

Gn.p
3.2. endfor

4. endfor

Figure 5.1. Random graph generation algorithm

uniformly from the interval (0,1), and view these as the coordinates of N  points 
in the unit square. That is, group the 2N numbers pairwise and treat each 
pair as a coordinate. These points represent the vertices. We place an edge 
between two vertices if and only if their Euclidean distance is r or less, where 
r = yJOv/iNir), i.e., both points lie in a circle of radius r. This expression 
for the radius can be obtained using the reasoning below: Since the vertices 
of a geometric graph are distributed uniformly in the unit square, we have N  
vertices in an area of 1 . A vertex, not too close to the boundaries, is connected 
to every vertex in an area of nr^. Thus, the expected average degree is 
N th'"̂ . We generated 15 geometric graphs whose properties are depicted in 
Table C.2 .

The algorithm in Figure 5.2 generates a geometric graph Un ,Dv- The time 
complexity of the algorithm is O(N^).

5.7.3 Grid Graphs

A random grid graph Giĝ p is a random planar graph with N  vertices and an 
edge probability p. Each vertex in Gjĝ p can have at most 4 adjacent vertices. 
The grids we use have a height of h and a width of w such that N = hto. That 
is, the grids have a rectangular shape. The expected average vertex degree 
Dy is p(2{2N — h — w))/N. We generated 9 grid graphs who.se properties are 
depicted in Table C.3. The width of all the test graphs were set to 10. The
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Algorithm: Geometric Graph Generator
Input: number N of vertices, expected average vertex degree
Output: a geometric graph Un ,d ^

1. generate N vertices but 0 edges
2. let r <- s/D J {N t:)
3. for each vertex t;,, i G Ai(ljN) do

3.1. for each vertex vj, j G N) do
3.1.1. add the edge to Un,d  ̂ if the distance between r,· and Vj is < r and 

if this edge is not present in Un,d^
3.2. endfor

4. endfor

Figure 5.2. Geometric graph generation algorithm 

algorithm in Figure 5.3 generates a random grid. Its time complexity is 0{N) .

5.7.4 Ladder G raphs

A ladder graph is actually a grid graph but it can have a width of 2 or 3. We 
generated 6  random graphs whose properties are depicted in Table C.4. The 
widths of all the test graphs were set to 2. The grid generation algorithm can 
be used to generate ladder graphs also.

5.7.5 Tree G raphs

Trees [8 ] are best candidates for experiments on very sparse graphs. The av­
erage vertex degree in a tree is close to 2. We generated 3 tree graphs whose 
properties are depicted in Table C.5. An V-vertex tree 7\r is generated by the 
algorithm in Figure 5.4. The time complexity of the algorithm is 0{N ) .
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Algorithm: Grid Generator
Input: number N of vertices, expected average vertex degree heigh A, and width w 
Output: a grid Gj\i,p with height h and width w

1. generate N vertices but 0 edges
2. let p ^  D^N/{2{2N - h - w ) )
3. for each vertex v, , i G AT(1, N) do

3.1. let down_neighbor<— i-\- w
3.2. let right_neighbor+— a -f 1
3.3. if (downmeighbor < N) then

3.3.1. add the edge {i, downjieighbor} to Gĵ p̂ with probability p
3.4. endif
3.5. if (a mod w ^ {N — \)) /* if v,· is not at the very right */ then

3.5.1. add the edge {a, right_neighbor} to Gs,p with probability p
3.6. endif

4. endfor

Figure 5.3. Grid generation algorithm

Algorithm: Tree Generator 
Input: number N of vertices 
Output: a tree Tyv

1. generate N vertices but 0 edges
2. let S ^  {r,} where the vertex v, is chosen randomly /* i G A/*(l, N) */
3. let T be the vertex set of TV
4. repeat

4.1. randomly choose vj from S /* j  E Ai{l,N) */
4.2. randomly choose Vk from T /* k E Ai(iyN) */
4.3. add the edge {j,k} to Tjsi if this edge is not present in Tyv
4.4. let S’ 5U {vjb}

5. until S = T

Figure 5.4. Tree generation algorithm
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5.8 Test H ypergraphs

We did not use hypergraph instances that were randomly generated. Instead, 
we used real VLSI benchmark circuits as hypergraph instances. These circuits 
are a subset of the standard-cell circuits from The International Workshop 
on Layout Synthesis'92 (LayoutSynth92) which are maintained in and 
distributed by M icroelectronics Center of North Carolina (MCNC) with 
the support of ACM/SIGDA. They are currently called the ACM/SIGDA Design 
Automation Benchmarks. In order to make these circuits to be used in the 
partitioning algorithms, we, like other researchers, deleted certain nonessential 
features of these circuits, for example, all the nets with only one terminal w’ere 
deleted, the nets including a vertex (or cell in VLSI terminalogy) more than 
once were enforced to include the vertex only once. All the net weights were 
taken to be 1 whereas the vertex weights were calculated to be proportional to 
the area of the vertex. Since we usually did not determine the vertex weights 
by approximating the area of the vertex, the vertex weights happened to be 
large; yet, for some certain aplications, they can be decreased by dividing the 
areas of all the vertices with a certain number depending on the application. 
The circuits are depicted in Table C.6. Henceforth we use the word circuits 
when we refer to the test hypergraphs.

5.9 G eneral C om m ents on E xperim ents

For an experiment performed on a graph or hypergraph instance, we present 
at most two tables: one table for the average cutsizes obtained and another 
table for the average running times of the partitioning algorithms on these 
instances. This restriction is due to the large number of tables. The time of an 
partitioning algorithm on a problem instance is in seconds, and is equal to the 
sum of the time to read in the input problem instance, the time to create an 
initial partition of that instance, the time of all the passes performed until a 
locally minimum partition is found, the time to output the result, and finally 
the time to verify the cutsize at each pass during partitioning by the algorithms 
in Figure 4.4 and in Figure 4.5. .Most of the time, the standard deviations are 
also given. The time of an partitioning algorithm on a problem instance was 
measured by the SunOS command time, and the time of the algorithm was 
obtained by adding the u se r time and system time (please refer to manpages
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of time command for further information.)

5.10 G eneral C om m ents for E xperim ents on Graphs

In the tables, there are two columns with the headings RATIO  and IMP.  
The other column headings are self-explanatory. The RATIO  value in a row 
was found by the equation

RATIO
(Running time o f  К —PLM3)  
(Running time o f  К  - P L M l ) (5.1)

where the running times were taken from the same row. Thus, RATIO  value 
gives the ratio of the running time of K-PFM.3 algorithm with respect to that 
of K-PLMl algorithm. The I M P  vahie in a row was found by the equation

I M P  =  100.0 X
(Cutsize by К  — P F M3) — (Outsize by K  — PLMl )  

(Outsize by K —PLMl ) (5.2)

where the cutsize values were taken from the same row. Thus, I M P  value 
gives the percentage improvement done by K-PFM.3 algorithm in the cutsize 
with respect to that of K-PLMl algorithm. The values between parantheses 
in the rows represent the respective standard deviations.

Recall that the definition of the freedom value function involves a parameter 
called the scale factor S. During experimenting with K-PFM-like algorithms 
on the test graphs, the setting of S  was as follows: S  =  400 when N  = 250, 
S = 600 when N  = 500, and S  = 800 when N  = 1000.

5.11 Perform ance o f  K -PFM  A lgorithm s on Graphs

The K-PLMl algorithm were run 100 times on a test graph whereas any of 
the K-PFM-like algorithms were run 10 times on the same test graph. This is 
because the running time of K-PLMl algorithm is smaller compared to those 
of the K-PFM-like algorithms. The results of experiments on random graphs 
are given in Table C.8 and Table C.7, those on geometric graphs in Table C.IO 
and Table C.9, those on grid graphs in Table C.12 and Table C .ll, those on 
ladder graphs in Table C.14 and Table C.13, those on tree graphs in Table C.16 
and Table C.15,
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We now present the general observations obtained from the experiments 
presented in the tables. Note that there can be some anomalies violating these 
general observations.

• The running time of any partitioning algorithm tend to correlate directly 
with the number of vertices, the average vertex degree, and the number 
of parts as expected from the time complexities of these algorithms.

• The partitioning algorithms can be ordered with respect to their running 
times, from the one with the largest running time to the one with the 
smallest running time, as K-PFM3, K-PFM2, K-PFMl, K-PLMl. Al­
though K-PFMl and K-PLMl algorithms perform the same number of 
moves in pass, the running time of K-PFMl happens to be larger than 
that of K-PLMl because K-PFMl algorithm uses such time consuming 
functions as the square root and exponential functions, performs more 
passes, and performs more update operations due to the fact that there 
are always N  potential moves at any time in a pass where N  is the number 
of vertices of the input graph.

• The cutsize obtained tend to increase as the number of vertices, the 
average vertex degree, and the number of parts increase.

• The improvement made by the K-PFM-like algorithms with respect to 
K-PLMl algorithm happens to decline as the average vertex degree of the 
graph increases. This result was also observed by other researchers [5, 6] 
for bipartitioning and was claimed to be due to the presence of very 
few locally optimal partitions in such dense graphs. This claim has not 
been proved yet. Our observation indicates that this result also holds for 
multiple-way partitioning. Bui et al. [5, 6] propose a heuristic algorithm 
to improve the performance of KL bipartitioning algorithm based on this 
result. The heuristic first uses a maximum random matching algorithm 
to coalesce vertices into pairs, thus forming a smaller graph of higher 
average vertex degree, and then runs KL algorithm on this graph to 
obtain a bipartition. Vertex pairs in this bipartition are then seperated 
to create for the original graph a bipartition that is then used as an initial 
partition for KL algorithm. •

• The partitioning algorithms can be ordered with respect to the quality of 
the cutsize they found, from the best to the worst, as K-PFM.3, K-PFM2,
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K-PFMl, K-PLMl. The K-PFM-likealgorithms outperform K-PLMl al­
gorithm drastically on almost all test graphs. The only anomaly occured 
in bipartitioning the geometric graphs whose average vertex degrees were 
all equal to 16. This anomaly reveals that K-PLMl algorithm is better 
in bipartitioning and in partitioning very dense graphs.

• The improvement achieved by the K-PFM-like algorithms becomes better 
than that by K-PLMl algorithm as the test graph becomes more sparse. 
Since the real applications are usually very sparse, this feature is very 
promising.

• The K-PFM-like algorithms dominate K-PLMl algorithm more in the 
reduction achieved in the cutsizes of the test graphs with some special 
structure such as the geometric graphs, the grids. This feature is very 
good because these graphs are closer to real applications [17, 15].

• The partitioning algorithms can be ordered with respect to their number 
of passes, from the one with the largest number of passes to the one with 
the smallest, as K-PFMl, K-PLMl, K-PFM2, K-PFM3. This is because 
K-PFM2 and K-PFM3 algorithms perform more moves in a pciss than 
other algorithms, and the potential number of moves at any time in a pass 
of K-PFMl algorithm is larger than that of K-PLMl algorithm. The fact 
that K-PFMl algorithm performs more number of passes than K-PLMl 
algorithm although they perform the same number of moves in a pass 
may provide a support to the claim that K-PFMl algorithm explores the 
search space better than K-PLMl algorithm.

• The number of passes done by any of the partitioning algorithms seems 
to be proportional directly to the number of vertices, the average vertex 
degree, and the number of parts.

• The maximum average number of passes on random graphs is 13. That 
number is 9 on geometric graphs, 16 on grids, 11 on ladders, and 10 
on trees although this maximum is far from the average of the average 
number of passes. •

• The standard deviations in the cutsizes obtained by the K-PF.M-like al­
gorithms tend to be smaller than those by K-PLMl algorithm. However, 
the ratios of the standard deviations to the respective average cutsizes 
happen to be larger for the K-PFM-like algorithms.
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• The running times of the partitioning algorithms on the geometric graphs 
seem to be the smallest. This may be due to the fact that these graphs 
have built-in clusters which can be more e<isily identifiable.

• The running times of the partitioning algorithms on the random graphs 
seem to the largest than those on the other types of graphs. This may 
be due to the smooth structure of this type of graphs.

• The running times of the partitioning algorithms on the grids, on the 
ladders and on the trees seem to be larger than expected. This may 
be because these graphs have so regular structure that the algorithms 
encounter more ties when they want to select a move.

• It seems that K-PLMl algorithm is better at bipartitioning. K-PLMl 
algorithm does bipartitioning better than it does A'-way partitioning for 
K  > 2. This may be due to the small number of solutions examined in 
bipartitioning.

5.11.1 Different Freedom Value Functions

The main criterion for the freedom value function for a vertex seems to be the 
one that is proportional directly to the move gain of the vertex, and indirectly 
to the move count of the vertex. Since the expression in Equation 4.7 is not 
the single freedom value function, we experimented with other freedom value 
functions all of which we devised. They are tabulated in the following table.

Label Freedom Value Expression

R1 *1 = =  1/(1 +
R2 $2 = =  1/(1
R3 ^3 = =  1/(1 +
R4 ^4 = i»m(/,0 =  1/(1 +
R5 ^5 = i>,n(/,0 = 1/(1 +
R6 ^6 = i»m(/,0 =  1/(1 +
R7 *7 =
R8 -I>8 =  ♦ „ (/,1 ) =
R9 <I»9 = ^ ^ ( / ,0  =  (G „.(/,0  + Gmar)l{2n]PO^a,)
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Note that is identical to the one in Equation 4.7 and that the heading label 
refers to the column label of the tables presenting the results of the experiments 
with these freedom value functions. The results obtained with these freedom 
value functions are presented in Table C.17 for K-PFMl algorithm, Table C.18 
for K-PFM2  algorithm, and Table C.19 for K-PFM3 algorithm. Each cutsize 
average is the average of the cutsize values from 1 2  runs with each algrorithm. 
The entries in the tables do not represent the actual avearege cutsizes obtained 
but the ratio of the average cutsize with respect to the one by $ i. Also, the 
entries in a pair of parentheses in the first column of a table represent the 
average cutsize values obtained by so that the values for the other freedom 
value functions can be found by multiplying this cutsize value by respective 
ratio values in the other columns. During experimentation with these freedom 
value functions, the same scale factor S  was used for all of them and the 
experiments were performed only on the random graphs. Based on the results 
presented in these tables, we can list our general observations as follows:

• For K-PFMl algorithm, the functions and are better as the graph 
becomes more sparse. The functions $ 5  and are better as the graphs 
becomes denser.

• For K-PFM2 algorithm, the function 4>4 gives the best results.

• For K-PFM3 algorithm, the functions ^ 4  and $ 7  give the best results.

• For all the algorithms, the function $ 9  gives the worst results.

• As the graph becomes denser, the results by all these functions get closer.

• The results by these functions except for the function $ 9  are very close 
to each other.

• Since the overall winner seems to be the function 4 *4 , it reveals that the 
effect of the move count of a vertex on the freedom of the vertex should 
be reduced.

5.11.2 D eterm in ing Scale Factor

Note that the scale factor S  is used in the freedom value function and is a 
parameter of the generic K-PFM algorithm. It controls the mapping density 
of the vertices into buckets. Recall that H =  {V, E) being a hypergraph and
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n  = {Pi, - ■ · ,Pk ) a K-vf&y partition of H, the freedom value ^m{f , t )  of a 
vertex Vm in the part P/ with respect to the part Pt is defined as

where
R ~ ( · ^ — ) l n ( “— “ ) with c =  0.01

(5.3)

(5.4)
C^max ^

When the moves cissociated with Vm are mapped into the buckets, we use 
the form instead of i) (henceforth referred to as the floored
freedom value function.) Note that the freedom value function in Equation 4.7 
preserves the order of the move gains to which it is proportional as shown 
by the inequality 4.9. However, the floored form of this function does not 
preserve the order so that the gains of the moves in the same bucket list are 
not identical. This feature of the floored freedom value function randomizes 
the move selection process. Now, let and $ 2  be two freedom value functions 
belonging to two different vertices but in the same move direction. Also, assume 
that n represents the same move counts of these vertices, and Gi and G2 the 
move gains of these vertices in the same move direction. Thus,

and

^ 1  =

$ 2  —

1
1 + y / n e ( - G \ K ) ^

1

if n 7  ̂0 ,

if n 7  ̂0 .

(5.5)

(5.6)
1 +

Let G2 = G\+XG  and G\ = G where AG > 0. Now, we want to derive a lower 
bound to the scale factor S  based on the requirement that the moves with the 
gains G2 and G\ be mapped into different buckets. If we require to satisfy the 
inequality [5 '4 >2j ^  "b 2 ? we obtain the inequality 5 ^ 2  ^  ■5'̂ i + 1 after
some algebraic manipulations involving the properties of the floor operation. 
After a long list of algebraic manipulations, we obtain the following inequality.

5 >
v/n

+
p G / Gmax p ^ G / Gmax p ^ G / G m a x  _|_ |

+
p G / G m a x  ^ p ^ G / G m a x  —  ^ p ^ G / G m a x  —  \

(5.7)

where p — {I — c)/e and p = 99. For AG = 1 , n = (because the average 
move count of a vertex in an algorithm with NK^  moves in a pass is K),  this 
inequality reduces to

.9 >
K r f i l G  m a x  / G  n J / G „

+ +
+ 1

p G / G  m a x  (p'>° m a x  — 1 ) ^  K { p U G  m a x  —  I  ̂ p U G  m a x  —  I
(5.8)
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Notice that the maximum vertex degree Gmax is equal to 140 for the test graphs 
and equal to 9 for the benchmark circuits. Also notice that the gain G in the 
preceding inequality can be at least —Gmax and at most Gmax· The following 
table lists the different values of S  used in our experiments.

The results obtained with these scale factor values are presented in Table C.20 
for K-PFMl algorithm, Table C.21 for K-PFM2  algorithm, and Table C . 2 2  for 
K-PFM3 algorithm. Each cutsize average is the average of the cutsize values 
from 12 runs with each algrorithm. The entries in the tables do not represent 
the actual average cutsizes obtained but the ratio of the average cutsize with 
respect to the one by 5” = 10. Also, the entries in a pair of parentheses in 
the first column of a table represent the average cutsize values obtained by 
5 " =  1 0  so that the values for the scale values can be found by multiplying this 
cutsize value by respective ratio values in the other columns. Also note that 
the heading label in the above table refers to the column label of the tables 
presenting the results of the experiments. Based on the results presented in 
these tables, we can list our general observations as follows:

• As the graph becomes denser, the results get closer.

• Larger values of S  seem to have a better effect on the cutsize but, for 
example, when we increase S  from 50 to 3000, i.e., by a factor of 60, we 
get a 1 % improvement in the cutsize on the random graph with N  =  500, 
D = 2, and K = 2.

• The results obtained with the different values of S  seem to be very close 
to one another provided that S  > 50. Thus, the rule is that we should 
choose a scale factor so that it is not too small as well as not too large. 
The lack of a strong correlation between the cutsize and the scale factor 
is very beneficial since the scale factor is involved in both the space 
requirement and the running time of the K-PFM-like algorithms.
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• There is at most a three fold incretise in the running times of the K- 
PFM-like algorithms when the scale factor is increased up to the value 
of 3000.

5.12 Perform ance o f K -PLM  A lgorithm s on Graphs

The results of experiments on random graphs are given in Table C.23, those on 
geometric graphs in Table C.24. For each algorithm, 1 0  runs were performed.

We now present the general observations obtained from the experiments 
presented in the tables. Note that there can be some anomalies violating these 
general observations.

• Almost always let KiK^ = NK^.  That is, perform large number of moves 
in a pass.

• As the graph gets more sparse, the value of K 2 should be increased. 
Here, the algorithm with K 2 = 3N/4 performs better. As the graph 
gets denser, the value of K 2 should be decreased. Here, the algorithm 
with K 2 = N/4  performs better. As the average vertex degree of the 
graph goes in between, the value of K 2 should be in between. Here, the 
algorithm with K 2 = 2A /̂4 performs better. Note that K 1 K 2 = NK^  in 
each case.

• Even when the algorithms has K 1 K 2 — namely, they perform the 
same number of moves in a pass as that by K-PFMl, the results get 
better as more than one move-and-lock phase is carried out in a pass.

5.13 G eneral C om m ents for E xperim ents on H yper­

graphs

In the tables, there are two columns with the headings RATIO  and IM P.  
The other column headings are self-explanatory. The RATIO  value in a row 
was found by the equation

(Running time o f  K  — PLMT)
RATIO  =

(Running time o f  K —PLMl )
(5.9)
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where the running times were taken from the same row. Thus, R A T  10  value 
gives the ratio of the running time of K-PFM3 algorithm with respect to that 
of K-PLMl algorithm. The I M P  value in a row was found by the equation

I M P  -  1 0 0 ,0 -  ^  K - P F M 3 )  -  {Cutsize by K - P L M X )
{Outsize by K —P LMl )

where the cutsize values were taken from the same row. Thus, I M P  value 
gives the percentage improvement done by K-PFM3 algorithm in the cutsize 
with respect to that of K-PLMl algorithm. The values between parantheses 
in the rows represent the respective standard deviations.

Recall that the definition of the freedom value function involves a parameter 
called the scale factor S. During experimenting with K-PFM-like algorithms 
on the circuits, the setting of S  was cis follows: S  = 2 0 0  when 0 < N  < 2 0 0 , 
S — 800 when 2 0 0  < N  < 1000, and S  = 2000 when 1000 < N  < 3100.

5.14 Perform ance o f K -P F M  A lgorithm s on H yper­

graphs

The K-PLMl algorithm were run 20 times on a circuit whereas any of the 
K-PFM-like algorithms were run 10 times on the same circuit. This is because 
the running time of K-PLMl algorithm is smaller compared to those of the 
K-PFM-like algorithms. The results of experiments on the circuits are given 
in Table C.26, Table C.27, and Table C.25.

We now present the general observations obtained from the experiments 
presented in the tables.

• The running time of any partitioning algorithm tends to correlate directly 
with the number of vertices, and the number of parts as expected from 
the time complexities of these algorithms.

• The partitioning algorithms can be ordered with respect to their running 
times, from the one with the largest running time to the one with the 
smallest running time, as K-PFM3, K-PFM2, K-PFMl, K-PLMl. The 
explanation is the same as the one for graphs.

• The cutsize obtained tend to increase as the number of vertices, and the 
number of parts increase.
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• The partitioning algorithms can be ordered with respect to the the quality 
of the cutsize they found, from the best to the worst, as K-PFM3 , K- 
PFM2 , K-PFMl, K-PLMl. The K-PFM-like algorithms outperform K- 
PLMl algorithm drastically on almost all circuits except that K-PLMl 
algorithm is better than K-PFMl algorithm when K  = 2.

• The partitioning algorithms can be ordered with respect to the number 
of times the algorithm found the minimum cutsize for a certain circuit, 
from the one that found the minimum cutsize the most to the one with 
the least, as K-PFM3, K-PFM2 , K-PLMl, K-PFMl. This order is due to 
the poor performance of K-PFMl algorithm for bipartitioning. However, 
they can be ordered with respect to the quality of the minimum cutsize 
they found, from the best one to the worst, as K-PFM3, K-PFM2 , K- 
PFMl, K-PLMl.

• The improvement made by the K-PFM-like algorithms seems to correlate 
directly with the average net degree but there is an anomaly for the circuit 
prim aryl.

• The partitioning algorithms can be ordered with respect to their number 
of passes, from the one with the largest number of passes to the one with 
the smallest, as K-PFMl, K-PLMl, K-PFM2, K-PFM3.

• The maximum average number of parts on the circuits is 16 although 
this maximum is far from the average of the average number of passes.

• K-PLMl algorithm performs better in bipartitioning.

5.15 Perform ance o f K -PLM  A lgorithm s on H yp er­

graphs

We only ran K-PLMl 1 algorithm 10 times on the circuits on w'hich the K- 
PFM-like algorithms performed the best and the worst. The results by K- 
PLMl algorithm and the K-PFM-like algorithms were taken from the tables 
mentioned in the preceding section. The results of experiments on the circuits 
are given in Table C.28, and Table C.29.

From the tables, it reveals that the performance of K-PLMl 1 algorithm is 
better than those of K-PLMl and K-PFMl algorithms. However, the other
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K-PFM-like algorithms outperfomed K-PLMll algorithm. Interestingly, K- 
PLMll algorithm like K-PLMl algorithm performed better when the circuit 
was bipartitioned.

5.16 Behaviour o f Freedom Value Function

A plot of the freedom value function with respect to the move gain at different 
move counts is given in Figure B.l. The move counts represent the average 
and the maximum move counts that can occur in the K-PFM-like algorithms. 
We now present some general observations on these curves.

• If the move counts are not too large, the shape of the curve does not 
change. However, when the move counts are sufficiently small then the 
freedom value function maps more moves into the bucket with the largest 
index, and more moves into the bucket with the smallest index but it bet­
ter differentiates the moves with the gains in between. When the move 
counts are sufficiently large then the freedom value function maps more 
moves into the bucket with the smallest index but it better differenti­
ates the moves with the gains not too small. Hence, the freedom value 
function does not concern small and large gains much at the earlier parti­
tioning steps but does concern medium and large gains much at the later 
partitioning steps.

• The floored freedom value function incorporates some randomization into 
the partitioning process. Thus, a move selected at one partitioning step 
does not necessarily correspond to the move with the largest gain at that 
step.

5.17 Convergence o f A lgorithm s

Plots of the convergence curves of the algorithms are given in Figure B.2, 
Figure B.3, Figure B.4, Figure B.5, Figure B.6 , and Figure B.7. These curves 
represent the general trends for each algorithm. We now present some general 
observations on these curves.
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• The curves first slope sharply downward and then smooth out. Since the 
initial solution is randomly generated, improving it happens to be very 
easy. But, later partitioning steps involve a more powerful exploration 
capability and so the improvement done at the later steps reduces.

• The convergences of K-PLMl algorithm is very rapid with respect to 
those of the other algorithms.

• For K-PFMl algorithm, it is apparent that the number of passes increases 
with the increasing number of parts.

• For K-PLM-like algorithms, the curves become more spiky as the number 
of moves in a move-and-lock phase goes up.

5.18 D istribution of C utsizes

Note that the optimum cutsize of the geometric graph with N = 500 and 
Dexp — 2 when the graph is bipartitioned is zero. We conducted an experiment 
in which we did 15000 runs of both K-PFMl and K-PLMl algorithms to bi­
partition this graph. The histograms (though it is a line graph for the sake of 
clarity) are given in Figure B.8 . In the figure, the x-axis represents the cutsizes 
in the range from 0 to the maximum one encountered. The y-axis represents 
the number of times each cutsize has been found by these algorithms. The op­
timum cutsize was found by K-PFMl algorithms 3340 times but by K-PLMl 
algorithm only 9 times. In additon, K-PFMl algorithm found the small cutsize 
values more than K-PLMl did. In other words, the probability that K-PFMl 
algorithm found the optimum on this graph is 0.22 and the probability that K- 
PLMl algorithm found the optimum on this graph is 0.0006, which is less than 
that of K-PFMl algorithm by a factor of 371. Also, the average cutsize of the 
cutsizes by K-PFMl algorithm is 4.99 and that by K-PLMl algorithm is 21.36. 
Notice that the average cutsize found by K-PLMl algorithm in 15000 runs is 
very close to the one in 100 runs. This fact seem to provide a support that the 
results of K-PLMl algorithm cannot be improved subtantially by performing 
large number of runs of it.
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5.19 D istribution  o f M ove Gains

The move gains of the moves selected during the partitioning process of an 
algorithm may provide another picture of the algorithm. We ran K-PLMl, 
K-PFMl, and K-PLM3 algorithms on the geometric graph with N  = 250 and 
Dy — 2. The graph Wcis partitioned into 4 parts. The same initial partitions 
were used for three of the algorithms. For each algorithm, we present two plots: 
one indicates the change of the gain of the selected move at each move, and the 
other the change of the cutsize at again each move. The change of the cutsize 
is drawn so that the x-axises of the plots match exactly. The cutsize curve 
does not represent the one after the prefix sum operation, which is the case in 
the above convergence curves. In order to provide clear plots, we selected a 
very small problem instance. Each group of 250 moves corresponds to a pass. 
Based on these plots, we can make the following general observations:

• For K-PLMl algorithm, in the first pass, larger gains occur at the first 
half and the second half of the pass mainly includes only moves with 
negative gains. In later passes, the curves become more spiky and again 
the second half of each pass includes moves with negative gains. This 
fact is exactly the one we mentioned before stating our main claim in 
Section 4.10. It seems that K-PLMl algorithm wastes the half of each 
pass.

• Curves corresponding to K-PFMl and K-PLM.3 algorithms are similar. 
In the first passes, the first halves are similar to that of K-PLMl algo­
rithm but the second halves do include more moves with nonnegative 
gains. This is an effect of allowing a vertex to be reselected. Note that 
the curves corresponding to later passes are spiky but less spiky than 
that of K-PLMl algorithm.

You should refer to Section 4.10 to compare what is claimed there with the data 
presented in these plots. Note that these plots represent the general trends of 
the algorithms. They are not the special Ccises of the algorithms.
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CONCLUSIONS

In this work, we reformulated the multiple-way graph and hypergraph parti­
tioning concepts in a general way. We can use this formulation in algorithms 
that do not use the locking mechanism at all. Rewriting the initial gain com­
putation and gain update algorithms in terms of the cost concept resulted in 
simplifications in these algorithms, which constitute a very important part of 
any partitioning algorithms.

After realizing that allowing a vertex to move only once in a pass tended 
to degrade the performance of the partitioning algorithms, we proposed two 
novel approaches for multiple-way graph and hypergraph partitioning. Each 
approach includes a generic algorithm which can be used to generate many 
partitioning algorithm by changing the parameters in these generic algorithms. 
Usually, these parameters can be set in such a way that a better performance 
is obtained by spending more time. The proposed algorithms are expected to 
explore the search space of the problems better because of two reasons: one of 
the reasons is that they examine more solutions during performing the same 
number of moves as does Sanchis’ algorithm, which is the most sophisticated 
multiple-way partitioning algorithm based on Kernighan-Lin’s minimization 
technique, and the other reason is that they allow a move to be reselected as 
long as its selection is profitable and so do not restrict the partitioning process. 
One of the proposed algorithm does not use locking at all by introducing a new 
metric, called freedom value. This metric has many interesting features, one 
of which is that it allows a more randomized partitioning process.

We did many experiments to evaluate the performance of the Sanchis’ algo­
rithm and the proposed algorithm on both randomly generated graph instances

87
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and benchmark circuits, which correspond to hypergraph instances. The pro­
posed algorithms outperformed Sanchis’ algorithm drastically on the graph 
instances. We observed that the performance of Sanchis’ algorithm got better 
as the average degree of the test graph increased in multiple-way partitioning 
also. This observation extends the one noted for the bipartitioning case. The 
better performance of the proposed algorithm on graphs that are closer to the 
real applications is very promising. The proposed algorithms also yielded very 
good results on the benchmark circuits. During our experimentation, we also 
noted that Sanchis’ algorithm tended to perform better for bipartitioning. This 
observation reveals that Sanchis’ algorithm produces better results when the 
search space is smaller, which is the case both in bipartitioning and in parti­
tioning of large average degree graphs. Note that Sanchis’ algorithm represents 
all the previous partitioning algorithm based on Kernighan-Lin’s minimization 
technique, that is, any observation on this algorithm is also applies to those 
employing the same technique.

One of the proposed algorithms also includes Sanchis’ algorithm as a special 
case. The proposed algorithm convey all the advantages of the algorithms based 
on Kernighan-Lin’s minimization technique such as their robustness. However, 
they do not convey many disadvantages of those algorithms such as their poor 
performance on sparse test cases.

The proposed K-PFM-like algorithms seem to perform better under tight 
balance conditions than Sanchis’ algorithm since the number of move directions 
always stays the same during iterative partitioning. Also, the freedom value 
function can simulate the locking mechanism if the move counts of the vertices 
after their moves are increased by a very large number so that the moves 
associated with these vertices go into the bucket list with index zero.

If one has a program implementing Sanchis’ algorithm, the modification 
of this program to implement the generic K-PLM algorithm seems to be very 
easy. Moreover, a K-PLM-like algorithm can be used to generate an initial 
solution to a K-PFM-like algorithm but the opposite is also possible. This 
is because a solution generated by one of the proposed algorithms is usually 
not a local minimum of the other algorithm due to the different mechanisms 
employed during partitioning.

The proposed algorithms do not rule out all the previous partitioning al­
gorithms. The ideas introduced by these algorithms can also be applied to the
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previous algorithms. For example, performing many move-and-lock phases in 
a pass can easily be utilized even in Kernighan-Lin algorithm with the swap- 
neighborhood structure. We expect that the proposed algorithms will be pow­
erful competitors to the existing algorithms.

As a future study, we can try to optimize the parameters of the proposed 
generic algorithms although the performance of these algorithms did not cor­
relate strongly with some of these parameters such as the scale factor. In 
addition, we can try to reduce the time complexities of the proposed algo­
rithms. At each step during iterative partitioning in the proposed algorithms 
(also in the previous algorithms), only one move is selected. We can employ 
new heuristics such that a group of moves can be selected at each step. We 
can also redefine the move counts of vertices such that the vertices have a 
number of move counts each of which is with respect to a different part in the 
partition. Application of the ideeis introduced in this work to the areeis where 
the partitioning is a very useful tool is an open arena. For example, the pro­
posed algorithms can also be used for mapping and VLSI placement without 
too much modification effort. We expect similar good performance of these 
algorithms in these areas.
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Appendix A

FILE FORMATS

Let H = {V^E) he & hypergraph with N  vertices and M  edges. The file format 
for H \s as follows:

N
M
<net 1 weight> <net 1 degree> <terminals of net 1 here> 
<net 2 weight> <net 2 degree> <terminals of net 2 here>

<net M weight> <net M degree> <terminals of net M here> 
<weight of vertex 1>
<weight of vertex 2>

<weight of vertex N>

Let G = (y, E) be a graph with N  vertices and M  edges. The file format 
for G is as follows:

N
M
<edge 1 weight> <edge 1 degree> <end vertex 1> <end vertex 2> 
<edge 2 weight> <edge 2 degree> <end vertex 1> <end vertex 2>
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<edge M weight> <edge M degree> <end vertex 1> <end vertex 2> 
<weight of vertex 1>
<weight of vertex 2>

<weight of vertex N>
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PLOTS FOR EXPERIM ENTS
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Preedom Value vs. Move Gain

APPENDIX B. PLOTS FOR EXPERIMENTS 94

M o v e  O a i n

Figure B.l. Freedom Value for move gains at different move counts n, for 
Gmax =  100, N  =  1000, and K  = 8

Convergence of K-PLMl (KLFMS) Algorithm
(on the circuit PRIMARY I , N=833, for different K)

Figure B.2. Convergence of K-PLMl Algorithm, a plot of cutsize versus num­
ber of moves performed until local minimum is found, for K  =  2 ,4 , and 8
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Convergence ofK-PFMl Algorithm
(on the circuit PRIMARYI. N=833, for different K)

Figure B.3. Convergence of K-PFMl Algorithm, a plot of cutsize versus num­
ber of moves performed until local minimum is found, for K  = 2,4, and 8

Convergence of K-PLM1 and K-PLM12
(on the circuit PRIM ARY 1. N=833, for K=4)

Figure B.4. Convergence of K-PLM 1 and PLM12 Algorithms, a plot of cutsize
versus number of moves performed until local minimum is found, for K  =  4
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Convergence of K-PLIVI1 and K-PLM1 1
(on the circuit PRIMARYl, N=833. for K=4)

Figure B.5. Convergence of K-PLMl and PLMll Algorithms, a plot of cutsize 
versus number of moves performed until local minimum is found, for /i" = 4

Convergence of K-PLiVf 1 and K-PLIVI10
(on the circuit PRIMARYl. N=833. for K=4)

Figure B.6. Convergence of K-PLMl and PLMIO Algorithms, a plot of cutsize
versus number of moves performed until local minimtim is found, for K  =  4
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Convergence of K-PLM1 and K-PLM9
(on the circuit PRIMARY I , N=^833, for K=4)

Figure B.7. Convergence of K-PLMl and PLM9 Algorithms, a plot of cutsize 
versus number of moves performed until local minimum is found, for K  = 4

Distribution of Cutsizes
(15000 runs on the geometric graph ŵ ith 7V=500, JO(avg)=2)

Figure B.8 . Distribution of cutsizes for K-PLMl and K-PFMl Algorithms, a 
cutsize on x-axis has been found the corresponding value on y-axis times by 
the algorithms
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Move Gain vs. Move Number
(for K-RLMl, on the geometric graph ŵ ith hi—250, E>=2)
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Figure B.9. Change of gains of selected moves in K-PLMl Algorithm

Cutsize V S ·  Move Number
(for K-JPLMJ, on the geometric graph w>ith hi^250, L>(a\̂ g)̂ 2)

Figure B.IO. Change of cutsize at each move in K-PLM l Algorithm (final
cutsize is 18)
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o<L>
g

20

Move Gain vs. Move Number
(for K-RF'M 1, on the geometric graph ŵ ith M=230, D —2)
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Figure B .ll. Change of gains of selected moves in K-PFMl Algorithm

Cutsize vs. Move Number
(for K-PF'Ml, on the geometric graph with N^250, JO(avg)*̂ 2)

Figure B.12. Change of cutsize at each move in K-PFM l Algorithm (final
cutsize is 9)
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Move Gain vs. Move Number
(for , on th  ̂geometric graph \\̂ ith M=z250, L>=2)

M o v e  Num t>er

Figure B.13. Change of gains of selected moves in K-PLM3 Algorithm

Cutsize vs. Move Number
(for on the geometric graph ŵ ith IV^250, D(a\*g)^2)

Figure B.14. Change of cutsize at each move in K-PLM3 Algorithm (final
cutsize is 0)
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Table C.l. Properties of Random Test Graphs
RANDOM GRAPHS

N M W'J' CT Dcxp Dad Dv^max ^max *^min Cmax Cmin
250 242 622 717 2 1.94 6 4 1 5 1
250 359 639 1106 3 2.87 9 4 1 5 1
250 552 612 1684 4 4.42 11 4 1 5 1
250 1002 614 3001 8 8.02 15 4 1 5 1
250 2023 622 6013 16 16.18 27 4 1 5 1
500 488 1248 1487 2 1.95 9 4 1 5 1
500 700 1258 2051 3 2.80 8 4 1 5 1
500 984 1265 2928 4 3.94 11 4 1 5 1
500 1989 1253 5879 8 7.96 16 4 1 5 1
500 3980 1273 11960 16 15.92 27 4 1 5 1

1000 992 2529 3017 2 1.98 8 4 1 5 1
1000 1485 2513 4485 3 2.97 9 4 1 5 1
1000 1928 2499 5740 4 3.86 12 4 1 5 1
1000 4005 2498 12051 8 8.01 18 4 1 5 1
1000 7973 2494 23956 16 15.95 28 4 1 5 1

Table C.2 . Properties of Geometric Test Graphs

GEOMETRIC GRAPHS
N 1 M W'J' 1 CT 1 Dexp Dad Dv^rnax ^max ^min Cmax Cmin
250 233 621 702 2 1.86 9 4 1 5 1
250 340 627 1027 3 2.72 7 4 1 5 1
250 464 600 1389 4 3.71 11 4 1 5 1
250 889 621 2654 8 7.11 13 4 1 5 1
250 1823 615 5536 16 14.58 28 4 1 5 1
500 488 1262 1417 2 1.95 7 4 1 5 1
500 744 1250 2257 3 2.98 9 4 1 5 1
500 977 1252 2920 4 3.91 10 4 1 5 1
500 1908 1192 5620 8 7.63 17 4 1 5 1
500 3755 1194 11311 16 15.02 27 4 1 5 1

1000 994 2499 2975 2 1.99 7 4 1 5 1
1000 1508 2473 4541 3 3.02 11 4 1 5 1
1000 2007 2539 6006 4 4.01 13 4 1 5 1
1000 3891 2533 11897 8 7.78 18 4 1 5 1
1000 7615 2445 22766 16 15.23 28 4 1 5 1

Table C.3. Properties of Grid Test Graphs

GRID GRAPHS
N M wx CT Dcxp Dad Dv,max ^max Cmax 1 Cm i n
250 129 610 371 1 1.03 4 4 1 5 1
250 238 632 699 2 1.90 4 4 1 5 1
250 379 624 1106 3 3.03 4 4 1 5 1
500 276 1272 851 1 1.10 4 4 1 5 1
500 494 1237 1482 2 1.98 4 4 1 5 1
500 746 1333 2221 3 2.98 4 4 1 5 1

1000 481 2523 1427 1 0.96 4 4 1 5 1
1000 992 2505 2962 2 1.98 4 4 1 5 1
1000 1509 2488 4531 3 3.02 4 4 1 5 1
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Table C.4. Properties of Ladder Test Graphs

LA O D ER G R A P H S
N M W'J' CT L)exp E)act Dv,max Wmax ^min Стах Cm in
250 126 636 389 1 1.01 3 4 1 5 1
250 253 620 747 2 2.02 3 4 1 5 1
500 253 1215 722 1 1.01 3 4 1 5 1
500 498 1272 1531 2 1.99 3 4 1 5 1

1000 475 2454 1429 1 0.95 3 4 1 5 1
1000 960 2505 2873 2 1.92 3 4 1 5 1

Table C.5. Properties of Tree Test Graphs

T R E E  G R A P H S
N M WX CT Dexp Dact Dv,max ^max ^min Стах Cmin
250 249 614 759 2 1.99 10 4 1 5 1
500 499 1253 1487 2 2.00 14 4 1 5 1

1000 999 2475 2976 2 2.00 20 4 1 5 1

Table C.6 . Properties of Benchmark Circuits (multiply wj  by 1000, Стат = 1 
and Cmin =  1 for all circuits)

B E N C H M A R K  C IR C U IT S
Nam e N M P w t CT D , Wx Wn

SlOO 602 383 1771 1924 383 4 2.94 128 4.62 3587 797
balu 701 702 2493 1377 702 9 3.56 117 3.55 4783 398
primciryl 833 902 2908 266 902 9 3.49 18 3.22 1800 45
struct 1888 1888 5375 2850 1888 4 2.85 16 2.85 2320 928
industry 1 2271 2186 7731 4403 2186 9 3.40 318 3.54 5712 552
primary2 3014 3029 11219 534 3029 9 3.72 37 3.70 1800 45
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Table C.7. 
graphs

Execution time averages (and standard deviations) for random

P R O B L E M E X E C U T IO N  T IM E  A V E R A G E S  (in  teconds)
N 1 DVK T Z M i 1 wm 1 wm 1 wm R A T IO

2 0.31 (0.10) 0.44 (0.08) 0.78 (0.24) 1.61 (0.51) 5.26
2 4 0.54 iO.13) 1.35 10.30) 3.50 10.81 9.08 (1.691 16.94

8 1.43 (0.23) 4.14 (0.85) 15.82 1[3.71) 104.81 (31.28) 73.19
2 0.45 10.12) 0.69 (0.20) 1.07 1¡0.37) 1.78 iO.52) 3.97

3 4 0.78 (0.15) 1.80 (0.28) 5.89 (̂ 2.00) 15.97 (5.98) 20.42
8 1.86 10.32) 5.25 11.59) 19.51 j¡7.35 116.17 (43.571 62.36
2 0.58 10.16) 1.02 10.20) 1.55 (0.42 2,47 i0.81) 4.22

250 4 4 1.13 (0.22) 2.67 (0.48) 6.74 (2.29) 18.55 (6.54) 16.47
8 2.40 10.44) 7.21 (1.82) 20.15 5.93 148.67 (76.201 61.84
2 0.99 (0.28) 1.71 (0.55) 2.32 (0.76) 3.69 (1.19) 3.73

8 4 1.87 10.46) 3.65 10.68) 11.81 (3.69) 45.14 M7.54) 24.09
8 3.55 (0.90) 7.03 (3.53) 37.90 (11.96) 232.65 (76.34) 65.63
2 1.77 10.46) 3.27 10.90) 5.16 (1.621 7.14 (2.00) 4.03

16 4 3.46 (0.84) 6.29 (2.00) 26.18 (10.25) 43.33 (14.69) 12.53
8 5.54 (1.34) 14.42 (5.38) 62.19(17.19) 333.82 (124.15) 60.27
2 0.80 10.18) 1.38 10.37) 2.22 (0.51) 4.35 (1.25) 5.41

2 4 1.34 10.27) 3.72 (1.03) 9.89 (2.24) 23.50 (9.721 17.60
8 3.08 (0.48) 8.60 (2.55) 43.08 (19.67) 230.08 (83.96) 74.75
2 1.10 10.26) 2.02 (0.53) 3.43 i 1.10) 5.50 (2.29) 5.02

3 4 1.72 (0.29) 6.17(1.46) 13.75 {5.04) 35.29 (13.26) 20.49
8 3.88 10.66) 12.89 13.21) 54.04 (1 1.58) 179.29 (30.26) 46.20
2 1.34 (0.35) 2.33 (0.51) 3.71 (1.07) 7.60 (2.05) 5.67

500 4 4 2.16 10.41) 8.46 (2.7oi 20.29 (5.26) 35.81 (10.02) 16.58
8 4.50 10.90) 16.78 (4.18 50.59 (18.201 308.33 (124.091 68.53
2 2.19 (0.55) 3.91 (1.24) 7.54 (2.26) 9.91 (3.42) 4.52

8 4 3.81 10.88) 10.15 (2.15) 28.89 (10.36) 86.62 (30.481 22.72
8 7.16 (1.31) 22.58 (9.31) 86.86 (32.93) 557.78 (113.71) 77.86
2 3.95 (0.981 8.09 (2.80) 16.60 (5.22) 22.62 (8.62) 5.72

16 4 8.04 (1.89) 17.17 (5.04) 50.39 (17.18) 153.30 (48.35) 19.07
8 12.99 (3.01) 35.37 (12.30) 153.45 (66.49) 917.45 (353.11) 70.62
2 1.93 (0.40) 3.28 (0.47) 6.52 (1.75) 12.71 (4.21) 6.57

2 4 2.78 (0.41) 8.64 (2.56) 25.72 (5.8l) 57.07 (39.19) 20.54
8 6.29 (0.78) 22.19 (4.61) 90.56 (24.19) 484.54 (167.23) 77.02
2 2.48 10.65) 6.08 (1.50) 9.56 (1.29) 16.84 (5.59) 6.78

3 4 3.64 (0.54) 12.62 (3.25) 34.20 (11.85) 89.56 (25.27) 24.62
8 8.03 (1.27) 32.16 18.36 124.93 (57.04) 693.39 ( 197.14) 86.33
2 3.02 (0.79) 6.98 (2.31) 12.48 (3.06) 21.20(8.42) 7.03

1000 4 4 4.39 (0.63) 17.16 (3.49) 48.79 (12.14) 131.83 (40.04) 30.02
8 9.54 (1.57) 36.58 (7.42) 139.58 (46.18) 600.81 (188.19) 62.95
2 4.82 11.12) 12.09 (4.43) 20.64 (6.06) 39.49 (10.80) 8.18

8 4 8.58 (1.72) 21.52 (4.67) 74.83 (33.52) 191.18 (62.12) 22.28
8 15.55 (3.17) 55.61 (23.25) 206.13 (84.97) 1230.27 (294.46) 79.12
2 9.08 12.09) 22.00 (4.201 38.87 no.64) 61.79 (20.93) 6.80

16 4 18.17 (4.39) 35.92 (7.68) 130.37 (32.11) 472.99 (201.56) 26.03
8 29.57 (6.32) 70.15 (14.95) 450.57 (101.38) 2663.37 (941.41) 90.08
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Table C.8. Outsize averages (and standard deviations) for random graphs

PROBLEM OUTSIZE AVERAGES IMP.
N D K PLMl TFW i T T m PFMS ( % )

250

2
2 44.64 (9.51) 37.40 (7.35) 25.10 (5.41) 20.10 (3.27) 54.97
4 95.26 (11.03) 69.90 (10.77) 42.00 (3.58) 39.30 (2.49) 58.74
8 123.03 il2 .10 i 88.70 i8.04) 57.30 (5.46) 52.20 (2.27) 57.57

3
2 118.30 (10.23) 104.40 (6.90) 97.40 (6.89) 92.30 (5.04) 21.98
4 226.30 (14.95) 192.30 (11.68) 166.30 (5.39) 157.80 (7.32) 30.27
8 288.63 il5 .22 i 239.50 i l l . 38) 213.70 (4.88) 209.70 (4.631 27.35

4
2 276.62 (16.06) 266.90 (10.67) 249.40 (13.40) 243.20 (7.98) 12.08
4 486.91 (18.66) 449.60 (9.25) 418.60 (3.88) 408.00 (8.87) 16.21
8 624.38 (20.71) 580.30 (14.24) 536.00 (4.12) 528.30 (4.69) 15.39

8
2 717.19 (18.75) 702.50 il4.15^ 686.50 (9.81) 690.80(14.40) 3.68
4 1207.50 (27.24) 1172.50 (16.60) 1128.80 ilO.04) 1116.30 (12.20) 7.55
8 1524.57 (23.42) 1490.80 (18.99) 1421.90 (12.10) 1411.80 (7.28) 7.40

16
2 1883.64 (23.65) 1881.90 i 25.73) 1856.30 (20.21) 1858.40 (|21.14) 1.34
4 3045.23 (33.83) 3054.20 (16.35) 2953.30 (18.32) 2953.30 1,14.21) 3.02
8 3776.29 (30.37) 3744.00 (27.37) 3660.70 (10.41) 3641.60 (8.63) 3.57

500

2
2 99.02 (13.74) 75.30 (10.83) 65.30 (8.33) 55.30 (6.31) 44.15
4 197.42 (18.24) 137.90 (6.91) 106.20 (7.08) 95.10 (5.09) 51.83
8 250.19 (20.19) 193.00 (13.10) 125.50 (7.70) 116.20 (4.281 53.56

3
2 200.54 (18.19) 174.00 (10.24) 158.40 (9.21) 141.60(11.42) 29.39
4 384.47 (26.66) 303.60 i l3 .2 li 271.30 (10.05) 252.40 (11.77) 34.35
8 489.21 (20.89) 411.20 (17.06) 337.40 (10.80) 327.80 (4.77) 32.99

4
2 438.48 (19.70) 403.20 (20.40) 379.00 (14.01) 367.90 (8.83) 16.10
4 771.61 i29.94) 676.70 (20.47) 620.20 (15.20) 613.20(13.24) 20.53
8 983.20 (27.32) 883.10 (16.31) 794.60 (12.12) 772.30 (9.26) 21.45

8
2 1371.95 (35.38) 1344.80 (32.75) 1305.20 (22.17) 1296.60(19.12) 5.49
4 2292.97 (39.59) 2218.50 (41.85) 2130.40 (22.47) 2103.10 (23.49) 8.28
8 2879.47 (36.67) 2800.50 (41.43) 2648.90 i 16.46) 2623.10 (15.38) 8.90

16
2 3659.59 (43.67) 3648.20 (27.77) 3580.80 (40.84) 3586.40 (22.74) 2.00
4 5920.67 (47.87) 5940.10 (53.34) 5764.60 (44.78) 5707.10 (29.62) 3.61
8 7322.51 (53.63) 7283.60 (53.21) 7058.70 (28.04) 7025.20 (12.80) 4.06

1000

2
2 217.81 (22.16) 172.80 (11.47) 141.70 (12.28) 117.50 (9.12) 46.05
4 399.91 (33.37) 288.30 (17.60) 220.70 (9.40) 198.00 (9.33) 50.49
8 510.79 (36.42) 386.50 (24.00) 259.70 (7.43) 246.90 (6.33) 51.66

3
2 499.60 (33.95) 418.80 (12.59) 377.80 (14.02) 362.00 (21.84) 27.54
4 903.25 (42.99) 717.20 (19.98) 637.70 (17.57) 598.20(11.69) 33.77
8 1131.02 (43.14) 931.30 (24.51) 795.30 (21.47) 756.50 (9.56) 33.11

4
2 833.87 (37.28) 739.00 (22.16) 707.50 /12.15) 677.70 (10.98) 18.73
4 1472.54 (42.05) 1257.20 i24.62) 1170.20 (27.96) 1120.60 (14.87) 23.90
8 1859.41 (48.25) 1658.30 (29.55) 1481.60 (18.83) 1428.30 (9.42) 23.19
2 2836.86 (58.16) 2761.20 (52.38) 2700.60 (38.68) 2640.60 (37.99) 6.92

8 4 4707.62 (61.52) 4581.30 (29.89) 4355.40 (29.33) 4319.60 (31.07) 8.24
8 5902.53 (59.77) 5706.40 (72.32) 5429.20 (30.49) 5349.90(33.11) 9.36
2 7324.39 (76.78) 7325.60 (57.33) 7209.60 (96.31) 7137.30 (74.34) 2.55

16 4 11811.26 (75.34) 11866.70 (56.64) 11424.10(57.11) 11358.40(47.68) 3.83
8 14546.19(79.11) 14541.60 (50.16) 14009.30 (50.70) 13942.80 (36.86) 4.15
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Table C.9. 
graphs

Execution time averages (and standard deviations) for geometric

P R O B L E M E X E C U T IO N  T IM E  A V E R A G E S  (in seconds)
N 1 D K P L M i P F M l i r m W M s R A T IO

2 0.24 (0.08) 0.31 (0.14) 0.32 (0.12) 0.64 (0.20) 2.63
2 4 0.51 ¡0.11) 0.78 10.18) 2.24 10.81) 4.91 (1.56) 9.59

8 1.26 (0.25) 2.31 (0.67) 10.22 (3.45) 48.97 (12.05) 38.83
2 0.42 (0.11) 0.45 (0.091 0.73 10.20) 0.95 (0.39) 2.27

3 4 0.79 (0.11) 1.59 (0.32) 3.59 (0.65) 11.48 (4.66) 14.59
8 1.76 (0.31) 3.30 10.78) 13.86 14.68) 91.38 (30.67) 51.98
2 0.46 iO.loi 0.65 (0.16) 1.13 (0.26) 2.14 i0.60) 4.70

250 4 4 0.94 (0.16) 1.69 (0.52) 5.14 (1.38) 18.95 (7.92) 20.14
8 2.05 10.38) 4.86 10.79) 20.50 18.50) 124.16 (49.97) 60.54
2 0.85 (0.18) 0.85 (0.22) 1.26 (0.31) 2.55 (0.88) 3.00

8 4 1.63 10.35) 2.45 10.94) 7.73 (2.73) 16.75 (4.40) 10.26
8 3.24 (0.70) 5.53 (2.31) 31.57 (12.00) 159.04 (60.45) 49.13
2 1.27 10.26) 1.19 10.16) 2.09 10.39) 4.43 (1.03) 3.47

16 4 2.68 (0.68) 3.42 (0.50) 9.62 (2.78) 33.99 (10.56) 12.67
8 5.37 (1.26) 11.14 (4.39) 36.26 (13.40) 248.35 (71.44) 46.24
2 0.50 10.12) 0.69 10.22) 1.05 10.36) 1.43 (0.41) 2.88

2 4 1.11 10.16) 3.05 (0.71) 5.48 12.11) 9.91 (3.25) 8.97
8 2.63 (0.40) 6.56 (0.97) 19.56 (5.80) 83.93 (34.61) 31.89
2 0.77 10.17) 1.28 (0.32) 2.14 iO.43) 3.85 (1.17) 4.97

3 4 1.56 (0.23) 3.23 (0.57) 9.84 (2.34) 35.60 (8.29) 22.86
8 3.38 10.51) 8.00 12.32) 38.92 (10.72) 199.93 (67.19) 59.17
2 1.05 (0.21) 1.37 (0.31) 2.93 (1.42) 5.57 (1.53) 5.31

500 4 4 1.81 10.25) 3.80 (1.231 11.93 (4.84) 38.90 (14.91) 21.49
8 3.97 10.62) 12.30 12.76) 54.47 (17.12) 275.37 (74.08) 69.33
2 1.84 (0.35) 2.18 (0.39) 4.41 (1.18) 4.77 (1.20) 2.60

8 4 3.29 10.66) 6.21 (2.36) 16.26 (3.32) 48.30 (17.55) 14.67
8 6.75 (1.35) 14.14 (3.42) 66.32 (22.83) 433.21 (153.51) 64.15
2 3.24 10.62) 2.56 (0.38) 4.82 (1.09) 7.49 (0.94) 2.31

16 4 5.99 (1.59) 7.82 (3.13) 19.82 (6.93) 70.17 (18.72) 11.71
8 12.39 (3.10) 23.45 (10.54) 98.38 (32.52) 662.38 (158.62) 53.47

2 1.86 (0.48) 2.04 iO.37) 3.70 (1.02) 5.81 (1.32) 3.12
2 4 3.17 (0.54) 5.80 (0.99) 15.74 (3.60) 42.03 (7.93) 13.28

8 5.58 10.85) 13.50 (4.36) 62.23 (19.13) 310.97 ( 120..53) 55.75
2 2.30 10.49) 3.59 (0.85) 6.32 (1.16) 10.25 (3.78) 4.46

3 4 4.19 (0.53) 7.47 (2.10) 25.23 (8.68) 56.49 (25.46) 13.48
8 7.21 10.95) 21.65 (6.82) 65.12 (26.22) 578.78 (174.87) 80.30
2 2.78 (0.73) 4.58 (1.32) 8.71 (2.46) 14.31 (4.13) 5.15

1000 4 4 4.07 10.68) 11.24 (2.56) 33.61 il2 .07) 80.77 (31.21) 19.84
8 8.05 ( l .3 l) 26.16 (6.21) 125.18 (44.17) 595.98 (185.86) 74.03
2 5.27 (1.20) 6.03 (0.98) 7.89 (2.52) 12.97 (3.83) 2.46

8 4 7.15 (1.36) 13.42 (4.03) 41.25 (15.20) 115.26 (39.62) 16.11
8 13.62 (2.30) 35.37 (8.65) 203.11 (89.76) 1065.79 (319.43) 78.27
2 9.20 12.23) 7.23 (1.411 10.26 (2.35) 16 70 (2.68) 1.82

16 4 12.91 (2.57) 21.67 (7.47) 41.90 (10.72) 154.20 (43.94) 11.95
8 25.22 (5.25) 46.65 (17.93) 200.76 (72.59) 1376.01 (293.27) 54.56
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Table C.IO. Outsize averages (and standard deviations) for geometric graphs

P R O B L E M O U T S IZ E  A V E R A G E S IM P .
( % )N  1 D К P L M l T v m P F M t P Y M s

250

2
2 5.92 (2.731 2.20 (1.94) 0.30 (0.64) 0.20 (0.40) 96.62
4 18.09 (7.51) 8.10 (5.17) 0.80 (1.17) 0.30 (0.46) 98.34
8 25.56 (8.991 13.20 (6.85) 2.00 (2.05) 1.60 (1.11) 93.74

3
2 15.42 (7.001 2.80 (3.25) 2.20 (2.82) 1.30 П.49) 91.57
4 35.94 (12.29) 10.10 (4.35) 5.60 (3.38) 2.60 (1.62) 92.77
8 56.60 П3.671 24.10 (9.69) 11.80 (4.71) 8.00 i2.90i 85.87

4
2 28.10 (13.38) 18.40 (12.27) 16.70 (10.31) 9.80 (8.94) 65.12
4 75.51 П8.341 51.20 (9.71) 31.00 (11.10) 20.20 (10.17) 73.25
8 110.48 (19.71) 74.80 (17.85) 50.60 (5.08) 43.00 (6.07) 61.08

8
2 86.72 (29.30) 105.60 (35.08) 77.20 127.50) 73.50 (23.93) 15.24
4 230.07 (49.391 193.10 (32.43) 133.80 (20.34) 130.20 (21.83) 43.41
8 351.68 (60.27) 308.40 (32.24) 238.40 (35.11) 235.00 (37.68) 33.18

16
2 284.03 (50.70) 313.00 (64.33) 305.50 148.24) 356.40 (68.87) -25.48
4 644.89 (79.11) 610.60 (49.82) 607.30 (67.70) 605.20 (73.61) 6.15
8 1000.84 (68.53) 937.00(17.20) 935.10 (18.95) 929.80(17.83) 7.10

500

2
2 20.50 (8.901 2.40 (2.54) 0.40 (1.20) 0.00 (0.00) 100.00
4 39.54 (9.99) 11.30 (6.29) 0.40 (0.49) 0.30 (0.46) 99.24
8 53.94 (11.45) 19.10 (6.69) 1.90 (1.70) 1.20 (1.78) 97.78

3
2 52.59(13.56) 19.10 (8.18) 13.40 (5.10) 6.20 (5.69) 88.21
4 91.59 (19.641 44.40 (9.88) 12.80 (6.27) 2.60 (2.46) 97.16
8 124.43 (20.93) 56.80 (15.43) 16.50 (6.38) 8.00 3.52) 93.57

4
2 82.69 (21.60) 45.80 (22.77) 27.50 (10.84) 15.80 (5.11) 80.89
4 153.53 (24.25) 89.90 (20.36) 34.90 (11.93) 17.00 (4.34) 88.93
8 188.44 (22.17) 112.80 (16.83) 38.40 (7.28) 34.20 (10.10) 81.85

8
2 157.32 (60.02) 211.70 (44.19) 125.00 (24.27) 107.60 (33.71) 31.60
4 408.36 (80.83) 303.60 (62.00) 239.20 (50.16) 217.70 (58.97) 46.69
8 579.66 (83.67) 464.90 (43.46) 383.30 (33.84) 347.30 (39.97) 40.09

16
2 415.50 (94.53) 613.80 (165.58) 591.80(147.82) 620.30 (151.32) -49.29
4 1065.02 (169.93) 1088.60 (107.28) 977.20(159.66) 1032.20 (137.85) 3.08
8 1622.46 (160.29) 1561.80 (195.83) 1534.00 (103.68) 1426.30 (83.80) 12.09

1000

2
2 39.72 (9.96) 13.90 (6.85) 6.10 (5.22) 3.10 (2.62) 92.20
4 75.49 (15.60) 26.40 (5.83) 9.20 (3.87) 1.80 (1.33) 97.62
8 104.95 (16.70) 44.80 (10.81) 7.50 (3.75) 1.60 (1.36) 98.48

3
2 101.63 (25.16) 55 60 (8.36) 31.00 (7.76) 25.80 (10.22) 74.61
4 174.41 (28.71) 85.20 (14.20) 46.60 (15.72) 25.40 (10.05) 85.44
8 216.67 (30.21) 113.50 (16.21) 47.50 (12.05) 26.00 (7.46) 88.00

4
2 186.93 (40.10) 99.40 (20.03) 63.30 (17.11) 32.10 (5.84) 82.83
4 330.25 (44.88) 163.60 (23.53) 69.40 П5.14) 39.30 (8.84) 88.10
8 398.12 (43.77) 224.20 (33.01) 69.50 (12.11) 46.70 (11.93) 88.27

8
2 450.14 (109.99) 322.90 (48.79) 321.30 (65.57) 257.90 (50.01) 42.71
4 913.73 (138.88) 604.10 (42.23) 469.90 (62.07) 439.30 (63.05) 51.92
8 1173.00(136.09) 806.20 (63.73) 610.90 (92.12 578.20 (60.09) 50.71

16
2 781.89 (229.76) 1228.70 (238.00) 1037.90 (229.03) 1171.40 (292.21) -49.82
4 1996.35 (293.39) 1937.50 (189.19) 1901.50 (323.77) 1765.30 (210.51) 11.57
8 2727.82 (272.50) 2386.70 (200.10) 2409.40 (226.18) 2488.50 (157.38) 8.77
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Table C .ll. Execution time averages (and standard deviations) for grid graphs

P R O B L E M E X E C U T I O N  T I M E  A V E R A G E S  ( in  seco n d s)
R A T I ON P L M l P F M l T T m T F M s

250

1
2 0.18 iO.05) 0.20 (0.001 0.28 (0.111 0.46 (0.13) 2.50
4 0.46 (0.091 0.68 (O.IO) 1.49 (0.321 3.41 (1.51) 7.40
8 1.18 (0.18) 2.07 (0.57) 6.38 (1.29) 35.96 (14.27) 30.40

2
2 0.31 io.07) 0.57 (0.191 0.77 (0.221 1.69 (0.34) 5.37
4 0.63 (O .ll) 1.35 (0.37) 4.13 (1.60) 11.96 (3.79) 18.98
8 1.48 (0.271 3.27 (0.811 13.27 (3.901 89.05 (24.13) 60.13

3
2 0.54 (0.12) 0.57 (0.23) 1.17 (0.25) 1.50 (0.38) 2.78
4 0.98 (0.191 2.13 (0.541 5.53 (2.531 16.49 (5.98) 16.83
8 2.26 (0.46) 5.92 (1.46) 19.24 (5.17) 126.40 (45.28) 55.90

500

1
2 0.47 (0.10) 0.62 (0.15) 0.92 (0.20) 1.37 (0.51) 2.94
4 0.93 (0.171 1.55 (0.32) 6.51 (l.56 l 9.13 (3.74) 9.84
8 2.21 (0.36) 4.65 (0.81) 18.29 (3.50) 113.35 (39.00) 51.29

2
2 0.87 (0.22) 1.15 (0.32) 2.63 (0.80) 4.52 (1.39) 5.21
4 1.30 (0.22) 3.22 (1.17) 13.60 (4.33) 32.04 (12.63) 24.59
8 2.99 (0.47) 11.11 (2.55) 43.03 (14.53) 237.66 (98.49) 79.59

3
2 1.18 (0.26) 1.87 (0.52) 3.20 (0.80) 4.62 (1.85) 3.91
4 1.96 (0.32) 5.63 (2.10) 15.44 (3.31) 38.72 (11.35) 19.73
8 4.32 (0.68) 13.89 (3.31) 55.59 (11.69) 303.29 (163.98) 70.22

1000

1
2 1.05 iO.18) 1.29 (0.16) 2.24 iO.27) 4.68 (0.94) 4.44
4 1.90 (0.31) 3.80 (0.93) 9.44 (1.70) 26.54 (5.66) 13.99
8 4.34 (0.58) 7.54 (2.00) 46.29 (10.34) 218.71 (54.84) 50.37

2
2 2.05 (0.35) 3.40 (0.68) 6.03 i0.91) 11.36 (2.99) 5.55
4 2.91 (0.49) 10.01 (2.21) 30.38 (9.97) 94.25 (39.63) 32.43
8 6.62 (l.05) 22.93 (5.38) 88.30 (18.74) 589.44 (171.68) 89.07

3
2 2.87 (0.63) 5.05 (1.20) 7.68 (3.15) 16.02 (5.60) 5.58
4 4.01 (0.56) 13.43 (3.41) 38.66 (7.57) 113.78 (35.62) 28.37
8 8.87 (1.34) 1 47.01 (12.50) 150.28 (49.90) 936.34 (445.42) 105.54 1
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Table C.12. Outsize averages (and standard deviations) for grid graphs

P R O B L E M O U T S IZ E  A V E R A G E S IM P .
( % )N D K P L M l T T M i 1 T F M i T T M s

250

1
2 3.57 (2.10) 2.4 0 (1.02) 0.80 (O.6O) 0.50 (0.50) 85.99
4 11.83 (4A4) 8.80 (1.89) 1.80(1.08) 0.20 (0.40) 98.31
8 18.05 (5.40) 11.70 (2.83) 1.50 (1.36) 0.70 (0.90) 96.12

2
2 19.98 (6.84) 11.50 i4.46) 10.60 (4.25) 4.50 (1.43) 77.48
4 58.38 (12.06) 34.40 (3.41) 15.40 (4.10) 7.90 (3.05) 86.47
8 78.09 (9.87) 53.80 (8.61) 22.00 (3.52) 14.90 (2.70) 80.92

3
2 35.10 (9.88) 36.30 (12.55) 27.00 (7.94) 18.90 (8.14) 46.15
4 114.94 (21.46) 81.60 (15.45) 54.80 (13.02) 42.30 (3.85) 63.20
8 173.24 (23.23) 120.00(17.11) 90.00 (7.56) 75.60 (6.36) 56.36

500

1
2 10.45 (3.07) 8.30 (3.95) 3.10 (1.97) 0.30 (0.46) 97.13
4 27.10 (6.54) 19.80 (3.94) 1.00 (1.18) 0.40 (0.66) 98.52
8 36.96 (7.60) 21.30 (6.83) 3.60 (1.56) 1.50 (1.12) 95.94

2
2 49.34 (11.69) 36.30 (8.58) 20.60 (5.89) 13.40 (5.64) 72.84
4 117.08 (19.35) 71.10 (8.60) 30.00 (6.15) 22.20 (4.58) 81.04
8 155.41 (19.66) 87.70 (10.91) 33.60 (6.59) 25.30 (3.44) 83.72

3
2 83.24 (25.92) 67.90 (20.47) 37.00 (12.26) 23.40 (5.80) 71.89
4 214.17 (34.32) 127.90 (22.64) 75.60 (15.96) 52.20 (7.26) 75.63
8 301.71 (41.35) 204.40(12.26) 112.20(9.09) 103.50(12.63) 65.70

1000

1
2 17.93 (4.73) 17.00 i3.16) 6.90 (2.91) 1.70 (0.90) 90.52
4 41.57 (10.93) 32.60 (3.75) 6.40 (2.20) 2.30 (1.00) 94.47
8 60.29 ( 10.43) 49.50 (7.49) 6.30 (1.27) 3.70 (2.90) 93.86

2
2 89.97 (17.87) 49.80 (9.53) 29.70 (6.34) 20.30 (7.52) 77.44
4 209.06 (42.53) 112.90 (8.83) 46.90 (9.76) 34.90 (9.87) 83.31
8 279.61 (37.01) 139.60 (16.01) 55.80 (8.21) 38.70 (8.65) 86.16

3
2 155.97 (36.68) 111.00 (31.26) 81.40 (20.32) 53.20 (20.73) 65.89
4 482.95 (56.49) 221.70 (36.59) 122.10 (23.54) 87.30 (14.72) 81.92
8 627.35 (51.30) 319.30(41.48) 177.10 (19.90) 137.00 (19.67) 78.16

Table C.13. 
graphs

Execution time averages (and standard deviations) for ladder

P R O B L E M E X E C U T IO N  TIM . ? A V E R A G E S  (in seconds)
R A T ION D K P L M l P F M l P F M 2 P FM 3

250 1
2 0.19 (0.06) 0.13 (0.05) 0.33 (0.06) 0.37 (0 .11) 1.90
4 0.42 (0.09) 0.50 (0 .10) 1.11 (0 .40) 2.40 (0.60) 5.70
8 1.16 (0.16) 1.60 (0.28) 5.12 ( 1.28) 27.83 (14.41) 24.05

2
2 0.40 (0.08) 0.47 (0.11) 0.74 (0.15) 1.25 (0.42) 3.16
4 0.67 (0.15) 1.65 (0.44) 3.49 (0.76) 11.25 (6.06) 16.69
8 1.59 (0.24) 3.81 (1.04) 17.14 (5.73) 100.91 (36.15) 63.47

500 1
2 0.60 (0.11) 0.58 (0.07) 0.81 i0.14l 1.37 (0.26) 2.30
4 1.00 (0.15) 1.83 (0.37) 4.51 (1.27) 5.54 (1.83) 5.55
8 2.38 (0.32) 3.86 (0.56) 12.84 / 2.791 67.00 (27.99) 28.10

2
2 0.87 (0.16) 1.53 (0.32) 2.51 (0.60) 3.90 (1.79) 4.48
4 1.35 (0.19) 3.87 (0.54) 10.10 (2.42) 30.24 (14.04) 22.35
8 3.10 (0.36) 11.88 (3.62) 36.46 (11.64) 198.66 (65.59) 64.08

1000 1
2 1.01 (0.14) 1.06 (0.15) 1.82 (0.33) 2.41 (0.47) 2.39
4 1.83 (0.28) 3.21 (0.85) 8.53 (1.61) 20.84 (9 .31) 11.38
8 4.28 (0 .49) 7.10 (0.91) 36.28 (9 .14) 200.73 (42.85) 46.92

2
2 1.93 (0.42) 3.28 (0.82) 6.66 (2.05) 9.28 (3 .O8 ) 4.81
4 3.05 (0.40) 8.29 (2.26) 22.57 (6.46) 74.73 (25.96) 24.53
8 6.69 (0.76) 24.98 (6.92) 101.09 (34.00) 422.97 (149.78) 63.19
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Table C.14. Outsize averages (and standard deviations) for ladder graphs

P R O B L E M O U T S IZ E  A V E R A G E S IM P .
( % )N D K P i r n ¥ F M i ¥ F m

250 1
2 1.82 n.27) 5.70 (1.19) 2.00 (0.63) 0.40 (0.49) 78.02
4 7.94 (2.88) 6.70 (1.42) 1.00 (1.10) 0.00 (0.00) 100.00
8 15.00 i5.56i 13.20 (4.17) 0.90 (0.83) 0.90 (1.64) 94.00

2
2 14.85 (7.19) 9.10 (6.46) 3.10 (2.95) 0.90 (0.83) 93.94
4 51.04 (16.03) 20.10 (6.11) 7.10 (2.91) 2.30 <2.53) 95.49
8 72.57 (15.39) 42.20 (10.23) 10.00 (4.05) 6.20 (2.27) 91.46

500 1
2 5.40 (2.35) 8.20 (1.83) 2.40 (1.28) 0.30 (0.46) 94.44
4 21.65 i6.95) 15.80 (3.60) 3.60 (3.10) 0.00 (0.00) 100.00
8 27.94 (7.91) 21.90 (5.66) 2.80 (2.36) 1.20 (1.54) 95.71

2
2 2O T 7 0 5 F 20.90 (6.88) 8.40 (4.82) 3.20 (2.27) 86.94
4 73.64 (15.19) 41.40 (6.92) 9.00 (3.10) 6.60 (3.26) 91.04
8 114.05 (17.10) 54.80 (16.27) 11.40 (3.95) 6.30 (2.24) 94.48

1000 1
2 8.75 (2.84) 7.80 (2.48) 3.70 (2.37) 0.30 (0.64) 96.57
4 27.93 (9.05) 26.00 (5.67) 4.70 (2.57) 0.60 (1.02) 97.85
8 42.24 (9.91) 36.70 (5.48) 5.60 (2.15) 3.20 (1.60) 92.42

2
2 55.17 (14.16) 30.50 (5.45) 12.70 (5.66) 8.20 (5.00) 85.14
4 130.27 (22.96) 62.70 (11.34) 18.30 (4.34) 12.30 (3.07) 90.56
8 172.82 (26.36) 86.10 (14.90) 18.70 (3.87) 13.90 (2.77) 91.96

Table C.15. Execution time averages (and standard deviations) for tree graphs

P R O B L E M E X E C U T IO N  T IM i Z A V E R A G E S  (in  seconds)
R A T ION D K P L M l T F M i TTM 2 PT M s

250 2
2 0.31 (0.10) 0.36 (0.12) 0.69 (0.28) 1.15 (0.55) 3.69
4 0.63 (0.12) 1.34 (0 .42) 3.48 (0.97) 9.81 (4 .57) 15.65
8 1.50 (0.27) 3.61 (0.71) 10.64 (3.64) 85.34 (30.83) 56.74

500 2
2 0.72 (0.22) 1.05 (0.21) 2.21 <0.56) 4.45 (1.94) 6.22
4 1.39 (0.29) 2.96 (0.86) 8.55 (3.46) 21.78 (6 .97) 15.65
8 3.09 (0.53) 7.40 (2.69) 40.21 (15.48) 220.73 (68.48) 71.43

1000 2
2 1.80 (0.57) 2.75 (0.55) 6.88 <0.79) 12.04 (3.64) 6.70
4 2.85 (0 .6 I) 6.61 (1.72) 25.38 (4.75) 72.15 (30.08) 25.31
8 6.29 (1.17) 13.61 (3.47) 109.28 (37.32) 361.30 (124.25) 57.44

Table C.16. Outsize averages (and standard deviations) for tree graphs

P R O B L E M O U T S IZ E  A V E R A G E S IM P .
( % )N A' P L M l P F M l p r m PFM 3

250 2
2 79.68 <14.69) 82.20 (17.29) 62.60 (20.17) 47.40 (19.35) 40.51
4 143.78 (16.33) 137.60(12.63) 98.40 (7.16) 95.10(7.30) 33.86
8 194.06 (15.08) 177.00 (9.40) 135.90 (6.62) 130.50 (5.35) 32.75

500 2
2 159.72 (44.73) 174.30 (14.35) 133.30 (37.45) 51.80 (44.98) 67.57
4 286.01 (37.77) 278.00 (25.76) 199.60 (23.72) 181.40 (17.80) 36.58
8 400.15 (25.35) 372.70 (16.28) 277.60 (9.24) 261.40 (4.50) 34.67

1000 2
2 302.34 (89.16) 324.10 (35.12) 262.60 (77.08) 203.20 (72.47) 32.79
4 598.87 (59.39) 566.00 (32.69) 385.60 (31.46) 356.20 (11.38) 40.52
8 789.63 (37.61) 773.00 (29.16) 532.90 (14.21) 511.40 (7.80) 35.24



APPENDIX a  TABLES FOR EXPERIMENTS 111

Table C.17. Outsize averages for random graphs (with different freedom value 
functions for K-PFMl)

P R O B L E M O U T S IZ E  A V E R A G E S
N D K Wi ^ 3 R5 R6 ^ ? 7 R S R9

2 1.00 (78.58) 1.06 1.00 1.09 1.19 1.20 1.06 0.99 8.39
2 4 1.00 (143.92) 1.11 1.10 1.03 1.09 1.09 1.10 1.00 7.49

8 1.00 (186.42) 1.15 1.14 1.00 1.08 1.10 1.13 1.00 6.92
2 1.00 072.081 1.08 1.05 1.03 1.04 1.08 1.07 1.07 5.51

3 4 1.00 (313.67) 1.15 1.08 1.01 1.01 1.02 1.06 1.02 4.80
8 1.00 i413.581 1.08 1.04 0.99 1.01 1.01 1.02 0.99 4.33
2 1.00 (402.00) 1.06 1.04 0.97 0.98 0.99 1.05 1.00 3.35

500 4 4 1.00 (690.75) 1.08 1.06 1.00 0.97 1.00 1.05 1.00 3.10
8 1.00 (879.83) 1.07 1.07 1.00 0.99 1.01 1.07 1.03 2.90
2 1.00 (1344.00) 1.03 1.02 0.99 0.97 0.99 1.02 1.01 2.09

8 4 1.00 (2214.17) 1.03 1.03 0.99 0.99 0.98 1.04 1.01 1.95
8 1.00 (2785.00) 1.03 1.03 1.00 0.98 0.99 1.03 1.01 1.84
2 1.00 (3664.58) 1.00 1.00 0.99 0.99 0.99 1.00 1.00 1.58

16 4 1.00 (5919.17) 1.00 1.00 0.99 0.98 0.99 1.00 1.00 1.51
8 1.00 (7284.50) 1.00 1.00 1.00 0.99 0.99 1.00 1.00 1.43

Table C.18. Outsize averages for random graphs (with different freedom value 
functions for K-PFM2)

P R O B L E M O U T S IZ E  A V E R A G E S
N  \ D  \ K R l  1 R2 f l i  1 1 R5 R6 \ R 7  \ R8 \ R9

500

2
2 1.00 (63.92) 1.28 1.11 0.98 1.07 1.13 1.11 1.04 10.31
4 1.00 (103.25) 1.31 1.16 0.99 1.05 1.07 1.12 1.00 10.44
8 1.00 (125.25) 1.20 1.04 1.03 1.08 1.06 0.97 1.03 10.29

3
2 1.00 (157.17) 1.18 1.07 1.00 1.03 1.04 1.08 0.97 6.03
4 1.00 (271.50) 1.13 1.06 1.00 0.98 1.02 0.99 1.00 5.55
8 1.00 (336.92) 1.09 1.03 1.01 1.02 1.03 1.02 1.02 5.31

4
2 1.00 (384.33) 1.11 1.05 0.98 0.98 0.98 1.03 1.01 3.50
4 1.00 (623.50) 1.10 1.04 0.99 1.00 1.01 1.03 1.02 3.43
8 1.00 (798.42) 1.05 0.99 1.00 1.00 1.00 1.01 1.00 3.20

8
2 1.00 (1293.83) 1.07 1.04 1.01 1.01 1.02 1.03 1.02 2.17
4 1.00 (2118.75) 1.04 1.01 0.99 1.00 1.01 1.01 1.00 2.04
8 1.00 (2645.33) 1.03 1.01 1.00 1.00 1.00 1.00 1.00 1.94

16
2 1.00 (3599.25) 1.02 1.01 1.00 1.00 1 00 1.02 1.01 1.61
4 1.00 (5736.42) 1.02 1.02 1.00 1.00 1.00 1.01 1.01 1.56
8 1.00 (7065.83) 1.01 1.01 1.00 1.00 1.00 1.00 1.00 1.48
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Table C.19. Outsize averages for random graphs (with different freedom value 
functions for K-PFM3)

P R O B L E M O U T S IZ E  A V E R A G E S
N D K R1 ^ 2 R5 R6 ^ 7 R S R9

2 1.00 rS6.83l 1.14 1.10 0.98 1.04 1.09 1.05 1.03 11.60
2 4 1.00 (91.42) 1.15 1.03 1.02 1.04 1.03 1.04 1.00 11.79

8 1.00 (118.75) 1.19 0.99 1.00 1.02 1.04 0.97 0.97 10.86
2 1.00 (146.42) 1.23 0.98 1.04 0.98 1.04 0.99 0.99 6.47

3 4 1.00 (247.92) 1.08 1.02 1.02 0.99 1.02 1.00 1.00 6.07
8 1.00 (328.00) 1.09 1.01 1.00 0.99 1.00 1.01 1.00 5.46
2 1.00 (371.17) 1.08 1.00 0.99 1.01 1.00 1.01 0.99 3.63

500 4 4 1.00 (611.67) 1.05 1.00 0.98 1.00 1.00 1.00 0.99 3.50
8 1.00 (775.58) 1.07 1.00 0.99 1.00 1.01 1.00 1.00 3.30
2 1.00 (1289.25) 1.03 0.99 0.99 1.00 1.01 1.00 0.99 2.18

8 4 1.00 (2094.08) 1.02 0.99 1.00 1.00 1.01 0.99 0.99 2.06
8 1.00 (2616.92) 1.03 1.00 1.00 1.00 1.00 1.00 1.00 1.96
2 1.00 13585.08) 1.01 1.00 1.00 1.00 1.00 1.00 1.00 1.61

16 4 1.00 (5706.25) 1.01 1.00 1.00 1.01 1.00 1.00 1.00 1.57
8 1.00 (7030.92) 1.01 1.00 1.00 1.00 1.00 1.00 1.00 1.49

Table C.20. Outsize averages for random graphs (optimizing S for K-PFM l)

P R O B L E M O U T S IZ E  A V E R A G E S
N  1 D I T R2 R3  1 R4 R5 \ R6 \ R7 \ R8  | R9 \ R IO

250

2
2 1.00 (34.251 0.89 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92
4 1.00 (69.75) 0.96 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
8 1.00 (96.581 0.90 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92

3
2 1.00 (105.67) 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.97 0.97
4 1.00 (197.42) 0.95 0.96 0.96 0.96 0.96 0.96 0.96 0.93 0.93
8 1.00 (265.00) 0.91 0.93 0.92 0.92 0.92 0.92 0.92 0.92 0.92

4
2 1.00 (262.33) 0.96 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97
4 1.00 (479.33) 0.94 0.94 0.94 0.92 0.92 0.92 0.92 0.92 0.92
8 1.00 (617.00) 0.93 0.94 0.94 0.95 0.95 0.95 0.95 0.95 0.95

8
2 1.00 (714.17) 0.99 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99
4 1.00 (1177.25) 1.00 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
8 1.00 (1518.92) 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98

16
2 1.00 (1900.33) 0.99 1.00 0.99 0.99 0.99 0.99 0.99 0.99 0.99
4 1.00 (3091.831 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98
8 1.00 (3823.92) 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

500

2
2 1.00 (86.83) 0.89 0.90 0.90 0.90 0.90 0.90 0.90 0.88 0.88
4 1.00 (177.58) 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.80 0.80
8 1.00 (247.42) 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.76 0.76

3
2 1.00 (190.92) 0.92 0.90 0.93 0.90 0.91 0.90 0.90 0.91 0.91
4 1.00 (341.08) 0.93 0.91 0.92 0.92 0.92 0.92 0.94 0.91 0.91
8 1.00 (460.75) 0.89 0.89 0.88 0.90 0.88 0.89 0.87 0.89 0.89

4
2 1.00 (404.50) 1.01 1.00 0.99 0.99 0.99 0.99 0.99 0.99 0.99
4 1.00 (733.75) 0.93 0.94 0.95 0.94 0.94 0.94 0.94 0.94 0.94
8 1.00 (959.42) 0.92 0.93 0.92 0.92 0.92 0.92 0.92 0.92 0.92

8
2 1.00 (1359.75) 1.00 1.00 1.00 0.99 0.99 1.00 0.99 0.99 0.99
4 1.00 (2305.25) 0.96 0.96 0.96 0.96 0.97 0.95 0.97 0.95 0.95
8 1.00 (2892.251 0.97 0.96 0.96 0.96 0.97 0.97 0.97 0.97 0.97
2 1.00 (3692.33) 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

16 4 1.00 15984.33) 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
8 1.00 (7409.00) 0.99 0.99 0.98 0.98 0.98 0.98 0.98 0.98 0.98
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Table C.21. Outsize averages for random graphs (optimizing S for K-PFM2)

P R O B L E M O U T S IZ E  A V E R A G E S
N n r m2 m s R5 1 R6 m ? m s 1 R9 1 R IO

2 1.00 (28.58) 0.90 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95
2 4 1.00 (48.08) 0.94 0.94 0.92 0.95 0.95 0.90 0.88 0.90 0.90

8 1.00 (64.33) 0.93 0.96 0.90 0.88 0.95 0.90 0.93 0.91 0.89
2 1.00 (102.67) 0.98 0.98 0.97 0.97 0.97 0.97 0.97 0.97 0.97

3 4 1.00 il72 .0oi 0.96 0.95 0.94 0.97 0.94 0.97 0.95 0.98 0.94
8 1.00 (228.17) 0.95 0.93 0.95 0.94 0.95 0.94 0.94 0.94 0.95
2 1.00 (255.50) 0.97 0.96 0.98 0.95 0.95 0.95 0.95 0.95 0.95

250 4 4 1.00 (433.50) 0.97 0.97 0.98 0.98 0.97 0.98 0.98 0.97 0.97
8 1.00 (564.50) 0.96 0.96 0.95 0.95 0.95 0.95 0.95 0.96 0.95
2 1.00 (707.50) 0.98 0.98 0.98 0.97 0.98 0.97 0.97 0.98 0.98

8 4 1.00 (1149.17) 0.99 0.99 0.98 0.98 0.98 0.98 0.99 0.99 0.99
8 1.00 (1465.25) 0.97 0.98 0.98 0.97 0.97 0.97 0.97 0.98 0.97
2 1.00 (1886.33) 0.99 0.99 0.99 0.99 0.99 0.99 1.00 0.99 0.99

16 4 1.00 (3002.08) 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
8 1.00 (3717.08) 0.99 0.99 0.98 0.98 0.99 0.98 0.98 0.98 0.98
2 1.00 (70.58) 0.90 0.91 0.91 0.91 0.91 0.91 0.90 0.90 0.90

2 4 1.00 (119.33) 0.91 0.86 0.88 0.87 0.94 0.86 0.88 0.85 0.85
8 1.00 (158.00) 0.82 0.83 0.80 0.79 0.81 0.78 0.81 0.79 0.82
2 1.00 (171.08) 0.90 0.91 0.89 0.92 0.91 0.89 0.91 0.88 0.88

3 4 1.00 (290.50) 0.95 0.93 0.92 0.93 0.91 0.92 0.92 0.94 0.95
8 1.00 (385.58) 0.90 0.91 0.88 0.87 0.88 0.89 0.88 0.89 0.89
2 1.00 (397.00) 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97

500 4 4 1.00 (661.00) 0.95 0.94 0.95 0.94 0.95 0.96 0.95 0.95 0.96
8 1.00 (862.92) 0.93 0.92 0.92 0.93 0.92 0.92 0.92 0.92 0.93
2 1.00 (1340.33) 0.99 0.98 0.98 0.97 0.98 0.98 0.97 0.98 0.98

8 4 1.00 (2175.42) 0.98 0.97 0.97 0.97 0.97 0.98 0.98 0.97 0.97
8 1.00 (2750.33) 0.96 0.96 0.96 0.96 0.97 0.97 0.96 0.96 0.96
2 1.00 (3637.42) 0.99 0.99 0.99 0.99 0.99 1.00 0.99 0.99 0.99

16 4 1.00 (5896.33) 0.98 0.98 0.97 0.97 0.97 0.97 0.98 0.97 0.98
8 1.00 (7227.00) 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98
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Table C.22. Cutsize averages for random graphs (optimizing S for K-PFM3)

P R O B L E M C U T S IZ E  A V E R A G E S
N 1 ^ R1 1 R2 ^ 4 1 R5 1 R6 1 R l 1 k a 1 R9 1 R lO

2 1.00 (26.17) 0.82 0.79 0.83 0.82 0.85 0.81 0.80 0.81 0.81
2 4 1.00 (45.33) 0.90 0.88 0.85 0.81 0.84 0.85 0.83 0.84 0.85

8 1.00 (61.25) 0.90 0.89 0.85 0.85 0.87 0.86 0.85 0.84 0.85
2 1.00 (96.58) 0.98 0.98 0.97 0.99 0.98 0.99 0.97 0.97 0.97

3 4 1.00 il69.33) 0.92 0.93 0.91 0.93 0.91 0.93 0.92 0.92 0.92
8 1.00 (225.83) 0.93 0.92 0.92 0.92 0.92 0.92 0.92 0.91 0.91
2 1.00 1253.92) 0.95 0.95 0.95 0.93 0.95 0.93 0.95 0.95 0.95

250 4 4 1.00 (421.58) 0.97 0.97 0.97 0.98 0.97 0.97 0.97 0.96 0.97
8 1.00 (553.83) 0.96 0.96 0.96 0.95 0.95 0.95 0.96 0.95 0.96
2 1.00 (703.00) 0.97 0.97 0.97 0.97 0.97 0.97 0.98 0.98 0.98

8 4 1.00 (1135.33) 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
8 1.00 11445.50) 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98
2 1.00 (1867.08) 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 1.00

16 4 1.00 12974.00) 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.9911 8 1.00 (3712.75) 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98
2 1.00 (61.50) 0.89 0.91 0.87 0.92 0.87 0.92 0.90 0.92 0.92

2 4 1.00 (110.75) 0.88 0.87 0.82 0.83 0.85 0.84 0.84 0.85 0.82
8 1.00 (145.58) 0.81 0.84 0.82 0.82 0.80 0.82 0.79 0.78 0.76
2 1.00 1157.92) 0.91 0.92 0.89 0.93 0.93 0.93 0.93 0.90 0.90

3 4 1.00 (281.50) 0.90 0.90 0.89 0.88 0.89 0.89 0.89 0.87 0.89
8 1.00 1359.17) 0.92 0.92 0.91 0.91 0.90 0.90 0.91 0.90 0.91
2 1.00 1383.58) 0.96 0.96 0.96 0.97 0.96 0.97 0.96 0.96 0.96

500 4 4 1.00 (637.83) 0.96 0.95 0.95 0.96 0.94 0.96 0.95 0.95 0.95
8 1.00 (832.751 0.93 0.93 0.93 0.93 0.93 0.93 0.92 0.92 0.92
2 1.00 (1317.92) 0.99 0.97 0.98 0.98 0.98 0.98 0.97 0.99 0.98

8 4 1.00 12135.67) 0.97 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.97
8 1.00 (2709.67) 0.97 0.97 0.97 0.97 0.97 0.97 0.96 0.97 0.97
2 1.00 (3616.67) 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

16 4 1.00 (5779.33) 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
8 1.00 (7171.00) 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98
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Table C.23. Cutsize averages for random graphs (for K-PLM-like algorithms)

P R O B L E M cu :r S IZ E  A V E R A G E S
D K R l 1 R2 R3 T i 7 R9 HiTo R l l R12

2 1.00 0.87 0.68 0.88 0.79 0.76 0.65 0.94 0.93 0.64 0.66 1.01
2 4 1.00 0.77 0.70 0.91 0.68 0.63 0.58 0.90 0.62 0.56 0.53 0.87

8 1.00 0.80 0.74 0.91 0.70 0.66 0.55 0.85 0.64 0.59 0.47 0.84
16 1.00 0.84 0.76 0.87 0.72 0.64 0.56 0.77 0.65 0.61 0.50 0.74
2 1.00 0.95 0.95 0.92 0.93 0.91 0.83 0.89 0.98 0.88 0.85 0.89

3 4 1.00 0.90 0.85 0.88 0.91 0.83 0.78 0.82 0.87 0.80 0.75 0.78
8 1.00 0.94 0.88 0.88 0.90 0.86 0.79 0.83 0.86 0.82 0.77 0.80
16 1.00 0.97 0.90 0.89 0.93 0.86 0.81 0.82 0.89 0.86 0.79 0.80
2 1.00 0.95 0.93 0.90 0.94 0.89 0.89 0.90 0.94 0.89 0.86 0.88

4 4 1.00 0.97 0.94 0.91 0.97 0.92 0.89 0.91 0.94 0.91 0.86 0.88
8 1.00 0.95 0.93 0.92 0.95 0.92 0.88 0.88 0.92 0.90 0.86 0.85
16 1.00 0.96 0.94 0.92 0.95 0.93 0.89 0.88 0.93 0.91 0.88 0.86
2 1.00 0.99 0.99 0.97 1.01 1.00 0.97 0.96 1.01 0.98 0.97 0.96

8 4 1.00 0.99 0.97 0.95 0.98 0.96 0.95 0.94 0.97 0.97 0.94 0.92
8 1.00 0.99 0.97 0.96 0.99 0.97 0.95 0.94 0.97 0.97 0.94 0.93
16 1.00 0.99 0.97 0.97 0.99 0.98 0.95 0.94 0.97 0.96 0.95 0.93
2 1.00 1.00 0.99 0.98 1.00 0.99 0.99 0.98 1.00 0.98 0.98 0.98

16 4 1.00 1.00 1.00 0.98 1.00 0.99 0.98 0.97 1.00 0.99 0.98 0.96
8 1.00 0.99 0.99 0.98 0.99 0.99 0.98 0.97 0.99 0.98 0.97 0.96
16 1.00 1.00 0.99 0.98 0.99 0.98 0.98 0.97 0.99 0.98 0.97 0.96

Table C.24. Cutsize averages for geometric graphs (for K-PLM-like algorithms)

P R O B L E M C U T S I Z E  A V E R A G E S
D K R l  1 R S f l i  1 1 1 R 6 R 7  1 R S R 9 R i o  1 R l l  1 R l 2

2
2 1.00 1.17 0.37 2.08 1.15 0.46 0.06 1.87 0.94 0.44 0.71 1.56
4 1.00 0.70 0.45 0.92 0.54 0.28 0.19 0.87 0.27 0.16 0.21 0.83
8 1.00 0.76 0.56 0.74 0.45 0.31 0.28 0.62 0.18 0.14 0.34 0.58
16 1.00 0.80 0.62 0.57 0.29 0.34 0.32 0.56 0.17 0.11 0.23 0.50

3
2 1.00 0.79 0.37 0.88 0.77 0.41 0.23 0.60 0.78 0.29 0.28 0.77
4 1.00 0.62 0.54 0.56 0.55 0.48 0.28 0.36 0.53 0.41 0.22 0.38
8 1.00 0.83 0.60 0.47 0.59 0.55 0.37 0.34 0.40 0.41 0.26 0.39
16 1.00 0.86 0.77 0.59 0.55 0.48 0.40 0.43 0.36 0.37 0.30 0.34

4
2 1.00 1.03 0.81 0.78 1.19 0.86 0.39 0.81 1.12 0.50 0.49 0.84
4 1.00 0.81 0.71 0.73 0.68 0.48 0.52 0.51 0.48 0.37 0.45 0.48
8 1.00 0.90 0.73 0.61 0.63 0.62 0.54 0.53 0.53 0.52 0.45 0.48
16 1.00 0.97 0.82 0.75 0.71 0.69 0.59 0.63 0.64 0.62 0.55 0.57

8
2 1.00 0.78 0.85 1.05 0.70 0.75 0.72 0.91 0.99 0.68 0.65 0.80
4 1.00 0.80 0.75 0.74 0.80 0.76 0.61 0.56 0.69 0.67 0.52 0.58
8 1.00 0.87 0.75 0.73 0.78 0.68 0.61 0.59 0.65 0.61 0.58 0.53
16 1.00 1.03 0.88 0.91 0.88 0.86 0.81 0.80 0.83 0.83 0.79 0.78

16
2 1.00 0.89 0.92 0.96 0.90 0.86 0.93 1.07 1.01 0.85 0.92 0.95
4 1.00 0.95 0.85 0.86 0.90 0.87 0.78 0.83 0.84 0.82 0.77 0.77
8 1.00 0.94 0.98 0.94 0.95 0.95 0.94 0.93 0.94 0.94 0.93 0.92
16 1.00 0.98 0.96 0.96 0.96 0.95 0.94 0.93 0.95 0.94 0.93 0.92
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Table C.25. Execution time averages (and standard deviations) for benchmark 
circuits

P R O B L E M E X E C U T IO N  T IM E  A V E R A G E S  (in  seconds)
R A T IOName. K P L M l P F M l T F m P F M 3

balu

2 2.42 i0.29l 3.64 (0.67) 4.45 (1.15) 6.89 (1.401 2.84
4 2.70 (0.53) 5.34 (1.60) 27.02 (6.48) 66.59 (24.45) 24.62
6 4.40 (0.90) 8.76 12.15) 43.92 (14.38) 238.89 (78.581 54.29
8 6.51 (1.43) 11.03 (4.10) 62.44 (21.18) 376.89 (182.80) 57.85

10 7.67 (1.23) 13.55 (2.73) 90.32 (35.21) 694.05 (273.85) 90.49

sioo

2 1.36 10.36) 1.02 10.19) 2.13 (0.601 7.07 (1.68) 5.20
4 1.82 (0.36) 1.83 (0.52) 9.14 |4.66) 43.31 (12.90) 23.86
6 2.94 10.44) 2.85 (0.80) 16.74 (7.37) 84.87 (31.541 28.82
8 5.29 (0.78) 4.16 (0.48) 33.58 (15.46) 178.73 (55.981 33.79

10 7.50 (1.47) 6.36 (0.81) 33.93(11.38) 364.58 (121.26) 48.61

primary 1

2 2.81 (0.38) 3.90 (1.07) 5.24 (1.92) 10.85 (5.01) 3.86
4 4.45 (1.02) 11.25 12.43) 24.25 (9.121 80.12 (20.76) 18.02
6 7.11 (1.43) 13.98 (3.37) 51.58 (15.38) 168.95 (41.90) 23.75
8 9.97 (2.74) 22.50 (6.65) 84.51 (29.24) 536.11 (175.66) 53.80

10 13.56 (3.83) 33.40 (10.24) 163.91 (47.14) 761.19 (296.71) 56.11

struct

2 7.63 (1.50) 23.28 (7.12) 30.03 (7.84) 61.27 (14.64) 8.03
4 9.86 12.24) 51.60 (22.13) 116.20 (45.64) 341.01 (117.991 34.57
6 16.33 (4.42) 78.37 (21.92) 257.47 (83.85) 1006.45 (321.86) 61.65
8 W M J t t F T 110.13 (19.89) 479.20 (170.871 2383.57 (863.011 81.59

10 41.73 (11.78) 165.47 (27.82) 780.43 (357.21) 4478.32 (1455.08) 107.32

industryl

2 10.20 (3.80) 16.00 (3.52) 32.50 (14.07) 53.96 (13.30) 5.29
4 11.38 (2.44) 53.49 (19.85) 152.29 (59.16) 559.79 (231.35) 49.21
6 20.08 (4.80) 39.17 (12.75) 293.19 (120.12) 1023.61 (391.901 50.99
8 27.21 (7.19) 62.60 (15.47) 565.87 (236.42) 2220.35 (989.41) 81.60

10 40.74 (9.24) 102.82 (23.41) 586.58 (217.13) 3499.45 (1772.60) 85.91

primary 2

2 15.44 (3.39) 23.80 (10.09) 55.26 (21.181 85.16 (28.65) 5.52
4 23.56 (5.75) 76.55 (27.81) 252.34 (66.08) 878.96 (304.19) 37.32
6 37.31 (6.40) 89.61 (26.17) 507.98 (195.96) 1577.86 (417.87) 42.28
8 53.72 (13.16) 123.60(56.23) 900.58 (261.92) 3353.91 (1082.74) 62.43

10 80.36 (14.84) 172.52 (61.50) 1050.40 (322.83) 7027.23 (2320.50) 87.44
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Table C.26. Outsize averages (and standard deviations) for benchmark circuits

P R O B L E M O U T S IZ E  A V E R A G E S
IM P . ( % )Name T L M l J T M i TTM 2

balu

2 32.10 i6.19) 37.80 (11.12) 42.90 (6.76) 39.80 (7.61) -23.99
4 177.60 (7.52) 155.60 (14.79) 105.10 (16.36) 93.70 (19.46) 47.24
6 203.60 (7.98) 186.90 (10.85) 150.00 (9.62) 128.00 (15.12) 37.13
8 225.00 (8.46) 213.20 (7.40) 174.80 (14.03) 162.60 (13.18) 27.73

10 244.50 (6.26) 233.40 (5.52) 202.20 (12.81) 187.10 (12.00) 23.48

sioo

2 50.50 i9.56) 69.10 (2.341 63.70 (3.13) 28.30 (9.90) 43.96
4 101.45 (8.17) 97.00 (4.05) 90.20 (10.78) 74.80 (7.30) 26.27
6 128.00 i4.42) 125.60 (6.22) 123.00 (7.50) 113.60 (7.24) 11.25
8 147.95 (4.52) 150.00 (4.40) 134.60 (6.07) 131.40 (5.71) 11.19

10 160.15 (7.21) 153.60 (7.34) 150.40 (5.31) 142.60 (6.96) 10.96

primary 1

2 75.20 (9.34) 78.90 (7.291 69.80 (8.60) 72.20 (8.26) 3.99
4 198.15 il4 .18) 152.80 (12.11) 129.10 (8.35) 107.90(7.46) 45.55
6 232.80 (14.31) 192.80 (17.51) 143.30 (8.23) 133.90 (10.64) 42.48
8 263.15 il7 .73 i 209.30 (16.51) 158.90 (9.72) 143.50 (7.13) 45.47

10 291.40 (21.00) 222.00 (23.73) 173.10(15.06) 168.60 (11.02) 42.14

struct

2 57.00 (9.31) 81.70(22.93) 66.90 (14.39) 55.00 (9.52) 3.51
4 301.20 il9 .89) 166.10 (25.60) 126.20 (16.63) 111.50 (12.04) 62.98
6 449.45 (42.76) 304.70 (31.01) 211.40 (49.34) 185.30 (18.17) 58.77
8 587.60 (40.171 411.80 (49.82) 346.60 (40.40) 312.00 (37.90) 46.90

10 624.80 (41.18) 498.50 (25.37) 404.00 (39.50) 362.70 (45.67) 41.95

industryl

2 74.65 (34.96) 128.30 (15.56) 106.90 (32.33) 98.40 (12.56) -31.82
4 449.60 i29.45) 360.90 (39.951 243.40 (34.00) 193.70 (33.68) 56.92
6 552.40 (22.55) 500.60 (27.92) 351.90 (43.59) 289.60 (27.75) 47.57
8 596.45 (20.04) 536.10 (12.72) 374.60(46.85) 359.00 (44.96) 39.81

10 630.90 (18.72) 554.20 (20.22) 432.70 (17.03) 409.80 (25.91) 35.05

prim ary 2

2 259.05 136.07) 261.00 (33.65) 235.30 (26.53) 222.20 (32.10) 14.23
4 739.70 (36.66) 610.70 (54.28) 455.20 (22.58) 401.60 (23.32) 45.71
6 945.80 (17.78) 869.90 (36.00) 568.30 (42.60) 538.90 (17.04) 43.02
8 986.85 (23.65) 923.50 (41.76) 642.80 (34.75) 633.60 (32.72) 35.80

10 1069.15 (15.90) 1010.00 (29.15) 721.50 (57.00) 668.90 (52.86) 37.44



APPENDIX a  TABLES FOR EXPERIMENTS 118

Table C.27. Minimum Cutsizes for benchmark circuits

P R O B L E M M IN IM U M  C U T S IZ E S
IM P . ( % )Name P L M l P F M l PFM 2  1 P F M s

balu

2 27 27 29 27 0.00
4 166 128 77 66 60.24
6 185 171 137 105 43.24
8 208 199 153 134 35.58

10 229 227 169 166 27.51

sioo

2 34 67 58 25 26.47
4 84 87 74 64 23.81
6 119 118 108 97 18.49
8 139 144 126 124 10.79

10 147 143 145 133 9.52

primary 1

2 59 67 59 58 1.69
4 170 125 115 95 44.12
6 197 170 128 118 40.10
8 226 190 142 129 42.92

10 255 189 146 148 41.96

struct

2 43 37 37 38 11.63
4 256 126 94 91 64.45
6 379 246 114 157 58.58
8 516 330 282 257 50.19

10 553 458 358 280 49.37

¡ndustryl

2 23 90 42 86 -273.91
4 391 304 191 139 64.45
6 507 421 252 218 57.00
8 563 519 282 287 49.02

10 600 529 405 366 39.00

primary2

2 178 214 201 158 11.24
4 658 505 412 364 44.68
6 908 809 521 517 43.06
8 943 859 598 597 36.69

10 1035 969 631 604 41.64

Table C.28. Cutsize averages for some benchmark circuits

P R O B L E M C U T S IZ E  A V E R A G E S
Name K P L M l P L M l l P F M I P FM 2  1 P FM 3

balu

2 32.10 35.00 37.80 42.90 39.80
4 177.60 120.50 155.60 105.10 93.70
6 203.60 164.20 186.90 150.00 128.00
8 225.00 185.70 213.20 174.80 162.60

10 244.50 206.70 233.40 202.20 187.10

struct

2 57.00 51.10 81.70 66.90 55.00
4 301.20 166.40 166.10 126.20 111.50
6 449.45 198.40 304.70 211.40 185.30
8 587.60 316.30 411.80 346.60 312.00

10 624.80 438.60 498.50 404.00 362.70

industryl

2 74.65 60.50 128.30 106.90 98.40
4 449.60 305.90 360.90 243.40 193.70
6 552.40 404.30 500.60 351.90 289.60
8 596.45 467.30 536.10 374.60 359.00

10 630.90 486.50 554.20 432.70 409.80
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Table C.29. Minimum Cutsizes for some benchmark circuits

P R O B L E M M I N I M U M  C U T S I Z E S
N a m e P L M l P L M l l P F M J P F M 2 P F M s

balu

2 27 27 27 29 27
4 166 85 128 77 66
6 185 133 171 137 105
8 208 161 199 153 134

10 229 197 227 169 166

struct

2 43 43 37 37 38
4 256 133 126 94 91
6 379 165 246 114 157
8 516 249 330 282 257

10 553 392 458 358 280

indust ryl

2 23 45 90 42 86
4 391 251 304 191 139
6 507 363 421 252 218
8 563 430 519 282 287

10 600 454 529 405 366
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A dditions and C orrections

Page
No.

Line
No. The Additon (A) or Modification (M)

xvii - (A) ^  assignment operator
xvii - (A) A  logical and operator
10 last (M) ... both end vertices lie in Pk.
21 first (M) The cost x(IT) of the partition is ...
40 16 (M) ... weight w t , and the total net weight ct,
42 4 (M) Suppose thah H = E) is a hypergraph with ...
48 28 (M) ... the item (3) establishes the basis of ...
49 19 (M) ... is given in Figure 4.7. The algorithm employs two ...
50 - (M) 2.2.5. if K 2 < N  th en  free the bucket list nodes
50 - (M) 2.4. find the maximum prefix sum gainsum of move gains of KxK^ moves
53 12 (M) in a different concept from all the other ...
56 - (M) 2.6. find the maximum prefix sum gainsum of move gains of K\ moves
56 - (A) 2.9. free the bucket list nodes
87 12 (M) partitioning algorithms by changing the parameters ...


