
, ·;. ‘;Т > ‘Tí

POLYNOMIALLY SOLVABLE CASES OF
MULTIFACILITY DISTANCE CONSTRAINTS ON

CYCLIC NETWORKS

A THESIS

SUBMITTED TO THE DEPARTMENT OF INDUSTRIAL

ENGINEERING

AND THE INSTITUTE OF ENGINEERING AND SCIENCES

OF BILKENT UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF
MASTER OF SCIENCE

By
Naile Giilcan Ye§ilk6kgen

July, 1993

icilj l . i j

5^,35
/Лг/
I'fJ'i

11

I certify that I have read this thesis and that in my opinion it is fully adequate,
in scope and in quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Barbaros Q. Tansel(Principal Advisor)

I certify that I have read this thesis and that ij;w;цy opinion it is fully adequate,
f i \

in scope and in quality, as a th e ^ for the_^egree of Master of Science.

I certify that I have read this thesis and that in my opinion it is fully adequate,
in scope and in quality, as a thesis for the degree of Master of Science.

As^uCTPro|.>Mr Gemal Dinger

Approved for the Institute of Engineering and Sciences:

’rof. Mehm^t^aray
Director of Institute of Engineering and Sciences

ABSTRACT

POLYNOMIALLY SOLVABLE CASES OF MULTIFACILITY
DISTANCE CONSTRAINTS ON CYCLIC NETWORKS

Naile Giilcan Ye§ilk6kgen
M.S. in Industrial Engineering

Supervisor: Assoc. Prof. Barbaros Q. Tansel
July, 1993

Distance Constraints Problem is to locate one or more new facilities on a
network so that the distances between new and existing facilities as well as
between pairs of new facilities do not exceed given upper bounds. The prob­
lem is AfV-Complete on cyclic networks and polynomially solvable on trees.
Although theory for tree networks is well-developed, there is virtually no the­
ory for cyclic networks. In this thesis, we identify a special class of instances
for which we develop theory and algorithms that are applicable to any metric
space defining the location space. We require that the interaction between
new facilities has a tree structure. The method is based on successive appli­
cations of EXPANSION and INTERSECTION operations defined on subsets
of the location space. Application of this method to general networks yields
strongly polynomial algorithms. Finally, we give an algorithm that constructs
an e-optimal solution to a related minimax problem.

Key words: Distance Constraints, Network Location, Minimax Problem
with Mutual Communication.

I l l

ÖZET

GENEL SERIMLERDE ÇOKTESISLI UZAKLIK KISITLARI
PROBLEMİNİN POLİNOM ZAMANDA ÇÖZÜLEBİLİR

DURUMLARI

Naile Gülcan Yeşilkökçen
Endüstri Mühendisliği Bölümü Yüksek Lisans
Tez Yöneticisi: Doç. Dr. Barbaros Ç. Tansel

Temmuz, 1993

Uzaklık Kısıtları Problemi, bir serim üzerinde bir yada daha fazla yeni
tesisi, yeni tesislerle varolan tesisler arasındaki ve yeni tesis çiftleri arasındaki
uzaklıklar belli üst değerleri geçmeyecek biçimde yerleştirme problemidir. Prob­
lemin genel serimlerde A^'P-Zor/u^îi ağaç serimlerde ise polinom zamanda çözü-
lebilirliği bilinmektedir. Ağaç serimler için geliştirilmiş temel kuramlar ol­
masına karşın, genel serimlerde geliştirilmiş hiçbir kuram ve algoritma bu­
lunmamaktadır. Bu tez çalışmasında, biz uzaklık kısıtlarının yeni tesisler
arasındaki ilişkilerin ağaç serimi biçiminde olduğu özel bir sınıfını çözen ve
yerleşim uzayı olarak alınan herhangi bir metrik uzaya uygulanabilen bir yöntem
sunuyoruz. Yöntem, yerleşim uzayının alt kümelerinde tanımlanmış GENİŞ­
LETME ve KESİŞTİRME işlemlerini temel almaktadır. Bu yöntemin genel
serimlerde uygulaması polinom zamanlı algoritmalar verir. Son olarak, ilgili
bir enküçük-enbüyük problemine e-eniyi çözüm üreten bir algoritma veriyoruz.

Anahtar Kelimeler: Uzaklık Kısıtları, Serim Yerleşimi, Enküçük-enbüyük
Problemi.

IV

To my father and mother

ACKNOWLEDGEMENT

I am indebted to Associate Professor Barbaros Tansel for his invaluable
guidance, encouragement and above all, for the enthusiasm which he inspired
on me during this study.

I am grateful to every individual of my family whose love and support have
always been with me in spite of the distances that kept us apart.

I would like to extend my thanks to Ogan Ocah for his love, patience
and encouragement especially at times of despair and hardship. My special
thanks are due to my former and present ofBcemates Ash Sencer Erdem, Pınar
Keskinocak, Mehmet Özkan and Sibel Salman for their interest and encour­
agement in every step of this study.

VI

Contents

1 INTRODUCTION 1

1.1 Introduction and Overview.. 1

1.2 Networks, Embedding, and Distance .. 4

1.3 Distance Constraints and m-Center Problem with Mutual Com­
munication .. 6

2 EXISTING THEORY FOR TREE NETWORKS 9

2.1 Convexity on Tree N etw orks... 9

2.1.1 Convexity of Distance .. 11

2.1.2 Implications of Convexity of D istance................................. 13

2.2 Distance Constraints on Tree N etw orks... 14

2.2.1 Single Facility C a se .. 14

2.2.2 Multifacility C a se ... 16

2.3 Minimax Problem with Mutual Com m unication......................... 21

2.3.1 Distance Constrained P M M C on Tree Networks 22

Vll

CONTENTS vin

2.4 Biobjective Multifacility Minimax and Vector Minimization 24

2.5 Other Approaches 26

2.6 DC is AfV-Complete on General N etw orks.................................. 27

3 DISTANCE CONSTRAINTS AND EXPAND/INTERSECT
METHOD IN GENERAL METRIC SPACES 30

.3.1 EXPAND/INTERSECT Method for General M e tr ic s 32

3.2 Analysis of S E I P .. 37

3.3 Regions of Feasibility 39

3.4 Other Set Constraints and Distance C onstra in ts......................... 44

3.5 Cyclic LNb ... 45

4 COMPUTATIONAL METHODS FOR NETWORKS 47

4.1 Single Facility C a se ... 48

4.1.1 Construction of the Feasible set for DC{\) 50

4.2 Multifacility C a se .. 55

4.2.1 Exam ple... 56

4.2.2 E X P A N D ! I N T E R S E C T Operation on Networks . . . 60

5 A MINIMAX EXTENSION 69

5.1 e-Optimal Solution to P M M C ... 71

5.2 Solving P M M C on N etw orks.. 73

CONTENTS IX

6 SUMMARY AND CONCLUSION 76

List of Figures

1.1 Illustration of the 1-1 Mapping from [0,1] onto an E dge............ 5

1.2 Possible Shapes of d(a;, j /) ... 6

2.1 Example of a Linkage Network (L N) ... 17

2.2 Failure of Sufficiency of SC on Cyclic N etw orks.......................... 18

2.3 Failure of Sufficiency of SC for Node Restricted D C 19

2.4 Example of the Construction of G' from G. 29

3.1 Example of LN and Related LNb .. 31

3.2 Expansion of S' by r (in the Plane with Euclidean Distance) . . 32

3.3 Example to Illustrate S E I P ... 36

3.4 New Root in the Second Application... 43

3.5 Example of Failure for Cyclic ... 46

4.1 Illustration of = Â (u,·, c,) n e for Various Possibilities . . 50

4.2 Example to Illustrate Segments on a Given Edge 53

4.3 (a) Example for Multifacility C ase.. 57

LIST OF FIGURES XI

4.3 (b) Example Continued 58

4.3 (c) Example Continued 59

4.4 Illustration of Expansion Steps for Se 63

4.5 Illustration of E R L 65

Chapter 1

INTRODUCTION

1.1 Introduction and Overview

A location problem, in its most general form is to determine locations of several
new facilities in a given location space so as to provide goods and services to
existing facilities and/or to each other under one or multiple criteria, and
possibly subject to a set of constraints. The typical measure for the quality of
service is some function of distances between facilities.

Depending on the location space, distance function, objective criteria, num­
ber of new facilities to be located, type of interaction between facilities, pres­
ence of uncertainty in several parameters of the problem, and possibly some
other factors, different types of location problems can be characterized. In a
recent survey of Brandeau and Chiu [1], over 50 representative problems on lo­
cation theory are provided with their formulations and relations to each other.
There is also an extensive bibliography of location literature by Domschke and
Drexl [5].

Network location problems occur when the location space is a network. A
road network, a river network, an air transport network or a network of ship­
ping lanes may constitute the network of interest. In most of the network

1

location problems, the new facilities are idealized as points and may be lo­
cated anywhere on the network. Constraints may be imposed on the problem
so that the new facilities are within specified distances of existing facilities
and other new facilities as well. A comprehensive survey by Tansel, Francis,
and Lowe [17, 18] provides a review of network location problems with spe­
cific emphasis on work which deals directly with the network of interest and
exploits the structure of the network. In part I of the survey, the p-center
and p-median problems are considered and in part II, several network location
problems including multifacility minimax and minisum problems with mutual
communication, distance constraints, multifacility, and path location problems
on tree networks are reviewed. A rather recent survey by Labbe, Peeters, and
Thisse [11] discusses median and center problems, economic models of location
as well as the discrete location models of network location problems.

In this thesis, we work on Distance Constraints which requires locating
several new facilities on a network so that they are within specified distances
of existing facilities and within specified distances of one another. Although
the theory for tree networks is well developed and efficient algorithms exist,
there is virtually no theory and algorithms on general networks regarding the
distance constraints. Here, we go one step forward and provide algorithms of
polynomial complexity which solves distance constraints problem on general
networks for a special structure of the interaction between new facilities. We
also consider the Multifacility Minimax Problem with Mutual Communication
in the context of distance constraints. We now provide an overview of the

thesis.

CHAPTER 1. INTRODUCTION 2

In the remainder of Chapter 1, we first define our terminology and give
formal definitions of embedded networks and distances with their properties.
Next we define Distance Constraints Problem on networks. We also introduce
Multifacility Minimax Problem with Mutual Communication which is also called
m-Center Problem with Mutual Communication in the literature. We give an
equivalent formulation of the problem in terms of distance constraints.

In Chapter 2, we provide a survey of literature on Distance Constraints

and related minimax problem. Since almost all of the related literature we are
aware of deals with these problems on tree networks, we provide an overview
of existing theory and algorithms on tree networks. We also cite some of the
characteristics of those problems on trees which may provide a partial answer
to the question of why tree networks are more tractable than general (cyclic.)
networks.

CHAPTER 1. INTRODUCTION 3

Our main results are provided in Chapter 3. Here, we deviate from the
network context and approach the problem from a different perspective. We
provide a new method to solve distance constraints defined in any metric space.
The basic idea is to apply EXPANSION a,nd INTERSECTION opeT&tions de­
fined on subsets of the location space. For a special structure of interaction
between new facilities, this approach leads to exact algorithms for determining
the consistency or inconsistency of distance constraints and for finding a feasi­
ble solution if it exists. We also consider a broader problem of characterizing
the set of all feasible solutions for all new facilities, by defining a region of
feasibility for each new facility. This problem has not been addressed in the
literature except for the single facility case. The algorithms we provide here
are applicable to any metric space with differences arising only in algorithmic
details.

In Chapter 4, we apply our approach to network spaces and construct
strongly polynomial algorithms to determine the consistency or inconsistency
of distance constraints and to find a feasible location vector if it exists. We
also construct the regions of feasibility.

In Chapter 5, we provide an equivalent formulation of Multifacility Minimax
Problem with Mutual Communication in terms of distance constraints with
parametric distance bounds. We give a polynomial algorithm to construct an
t — optimal solution for fixed e that relies on a bisection search on the optimal
objective value. Each trial in the search requires solving a set of distance
constraints with fixed distance bounds.

In Chapter 6, we give a summary of the report and we pose unresolved
questions on the problems discussed. We also give directions for future research.

CHAPTER 1. INTRODUCTION

1.2 Networks, Embedding, and Distance

Before defining the problems in consideration we develop our terminology.
Throughout the thesis we may also give other definitions as necessary. Note
that, we use graph, node and arc interchangeably with network, vertex and
edge respectively. Basic definitions of networks, embedding and distance pro­
vided here are due to Bearing, Francis and Lowe [4].

Given a set of n distinct vertices, V = {i^i,..., I'n} which is a subset of a
given infinite set and a set of undirected edges consisting of unordered pairs

of distinct vertices, an undirected network or graph ^ is a pair (V,S)
with a length function that assigns a positive real number to each edge
(i/,·, i/j). An embedding oi Q = (V,5) in some space <S is a set (7 in such that
G = U{[t;,·, Uj] : € S} where is the image of the unit interval
under a one-to-one mapping T{j : [0,1] S', with T,j(0) = u,· and T',_;(l) = vj
with vi,...,Vn being distinct points in S representing respectively.
Define V = {vi, ...Un} and E = {[u,·, Vj] : (i/,·, Vj) € S}. V is the vertex set of G
and E is the edge set of G.

For a point X in [u,, Vj] there exists a unique A in [0,1] such that Tij{\) = x.
If we denote the inverse of T,_, by A,j then A,j(x) = A if and only if Tij{\) = x.
A point X in [u,-,Uj] defines two subarcs [u,-,x] = {y ■■ Tii(a) = y for some o; €
[0,A,j(x)]} and [x,Vj] = {y : Tij{a) = y for some o: € [Aij(x),l]}. If x =
7ij(A), then the lengths of [u,-,x] and [x,Uj] are defined as A/,j and (1 — \) U j

respectively. Figure 1.1 illustrates the idea.

A subset of G is connected if there do not exist two disjoint subsets A
and B o[G such that A intersects Q, B intersects Q, and Q C AU B. A path
joining xi E G and X2 € (7 is a minimal connected subset of G containing Xi
and X2 - The length of a path is equal to the sum of the lengths of all edges
or subedges on this path. Network G is connected if and only if every pair
of vertices is joined by a path. A network whose any two distinct points are
joined by a single path is called a free, denoted T.

CHAPTER 1. INTRODUCTION

Figure 1.1: Illustration of the 1-1 Mapping from [0,1] onto an Edge

For any two points x ,y E G, define d(x, y) to be the length of a shortest
path, denoted P{x,y), connecting x and y. d{x,y) is appropriately called
the distance between x and y since the function d(·,·) has the well-known
properties of nonnegativity, symmetry and triangle inequality of a metric. That

is, Vx,i/ G G :

(1) d{x,y) > 0 ,d (x ,x) = 0 (Nonnegativity)
(2) d{x,y) = d{y,x) (Symmetry)
(3) d(x, y) < d(x, z) + d{z, y) Vz e G (Triangle Inequality)

Hence, G together with distance d constitutes a well-defined metric space.
We should also note that from the compactness of an embedded edge, G is
compact and d(x, y) as a function of x and for fixed y is continuous.

The distance between a given point of G and a variable point along an edge

of G, has the following property :

T heorem 1.1 Let y be a fixed point on G. Let A G [0,1] with Tpq{X) = x G
[vp,Vq] G E. Then d(Tp,(A),j/) is a function of \ which is continuous, piecewise

linear concave with at most two pieces.

P ro o f : From the definition of distance we have d{x,y) = d{Tpq{\),y) -
min{A/p, -|- d{vp,y),{l — X)lpq + d(u,,?/)}. Let a = Xlpq and define fl'p(a) —

a+d{vp,y),gg{a) = {Ipg - a)+d{vq,y), and g{a) = d{x,y) = mm{gp{a),gg{a)}.
gp(a) is a linear function with slope +1 and gq{a) is a linear function with slope
— 1. This implies that g{ct) = d(x, y) is a piecewise linear concave function with
at most two pieces. □

Figure 1.2 illustrates the possible shapes of y(a) = d{x,y) with x being a
variable point on [up, u,] 6 E and у being a fixed point on G.

CHAPTER 1. INTRODUCTION 6

d(x,y) d(x,y) d(x,y)

Фі>у)=
î+d(v, y)

d<Vp.y}=
.y,

¡м+Фч >y)

diVq.y)

Figure 1.2: Possible Shapes of d{x^y)

1.3 Distance Constraints and m-Center Prob­
lem with Mutual Communication

Distance constraints arise when new facilities should not be located too far from
existing facilities as well as from other new facilities. For example, consider
emergency service units such as fire stations, ambulances, and police patrol ve­
hicles. In order to avoid fatalities, damage to human life and excessive property
losses, it may be appropriate to require service units to be within a specified
driving time of any point in the region they serve. Distance constraints ensure
the service units reach the emergencies within specified critical response times.
In military scenarios, response units may be required not to be too far from

CHAPTER 1. INTRODUCTION

their supply bases and from each other in order to reinforce other units if a
need arises.

Another important factor that justifies the consideration of distance con­
straints is that the analysis of these constraints facilitates the analysis of mini­
max type location problems since some of these problems can be reformulated
in the form of distance constraints with parametric bounds.

Let G be the network of interest. Existing facilities are defined by the
nodes of the network and new facilities are to be located anywhere on the
network satisfying the given distance constraints. We denote by G”* the m-
fold Cartesian product of G by itself and denote any location vector in G”* by
X — ..., Xfn)·

The Single Facility Distance Constraints Problem, abbreviated as DC{1),
is to find a point x in G, if it exists, such that

d(x,Vi) < Ci, ¿ = l ,. . . ,n

where c,· are known nonnegative constants.

The Multifacility Distance Constraints, DC{m), is to find a location vector
X = (xi,...,Xm) G G”*, if it exists, such that

d{xj,Vi) < Cji , 1 < i < I < i < n

d{xj,Xk) < bjk , I < j < k < m

where Cj,·, bjk are known nonnegative constants, some of which may be infinity.
Clearly, if any one of the bounds cji, bjk is oo then that particular constraint
has no effect on the solution of distance constraints. Hence we may omit such
constraints from the formulation. Let Ic = {(i, i) · Cji < 00} and Ib = {(i, k) :
bjk < 00}. Note that Ic is a subset of {l,...,m } x { !,...,n} and Ib is a subset
of {(i? k) : I < j < k < 7n}. Then we rewrite the distance constraints (DC) as

follows:

d{^Xj,vf ̂ — Oj* , (^,^) G Ic

d(^Xj,Xk ̂ — i ^

{DC.\)
(DC.2)

CHAPTER 1. INTRODUCTION

This time Cji, bjk are known nonnegative finite constants. Note that DC{m)
includes DC{\) as a special case.

From now on we will not distinguish between single and multifacility dis­
tance constraints, we will only use DC to indicate the distance constraints
in general. DC is said to be consistent if there exists a solution vector X =
{xi, such that (DCA) and {DC.2) are satisfied. Otherwise DC
is inconsistent. Determining the consistency or inconsistency of DC is known
to be AfV-Complete for arbitrary networks [12].

A problem related to DC is the Multifacility Minimax Problem with Mutual
Communication. The original form of the unconstrained problem is as follows;

Given nonnegative weights wji, Vjk for all index pairs

Min f {X)

w here/(X) = m<ix{fi{X), f 2 {X)}

w ith /i(X) = max Wjid{xj,Vi)l<j<my l<*<n
M X) = , max Vjkd{xj,Xk)

Xl5 XjYi G

This problem can be reformulated in terms of distance constraints eis fol­

lows:

Min 2

subject to

d{xj,Vi) < z/wji , (j,i) e Ic

d{xj,xk) < zfvjk , {hk) € Ib

Xli ···! Xm € G

where wji, vjk are the positive constants for the given index pairs. The problem
is to find points xi,...,Xm G G for which maximum distance between specified
pairs of facilities is as small as possible.

Chapter 2

EXISTING THEORY FOR
TREE NETWORKS

2.1 Convexity on Tree Networks

Most of the network location problems are well-solved when the network is a
tree whereas a substantial computational effort is required when the network is
cyclic. Part of the answer to the question why tree networks are more tractable
than cyclic ones comes from the convexity results on trees. Yet convexity does
not provide a full answer because some of the well-known nonconvex functions
like the p-center and p-median problems are efficiently solved on tree networks
whereas no polynomial order algorithms are known to exist to solve them on
arbitrary networks.

The convexity discussion presented here is due to Dearing, Francis and Lowe
[4]. The convexity results given in the paper have important applications for
the four problems we describe next. First let us specify the total cost function
g and minimax function h defined on G'^. For X = (a:i, ...,x,n) € G"^

»(A')
MX)

V'm¿-i ■

max {max,<j<,„ , i<,<n u,·), ma ,x i <j < k< viV jk d{ xj , Xk) }

CHAPTER 2. EXISTING THEORY FOR TREE NETWORKS 10

where Wji and Vjk are known nonnegative constants.

Upper bounds on the distances between new and existing facilities as well
as between pairs of new facilities can be imposed. Those bounds are named as
distance constraints (DC) and are introduced in Chapter 1. Let the feasible
set of solutions to DC be

s = [X £ : X satisfies DCA and DC.2).

Clearly if 5” ^ 0 then DC is consistent, otherwise DC is inconsistent. We have
two unconstrained multifacility problems:

mmxgc?'"
minxeGm

!7(A·)
MAO

(F I)

(F2)

(PI) is called the Minisum (or m-Median) Problem with Mutual Commu­
nication and (P2) is called the Minimax (or m-Center) Problem with Mutual
Communication. The constrained versions of these problems are as follows:

minxes g(X)

minxes h(X)

where S is the feasible set of DC defined above.

(C - P \)
(C - P2)

Given nonnegative weights Vjk·, the functions g and h are convex, also
the feasible set S of solutions to DC is a convex subset of in a well-
defined sense (explained in the next subsection) if and only if the underlying
network is a tree. Hence the problems P I, P2, C — PI, C — P2 are convex
optimization problems on convex feasible regions for all data choices if and
only if the network is a tree. This implies the following important result for
tree networks.

R esu lt 2.1 A local minimum to P I, P2, C —P I, C —P2 is a global minimum.O

CHAPTER 2. EXISTING THEORY FOR TREE NETWORKS 11

2.1.1 C onvexity o f D istance

In order to address the question of convexity of functions g and h, the following
distance functions are considered first.

f i (x : a) = d{x, a) , x 6 G, a is a fixed point in G
/ 2(2:1 , X2) - d(xi,X2) , {x \ ,X 2)€ G ‘̂

Let us first define the basic notation and give the definitions of convex
sets and convex functions on a network. For details refer to [4]. For every
Y = (j / i , i / m) , Z = € G^ and for all 0 < A < 1 we define
Lx{X) = {X e G^ : d{yi,Xi) + d(xi,Zi) = d(x,-,x.) = \d(yi,Zi), 1 <
i < m}. Then the line segment in G’̂ is defined as L(Y, Z) = Uo<a<i 1'a(F, Z).
For m = 1, L(y, z) is simply the union of all shortest paths connecting y and z in
G. Any subset S of G’" is said to be convex if for every Y , Z e S L(Y, Z) C S.
If 5* is a convex subset of G'" and / is a real valued function with domain
G'^ and range then / is said to be convex on S if given any Y, Z 6 S,
f (X) < ^ f (Y) + (1 ~ for every X G L\{Y,Z) and every 0 < A < 1.

In the proof of convexity of the functions / 1 and /2 the following lemma,
which we provide without proof, is used. The reader is referred to [4] for the
proof.

Lem m a 2.1 Let w, y, z be any three points of a tree. Then, for all points x
in L{y,z), X e L{w,7y)U L{w,z). □

Now, we have the following lemma which shows that / 1 is a convex function

on trees.

Lem m a 2.2 Let a be any fixed point in G. Then the function fi{x : a) is

convex on G if and only if G is a tree. Q

P ro o f : Assume f i{x : a) is convex. Suppose G is not a tree. Then there
(ixists a cycle G of shortest length in G. Let I be the length of the cycle.

CHAPTER 2. EXISTING THEORY FOR TREE NETWORKS 12

We can choose points x, y, z and a in C such that d{a,x) = d{y,z) =
d{a,y) = d{x,y) = d{z,a) = d{x,z) = Then fi{x : a) = ^ > \fx{y :
a) + \ f i { z : a) = ^ which provides a contradiction to the assumption that
f i (x : a) is convex. Hence G is a tree.

Suppose the network is a tree. Then we have to show that Vx 6 L\{y,z)
and 0 < A < 1

f i{x : a) < \ f i {y : a) + (1 - X)fi{z : a) (2.1)

or equivalently,
d{x,a) < \d{y,a) + (1 — X)d{z,a). (2.2)

For A = 0 and A = I, X = z and x = y so the inequality holds. Assume now
0 < A < 1. From the definition of L\{y,z) we have

d{y,z) = d{y,x) + d{x,z)

and
_ d{x,z) _ d{x,y)

d{y,z) d{y,z)'
So we can rewrite the inequality (2.2) as follows:

(2.3)

(2.4)

(2.5)d{x, a)d{y, z) < d{x, z)d{y, a) + d{x, y)d(z, a).

X G L{y,z) and Lemma 2.1 implies x 6 L{y,a) U L{z,a). Without loss of
generality we can assume x G L{z,a). Then

d(a, x) + d{x, z) = d(a, z).

Then we have

(2 .6)

d{x,a)d{y,z) = d{x,a)[d{y,x) + d{x,z)]

= d(x,a)d{y,x) + d{x,a)d{x,z)

< d{x, a)d{y, x) + [d(a;, n) + d{y, a)]d(a:, z)

= [d(a, z) - d{x, z)]d{y, x·) + [d(x, rj) + d(j/, a)]d(x, z)

= d{a,z)d{y,x) + d{y,a)d{x,z).

The first equality comes from (2.3), the inequality is a consequence of the
triangle inequality and the next equality is a consequence of (2.6). Hence we
have proven (2.5) which is equivalent to (2.2), so /i(x : a) is convex. □

CHAPTER 2. EXISTING THEORY FOR TREE NETWORKS 13

We now give the convexity result for / 2.

Lem m a 2.3 /2 is convex on if and only if G is a tree. □

The necessity simply follows from the analysis, if / 2(:̂1 , X2) is convex on G^
then for any fixed X2, / 2(^1 : X2) is convex and hence f\{x ; a) is convex which
implies G is a tree by Lemma 2.2. The sufficiency part is proved considering
the two cases and uses Lemma 2.1 and some properties of convex sets. The
proof is technical but not too difficult, so we omit it and refer the reader to [4]
for details.

2.1.2 Im plications of C onvexity o f D istance

Having proved the convexity of distance on tree networks, it is easy to show
that the functions h and g are convex. ^ is a function of sum of distances
multiplied by positive constants. Multiplication of a convex function with a
positive constant is also convex. So g is convex on trees. Similarly h is the
maximum of a set of convex functions. It is also well known that max of a set
of convex functions is also convex. Hence, h is convex on trees. This analysis
imply that (PI) and (P2) are convex optimization problems on trees. Hence
a local minimum to (PI) and (P2) is a global minimum.

With convexity of distance functions from Lemmas 2.2 and 2.3, and with
the property that intersection of convex sets is convex and level sets of convex
functions are also convex, we can conclude that the feasible set S of DC is
also convex. Convexity of the set S and convexity of functions g and h imply
that the constrained problems (C — PI) and {C — P2) are convex optimization
problems on convex sets when the network is a tree. Hence a local optimum
to these problems is a global optimum.

CHAPTER 2. EXISTING THEORY FOR TREE NETWORKS 14

2.2 Distance Constraints on Tree Networks

Distance constraints are first defined by Dearing, Francis, and Lowe [4] in their
work which is discussed in the previous section. They establish that the feasible
set of distance constraints is convex if and only if the underlying network is a
tree. Francis, Lowe, and Ratliff [8] developed the theory for distance constraints
on tree networks. They give necessary and sufficient conditions for DC to
be consistent, and also they provide algorithms that find a feasible solution
whenever one exists.

2.2.1 Single Facility Case

Recall that the distance constraints for a single new facility is as follows: Given
c,· > 0 Vi, find X in T such that

d{x, Vi) < Ci , i ^ I (DC{\))

Francis, Lowe, and Ratliff [8] show that there exists a feasible solution
X £ T to distance constraints if and only if the conditions d(vi,Vj) < Ci + Cj are
satisfied 1 < i < i < n. If we define N{a,r) = {x G T : d(x,a) < r,·} to be the
neighborhood around a center a with radius r, then we can have an equivalent
formulation of distance constraints in terms of neighborhoods N{v{, c,·) centered
at Vi with radius c,. To satisfy the i-th constraints of D(7(l), a feasible solution
X E T must be in the neighborhood defined by that constraint, that is x 6
N(vi, Ci). So X must be in every neighborhood defined by all of the constraints.
This implies that x must be in the intersection of all neighborhoods. Therefore
the intersection of all neighborhoods define the set of all feasible solutions. Let
S — nr=i N{vi,Ci). If 6' = 0 then DC is inconsistent else it is consistent. We
should note here that the above results also hold for arbitrary networks and in
general for arbitrary metric spaces. However, other results obtained for trees
are not valid for arbitrary networks.

A neighborhood defined on a tree network is nothing but a subtree. A result

CHAPTER 2. EXISTING THEORY FOR TREE NETWORKS 15

due to Horn [10] states that intersection of subtrees of a tree is nonempty if
and only if every pairwise intersection is nonempty. From this result it follows
that the intersection of two neighborhoods Â (u,-,c,·) and N{vj,Cj) defined on a
tree is nonempty if and only if the distance between two vertices (centers) of
these neighborhoods is less than the sum of their radii, that is if and only if the
condition d(vi, Vi)< Ci + Cj is satisfied. Based on these properties, necessary
and sufficient conditions follow:

P ro p e rty 2.1 DC(1) is consistent if and only ifd{vi,Vj) < Ci +Cj, 1 < i <
j < n. □

This property provides a basis for the Sequential Intersection Procedure
{SIP) developed in [8] to construct the feasible set of solutions to DC^ by
intersecting neighborhoods pair at a time in an arbitrary order.

The intersection of two neighborhoods N{a,r) and N{a',r'), whenever
nonempty, is a neighborhood N{d, ?“) with unique center a, and radius f. N{d, f)
is termed the Composite Neighborhood Representation of N{a,r) and N{a',r').
Three cases may occur regarding the intersection :

Case 1 : d{a,a ')+r < r' (i.e. N{a^r) C N{a\r'))
Case 2 : d{a,a') + 7·' < r {i.e. N{a',i'') C N{a,r))
Case 3 : otherwise

Depending on the cases described above, the computation of d and f is as

follows:

a = <

a if Case 1 occurs
a' if Case 2 occurs
the point in L{a,a') for which if Case 3 occurs
d{a, a) = |[d(a, a') + r - r'j

r if Case 1 occurs
?· = < 7·' if Case 2 occurs

|[/· + 7·' — d{a, a')] if Case 3 occurs

CHAPTER 2. EXISTING THEORY FOR TREE NETWORKS 16

Then we have the following property.

P ro p e rty 2.2 Given a, r defined above, N(a,r)r\N(a',T') = N{d,f) whenever
r > 0. □

If f < 0 we define N(d, f) = 0. Starting with arbitrary two neighborhoods,
in each step S I P produces a composite neighborhood representation of two
neighborhoods, discards the two old ones, inserts the new representation, and
repeats the procedure with the new list of neighborhoods. The list size is de­
creased by one at each step. Hence, at the final step S IP produces a composite
neighborhood representation of all neighborhoods N{v{, c,), i = I , ..., n in n — 1
steps. Therefore the computational complexity of S IP is 0{n). From the
analysis of SIP , we have the following property.

P ro p e rty 2.3 If N{vi,Ci) / 0 then there exists a neighborhood N{a,r)
with center a and radius r such that N{a,r) = n"=i K{vi,Ci). □

Analysis of the computation of d and f for composite neighborhood rep­
resentation leads to the observation that d does not change by reducing each
neighborhood by e, and f is reduced by e. From this observation next property

follows:

P ro p e rty 2.4 If N{a, r) = f |”-i N{vi, c,·) theii N{a, r — e) — flLi N{vi, Ci — e)
for e < r.

Property 2.4 enables a sensitivity analysis on the bounds of distances.

2.2.2 M ultifacility Case

Let us first restate the DC for multiple new facilities:

CHAPTER 2. EXISTING THEORY FOR TREE NETWORKS 17

d { x j , X k) < bjk, U , k) e l B

(DCA)
(DC.2)

The necessary and sufficient conditions for consistency of DC are provided
in [8] in terms of n (n — l)/2 inequalities named Separation Conditions (SC). In
order to define these conditions, an auxiliary network (which we call Linkage
Network {LN) throughout the thesis) is constructed by using the sets Ic and
Ib - For each existing facility i, there exists a node E{, I < i < n, associated
with this existing facility, and for each new facility j there exists a node Nj,
1 < i : ̂ ^) associated with this new facility. Two nodes Nj and £',· are joined
by an undirected arc of length Cji for each (j,i) G Ic·, and two nodes Nj, Nk
are joined by an undirected arc of length bjk for each (j, k) 6 Ib · The node set
of L N is { N i , N m } U {Ei,...,En} and arc set of LN is {(Nj,Ei) : (j,i) G
Ic} U {{Nj,Nk) : (j ,k) G Ib }· Figure 2.1 below provides an example for the
network LN.

Figure 2.1: Example of a Linkage Network (LN)

It is reasonable to assume that LN is connected, otherwise each compo­
nent of LN can be handled independent of other components. That is, DC
decomposes into as many independent subproblems as there are components

in LN.

CHAPTER 2. EXISTING THEORY FOR TREE NETWORKS 18

Let £(Ep, Eg) be the length of a shortest path between Ep and Eg on LN.
Then the following theorem of [8] is the most fundamental result regarding the
consistency of DC.

T heorem 2.1 (Separation Conditions (SC)) DC is consistent if and only if
d{vi, Vj) < C{Ei, Ej) for 1 < i < y < n. □

We note here that for single new facility SC are just those conditions
d(vi,Vj) < c,· + Cj, 1 < i < j < n which we have stated in the context of
neighborhood intersections. The necessity part of the theorem is proved by a
repeated application of the triangle inequality. Hence it is applicable to general
networks. The sufficiency of 5'C' is proved by means of an algorithm called Se­
quential Location Procedure (SLP) which constructs a feasible solution if one
exists or concludes that DC is inconsistent. This implication is not extendible
to general networks. Figure 2.2 below provides an example to failure of suf­
ficiency of SC even on a simple cycle of 3 nodes. Although the separation
conditions are satisfied DC is inconsistent.

(LN)

d(x,v,)^l d(Vg,v̂ ̂L (E ,JE2)='2

d(x,v̂ ^ 1 diVg.Vj) < <L(Ei £ 3)=2

diXyV^}^! d(v2,Vj} ^ JL(E2Ei

(DC) (SC)

Sufficiency of SC also fails when new facilities are restricted to nodes of
the network. A simple example is provided in Figure 2.3 below.

The following string model represents how SLP works. Imagine that the
tree is represented by appropriately inscribing straight line segments on a board
such that each line segment represents an arc. At each vertex y,· strings of length
Cji are fastened for each new facility such that (j,i) € la- At each step a tip
vertex is chosen and all the strings fastened at that vertex are pulled tight on

CHAPTER 2. EXISTING THEORY FOR TREE NETWORKS 19

d(x,v,) ^1

d(x,v^ ^ 1
d(Vj.V2) < L (E i JE2)=2

(DC) (SC)

Figure 2.3: Failure of Sufficiency of SC for Node Restricted DC

the edge towards the adjacent vertex. If all strings reach that vertex then they
are engaged there and the tip vertex, just processed, together with its incident
edge is removed from the board. The procedure is repeated with the resulting
tree. If at some step, some of the strings do not reach the adjacent vertex,
the shortest one is selected. The point on the edge where the endpoint of the
shortest string reaches is the location of the new facility it is associated with.
Those strings that are pulled from the chosen tip are engaged at that point.
Then all the strings left at the nonprocessed nodes that are related to the newly
located new facility are pulled towards the point where the new facility is just
located. This provides a feasibility check for the present location of that new
facility. If all the strings reach then the location is feasible and all the strings
related to this new facility are removed from the board. However, if at least one
of the strings do not reach then the algorithm terminates infeasible. New strings
are engaged to the point of location of this new facility for those unplaced new
facilities that are related to the current new facility. The algorithm continues
in this manner treating each placed new facility like an existing facility, until
either all new facilities are placed or the the current tree reduces to a point.
In the latter case all unplaced new facilities are located at that point.

If the separation conditions hold SLP described above always finds a feasi­
ble location vector in 0[in{rn + n)) time and it is also proven in [8] that SLP
is a best algorithm for determining consistency of DC.

Tansel, Francis and Lowe [15] provide extensions of the results obtained
in [8]. They characterize uniquely located new facilities by means of binding
separation conditions.

CHAPTER 2 . EXISTING THEORY FOR TREE NETWORKS 20

A separation condition holding at equality is called binding. Let P{Ei, Ej)
be a path in LN. P{Ei,Ej) is said to be a tight path if C{Ei,Ej) = d{vi,Vj).
We say new facility k is uniquely located if its location point is the same in all
feasible solutions to DC. The following property relates uniquely located new
facilities and tight paths to each other.

P ro p e rty 2.5 New facility k is uniquely located if and only if Nk is on at least
one tight path in LN. □

An immediate corollary to this property suggests that DC has a unique
feasible solution if and only if every new facility node lies on at least one tight
path.

Another result, enabling to locate new facilities on tight paths without
using SLP is provided with the next property.

P ro p e rty 2 .6 The nodes representing new and existing facilities in a tight
path P{Ei, Ej), occur with the same ordering mid spacing in the path as do the
corresponding locations in P{vi,Vj) on the tree. Also all facilities on the tight
path are uniquely located. □

A sketch of the proof of this property can be given by a string analogue of
the problem. Assume buttons representing new and existing facilities on the
tight path P(Ei, Ej) are placed on the corresponding nodes of the tree and the
string path of length C{Ei,Ej) is pulled tight from E, to Ej on the tree, the
length of the string path exactly matches d(u,, V j) in T, since the corresponding
separation condition is binding.

CHAPTER 2. EXISTING THEORY FOR TREE NETWORKS 21

2.3 Minimax Problem with Mutual Commu­
nication

The theory of separation conditions developed in Section 2.2 can be applied to
Multifacility Minimax Problem with Mutual Communication defined below:

MinA-eG·" f (X)
w here/(X) = max { /i(X),/2(X)}

w ith /i(X) = max {wjid(xj,Vi) : (j, i) e Ic}
f 2 (X) = max {vjkd{xj,xk) : (j,k) e Ib }

All weights wji, vjk are positive real numbers.

The problem is first defined in [4] in the presence of distance constraints
and it is also established that the function / is convex on tree networks. The
problem is shown to be AfV-Havd by Kolen [12] on general networks. The
equivalent version of the problem in terms of distance constraints is solved in
[8]. An equivalent formulation of the problem which we denote by P M M C is
as follows:

{PMMC) Min z
subject to

d{xj,Vi) < z/wji , (j,i) e Ic

d(xj,xk) < z/vjk , { j , k) e l B
X 6

Let z* be the minimum z such that constraint set of P M M C has a feasible
solution. Existence of z* is guaranteed due to continuity and compactness
considerations and due to consistency of DC for sufficiently large z.

Given z, we can construct an auxiliary network which is the linkage network
LN{z) as dependent on z in a similar manner as described in Section 2.2. The
edge lengths on LN{z) are the corresponding reciprocal weights l/vüji or Ijvjk
multiplied by z. Let Cz{Ei,Ej) be the length of a shortest path in LN{z).
Then C~{Ei,Ej) = zC\{Ei, Ej) where C\{Ei,Ej) is the length of a shortest

CHAPTER 2. EXISTING THEORY FOR TREE NETWORKS 22

path in LN{ 1) with 2; taken to be unity. If we define n,j = Ci{Ei, Ej) then we
have Cz(Ei, Ej) = znij. Note that riij is just the sum of the reciprocal weights
on the path P(Ei,Ej) of LN(l). Hence the separation conditions

d(u,·, Vj) < C~{Ei, Ej) , I < i < j < n (2.7)

are equivalent to
d(vi, Vj) < ZTiij , I < i < j < n (2 .8)

Then from (2.8) we have z > d{vi,Vj)/nij, I < i < j < n. So minimum feasible
z is found by taking z* = maxi<,<j<„{d(v,,u_,)/n,j}. Once z* is computed, a
feasible location vector can be constructed by applying SLP to constraints

d{xj,Vi) < z*fwji , \ < j < n
d(xj,Xk) < z*/vjk , 1 < i < ^ < m

Complexity of solving P M M C is determined by the complexity of finding
z* which requires finding all shortest path distances in LN{\). Using Dijkstra’s
shortest path algorithm once for each £'-node, z* can be calculated in 0 (n(m +
n)^) time which dominates complexity of SLP.

An implication of tight paths discussed in Section 2.2 for P M M C is that
new facilities on the tight paths are located uniquely without using SLP and
the rest of the new facilities can be located by SLP operating on a smaller set
of distance constraints.

2.3.1 D istance Constrained P M M C on Tree Networks

Erkut, Francis and Tamir [7] considers P M M C on tree networks in the pres­
ence of distance constraints. From the analysis in the previous sections it is
easy to find the equivalent formulation of the problem as:

CHAPTER 2. EXISTING THEORY FOR TREE NETWORKS 23

{C - PM M C) Min Z

subject to
d(xj ,v,·) < z / w j i > (i>0 € Ic

d{xj, < x / v j k > i h k) e I b

d{xj ,Vi) < Cji 1 { h i) e Ic
d{xj, Xk) < bjk . { h k) € I'b

X e c m

where Iq and Ig are defined to indicate that they are not necessarily equivalent
to Ic and Ib although defined similarly.

Analysis in [7] relies basically on the results obtained in [8] for the distance
constraints. Authors propose two algorithms to solve C — PM M C. The first
one is a polynomial algorithm which performs a binary search over the opti­
mum objective value z and requires data to be rational numbers. The second
algorithm is a strongly polynomial one which employs the general parametric
approach suggested by Megiddo [14].

Binary search algorithm is based on two stages. In the first stage an interval
of prespecified length that contains the optimum objective function value is
found by performing a bisection search over a finite set of 2: values and in the
second stage the exact optimal value of ^ is found. SLP is used to check for
the feasibility of distance constraints at each iteration. Final step is to apply
a shortest path algorithm to find the exact value of 2 .

Parametric approach depends on the results of Megiddo [14] for converting
a (strongly) polynomial algorithm for a given combinatorial problem into a
strongly polynomial algorithm to solve the parametric version of this combi­
natorial problem.

Let F{z) = mh\{L(Eh, Ei) — d{vh,Vi) \ \ < h < i < n} where L{Eh,Ei)
is the shortest direct path in LN{z) and a direct path is defined to be a path
whose intermediate nodes are all A^-nodes and terminal nodes are two distinct
£■-nodes. It was shown by Tansel et al. [15] that an equivalent version of
separation conditions can be stated in terms of shortest direct paths. For some

CHAPTER 2. EXISTING THEORY FOR TREE NETWORKS 24

value of F{z) is attained for some direct path on LN{z)^ so with each value of
z an optimizing direct path can be associated. The real line can be decomposed
into finite set of intervals on which all z have the same optimizing direct path
in each interval, i.e. F{z) is linear in each interval. At least one and at most
two of these intervals contain z*.

For a specified value of z an algorithm which uses a shortest path algorithm
as a subroutine, is used to compute the value of F(z). This algorithm is the
primary algorithm for solving the parametric version of the problem with z
being the parameter.

The algorithm is initiated by some uncertainty interval Iq which contains z*.
The shortest path algorithm is applied parametrically with arc lengths that are
some linear functions of z. Since this algorithm applies additions, subtractions,
and comparisons only, it generates linear functions. For the comparison of two
linear functions, the intersection point z', called the critical value, is found.
The sign of F(z') is computed so that whether z' < z* or not is determined.
In either case the interval of uncertainty can be reduced. So the algorithm can
proceed to next step, without a need to specify a value for z in the current
interval. This step is called comparison resolution step. This step is continued
until termination where an interval containing z* is left with the following
properties:

There is the same optimizing pair for all values of z in the interval, i.e.
F(z) is linear over this interval, so z* can easily be computed. The complexity
of the parametric approach is 0 (mn^(m + n.)^).

2.4 Biobjective Multifacility Minimax and Vec­

tor Minimization

Tansel,Francis and Lowe [16] consider biobjective multifacility minimax prob­
lem on tree networks, which involves as objectives the maximum of the weighted

CHAPTER 2. EXISTING THEORY FOR TREE NETWORKS 25

distances between specified pairs of new and existing facilities and maximum of
the weighted distances between specified pairs of new facilities. The Biobjective
Multifacility Minimax Problem B M M can be stated as follows:

vector minimize
where f { X)

M X)
M X)

{ f { X) : x e T ^ }

{ MX) , MX))
max {wjid{xj,Vi) : (j,i) € /c }
max {vjkd{xj,xk) : (j,k) € h }

[16] characterizes efficient points of B M M by making use of separation
conditions and provides an 0 (m^(m + 7i)^) procedure to construct the efficient
frontier which is the set of two tuples (^1 , 2:2) constituting the objective values
of efficient points.

First the problem is transformed into an equivalent form in terms of distance
constraints, i.e. Z = (2:1 , 22) is to be vector minimized subject to

d{xj,Vi) < zi/wji , {j,i) e Ic

d{xj,xk) < z-ilvjk , { j , k) e l B

The graph LN{Z) is constructed associated with the above DC. Then it
is shown that the following are equivalent.

(a) A location of vector X is efficient.

(b) At least one of the arcs (A(y·, Nk)·, {j, k) € Ib is in a tight path in LN{Z)

where Z = f{X) ·

Further general results are provided which unify the necessary and sufficient
conditions for efficiency of a broad class of location problems which involve t
(t > 1) minimax type objectives.

The t-objective Multifacility Minimax Problem can be defined as follows:

CHAPTER 2. EXISTING THEORY FOR TREE NETWORKS 26

vector minimize { /(^) · ^ ^ T ’”'}
where f { X) = (f i { X) , f t { X))

fr{X) = max [max u.) : {j, i) G T 0 Ic},
max {v^ji^d{xj,xk) : {j,k) G F 0 Is)],

0 < ?· < i

F is assumed to be a nonempty subset of Ic U Ib , and weights tut. and are
positive for each 1 < r < t. fr(X) is defined as the r-th objective.

For the ¿-objective multifacility minimax problem a linkage network LNbc
is constructed. The node set of LNbc is {N\^...,Nm} U {Ei^...,En) and the
arc set is as follows: For each r, 1 < r < t if (j, i) € F f\ Ic then there is
an arc ar{Nj, Ei) of length Zrivf- and if (j, k) e F 0 Ib then there is an arc
ar{Nj,Nk) of length Zr/vji^. Thus there exist several arcs between a pair of
nodes of LNbc · It is proven in [16] that X is efEcient if arid only if for every
r € {1 , with > 0 , at least one arc associated with the r-th objective is
in a tight path in LNbc ·, where Z = f{X) .

2.5 Other Approaches

Erkut, Francis, Lowe, and Tamir [6] consider the multifacility location problem
on tree networks subject to distance constraints. All constraints and the ob­
jective function are arbitrary nondecreasing functions of any finite collection of
tree distances between pairs of new and existing facilities and between distinct
pairs of new facilities. It is shown in [6] that such problems are equivalent to
mathematical programming problems which, when each function is expressed
using only maximization and summation operations on nonnegatively weighted
arguments, are linear programming problems of polynomial dimensions. This
result may constitute another partial answer to the question why tree networks
are more tractable than cyclic network problems since they have equivalent
mathematical programming formulations, while cyclic network versions of the
same problems do not.

CHAPTER 2. EXISTING THEORY FOR TREE NETWORKS 27

We also consider two papers by Chhajed and Lowe [2 , 3] which are the
only papers related to more general graphs than trees. The main concern in
[2] is the minisum problem with mutual communication, but their approach
is applicable to node restricted version of the minimax problem with mutual
communication. The minisum problem is reformulated in the form of a graph
theoretic Node Selection Problem defined on a special graph which is solved in
polynomial time when the graph that denotes the interaction between pairs of
new facilities has the special structure of series-parallel graphs.

' In [3], authors consider a generic multifacility location problem, which sub­
sumes as special cases several jV*'P-Hard location problems. The generic prob­
lem is solved in polynomial time for the k-tree structured interaction between
new facilities. This paper identifies the broadest efficiently solvable classes
of several difficult problems which includes the node restricted version of the
minimax problem with mutual communication.

The problem we consider in this thesis is a feasibility problem whereas works
in [2 , 3] consider the related optimization form. The basic deviation of our
approach from that of [2] and [3] is twofold: First, we consider the continuous
version of the problem while [2, 3] restrict the locations of new facilities to
finitely many candidate points. Second, we require that the interaction between
new facilities has a tree structure whereas in [2] and [3] the problem is solved
for series-parallel and ¿--tree structured interactions. Hence our approach is a
generalization of [2] and [3] in one respect while it is a restriction in the other.

2.6 D C is M V - C o m p l e t e on General Networks

Up to now, we have provided the basic theory for tree networks, and cited
only two works on networks more general than trees that covered the node
restricted version of the related minimax problem as subcases. In this section
we provide the basic result by Kolen [12] regarding the distance constraints on
general networks.

CHAPTER 2. EXISTING THEORY FOR TREE NETWORKS 28

The problem of finding a clique of size c of a given graph is known to be
A/^'P-Complete (see [9]).The problem CLIQUE which we state next, is reduced
to the distance constraints problem of deciding whether there exists a feasible
solution to the given set of distance constraints. So the distance constraints
problem is also A/^P-Complete.

CLIQUE

Instance: A graph G = (V,E) with V = and an integer c.
Q uestion: Does there exist a subset C C V of cardinality c such that [vj, G

E i f { v ^ , V k] C V ?

Let DC — d denote the problem of deciding whether there exists a feasible
solution to the given set of distance constraints. DC — d is stated next.

DC-d

Instance: /1 graph G' — (V',E') with V = th €. Ai, lengths
e(e) e 2+, e e E \ Cji e Q+, \ < j < rn and \ < i < n, bjk G Q+,

I < j < k < m.
Q uestion: Is there a set X = {.cj, . . . , on G' such that

d{xj,Vi) < Cji , 1 < j < m , 1 < z < n,

d{xj,Xk) < bjk , 1 < i < ’̂ < m?

Now we state the basic result regarding the distance constraints on general

networks.

T heorem 2.2 DC - d is AfV-Complete.

Proof: DC — d belongs to the class AfV since by using standard shortest
path techniques we can test whether a given solution satisfies the bounds in

polynomial time.

We shall reduce the problem CLIQUE to DC — d. Let an instance of
CLIQUE be given by G = (V, E) with V = {ui,...,u,i} and an integer c. The

CHAPTER 2. EXISTING THEORY FOR TREE NETWORKS 29

corresponding instance of DC — d is given hy V = V \JWCU C {p} U {<7} U {r},
where VF = { u ; i , a n d f/ = E' = {[p» v .] n , ·] , [u,·, w,·],
[wi,Ui] : i = U e E, i < j} , m = 3c, ((e) = 1 for all
e € £', Cji = lor I < j < m, 1 < * < n, bjk — 1 for \ < j < k < n. (See
example in Figure 2.4 with c = 3.)

We claim that G = {V,E) contains a clique of size c if and only if there
exists points xi,...,Xm on G' = {V',E') such that the weighted distances are
less than or equal to the given upper bounds, i.e.

7) ^ I 5 ^(^j+2c j ^ 1) J l ,...,c (2.9)

d{ x̂j^Xj-\-c) ^ 1) ^j+2c) ^ 1) J

d{xi^xj^2c) < 1 , 1 < * < i < c. (2.11)

Let x\^...^xzc be the points on G' = {V',E') satisfying (2.9), (2.10) and
(2.11). Since d{p,q) = d{q,r) = 1, from (2.9) and (2.10) we have Xj e K, say
Xj E Vj, Xj+c = and Xj+2c = Uj, j = l,...,c . It follows from (2.11) that
[vi,Uj] E E', i.e., [vi,Vj] E E, i < j. Hence {vj : j = l,...,c} is a clique in the
graph G = (l/,^).

Let {vj : j = 1 , ...,c) be a clique of size c in G. Define Xj = vj, xj+c = wj,
Xj^2c = Uji j = l,...,c . Then xi,. .. ,X3c satisfy (2.9), (2.10) and (2 .1 1). □

V/ w ,

(G)

(G')

Figure 2.4: Example of the Construction of G' from G.

Chapter 3

DISTANCE CONSTRAINTS
AND EXPAND/INTERSECT
METHOD IN GENERAL
METRIC SPACES

In this chapter we deviate from the network context and introduce a new
approach to solve distance constraints in general metric spaces. To pose the
problem in its general form, let L be a metric space with distance d that
satisfies the usual axioms of nonnegativity, symmetry and triangle inequality
of a metric. Some well known instances of (L,d) are obtained by taking L to be
the A’-dimensional Euclidean space and d to be ^p-norm. Our particular interest
in the next chapter will be in the case where L is an embedded network and
d{x, y) is the length of a shortest path between x and y in L. The main results
we give in this chapter are true for arbitrary metric spaces.

We have previously defined distance constraints on networks. The definition
of DC on general metrics is similar. We take ui,...,u„ be n fixed points in L,
rather than vertices in (7, with u, being the location of existing facility i. New
facilities are to be placed at points .rj, ...Xm any where in the location space to

;io

CHAPTER 3 DISTANCE CONSTRAINTS AND 31

satisfy distance bounds on specified pairs of facilities. So we have:

^ Cji

X \ , ..■ , Xyyi G L

(;V0 e Ic
(i, k) e I b

{DCA)
{DC.2)

Again Cji, bjk are nonnegative finite constants and Ic and Ib specify the
pairs of facilities for which there is a bound on their separation.

In Chapter 2, we have defined an auxiliary network called the Linkage
Network LN which conveniently represented the data of the problem. Since,
construction of LN does not rely on the specific location space, an equivalent
auxiliary network LN is also valid for DC defined in general metric spaces.
Now, we denote the portion of LN spanning only A j’s and the arcs between
them by L N b - Figure 3.1 shows an example of a linkage network and related

L N b .

(LN̂)

Figure 3.1: Example of L N and Related L N b

In the next section we give a new approach to solve DC in general metric
spaces for the case when L N b kas a tree structure. The basic idea of the
method depends on successively performing two set operations EXPANSION
and INTERSECTION defined on subsets of the location space.

CHAPTER 3 DISTANCE CONSTRAINTS AND ... 32

3.1 EXPAND/INTERSECT Method for Gen­
eral Metrics

Given a nonempty subset S oi L and a nonnegative constant r, the expansion of
S by r is the set of all points in L for which there exists j/ in 5 with d(x, y) < r.
We denote the expansion of S by r by N{S,r). N{S,r) includes all points of
L that are reachable from at least one point in S within r distance units. For
example, if L is the plane, d is the Euclidean distance, and S is the ball centered
at X with radius a, then N{S^ ?·) is the ball centered at x with radius o: + r.
(Figure 3.2)

Figure 3 .2 : Expansion of S by r (in the Plane with Euclidean Distance)

The definition of expansion implies x G N{S,r) if and only if x £ N{y,r)
for some point y G S if and only if x E ijyes ^ { y A ’)· Hence, we have
N{S,r) — Uyes^iVA’)· With this observation we may think of N{S,r) as
the neighborhood of S within r distance units (this explains the choice of our

notation A^(·,/·)).

Note that the definition of expansion does not require any assumptions
on S other than it being nonempty. S may be finite, infinite, connected,
disconnected, open or closed. If S is compact, then any expansion of S is also
compact provided that r is finite and L is closed.

First, let us consider DC(l). Since we are looking for a point x in L
such that d{x,Vi) < c,·, i ^ I = the feasible set for DC{1) is S =
Dig/A^(y,, c,). Each neighborhood yV(u,-,c,) is nonempty since we assume Ci

CHAPTER 3 DISTANCE CONSTRAINTS AND ... 33

are finite nonnegative constants. The intersection may or may not be empty.
How one computes the neighborhoods and their intersection is a computational
question that requires a specific knowledge on the type of location space under
consideration. We defer the computational side to Chapter 4 for the case of
networks.

Consider now DC with m > 1 . For j = define Ij to be the subset
of / consisting of indices I for which (j, ¿) 6 Iq. Ij is the set of indices of
the ¿'-nodes in the linkage network that are connected to Nj with an arc. Let

’ J = {l,...,m }.

We may rewrite (DC.l) in the form

 ̂ ^ I j i J ^ d .

Feasibility requires each Xj be in the set Sj = riig/j N{vi.,Cji) for j 6 J. If
Ij = 0, we take Sj = L. Now, an equivalent statement of DC is as follows:

di^Xj^Xfi) ^ ĵk 1 ^
X j G Sj , J ^ J .

{DC.2)
{DC.V)

It is evident from {DC.2) and {DC.V) that if LNb is disconnected, then DC
decomposes into independent subproblems each corresponding to a component
of LNb - S o we may justifiably assume LNb is connected.

We now give a method to construct a feasible location vector X, whenever it
exists, under the assumption LNb is a tree. To motivate the method, let {j, k)
be a fixed pair in Ib - If we expand Sj by bjk units and intersect this expansion
with Sk·, then every location Xk in this intersection (when nonempty) allows
the choice of some Xj in Sj such that d{xj, xk) < bjk. This follows from the
fact that Xk G Sk H N{Sj, bjk) implies Xk G N{Sj, bjk) = Uj/gs·, ^{v , ^jk) so that
there exists a point y in Sj such that Xk G N{y, bjk). Clearly then we may take
Xj = y to satisfy the constraint d{xj,Xk) < bjk.

We call the operation Sk ^ Sk H N{Sj,bjk) the EXPAND/INTERSECT
Operation from Sj into Sf. The algorithm performs this operation sequentially

CHAPTER 3 DISTANCE CONSTRAINTS AND 34

and is termed the Sequential Expand/Intersect Procedure (SEIP).

Before we introduce S E I P we give an indexing convention for LNb - (Note
that LNg is assumed to be a tree.) We root the tree at a new facility and
relabel it, if necessary as m (i.e. as N^) and relabel the nodes so that the
children of node j have smaller indices than j . If are children of j , we
say j is the parent of i — The numbering implies j > ji for each
child Ji of j . Let Jk denote the set of indices of the children of a given node

Nk.

S E I P consists of two phases. In the first phase, we process nodes begin­
ning with leaves of LNb and moving towards the root. A given node in any
iteration is eligible for processing only if all children of that node are already
processed. In processing an eligible node Nk in some iteration, we aim to find
the intersection of Sk with expansions of all of its children. This is done se­
quentially in an arbitrary order of child indices. The intermediate intersections
are denoted as F / Initially, F/. = Sk· Then Ff. is replaced by Ff. H N(Fj,bjk)
for some child Nj of Nk- This operation is repeated for each remaining child
of Nk- Each intersection causes Ff. to either shrink or remain the same. When
the intersection is found with all children of Nk, the final set FI. is defined to

be Fk-

During the procedure, if Fk becomes empty at any stage, this indicates
inconsistency of DC. We terminate infeasible when this happens.

Construction of the sets Fk, k — l,...,m constitutes the first phase of
SE IP . If all Fk are nonemjjty, the second phase is initiated. In the second
phase, actual locations of new facilities are found in reverse order, moving from
the root towards the leaves. A node is eligible for processing in some iteration
of Phase 2 only if its unique parent is already processed (that is, the location
of the parent facility is already selected). The constructed solution X\,...,Xm
is feasible (to be proven).

CHAPTER 3 DISTANCE CONSTRAINTS AND ... 35

SE IP (Sequential E x p an d /In te rsec t P rocedure)
(Constructs a Feasible Solution to DC when LNb is a tree)

Phase 1 . {Input : Si,...,S„^, {bjk : {j-,k) 6 LNb]·, metric d{·) and L, root index)

In itia l : Fj — Sj for every childless j .

M ain S tep : Choose any Nk for which Fj is available for every child Nj of Nk.
Set F'k 4- Sk.
For each child N^ of Nk apply EXPAND/INTERSECT Operation:
Construct the expansion N{Fj, bjk) and compute <— Fl.r\N{Fj, bjk).
After all children of Nk are processed set Fk <— F /
If Fk = 0 then terminate infeasible.
If is computed (i.e. the root node is processed) and Fm ^ 0,
then go to Phase 2.
Otherwise repeat the main step.

Phase 2 . {Input : all nonempty, {bjk : {j,k) G LNb })

In itia l : Choose an arbitrary point y in and set x^, = y-

M ain S tep : Choose any Nk whose unique parent has already been processed.
That is, choose any Nk for which Xp(k) is already selected where
p{k) is the index referring to the unique parent Np(k) of Nk.

Construct Fk{xp(k)) = N{xp(k),bk,p(k)) 0 Fk.
Choose any y in Fk{xp(k)) and put Xk = y (the proof Fk{xp(k)) / 0
will be given).
\i x\, . . . , X m are all chosen, then stop.
Otherwise repeat the main step.

To illustrate S E IP , suppose LNb is as shown in Figure 3.3.

Assuming Na is selected as the root node, we initialize Phase I with F\ = S\,
F'2 — S'2 , F,\ — S,\. Then we choo.se A3 and construct F3 = N{Fi,bi/) D
N{F2 -,b'n) 0 6 3 . The next node to choose is A5 yielding As = N{F3 ,b3)̂ D
A (A |,6,ir>) n ,S'.5. Finally, Mi is chosen to construct Aj = M(As,A6) O So.

CHAPTER 3 DISTANCE CONSTRAINTS AND ... 36

Figure 3.3: Example to Illustrate S E I P

Phase 2 selects nodes in reverse order from the root towards the leaves.
A legal sequence of selection is Nq, N5 , N4 , N3 , Ni, N 2 which begins with xe
arbitrarily chosen in Fq, followed by X5 ^ FsD N (xq, ^4 5)̂
X3 ^ F3 O N{x5 , 635), a;i e Fi n N{x3 , bis), 0:2 € F2 n N{xs, 623)· The selection
of each x* is arbitrary in its sets Fk f) Â (Fp(fc), The constructed vector
(xi,...,X 6) satisfies d(xi,X3) < 613, d{x2 ,xs) < 2̂3, <̂ (2:3 , 2:5) < 635, d(x4,X5) <
645, d(x5 ,xe) < bse, X j G Sj, j = I, .. .,6 and is feasible.

It is evident that Phase I of S E I P terminates in at most m — 1 repetitions
of the main step each corresponding to an expand/intersect operation defined
by a distinct arc of LNb · Likewise, Phase 2 terminates in m steps with each
step corresponding to a selection of x̂ ..

In the next section we will prove the correctness of the algorithm which
will in turn lead to the proof of the necessary and sufficient conditions for
consistency of DC which we state next.

Theorem 3.1 DC is consistent if and only if Phase I S E I P terminates fea­
sible (i.e. Fj 7 ̂ 0 for all j = l , . . . , 7u).

Observe that Fi, ..., F„i can always be constructed for any metric space as
long as LNb is a tree. The time bound of the construction is 0{mg{L, d)) where

CHAPTER 3 DISTANCE CONSTRAINTS AND 37

g{L,d) is the time bound for one expand/intersect operation as dependent on
the metric space (L,d). When L is a network, g{L,d) is polynomial in the
number of new and existing facilities and the number of edges of the network
(will be proven in Chapter 4). Hence, consistency check is done in polynomial
time for networks.

3.2 Analysis of S E I P

This section proves the correctness of S E I P and the necessary and sufficient
conditions for consistency of DC given in the previous section.

The following lemma justifies the correctness of the second phase of SEIP.

Lem m a 3.1 In Phase 2 of SE IP , Fk{xp(k)) k = l , ...,? n — 1 .

P ro o f : Let A: 6 { l , . . . ,m - 1 }. The algorithm chooses k only if Xp(k)
is already located. Clearly there is at least one such k at the beginning since
Xm G 7 ̂ 0 is already picked so that every children k of m can be processed.
When the children of m are picked, then their children can be processed and
so on. So, there is no difficulty as far as choosing an index k whose parent p(k)
has already been processed. Now we must show Fk{xp(k)) ^ 0· Let q = p{k).
Then Fk(xp{k)) = Fk{xq) = N{xg, bkq) fl Fk where the last equality follows from
the definition of Fk{xp(k))· U q = m then x ^ G Pm· If q < m, then from
the inductive structure of the procedure we know that x, G Fg(xp^g)) C Fg
which implies that Xg € Fg. This then implies, using the definition of Fg,
Xg e SgH Cg whorO Cg = DjeJ, which is a subset of N{Fk,bkg) since
k is one of the children of q. Hence, Xg G N{Fk,bkg) so that there exists a
point y in Fk such that d{xg,y) < bkg. Then y G N{xg,bkg) and y £ Fk so that

y G N(xg, bkg) n Fk = Fk(xg). Hence, Fk{xg) = Fk{xp(k)) 7 ̂ 0· °

The next theorem gives the sufficient conditions for consistency of DC. In
S E I P we enter into Phase 2 only if all P i,..., P,„ are nonempty, that is when

CHAPTER 3 DISTANCE CONSTRAINTS AND 38

Phase 1 terminates feasible, and the theorem proves that if Phase 1 of S E IP
terminates feasible we can construct a location vector which is feasible to DC.
Hence DC is consistent.

T heorem 3.2 constructed by Phase 2 of S E I P is feasible.

P ro o f : Clearly, Xk G Fk{xp(̂ k)) for all k. Smce Fk{xp(k)) = ^{xp(k),h,p(k))0
Fk, for all k ^ m d{xk,Xp(k)) < k̂,p(k)· Further, Xk € Fk implies Xk 6 Sk (since
Fk Q Sk) so that d{xk,Vr) < Ckr'ir G h which completes the proof. □

The next lemma is significant because it proves that the sets constructed
by Phase I of S E I P covers all the feasible solutions. That is each Fj contains
the j-th components of all the feasible location vectors. Note that the converse
is not true, that is not all points in a given Fj need to be feasible (except for
the root node which will be proven in the next section).

Lem m a 3.2 Let X = (xi,...,Xm) be a feasible location vector to DC then
€ Fj) J 1, .., .

Proof: (by induction) Let r be the set of indices of all leaf vertices. From
the initialization step of Phase /, = Sk VA: G r. Since {DC.I') imply Xj G S j

Vj, the statement is true for all childless vertices, i.e. Xk G Fk VA; G r.

Now let q G {l,...,m } — r and assume ,t, G Fi for all descendants of q
(inductive hypothesis). Feasibility implies from (DC.V) that Xq G Sg and
from {DC.2) that d{xj,Xq) < hjg for all j G Jq. Then from the definition of
neighborhood we have Xq G N{xj,bjq) Wj G Jq. Hence, Xq G Diey, LI
S q . From the inductive hypothesis we have ajj G FjVj G Jq. Hence N{xj,bjq) C
A^(Fj, bjq) which implies Xq G fljgj, ¡S{Fj, bjq)f\Sq. Observe that the right hand
side is simply F, by the construction scheme in Phase 1. Hence we have Xq G F,
which completes the proof. tH

An immediate corollary to the above lemma proves the necessity part for

the consistency of DC.

CHAPTER 3 DISTANCE CONSTRAINTS AND ... 39

C orollary 3.1 If DC is consistent then Fj / 0 for all j = 1 , ...,m (i.e. Phase
1 of S E l P terminates feasible).

Proof : Consistency of DC imply that there exists at least one feasible
location vector X = (x i , x„,). In Lemma 3.2 it is proven that for any feasible
location vector X, xj e Fj j = 1 , m. Hence Fj ^ 0 for all j = 1 , m. That
is, Phase 1 of S E I P terminates feasible.

3.3 Regions of Feasibility

In this section we are interested in a broader problem of characterizing the
set of all feasible solutions by defining a region of feasibility for each X j . This
problem has not been addi-essed in the literature except for m = 1 . To make
the notion precise, define for j = 1 , ...,m, the set

Lj = {x E L : there exists a feasible location vector X such that xj = x).

Lj is the collection of the j-th component of all feasible location vectors. That
is, Lj is the projection of the set of all feasible solutions onto the location space
L in the y-th coordinate.

Lemma 3.2 implies that the j-th components of all feasible location vectors
are included in the corresponding sets Fj constructed in Phase 1 of SE IP .
The sets Lj, by definition, consists of all such points. Hence we have Lj C Fj,
j = [,.. .,m.

These sets are significant because they readily allow to construct a feasible
solution. For example, assume say L\ is (somehow) computed, place new
facility 1 at a point in L\ and solve DC for the remaining m — 1 new facilities
by changing the status of new facility 1 to an existing facility. This immediately
suggests a recursive procedure that eliminates new facilities one at a time from
DC and changing their status to existing facilities in subsequent steps. This
way we can construct as many feasible location vectors as desired.

CHAPTER 3 DISTANCE CONSTRAINTS AND ... 40

We call Lj the region of feasibility for new facility j . Any location in Lj is a
feasible choice for Xj in the sense that it allows to locate all other new facilities
feasibly. Furthermore, each Lj is a maximal set having this property.

Of course, in order these definitions to be operational we have to find a way
to construct these sets efficiently. The following theorem readily solves this
question.

Let Fm be the set constructed I>y Phase 1 of S E I P for the root node Nm

of LNb .

Theorem 3.3 Fm = Lm-

Proof : As we have indicated earlier Lemma 3.2 implies Lj C Fj for all
j = l,...,rn . Hence we have Lm Q Fm· From the construction scheme in
Phase 2 of S E I P we know that for all x € we can construct a location
vector X = (xi, ...,a:,n) with = x which is feasible (from Theorem 3.2). By
definition Lm contains all such points which implies Fm ^ Lm- Hence the proof
is complete. ^

The above theorem immediately suggests a way to construct all Lj, j =
l,...,m . Simply root the tree LNb at each node and apply SE IP . How­
ever, we have a much more efficient way to construct all Lj, j — l,...,m .
We first give the following lemma which provides a stronger characteristic of

expand/intersect operation.

Lem m a 3 .3 Let Si and S 2 be arbitrary two sets in a metric space. Then

N { S i , r) n S 2 = N { F i , r) n S 2

where Fy = N{ 8 2 , 1’) D .S’l and r is a nonnegative real mimber.

Proof : Since F\ C , S'l, we can write S\ = (>9i — F\)yj F\. Then N{S\^r) H
.9, = N[{Si - F i) \ j F i , r] 0 S2 = [N{Si - Fi,r) U N{Fi,r)] n S2 = [N{Si -

CHAPTER 3 DISTANCE CONSTRAINTS AND ... 41

Fi , t) n 52] U [A^(Fi , 7·) n ¿'2]. So, if we can show that N{S\ — Fi,?’) D S'2 = 0
then the proof will be complete.

Let y € {Si — Fi). Since y ^ Si and y ^ Fi, we have y ^ Â (.S'2, r). It follows
then Vy € {Si - Fi) we have y ^ yV(52,r). Let u € N{Si - F i,r). Then for
some y € (5i — Fi) d{y, u) < r. If u € ¿'2, then d(y, u) < r implies y € N{S 2 , r)
which is impossible. Hence u ^ S'2 . We have shown that u € N{Si — F i,r)
implies u ^ .S'2 then we have Â (.S't — Fi, r) n F2 = 0. □

The lemma states that a recursive application of expand/intersect operation
on two distinct sets is actually the same as applying this operation on these
sets independently. More than that the intersection sets contain the actual sets
of points which supply the pairs {x, y) that satisfy the constraints y) < r.

The next theorem suggests a simple algorithmic way to construct all Lj's
for j = 1, ..,m.

T heorem 3.4 Let an altered version Phase 2! of Phase 2 of S E I P be given
as follows:

Phase 2 '. (Input : Fi,...,F ,„ all nonempty, {hjk : {j,k) 6 LNb })

In itia l : Set F,* <— F,„.

M ain S tep ; Select any k whose parent p{k) has already been processed (i.e.
is already constructed).
E X P A N D /IN T E R S E C T O peration : Construct the expansion

^{Fp(k)^h,p(k)) and compute F / = N{F*(i^ ,̂bk,j,(k)) n Fk.
If all Fj*,...,F,* are constructed then STOP. Otherwise, repeat the
mam step.

Then Ff = Lj for all j = l, . . . ,m.

Proof: From the initialization stej) of Phase 2! we have F,* = F,„ and by
Theorem 3.3 we have F* = F,„ = L»,. Since S E I P enters into Phase 2! only

CHAPTER 3 DISTANCE CONSTRAINTS AND ... 42

if all F i , F m are nonempty we have F^ ^ 0. Now, if we expand F^ by bkm
units and intersect with F^ where k is a child of m then we have

f ; = N{F,:,bk,n)nF,

= N{F,n,bkrn) 0 Fk

= yv[(f l N(F,,b,^nS^) ,bkm]r\Fk
j^Jm

where the third equality follows from the construction of in Phase 1 . Note
that N{Fji^,bkm) n Ft ^ 0 because from the construction of Fm (= F^ = Lm)
for all X E Fm we have at least one point y in Ft such that d(x, y) < bkm and
also y in N{F;^,bkm)· Now, if we rewrite the same thing with child k separated
we have

F't = A f[liV (Fi,6i,)n(n

Let Kk = ^jm) H Sm- Then Lemma 3.3 states that

N[{N{Fk, bkm) n /u·), h,n] n Ft = N{Kk, bkm) n F,.

Hence we have

f ; = iv[n N(ej,bi„.)ns ,„.bt„]nFt.

At this stage, observe that we can view the last RHS as if we rooted LNb
at node Nk and applied Phase I of SEIP . Call this the second application
of Phase 1 . In the second application, node Nk becomes the parent of node
Nm and the children of node Nm are now nodes identified by the indices in
Jm — and while the children of node Nk are the nodes identified by the
indices in Jk U {m} (See Figure 3.4).

From the above analysis, it is direct to observe that the sets F,, j 6

J — of the first application of Phase I remain the same in the second
application, only the sets Ft and F„ are altered. Let F^ and F,)*, denote the
sets altered in the second application, so that F, ̂ — rijeym-tt·} ^om)

CHAPTER 3 DISTANCE CONSTRAINTS AND 43

Figure 3.4: New Root in the Second Application.

and = N(F^, bkTn)OFk. From the construction of Fk in the first application
we rewrite F^ as follows:

F^ = N (F , l bkm) n (n N(Fi, bik) n Sk).
i€Jk

This is simply the final construction step in the second application of Phase
1 . Hence by Theorem 3.3 we have F^ = Lk- Since Fk is also equivalent to
F^ we have Fj ̂ = Lk- This result suggests that once we have applied Phase
1 of S E I P and obtained F,n = Lm, we can construct Lj for each child j of
m by one backward application of expand/intersect operation. Then we can
apply the same reasoning to the children of all nodes Nj, j € Jm (i-e. to grand
children of node N,n) This recursive application of expand/intersect operation
backward from root to leaves of LNb gives Phase S!. Hence, at any iteration a
region of feasibility is constructed for a child new facility whose unique parent
has already been processed. □

An immediate result of Theorem 3.4 is that the construction of regions of
feasibility for all new facilities can be done in the same order of the original
S E I P as dependant on the complexity of one expajid/intersect operation on
the given location space.

CHAPTER 3 DISTANCE CONSTRAINTS AND ... 44

0.4 Other Set Constraints and Distance Con­
straints

Consider now a more general version of the problem where, in addition to dis­
tance constraints, there are other constraints that restrict each xj to a subset
of the location space. The additional constraints may be appropriate, for ex­
ample, to restrict new facilities to finitely many candidate points or to disallow
locating them in certain forbidden regions. Let Dj be a subset of L which re­
stricts location of Xj to points in Dj. Consider the problem of finding a location
vector (xi,...,x,n) in L,n such that

d { x j , X k) < bjk , U , k) e I b {DC.l)
d { x j , V i) < Cji) (i)*) ^ d c {DC.2)

G D j , i = l , . . . , m {SC)

Here, (SC) refers to arbitrary set constraints. We assume flj is nonempty
for each j otherwise there is no solution. Other than this we make no assump­
tions on ilj's. For example, the vertex restricted version of distance constraints
on a network may be posed by taking Clj = V = {ui,..., for all j . If different
new facilities are restricted to different vertex subsets, we may take Dj = Vj
where each Vj is a subset of V. We may also assume ilj = L for certain j while
Dj is a proper subset of L for other j . If L* is a forbidden region in L where
none of the new facilities can be placed, we may model this situation by taking
Plj = L — L* Vy. Of course, it is also possible to specify a different forbidden
region Lj for each j in which case we take Dj = L — L*.

Let us call the collection of constraints (DC.l), (DC.2), and (SC), the
General Distance Constraints {GDC). Assuming that LNb defined by Ib is a
tree network, we can solve (GDC) using our existing methods as follows: First,
construct Sj — Dte/j N(vi,Cji) for each j where Ij is the set of existing facility
indices i for which {j, i) 6 ¡c- Then construct Sj ~ Sj П Elj for i = 1,..., m. If
Sj is empty for any j then GDC is inconsistent. Otherwise, use S E I P with
input 6',„), В = {bjk}, (L,d) and the root index m. S E I P terminates
infeasible if and only if GDC is inconsistent. Otherwise, Phase .^constructs a

CHAPTER 3 DISTANCE CONSTRAINTS AND ... 45

feasible solution to G D C .

The correctness of this approach is well justified by observing that none of
the proofs in Section 3 depend on the particular structure of the sets S j .

We conclude that S E I P handles all versions of distance constraints where
new facilities may be restricted to arbitrary finite or infinite subsets of L pro­
vided that LNb is a tree (or forest).

3.5 Cyclic L N b

An immediate idea to extend the method we propose to cyclic LNb is to apply
expand/intersect operation recursively until final sets reach their smallest sizes.
For this we may devise two different approaches as follows:

(1) Replace each arc { N j , N T) of L N b with a pair of directed arcs [N j . , N k)

and (N k , N j) with lengths bjk = bkj respectively. At each iteration, starting
from a given node all the directed arcs are passed (an expand/intersect oper­
ation is applied) by a complete tour. The process is repeated until no set is
changed from one iteration to other.

(2) Apply S E I P on different spanning trees of L N b - At each iteration take
the previously constructed sets as input to the new spanning tree processing.
Continue this process until no set is changed from one iteration to other (or

for all spanning trees of L N b)·

If D C is consistent, at some step all the distance constraints will be satisfied
for all sets and no set will be trimmed further. So these processes should stop
with nonempty sets after some finite number of steps.

The basic difficulty of the cyclic case comes from the fact that even if
the final sets have been computed somehow, their being nonempty does not
imply consistency of D C . Let F J be the final sets constructed. Consider the
following simple example (Figure 3.5) with 3 new facilities whose location space

CHAPTER 3 DISTA NCE CONSTRAINTS AND ... 46

is a simple cycle. Assume Fj*, F2*, F3* have been constructed somehow and
Fj* = {ari,X4}, F-2 = {a’2,.x5} and F3 = {a;3,ar6}. where the distance between
two consecutive points is 1 . Since the example is very simple, by some trial
and error one can easily observe that no matter how and in which order he/she
applies expand/intersect operation the sets Fj*, Fj*, F3* cannot be decreased
further. So Fj*, F2*, F3 are all nonempty. However, DC is inconsistent.

Xi
F* = {x,,X4 }

F} ~(Xi 'X5}

b,2 = l

b,s = l

b23 = l
(LN)

(G)

Figure 3.5: Example of Failure for Cyclic LNb

In the example, even though the distance constraints are satisfied indi­
vidually, there does not exist any feasible location vector which satisfy all
three constraints simultaneously. This suggests that the basic drawback of
expand/intersect operation is that it considers the locations of new facilities
pair at a time while it tries to consider others implicitly. Because of the spe­
cial structure of trees this approach proves to be valid for the case when the
interaction between new facilities has a tree structure, but lor cyclic LNb the

problem stands as an open question.

Chapter 4

COMPUTATIONAL
METHODS FOR NETWORKS

So far we have given algorithms for general metric spaces. We now take L
to be a network and specialize these algorithms to obtain strongly polynomial
methods. Let G be an embedded network with vertex set V = {v\, and
edge set E. For x ,y E G, d{x,y) is the length of a shortest path connecting
X and y. d(·,·) defined in this manner is a distance function that satisfies the
axioms stated earlier.

We need some additional notation. Given a point x in some edge e = [uj, Vj],
the partial edges defined by x are denoted as [us,a:] and [x,Vt]. The length of
edge e = is denoted as L or 1st. For a; € we define 9e{x) to be
the length of the partial edge [uj, a:] and define Og(x) to be the length of [x,Vt].
Note that 9e{x) + 0'^(x) = L and that 0 < 0e{)̂·, < L«· For any two points
x ,y in e = [usjUi], s < t with Oe{x) < Oe(y), the interval [0 e{x).,Os{y)] defines a
segment [;c,y] = K,?/] D

The next section focuses on the single facility case. The results for DC{\)
are needed later in the multifacility case.

47

CHAPTER 4. COMPUTATIONAL METHODS FOR NETWORKS 48

4.1 Single Facility Case

When rn = 1, distance constraints are simply d (x , V i) < Ci, i E I = n}
and the feasible set is 5 = Oiei is consistent if and only if

We construct S one edge at a time. That is, for each e ^ E, we construct
S 0 e, then find S by taking the union of 5” D e over all e E E. Since S f) e =
[nig/ -^(^1) Cl)] n e = riie/[^(^t·, c,·) n e], we first construct N{vi, c,·) D eVi e / ,
then find their intersection.

For notational simplification, let Nl = Â (u,-,c,·) D e and let = d(vi,Vj)
Vi,j. To compute Nl on a given edge e = of length Lt, we define the
following parameters:

a = min {dis,dit}
Ş = max {dis,dit}

7 = m in { d i s + 1s t 1 d i t + ¡¡t , "I· "I·

(la)

(lb)

(lc)

where dependence of a, /3, 7 on indices i, s, t implicitly understood. Observe
that o; < /9 < 7 where the first inequality is obvious. To justify [4 < 7 ,
observe that d,·, < + 1st (because Lt > 0); dia < dn + 1st because d,·* is the
length of a shortest path between u, and Vs while d,j + 1st is the length of a

path from u,· to Vs that visits U(. To show dis ^ “i" ‘i’ *̂‘) observe
dis = \{(îs + dis) < |(d,-i + dit + ht) where the last inequality is a consequence
of dis ^ dit + ht- Hence d,> < 7 . A similar argument shows d,< < 7 proving
that /9 < 7 .

It now follows from cv < < 7 that the distance bound c, associated with
Vi satisfies exactly one of the following inequalities :

(i) Ci < a
(ii) Ci > 7

(iiia) O' < Ci < 7 with cv < c,· < < 7
(Uib) a < Ci < y with iv < /9 < c, < 7

CHAPTER 4. COMPUTATIONAL METHODS FOR NETWORKS 49

In case (¿), neither Vg nor Vt is reachable from Vi within c,· distance units
implying N 1 = 0.

In case (ii), we have N^ — e. To justify this, if c,· > d,., + Lt — 7 , for any
point X in e, we have c,· > d,·, + Et > d,j + Be{x) > d(vi,x). Thus, N\ = e
under this assumption. If c, > du + /,t = 7 , then for any x in e, we have
Ci > d,(+ 1st > d,(+ d'(a:) > d{vi,x), implying again x ^ N1 Va; 6 e. If
Ct ^ ~ X E e, we have

2d(x, Vi) = 2 min{d,j + 0 {x), da + ht — B{x)}

^ [dis + i^ e (·^)] + [(ht + ht ~ Be{x)\

— dis + d,i + ht ^ 2c,·

implying that x E N^ Vx E e.

In case (¿na), a < c, < /? implies one end point of e is reachable from u,
while the other is not. If Vs is reachable Vt is not, then a = d,, < c, < d,-t = ¡4
so that there is a unique point x in e for which d,·, + 0e{x) = Ci. Let this point
be called p\. Clearly pf ^ Vt otherwise Vt is also reachable from u,· (via u,). In
the other case (with a = da < Ci < dis - /?), define p[to be the unique point
X on e for which du + 0'^{x) = Ci It is direct to conclude that 7V‘ = [Ui,p,·] if

dis < Ci < dit and N 1 = [p^Vt] if du < Ci < dis.

In case (uz6), /i < c, implies both endpoints of e are reachable from u, so
that p\ and p\ are both well defined. The fact that c, < 7 implies the union of

[u,-,p·] and [Pi,Vt] is a proper subset of e, otherwise

dis + (ht + h t ^ (hs + (^e(Pi) + (ht + ^e(P i)

= dis + (ci ~ (hs) + d ,'i + c,· — dit — 2c,·

which contradicts Ci < 7 .

Hence we conclude = [u,-,p·] U [p|, U(] where the two subarcs in the union

are disjoint.

We summarize these in the next lemma.

CHAPTER 4. COMPUTATIONAL METHODS FOR NETWORKS 50

L em m a 4.1 Given V{ and e = with defined in (1), we have:

(0 Ci < a Ni = <a
{ii) Ci > 7 Ni = e

{ilia) a < a < fi < j
and

= if dig = a
K = \p\ '̂ t̂] ifdit = a

[iiih) Cll /3 ^ Ci < J
where

= bnP,·] U [p-,U(]
[u,-,p,·] and \pi,Vt] are disjoint. □

We illustrate these results in Figure 4.1 with a simple example of 3 nodes.

e=[v2 ,vsl

Figure 4.1: Illustration of N 1 = N{v{,Ci) D e for Various Possibilities

4.1.1 C onstruction o f the Feasible set for DC(1)

We now return to the question of computing Sg = fl.g/ c,·)· Let Sg = SC\e.
Since S = UgeE it suffices to provide an algorithm for constructing Sg
We call this procedure the Edge Restricted Sequential Intersection Procedure

{ERSIP).

CHAPTER 4. COMPUTATIONAL METHODS FOR NETWORKS 51

E R S IP (Constructs the part of the feasible set on the given edge)
{Input : Cl, dij Vi,j e I, e = [us,Ui])

In itia l, i = I, Se = e-

M ain Step. Compute Nl using Lemma 4.1.
Assign Se <— SeC\ N^.
If 5'e = 0 or i = n, go to termination.
Otherwise, assign z <— t’ + 1 and repeat the main step.

T erm ination Output Se-

The updating procedure for Sg in the main step requires a record of seg­
ments of Se· This is accomplished by keeping an ordered list of numbers
Ae =< ai,...,afc > where initially k — 2 , a\ = 0, = Le.The closed inter­
val [ay, Oj+i] defined by two consecutive numbers ay, ay+i in the list, with j
being odd, identifies a subedge [xy,xy+i] which is a segment of Se where xy
is the point on e for which Oe(xj) = aj {j = 1 ,...,!·). Note that, for some j
which is odd, it is possible that ay = ay+i in which case [ay,ay+i] identifies a
degenerate segment of Sg consisting of a single point xy = xy+i. Similarly, the
open interval (a;,a;+i) with / being even, identifies a subedge (x;,x/+i) which
lies outside of Sg-

When N^ is computed we have the following possibilities (from Lemma 4.1):

(i) If N ‘ = 0, then Se = 0 and we terminate.

(ii) If N ’ = e, then Se remains unchanged.

(iiia) If N ‘ = [ve,pf], we assign a <— 0g{pl). Two cases may occur; either
a € [ay,ay+i] for some odd index j , in which case the intersection is
identified by the numbers ai,...,ay of the list A and a, or a € (ay,ay4-i)
for some even index j , in which case the intersection is identified by the
numbers ai,...,ay of the list. So in either case we delete the elements
ay+i,..., ai; from Ag. If a € [ay,ay+i] and j is odd we insert a at the end

CHAPTER 4. COMPUTATIONAL METHODS FOR NETWORKS 52

of the list Ae, and reassign j + 1. If a ^ (aj,aj+i) and j is even we

leave the list as it is (i.e. Ag =< cti, ...aj > and reassign k <— j .

If iVg = \p\i '̂ t\ a similar update procedure is applied that truncates Ag
from the left (beginning). Specifically, we assign a *r- 6g{p\) and find

the odd (even) index j for which a € [aj,Oj+i] (a G {aj,aj+i)). If a €

[oj, Oj+i] and j is odd then the intersection is identified by the numbers

a, a j ^ i , (I k , so we delete o i , a j from Ag, insert a at the beginning of

Ag and reassign k k — j + 1. If a € (aj,aj^i) and j is even then the

intersection is identified by the numbers O j + i , s o we delete a i , a j

from the list and reassign k <— k — j.

(nib) If iV‘ = [n,,p,·] U \p\,vt] with Ni = n \p\,vt] = 0, we assign a <-

Og{pi), h *— Og{p\) and identify the odd (or even) indices j and I for which

a e [oj-jOj+i] (or a 6 (aj,aj+i)) and b € [a/,a;+i] (or b G (a;, a/^i)). Note

tha t j < 1. Four cases may occur:

(1) a G [oj, flj+i], b G [a/,a/+i] (both j and I are odd). Then the inter­

section is identified by the numbers o i , ..., ay, a and b, a ;+ i,..., Ofc. So

we delete aj+i, ...,ai from Ag unless j = I in which case no deletion

occurs, insert o and b into the list in the order aj < a < b < a;+i

and reassign k (— k — l + j + 2.

(2) a G [ay,ay+i], b G (a;,a/+i) (j is odd, / is even). Then the intersec­

tion is identified by the numbers a i,...,ay , a and a ;+ i,..., a*;. So we

delete ay+ i,..., a/ from Ag, insert a between the numbers ay and a/+i

in the list, and reassign k<— k — l + j + l.

(;3) a G (ay,ay+i), b G [a/,a/+i] (j is even, / is odd). Then the intersec­

tion is identified by the numbers a i,...,ay and 6, a ;+ i,..., a^. So we

delete ay+ i,..., a; from Ag, insert b between the numbers aj and ai+i

in the list, and reassign k i — k — l + j + l .

(4) a G (ay,ay+i), b G (a;,a/+ i) (both j and / are even). Then the

intersection is identified by the numbers a j,...,ay and a i +i , Uk -

So we delete ay+i, ...,a ; from Ag and reassign k <- k - I + j.

CHAPTER 4. COMPUTATIONAL METHODS FOR NETWORKS 53

With this updating mechanism the current set Se is uniquely represented
by the intervals [aj,a_,+i], j e K = {j : I < j < k , j is odd} so that Se =

^i+i] where Xi is the point on e for which 9e{xi) = o,, i =

It is evident from the updating procedure that the list Ag can grow in size
in a given iteration only if case (iiib-1) occurs with j = 1. In that case A
grows by two elements which implies the number of intervals grows by one.
Hence the number of segments of Sg grows by at most one in a given iteration.

. Since we start with Sg = e, the number of segments in the terminating Sg is
at most n + 1. This bound is attainable on edges that are redundant (an edge
whose length is greater than the distance between the endvertices of the edge).
In the absence of redundant edges, the final number of segments can at most
be n — 1 because case (iiia) is the only case that can occur when i = s, t.
The remaining n — 2 vertices may increase the number of segments one at a
time which gives a maximum of n — 1 segments in the final set. Figure 4.2(a)
illustrates a redundant edge of length 8 with n + 1 = 6 segments in the final set
and (b) illustrates a nonredundant edge of length 4 with n — 1 = 4 segments.

(7)· (5)

Figure 4.2; Example to Illustrate Segments on a Given Edge

Now, let #(5') represent the number of disjoint parts of a subset S of G.
That is, if S is the union of k disjoint sets each of which is a maximal connected
set, then ^{S) = k. Based on the foregoing analysis we have.

T heorem 4.1 Let S be the feasible set to DC(1). For all data choices, i^{S)
is at most \E\{n + 1).

Proof : Since #(5'e) < n + l \ / e ^ E , S = IJeeE^e is such that # (6') <
|^ |(n + i). □

This theorem is significant because it identifies a deviation from the tree
network case. It was proven in [8] that when the underlying network is a tree
the intersection of all neighborhoods is a connected region (subtree). In the
cyclic case the previous analysis together with the theorem shows that the
intersection of all neighborhoods is in general a split region which may consist
of up to 0 (|£^|n) number of disjoint parts.

The next theorem provides that we have a strongly polynomial algorithm
to construct S.

T heorem 4.2 Construction of S is 0{\E\n'^)

CHAPTER 4. COMPUTATIONAL METHODS FOR NETWORKS 54

Proof: First we compute the time bound for constructing Se for a given
e £ E. Computation of N1 via Lemma 4.1 is done in constant time. Finding
the appropriate indices j or / requires a comparison of a (or b) with the elements
of Ag. This can be done in 0(log k) time via binary search on Ag where k is the
current size of the list Ag at each iteration. Insertion and deletion operations
per item can be done in constant time. At a given iteration we insert at most
two items into the list, but it can be the case that all the elements of the list
have to be deleted so that a given iteration requires 0{k) operations. Since we
have at most n iterations and k can increase by at most two at each iteration
up to 2{n + 1), Sg is computed in 0{n^). Repeating the procedure for all edges
we get the stated result.

CHAPTER 4. COMPUTATIONAL METHODS FOR NETWORKS 55

4.2 Multifacility Case

VVe now focus on the case rn > 1 . The particular form of the constraints
defined by (DC.2) and (DC.V) provides considerable insight on some of the
computational difficulties inherent in the problem. In the tree network case,
each Sj is a subtree due to the convexity of neighborhoods Â (u,·, c,·), i G Ij-
When G is cyclic, there is a major problem: in general, each Sj is a disconnected
set consisting of up to n + 1 segments on a given edge and 0(\E\n) disjoint
parts on the entire network (Theorem 4.1). If we let be the ¿-th disjoint
subset in Sj (where k = 1 ,..., #(,9^)), finding a feasible solution to DC calls
for two decisions:

(1) decide which each Xj will be in,

(2) decide the actual locations of Xj’s in their selected sets to satisfy (DC.2).

The resolution of the first decision alone is a major computational chal­
lenge. Any enumeration based scheme would have to select Sj's from among
n ^ i a^(Sj) possible choices. In the worst case, the total number of selections
is 0((\E\n)'”‘) which is computationally prohibitive for large m.

Suppose now the first decision is (somehow) made so that each Xj is re­
stricted to a selected S^ ̂ for a unique index kj G {1 ,..., ^ (5 j)} . Let Sj — Sj^
for the j-th new facility. We now have the restricted problem

d(xj,Xk) < hjk, (j , k) e l B ,
e Sj, j = [,..., m

(DC.2)
(DC.l)

which we call DC. DC is more closely related to the tree network problem
since each Sj is now a connected set. Despite this resemblance, the restricted
problem on G is nontrivial while the problem on a tree is efficiently solvable.
As a matter of fact, we do not know of any method from the existing literature
that attempts to solve DC on general networks.

CHAPTER 4. COMPUTATIONAL METHODS FOR NETWORKS 56

Our initial attempts to solve it on cyclic networks led us to believe that
there are major computational difficulties caused by the presence of cycles
which is why we found it appropriate to follow a different line of attack based
on expand/intersect operations. The strength of the S E I P approach is its
ability to circumvent the first decision on how to select Sj^ for each j . Instead
of doing that, the procedure goes directly into the construction of a feasible
solution where each xj is restricted to Sj rather than a particular disjoint set
Sj^ in Sj. While S E I P provides significant computational advantages in this
regard, its inability to handle problems with cyclic LNb is a computational
barrier that must be addressed in future research.

We now focus on the specialization of SEIP to networks. To use SEIP,
we must first compute Si, ..., 5',„. Since Sj is the solution set of a single facility
problem defined by the set of existing facilities i in Ij, the method in Section
6.1 constructs each S) in 0{\E\\Ij\')̂ time. With \Ij\ < n Vj, the worst case

time bound for constructing Si,...,Sm is 0{\E\mn^).

Before we go in to the computational details of performing an expand/intersect
operation on a network, we provide an example to motivate the main ideas.

4.2.1 Exam ple

Consider the example network G shown in Figure 4.3(a). The numbers next
to edges are the edge lengths and the distance matrix is given. The distance
bounds Cji and bjk are given in the matrices C and B in the same figure. This
data defines the linkage network LN and its subgraph LNb - The sets S\, S2 , S3

for this example are computed as described in Section 4.1 and they are shown in
Figure 4.3(b) by means of lists Aii {j = 1 ,2 ,3) for each edge [u„ Vt] of G. S E I P
processes nodes of LNb in the order 1,2,3 (node 3 is the root). For example,

in computing Â (.5'i , 6i2), with 612 = 5, each list 4], that defines Si n [Ui,Ui]
is updated appropriately to obtain a new list A]t which now defines the edge
restricted expansion A^(.S'i,6i2) fl [u,,Wi]. The specifics of how the updating is
done will be explained in the next subsection, but the reader can verify the

CHAPTER 4. COMPUTATIONAL METHODS FOR NETWORKS 57

new lists by moving from each endpoint of each segment of Si by 5)
units in all possible directions in the network. Next, the intersection F2 of
N(Si, 612) with S2 is computed on an edge by edge basis by updating the lists
A^f. This gives an edge by edge description of F2 . Finally, F3 — N{F2 , l>23)n5'3
is constructed by computing the expansion N{F2 ,b2 3)) H [us,i>(] for each edge,
then constructing the intersection for each edge.

Once, F’l, F2 , Fz are available. Phase 2 begins by selecting xz in Fz (Figure
4.3(c), bottom). The selected X3 is the single point of F3 on edge [ui, U5]. Next,
X2 is selected as the nearest point in F2 to X3. The selection of a nearest point
is not a general rule, but it always works since F2 {xz) — N{x 3 ,b2z) H F2 is
guaranteed to be nonempty and a nearest point in F2 to X3 is definitely in this
set. The final solution (xi,X 2 ,X3) is shown in the figure.

PM

(LNg)
(L N)

D={d̂ j} C={CjJ

I 2 3 4 5 6 N 1 N2 N 3 Nt N 2 N3

I 0 5 12 7 7 6 El 7 13 7 Ni 0 5 -

2 5 0 9 12 12 8 Ez - 7 9 N 2 5 0 4

3 12 9 0 5 9 13 Ej 11 - 12 N3 - 4 0

4 7 12 5 0 7 9 E , 7 13 -

5 7 12 9 7 0 4 E, 5 10 -

6 6 8 13 9 4 0 E , 9 8 10

Figure 4.3: (a) Example for Multifacility Case

CHAPTER 4. COMPUTATIONAL METHODS FOR NETWORKS 58

/4/ 2 - 0 ^26= <>

Aj4 = <7,7> As4 = < ^^>

a /s ^<5,7> ^3s = <9,9>

aJ3 = < 0 ,0^^>

A23 = <> Agg=<0,0>

Aj] = <0,2> A^g=<4,7>

A,l = <0,2> ^4 = 0
A,]=<0,2> a]=<>
A,l=<0,2> a \=<>

^23 = 0 As6=<>

Af2 = <0,0,2A> A2g=<0,2>

Al=<0,4> ^ 4 = 0

Ai3=<0,0,4,4> ^ 5 = 0
A^^—<.0,0> /4/5 = 0

A23=<0^> Aig=<3J>

Aj2=<0,0> Alg=<7,8>

Aj4=<0,0,2,7> a ‘3=<o a >

Ajs=<0,7> A^s =<0,0,4,9>

Alg=<0,0A,6> a Is =<o a >

A23=<9,9> Agg=<0,4^

Figure 4.3: (b) Example Continued

CHAPTER 4. COMPUTATIONAL METHODS FOR NETWORKS 59

F2=N(Fi,b,2)OS2

A^2=<0 ,0> 4 = < 7 7 >

Af4= < 0 ,0 ,2 ,2 > A^4=<>

A js= < 0 ,2> 4 = 0

Ajg= <0 ,0> 4 = 0

A23=<> 4 = 0

A ,l = <0 ,4> A2̂ =<3 ,8>

A ,l= <0 ,6> 4 = 0

A / }= < 0 ,6> 4 = 0

Ajg= <0 ,6> 4 = 0

A23 = <> 4 = < C 4 >

Aj\ = <0 ,0 ,2 ,4>

A^4= <0 ,4 > /4j ̂= < >

A i;= < 0 ,0 ,4 ,4> 4 = 0

A/g=<0 ,0> 4 = 0

2̂5 = 0 A3g=<3 ,3 >

X , = A/s = <2 ,2>

X j = 4/5 = <5 ^ >

Figure 4.3: (c) Example Continued

CHAPTER 4. COMPUTATIONAL METHODS FOR NETWORKS 60

4.2.2 E X P A N D / I N T E R S E C T O peration on Networks

S E I P uses the expand/intersect operation once for each arc of LNb - To
explain the mechanics of this operation, let S and S' be two subsets of G for
which we want to compute F' = N{S, b) D S' where 5 ,6", b are given, F' is to
be constructed.

The description of S is given by an ordered list Ae = < ai,...a^e) > for
each edge e of £" so that 5 H e is the union of subedges [xj,Xj^i] where j is
any odd index in {1 ,..., A:(e)} and Xj denotes the point on e = [u,, u<] for which
the subedge [vs^Xj] has length aj. Note that aj < Uj+i, j = l,...,^ (e) — 1 and
k(e) is an even integer. Similarly, the description of S' is given by ordered lists
A' ̂ =< > , e £ E.

To construct F', we go on an edge by edge basis. That is, we construct
F' C\ e for each e 6 E, then find F' by taking the union of F' r\ e over all
e E E. Since F' De = {N{S, b) D S') H e = {N{S, 6) ft e) D {S' H e), it suffices to
describe the mechanics of computing the expansion of 5” by 6 restricted to edge
e, then of computing the intersection with S' C\ e. For notational simplicity, let
F; = F ' n e, N,{S, b) = N{S, b) 0 e, Se = S f\ e, and S', = S' fl e.

Preprocessing

Before we construct Ne{S, 6), we have a preprocessing step: For each vertex u,·
we calculate a parameter Si which is defined as

Si = mini/(x,u,·) = min<i,(e)
xGS eSE

where, for e = [uj,Ui],

Si{e) = min{«i + dsi, I t ~ «/t(e) + du}

with and ayt(e) being the first and last elements of Ae (if the list is null, take
Si(e) to be (5o). Si simply identifies the distance of a nearest point in S' to a
given vertex u, while Si(e) is the distance of a nearest point in Sg to y,·.

CHAPTER 4. COMPUTATIONAL METHODS FOR NETWORKS 61

To compute S{, we consider at most two numbers per edge which results
in 2 \E\ operations for fixed i. All are computed in 2 |£^|n operations. Let
hi = 6 — i,·, e = 1 , n. We will use 6,- in the computation of N{S, h).

E xpansion

To compute Ne{S,b) on edge e = [uj, Ui], we first focus on Ng(Se,b). Given
the list Ae = < oi, ...,a*;(e) > that describe Se, if Ae is null then Ne{Se,b) = 0 .
Otherwise, to compute Ne{Sg, b) we update the nonempty list A^ as follows:

If Ae contains exactly two elements, go to (4), otherwise choose any two
adjacent indices /, / + 1 in {1,..., k[e)] where I is even. Hence, o/ specifies
the rightmost point of a segment of Se and a;+i specifies the leftmost
point of another one with the open interval defining a subedge that lies
outside of Se·

(1) If 0/^.1 — ai > 2b, then set a; <— a; + b, ct/+i <— ai+i — b.

(2) If ai+i —ai< 2 b, then delete a/ and ai^i from Ae and assign k{e) <—
k{e) - 2.

(3) Repeat (1) and (2) for every even index / not considered so far then
continue to (4).

(4) If 6 < ai, then assign oi ^ ai — b; ii b > a\, then assign oi 0.

Similarly, if i» < I at - o,k(e), then assign ak(e) <— ajt(e) + b; ii b >

let Â.*(e)> then assign Oik(̂e) ̂ 1st·

The complexity of the above procedure is 0{k{e)) where k{e) = 2^{Se).
Hence we construct Ne{Se,b) in 0{^{Se))·

R em ark 4 . 1 At the end of the above procedure, if b < Lt, then

a,· + 6 < a,+i i € {1 ,..., A;(e)} , i odd,

and ifb > 1st, then Ag = < 0 ,Lt > (assuming the initial list is nonemptxy).

CHAPTER 4. COMPUTATIONAL METHODS FOR NETWORKS 62

It is direct to verify that Ne{S, b) = Ne{vs, 6,) U Ne(vt, bt) U Ne{Se, b) (in the
event bs or bt is negative, the corresponding neighborhood is taken to be null).

Let Ag be the final list that represents Ne{Se-,b). To obtain the final con­
struction Ne{S, b) = Ng(vs, bs)UNg{vt, 6i)UÂ e(>5'e, b), given the values 6,, bt, we
construct Ng{Se, b) U Ne(Vs, bg) first and then construct Ne{Se, b) U Ne{Vg, bg) U
Ne{vt, bt). For Ng(Se, b) U Ng{vg, bg) we update the list Ag as follows :

(1) If bg ^ 0 , then bg) — 0 , so ^̂ g remains the same.

(2) If initially Ag = < > (i.e. Ng{Sg,b) = 0), then insert oi = 0 and 02 =
min{bg,lgt} into the list and assign k{e) = 2 .
Otherwise, if > 0 then two cases may occur; either 6, < a\ in which
case the union is identified by the numbers 0, 6 ,̂ Oi,..., ajt(g), or bg > ai
in which case the union is identified by the numbers 0 , 02,..., afc(e) (due
to Remark 4.1). So, in the first case, we insert 0 and bg at the beginning
of the list in the order 0 < 6, < Ui and reassign k{e) ^ k{e) + 2. In the
second case, we only reassign ai <— 0 .

Next, to compute Ng{Sg,b) U Ng(vg,bg) U Ng{vt,bt) we update the list Ag
(currently representing Ng{Sg,b) U Ng{vg,bg)) as follows:

(F) I f 6i < 0 , then Ng{vt,bt) = 0 , so Ag remains the same.

(2') If initially Ag = < > (i.e. Ng{Sg,b) D Ng{vg,bg) = 0), then insert Oi =

max{0 , Igt — bt} and 02 = Igt into the list and assign k{e) = 2 .
Otherwise, if > 0 then two cases may occur; either bt < Igt — «¿(e) in
which case the union is identified by the numbers Ci,..., ayt(e), ht ~ bt, ht,
or bt > Igt — Ufc(e) in which case the union is identified by the numbers
oi, ...,afc(e)_i,/ai (due to Remark 4.1). So, in the first case, we insert
Ct - h and Igt at the end of the list in the order afc(e) < Igt — bt < Igt and
reassign k{e) <— k(e) + 2. In the second case, we only reassign ak(g) <— Igt-

Figure 4.4 gives an illustrative example for the expansion operation where
the top figure gives the initial set Sg, the middle figure gives the expansion

CHAPTER 4. COMPUTATIONAL METHODS FOR NETWORKS 63

Ne{Se,b), and the bottom figure gives the final construction Ne{S,b).

2 3 4 5 6 7 8 9

v .Q j. I

i ."

r W - Q v , A=<22.8,4.4^.4,8.4,8.4>
U - - i f j< I >
l b ^ b ! \b b

i ! i
\4 5 6\ 7\ 8 9 JJl
*̂·· \ I I I i I i i i Q v ^ A^-<1,6AJA,9A>M '

\1 2 3
NJS„b)

\ n 2 3 4 5 6

I I I I
71 8 91

ibi'
II I

I/O
K(S,b)

IV, A =<0,0.6,1,6.4,7.4,10>

b = l , b^= 0.6 , b ,= 0 .8 u n it s

Figure 4.4: Illustration of Expansion Steps for Sg.

Updating in (l)-(2) and in (l')-(2 ') is done in constant time. So the com­
plexity of constructing Ne{Se,b) (wliicli is 0(^{Se)) dominates. Hence we
construct the expansion Ne(S,b) in 0{^{Se)) time.

The final list Ag updated by (1), (2), (1 ') and (2') represents the expansion
Ng(S,b). It is direct to observe that the number of elements in the final Ag is
increased by at most four implying that the number of segments is increased by
at most two. Also, observe that an increase is possible only if either 0 < < oi

or 0 < bt < 1st — a*:(e) or both. We summarize these in the next observation.

Observation 4.1 ^ { N g { S , b)) < #(.S'e) -f 2

Intersection

With Ng{S, b) constructed as described so far, now we must construct Ng(S, 6)n
to obtain Fg. This is accomplished by combining the two lists Ag =<

ai,...,ak(e) > and A' = < a , ,..., > representing the sets Ng{S,b) and F',
respectively. To do so, we perform the intersection from the nearest point of
both sets to a given endvertex, say Vg, of the edge e = [u,,Ui]. The first two
elements in the current list defines the first segment that belongs to the set

CHAPTER 4. COMPUTATIONAL METHODS FOR NETWORKS 64

defined by that list. For example, initially, [0 1 , 02] is the first interval defining
the first segment of Ne{S,b). Likewise, [0 1 , 03] is the first interval that defines
the first segment of S' on e. To see if the two segments intersect, we compute
bp = max{oi,Oj) and bi, = min{o2, 02), then form the partial ordered list
Be = < 6f , 6l > which captures the first segment of the intersection unless

< bp in which case Be is null (yet) because [0 1 , 02] and [0^,03] do not
intersect. We then delete all elements in both lists that are less than or equal
to the maximum of bp or öz,; that is, we delete the parts of Ne{S, b) and 5 '
that are considered so far. If the deletion causes a list to begin with an initially
even indexed element, we insert the maximum of bp and bi at the first position
of that list and continue to grow Be in this way by comparing the first two
members of both lists to see if they have an intersection.

The following procedure accomplishes the construction of F'̂ as described
above. We call this procedure Edge Restricted Intersection (ERI).

E R I (Performs the intersection operation on a given edge)
[Input : ordered lists Ae and A' ̂ representing Ne[S, b) and S' ̂ respectively.)

In itia l. Be =<>■

M ain S tep. Assign bp <— max{ai,a'i), bi <— min{a2,a 3} and 6* <— maxf^Fj^L}·
If bp < bi, insert bp, bi, at the end of the current list Be, in the order

bp < bi,.
Delete all elements of Ae and A' that are less than or equal to b* and
assign k[e) <— k[e) — [number of elements deleted from Ae), k'[e) •t—
k'[e) — [number of elements deleted from A'f).
If either list become empty, then go to termination.
If k[e.) is odd, then insert b* at the beginning position of Ae and assign

k[e) <— '̂(^) d" 1 ·
Similarly, if k'[e) is odd, then insert b* at the beginning position of A'

and assign k'[e) k'[e) + 1 .
Repeat the main step.

T erm ination . Output Be.

CHAPTER 4. COMPUTATIONAL METHODS FOR NETWORKS 65

We illustrate the above procedure in Figure 4 .5 .

O bservation 4.2 The maximum number of iterations of E R I is ÎM£İ±̂ !Î£İ1 _ j

¥ ■

I ,2 l'' C 1 1 ^ ^ · * A < 0 ,0 J ,2 ,3 J .5 .5 ,6 ,7 .7 .5 ,8 >

< 0 ,1 X 5 ,4 5 3 ,6,6 5 >

1 1

1 1
L J 1

1
1
|2

f i l l 1 I I
1 1 1 1 i I I
L _ t J 1 x 5 L İ J

I I I '
1 1 1 · 0
1 17 1

1 11
1

1

, 2

W 1 1 f 1—]
1 1 1 1 1 I I

¡ ! i ¡ ¡ 4 Ls ^

1 · U

iter’ll bp h b · Be Ae k{e)

.U e.J yU yU ,.J yU yj ̂

K

iKJ y\J ̂ ..

k(e)
1 0 OJ 0.5 <0,05> <2 5 5 5 5 .6,7,7.5J8> 8 <l.25.455.6.65> 7

<05,l.25,455.6.65> 8
2 2 1 2 <3555.6,7,7.5S> 7 <25.455.6.65> 6

<2555,5.6,7.7.55> 8
3 2J 3 3 <0.05.25J> <355.6,7,75.8> 6 <4.55.6.6.5> 5

<3,455.6.6.5> 6
4 3J 4 4 <0,0.5X55.3.5,4> <5,6,7,7.55> 5 <55.6,65> 4

<4 5 .6.7,7.5,8> 6
5 5 5 5 <0,0.5,25,5J.5.45.5> <6.7.7.55> 4 <6,6.5> 2

6 6 65 6.5 <0,0.52.5555,455.6,65> <7.75,8> <> STOP!

= < 0 ,0 J ,2 .5 J ^ .5 ,4 A A ,6 ,6 .5 >

Figure 4.5: Illustration of ERI.

It is evident that the elements of Be is computed by scanning the elements
of the union of Ag and A' ̂ from the beginning to the end (i.e. left to right).
Because of the way b* is calculated, at least three elements will be deleted
from the union of elements in Ag and A' ̂ in a given iteration (aj and a[will
definitely be deleted and at least one of 02 or will also be deleted). However,
we also insert b* into the list Ae {A'f) when k{e) ((A;'(e)) is odd. Observe that
if exactly three elements are deleted, two of them are deleted from one of the
lists and the remaining one from the other. Hence, k{e) and k'{e) cannot both
be odd at the same time in this case. So the number of insertions is at most
one for the case of three deletions. If more than three deletions are made, the
number of insertions is at most two. Thus, the number of deletions exceeds

CHAPTER 4. COMPUTATIONAL METHODS FOR NETWORKS 66

the number of insertions by at least two in each iteration which implies that
the total number of elements of the union of Ae and A' ̂ decreases by at least
two in every iteration. Finally, observe that in the last iteration when one of
the lists become empty we do not enter into the insertion (of 6*) step which
implies that at least three elements are deleted from the union of the lists in
the last iteration. Since at least one element remains in one of the lists that
will not be processed, the maximum number of iterations of E R I is as stated
in Observation 4.2.

Before proceeding further, observe that starting with Be empty, at each
iteration of E R I we insert either two (bp and 6^) or no elements into the
intersection list Bg. Since the maximum number of iterations of E R I is
(fc(e)+fc (e) _ consist of at most k[e) + k\e) — 2 elements (equivalently,

((^•(e) + k'{e))l2) — 1 segments) which implies that the number of segments
in the intersection is bounded above by the total number of segments in the
input sets minus one. That is.

Property 4.1 #(F’') = j j^{Ne{S,b) r\ S'^) < #(7Ve(‘S', ¿>)) + #(5'^ - 1- °

Complexity

Property 4.1 and the fact that expansion operation can increase the number
of segments of the initial set Sg by at most two (Observation 4.1) implies the

following important result:

Number of disjoint parts of constructed by an expand/intersect operation
from S into S' on a given edge e can consist of at most the total number of
segments of the initial sets S and S' plus one, i.e. -

(0 < # №) + # (■ ? :) + 1 · (4.11)

Observe that the upper bound on #(F') is also an upper bound on the
complexity of an expand/intersect operation on a given edge. So, the bound on

CHAPTER 4. COMPUTATIONAL METHODS FOR NETWORKS 67

the number of segments of the sets constructed by expand/intersect operations
in S E I P facilitates the analysis of complexity of the procedure.

We now give the complexity analysis of S E I P on the entire network.

Let Sj{e) be the part of the feasible region of new facility j with respect to
existing facilities that lies on a given edge, i.e. Sj{e) = Sj D e. From Section
6 we know that ^(S'j(e)) < n + 1 . In each iteration of SEIP we apply an
expand/intersect operation on two subsets of G related to two different new
facilities. To construct the set Fk of a parent node A; at a given iteration we
apply the expand/intersect operation \Dk\ times (where Dk is the set of indices
of the descendents of k), once with each descendent j of k. Then, it follows
from (4.11) that

(n (e)) < # № (e)) + E ,ez).(#№) + 1).

Since initially + 1 for all / = 1,..., m, we get

(4.12)

^ (ii + 1) + |T) .̂|(n + 2) — (|Z)fc| + l)(n + 1) + \Dk\- (4-13)

So, one application of expand/intersect operation on a given edge in some it­
eration of S E I P requires 0{\Dk\n) effort. Observe that \Dk\ < m — 1 where
equality is achieved for the root node only. So the complexity of one ex­
pand/intersect operation is bounded by 0 {mn) for a given edge and bounded
by 0 {\E\7nn) (this also dominates the complexity of preprocessing) for the en­
tire network. Since we apply expand/intersect operation m — 1 times it follows
that, given the initial feasible regions Sj, j = 1,..., m, the complexity of Phase
1 of S E I P on general networks is 0{\E\m^n). It is direct to observe that the
complexity of Phase 2 is also bounded by the same order.

Recall that the sets .S'l,..., are constructed with a time bound of 0{\E\m'n?).
This result together with the foregoing analysis gives the next theorem.

T heorem 4.3 i f LNb is a tree, the complexity of determining consistency or
inconsistency of DC on arbitrary networks is 0{\E\imi{m -f n)).

CHAPTER 4. COMPUTATIONAL METHODS FOR NETWORKS 68

Since Lj = Fj for all j = l , . . . ,7n in Phase 2 ' the number of disjoint parts
of Lj on a given edge can at most be 0 {mn) (by the fact that Lj can be
constructed via S E I P by rooting the tree LNb at node Nj) Hence construction
of all regions of feasibility can be done within the same order of complexity.

Chapter 5

A MINIMAX EXTENSION

In this chapter we give an extension of the results provided in Chapters 3 and
4 to an optimization problem. The problem we deal with is the Multifacility
Minimax Problem with Mutual Communication which have been introduced
in Chapter 1 .

Recall that the original formulation of the problem is as follows:

Min f { X)
where/(A^) = max{/i(A^),/2(A^)}

w ith/i(A^) = ma.x{tUjid{xj,Vi) : {j,i) e Ic}

f 2{X) = ma.x{vjkd{xj,Xk) : (j,k) e Ib }
X = (xi,...,Xm) e T"‘

where lOji, Vjk are positive real numbers, and Ic and Is specify pairs of in­
dices for which the distances are of interest. The problem is to locate new
facilities with respect to existing facilities and other new facilities so as to
minimize the maximum of the weighted distances between specified pairs.

An equivalent formulation of the problem, which we denote by P M M C , in
terms of distance constraints with parametric bounds is given as follows:

69

CHAPTER 5. A MINIMAX EXTENSION 70

Min
subject to

d{xj,Vi) < z/wji

^ ^/^jk
(i , 0 € Ic
U , k) € I b

{PDC.l)
(PDC.2)

e L

Observe that if we fix the value of ^ then the problem simply results in
the distance constraints (PDC.l) and {PDC.2). We denote by PDC{z) the
distance constraints as dependent on 2;.

Considering the parametric constraints {PDC.X) and {PDC.2), for a given
value of 2: we can construct an auxiliary network LN{z) as dependent on z,
similar to the way we described earlier in Chapters 2 and 3. That is, LN{z)
consists of A^-nodes representing new facilities and £^-nodes representing exist­
ing facilities and arcs between them representing the pairs of facilities for which
the distances are of interest. More formally we construct LN{z) as follows:

Node set of L N is { A ^ i , N , n } C { E i , £' „} and there is an arc { N j , E i) of
a new and existing facility pair for each { j , i) € I c and there is an arc { N j , N k)

of a pair of new facilities for each { j , k) E I b · The length of the arc { N j , E i)

is z/wji and the length of the arc {Nj,Nk) is z/vjk. Note that for a fixed
value of z , L N { z) is essentially the same as which have been described for
the distance constraints with fixed bounds. Each arc length in L N { z) is the
product of a reciprocal weight and .sr. We denote by L N b { z) the subgraph of
L N { z) that spans only the new facility nodes and the arcs between them.

In the next section we provide an algorithm to solve P M M C within an
e-interval of the optimal objective value. We again require that the interaction
between new facilities has a tree structure, i.e. L N b { z) is a tree.

CHAPTER 5. A MINIM AX EXTENSION 71

5.1 e-Optimal Solution to P M M C

Our main approach here is to construct an e-optimal solution to the optimiza­
tion problem P M M C by applying a bisection search on the objective function
value 2 .

Observe that for a fixed value of 2 the problem is to determine the con­
sistency or inconsistency of PDC{z). If PDC{z) turns out to be inconsistent

' then this means that the current value of z is not large enough to admit a
feasible solution so we have to increase the value of 2 . If PDC{z) turns out to
be feasible with alternate locations for all new facilities then we may conclude
that the current value of 2 can be decreased further without violating the con­
sistency of the distance constraints. Continuing in this manner at a specific
value 2 * of 2 , PDC{z*) will be feasible but for any e > 0 PDC{z* — e) will
be infeasible. Clearly 2* is the optimum objective function value of P M M C
which is also optimal to the original formulation of the Multifacility Minimax
Problem with Mutual Communication.

Direct computation of 2 * is not available in the literature except for the
case when either the location space is a tree network or there is only a single
new facility to locate. We could not find a way to compute the value of 2*
directly as well.

Here we apply the idea of sequential decrease and/or increase of the value
of 2 given in the previous paragraph with the hope of approaching sufficiently
close to the optimal objective function value 2 *. We set a prespecified value
e indicating how close we want to approach to optimum. We then take a
sufficiently large value of 2 as upj)er bound 2 and take lower bound 2 to be
”0”, as zero is a natural lower bound on the objective value of the problem. We
apply a bisection search on the objective value until we reach an e-neighborhood
of 2 *. Each iteration in the search requires to solve a set of distance constraints
with fixed bounds. For this we apply S E I P introduced in the previous chapters
and that is why we require LNb (z) to be a tree. Note that depending on the
location space better bounds can be obtained initially.

CHAPTER 5. A MINIMAX EXTENSION 72

Following the same line of reasoning as in Chapter 3 , for a fixed value of z
we can get the following equivalent reformulation of PDC{z):

d(^Xj,Xf:) ^ 1 0)^’) £
X j e S j{ z) , ; =

(PDC.2)
(PDC.V)

where Sj(z) is defined to be the region of fecisibility for new facility j with
respect to existing facilities only.

This reformulation enables to use the procedures introduced in Chapter 3 .
For a given value of we can solve solve the given set of distance constraints
PDC{z) by first constructing the regions of feasibility with respect to exist­
ing facilities only, and then applying SEIP to incorporate the effect of the
interaction between new facility pairs also.

Now, we state the algorithm which we call e — MINIMAX to find the
e-optimum solution to PMMC.

e-M INIM A X (Finds an e-optimal solution to PMMC)
{Input : e, z, {wji : (j,i) e Ic}, {vjk : (j ,k) E h })

In itia l, z* <r- {z + ¿)/2.

M ain S tep. U (z — z) < e then z is an e optimal solution, go to termination with
Z = Z,

Otherwise, assign z* <— {z + ¿) /2 , solve PDC{z*).
If PDC{z*) is inconsistent then assign z <— z*.
If PDC{z') is consistent then assign z <— z*.
Repeat the main step.

T erm ination . Construct a feasible location vector to PDC{z*).

Observe that at any iteration the upper bound z identifies a value of z which
results in a consistent set of PDC{z) and z identifies a value of z which results
in an inconsistent set of PDC{z). At every iteration we either decrease the
value of z or increase the value of z so that the interval [z, z] containing optimal

CHAPTER 5. A MINIM AX EXTENSION 73

objective value is decreased at each step. When the length of the interval
is less than or equal to e, we conclude that the optimal value z* is captured
within an e-neighborhood. Since at each iteration z supplies a feasible solution
while z does not we set z* — z and find a feasible location vector that satisfies
PDC{z*).

At each iteration of e — M I N I M A X we decrease the current interval [2 , 2]
by half until the length of the interval is less than or equal to e. So we apply
k iterations where k is determined by the inequality:

2*·· > - 1)

From the above inequality we conclude that the number of iterations k of
e-MINIMAX procedure is (9(log((z — z)/e)). Let h{L^ d) be the time bound for
solving a given set of distance constraints as dependant on the location space
L with distance function d. Then finding an e-optimal solution to P M M C is
0(log(i i^)h (L ,d)) .

In the next section we specialize to network spaces and provide exact
computational bounds. We also provide better initial bounds to start the
e — M I N I M A X Procedure.

5.2 Solving P M M C on Networks

Let G be an embedded network with node set V and edge set E. Now, we
consider the problem P M M C defined on networks. As we have indicated
earlier, rather than selecting a large value of z as the upper bound and taking 0

as the lower bound, depending on the location spacq we can find better bounds.
So, here we provide such initial bounds for the case of general networks.

O bservation 5.1 Let zj — min{max{ii;jid(x_,·,u,·) : (j,i) G Ic}}· Then z =
max{zj : 1 < i < nt} is a lower bound to P M M C defined on a network G.

CHAPTER 5. A MINIMAX EXTENSION 74

Proof: It is direct to observe that z is the solution to the problem P M M C
for which the constraints (PDC.2) are relaxed. Hence any solution to this
relaxation has a lower objective function value than the solution to the original
P M M C . □

The above observation is true for all metric spaces.

O bservation 5.2 Let T be any spanning tree of G and let P M M C — T he the
problem P M M C defined on T. Then the solution of P M M C — T provides an
upper bound on P M M C defined on G.

Proof: Clearly P M M C — T is a restricted version of the original P M M C
defined on G where the location space is restricted to a spanning tree of G.
Since P M M C is a minimization problem, the solution to the restricted version
always has an optimum value which is at least as large as the optimum value
of the original P M M C defined on G. □

Of course, in order these bounds to be operational, we have to find a way
to compute them efficiently.

For the case of the lower bound, each Zj is a solution to a weighted 1 -center
problem for new facility j . Kariv and Hakimi [13] provide an 0{\E\nlogn)
algorithm to solve weighted one center of a network. We have to solve m
different weighted one center problems corresponding to all new facilities. So
computation of the lower bound for P M M C can be done in 0 {\E\mnlogn)

effort.

In the paper by Francis, Lowe, and Ratliff [8] the distance constraints are
analyzed in detail on tree networks and the extension to the problem P M M C —
T is given. It is proven that the optimal objective value of P M M C — T can

be calculated directly as follows:

5 = ui<ix{dT{v3 ,Vi)/nst : I < s < t < n}

where dT{v,,Vt) is defined to be the length of a shortest path between nodes v,
and Vt on the spanning tree T and Ugt is defined to be the length of a shortest

CHAPTER 5. A MINIMAX EXTENSION 75

path between two existing facility nodes Eg and Et in the linkage network
LN{1) which is constructed as defined in the beginning of this chapter by
taking the value of 2 as unity. Hence is simply the sum of the reciprocal
weights of the arcs of a shortest path P{Es,Et) on LN{1). It is well known
that calculation of distance between all pairs of nodes on a tree is 0(n^). The
distances Ust between all existing facility node pairs in the linkage network
can be calculated in 0{n{in + 7i))̂ time by applying Dijkstra’s shortest path
algorithm once for each E-node.

Both of these computational bounds are dominated by the construction of
a feasible solution or determining the consistency or inconsistency of DC on
networks which is proven to be 0(|E jm n(m -|- n)). So the proposed ways to
obtain good initial upper and lower bounds are justified computationally in
the network case.

Finally from the analysis in this chapter and the results of Chapter 4,
we conclude that construction of an e-optimal solution to the Multifacility
Minimax Problem with Mutual Communication defined on arbitrary networks
is 0{log^^^^^)\E\mn[m -|- n)).

Chapter 6

SUMMARY AND
CONCLUSION

In this thesis, we focused on the distance constraints problem. Consideration
of distance constraints is well-justified in two respects: first, it is possible that
in real life problems, scenarios that require bounds on the distances between
facilities may arise; second, it facilitates the analysis of some optimization
problems which have equivalent formulations in terms of distance constraints
with parametric bounds.

Our particular interest is in the problem where the location space is a
general network. With this motivation we introduced the distance constraints
and a related optimization problem defined on networks.

We then provided a detailed survey of the related literature for the problem
defined on networks. This survey showed that almost all the work done on
networks restricted the location space to a tree network. There are very good
theoretical results and algorithms developed for the tree network case, but
the theory for general networks is virtually nonexistant. In this thesis, we
have gone one step forward and solved a new class of instances of distance
constraints on general networks. However, we are restricted to trees in another
part of the problem data, because we require the structure of the interaction

76

CHAPTER 6. SUMMARY AND CONCLUSION I I

between new facilities to be a tree. Those works that go beyond the tree
case solve the related optimization problems and restrict the location of new
facilities to finitely many points [2 , 3]. However, they consider a broader class
of instances in another sense, that is, they assume that the interaction between
new facilities has a series-parallel [3] or a ¿-tree [2] structure. The basic result
for general networks is Kolen’s [1 2] proof stating that determining consistency
or inconsistency of distance constraints is AfV-Complete.

In this study, we followed a different line of attack to the distance constraints
problem. This was an entirely new approach and resulted in exact algorithms
for determining consistency or inconsistency of the distance constraints and
constructing a feasible solution if it exists, in any metric space for a class
of instances where the interaction between new facilities has a tree structure
with all other interactions being arbitrary. We determine the consistency or
inconsistency of DC by an algorithm termed S E I P which constructs a feasible
location vector whenever it exists or concludes that DC is inconsistent. The
basic idea is to apply expansion and intersection operations defined on the
subsets of the location space, sequentially. We also address the problem of
constructing the set of all feasible locations for each new facility, which has not
been addressed in the literature except for the single facility case. A slightly
altered version of S E I P solves this problem with the same time bound.

The new approach is then applied to the case where the location space is
a general network. Application of the new method to the problem defined
on networks resulted in strongly polynomial algorithms. It has been proven
that determining the consistency or inconsistency of DC and construction of
a feasible solution if it exists can be done in 0{\E\mn{m -f n)) time on general
networks. Also the sets of all feasible locations for all new facilities can be

constructed within the same time bound.

Finally, we dealt with the related optimization problem, called the Minimax
Problem with Mutual Communication. A bisection search has been proposed
on the optimal objective value which, at each iteration, required solving a set
of distance constraints with fixed bounds. For the network case, this approach

CHAPTER 6. SUMMARY AND CONCLUSION 78

provided a polynomial algorithm for finding an e-optimal solution.

There are basically three directions of further research:

The case of cyclic interaction structure between new facilities is still an
open question and requires further research.

Since our approach is applicable to any metric space, application of this
approach to other location spaces constitutes a second direction for future
research.

The third direction for research is related to the regions of feasibility for all
new facilities defined in Chapter 3. Since we can construct regions of feasibility
efficiently it may be good to apply a sensitivity analysis on the distance bounds
to see the behavior of the solution for different values. For the related opti­
mization problem, sensitivity analysis may help to characterize some critical
pairs that determine the optimal objective value z*.

Bibliography

[1] BRANDEAU, M. L., CHIU, S. S., ”An Overview of Representative Prob­
lems in Location Research,” Mangmt. Sci., Vol. 35 (1989), pp. 645-674

[2] CHHAJED, D. AND LOWE, T. J., "Solving Structured Multifacility Lo­
cation Problems Efficiently,” Faculty Working Paper 91-0170, Dept, of
Buss. Adm., 350 Commerce West, Univ. of Illinois at Urbana Champaign,
Champaign, IL61820.

[3] ------AND------- , ”m-Median and m-Center Problems with Mutual Com­
munication: Solvable Special Cases,” Oper. Res., Vol 40 (1992), pp. S56-
S66.

[4] DEARING, P. M., FRANCIS, R. L. AND LOWE, T. .1., "Convex Location
Problems on Tree Networks,” 0/;er. Res., Vol 24 (1976), pp. 628-642.

[5] DOMSCHKE, W. AND DREXL, A., Location and Layout Planning, Lec­
ture Notes in Economics and Mathemetical Systems 238, Springer-Verlag,

Berlin and New York, 1985.

[6] ERKUT, E., FRANCIS, R. L., LOWE, T. .J. AND TAMİR, A., "Equiva­
lent Mathematical Programming Formulations of Monotonic Tree Network
Location Problems,” Opcr. Res., Vol. 37 (1989), pp.447-461.

[7] ------, -------AND t a m ir , a ., "Distance Constrained Multifacility Mini­
max Location Problems on Tree Networks,” Networks, Vol. 22 (1992), pp.

37-54.

79

BIBLIOGRAPHY 80

[8] FRANCIS, R. L., LOWE, T. J. AND RATLIFF, H. D., ’’Distance Con­
straints for Tree Network Multifacility Location Problems,” Oper. Res.,
Vol. 26(1978), pp. 570-590.

[9] GAREY, M. R. AND .JOHNSON, D. S., Computers and Interactibility : A
Guide to the Theory of N P-Completeness, W. H. Freeman and Company,
New York, 1979.

[10] HORN, W. A., ’’Three Results for Trees, Using Mathematical Induction,”
J. Res. Nat. Bur. Stnds., Vol 76B (1972), pp. 39-43

[1 1] LABBE, M., PEETERS, D. AND THISSE, J. F., ’’Location on Networks,”
Working Paper 92-13, Europian Institute for Advanced Studies in Man­
agement, Rue d’Egmont 13.B 1050 Brussel, Begium.

[12] KOLEN, A. J. W., Tree Network and Planar Location Theory, Center for
Mathematics and Computer Science, P.O. Box 4079, 10009 AB Amster­
dam, the Netherlands, 1986.

[13] KARIV, 0 . AND HAKİMİ, S. L., ”An Algorithmic Approach to Network
Location Problems. Part I : The p-Centers,” SIAM J. Appl. Math., Vol.
37 (1979), pp. 513-538.

[14] MEGIDDO, N., ’’Combinatorial Optimization with Rational Objective
Functions,” Math. Oper. Res., Vol. 4 (1979), pp. 414-424.

[15] TANSEL, B. Ç., FRANCIS, R. L. AND LOWE, T. .J., ’’Binding Inequal­
ities for Tree Network Location Problems with Distance Constraints,”
7rans. Sci., Vol. 14 (1980), pp. 107-124.

[16] ------ , -------AN D--------, ” A Biobjective Multifacility Minimax Location
Problem on a Tree Network,” Trans. Sci., Vol. 16 (1982), pp. 407-429.

[17] -----, -------A N D -------- , ” Location on Networks: A Survey. Part I :
The p-Center and p-Median Problems,” Mangmt. Sci., Vol 29 (1983), pp.

482-497.

BIBLIOGRAPHY 81

[18]------ , -------A N D -------- , ” Location on Networks: A Survey. Part II :
Exploiting Tree Network Sructure,” Mangmt. Sci., Vol 29 (1983), pp. 498-
511.

