
f r j : í P ± LEÍ E'BGtESSíMn К

' , Ч ' '■ / У"." ·ϋ*··. ̂ν' *·̂ “'/»!·’“

• İ.İ' «'4ИИ>/ . W· ■<

V -"

PARALLEL PROCESSING FOR
PROGRESSIVE REFINEMENT

RADIOSITY

A THESIS

SUBMITTED TO THE DEPARTMENT OF COMPUTER

ENGINEERING AND INFORMATION SCIENCE

AND THE INSTITUTE OF ENGINEERING AND SCIENCE

OF BILKENT UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF SCIENCE

By
Tolga K. Çapın
September, 1993

....

tul C.I ... V.-.İ

7Д

I9 S 2 .

ь

11

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in qiuility, as a thesis for the degree of Master of Science.

Asst. Prof.^^^^let Aykanat (Advisor)

1 certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree, of Master of Science.

Prof. Bülent Ozgüç

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Vis. Assoc
Co/^ _______

oc. Prof. Fazh Can

Approved for the Institute of Engineering and Science:

Prof. Mehme|<^aTay
Director of the Institute

ABSTRACT

PARALLEL PROCESSING FOR PROGRESSIVE
REFINEMENT RADIOSITY

Tolga K. Çapın
M .S. in Computer Engineering and Information Science

Advisor: Asst. Prof. Cevdet Aykanat
September, 1993

Progressive refinement radiosity is an increasingly popular method for re­
alistic image synthesis of non-existing environments. The method successfully
approximates the light distribution in an environment, however it requires
excessive amount of computation. In this thesis, the progressive refinement
method is investigated for parallelization on ring and hypercube-connected
multicomputers. Two different approaches for parallelization, based on syn­
chronous parallelism witli static task assignment, are proposed, in order to
achieve better coherence in parallel light distributions and obtain good perfor­

mance on simple topologies. Efficient global circulation schemes are proposed
in order to decrease the total volume of communication by asymptotical fac­

tors. The first scheme for parallelization is a modification of the sequential
algorithm in that several patches shoot their energy at a time, while the sec­

ond scheme is based on the parallelism level of one shooting patch at a time.
The proposed parallel algorithms are evaluated theoretically and implemented
for ring and hypercube-connected topologies on Intel’s iPSC72 multicomputer.
Load balance quality of the proposed schemes are evaluated experimentally.

Keywords: Realistic Image .Synthesis, Parallel Computing, Multicomputers,
Radiosity, Progressive Refinement Radiosity, Ring Interconnection Topology,
Hypercube Interconnection Topology.

Ill

ÖZET

DERECELİ GELİŞEN IŞIMA İÇİN PARALEL İŞLEME

Tolga K. Çapın
Bilgisayar ve Eııfonııatik Mühendisliği, Yüksek Lisans

Danışman: Yrd. Doç. Dr. Cevdet Aykanat
Eylül, 1993

Dereceli gelişen ışıma gerçeğe uygun görüntü üretmek için gittikçe daha
fazla kullanılmakta olan bir yöntemdir. Yöntem, ışığın sahnede dağılımını
başarılı bir şekilde hesaplamakta, ancak çok fazla işlem gerektirmektedir.
Bu tezde, dereceli gelişen ışıma yönteminin zincir ve hiperküp bağlantılı
dağıtık hafızalı çok işlemciler üzerinde paralel hesaplanması araştırılmaktadır.
İşık dağılımının sırasının sağlanması ve basit topolojilerde iyi perfor­

mans sağlanabilmesi için eşzamanlı paralel işlemeye dayalı iki yaklaşım
geliştirilmiştir. Toplam iletişim miktarını asimtotik olarak azaltmak için ve­

rimli dolaştırma yöntemleri önerilmiştir. Önerilen ilk paralel yaklaşım, tek-
işlemcili algoritmaya değişiklik getirmiştir, çünkü bu yaklaşımda aynı anda
birden fazla yüzey ışık yayar, ikinci yaklaşım aynı anda sadece bir yüzey
yayıcı yöntemine göre tasarlanmıştır. Önerilen yöntemler zincir ve hiper-küp
bağlantılı dağıtık hafızalı çok işlemciler için hiperküp bağlantılı Intel iPSC/2
bilgisayarında gerçekleştirilmiştir. Önerilen yöntemlerin iş dağılımı kalitesi
deneysel olarak gözlenmiştir.

Anahtar Sözcükler: Gerçeğe Uygun Görüntü , Üretme, Paralel işleme,
Dağıtık Hafızalı Çok İşlemciler, Işıma, Dereceli Gelişen Işıma, Zincir Bağlantılı
Topoloji, Hiperküp Bağlantılı Topoloji.

IV

ACKNOWLEDGMENTS

I would like to express my deep gratitude to my supervisor Asst. Prof. Cevdet
Aykanat for his guidance, suggestions, and invaluable encouragement through­
out the development of this thesis.

I would also like to thank Prof. Bülent Özgüç and Assoc. Prof. Fazlı Can
for reading and commenting on the thesis.

I would like to acknowledge Guy Moreillon for his house interior model.
Bilge Erkan for her glass model, and Aydın Ramazanoglu for photographing
the final images.

I am grateful to the members of my family and Meltem for tlieir infinite
moral support and patience that they have shown, particularly in times I was
not with them.

Contents

1 Introduction 1

1.1 Overview.. 1

1.2 Progressive Refinement R ad iosity ... 2

1.3 Motivation.. 3

1.4 Outline of the T h e sis ... 4

2 Radiosity 5

2.1 Realistic Image Generation.. 5

2.2 The Radiosity M e th o d ... 7

2.2.1 Form-Factor Definition... 9

2.2.2 Form-Factor Computation: Hemicube M eth od 10

2.3 Progressive Refinement R ad iosity ... 16

2.3.1 Simultaneous Update of Patch Radiosities: Shooting vs.

G athering.. 17

2.3.2 Solving in Sorted Order · · · ■ , , ..

2.3.3 The Ambient T e r m .. 18

2.4 Further Improvements of the M e th o d .. 20

2.5 Conclusion and S u m m a ry .. 25

vi

3 Overview of Parallelism in Radiosity 26

3.1 Clcissification of Parallel A rchitectures... 26

3.2 Design Criteria for Parallelization.. 28

3.2.1 Type of parallelism.. 29

3.2.2 Load Balancing... 29

3.2.3 G ranularity.. 30

3.2.4 Exploiting Graphical Coherence... 30

3.2.5 Data A ccess.. 30

3.2.6 Scalability.. 31

3.3 Parallelism in Radiosity and Previous W o r k 31

3.3.1 Parallelization: More than One Patch at a T im e 32

3.3.2 Parallelization: One Patch at a T i m e 36

3.4 Critical Issues of the iPSC/2 H yp ercu b e.. 38

3.4.1 Embedding the ring onto hypercube..40

4 Parallelization: Patch Data Circulation 43

4.1 Introduction...43

4.2 Parallelization... 45

4.2.1 Phase 1: Shooting Patch Selection.. 46

4.2.2 Phase 2: Hemicube P rod u ction ... 51

4.2.3 Phase 3: Form-Factor Vector, Computation.............................. 61

4.2.4 Phase 4: Contribution Computation 61

4.3 Experimental R esults... 67

CONTENTS vii

4.4 Conclusion.. 77

5 Parallelization: Hemicube Merging 78

5.1 Preliminaries and Data Structures.. 78

5.2 Parallelization.. 81

5.2.1 Step 1: Shooting Patch S e le ctio n ... 81

5.2.2 Step 2: Hemicube Production S t e p 83

5.2.3 Step 3: Hemicube Merge S t e p .. 84

5.2.4 Step 4: Form-Factor Vector Construction S te p 92

5.2.5 Step 5: Form-Factor Vector A d d ition 93

5.2.6 Step 6: Contribution C om p u tation 94

5.3 An Improvement: Hemicube Division S c h e m e 94

5.3.1 Face Allocation to Subcubes.. 94

5.3.2 Data Distribution.. 95

5.3.3 Hemicube Division Scheme Algorithm.................................... 96

5.3.4 Performance Analysis of Hemicube Division Scheme . . . 97

5.4 Results... 98

5.5 Conclusion... 103

6 Conclusion 104

A Scene Images ,, 112

CONTENTS viii

List of Figures

2.1 Form-Factor G eom etry ... 9

2.2 Nusselt’s A n a lo g u e .. 11

2.3 The Hemicube M e th o d ... 12

2.4 Delta Form-Factor D erivation .. 13

2.5 Normal Vector Computation.. 14

2.6 Shooting versus Gathering (After Cohen ei a t) 19

2.7 Progressive Radiosity Algorithm... 19

2.8 T -V ertex ..21

2.9 Assumptions of the Hemicube Method (After Baum et at) . . . 23

3.1 Single Plane Approximation (After Recker et at) 36

3.2 Algorithm for Parallel GSUM O p eration ..39

3.3 Communication Protocol for global operations on the hypercube 41

3.4 Ring embedding onto the hypercube ...42

4.1 Algorithm for global shooting patch selection on ring topology . 48

4.2 Example global shooting patch selection on ring topology 49

4.3 Algorithm for global shooting patch selection on hypercube

top ology .. 50

ix

4.4 Example global shooting patch selection on hypercube topology 54

4.5 Algorithm for Hemicube Production on Ring T op o lo g y 54

4.6 Patch Circulation on a Ring with 4 Processors................................ 56

4.7 Algorithm for Heniicube Production on Hypercube Topology . . 56

4.8 Patch Circulation on a Three-Dimensional Hypercube 57

4.9 Scattered and Tiled Decomposition... 59

4.10 The Form-Factor Vector Circulation Scheme for the Ring Topology 64

4.11 The Contribution Vector Circulation Scheme for the Ring Topol­

ogy .. 66

4.12 Contribution computation on a Ring with 4 Processors...................68

4.13 The Contribution Vector Circulation Scheme for the Hypercube
Topology... 69

4.14 Contribution computation on a Hypercube with 8 Processors . . 70

4.15 Overall efficiency of the Patch Circulation A lgorith m 76

4.16 Efficiency of the Patch Circulation Scheme per shooting patch . 76

5.1 Abstraction and Representation of the H e m icu b e80

5.2 Algorithm for Form-Factor Vector Construction................................. 81

5.3 Algorithm for Hemicube Merging Scheme.. 82

5.4 Ring Algorithm for Naive Hemicube Merging................................... 85

5.5 Hypercube Algorithm for Naive Hemicube M ergin g86

5.6 Example execution of MergeHemicubes2 on a Hypercube with 4
Processors... 89

5.7 Hypercube Algorithm for Communication Efficient Hemicube

M e rg in g .. 90

u s r OF FIGURES x

5.8 Subcube Allocation for Hemicube Faces.. 95

5.9 Distribution of the Geometry D a t a .. 100

5.10 Mcister-Slave sc h e m e ...101

5.11 Efficiency of the Hemicube Merging S c h e m e102

A .l House Scene Data with 5648 P atch es...112

A .2 Another view of the house scene d a ta ...113

A.3 A Frame from an animation sequence (3424 p a tc h e s).....................113

A .4 Image of a Volkswagen D a t a .. 114

LIST OF FIGURES xi

List of Tables

4.1 Effect of local and global shooting patch selection (in Phase 1)
on convergence.. 71

4.2 Effect of the decomposition scheme on the performance of the

hemicube production phase (Phase 2) of the parallel algorithm . 73

4.3 Effect of the circulation scheme on the performance of the light
contribution computation phase (Phase 4) of the parallel algorithm 74

4.4 Total number of shooting patch selections of the parallel algo­

rithm normalized with respect to the sequential algorithm . . . 77

5.1 Effect of the Patch Data Decomposition Type on Performance
of Hemicube Production Step (Step 2) ... 99

5.2 Performance of the proposed parallel hemicube merge algorithm

on Hypercube Topology ..100

5.3 Effect of the Hemicube Division Scheme on the Performance of

the Parallel S o lu tio n ...103

Xll

Chapter 1

Introduction

1.1 Overview

Realistic image synthesis of fictitious environments is one of the major problems
of computer graphics, and has a wide range of applications such as animation,
CAD, advertising, scientific applications. In order to have photorealistic im­
age quality, the global illumination of the input environment (indirect lighting,
surface-to-surface interreflections and shadows) must be simulated accurately.
The original radiosity method is one of the successful solutions to this problem.
This method requires excessive time and memory, and the progressive refine­
ment approach for radiosity has been proposed to provide fast computation
rate by approximating the original method. However this method still requires
excessive computational power and requires acceleration techniques such as ex­

ploiting parallelism. This thesis will examine the parallelization of progressive
refinement radiosity for medium-to-coarse grain multicomputers.

The earlier, but still used, methods for rendering, Gouraud and Phong
shading methods [9, 23], assume that objects are illuminated directly by point
light sources located at infinity. Although these methods support specular
and diffuse illumination; they are local methods, since they ignore the indirect
illumination hy surface-to-surface interreflections and shadows caused by occlu­
sions among the objects. Hence these methods produce incorrect simulations
of the light distribution. Ray tracing [44] has become the preferred method
for environments consisting of mainly specular surfaces to give solutions that
are view-dependent. Hence, the ray tracing method requires recomputation
of light distributions each time the viewing position changes. The radiosity

1

CHAPTER 1. INTRODUCTION

method can successfully compute the ¡nterreflections among diffuse surfaces,
which are approximated by a constant “ambient” term in ray tracing. The
radiosity method is distinct among the other methods such that it separates
the light calculations from the rendering process; once the color (illumination)
of each object is calculated, one can walk through the environment without
requiring further color calculations.

The progressive refinement radiosity method [16] reformulates the original
radiosity method and aims to provide approximated solutions initially, in near
interactive time. However, the method still requires excessive time in order
to provide successful images for complex scenes. Hence, several methods have
been proposed in order to speed up the algorithm further. Exploiting paral­
lelism is among the methods that can achieve good results.

1.2 Progressive Refinement Radiosity

The conventional radiosity method is based on radiative heat transfer and
was introduced to the field of Computer Graphics by Goral et al [22]. The
method is based on an energy equilibrium within an enclosure. The objects
are given as input with their positions in 3D, their reflectivity and emission
values for each colorband. The reflectivity of an object gives the fraction of
the incident (impinging) light it disperses and the emission of an object is
defined as the amount of light it radiates. The reflectivity and emission values
are predetermined which are constants and they depend only on the surface
characteristics of the objects. The radiosity method aims to find the radiosity
of each surface element; that is the amount of light energy leaving each surface,
which is the sum of emission from the surface and reflection of the incident light
(that is the light arriving) at the surface. The incident light is determined by
the effects of all other surfaces on the surface, which depends on the geometrical
factors as well as the radiosity of other surfaces.

'I
The main equation for the radiosity method is:

Radiosityi X Areai = Emissiorii x Areai -|- Reflectancci x

X Radiosityj x Areaj x FormFactorsji{l.l)

This equation states that the light leaving from a surface is the sum of
light originally emitted from the surface and reflection of the incident light.

CHAPTER 1. INTRODUCTION

The emission (the first term on the right hand side of Eq. 1.1) is equal to 0
if the surface is not a light source. The second term in Eq. 1.1 corresponds
to the reflection of incident light. Here, FormFactorji denotes the fraction of
light energy leaving surface j that lands on surface t, to all the energy leaving
surface j. Note that the radiosity of a surface is dependent on the radiosity
of all other surfaces, and Eq. 1.1 holds for each surface; hence combining the
equations for all surfaces, a linear system of equations is formed for solving the
radiosities of all surfaces, after which the final image can be rendered.

The conventional radiosity method, described above, is expensive in terms
of execution and the final image cannot be viewed until the matrix equation is
solved. This reduces the usability of the method for complex scenes consisting
of large number of surfaces, unless the progressive refinement approach is used.
This new approach eliminates setting up the system of equations, and follows
the path the light travels in the environment. The initially approximated
solutions are provided quickly and the final solution is approached iteratively.
At each iteration:

1. The most energetic surface is selected as the source surface,

2. The form-factors from this source surface are computed,

3. Depending on these form-factors, the light is distributed from the source
surface to the environment.

In this method, intermediate solutions between the iterations can be viewed,
thus allowing the modification of the input scene geometry and surface color
properties without waiting until the complete solution is achieved.

1.3 Motivation

Current research in radiosity has concentrated on two main classes: increasing
the accuracy and the speed of the solution. The excessive amount of computa­
tion required by the conventional radiosity led to research for speeding up the
solution. Although algorithmic and meshing techniques decrease the execution
time, still excessive computational power is required. Hence, exploiting paral­

lelism can be used for speeding up the method further. However, there is not

CHAPTER 1. INTRODUCTION

much research on parallelization of radiosity. This thesis aims to fill this gap
by providing a thorough examination of parallelism in progressive refinement
radiosity, and presents two different approaches to parallelization of progressive
refinement radiosity on multicomputers. Synchronous parallelism with static
task assignment is exploited in order to obtain a solution whose performance
does not degrade with simple topologies while exploiting the shooting patch co­
herence. The two schemes are implemented for ring and hypercube-connected
multicomputers on the Intel’s iPSC/2 multicomputer. The performances of
the algorithms are analyzed both theoretically and experimentally.

1.4 Outline of the Thesis

This thesis includes three main parts. In the first part, background for the
theory of progressive refinement radiosity is provided. The second part dis­
cusses the design criteria for developing parallel algorithms and previous work
on parallelization of the radiosity method. The third part includes two con­
siderably different approaches for parallel progressive refinement radiosity, the
approaches are presented and the theoretical and experimental evaluation of
the algorithms are given. Chapter 2 contains the radiosity background. Chap­

ter 3 contains the parallelization issues for the method. Chapters 4 and 5
present the two novel approaches and give the performance analysis. Chapter
6 includes the concluding remarks, and the discussion of future work directions.

Chapter 2

Radiosity

In this chapter, the realistic image generation problem is stated, the difference
between local and global illumination is discussed, and the radiosity method is
explained. The chapter continues with the discussion of progressive refinement
radiosity, which is investigated for parallelization in this thesis.

2.1 Realistic Image Generation

In realistic image generation, the input is a set of objects in 3D with their light
characteristics. The output is a photographic quality image of the fictitious
scene.

The image synthesis process consists of the following phases:

1. Read in object data from disk.

2. Determine the illumination distribution in the environment and find the
color of each object or surface.

3. Render the surface data onto the image and display the image.

The objects are generally approximated by polygons. The input dataset
consists of the (x,y,z) coordinates and id’s of the polygons in the scene,
as well as the reflectivity and the emission of the polygons for color-bands
(red,green,blue). The polygons are assumed to be planar. The final image is

CHAPTER 2. RADIOSITY

a two-dimensional array of pixels for three color-bands. The display of the
final image depends on the viewing position and direction of the viewer in
three-dimensional coordinates, and the display .process consists of geometrical
transformations from the world coordinates to the viewing coordinate system,
clipping of the objects to eliminate invisible parts of the objects from the view­
ing position, and accurate displaying of the objects according to their computed
color and geometry.

The method for computing the illumination should be selected carefully in
order to get photographical quality images. The illumination models used in
this phcise simulate the physical phenomena; and the shadows, which contribute
to the quality of the final image are computed.

Earlier, however still in use, illumination methods [9, 23] assume the input
objects independently and accept the light sources at infinity in order to com­

pute the illumination efficiently. In these methods, the color information [23]
or the normal vectors [9] are interpolated in order to have smooth shading of
the polygons for realistic image generation. However, these methods are local,
that is they consider only direct illumination from a light source and ignore
object-to-object illuminations and shadows caused by occlusions among the
objects.

Two main global approaches that have been popular and successful at gen­

erating photographic quality images are ray tracing and radiosity. In ray trac­

ing, for each pixel on the image plane, a ray is shot and the ray is traversed
by reflections and refractions among the objects in the scene. Ray tracing is
suitable for scenes consisting of mainly specular surfaces. On the other hand,
the radiosity method is successful for environments with diffuse surfaces. The
radiosity method is based on an energy equilibrium within a closed environ­

ment.

In ray tracing, the ambient light (i.e. the indirect light resulting from diffuse
reflections among the objects) is approximated by a constant factor, however
the radiosity method can compute the ambient term more accurately. Another
advantage of radiosity over ray tracing is: in an environment with diffuse ob­

jects, once the light distribution is computed, one can walk through the scene in
near-interactive time with no further light distribution computations, provided
that the geometry does not change.

The radiosity method hcis a major difference than the other methods: it

CHAPTER 2. RADIOSITY

seperates the light distribution computation process from the display process.
For example, in ray tracing, the light distribution is computed for each im­

age, as the rays are traversed in the environment. This property makes the
radiosity method an efficient method for realistic image synthesis, especially
for walkthroughs.

2.2 The Radiosity Method

The radiosity method, based on an energy equilibrium within an enclosure,
has its basis in heat transfer between surfaces in an environment [35]. The
method was introduced to the field of Computer Graphics by Goral et al.
[22]. In Computer Graphics, the energy that is transferred is the light energy
compared to the heat energy examined by Thermodynamics.

The radiosity method assumes perfect Lambertian surfaces (i.e. they emit
or reflect light in all directions with equal intensity). Given the objects (sur­
faces) in the scene with their emissions and reflectivities for three color-bands
red, green, blue; the light distribution is formulated based on the surface char­
acteristics and geometrical relationships. The following equation, which states
that light leaving a surface is the sum of self-emitted energy (if the surface
belongs to a light-emitter object) and reflection of the incident light incoming
from all other surfaces, holds for each surface i in the environment:

Bi = E iA i + r, / B jF jid A j
Jenv j

(2.1)

where.

R adiosity(B) : The total rate of energy leaving one surface.

(energy/unit area)

E m ission(E) : Rate of energy (light) emitted from a surface.

(energy/unit area)
>1

R eflectivity(r) : Fraction of light reflected back to the environment.
(unitless)

Form Factor(Fj,) : Fraction of light leaving surface j which
lands on i, to all light leaving j. (unitless)

CHAPTER 2. RADIOSITY

A re a (A) : Area of surface (unit area)

The integral in Equation 2.1 is inefficient to evaluate for differential areas,
therefore all the input surfaces in the environment are subdivided into smaller
patches, which are assumed to have constant radiosity (energy). Then, the
following equation holds for each patch i in the environment:

N
BiAi = EiAi + r. BjAjFji, I < i < N (2.2)

J=1

R adiosity(B) : The total rate of energy leaving one patch.
(energy/unit time/unit area)

Em ission(E) : Rate of energy (light) emitted from a patch.
(energy/unit time/unit area)

R eflectivity(r) : Fraction of light reflected back to the environment.
(unitless)

Form Factor(F) : Fraction of light leaving one patch which lands on another.
(unitless)

N : Number of patches in the environment.

Note that the following reciprocity equation holds for each patch pair:

AjF,i = A,Fij (2.3)

So, Equation 2.2 can be rewritten by using Eq. 2.3 and eliminating A ,’s as:

N
Bi = Ei + riYBjFij, l < i < N

j=i
(2.4)

Combining Eq. 2.4 for all patches in the environment yields following linear
system of equations:

CHAPTER 2. RADIOSITY

-r2F2,\ 1 - ^2^2,2

-TlFi^N
-‘>’2F2,N

—rjvFTV.l — V N F N a · · · 1 — f’f iF N .N

Bx ’ Ex ■

B2
=

E2

B s En

(2.5)

Equation 2.5 has to be solved for B i ’s in three color-bands. The reflectivity
r,· and emission E{ values of the patches are constants and are determined by
only the characteristics of the objects which are approximated by patches. In
order to solve Eq. 2.5, the form-factor values (F .j’s) should be computed. The
form-factor value for a patch depends only on geometrical relationships among
the patches and is discussed in the following section.

2.2.1 Form-Factor Definition

The form-factor is the fraction of the energy leaving one patch which lands
onto another patch, to all the energy leaving the first patch [14, 22, 35]. By
definition, the sum of all the form-factors from a patch is equal to unity. The
form-factor from a planar or convex patch to itself is zero.

Figure 2.1. Form-Factor Geometry

Figure 2.1 shows the geometric relationships for form-factor computation.
In this figure dAi and dAj correspond to differential area elements of patch i

CHAPTER 2. RADIOSITY 10

and y, respectively. Then, the form-factor from differential area i to differential
area j is given by:

COŜ iCOŜ j
EdA.dAj = ------ 5----------J ^ A7TrdAidAj

(2,6)

Integrating over patch j , the form-factor from differential area dA{ to area
j is given as:

Fm .a, = /
COŜ iCOŜ j

'̂ '̂dAidAj
dAj (2.7)

The form-factor between finite-area patches is defined cis the area average
of the differential-to-finite area form-factors:

„ I f f COS îCOS î , . , ^
~ ~A Ja Ja dAjdAi/ 1, JAi JAj

(2.8)

Almost always, scenes have occlusions, i.e. some part of the patch is not
visible from a second patch because of a third patch between them. Then, a
function SdAidAj is needed to specify whether the differential area dAi “sees”
differential area dAji

„ I f f COŜ iCOŜ j . , A , .
^AiAj ~ 'T. J. J. SdAidAjdAjdAi (2.9)

/1, JAi JAj dAidAj

In Eq. 2.9, SdAidAj takes value 1 or 0 depending on the visibility between
two differential areas dAj and dAj.

2.2.2 Form-Factor Computation: Hemicube Method

The hemicube method [14] is proposed in order to provide an efficient, but ap­
proximated solution to form-factor calculation and it handles occlusions among
the patches in the environment. The following subsections discuss the hemicube

method in detail.

CUA PTE ft 2. RA DIOSITY 11

Approximations of the Hemicube Method

If the distance between two patches is considerably large compared to their size
and the effect of occlusion is assumed negligible, the value of the inner integral
in Eq. 2.9 remains almost constant because <5,, and r change slightly for
differential areas of patch i and j. In this case, the effect of the outer integral
is multiplication by unity and the patch-to-patch form-factor is reduced to:

A. A, F,'dAiAj = I
JA

COŜ iCOŜ j
TCr.2

dAj (2.10)

The source differential area (dAi) is selected as the center point of the patch
i in order to represent a well-approximated average position for patch i.

The hemicube method is based on the geometric analogue developed by
Nusselt [.35]. The form-factor is equivalent to the fraction of the circle (which
is the base of the hemisphere placed over the source patch) that is covered
by projecting the destination patch onto the hemisphere and orthographically
onto the circle. Figure 2.2 illustrates the geometry of Nusselt’s Analogue. Each
point on the circle has an associated delta form-factor, hence the form-factor
of a patch is computed by adding the delta form-factors of the points in the
projection area.

Figure 2.2. Nusselt’s Analogue

However, discretizing the hemisphere requires creating equal-sized elements
on the hemisphere as well as setting up a set of linear coordinates to uniquely

CHAPTER 2. RADIOSITY 12

describe locations on the hemisphere surface make the hemisphere method
impractical; therefore the hemicube method is used as an approximation of
the hemisphere. The hemicube method provides an efficient solution to the
form-factor computation for general complex scenes. The method can also be
used on special hardware designed for z-buffer hidden surface removal generally
used for rendering.

Summary of the Hemicube Method

In the hemicube method, instead of projecting onto a hemisphere, a hemicube
is placed onto the center of the source patch (Figure 2..3). Then the environ­
ment is transformed to the viewing coordinates of the source patch so that the
center of the source patch is at the origin and the normal vector of the source
patch coincides with the -|-y axis. Hence, five faces of the hemicube (the top
face, facing -|-y axis, four side faces facing -x, -fx, -z, +z axes) replace the
hemisphere. These hemicube faces are divided into small square “pixels” at a
given resolution (generally 50x100x100), and the environment is projected and
filled onto the five planar faces. If more than one patch project onto the same
pixel, the nearest one is selected as the visible patch. This necessitates holding
an item-buffer for the hemicube. The item-buffer holds, for each pixel, the id
of the patch with nearest distance to the center of the source patch and its
distance. This process is similar to the z-buffer hidden-surface removal [39].

Figure 2.3. The Hemicube Method

CUAFTBfi 2. RADIOSITY 1:3

il.iviiii:, iHojiM'li'd all I lie onvironment onto the itein-l)iiir<Ts, IIk' hulh'r en­

tries are converted to a form-factor vector {Fij, 1 < J < N) corresponding to
the source patch i. This process consists of adding the delta form-factors of the
pixels that correspond to the same patch j to compute the form-factor value
Fij. The delta form-factors are computed using the approximation stated in
Equation 2.10.

The delta form-factor derivation for a pixel on the top face and on a side
face are given in Figure 2.4.

Figure 2.4. Delta Form-Factor Derivation

D etailed Description of the H em icube M eth od

The projection of other patches in the environment onto the hemicube re­

quires passing all patches through a projection pipeliiie consisting of a) visibil­

ity test, b) clipping, c) perspective projection, and d) scan-conversion onto the
hemicube faces.

For each destination patch j in the environment, the following is performed:

CHAPTER 2. RADIOSITY 14

a) Visibility test: F’irst, it has to be checked whether the destination
patch j is potentially visible from the source patch. If patcli j is behind the
source patch i or they do not face each other, then patch j requires no further
computations and leaves the projection pipeline in the early stage.

Each planar patch has only one face and a constant normal vector. This
normal is computed at the initialization phase of the patch data. Assuming
the vertices of the triangular patch are input in clockwise manner, the normal
vector of the patch is found as:

N = (V 3 - V i) x (V 2 - V i) (2.11)

where and “ x ” are vector subtraction and vector cross product. Figure 2.5
illustrates the geoinetry of the patch normal vector computation.

The visibility test consists of two phases. In the first phase, it is tested
whether the two patches face each other. This is accomplished by evaluating
the formula:

N j . (S j - S ¡) < 0 (2. 12)

where Nj is the normal vector of patch j , Sj and Sj are the centers of patch
i and j , and (Sj — Sj) is the vector connecting the two patch centers which
has the starting point at the center point of patch i. If the dot product “·”
in Eq. 2.12 is negative, the patch is potentially visible and the visibility test
continues. If the dot product is positive, the patches do not face each other
and patch j leaves the projection pipeline.

CHAPTER 2. RADIOSITY 15

If the first phase is successful, it is checked whether the destination patch
is situated above the source patch plane. This is accomplished by evaluating:

Ni · (V{ - Si) > 0 or Nj · (yj - Si) > 0 or Ni · (V̂ - Si) > 0 (2.13)

where (Vj , V 2 , V 3) are the three vertices of the triangular patch j. If Equa­
tion 2.13 is true, then at least one vertex of the destination patch j is above the
source patch, so patch j is potentially visible. Otherwise, patch j is below the
source patch plane, therefore it is not visible, so patch j leaves the projection
pipeline.

b) V iew ing transform ation and clipping: The patch that has passed
the visibility test is potentially visible. Next, the geometrical transformations
have to be performed in order to bring the destination patch j to the viewing
coordinate system. This is done by setting up the viewing matrix to transform
the world coordinated system to the viewing coordinate system for the source
patch i initially and multiplying destination patches j in the pipeline with this
matrix.

When the destination patch j has been brought to the viewing coordinate
system, it will be projected onto the five faces of the hemicube. If R is the
half-width resolution of the hemicube, then a top face with resolution 2Rx2R
facing + y direction and four side faces of resolution 2RxR facing -x, + x , -z,
+ z directions are placed. This results in clipping planes Y = X ,Y = —X, Y =
Z ,Y ^ - Z ,Z = - X ,Z = X ,Y = 0.

When projecting the patch onto a hemicube face, parts of the destination
patch j which are invisible from patch i through the hemicube face should be
clipped with respect to the surrounding clipping planes of the face. So, the
output is a set of vertex points which form the intersection polygon between
the input patch j and the clipping volume defined by four clipping planes.
Sutherland-Hodgman [38] polygon clipping algorithm is used in this thesis.

c) Perspective P rojection : After the destination patch has been clipped
with respect to the viewing volume for a hemicube face, only the part of the
patch which is inside the volume heis been left. Next, perspective projection
with focus length equal to 1 of the vertices is performed to have their coordi­

nates on the hemicube face.

CHAPTER 2. RADIOSITY 16

d)Scan-conversion: Having computed the locations of the vertex ¡)ro-
jections on the hemicuhe face, the next process is to “fill” the hemicube face
with this patch, considering the hidden surface elimination. First, an edge list
corresponding to the points on the edges of the patch is created. Then, the
two corresponding edge points for a line are “connected” , interpolating the dis­
tance. If the pixel buffer has a previous lower distance tlian the patch’s value
for that pixel, then there is another patch that is nearer to the source patch
for that pixel. Otherwise, the destination patch is nearer, therefore the patch
id and distance of that pixel are updated. The similar z-buffer [21] process is
exploited in other computer graphics problems such as rendering of the images,
in which case the color for that pixel is stored instead of the patch id in the
z-buffer.

2.3 Progressive Refinement Radiosity

The conventional radiosity approach has two major disadvantages that limit
the usage of the method for complex scenes with large number of patches.
First, it requires O(N^) time to construct the form-factor matrix (Eq. 2.5) {N
is the total number of patches), and the environment cannot be viewed until
this operation is completed. Second 0{N^) memory is needed to store the
coefficient matrix. The progressive refinement radiosity [\6] approach provides
a solution to these two problems by reformulating the conventional radiosity
algorithm. This approach requires 0(N) time and memory.

The progressive refinement approach differs from the conventional radiosity
in two aspects. First, the radiosities of all patches are updated simultaneously.
Second, the patches are processed in sorted order according to their energy
contribution to the environment.

The method starts with an initial approximation to the light distribution in
the scene and approaches to more accurate distribution, providing a graceful
and continuous convergence to a realistic looking image.

CHAPTER 2. RADIOSIT Y 17

2.3.1 Simultaneous Update of Patch Radiosities:
Shooting vs. Gathering

In the conventional radiosity algorithm, the Gauss-Seidel method is applied
to solve the system of equations (Eq. 2.5) for patch radiosities. The method
effectively converges to the solution by processing the system of equations one
row at a time. The evaluation of the row of the matrix provides an estimate
of patch i based on the current estimates of the radiosities of all other patches:

N
B{ = Ei + ?·, ^ Bj Fij, 1 < Î <

i=i
(2.14)

A single term in Eq. 2.14 gives the light contribution made by patch j to
patch i:

B{ due to Bj = I'iBjFij (2.15)

This equation can be reversed by computing the contribution from patch i
to patch j using the reciprocity relationship of Eq. 2.3 as follows:

Bj due to Bi = VjBiFji

= VjBiFijAiJAj

(2.16)

(2.17)

The contribution to any patch j from patch i is computed using Equa­

tion 2.17.

Note that, the form-factor row corresponding to patch i is used to distribute
the light energy from patch i to all other patches j . Still, the hemicube method
can be used for computing the form-factor row. Thus, each step of the pro­

gressive refinement radiosity algorithm consists of computing a single row of
form-factors for a single patch and adding the light contributions from that
patch to all other patches using Eq. 2.17 with computed form-factor values, in
effect shooting the light from that patch i into the environment.

Figure 2.6 illustrates the difference between conventional [Gathering)
method versus progressive refinement radiosity [Shooting) method.

CHAPTER 2. RADIOSITY 18

2.3.2 Solving in Sorted Order

It is desirable for the shooting method to approach to a realistic solution as
quickly as possible. At each iteration, the light distribution, that is the radios-
ity of each patch i, consists of the contributions from the previous shooting
patches. The correct distribution is approached faster if the largest contribu­
tions are added first. Therefore, at each iteration, the patch with maximum
energy should be selected for the method to converge faster.

Different convergence criterias may be used. In the first criteria, the algo­

rithm tests the AB,y4, of the shooting patch i. If this value is greater than the
user-specified tolerance, the algorithm converges. In the second criteria, the
ABjAj values of all the patches j in the environment are summed, and tested
if this area-weighted sum reaches a specified percentage of the initial energy
undistributed in the algorithm.

A patch may be selected as the shooting patch more than once during the
course of the execution, if it receives more light from the environment. In that
case, the environment will already store the estimate of the last shooting from
the patch. Hence, a delta radiosity AB is stored in addition to the radiosity B
for each patch in order to store the difference between the previous estimate
and the current estimate of the patch radiosity, that is the light the patch has
gathered since the last shooting from the patch. When solving in sorted order,
the solution tends to proceed in approximately the same order as the light
propagates through the environment. Figure 2.7 illustrates the pseudo-code
for the progressive refinement radiosity algorithm.

2.3.3 The Ambient Term

The progressive refinement algorithm starts with a dark environment and grad­

ually brightens to a globally illuminated scene. In order to view approximately
illuminated environments an ambient term is added [16] during the rendering
process. The ambient term allows approximate viewing of the initially dark
environments. This term decreases as the algoi;^thm converges to more accu­
rate solutions of Bj's with increasing number of shooting patches. Note that,
the ambient term is used for display only and is not used in the solution phase.

CHAPTER 2. RAD IO SITY 19

GATieiNG VS. SHOOTING

Figure 2.6. Shooting versus Gathering (After Cohen et at)

/ * Initially, Bi = ABi = Ei for each patch * /
/* Ei = 0 for non-light sources * /
Select patch i with greatest A 5 ,A ,.
while not converged do

Calculate form factors at patch i (e.g.using Hemicube Algorithm)
for each patch j do

A Rad = TjABiFijAilAj',
ABj — ABj -f- ARad",
Bj = Bj -f ARad;

endfor
ABi = 0
Select next patch i with greatest A 5 ,A ,.

endwhile

Figure 2.7. Progressive Radiosity Algorithm

CHAPTER 2. RADIOSITY 20

2.4 Further Improvements of the Method

Although the radiosity method has been successful at generating realistic-
looking images, it still has computation and modelling requirements that limit
the usage of the method. In this section, a brief overview of these requirements
and current research for improving the method will be presented. A summary
of previous research on radiosity can be listed as follows:

1. Meshing and preprocessing techniques in order to obtain more accurate
and faster solution.

2. Form-factor techniques in order to compute more accurate geometrical
relationships among the input patches.

3. Adapting the method for dynamic environments.

4. Including more general reflection models and surface properties such as
specularity or participating media in the environment.

5. Exploiting parallelism in order to achieve faster image generation speeds
without compromising image quality.

1. M eshing and Preprocessing Techniques: The scene models for
the radiosity method must satisfy certain constraints in order to obtain an
accurate image.

First, model geometry requirements state that the input patches have con­

tinuous normals and homogeneous material properties (such as reflectivity,
emission, etc.), the patch dataset is a solid model (the points are classified
as inside, on, outside the object), the facets are single sided with consistent
normals, and no two faces overlap each other.

Second, the meshing requirements require that no T-vertices occur between
neighbouring patches. An example is illustrated in Figure 2.8. Also the poly­

gons must be well-shaped, that is the ratio of the radius of the inscribed circle
to the radius of the circumscribed circle should |)e close to unity, the patches
should not be too small or too large, the patches in the environment should be
subdivided for better accuracy, and no shadow leakage should occur.

Considering these critical issues, several methods have been proposed in
order to speed up the solution by using preprocessing techniques for hierarchical

CHAPTER 2. RADIOSITY 21

representation of the objects or by starting with coarse patches and adaptively
subdividing the necessary regions of the environment during the course of the
solution.

Figure 2.8. T-Vertex

The initial work in adaptive subdivision is by Cohen et al. [15]. In this work,
they propose a subdivision method called “substructuring” with hierarchically
subdivision of the input surfaces into subsurfaces, patches and elements. Baum
et al. state the ultimate constraints required by the radiosity method and
propose automatic subdivision method [5]. Campbell and Fussell [10] present
the subdivision for elimination of light leakage.

Hanrahan et al. [25] propose a hierarchical representation of the environ­

ment. In their algorithm, the hierarchical radiosity is inspired by the N-Body
problem, and the patch-to-patch visibility is computed and the form-factor
computations are performed with required precision. Smits et al [37] propose
a view-dependent solution based on Hanrahan’s work.

Lischinski et al. [29] propose an accurate radiosity based on discontinuity
meshing. The mesh explicitly represents the discontinuities in the radiance
function as boundaries between mesh elements. Piecewise quadratic interpola­
tion is used to approximate the radiance function. This solution is fully auto­
matic and view-independent; and is not limited to constant-radiosity patches
and produces less number of patch elements.

CHAPTER 2. RADIOSITY 22

Teller and Sequin [40] propose a visibility prepocessing scheme for inter­
active walkthroughs in constant environments. The method divides the envi­

ronment into cells and creates a data structure for cell-to-cell visibility. Then,
this data structure is used at the walkthrough stage by computing the cell the
viewer is in. So, the potentially visible cell is found and only the patches in
this cell are used for rendering the frames.

2. Form -Factor C om putation Techniques: The hemicube method
is an approximation to the hemisphere computation. Although the hemicube
method is efficient and it handles occlusions within the environment; it has
assumptions which results in incorrect computation of the form-factors.

These assumptions are [3] :

P roxim ity Assum ption The hemicube method assumes that the distance
between surfaces i and j is great compared to their size, thus the method
samples the patch i with its center point for form-factor computation.
This assumption is violated when the two patches are close to each other.

V isibility A ssum ption The visibility assumption requires that the visibility
between differential areas stays constant across patch i, but this assump­
tion can be violated as shown in Figure 2.9(b). In Fig. 2.9(b), the center
of surface 1 has a complete view of surface 2, however shaded part of
surface 1 is occluded by surface 3. Thus, the hemicube algorithm will
overestimate

Aliasing A ssum ption This assumption states that the surfaces project ex­

actly onto the hemicube face pixels, similar to the aliasing assumption in
rendering and ray tracing. As a result of this assumption, the form-factor
value for a surface may be overestimated or underestimated as shown in
Figure 2.9(c).

In order to solve the problems caused by the hemicube method assumptions
and compute more accurate form-factors, a number of form-factor computa-

'/ ^
tioii techniques have been proposed. Following is a brief summary of these
techniques.

The earliest radiosity paper [22] uses direct numerical integration, using
Stoke’s Theorem for converting the double integral of the form-factor equation

CHAPTER 2. RADIOSITY 23

Figure 2.9. Assumptions of the Hemicube Method (After Baum et at)

(Eq. 2.8) into a double contour integral. Nishita and Nakamae [i
similar solution, by computing the occlusions among the objects.

propose a

In Bu and Deprettere’s approach [7], the form-factor vector is computed by
locating a hemisphere over the patch and casting rays towards the hemisphere
pixels.

Wallace et al. propose [43] a source-to-vertex ray tracing solution. Instead
of shooting rays from the source patch in the uniform directions of hemicube
pixels, their method samples the shooting patch from the point of view of
each other surface in the environment. From each vertex in the environment,
rays are sampled towards different parts of the shooting patch, and tested for
occlusions by other surfaces.

3. A dapting the M eth od for D ynam ic Environm ents: The con­

struction of the form-factor vector is the most compute-intensive part of the
radiosity method. When the geometry of the scene changes, these values change
and should be re-computed. Some methods have been proposed for providing
efficient solutions for dynamic environments.

Baum et al. [2]’s method is used for animation. The method computes an
animation sequence and the path of the object movement is used for decreasing
the form-factor computation time.

CHA PTER 2. RA DIOSITY 24

A ray-tracing based solution [8] was proposed by Buckalew et al. in order
to be used for incremental updates in geometry and color of the patches.

Chen's approach [13] was proposed in order to be used for interactive manip­
ulation of the objects, based on progressive refinement radiosity. The method
works by shooting negative light when a light source is turned off, and com­
puting the incremental radiosity of the patch when the light attribute of the
patch is modified, and computing incremental form-factor for a patch when
the geometry of the patch changes.

4. Including M ore General Reflectance M odels: The original ra­
diosity method assumes ideal Lambertian surfaces, that is the surfaces reflect
the incoming light with the same amount in all directions. However, specular
reflections and transmissions should be considered for more realistic scenes.

Immel and Cohen [27] propose a method which includes specular reflection.
In their approach, a relationship between a given outgoing reflection direction
for a patch and all outgoing directions for all other patches is constructed, and
a simultaneous solution of the resulting system of equations gives an intensity
in each direction for each patch.

Wallace and Cohen [42] propose a two-pass solution. The first pass is
view-independent and is based on the hemicube algorithm, with extensions
to include the effect of diffuse transmission, and specular-to-diffuse reflection
and transmission. The second pass is view-dependent based on distributed ray
tracing with z-buffer for specular reflection and transmission.

5. Exploiting Parallelism : Although methods that improve the accu­

racy and speed of the radiosity method have been presented in the literature,
still excessive amount of computation is required to simulate the light dis­

tribution. Parallelism can be exploited in order to speed up the algorithm
further without compromising image quality. In subsequent chapters, the pre­
vious work on parallelization of the radiosity method is discussed and two
novel approaches for parallelization of progressive refinement radiosity will be
presented.

CHAPTER 2. RA DIOSITY 25

2.5 Conclusion and Summary

III this chapter, the global illumination and progressive refinement radiosity is
introduced. To summarize, the progressive refinement radiosity algorithm is
an iterative approach. Each iteration consists of the following phases:

1. Shooting Patch .Selection.

2. Hemicube Construction for the shooting patch.

3. Conversion of the hemicube item-buifers to a form-factor vector.

4. Contribution computation from the shooting patch to the environment.

In Phase 1, the patch with maximum ABiA{ is selected as the shooting
patch for faster convergence. In Phase 2, all the other patches are projected
onto five hemicube faces located on the shooting patch. F’or this process, the
patches are passed through a projection pipeline, and the patches which are
not visible leave the pipeline in an early stage. In Phase 3, the hemicube is
scanned and delta form-factors of the pixels corresponding to the same patch
are added in order to obtain the form-factor value for that patch. Phase 4
consists of evaluating Eq. 2.17 for each patch j , using the form-factor vector
that ha5 been computed for the shooting patch.

Chapter 3

Overview of Parallelism in Radiosity

This chapter presents the background for the parallel processing and sum­

marizes the previous efforts for parallelization of the progressive refinement
algorithm.

3.1 Classification of Parallel Architectures

In general, parallel architectures can be classified according to:

• the number of instruction and data streams supported,

• the memory organization,

• the coupling,

• the granularity.

Classification According to the Multiplicity of Data and
Instruction Streams

This classification follows Flynn’s taxonomy [20], and divides the parallel
architectures into four classes: '

• SISD (Single Instruction Single Data) : This is the standard sequential
computer.

26

ClIAPrER 3. OVERVIEW OE PARALLELISM IN RADIOSITY 27

• M IS D (Multiple Instruction Single Data) : There is no available parallel
computer belonging to this class at this time.

• S IM D (Single Instruction Multiple Data) : The processor set executes a
single stream of instructions, but each processor operates on its own data.
Hence, a single instruction is executed at a time by all the processors.

• M IM D (Multiple Instruction Multiple Data) : In this class, each pro­
cessor in the set executes a different program with different data at a
time.

Classification According to Memory Organization

There are two main classes based on this classification:

• Shared M em ory : In this class, there is a global memory address space
accessible by all processors. Processors may also have local memories
(caches) that are orders of magnitude smaller and faster compared to
global memory. Synchronization is achieved by shared variables.

• Distributed M em ory : There is no global memory or memory address
space in this class. Processors have only local memory; and synchro­

nization and coordination among the processors are achieved through
message passing.

Classification According to Coupling

There are two basic classes of parallel computers and algorithms according
to this type of classification:

• Synchronous Architectures : The processors perform their tasks or
communication in lock-step or highly synchronous manner.

• Asynchronous Architectures : Tasks or' communication are not per­

formed in lock-step fashion. Overhead for data exchange is typically
higher, and objects may proceed at somewhat different speeds. Occa­
sionally, barrier synchronization may be used to allow slow objects to
catch up with the faster objects.

CHAPTER 3. OVERVIEW OF PARALLELISM IN RADIOSITY 28

Classification According to Granularity

Granularity is a way of expressing the ratio of computation to communica­
tion in parallel machines. There are three main types of granularity:

• Coarse-grain Architectures : Computation to communication ratio
is very high, and a few but powerful (may be heterogeneous) processors
are exploited.

• M edium -grain Architectures : Parallel computers in this class typi­
cally have computation to communication ratio of 100 or more.

• Fine-grain Architectures : These computers are characterized by a
large number of very simple processors. The computation to communica­
tion ratio is almost unity. Generally, SIMD type of architectures exploit
fine-grain parallelism.

3.2 Design Criteria for Parallelization

The most promising parallel architecture is distributed-memory message­

passing architecture which is usually referred as multicomputers. Multicom­

puters are asynchronous and MIMD type architectures. Multicomputers have
nice scalability feature due to the lack of shared resources. In this work, paral­

lelization of progressive refinement radiosity on multicomputers is investigated.

Exploiting good speed-up through parallelism on multicomputers is not
straightforward. The parallel program designer must decide on atomic tasks
depending on the type of parallelism and granularity selected. In order to
obtain good performance, the parallel graphics algorithms must be developed
considering the following issues:

1. The decision of decomposition of the tasks to processors,

2. Balancing of the tasks assigned to processors,

3. Selection of the granularity of the tasks for processors so as to match the
target architecture and the application,

4. Exploiting the graphical coherence.

CHAPTER 3. OVERVIEW OF PARALLELISM IN RADIOSITY 29

5. Careful distribution of the data to the processors,

6. Scalability of the parallel algorithm on larger machines.

3.2.1 Type of parallelism

There are two main types of algorithm decomposition: data parallelism and
functional parallelism. In data parallelism, the data that hcis to be processed
is divided among the processors and each processor performs the operations
on its own data. Generally, data parallelism is suitable for SIMD architec­
tures. Functional parallelism refers to allocating the processors such that each
processor is given a specific task. Operational parallelism and procedural paral­
lelism are two types of functional parallelism. In operational parallelism, the
bcisic instructions (such as assignment) are selected as concurrent operations.
In procedural parallelism, the algorithm is decomposed into coarse sections al­
located to different processors. Pipelining is a combination of functional and
data parallelism. The type of parallelism should be decided considering the
target architecture and the problem.

3.2.2 Load Balancing

Load balance is the degree to which work is evenly distributed among the
processors. If all the processors have almost equal amount of work to be per­

formed, the parallel program executes to completion more quickly. Hence, the
computational load should be evenly distributed among the processors. As the
load balance increases, the processor idle time decreases hence increasing the
overall processor utilization.

The load distribution can be achieved in two ways: static task assignment
and dynamic task assignment. In static assignment, the tasks are distributed to
the processors prior to the execution of the parallel program. This distribution
requires careful examination of the computational tasks and the data in order
to obtain even distributions. This approach minimizes the scheduling overhecid.
In dynamic task assignment, computational tasks are allocated to processors
during runtime. This type of task assignment can be used if the number of tasks
is much larger than the number of processors. The advantages of dynamic task
assignment are that scheduling is performed at runtime and the load balance is

CHAPTER 3. OVERVIEW OF PARALLELISM IN RADIOSITY 30

achieved dynamically and more precisely. However, dynamic task assignment
may have large communication overhead due to the re-scheduling operations.

3.2.3 Granularity

Granularity of a parallel program is a way of expressing the ratio of the compu­
tation to communication overhead. Granularity of the parallel program must
be decided considering the problem and the target architecture.

3.2.4 Exploiting Graphical Coherence

Coherence refers to the usage of the previous calculations for subsequent com­
putations in order to eliminate redundant computations and increase the per­
formance of the algorithms. Coherence is an important typical issue for many
computer graphics problems. For example, in scan-conversion of the polygons
in the z-buifer hidden-surface elimination, the color and distance values of the
pixels for a polygon are evaluated incrementally based on the data of the previ­
ous neighbour pixels, similarly in animation, subsequent frames are generated
and rendered using the previous frames.

Exploiting parallelism requires partitioning of the computations among the
processors. This may cause previous computations that would be used for
the sequential program are not used in the parallel algorithm because another
processor may compute the previous values concurrently, thus losing the co­

herence. Hence, more computations would be required for computing previous
tasks. The solution of this conflict requires carefully decomposing parallel al­

gorithms in order to exploit utmost coherence.

3.2.5 Data Access

Typically, graphics algorithms deal with large, amounts of data and manage­

ment of these data is one of the important issues in parallel algorithm devel­

opment. For example, in order to render an image with satisfactory quality,
at least 1 to 2 Megabytes of main memory is required. Also, for the radiosity

CHAPTER 3. OVERVIEW OF PARALLELISM IN RADIOSITY 31

method, a scene consisting of 10® patches is not impossible, and this data re­
quire more than 5 Megabytes of memory for storing only the patch dataset. So,
it is not practical to replicate the whole dataset in each processor in a multicom­
puter. This problem becomes more crucial for massively parallel computers.
The data decomposition must be carefully performed considering the problem
decomposition and other facts such as load balancing. Remote data access
takes considerably more time than local access, therefore should be minimized
in order to obtain good performance.

3.2.6 Scalability

Designing scalable parallel algorithms becomes more important as the technol­
ogy advances. The parallel algorithm must be designed so that it can execute
on larger number of processors without decreasing the efficiency of the solution
significantly.

3.3 Parallelism in Radiosity and Previous Work

The parallel radiosity algorithms can be classified according to the level of
parallelism they exploit. In this section, the possible approaches to radiosity
are discussed and the parallel solutions proposed in the literature are presented.

The levels of parallelism in the progressive refinement radiosity method can
be classified in two main levels:

1. Level 1: More than one form factor rows are computed and more than
one patch shoot their energy in parallel. Typically, each processor is
given a distinct shooting patch and it performs a single iteration for its
patch. Two distinct approaches exploiting this level of parallelism are:

(a) One of the processors serves as the master and the other processors
are the slaves. Only the master procpsor maintains the patch ra-
diosities, and the slave processors are given their shooting patches
by the master on a demand-driven basis. The slaves compute the
form-factor vector for their shooting patch.

CHAPTER 3. OVERVIEW OF PARALLELISM IN RADIOSITY 32

(b) The shooting patch selection for the processors is done in a dis­
tributed manner. In this type of parallelization, there is no master
processor and global interprocessor communication is performed for
form-factor computation and light energy distribution among the
processors.

2. Level 2: The processors work together for shooting from a single patch
to the environment simultaneously, thus only one patch shoots its energy
at a time.

The algorithms that belong to this level of parallelism typically exploit
data parallelism, and can vary from fine-grain to medium-grain paral­
lelism. Either image space decomposition or object space decomposition
can be used. In image space decomposition, the hemisphere (hemicube)
corresponding to the shooting patch is divided into parts which are as­
signed to different groups of processors. In object space decomposition
each processor group processes a subset of the patch data on the repli­

cated hemicube.

Algorithms that exploit both of these levels have been proposed in the lit­
erature. The first level of parallelism deviates from the sequential algorithm so
that the sequence of shooting patches selected by the parallel algorithm differs
slightly from that of the sequential algorithm. This issue will be investigated
in detail in the subsequent chapters. Level 1 has been investigated more than
level 2 in the literature.

3.3.1 Parallelization: More than One Patch at a Time

In this level of parallelism, typically medium-to-coarse grain parallelism is ex­
ploited. The previous work belonging to this level is as follows:

a. M aster-Slave Shooting Patch Selection

Typically, this approach for parallelism is suitable for coarse-grain parallelism.
Different types of architectures such as network of workstations and transputers

CHAPTER 3. OVERVIEW OF PARALLELISM IN RADIOSITY 33

have been used.

Recker, George, Greenberg

Recker et al. [34] use coarse-grain loosely-coupled HP385 workstations,
linked by Ethernet. The 3D geometry data of the patches is duplicated on the
slaves and only the master maintains patch radiosities. The master processor
is directly connected to each slave processor. The shooting patch is assigned
to the slave processors by the master processor on a demand-driven basis. The
slave processors compute the form-factor vector corresponding to their own
shooting patch, and send this vector to the master processor, and the master
updates the radiosity and delta radiosity values using this form-factor vector.

As the experimental results they obtain indicate, the master processor be­
comes a bottleneck with increasing number of processors and the efficiency
decreases to 0.4 for 12 slave processors.

Feda, Purgathofer

Feda and Purgathofer use INMOS T800 Transputer Network, arranged in
two groups: worker network and renderer network. The 3D geometry of the
scene is distributed among the processors. The master processor stores the
best candidates for shooting patches selected among the maximums of the
local patches of the processors. A slave processor requests for a shooting patch
from the master processor by sending its local with maximum energy, and the
master processor sends that processor the best candidate it holds in its own
memory. Then, the master updates its sorted list of shooting patch candidates
using the received patch data.The slaves are connected in a minimum path
length network. The local patch data of the processors are circulated globally
in blocks around the network so that all patches visit all the processors. The
slave processors compute the form-factor vectors and then the update vectors
corresponding to their local shooting patches. These update vectors are routed
globally in the network so that all slave processors update the radiosity and
delta radiosity values for their local patches.

'I

In their paper [19], Feda and Purgathofer analyze the performance of their

CHAPTER 3. OVERVIEW OF PARALLELISM IN RADIOSITY 34

solution experimentally under different conditions. They observe that increas­
ing the number of simultaneously processed shooting patches at one slave pro­
cessor increaises the performance of the parallel solution, because the com­
putation to communication ratio (granularity) increases with more than one
shooting patches per processor. However, increasing the number of simultane­
ously processed hemicubes puts a limit to the complexity of the input scene
because of the memory limitations.

b. Distributed Shooting Patch Selection

Chalmers, Paddon

Chalmers and Paddon [12] examine the implementation of progressive re­
finement radiosity on T800 Transputers arranged in different configurations
such as ring, hypercube, torus, AMP. They observe that the average distance
between processors in the network affects the performance of the parallel solu­
tion.

In their work, the 3D geometry data is distributed among the processors,
and each processor selects its shooting patch as the patch with maximum energy
among its local patches. The processors “fetch” the local patch geometry
data of other processors and project the patches onto their local hemicube.
The patch data are globally circulated in an asynchronous manner. When
a processor completes the form-factor computation for its shooting patch, the

form-factor vector is “shot” to other processors. Each processor, upon receiving
a form-factor vector, computes the contributions from that shooting patch to
its local patches using the corresponding entries.

Chalmers and Paddon present their experimental results and conclude that
the performance of their parallel solution is maximized with AMP configuration
as this configuration decreases the message density. They observe that in
the ring and torus configurations, message saturation occurs with increasing
number of processors.

Bouatouch, Menard, Priol
//

Bouatouch et al. present parallel radiosity algorithm using shared virtual
memory. They use the KOAN Shared Virtual Memory embedded onto the
operating system of Intel’s iPSC/2 [6].

CHAPTER 3. OVERVIEW OF PARALLELISM IN RADIOSITY 35

In their work, the form-factor vectors for the shooting patches are computed
using ray-ciisting, instead of the hemicube method with item-buffers. Instead
of dividing the surfaces into patches and storing the patches explicitly, they
store the geometry data for surfaces only and find the intersected patch by
a given ray by computing the local parameters inside the surface using the
patch texture data structure. The scene geometry as well as the radiosity and
delta radiosity values for the patches are shared by the processors, while each
processor holds a distinct form-factor vector in its own local memory.

For shared memory architecture, selection of the shooting patch and con­

tribution computation must be performed in critical sections in order to obtain
consistency. However, the critical section is not scalable to large number of pro­
cessors. To increase the performance of their solution, they propose a scheme
in which the update of the patch radiosities and selection of the next shooting
patch are performed at the same time in the same critical section.

Baum, Wignet

Baum and Wignet [4] experiment parallelization of the method on a shared
memory multiprocessor architecture (Silicon Graphics Iris 4D 280). The algo­
rithm is partitioned to the producer which performs the hemicube production
phase of the progressive radiosity algorithm by a special hardware for z-buffer,
and consumer processes which perform the other steps such as the patch selec­

tion, contribution computation, implemented in software. Their aim is to have
the special hardware do the most time-consuming part of the algorithm, that
is the hemicube production phase.

Guitton, Roman, Schlick

Guitton et al. [24] propose two parallel approaches for progressive refine­

ment radiosity based on ray tracing, stochastic and deterministic approaches.
For the shooting process from a tile, rays are cast randomly in the stochastic
approach, and towards each potentially intersecting patch in the deterministic
approach. The 3D environment is divided into slices, each slice corresponding
to a processor, and rays are communicated among the slices connected in a
bidirectional ring topology.

CHAPTER 3. OVERVIEW OF PARALLELISM IN RADIOSITY 36

3.3.2 Parallelization: One Patch at a Time

In this type of parallelism, only one form-factor vector corresponding to a single
shooting patch is computed at a time. The parallelism in this level typically
exploit data parallelism. The algorithms belonging to this level vary from
fine-level to medium-level parallelism.

Varshney, Prins

Varshney and Prins [41] propose an environment projection approach for a
single-plant form-factor computation method which was introduced by Recker
et al [34]. The single plane is an approximation to the hemicube in order to
obtain fast form-factor computation. The single-plane approximation is shown
in Figure 3.1.

Z 3 7

TTie Hemicube Method Single Plane Approximation

Figure 3.1. Single Plane Approximation (After Recker et al.)

They investigate the parallelization of the progressive refinement approach
on fine-grain, mesh-connected SIMD MasPar MP-1. The patch data is dis­
tributed evenly among the processors. The single-plane pixels are partitioned
among the 2D processor mesh so as to achieve an orthogonal and monotonic
correspondence between single plane x and y coordinates and the processor
indices.

The algorithm proceeds as follows. Having »selected the shooting patch,
all processors compute the projection coordinates of their local patch vertices
and find the bounding boxes in the image space. Then, processors send their
local patch geometry data to the processors corresponding to the upper-left

CHAPTER 3. OVERVIEW OF PARALLELISM IN RADIOSITY 37

corners of the bounding boxes using the global routing network of the MasPar
MP-1. Next, in the scan-conversion phase, the processors spread the projected
patch data they receive to the right and downwards using the local X-net
communication of the M<isPar MP-1, so that each processor collects the patch
data that project onto its local pixels. Then, the problem reduces to finding
the patch with minimum depth in the local pixels. During the contribution
phase, the processors send the delta form-factor values corresponding to their
local pixels to the owners of the patches projected onto their local pixels, and
the receiving processors compute the delta radiosity and radiosity values for
their local patches.

Their algorithms have the advantage that memory is efficiently used and
coherence in scan-conversion phase can be exploited. However, the perfor­
mance of the algorithm may degrade if the patches are not distributed equally
on the single-plane image, increasing the load imbalance. Furthermore, the
form-factors and the contributions are not computed accurately because of the
limitations of the single-plane approximation.

Drucker, Schroder

Drucker and Schröder propose a parallel progressive refinement algorithm
on CM-2 multiprocessor [18]. They use the ray-tracing algorithm proposed by
Wallace et al. [43]. Recall that, in Wallace’s ray-tracing algorithm; for each
destination vertex in the environment, rays are sampled towards the shooting
patch, and tested for intersection with the shooting patch in order to compute
the form-factor vector from the shooting patch.

Drucker and Schröder apply a processor allocation technique in order to
solve the visibility problem with the shooted rays. In this technique, the num­
ber of processors required to perform a task is computed initially, and then
these processors are allocated to the requesting processor to perform the re­
quired task.

In their approach, initially, the world space is first discretized into constant
sized voxels, each voxel containing the objects that intersect it. The algorithm
proceeds as follows. Each processor generates the sampling rays from the
vertices it contains in its local voxels. As each generated ray passes through a
different number of pixels, each ray-processor computes the number of required
voxels and its ray will pass, and that number of voxel-processors are allocated in
turn. So, every processor contains a voxel-ray pair. Then, each voxel-processor

CHAPTER 3. OVERVIEW OF PARALLELISM IN RADIOSITY 38

finds the number of objects contained in it and allocates that number of object-
processors. Then, each processor can compute the intersection of a single ray
with a single object. Then, the intersection tests of all rays with all the objects
can be executed simultaneously.

Their algorithm takes time proportional to the number of objects times the
number of rays generated, hence performs well for a large number of objects
with few rays or vice versa. However, the disadvantages of their solution is
that unnecessary work is performed as all the voxels are tested for intersection,
hence coherence is lost in intersection computations.

3.4 Critical Issues of the iP SC /2 Hypercube

As is discussed in the Section 3.3, the progressive refinement method has been
investigated for parallelization on many parallel architecture platforms. In this
thesis, Intel’s iPSC/2 multicomputer is used as the target architecture. In this
section, the specifications of the iPSC/2 and the basic global parallel operations
are presented.

The Intel Personal Supercomputer iPSC/2 is an MIMD type multicom­
puter. The processors (or nodes) are connected in a d-dimensional hypercube
topology with P = 2'̂ nodes labeled from 0 to 2*̂ — 1. Each node IS 3» 4
MIPS) Intel 80386 based processor with a 80387 math floating point copro­

cessor and 4 megabytes of memory. The nodes are controlled by a front-end
processor (the host), and all communications are performed by message passing
communication system.

The communication between the processors in the iPSC/2 system is done
by high speed message passing using the Direct Connect Module facility. The
system libraries provide a variety of communication primitives such as SEND,
RECV, GSUM (Global SUM), GCOL (Global COLLECT).

In the iPSC/2 system, there are two bit-serial and full duplex links that
interconnect nearest neighbour processors. This configuration allows simulta­

neous bidirectional message traffic between nearest neighbour processors. The
communication protocols for GVSUM and GCOL functions are very similar
in nature. These communication protocols exploit the two bidirectional links
to overlap nearest neighbour communications. Only the parallel algorithm for

CHAPTER 3. OVERVIEW OF PARALLELISM IN RADIOSITY 39

GSUM (Global vector SUM) is given below. Extension of this algorithm to
the GCOL operation is straightforward.

Let each processor of a d-dimensional hypercube be represented by a d-bit
binary number (6j_i...6o) stored in its local memory variable mynode. Also
define channel-i as the set of (2' “̂ *) bidirectional communication links connect­
ing two neighbour processors whose binary representations differ only in bit
position-i. The steps of the GSUM algorithm is illustrated in Figure 3.2. At
the end of d concurrent exchanges and summations, each processor holds the
global sum at its local memory in variable sum. Figure 3.3 illustrates the
communication protocol with the channels used at each iteration.

for i=0 to d-1 do
dnode = mynode © 2';
send sum [1..N] to dnode via channel-i;
receive temp [1..N] from dnode via channel-i;
for j = l to N do

sum[j] = sum[j] + temp[j];
endfor

endfor

Figure 3.2. Algorithm for Parallel GSUM Operation

The parallel complexity of the communication protocol used in the GSUM
operation is:

Tqsum = d X tsu d X N X Itr + d x x Tadd (3.1)

where N is the size of the local initial and the resultant vectors. Here, tsu de­

notes the set-up time (zero byte latency time) and tjR denotes the transmission
time per floating point word. In a coarse grain multicomputer, tsu > trn. For
example, in iPSC/2, tsu = 550fiseqs and txR = l.44iiseqs per 4-byte word.

CHAPTER 3. OVERVIEW OF PARALLELISM IN RADIOSITY 40

3.4.1 Embedding the ring onto hypercube

Any ring with an even number of processors can be embedded onto the hyper­
cube topology, so that there is a direct interconnection between the neighbour
processors in the ring (chain). If the number of processors in the ring is a
power of 2, then the ring can be embedded onto the hypercube topology using
the Gray Code ordering scheme. Example embeddings of rings with different
number of processors are illustrated in Figure 3.4.

CHAPTER 3. OVERVIEW OF PARALLELISM IN RADIOSITY 41

4
f e

.............................;14—.***'· · 15

.......·

^
; V.*“ *̂3.......... t oi ' -·*’ 11

1 ·01..................... -8 *

COMMUNICATION VIA CHANNEL 0

6 - - ; - y · j 5

... r r s c : : ; " "
01............... -8........... 9

COMMUNICATION VIA CHANNEL 1

6 · - * · - — 15

0 ' ■ ■ ·' 1...........V. V .·.'-.·.·.·::;......... ^ —

COMMUNICATION VIA CHANNEL 2

COMMUNICATION VIA CHANNEL 3 ,,

Figure 3.3. Com m unication Protocol for global operations on the hypercube

CHAPTER 3. OVERVIEW OF PARALLELISM IN RADIOSITY 42

2t

4 :

i — X

6t I

[O .i]

(0 . 1,3 .2]

[0 . 1,5.7,6 ,4]

[0 , 1,3 ,2 ,6,7 ,5.41

[0 , 1,3 ,2.6,7 5,4 , 12. 13, 15, 14,10, 11.9 .8]

Figure 3.4. Ring embedding onto the hypercube

Chapter 4

Parallelization: Patch Data
Circulation

This chapter presents the first proposed parallelization scheme which is based
on processing more than one shooting patch at a time. This scheme exploits
the Level lb parallelism mentioned in Section 3.3. A synchronous scheme,
based on static task assignment, is proposed, in order to achieve better co­
herence during the parallel light distribution computations.An efficient global
circulation scheme is proposed for the parallel light distribution computations,
which reduces the total volume of concurrent communication by an asymptot­

ical factor. The proposed parallel algorithm is implemented on iPSC/2 hyper­
cube multicomputer. Load balance quality of the proposed static assignment
schemes are evaluated experimentally. The effect of coherence in the parallel
light distribution computations on the shooting patch selection sequence is also
investigated.

4.1 Introduction

Recall that the progressive refinement radiosity gives an initial approximation
to the illumination of the environment and approaches to the correct light dis­

tribution iteratively. Each iteration can be considered as a four phase process:

1. Shooting patch selection,

2. Production of hemicube item-buffers,

43

3. Conversion of item-buffers to a form-factor vector,

4. Light distribution using the form-factor vector.

In the first phase, the patch with maximum energy is selected for faster
convergence. In the second phase, a hemicube [14] is placed onto this patch and
all other patches are projected onto the item-buffers of the hemicube using the
z-buffer algorithm for hidden patch removal. The patches are passed through a
projection pipeline consisting of: visibility test, clipping, perspective projection
and scan-conversion. In the third phase, the form-factor vector corresponding
to the selected shooting patch is constructed from the hemicube item-buffers
by scanning the hemicube and adding the delta form-factors of the pixels that
belong to the same patch.

In the last phase, light energy of the shooting patch is distributed to the
environment, by adding the light contributions from the shooting patch to the
other patches. Distribution of light energy necessitates the use of the form-
factor vector computed in Phase 3. The contribution from the shooting patch
i to patch j is given by [16]:

CHAPTER 4. PARALLELIZATION: PATCH DATA CIRCULATION 44

AR{r, g, b) = rj{r, g, i>) A B .(r ,g, b)FijAilAj
Bj(r,g,b) = Bj{r,g,b) + AR{r,g,b)

ABj{r,g,b) = ABj{r,g,b) + AR{r,g,b)

(4.1)

(4.2)

(4.3)

In Eq. 4.1, ABi{r,g,b) denotes the delta radiosity of patch i, rj(r,g,b) is
the reflectivity value of the patch j for 3 color-bands, Aj denotes the area of
the patch j , F(j denotes the element of the form-factor vector constructed
in Phase 3 for the shooting patch i. During the execution of the algorithm, a
patch may be selected as the shooting patch more than once, therefore a delta
radiosity value (AB) is stored in addition to the radiosity (B) of the patch,
which gives the difference between the current energy and the Icist estimate
distributed from the patch (i.e. the amount of light the patch has gathered
since the last shooting from the patch). This iterative process is halted when
AB{Ai values for all the patches reduce below a user-specified tolerance value.

CHAPTER 4. PARALLELIZATION: PATCH DATA CIRCULATION 45

4.2 Parallelization

As is mentioned earlier, progressive refinement radiosity is an iterative al­
gorithm. Hence, computations involved in an individual iteration should be
investigated for parallelization while considering a proper interface between
successive iterations. In this algorithm, strong computational and data depen­
dencies exist between successive phases such that each phase requires the com­
putational results of the previous phase in an iteration. Hence, parallelism at
each phase should be investigated individually while considering the dependen­
cies between successive phases. Furthermore, strong computational and data
dependencies also exist within each computational phase. These intra-phase
dependencies necessitate global interaction which may result in global inter­
processor communication at each phase on a distributed-memory architecture.
Considering the crucial granularity issue in parallel algorithm development
for coarse-grain multicomputers we have investigated a parallelization scheme
which slightly modifies the original sequential algorithm. In the modified al­
gorithm, instead of choosing a single patch, P shooting patches are selected at
a time on a multicomputer with P processors. The modified algorithm is still
an iterative algorithm where each iteration involves the following phases:

1. Selection of P shooting patches,

2. Production of P hemicube item-buffers,

3. Conversion of P hemicubes to P form-factor vectors,

4. Distribution of light energy from P shooting patches using these P form-
factor vectors.

Note that, the structure of the modified algorithm is very similar to that
of the original algorithm. However, the computations involved in P successive
iterations of the original algorithm are performed simultaneously in a single
iteration of the modified algorithm. This modification increases the granularity
of the computational phases since the amount of computation involved in each
phase is duplicated P times. Furthermore, it simplifies the parallelization since
production of P hemicube buffers (Phase 2) and production of P form-factor
vectors (Phcise 3) can be performed simultaneously and independently. Hence,
processors can concurrently construct P form-faetor vectors corresponding to
P different shooting patches without any communication.

CHAPTER 4. PARALLELIZATION: PATCH DATA CIRCULATION 46

The modified algorithm is an approximation to the original progressive
refinement method. The coherence of the shooting patch selection sequence
is disturbed in the modified algorithm. The selection of P shooting patches
at a time ignores the effect of the mutual light distributions between these
patches and the light distributions of these patches onto other patches during
this selection. Thus, the sequence of shooting patches selected in the mod­
ified algorithm may deviate from the sequence to be selected in the original
algorithm. This deviation may result in a greater number of shooting patch
selections for convergence. Hence, the modification introduced for the sake of
parallelization may degrade the performance of the original algorithm. This
performance degradation is likely to increase with the increasing number of
processors. This chapter presents an experimental investigation of this issue.

In Chapter 3, various parallel progressive radiosity algorithms that were
proposed in the literature have been discussed. The algorithmic modification
presented in this chapter is similar to the parallel implementations classified in
Level l.(b). However, these parallel implementations utilize an asynchronous
scheme. These asynchronous schemes have the advantage of minimizing the
processors’ idle time since form-factor and light distribution computations pro­
ceed concurrently in an asynchronous manner. However in these schemes a
processor, upon completing a form-factor vector computation for a shooting
patch, selects a new shooting patch for a new form-factor computation. Hence,
this shooting patch selection by an individual processor does not consider the
light contributions of the form-factor computations concurrently performed
by other processors. Furthermore, asynchronous communication among the
processors can create congestion on the communication network, especially in
simple topologies such as ring [12]. In this work, we propose a synchronous
scheme which is expected to achieve better coherence in the distributed shoot­
ing patch selections and eliminate message saturations. The parallelization of
the proposed scheme is discussed in the following sections.

4.2.1 Phase 1: Shooting Patch Selection

There are two alternative schemes for performing this phase: local shooting
patch selection and global shooting patch selection. In the local selection
scheme, each processor selects the patch with maximum ABiAi value among
its local patches. In the global selection scheme, ecich processor selects the

CHAPTER 4. PARALLELIZATION: PATCH DATA CIRCULATION 47

first P patches with the greatest A5,i4,· value among its local patches in a
sorted order and interprocessor communication is performed in order to obtain
the first P patches with maximum energy among these patches. Then, each
processor selects a distinct shooting patch among these maximal patches.

The number of shooting patch selections required for convergence of the par­
allel algorithm to the user-specified tolerance depends on the shooting patch
selection scheme. Global scheme is expected to converge more quickly be­
cause the patches with globally maximum energy are selected. However, in
the local scheme, the shooting patches that are selected may deviate largely,
if maximum energy holding patches are gathered in some of the processors,
while the other processors hold less energy holding patches. Hence, the global
scheme is expected to achieve better coherence in distributed shooting patch
selection. However, the global scheme requires circulation and comparison of
P buffers, hence necessitating global communication overhead. Therefore, the
global communication scheme should be designed efficiently considering the
interconnection topology of the processors in order to minimize this overhead.
In this work, we present efficient communication schemes for global patch se­
lection for the ring and hypercube topology.

Ring Topology

First, each processor selects the first P patches with the greatest ABiA, value
among its local patches in sorted order and puts these patches (together with
their geometry and color data) into a local buffer in decreasing order according
to their ABiAi values. Then, these buffers of sizes P are circulated in P —
1 concurrent communication steps as follows. In each concurrent step, each
processor merges its sorted buffer of size P with the sorted buffer received of
size P, discarding P patches with smaller ABiAi values. Then, each processor
sends the resulting buffer to the next processor in the ring. Note that, each
processor keeps its original local buffer intact during the circulation. At the
end of P — 1 communication steps, each processor holds a copy of the same
sequence of P patches with maximum ABiAi values in decreasing order. Then,
processor k selects the patch in the local sorted patch list, for k = 0 ,l .. .P — 1.

The parallel algorithm for shooting patch selection for the node processors
in the ring topology is given in Figure 4.1 and a sample execution for a ring of
4 processors is illustrated in Figure 4.2.

CHAPTER 4. PARALLELIZATION: PATCH DATA CIRCULATION 48

/* Local Maximums : Holds P patches with max radiosity locally;
Partial Maximums: Holds partial maximums during circulation;
Entries of Local Maximums are not modified during circulation. ♦/

nextnode = (mynode + 1) mod P;

1.

2 .

3.

Select the P local patches with maiximum ABiAi
into array LocalMaximums
Select the P patches among the P^ maximums.

2 . 1 ,

2 .2 .

for i=0 to P-1 do
PartialMaximumsli] = LocalMaximumsii'] ;

for i=l to P-1 do
send Partial Maximums to nextnode;
receive into PartialMaximurns;
Find the P maximums among entries of Partial Maximums

and LocalMaximums and store these values
into Partial Maximums;

endfor;
Select the processor’s local shooting patch from the result.

Shooting Patch = F a r h a / M a x i m w m ^ [mynode] ;

Figure 4.1. Algorithm for global shooting patch selection on ring topology

CHAPTER 4. PARALLELIZATION: PATCH DATA CIRCULATION 49

Processor id in ring: 0 1 2 3

Initial { 10, 8, 7, 2) { 12, 9, 3, 1) { 14, 6, 2, 1 } { 6, 4, 2, 1 }
local data

Step 1:

Send partial { 10, 8, 7, 2 } { 12, 9, 3, 1 { 14, 6, 2, J J . . 6, 4, 2, 1)
XX X ̂ ̂ — X

XX

Recv New Partial { 6. 4. 2. 1 1 { 10, 8, 7, 2) { 12, 9, 3, 1 } {14 , 6, 2, 1 }

Merge with Local Array { 10, 8, 7, 6 } { 12,10, 9, 8) { 14,12, 9, 6} {14 , 6, 6, 4 }

Step 2:

Send partial { 10, 8, 7, 6
X

{1 2 ,1 0 , 9, 8 1
X

{ 14,12, 9, 6}^^ _____ {14 , 6, 6, 4 }

Recv New Partial { 14, 6, 6, 4] · * "

X ^ ^ ·"■*** *̂
10, 8, 7, 6 } 12,10, 9, 8} "^{ 14,12, 9, 6}

Merge with Local Array { 14,10,8, 7 } {1 2 ,1 0 , 9, 8 } { 14,12,10, 9 } {14 ,1 2 , 9, 6 }

Step 3:

Send partial (1 4 ,1 0 ,8 , 7)^
X

{ 12,10, 9, 8 1̂
X

(1 4 ,1 2 ,1 0 , 9 } _ . . . - { 1 4 , 1 2 , 9, 6 }
— — — ̂ ̂ ^X _ — ̂ X

XX ^ ̂-i — ·
........................

• *“ X
X

Recv New Partial (1 4 ,1 2 , 9, 6 } - ^ ' · { 14,10, 8, 7) { 12,10, 9, 8 } { 14,12,10, 9)

Merge with Local Anay (14,12,10, 9 1 { 14,12,10, 9) { 14,12,10, 9 } {14 ,12 ,10 , 9)

Select patch with energy: { 1 4 } { 1 2 } { 10} (9 }

Figure 4.2. Example global shooting patch selection on ring topology

CHAPTER 4. PARALLELIZATION: PATCH DATA CIRCULATION 50

Hypercube Topology

The parallel algorithm for the hypercube topology is slightly different from the
algorithm for the ring topology. The hypercube algorithm for global shooting
patch selection uses the communication protocol illustrated in Figure 3.3 and
performs the operation in d = log2P steps as follows: In each concurrent step,
each processor exchanges its partial result with another processor along the
channel for that iteration; and merges this received partial result with the
previous data the processor has sent in this iteration, discarding the P patches
with lowest ABiAi.

The parallel algorithm for the node of the SIMD hypercube is shown in
Figure 4.3 and an example execution for 4 processors is shown in Figure 4.4.

/* Local Maximums :
Partial Maximums :

Holds P patches with max radiosity locally;
Holds partial maximums during circulation;

3.

Select the P local patches with maximum A5,A,·
into array LocalMaximums
Select the P patches among the meocimums.

2.1. for i=0 to P-1 do
PartialMaximumsLi] = LocalMaximumsii} ;

2.2. for i=0 to (d-1) do
dnode = mynode 0 2';
send Partial Maximums to dnode;
receive ReceivedMaximums from dnode;
Find the P meiximums of entries of Partial Maximums and

ReceivedM aximums and store these values
into Partial Maximums;

endfor;
Select the processor’s local shooting patch from the result.

Shooting Patch * /’arito/Marmtims [mynode] ;

Figure 4.3. Algorithm for global shooting patch selection on hypercube topol­
ogy

CHAPTER 4. PARALLELIZATION: PATCH DATA CIRCULATION 51

Perform ance Analysis of Phase 1

The parallel complexity of the communication phase for shooting patch selec­
tion on the ring topology is:

^piring — ~ ^ ŝu + (P — 1) X P X Ttr -f (P --1) X P X TcoMP (4.4)

where Ttr is the transmission time for a single shooting patch data, Tcomp
is the time to compare two patch entries of the arrays. Note that, only P
comparisons are enough to select the maximum P entries in the two sorted
arrays.

On the hypercube topology, the algorithm given above decreases the to­
tal complexity by decreasing both the total volume of communication and
the comparison computation. The hypercube algorithm requires the following
complexity for the communication step:

Tpi H Y P E R — d X tsu d X P X Ttr d x P x Tcomp (4.5)

where d = logP. Thus, the hypercube topology performs better than the ring
topology. However, computation time required by the shooting patch selection
phase is negligible with respect to the other phases discussed in the following
sections. It will be seen that the other phases require 0{N) time complexity,
whereas the shooting patch selection phase requires 0{P^) complexity for the
ring and 0{PlogP) complexity for the hypercube topology. In general N ~̂ P,
hence the performance increase by the hypercube topology over ring topology in
this phase does not affect the performance of the overall iteration significantly.

4.2.2 Phase 2: Hemicube Production

In this phase, each processor needs to maintain a hemicube for constructing
the form-factor vector corresponding to its local shooting patch. Furthermore,
each processor needs to access the whole scene description in order to fill its
local hemicube item-buffers corresponding to its local shooting patch. One
approach is to replicate the whole patch geometry data in all the processors.

hence avoiding interprocessor communication. However, as discussed in the
previous chapter, this approach is not suitable for complex scenes with large
numbers of patches because of the excessive memory requirement per processor,
since 0{N) memory is required per processor. Hence, a more valid approach
is to evenly decompose whole scene description into P patch data subsets and
map each data subset to a distinct processor of the multicomputer, decreasing
the memory required per processor to 0{N/P).

However, the decomposition of the scene data necessitates global interpro­
cessor communication in this phase since each processor owns only a portion
(of size N /P) of the patch database and needs to access the whole database.
This requires circulating the patch subset of the processors so that each patch
data subset visits each of the P processors exactly once.

Note that, only geometry data of the patches are needed for projecting the
patches in this phase and communication of the color information is unneces­
sary. Since the messages can only be sent and received from/into contiguous
memory blocks on the iPSC/2, the patch data are divided into geometry and
color parts in two arrays as follows:

CHAPTER 4. PARALLELIZATION: PATCH DATA CIRCULATION 52

PatchGeometryType
integer
(x,y,z)
RayType

endtype;

type
Patchid;
vertexl, vertex2, vertexS;
normal;

PatchColorType = type
(r,g,b) reflectivity;
(r,g,b) delta.radiosity;
(r,g,b) radiosity;
float area;

endtype;

PatchGeometryArray = array [1..N/P] of PatchGeometryType;
PatchColorArray = array [1..N/P] of PatchColorType;

CHAPTER 4. PARALLELIZATION: PATCH DATA CIRCULATION 53

So, in Phase 2, only the local arrays PatchGeometryArray of the proces­
sors are circulated. This decreases volume of communication from 23 words
to 16 words per triangular patch, obtaining 30% decrease in total volume of
communication in Phase 2.

In the following subsections, the algorithms for achieving patch circulation
on ring-connected and hypercube-connected multicomputers are presented.

Ring Topology

Patch circulation needed in this phase can be achieved in P concurrent com­
munication steps as follows. In each concurrent step, the current subset of
the patch data in the local memory of the processor is projected onto the lo­
cal hemicube; then this subset is sent to the next processor in the ring, and
the new subset is received in a single communication phase. At the end of
P concurrent communication steps, each processor completes the projection
of all patches onto its local hemicube. Although P-1 communications would
be enough for this operation, one more communication is required in order
to have the geometry data of local patches in the processors’ local memory
for maintaining the consistency of geometry and color data for rendering and
subsequent iterations.

Figure 4.5 shows the algorithm for the ring topology, and Figure 4.6 illus­
trates the execution the algorithm on a ring with 4 processors. In this figure.
Pi denotes the subset of the patch geometry data which corresponds to the
local patch data set of processor i. H f denotes that the local hemicube of
processor i has been filled by the local patch data of the set of processors J.

Hypercube Topology

For MIMD hypercubes, the patch circulation can be achieved by embedding
the ring onto the hypercube topology using Gray Code ordering scheme, as
discussed in the previous chapter. Note that, embedding the ring onto the
hypercube topology makes use of different channels for interconnecting the
processors, not allowing the algorithm to run on SIMD hypercubes. An eflB-
cient circulation scheme for SIMD hypercubes can be achieved with the use of
exchange sequence Xg, defined as [17]:

CHAPTER 4. PARALLELIZATION: PATCH DATA CIRCULATION 54

Processor id in ring: 0 1 2 3

Initial { 10, 8, 7, 2) { 12, 9, 3, 1} { 14. 6. 2. 1) { 6, 4. 2. 1 }
local data

Send partial { 10, 8, 7, 2 1 ^ A 12, 9. 3, 1} { 14. 6, 2, 1|L^ A 6. 4, 2. 1 }

Recv New Partial { 12, 9, 3, 1 f 10, 8, 7, 2)

XV

{ 6, 4. 2, 1
X

14, 6, 2 .1)

Meige with Sent Data: { 12, 10, 9, 8 } { 12,10, 9, 8) { 14. 6, 6, 4 } { 14, 6, 6. 4)

Send partial

Recv New Partial

{ 12, 10, 9, 8

{ 14, 6, 6, 4 r "

{ 12,10, 9, 8

{ 14, 6, 6, 4

14, 6, 6, 4 }

12,10. 9, 8)

^^A 14, 6, 6. 4 }

12.10, 9. 8 }

Meige with Sent Data { 14, 12,10, 9 } { 14 ,12 ,10 , 9 } { 14 .12 ,10 . 9 } { 14 ,12 ,10 . 9 }

Select patch with energy: { 14} { 1 2) { 1 0) (9)

Figure 4.4. Example global shooting patch selection on hypercube topology

FillHemicube
begin

nextnode = (mynode + 1) mod P;
for i=l to P do

Project PatchGeometry onto local Hemicube;
send PatchGeometry to nextnode;
receive new data into PatchGeometry;

endfor 'I
end

Figure 4.5. Algorithm for Hem icube Production on Ring Topology

CHAPTER 4. PARALLELIZATION: PATCH DATA CIRCULATION 55

= 0

Xq = — 1) X ,_ 1 , 9 > 1

(4.6)

(4.7)

For example X 2 = { 0 ,1,0},AT3 = {0 ,1 ,0 ,2 ,0 ,1 ,0 } . This exchange se­
quence specifies the bidirectional channel to be used for interprocessor com­
munications in each concurrent communication step. In fact, the exchange
sequence Xq states that the hypercube of dimension q is divided into two sub­
hypercubes (represented by A ",_i’s), first the local patch data of the processor
is circulated in the subcube in which the processor is located (first Xq-\ in
Equation 4.7), then the patch data are swapped between the corresponding
(neighbour) processors in the two subcubes along channel (q — 1), and finally
the patch data subset is circulated in the other subcube (second Xq-i in Equa­

tion 4.7).

The SIMD patch circulation scheme for Phase 2 is listed in Figure 4.7. In
this algorithm, f{q ,i) gives the element on the exchange sequence for Xq.
For example, /(2 ,0) = 0, / (2 ,1) = 1, / (3 ,1) = 1, / (3 ,3) = 2. The function
f(q , i) values are initialized for the values q and i using the recursive equations
for definition of Xq in a local array.

Note that (P-1) communication steps are enough for circulating all the
patches so that each subset visits all the processors. One more communica­

tion along channel q — I is required to have all the patch subsets in their old
processors for maintaining patch data consistency.

An example patch circulation on an eight processor hypercube is illustrated
in Figure 4.8.

Performance Analysis of Phase 2

Note that the parallel algorithms given for the ring and hypercube topology
require P number of concurrent communications and a total of N volume of
concurrent communications. Hence, the efficiency of this phase is independent
of the interconnection topology of the processors, so the performance of this
phase does not degrade with simple topologies. It follows that the parallel

complexity of Phase 2 is:

CHAPTER 4. PARALLELIZATION: PATCH DATA CIRCULATION 56

l_^oocU fieiriicuU ©
of processors

L.ocal slice of petclies

o 1 2 3

> { } { }H H H H
o 1 2 3

F F F FO 1 2 3

Fill witii local slice:

Send slice

Receive slice

Fill wiUhi local slice:

Send slice

Receive slice

Fill witlx local slice:

Send slice

Receive slice

Fill witli local slice:

Send slice

Receive slice

H
{2}

H H
o 1 2 3

F ..
O " ̂ ̂

F — -----

F ^
1 " ^

— ■=*· ---------------- "F

F ^ _ ___
________2 "

F

3

" F
3 O 1 2

{3>

H {0,3 > {0.1} {1.2} {2.3}

F ̂O
F
3

________ - F̂

H {0.2.3} H {0.1.3}

F3 ' -.

H
F

- -c

F

{ 0 . 1.2 } {1.2.3}

{O,1.2.3 } {O,1.2,3} {O, 1.2.3} . {0.1,2.3 }

1- ^ F _
 ̂ ̂ ̂ .

F _F
_____-------------------------------- o

FO ---- <*-¿11>"

Figure 4.6. Patch Circulation on a Ring with 4 Processors

FillHemicube
begin

for i=l to P do
Project PatchGeometry onto local Hemicube;
dnode = mynode 0
send PatchGeometry to dnode;
receive new data into PatchGeometry·,

endfor
end

Figure 4.7. Algorithm for Hem icube Production on Hypercube Topology

CHAPTER 4. PARALLELIZATION: PATCH DATA CIRCULATION 57

Coomunicate
0 1 2 3 4 3 6 7 along channel

Local hemicube H H H H H H H Hof processors 0 1 2 3 4 3 6 7

Local slice of patches P P P P P P P P0 1 2 3 4 3 6 7

Project and send slice
1

P X
2 N

Px
4 '

P X
6 'xXX X>c VX✓ xX’ X X 0Receive new slice P P P^ P P ^ P P ^ P

1 0 3 2 5 4 7 6

Project and send slice P . P ^ . - 'P P ^ P ^ . 'P .<P
1 ' ' 2 5 'x 7^^- 6

1
Receive new slice p P P P -* P '^ P

3 2 1 0 7 6 5 4

Project and send slice Px .P
2

P X
1 N

P X
5 'x^

.P
/ ' 4

Receive new slice P " - ' P

X
X

P
X X

X
P P

0
2 3 0 1 6 7 4 3

Project and send slice

Receive new slice

P . .
2 '

P

P .
- ' 3 . : :

P - . p ^ - " P .. • - - 'P
w .v c T ^ - '·

- - 'P- - - '4

P

" P
3

2
6 7 4 5 2 3 0 1

Project and send slice P .p _ P X J». <P, Px

Receive new slice

4 N 5

p /- p

2^>

P
” >

P ^ '

1t
X

P
0

7 6 5 4 3 2 1 0

Project and send slice

' ' ' X

. ' - P 4
P .

3 '

A .'

; i v ; ;
. ' P

0

1
Receive new slice P P P P P P

5 4 7 6 1 0 3 2

Project and send slice P . ^P
4

P X
7 ' v

<P
6

Px
P x

P
w ' ' 0

P .

Receive new slice
✓ 'A.

P

XX
P^'

X
X

P
X

X
XX

P P P
0

4 5 6 7 0 1 2 3

Send local slice P P P ' p .-P

Receive new slice

4 " -

p " P P
**3

3
2

0 1 2 3 4
’1

6 7

Figure 4.8. Patch Circulation on a Three-Dimensional Hypercube

CHAPTER 4. PARALLELIZATION: PATCH DATA CIRCULATION 58

TP2 = Ptsu + P{NfP)TTR + P(NIP)TpRo

= Pisu + NTtr + NTpRo

(4.8)

(4.9)

Here, tsu represents the message start-up overhead or the message latency,
Ttr is the time taken for the transmission of a single patch geometry, Trrq is
the average time taken to project and scan-convert one patch onto a hemicube
and N is the total number of patches in the scene.

There are two crucial factors that affect the efficiency of the parallelization
in this phase: load imbalance and communication overhead. Note that, the
parallel complexity given in Eq. 4.9 assumes a perfect load balance among pro­

cessors. Mapping equal number of patches to each processor achieves balanced
communication volume between successive processors in the ring. Furthermore,
as will be discussed later, it achieves perfect load balance among processors in
the parallel light distribution phase (Phase 4). However, this mapping may
not achieve computational balance in the parallel hemicube production phase
(Phase 2).

The complexity of the projection of an individual patch onto a hemicube
depends on several geometric factors. Recall that, each patch passes through
a projection pipeline consisting of visibility test, clipping, perspective projec­
tion and scan-conversion. A patch which is not visible by the shooting patch
requires much less computation compared to a visible patch since it leaves the
projection pipeline in a very early stage. The complexity of the scan-conversion
stage for a particular patch depends strongly on the distance and the orienta­

tion of that patch with respect to the shooting patch. That is, a patch with
larger projection area on a hemicube requires more scan-conversion computa­
tion than a patch with a smaller projection area. As is mentioned earlier, each
iteration of the proposed algorithm consists of P concurrent steps. At each
step, different processors concurrently perform the projection of different sets
of patches onto different hemicubes. Hence, the decomposition scheme should
be carefully selected in order to maintain the computational load balance in
this phase of the algorithm.

Two possible decomposition schemes are tiled and scattered decompositions.
In tiled decomposition, the neighbouring patches are stored in the local mem­
ory of the same processor. This type of decomposition can be achieved in the
following way: assuming that the patches that belong to the same object are

CHAPTER 4. PARALLELIZATION: PATCH DATA CIRCULATION 59

supplied consecutively, the first N /P patches are stored in processor 0, the next
N /P patches are allocated to processor 1, etc. At the end of the decomposi­
tion, each processor stores almost equal number of patches in its local memory.
In scattered decomposition, the neighbouring patches are stored in different
processors, therefore the patches that belong to an object are shared by differ­
ent processors. Scattered decomposition can be achieved in the following way:
again assuming that the neighbouring patches that belong to the same object
are supplied consecutively, the incoming patches are allocated to the processors
in a round-robin fashion. That is, the first patch is allocated to processor 0,
the next to processor 1, etc. When P patches are allocated, the next incoming
patch is allocated to processor 0, and this process continues. When the decom­
position is completed, (N mod P) processors store ¡N/Pl patches, while the
remaining processors store [N/P\ patches in their local memories. Figure 4.9
illustrates the scattered and tiled decomposition of a simple scene consisting
of four faces of a room. The numbers shown inside the patches indicate id's of
the processors that store them in their local memory.

Figure 4.9. Scattered and Tiled Decomposition

Assuming that neighbour patches require almost equal amount of compu­
tation for projection on different hemicubes, the scattered decomposition is
expected to produce patch partitions requiring almost equal amount of com­

putations in Phase 2. So, it can be expected that the scattered decomposition
achieves much better load balance than the tiled decomposition in Phcise 2.

Communication overhead in this phase consists of two components: number

CHAPTER 4. PARALLELIZATION: PATCH DATA CIRCULATION 60

of communications and volume of communications. Each concurrent commu­
nication step adds a fixed message set-up time overhead tsu to the parallel al­
gorithm. In medium grain multicomputers (e.g. Intel’s iPSC/2 hypercube) tsu
is substantially greater than the transmission time Itr where ítr denotes the
time taken for the transmission of a single word. For example, tsu ^ 550fisec
whereas tq'R 1.44/zsec per word in iPSC/2. Note that, communication of an
individual patch geometry involves the transmission of 3 floating point words
for the vertices of the triangular patches, 3 words for their normal and one word
for the patch id, adding to 52 bytes (i.e. Ttr = 13 txR in Eq. 4.9). However,
cLS seen in Eq. 4.9, the total number of concurrent communications at each
iteration is equal to the number of processors P, wherecis the total volume of
communication is equal to the number of patches N. Hence, the set-up time
overhead can be considered as negligible for complex scenes (N P). Then,
assuming a perfect load balance, efficiency of Phase 2 can be expressed as:

Ep2 =
1 PNTpro NTpRo
P NTpRo + Ptsu + NTtr

TpRO 1
NTpRo + NTtr

TpRo + Ttr 1 -f Ttr/Tpro

(4.10)

(4.11)

since one iteration of the parallel algorithm is computationally equivalent to
P iterations of the sequential algorithm. Equation 4.11 means that projection
of an individual patch onto a hemicube Involves the communication of its ge­
ometry data as an overhead. As is seen in Eq. 4.11, the overall efficiency of
this phase only depends on the ratio TtrITrro for sufficiently large N/P. For
example, efficiency is expected to increase with increcising patch areas and in­
creasing hemicube resolution, since the granularity of a projection computation
increases with these factors.

Note that, the algorithms for Phase 2 for the ring and hypercube topologies
illustrated in Figures 4.5 and 4.7 assume synchronous communication. In this
tightly coupled communication type, during the circulation, when a processor
finishes projection of its current slice it receives at a single iteration, it sends
its current patch subset to the receiver processor, and it waits for the next
patch subset for projecting onto its local hemicube. If the sender processor
has not finished projecting the next subset yet, then this processor becomes
idle. This problem can be eliminated by using a loosely-coupled communica­

tion scheme with asynchronous send and receive operations. In asynchronous

send command, the processor continues to the next instruction, where a hard­
ware router in the processor copies the addressed data to the bidirectional link
concurrently. In asynchronous receive command, if the message hcis arrived,
the message data is copied from the system buffer to memory address pointed;
otherwise the processor continues to the next instruction and the received mes­
sages thereafter are received into the system message buffers. Also there is a
utility msgwait to test if the message hcis been received by the processor and
is ready in the system buffer.

The new approach is based on the observation that, when the processors
finish projecting the first half of their current subset of patches during each
step, that half will not be used by the processors. Hence, the processors is­
sue a synchronous send operation to their receiver processors, and issue an
cisynchronous receive operation from their sender processors to their already
projected half. Thus, when a processor finishes projecting the whole subset
of the patch data onto its local hemicube, it hcis received the first half of the
next subset to its local memory, so it can continue projecting the received half
while issuing an asynchronous receive command for the second half. In this
new approach, in order for a processor to become idle, the projection of half of
a subset of the patch data onto a local processor’s hemicube should take more
time than the projection of two halves of another patch subset onto another
local hemicube, which is not usual.

CHAPTER 4. PARALLELIZATION: PATCH DATA CIRCULATION 61

4.2.3 Phase 3: Form-Factor Vector Computation

In this phase, each processor can concurrently compute the form-factor vector
corresponding to its shooting patch using its local hemicube item-buffers con­
structed in the previous phase. This phase requires no interprocessor commu­
nication. Local form-factor vector computations involved in this phase require
scanning all hemicube item-buffer entries. Hence, perfect load balance is easily
achieved since each processor maintains a hemicube of equal resolution.

4.2.4 Phase 4: Contribution Computation

At the end of Phcise 3, each processor holds a form-factor vector corresponding
to its shooting patch. In this phcise, each processor should compute the light

CHAPTER 4. PARALLELIZATION: PATCH DATA CIRCULATION 62

contributions from all P shooting patches to it ̂ local patches. Hence, each
processor needs all form-factor vectors. Thus, this phase necessitates global
interprocessor communication since each processor owns only a single form-
factor vector.

We introduce a vector notation for the sake of clarity of the presentation
of the algorithms discussed in this section. Let denote the slice of a
global vector X assigned to processor k. For example, each processor k can be
considered as storing the slice of the global array of records representing
the whole patch geometry. In this notation, each processor k is responsible for
computing the A:'̂ slice of the global contribution vector A R for updating
the A:‘ ̂ slices and AB](̂ of the global radiosity and delta radiosity vectors
B and A B , respectively. The notation used to label the P distinct form-
factor vectors maintained by P processors is slightly different. In this case,

denotes the form-factor vector computed by processor £ and denotes
the A:‘ ̂ slice of the local form-factor of processor £. As is seen in Eq. 2.17,
red, green and blue reflectivity values r,(r,^, 6) and the patch area A{ of each
patch i are needed as three ratios r ,(r ,5 ', b)/Ai in the computation of radiosity
and delta radiosity contribution computation. Hence, each processor computes
three constants r,(r,^ , b)/Ai for each local patch i during the preprocessing. In
vector notation, each processor k can be considered as holding the k̂ ̂ slice
Fk(r,y, 6) of the global vector r(r,g, b).

Hence, in vector notation, each processor A;, for A: = 0 ,1 ,...,P — 1, is re­

sponsible for computing

p -i
A R k(r,i?,6)

B k(r,^ , b)
A B k (r ,^ , 6)

J2iABi{r,g,b)Ai)rU r,9,b) x F^ (4.12)
/=0
Bk(r,y,fe) + A R k (r,^ ,6) (4.13)

A B k (r ,^ ,6) -f A R k (r,^ ,6) (4.14)

where ABl{r,g,b) and A[denote the delta radiosity values for three color-
bands and the area of the shooting patch of processor 1. In Eq. 4.12, “ x ”
denotes the element-by-element multiplication of two column vectors. As is
seen in Eq. 4.13 and 4.14, radiosity and delta radiosity computations are local
vector additions which do not require any interprocessor communication. It is
the contribution computation phase (Eq. 4.12), which requires global interac­

tion. Equation 4.12 can be rewritten by factoring out the Tk vector as

CHAPTER 4. PARALLELIZATION: PATCH DATA CIRCULATION 63

ARk(r,< 7 , 6) = rk(r,g,b) xU k(r,g,b) (4.15)

where,

P-i
Uk(r,<7,6) = Z]Uk(r,<7,6)

=̂0
U i(r ,5 ,6) = A B .'(r ,, ,6) /i ;F i

(4.16)

(4.17)

Note that, the notation used to label the U vectors is similar to that of the
F vectors since the P U vectors, of sizes N/P, are concurrently computed
by P processors. That is, U ^(;’, 6) represents the contribution vector of the
shooting patch of processor i to the local patches of processor k omitting the
multiplications with the ri{r,g,b)fAi coefficients. Hence, Uk(r,y, 6) represents
the total contribution vector of all P shooting patches to the local patches of
processor k.

In the following paragraphs, the ring and hypercube algorithms for per­
forming this phase are presented.

R in g Topology

The first approach discussed in this work is very similar to the implementation
proposed by Chalmers et al. [1 2]. In their implementation, each processor
£ broadcasts a packet consisting of the delta radiosities, area and the form-
factor vector of its shooting patch. Each processor k, upon receiving a packet
{ A B f , }, computes a local contribution vector U ^(r,g , b) by perform­
ing a local scalar vector product for each color (Eq. 4.17) and accumulates
this vector to its local U k(r,5 f, b) vector by performing a local vector addition
operation (Eq. 4.16). However, multiple broadccist operations are expensive
and may cause excessive congestion in ring interconnection topologies. In this
work, indicated packets are circulated in a synchronous manner, similar to
the patch circulation discussed for Phase 2. Form-factor vector circulation
consists of P-1 concurrent communication steps. In each step, each processor
sends its current packet to the next processor in the ring, and receives a new
packet from the previous processor in the ring. Between each successive com­

munication steps, each processor concurrently performs the contribution vector

CHAPTER 4. PARALLELIZATION: PATCH DATA CIRCULATION 64

accumulation computations (Eqs. 4.17 and 4.16) corresponding to its current
packet. At the end of P-1 concurrent communication steps, each processor k
accumulates its total contribution vector U k(r,5 r, 6). Then, each processor k
can concurrently compute its local A R k(r,^ ,6) vector by performing a local
element-by-element vector multiplication for each color (Eq. 4.15). Figure 4.10
illustrates the pseudocode for this approach.

/♦ A 5 ,(r ,y ,6) : de lta ra d io s ity o f lo ca l shooting patch;
As : area o f lo c a l shooting patch;
F : lo c a l form -factor vector (o f s ize N)\
U , A R , B , A B axe lo c a l vectors (o f s ize N/P);*/

nextnode = (mynode + 1) mod P;
prevnode = (mynode - 1) mod P;
k = mynode;
U (r , ^ , 6) = AB,(r,g,b,)A,F]^

for i= l to P-1 do
send (ABs{rj gyb) ,As, F) to processor nexinode;
receive into (A B ,(r, flf, 6),>1, , F) from processor prevnode;
U(r,fli,6) = U(r,ff,6) + AB,(r,g,b)A,F^;

endfor
AR(r,(jr,6) = r{r,g,b) * lJ{r,g,b);
B(r,g,b) = B{r,g,b) + AR{r,g,b);
AB{r,g,b) = AB(r,g,b) + ATi{r,g,b);

end

Figure 4.10. The Form-Factor Vector Circulation Scheme for the Ring Topol­
ogy

It is obvious that perfect load balance in this phcise can easily be achieved
by mapping equal number of patches to each processor. Hence, the paral­
lel complexity of Phase 4 using the described form-factor vector circulation
scheme, is:

TP4 = (P - l)tsu + (P - l)Nttr + P{N/P)Tcontr + (N/P)Tupd (4.18)

= (P - l)tsu + (P - m ttr + NTcontr + (NIP)Tupd (4.19)

Here, Ur is the time taken to transmit a single floating point word, TcoNTR

CHAPTER 4. PARALLELIZATION: PATCH DATA CIRCULATION 65

is the time taken to compute and accumulate a single contribution value, and
TupD is the time taken to update a single radiosity and delta radiosity value
using the corresponding entry of a local Ui ̂ vector.

Note that, in this scheme, processors accumulate the contributions for their
local patches during the circulation of form-factor vectors. Hence, as is also seen
in Eq. 4.19, this scheme necessitates high volume of communication ({P — \)N
words) since whole form-factor vectors of sizes N are concurrently communi­
cated at each communication step. However, as is also seen in Eq. 4.16, each
processor k needs only the slices (of sizes N/P) of the form-factor vectors it
receives during the circulation. That is, form-factor circulation scheme involves
the circulation of redundant information. In this work, we propose an efficient
scheme which avoids this redundancy in the interprocessor communication.
In the proposed scheme, partial contribution computation results (U^(r,ii,6)
vectors of sizes N/P) are circulated instead of the form-factor vectors (of sizes
N). Hence, each processor effectively accumulates the contributions of its local
shooting patch to all other processors’ local patches during the circulation of
the partial contribution computation results.

In a straightforward implementation of the proposed new scheme, each
processor k first constructs the contribution vector (Uj^(r,5 r, 6)) of its shoot­

ing patch to its local patches, and initiates the circulation of contribution
vectors. After the concurrent communication step in the circulation, pro­
cessor k constructs the U|^_jj,jjQjp(r,5 r, 6) vector using the slice
of its local form-factor vector F*', and accumulates this vector to the current
partial contribution vector. At the end of P — 1 concurrent communication
steps, each processor k holds the final contribution vector U(ic+i)niodp(^i9'j
of the next processor in the ring. Hence, one more communication is needed
in order to return the final contribution vectors to their “home” processors.
However, this communication step can avoided by each processor k construct­

ing l)modp(’'>5'’ ''®ctor in the initialization phase and accumulating the
^(k-i-l)m odp(^’ 5'»^) vector at step i. Figure 4.12 illustrates the operation of
the proposed scheme on a ring with 4 processors.

The proposed circulation scheme also pre f̂erves the perfect load balance,
if exactly equal number of patches are mapped to each processor. Hence, the
proposed circulation scheme reduces the overall parallel complexity of Phase 4

to

CHAPTER 4. PARALLELIZATION: PATCH DATA CIRCULATION 66

/♦ ABs{r^gyb) : delta radiosity of local shooting patch;
As : area of local shooting patch;
F : local form-factor vector (of size AO;
U , A R , B, A B are local vectors (of size N/P); */
nextnode = (mynode + 1) mod P;
prevnode = (mynode - 1) mod P;
k = mynode; U(r, ^,6) = AR5(r, ,̂6)A5Fpj-evnode»

for i=l to P-1 do
send U(r,^,6) to processor nextnode;
receive into U(r,5,6) from processor prevnode;
U(r, ,̂6) = U(r,5,6) + ABsir^g

endfor
AR(r,5,6) = r(r,</,6) * U(r,5,6);
B{r,g,b) = B{r,g,b) + AR(r,g,b);
AB(r,g,b) = AB(r,g,b) + AR(r,g,b);

Figure 4.11. The Contribution Vector Circulation Scheme for the Ring Topol­

ogy

CHAPTER 4. PARALLELIZATION: PATCH DATA CIRCULATION 67

Tp4 = (P - l)tsu + 3(P - 1){N/P)ttr + P{N/P)Tcontr + {N/P)TuAA-^0)

= (P - l)< 5 l / + 3—^ —NttT + NTcONTR+-^TuPD (4-21)

Note that, the constant 3 appears as a coefficient in term since each
entry of an individual U{ ̂ vector consists of 3 contribution values for 3 color-
bands. Hence, the proposed circulation scheme reduces the total concurrent
communication volume in Pheise 4 by an asymptotical factor of P /3 for P > 3.

Hypercube Topology

The algorithm proposed for the SIMD hypercubes is similar to that for the
ring topology. This phase again requires the exchange sequence introduced for
Phase 2 in order to circulate the partial contribution computation results..

The algorithm for the hypercube topology is presented in Figure 4.13 and
an example execution of Phase 2 on hypercube topology is illustrated in Fig­
ure 4.14.

The proposed hypercube algorithm also preserves the perfect load balance,
if exactly equal number of patches are mapped to each processor. Hence, the
parallel complexity of the proposed circulation scheme for Phase 4 on hyper­

cube topology is equal to that of the ring topology given in Eq. 4.21.

4.3 Experimental Results

The proposed schemes are implemented on an Intel’s iPSC/2 hypercube mul­
ticomputer. The performance of the system is tested on a ring with 1, 2, 4, 6,
8, 10, 12, 14 and 16 processors. The hypercube algorithm has the same time
complexity and task allocation scheme, therefore these performance results are
valid for the hypercube topology. »

The form factors are computed using hemicubes of constant resolution 50 x
100 X 100. The proposed parallel algorithms are experimented for five different
scenes with 856, 1412, 3424, 5648 and 8352 patches.

CHAPTER 4. PARALLELIZATION: PATCH DATA CIRCULATION 68

Processor 0 1 2 3

PE*s slice of r/A data (r/A)o (r/A)^ (r/A)^ <r/«3

PE’s local shooting patch P ^
s

P ^
s

P 2
s P ^

s

Each PE has computed F ^ F ^ F ^ F ^

PE computes update vector {0}U
3 0

{2}U
1

{3}U
2

Stepl :

Send update slice
{0}

0
{2}
 ̂1 '

{3}
2

Receive new slice {3}u
2

> -^ ' '1 0 } " ’
u

3
{1}u
0

{2}U
1

Compute contr. and add
{0,3}

u
2

{0,1}u
3

{1»2}
U

0
{2,3}

U
1

IStep2 :

Send update slice
^{0.3} ^{0.1} ^(1.2) {2,3}

- - - U
1

Receive new slice 1 2
'• .^ {0 .1 }

3
' '^ ^ { 1 .2 }

0

Compute contr. and add
^{0,2,3}

1
{0,1,3}u
2

{0,1,2}u
3

{1*2,3}u
0

Step3 :

Send update slice
^{0.2,3} ^{0.1.3}

_ i< -

{0,1,2}
U

_ _ _ ^ { 1.2.3}
0

Receive new slice 0
>-<1j'{br273) ' '

1
{0,1,3} " "

u
2

^ ^ ^ {0 ,1 ,2 }
3

Compute contr. and add ^{0.1.2.3}
0

{0.1.2.3}
' 1

{0,1,2,3}
u

2
{0,1,2,3} V
3

Figure 4.12. Contribution computation on a Ring with 4 Processors

CHAPTER 4. PARALLELIZATION: PATCH DATA CIRCULATION 69

/* ABs{r,g,b) : delta radiosity of local shooting patch;
As : area of local shooting patch;
F : local form-factor vector (of size N) ;
ix : Holds the current processor slice computed at each iteration
U , A R , B, A B are local vectors (of size N/P); *!
ix = mynode © 2'̂ “ ;̂
U (r,5,6) = ABs{r,g,h)AsT\x·,

for i=0 to P-1 d o
dnode = mynode © 2·̂ ’̂’'̂ ;
send U(r,ji,6) to processor dnode·,
receive into \J{r,g,b) f r o m processor dnode·,
ix = ix ©
U(r,(7,6) = U(r,(/,6) + ABs{r,g,b)As Fix;

endfor
AR(r,5,fr) = r{r,g,b) * U{r,g,b)·,
B{r,g,b) = B{r,g,b) + AR{r,g,b);
AB{r,g,b) = AB(r,£T,6) + AR(r,jf,6);

Figure 4.13. The Contribution Vector Circulation Scheme for the Hypercube
Topology

CHAPTER 4. PARALLELIZATION: PATCH DATA CIRCULATION 70

P r o c e s s o r

P E ’ s s l ic e o f r /A data

E a c h P E h a s c o m p u te d

<r/A> (r/A), (r/A)^

P E c o m p u te s u p d a te v e c to r

s e « p l :

S e n d u p d a te s lic e

R e c e i v e n e w s lic e

C o m p u t e c o n tr . a n d add

SC*p2 :

S e n d u p d a te s lic e

R e c e i v e n e w s lic e

C o m p u t e co n tr . an d add

O U ^

5

o i

4
u V ''

7 6 o

45
'o

6 U ..

u V ''
3

67u3
67U
2

Olu - ̂ ̂
5

7

023

6

123

^ 7^ -

5

23 43 43 67
U U ^ U ̂ . - ' U

6

Ol
u

1

6 7 . ,
u u ^

43“ -
U

4 3 2 1

013 467 567 456
u U U U

4 3 2 1

67
- -U

2

S t« p 3 :

S e n d u p d a te s lic e

R e c e i v e n e w s lic e

C o m p u t e co n tr . a n d add

023 123 0 1 2 013 467 367 436 437
tJ ^ U ^ . u U >. u ^7

'* .^ 0 2 3 O ^ ' ' ^ 0 12

3 2
' a . 467

U

1 . ̂ o

6 7 4 5 2 3 o 1
0123 0123 0123 0123 4367 4567 4367 4567

u u u u U U u U
6 7 4 3 2 3 o 1

SCep4 :

S e n d u p d a te s lic e

R e c e i v e n e w s l ic e

C o m p u t e co n tr . a n d add

0123 0123

6 -------- ------------ ------- --- , _ - - - u
-.-j- '

4367 r - u — ot^:
2 3 o 1 6 7
,04..7 14..7

U
24..7

U
^0..4 0..33u

2 3 o 1 6 7

^“ •"O haa-^ 0123U V
4 5

steps :
S e n d u p d a te s lic e

R e c e i v e n e w s lic e

C o m p u t e c o n tr . a n d add

04 ..7 14..7 24 ..7 3 ..7 0..4 0 ..33 , , 0..36 JUU - U U - .u u u u
3

14,<7 ^ 04 ..7
u ^ u

3 ..7 ^ ' ^ 2 4 ..7 V ^ U

6 7

0 ..3 5 ' ^ 0 ..4
u ^ u

>
0 ..3 7 ' ' a

u
3 2 1 o 7 ' 6 3
0 14 ..7 014 ..7 2 3 ..7 2. .7 , 0 ..3 0..3 0..367

uu U U U u u u
3 2 1 o 7 6 3

0..37
3
0..36
4
0..367
4

Steptf :

S e n d u p d a te s lic e

R e c e i v e n e w s l ic e

C o m p u t e co n tr . a n d add

0 1 4 ..7 0 14 ..7 23..U ^ u u

1
0 2 ..7
1

o
1..7
O

2. .7 0 ..5 0..3 0..367 0..367
u U U , - "U

o

014 ..7

7 ' -

0 ..3 6 7 ,
U

6 ^ x -

0..3'“ " ' ^
u , u

4

0..3
2 3 4 7 6
01 3 4 ..7 0 ..4 6 7 0 ..35 ..7 0..6 0..57

U U U U , U
2 3 4 7 6

S t« p 7 :

S e n d u p d a te s lic e

R e c e i v e n e w s lic e

C o m p u t e c o n tr . a n d add

02..7

^ 02 ..7\J ̂ U,O 1- V

0 ..7

012 4 ..7

u > U u ■ V2 3,, 4
0 ..7 0 ..7 0 ..7

U u U
2 3 4

0..3^;7 -A^0..467
3

0..6 /U
0..51. A 0 ..6u ̂ u
6 ^ 7

Figure 4.14. Contribution computation on a Hypercube with 8 Processors

CHAPTER 4. PARALLELIZATION: PATCH DATA CIRCULATION 71

Table 4.1. Effect of local and global shooting patch selection (in Phase 1) on
convergence

N P

Total Number o f shooting patch
selections for convergence

Local Global Percent
Decrease

Sequential

856

2 214 210 1.87
4 348 228 24.48
6 258 222 13.95
8 392 232 40.82 225
10 360 240 22.22
12 420 240 42.86
14 504 266 47.22
16 464 288 39.93

1412

2 386 378 2.07

377

4 416 388 6.63
6 432 384 11.11
8 584 400 31.51
10 460 410 10.87
12 480 420 12.50
14 644 434 32.61
16 560 448 22.50

3424

2 324 312 3.70

323

4 356 316 11.24
6 360 342 5.00
8 376 320 14.89
10 360 320 11.11
12 432 312 27.78
14 392 350 10.71
16 464 336 27.59

5648

2 270 242 10.29

248

4 288 240 16.67
6 252 252 0.00
8 328 248 24.39
10 290 250 13.79
12 300 252 16.00
14 294 280 4.77
16 432 272 37.04

CHAPTER 4. PARALLELIZATION: PATCH DATA CIRCULATION 72

Table 4.1 illustrates the effect of the local and global shooting patch selec­
tion (in Phase 1) on the convergence of the parallel algorithm. As is seen in
Table 4.1, global selection substantially increases the convergence rate of the
parallel algorithm, even though the scattered decomposition scheme is utilized.
The fifth column of Table 4.1 shows the percent decrease in the total number
of shooting patch selections when the global selection scheme is used instead of
the local selection scheme in Phase 1. As is seen in this column, the advantage
of the global selection over the local selection generally increases substantially
with the increasing number of processors for each scene geometry experimented
in this table. Hence, for large number of processors {P > 8), global shooting
patch selection is recommended in the first phase of the parallel algorithm.

Table 4.2 shows the effect of the decomposition scheme on the performance
of the hemicube production phase (Phase 2) of the parallel algorithm. Parallel
timings (Tpar) in Table 4.2 denote the parallel hemicube production time per
shooting patch. These timings are computed as the execution time of P concur­
rent hemicube productions divided by P since P hemicubes are concurrently
produced for P shooting patches in a single iteration of Phase 2. Sequential
timings (Tseq) in Table 4.2 denote the sequential execution time of a sin­
gle hemicube production. Efficiency values in Table 4.2 are computed using
E f f = TseqUPTpar)· An efficiency value denotes quality of a decomposi­
tion scheme on load balance. As is seen in Table 4.2, scattered decomposition
always achieves better load balance than the tiled decomposition. Note that,
as the number of processors increases, load balance quality of the scattered
decomposition increases in comparison with that of the tiled decomposition.
Furthermore, the performance of the loosely-coupled approach for scattered
decomposition is almost always better than the tightly-coupled approach for
communication because of the improved load balance. As is also seen in Ta­
ble 4.2, efficiency of both decomposition schemes decrease with increasing P
for a fixed N. This decrease in efl5ciency is due to the increase in the number of
synchronization steps since each synchronization step contributes to the overall
load imbalance.

Table 4.3 illustrates the execution times of the distributed contribution
vector computation during a single iteration of the parallel algorithm. The
last column of Table 4.3 illustrates the percent decrease in the execution times
obtained by using contribution vector circulation instead of form-factor vector
circulation. Note that, the advantage of the contribution vector circulation
over the form-factor circulation increases with increasing P as is expected.

CHAPTER 4. PARALLELIZATION: PATCH DATA CIRCULATION 73

Table 4.2. Effect of the decomposition scheme on the performance of the
hemicube production phase (Phase 2) of the parallel algorithm

N
Sequential
tiine(secs)

Tiled D ecom position Scattered Decom position

P
Tight ly-coupled Tightly-coupled Loosely-coupled

parallel
time

parallel
efficiency

parallel
time

parallel
efficiency

parallel
time

parallel
efficiency

856 5.020

2 3.102 0.809 2.618 0.958 2.625 0.956
4 1.804 0.696 1.374 0.913 1.361 0.922
6 1.309 0.639 0.931 0.898 0.921 0.908
8 0.994 0.631 0.722 0.868 0.698 0.899
10 0.898 0.559 0.568 0.884 0.560 0.894
12 0.752 0.556 0.482 0.867 0.471 0.888
14 0.691 0.519 0.426 0.842 0.409 0.877
16 0.618 0.508 0.380 0.826 0.358 0.876

1412 6.460

2 3.811 0.848 3.429 0.941 3.425 0.943
4 2.350 0.687 1.812 0.891 1.805 0.895
6 1.824 0.590 1.228 0.876 1.219 0.883
8 1.405 0.575 0.936 0.863 0.919 0.879
10 1.219 0.530 0.749 0.861 0.743 0.870
12 1.017 0.529 0.629 0.856 0.621 0.867
14 0.894 0.516 0.549 0.840 0.536 0.861
16 0.836 0.483 0.486 0.831 0.470 0.859

3424 13.842

2 8.414 0.822 7.314 0.946 7.308 0.947
4 4.826 0.717 3.834 0.902 3.828 0.904
6 3.440 0.671 2.537 0.909 2.534 0.910
8 2.630 0.658 1.949 0.888 1.946 0.889
10 2.238 0.619 1.570 0.881 1.567 0.883
12 1.911 0.604 1.316 0.876 1.313 0.879
14 1.713 0.577 1.127 0.877 1.122 0.881
16 1.473 0.587 0.990 0.873 0.987 0.878

5648 20.116

2 11.103 0.905 10.627 0.947 10.543 0.954
4 6.498 0.774 5.438 0.924 5.432 0.926
6 4.852 0.690 3.673 0.912 3.667 0.914
8 3.639 0.690 2.762 0.910 2.758 0.912
10 3.148 0.639 2.217 0.907 2.213 0.909
12 2.731 0.614 1.857 0.902 1.852 0.905
14 2.349 0.612 1.595 0.901 1.591 0.903
16 2.212 0.568 1.397 0.899 1.391 0.904

8352

2 16.988 0.839 15.065 0.946 15.033 0.948
4 9.649 0.739 7.730 0.921 7.694 0.926
6 6.782 0.701 5.377 0.884 5.375 0.884

28.507 8 5.372 0.663 4.0,f l 0.888 4.008 0.889
10 4.445 0.641 3.131 0.911 3.117 0.915
12 3.864 0.615 2.633 0.902 2.621 0.907
14 3.382 0.602 2.309 0.882 2.296 0.887
16 2.992 0.595 2.052 0.868 2.037 0.875

CHAPTER 4. PARALLELIZATION: PATCH DATA CIRCULATION 74

Table 4.3. Effect of the circulation scheme on the performance of the light
contribution computation phase (Phcise 4) of the parallel algorithm

N P Contribution C om putation T im e (secs)
form factor

vector
circulation

C ontribution
vector

circulation

percent
decrease

2 0.0502 0.0482 3.98
4 0.0604 0.0576 4.64
6 0.0660 0.0630 4.55

856 8 0.0762 0.0664 12.63
10 0.0842 0.0702 16.67
12 0.0912 0.0732 19.74
14 0.0994 0.0756 23.94
16 0.1072 0.0784 26.87

2 0.0945 0.0911 3.60
4 0.1012 0.0962 4.94
6 0.1114 0.1014 8.98

1412 8 0.1232 0.1064 13.64
10 0.1345 0.1102 18.07
12 0.1452 0.1140 21.49
14 0.1568 0.1162 25.89
16 0.1680 0.1184 29.52
2 0.1953 0.1879 3.80
4 0.2305 0.2202 4.46
6 0.2628 0.2382 9.36

3424 8 0.2872 0.2456 14.48
10 0.3110 0.2520 18.97
12 0.3348 0.2556 23.66
14 0.3598 0.2604 27.63
16 0.3840 0.2640 31.25

2 0.3261 0.3183 2.39
4 0.3920 0.3680 6.12
6 0.4374 0.3948 9.74

5648 8 0.4760 0.4072 14.45
10 0.5153 0.4150 19.46
12 0.5556 0.4212 24.19
14 0.5937 0.4270 28.08
16 0.6385 0.4303 32.61

2 0.4652 0.4596 1.20
4 0.5405 0.5081 6.00
6 0.5946 0.5424 8.78

8352 8 0.6552 0.5608 14.41
10 0.7087 0.5703 19.53
12 0.7645 0.5772 24.50
14 0.8195 0.5838 28.76
16 0.8832 0.5888 33.33

CHAPTER 4. PARALLELIZATION: PATCH DATA CIRCULATION 75

Figure 4.15 illustrates the overall efficiency curves of the patch circulation
approach. In Fig 4.15, the efficiency curves are constructed using

E f ficiency = 1 TSEQ

P TpAR

Here, TsEQ and Tpar denote the execution time taken for the sequential algo­
rithm and the parallel algorithm on P processors, respectively, to converge to
the same tolerance value. Note that, global shooting patch selection, scattered
decomposition and contribution vector circulation schemes are used in Phases
1, 2 and 4, respectively, in order to obtain utmost parallel performance. As is
seen in Fig. 4.15, efficiency decreases with increasing P for a fixed N. There
are two main reasons for this decrease in the efficiency. The first one is the
slight increase in the load imbalance of the parallel hemicube production phase
with increasing P. The second, and the more crucial reason is the modification
introduced to the original sequential algorithm for the sake of parallelization.
As is discussed in Section 4.2, this modification increases the total number
of shooting patch selections required for convergence in comparison with the
sequential algorithm. Figure 4.16, which illustrates the normalized efficiency
values per single shooting patch computation is presented in order to confirm
the latter reason. Figure 4.16 eliminates the effect of the increase in the num­
ber of shooting patch selections. Greater efficiency values in Fig. 4.16 than
those in Fig. 4.15 reveal the performance degradation in the proposed paral­
lel algorithm due to the increase in the number of shooting patch selections.
As is seen in Fig 4.16, the efficiency of the parallel algorithm remains almost
constant for a fixed number of processors per shooting patch computation.

Table 4.4 illustrates the variation of the increase in the total number of
shooting patch selections for different tolerance values and number of proces­

sors. As is seen in this table, the modification introduced for the sake of efficient
parallelization increases the total number of shooting patch selections. The per­
cent increase in the total number of shooting patch selections increases with
increasing number of processors as is expected. However, for a fixed number
of processors, this percent increase decreases with decreasing tolerance values.
As is seen in Table 4.4, the percent increase in the number of shooting patch
selections remains below 12 % for tolerance values % 60 and smaller for P=128
processors. Hence, this parallelization scheme is recommended for relatively
smaller number of processors and tolerance values.

CHAPTER 4. PARALLELIZATION: PATCH DATA CIRCULATION 76

N u m b e r of patches

Figure 4.15. Overall efficiency of the Patch Circulation Algorithm

Figure 4.16. Efficiency of the Patch Circulation Scheme per shooting patch

CHAPTER 4. PARALLELIZATION: PATCH DATA CIRCULATION 77

Table 4.4. Total number of shooting patch selections of the parallel algorithm
normalized with respect to the sequential algorithm

16
32
64
128

Final delta radiosity percentage
75

1.00
0.93
0.80
1.00
1.07
2.13
4.27
8.53

70
1.00
0.99
1.01
1.00
1.20
1.30
1.50
1.95

65
1.00
1.00
1.00
1.01
1.11
1.25
1.23
1.29

60
1.00
1.00
1.00
1.00
1.03
1.04
1.12
1.12

55
1.00
1.00
1.00
1.00
1.01
1.02
1.06
1.11

50
1.00
1.00
1.00
1.00
1.01
1.02
1.05
1.11

45
1.00
1.00
1.00
1.01
1.01
1.03
1.05
1.08

4.4 Conclusion

40
1.00
1.00
1.00
1.00
1.01
1.02
1.04
1.07

In this chapter, an efficient synchronous parallel progressive radiosity algo­
rithm bcised on patch data circulation is proposed and discussed. This scheme
exploits the Level lb parallelism mentioned in Chapter 3. The complexity
analysis shows that using simple interconnection topologies (as ring) instead
of rich topologies (as hypercube) does not degrade the efficiency of the parallel
algorithm. The synchronous parallelism is proposed in order to obtain better
coherence hence increasing the convergence rate. The proposed parallel algo­
rithm yields good performance for relatively smaller number of processors and
tolerance values, as is expected.

For future work, ways of decomposition of the input scene should be in­
vestigated. Although scattered decomposition achieves better load balance,
better decompositions should be investigated. Furthermore in Phase 2, redun­
dant data may visit the processors. That is, the processors receive the data
of the patches which are not visible by their shooting patches. Thus, the vol­
ume of communication can be decreased if the exchange of redundant data is

avoided.

Chapter 5

Parallelization: Hemicube Merging

This chapter presents the second scheme for parallelization, baised on one shoot­
ing patch at a time, corresponding to Level 2 of the parallelism level classifica­
tion for radiosity. The Hemicube Merging Scheme again exploits synchronous
parallelism with static task assignment. This new scheme is based on a divide-
and-conquer approach. An efficient communication scheme is proposed for
hypercube-connected and ring-connected multicomputers, which decreases the
total volume of communications by an asymptotical factor. The proposed
parallel algorithms are implemented on iPSC/2 hypercube multicomputer and
tested for ring and hypercube-interconnection topology.

5.1 Preliminaries and Data Structures

In what follows, P denotes the number of the processors, d — log^ the di­
mension of the hypercube, N the number of the patches in the environment,
R the half-width resolution of the hemicube, H = \2R? the size of the total
hemicube.

The input patches are assumed to be polygons, and have the following type:

/* Patch data type ♦/
PatchType = type

record of
integer patch.id;
RayType normal;

78

CHAPTER 5. PARALLELIZATION: HEMICUBE MERGING 79

(x,y,z) vertices[];
(r,g,b) reflectivity;
(r,g,b) radiosity;
(r,g,b) delta_radiosity;
float area;

end;

{The following declares local patches of the processor }
PatchList : array [1..N/P] of PatchType;

The type definition for the hemicube is as follows:

/* Type definition of the single pixel on the hemicube */
ItemBufferEntryType = type

record of
/* Id of the patch visible at the pixel */
integer patch_id;
/♦ Nearest distance to the source patch on the pixel */
float z;

end;

/* Type definition of the whole hemicube ♦/
HemicubeType = type

record of
/* top face of the hemicube ♦/
ItemBufferEntryType +y_buffer[2R][2R];
/♦ side faces of the hemicube ♦/
ItemBufferEntryType +x_buffer[2R][R],

-x.buffer[2R][R],
+z_buffer[2R][R],
-z_buffer[2R][R];

end;

Thus, the hemicube is abstracted by arrays of static size (one of size 2Rx2R,
four of size 2R x R, one array for each face). Recall that messages in iPSC/2 are

CHAPTER 5. PARALLELIZATION: HEMICUBE MERGING 80

sent from and received into contiguous memory buffers in the local memories of
the processors. Hence, data to be communicated must be stored in contiguous
memory locations. Thus, the hemicube is represented as a linear array of
contiguous entries of type IteniBufFerEntryType (See Figure 5.1). With
the help of the casting facility of the C Programming Language, it is possible
to visualize the hemicube first as a record in item buffer filling step, and as
an array thereafter. Being able to manipulate the hemicube as a linear array
gives the facility of subdividing the hemicube independent of its partitioning
into faces. In some of the algorithms presented, this capability is used to
subdivide the final hemicube evenly among the processors (Figure 5.1).

-X

-z
TOP FACE

+Y +z

+x

TOP FACE

+Y

-X

+x

-z

+z

PEO

PEI

PE2

PE3

THE ABSTRACTION OF THE HEMICUBE REPRESENTATION IN MEMORY EXAMPLE DECOMPOSITION INTO 4 PARTS

Figure 5.1. Abstraction and Representation of the Hemicube

In the algorithms presented in this chapter, a single hemicube is decomposed
among the processors and each processor performs the computations for its
part of the hemicube. Thus, we have the subprogram Form FFVector() in
Figure 5.2, which computes a form-factor vector for the input range of the
hemicube by scanning the input portion and adding the delta form-factors of
the pixels of the same patch to compute the correct form-factor value for that
patch.

Note that the subprogram visualizes the hemicube as a linear array. The
subprogram is called by specifying the start and end index of the linear array
of the pixels on the hemicube.

CHAPTER 5. PARALLELIZATION: HEMICUBE MERGING 81

subprograun ForniFFVector
begin

Initialize form_factors[] vector entries to 0.0;
for i=start_index to end-index d o

patch-index = hemicubeCi] .patch-id;
form-factors [patch-index] = form-factors [patch-index] +

delta-formjfactors [i] ;
endfor

e n d subprogram

Figure 5.2. Algorithm for Form-Factor Vector Construction

5.2 Parallelization

The Hemicube Merging Scheme is based on a divide-and-conquer approach.
In this scheme, a single shooting patch is selected (similar to the sequential
algorithm), and each processor fills its local hemicube by its local patch subset
of the global patch data, as if the environment consists only of its local patches,
by executing the sequential item fill algorithm with its local patches. Then,
in the later phase, the processors merge their hemicubes to compute the final
hemicube using the distance values at the pixels. The detailed algorithm for
Hemicube Merging Scheme is illustrated in Figure 5.3.

The following subsections describe the steps of the Hemicube Merging
Scheme in detail.

5.2.1 Step 1: Shooting Patch Selection

In this step, the single shooting patch with the maximum unshot energy
(ABiAi) among all patches distributed in the local memories of the pro­

cessors, is selected. This step consists of two phases: First, each processor
selects the patch i with maximum ABiAi among its local patches; then in the
communication phase, these P patches are compared and the maximum energy
holding patch is selected as the shooting patch.

Note that this problem is very similar to Phase 1 of the Patch Circulation

CHAPTER 5. PARALLELIZATION: HEMICUBE MERGING 82

At each iteration :

Step 1: The shooting patch, which has the globally maximum
ABiAi, is selected.

Step 2: Each processor projects its local patch data onto its
local hemicube by executing the sequential algorithm of item
buffer fill. As a result, P different hemicubes, each
filled with local patches of another processor, are
produced.

Step 3: GMERGE (Global MERGE step) In this step, P hemicubes
produced at the end of Step 2 are merged, based on the
distance of patches at hemicube item buffer pixels, to
compute the final hemicube corresponding to the shooting
patch.

Step 4: Each processor is given a different H/P part of the final
hemicube, and each processor computes a form-factor vector
using its part. This operation uses the facility of
subdividing the hemicube independent of its partitioning to
its faces (Figure 5.1) , and subroutine FormFFVector
discussed in the previous section.

Step 5: The P form-factor vectors produced at the end of Step 4
are added to compute the final form-factor vector
corresponding to the shooting patch.

Step 6: Having computed the form-factors, each processor adds the
contributions from the shooting patch to its local patches
using the form-factor entries corresponding to its local
patches.

Figure 5.3. Algorithm for Hemicube Merging Scheme

CHAPTER 5. PARALLELIZATION: HEMICUBE MERGING 83

Scheme, discussed in Section 4.2.1, with a slight difference. In Phase 1 of the
previous scheme, the processors communicate and compare P shooting patches,
and as a result, P patches are selected as the simultaneously shooting patches.
However, in Step 1 of the Hemicube Merging Scheme, only one patch is selected
as the shooting patch, therefore the communicated buffers have the size of only
one patch data.

Thus, the algorithm for Step 1 of the Hemicube Merging Scheme is very
similar to the algorithm proposed for Phase 1 of the Patch Data Circulation
Scheme shown in Figures 4.1 and 4.3 for the ring and hypercube topologies,
respectively. Note that, in this case, the array PartialMaximums has the size
of 1, instead of P as shown in these figures.

5.2.2 Step 2: Hemicube Production Step

In this step, each processor projects and fills its local patches onto its local
hemicube. This step does not require interprocessor communication and is the
sequential algorithm of hemicube fill with the processor’s local patches. As
discussed in Section 2.2.2, the patches are passed through a projection pipeline
consisting of t)viewing transformation, it) clipping. Hi) perspective projection,
iv) scan conversion of the local patches onto each face of the hemicube [14].

The crucial factor that affects the performance of this phase is the com­
putational load balance among the processors. In the following step (Step 3),
the processors are synchronized, therefore the computational load in this step
should be distributed evenly in order to minimize the processors’ idle time, thus
increasing the performance of Step 2. As discussed in Section 4.2.2, the com­

plexity of projection of an individual patch onto the hemicube faces depends on
several geometric factors. Chapter 4 introduces two types of decompositions:
tiled and scattered decompositions (as illustrated in Figure 4.9). Recall that, it
is expected that neighbour patches require almost equal amount of computation
in Step 2 (e.g. in visibility test stage, neighbour patches may all be invisible
by the shooting patch; or in the scan-conversion stage, neighbour patches may
project onto almost equal number of hemicu(>e pixels, hence require almost
equal amount of computation). In scattered decomposition, neighbour patches
are distributed to different processors, so the patches that belong to the same
object are evenly shared by the processors. Hence, scattered decomposition is
expected to achieve better load balance in this step.

CHAPTER 5. PARALLELIZATION: IIEMICUBE MERGING 84

So, assuming a perfect load balance in Step 2, the complexity of the
hemicube production process is:

Tstep2 = "5· ^ TpROJ (5.1)

where TpRoj is the average time to project one patch onto the hemicube.

5.2.3 Step 3: Hemicube Merge Step

At the end of Step 2, each processor has constructed a hemicube filled with its
local patches; hence P distinct hemicubes have been formed that correspond to
hemicubes handling the occlusions and the visibility among the local patches
of the processors only. In Step 3, these P hemicubes are merged to a single
hemicube, which corresponds to the correct hemicube for the shooting patch,
that solves the occlusions and visibility between the shooting patch and all
other patches in the input scene.

The merging process is as follows. For each hemicube pixel, the patch with
the nearest distance (among all the P patches which are visible at that pixel
stored at the P hemicubes), is selected as the visible patch for that pixel on
the final hemicube.

In the following subsections; first, the naive algorithm for the hemicube
merging process is described, and then the new algorithms which decrease
the total volume of concurrent communication by an asymptotical factor are
presented for the ring and hypercube topologies.

Naive Merge Algorithm for Ring Topology

The naive algorithm for merging the P heniicubes on the ring topology is
shown in Figure 5.4. The hemicube merging for the ring topology is performed
in P — 1 concurrent communications as follows: The processors start with their
produced hemicubes stored in their local memo'ries initially. Then, at each it­

eration of the algorithm, the processors send their partial result to the next
processor in the ring, and receive a new partial result from the previous proces­

sor in the ring. Thus, effectively the partially merged hemicubes are circulated

CHAPTER 5. PARALLELIZATION: HEMICUBE MERGING 85

as each processor merges its original local hemicube with cumulatively merged
other hemicubes. Note that, the original local hemicubes of the processors
remain unchanged during the circulation of the partially merged hemicubes.

Ring_MergeHemicubesl
begin

/♦ Initially processor has its local hemicube in */
/♦ linear array Hemicubef] in its local memory. */
nextnode = (mynode + 1) mod no.processors;
copy HemicubefJ to PartialHemicube[J;

for i=l to P-1 do
send PartialHemicube[] to nextnode;
receive PartialHemicubef];
for j=0 to H-1 do

if PartialHemicubeij'] .z > Hemicubeij^ .z then
PartialHemicubeij'] .patch-id = Hemicubeij^ .patch-id;
PartialHemicubeij2-z = Hemicubeij^ .z ;

endif
endfor

endfor
end

Figure 5.4. Ring Algorithm for Naive Hemicube Merging

At the end of P — 1 concurrent exchanges, each processor has a copy of
the correct hemicube corresponding to the shooting patch in its local variable
PartialHemicube. The complexity of this operation for the ring topology is:

Thcm\ = (P — 1) X tsu + (P — 1) X P X Ttr + (P — 1) x P x Tmerge (5.2)

where P is the size of the hemicube in pixels, Ttr is the time spent to exchange
one pixel, Tmerge is the time to perform the pierging operation for a single
pixel.

CHAPTER 5. PARALLELIZATION: HEMICUBE MERGING 86

Naive Merge Algorithm for Hypercube Topology

The naive algorithm for merging the P hemicubes on the SIMD hypercube
topology succeeds to decrease the complexity of Step 3 from 0 (P) to 0{log2P)·
The new algorithm for the SIMD hypercube is illustrated in Figure 5.5. At each
iteration of the d iterations, the processors exchange their current hemicube
with a different neighbour processor, and merge these hemicubes. Note that,
the algorithm shown in Fig. 5.5 uses the communication protocol illustrated
in Figure 3.3. In fact, for merging the hemicubes the algorithm performs the
GM IN (Global Minimum) operation on the linear arrays of hemicube pixels
with respect to the patch distances at the pixels.

Hypercube_MergeHemicubesl
begin

/* Initially processor has its local hemicube in ♦/
/* linear array Hemicube[] in its local memory. ♦/
for i=0 to d-1 do

dnode = mynode © 2‘;
send Hemicube to dnode;
receive ItsHemicube from dnode;
for j=0 to H-1 d o

if ItsHemicubeij'] .z < Hemicubeijl -z then
Hemicubeij'] .patch_id = ItsHemicubel.j'] .patch_id;
f/emicw6e[j] .z = ItsHemicubeij'] .z ;

endif
endfor

endfor
end

Figure 5.5. Hypercube Algorithm for Naive Hemicube Merging

At the end of d concurrent exchanges, each processor has a copy of the
correct hemicube corresponding to the shooting patch in its local variable
Hemicube. The complexity of this operation for the hypercube topology de­
creases to: '

Thcmi = d X tsv + d X H X TjR + d x H x Tmerge (5.3)

d is the dimension of the hypercube.

CHAPTER 5. PARALLELIZATION: HEMICUBE MERGING 87

So, the naive algorithm for the hypercube topology requires asymptotically
less number of communications, volume of communications and amount of
computation than the naive ring topology. However, the hypercube algorithm
still requires excessive amount of computation and communication for merg­
ing the hemicubes, and the extra communications and computations become
more crucial with the increasing number of processors. The following subsec­
tion proposes efficient heniicube merging algorithms for ring and hypercube
topologies.

Efficient Merge Algorithm for Ring Topology

First, note that after Hemicube Merging Step (Step 3), in Step 4, that is
the form-factor vector computation step, each processor is given the task of
scanning its H jP part of the final hemicube and constructing a form-factor
vector for that section of the hemicube only. Therefore, there is no need to
duplicate the whole final hemicube in all the processors’ local memory, thus
the algorithms given in Figs. 5.5 and 5.4 involve both communication and
computation redundancy for the merging operation.

Second, recall that the merging operation over the hemicube pixels is in
fact a Global MINimum operation with respect to the patch distances. The
minimum function is

• Commutative: Valuei MIN Valuer = Valuc2 MIN Valuei.

• Associative:
Valuei MIN (Fa/uea MIN Values) = (Valuei MIN Valuez) MIN Values.

That is, the order of testing the input values does not change the final result
of the MIN function.

The contribution computations in Phase 4 of the Patch Circulation Scheme
as discussed in Section (4.2.4) also have the same commutativity and associa­

tivity properties. That is, the order of adding the contributions from more
than one shooting patches does not change the final total contributions from
those patches if the inter-contributions among the shooting patches are ignored,
which was the case for Chapter 4. Hence, the parallel solutions proposed for
Phase 4 of the Patch Circulation Scheme can also be used in this step with a

CHAPTER 5. PARALLELIZATION: HEMICUBE MERGING 88

slight difference. In the previous algorithms, the contributions from P shoot­
ing patches are summed and as a result, each processor holds the slice of the
global contributions corresponding to its local patches only. In this problem,
the hemicubes are merged using the MIN function and as a result, each proces­
sor holds only the slice of the hemicube which it will process in the next step
(Step 4). Figure 4.12 used to illustrate the execution of the circulation scheme
can be adapted here, substituting H arrays for U vectors, and using the M IN
function for merging the H vectors.

Thus, the time complexity of Step 3 using the efficient communication al­
gorithm on the ring topology is:

Thcm2rjsg — P ^ isu + ̂ X Ttr -f // X Tmerge (5.4)

Efficient M erge A lgorithm for H ypercube Topology

Observe that, the communication efficient algorithm proposed for the ring
topology requires P number of communications. The operation can be per­
formed in d steps without increasing the volume of communication and the
computational load, on the hypercube topology.

The communication efficient hypercube algorithm again uses the communi­
cation protocol presented in Figure 3.3, but this time exchanging and process­
ing recursively decreasing portions of the hemicube, instead of communicating
the whole array. In the new scheme, each processor starts with the whole
hemicube portion. Then the algorithm proceeds as follows: At each iteration
of the algorithm, each processor sends one half of its current portion to a differ­
ent neighbour processor and receives that processor’s other half of the current
portion. So, each processor has two copies of one half of its current portion.
Then it merges these two halves into its local half. At the end of the iteration,
the range of the current portion is divided by 2 in order to correspond to the
merged half. An example execution of the new algorithm for 2D hypercube is
presented in Figure 5.6. The detailed algorithm for the new efficient approach
is illustrated in Figure 5.7. In the algorithm, H is assumed to be an integer
power of 2, but the implementation accepts any value of H.

The amount of computation and volume of communication is proportional
to /7/2*’·'·* at step k, so the total work is:

CHAPTER 5. PARALLELIZATION: HEMICUBE MERGING 89

InKUIIy:

ProceMor 0 Proc«Mor 2

X op y nMom:
merge parts x and y

mmmmmim

a op a
0> 2

a op a
1 3

b op b
0 ^ 2

b op b
1 3

c op c
0 ^ 2

d op d
0 ^ 2

Figure 5.6. Example execution of MergeHemicubes2 on a Hypercube with 4
Processors »

CHAPTER 5. PARALLELIZATION: HEMICUBE MERGING 90

H y p e r c u b e _ M e r g e H e n i i c u b e s 2
begin

/* H is assumed to be a power of 2. ♦/

send_rec_size = H/2;
send_index = recv.index = 0;
for i=d-l d o w n t o 0 d o

if bit of mynode is 0 then
send_address = send.index + send_rec_size;
recv_address = recv.index;

else
send_address = send_index;
recv_address = recv_index + send_rec_size;

• endif

dnode = mynode 0 2 ’ ;
send from /femtcu6e[send_address] with

size send_rec_size to dnode;
receive into ItsHemicubeirecv-address] with

size send_rec_size from dnode;

for j=recv_address to recv_address+send_rec_size do
if ItsHemicube[j] .z < Hemicubelj] .z then

Hemicubeij] .patch_id = ItsHemicube[j] .patch_id;
Hemicubeij] .z = ItsHemicube[j] .z ;

endif
endfor

if bit of mynode is 1 then
send-index = send_index + send_rec_size;
recv_index = recv_index + send_rec_size;

endif
send_xec_size = send_rec_size / 2;

endfor
e n d

Figure 5.7. Hypercube Algorithm for Communication Efficient Hemicube
Merging

CHAPTER 5. PARALLELIZATION: HEMICUBE MERGING 91

/ //2 ^ + ///2 ^ + ... + i / /2 ‘' = H x { P - l)/P « H

Therefore, the complexity of the algorithm is as follows :

ThCM2hyper = d X Tsu + H X Ttr + H X Tmerge

In the algorithm presented in Figure 5.7, the communication is assumed
to be synchronous, that is: the processors wait until send and receive opera­
tions are completed. However, it is possible to further speed up the algorithm
by overlapping communication and computation with the use of asynchronous
communication. In asynchronous send command, the processor continues to
the next instruction, where a hardware router in the processor copies the ad­
dressed data to the bidirectional link concurrently. In asynchronous receive
command, if the message has arrived, the message data is copied from the sys­
tem buffer to memory address pointed; otherwise the processor continues to
the next instruction and the received messages thereafter are received into the
system message buffers. Also there is a utility msgwait to test if the message
has been received by the processor and is ready in the system buffer.

Then, the communication efficient algorithm proceeds cis follows: The pro­
cessor issues an asynchronous receive command in the beginning, and while
the processor does the computations for step i, it issues another asynchronous
receive for step t -|-1 concurrently.

Note that, in Figure 5.7, the algorithm uses an additional hemicube array
ItsHemicube for simple discussion. In fact, the synchronous communication
protocol can be performed without any extra storage. When the processor
sends the corresponding half of the current portion of the hemicube, that por­
tion will not be used thereafter. Then, the processors can receive the into
the sent portion of the local hemicube array. However, in asynchronous com­
munication, it is possible that the new partial results for iteration t -f- 1 has
arrived while the processor does the computations for iteration z, overwriting
the unprocessed entries. Therefore, extra storage of size /7 /2 (the maximum
hemicube half portion size that will be used at iteration 1) is required for
asynchronous communication.

CHAPTER 5. PARALLELIZATION: HEMICUBE MERGING 92

Performance Analysis of Step 3

There are two crucial factors that affect the performance in this step: load
balance and volume of communication. Perfect load balance is achieved in this
phase if almost equal number of hemicube pixels are distributed to each pro­
cessor at the end of Step 3, assuming that merging operation takes constant
amount of time for each pixel. Volume of communication is reduced asymptot­
ically by using the proposed scheme for communication for the ring and SIMD
hypercube topologies. At the end of this chapter, a further modification to
Hemicube Merging Scheme in order to decrease the volume of communication
further for MIMD hypercube-connected multicomputers, is presented.

5.2.4 Step 4: Form-Factor Vector Construction Step

At the end of Step 3, each processor has received a different H/P portion of
the final hemicube correctly. The correct portions of the linear hemicube array
at the processors’ local memories are:

Processor
Processor

0: [0 ..(H/P-1)]
1: [H/P..(2H/P-1)]

Processor i: [i*H/P..(i+l)*H/P-l]

Processor P-1: [(P-l)H/P..(H-l)]

In Step 4, the processors construct a form-factor vector for their local por­

tion of the final hemicube. This process makes use of the algorithm Form F-
FVector described in the preliminaries section of this chapter. The delta
form-factors are stored in a look-up table in order to prevent recalculation for
each shooting patch.

CHAPTER 5. PARALLELIZATION: HEMICUBE MERGING 93

Note that, the patches that are visible at the pixels of the local hemicube
portion for a particular processor are not necessarily the local patches of the
hemicube. As a result of this step, P processors form a total of P form-factor
vectors corresponding to P different portions of the final hemicube.

5.2.5 Step 5: Form-Factor Vector Addition

At the end of Step 4, each processor heis computed a form-factor vector from
the shooting patch corresponding its portion of the hemicube. In this step,
these vectors must be added to form the final form-factor vector for the source
patch corresponding to the whole hemicube.

Similar to Step 3, the vector sum operation required for this step is com­
mutative and associative, and at the end of this step, the processors need only
those entries of the form-factor vector corresponding to their local patches
to compute the contributions to their local patches from the shooting patch.
Hence, each processor needs the slice of the final form-factor vector correspond­
ing to its local patches only. Therefore the communication efficient schemes
proposed for Step 3 can also be used in this step. However in this step, the
operation applied to the linear array entries is summation, instead of merging
the entries as in Step 3.

So, at the end of Step 5, each processor holds in its local memory:

Processor 0 has computed FF[0..N/P-1],
Processor 1 '' " FF[N/P. .2N/P-1]

Processor i FF[i*N/P. .(i+l)*N/P-l]

Processor P-1 " " FF[(P-1)N/P..N-1] correctly.

CHAPTER 5. PARALLELIZATION: HEMICUBE MERGING 94

5.2.6 Step 6: Contribution Computation

Having received the form-factor vector slice from the shooting patch to its local
patches, each processor computes the contributions to its local patches using
Eq. (2.17) and adds this contribution to their radiosity and delta radiosity
values.

5.3 An Improvement: Hemicube Division Scheme

Now we present the Hemicube Division Scheme for the MIMD hypercube-
connected multicomputers which decreases memory requirements for storing
the hemicubes at local memories of the processors, while improving the par­
allelism of Hemicube Merging phase previously discussed. The idea, is to
distribute the four hemicube side faces to four subcubes of the hypercube,
each subcube filling a distinct side face with all the patches, and then all the
processors filling the top face in the later phase. It is not an exception that
the number of patches that are visible through different hemicube faces is not
equal. This results in load imbalance because the amount of work is propor­
tional to the number of patches visible. In order to solve this problem, the
second phase (top face filling) is executed using a master-slave scheme.

5.3.1 Face Allocation to Subcubes

There are two possibilities for allocating the 4 subcubes for the hemicube’s four
side faces:

homogenous sized subcubes: Assuming each side face will have nearly
the same number of patches projected onto it, the d-dimensional hyper­

cube is partitioned into 4 (d-2)-dimensional subcubes. Figure shows an
example homogeneous allocation for 4-dimensional hypercube.

1

heterogeneous sized subcubes: It is possible that one or more of the
side faces have a large number of patches projected onto them compared
to the other faces. If homogeneous sized subcubes are used in these
situations, it is possible that the subcubes that have small number of
patches projected process their side face, and then the top face; and still

CHAPTER 5. PARALLELIZATION: HEMICUBE MERGING 95

the subcube that processes the face with maximum number of patches
continues projection of the patches onto its face. To solve this problem,
the dimension of the subcube for the face with maximum number of
patches, heis to be increased to reduce the time of execution for this face.
In heterogeneous type of allocation, this face will be processed by a (d-1)-
dimensional subcube, the next by a (d-2)-dimensional subcube, and the
lower two by (d-3)-dimensional subcubes. Figure 5.8 shows an allocation
of this kind on 4-dimensional hypercube.

• -------- i i i >-------- i ► < ------- i

+z -X +z

• ---------i i <►-------- <►

Homogenous sized subcubes

+x

Heterogenous sized subcubes

(AssumeN > N > N > N) +z -X + x -X

Figure 5.8. Subcube Allocation for Hemicube Faces

5.3.2 Data Distribution

In order for a subcube to fill its side face, it should have all the patches in
the environment. However, the original data distribution discussed before can
allow only N/4 patches for a subcube in homogenous sized subcubes allocation
scheme. So, a limited amount of space redundancy is used.

In the new distribution, the processors stole only color information of their
N/P local patches. In addition to this, the geometric information (patch ver­
tices, normal vector) of the local patches of the 4-processor set is stored at
each processor. Figure 5.9 illustrates the data distribution for 4-dimensional

CHAPTER 5. PARALLELIZATION: HEMICUBE MERGING 96

hypercube. Note that the size of the geometric data is 4N/P and of the color
data is N/P. If N is too large to store the geometric data with 4N/P entries,
then only N/P geometric data is stored for the processors’ local patches, and
these data are circulated in a ring of size 4. Note that the ring size is constant
and independent of the cube size.

5.3.3 Hemicube Division Scheme Algorithm

Each iteration of the algorithm consists of 4 phcises: preprocessing phase, side
face filling phase, top face filling (master-slave) phase, contribution addition
phase.

• i)Preprocessing phase In this phase, each processor computes, for its
local N/P patches, the number of patches falling onto each face of the
hemicube, and at the same time prepares a mask of 5 Booleans, one
for each hemicube face. Then, a GSUM among all the processors is
applied to find the total number of patches visible through the faces,
and GCOL operation is applied among the 4-processor group such that
each processor holds the visibility information for all its patch geometry
data. The computation of the number of local patches onto the hemicube
faces is performed using an estimation based on simple tests whether
the patch vertices fall onto the hemicube faces. This is accomplished
by bringing the destination patches into the viewing coordinate system
by multiplying the patch vertices with the viewing matrix and executing
simple comparisons of the projected destination patch vertex coordinates.

• ii)Side face filling phase Depending on the side face counters com­
puted in preprocessing phaise, a choice is made between homogeneous or
heterogeneous sized subcubes schemes.

sort N+z,N-z,N+x,N-x -> {Ni ,N2,N3,N4} s.t. N i > N2 > Ns > N4

S2 = max{Ni/2<̂ -̂ , N2/2· -̂̂ N4/2·̂ -̂ }

Si and S2 are the maximum of the execution times for the subcubes in dif­
ferent face allocation schemes, that is the time to complete the projection.
If < S2 then the homogeneous sized subcubes, else the heterogeneous
sized subcubes scheme is employed. Depending on the scheme selected.

CHAPTER 5. PARALLELIZATION: HEMICUBE MERGING 97

each subcube is allocated a side face and executes Steps 2, 3 and 4 of
the hemicube merging scheme with the dimension of that subcube and
only one face of the whole hemicube. Having finished filling with all the
patches, the processors within a subcube merge their side face and form
a form-factor vector from their side face as described above.

• iii) Top face filling (m aster-slave) phase When a subcube has com­
pleted filling its side face, all its processors are idle. So, they will start
filling the top face. This is done using a master-slave approach among the
4-processor groups. The processors [0..P/4-1] are selected as the masters
for different 4-processor groups. When a slave processor’s request comes,
the master sends the start index of the next available patch in geomet­
ric data duplicated in its 4-processor group. Then, the slave processor
fills the top face with the packet of patches starting at this index. The
packet length, which is determined in the beginning of the program, is
proportional to the total number of patches. When all the 4N/P patches
are scan-converted for the top face for all the subcubes, a GMERGE op­
eration of the top face is performed among all the processors, then the
form-factors computed from this phase is added to the form-factor vector
computed.

• iv)Form Factor and Contribution A ddition Phase The distinct
form-factor vectors produced at the end of phase (iii) are added and each
processor computes the contributions from the shooting patch to its local
patches.

5.3.4 Performance Analysis of Hemicube Division
Scheme

Recall that the complexity of the hemicube merging operation of the Hemicube
Merging Scheme is:

Thcm — d X tsu A H X Ttr + H x Tmerge (5.5)

Assuming that the perfect load balance is achieved for the Homogeneous
Subcubes Allocation for the Hemicube Division Scheme, and ignoring the com­
munication caused by the master slave messages, the complexity of hemicube

CHAPTER 5. PARALLELIZATION: HEMICUBE MERGING 98

merging phase of the Hemicube Division Scheme can be written as:

Th c d — T h c d . u ̂ + T h c d ,-'top (5.6)

where T}{CD,i^ is the time required for the subcube to merge the allocated side
face, TffcDtop js the time required by all the processors to merge the hemicube
top face.

Similar to Eq. 5.5, the complexity for the side and top faces can be written
as:

TuCDto

{d — 2)tsu + -t Tcomp
0

-t Tcompo

dtsu + -^TcoMP

-^TcoMP

(5.7)

(5.8)

(5.9)

(5.10)

where Tcomp = Ttr + Tmerge- Then, Trcd be rewritten as:

Thcd =
1 1
6 3J HTcoMP

= ^ -^Tmerge

(5.11)

(5.12)

Thus, the hemicube division scheme decreases the total volume of commu­

nication and the hemicube merging operation by a factor of 2.

5.4 Results

The hemicube merging scheme has been implemented on the Intel’s iPSC/2
multicomputer. The proposed parallel algorithms are experimented for six
different scenes with 522, 856, 1412, 3424, 5648, 13696 patches. The test
scenes are selected as house interiors consisting of objects such as chairs, tables,
windows, lights in order to represent realistic 3D environments.

CHAPTER 5. PARALLELIZATION: HEMICUBE MERGING 99

Table 5.1 illustrates the effect of the decomposition scheme on the perfor­
mance of the local hemicube production step (Step 2) of the parallel algorithm.
Parallel timings in this table denote the average time in seconds for execution
of Step 2 for a shooting patch. The parallel timings denote the quality of the
decomposition schemes. Note that, as the number of processors increases, the
load balance quality of the scattered decomposition increases in comparison
with that of the tiled decomposition.

Table 5.1. Effect of the Patch Data Decomposition Type on Performance of
Hemicube Production Step (Step 2)

N P
Tiled

Decomposition
Scattered

Decomposition
Percent

Decreeise

522
4 1.403 1.041 25.80
8 0.833 0.561 32.65
16 0.538 0.315 41.45

856
4 1.969 1.341 31.89
8 1.110 0.731 34.14
16 0.739 0.418 43.44

3424
4 4.802 3.064 36.19
8 2.694 1.519 43.62
16 1.583 0.803 49.27

5648
4 6.935 4.445 35.90
8 4.020 2.217 44.85
16 2.392 1.166 51.25

8352
4 9.249 6.526 29.44
8 5.326 3.326 37.55
16 3.108 1.711 44.95

Table 5.2 shows the effect of the new efficient communication scheme on the
performance of Step 3. As is seen in Table 5.2, the time required by the naive
communication algorithm increases proportionally to the dimension d of the
hypercube, while the proposed efficient communication scheme requires almost
equal amount of time with increasing dimension d of the hypercube. As is seen
in this table, the advantage of the efficient scheme increases substantially with
the increasing dimension of the hypercube.

Figure 5.11 illustrates the overall efficiency curves for the Hemicube Merg­

ing Scheme. In Fig.5.11, the efficiency curves are constructed using

CHAPTER 5. PARALLELIZATION: HEMICUBE MERGING 100

local data PO PI
geometry data POJP4»P8,P12 P1J»5J>9P13

P4
POJ>4̂ J>12

P5
PU>5,P9J>13

-X

local data P2 P3 P6 P7
geometry data P2J*6JP10J>14 P3J>7J>11 J»15 P2J»6J>10,P14 P3J*7J»11J>15

local data
geometry data

local data

P8
P0J"4JP8,P12

P9
P1J>5J>9»P13

PIO
geometry daU P2J»6^10J>14

P12
P0J*44>8J>12

P13
P1,P5J>9JP13

Pll
P3,P7P1U>15

P14
P2J?6,P10J>14

P15
P3P7J>114^15

Figure 5.9. Distribution of the Geometry Data

Table 5.2. Performance of the proposed parallel hemicube merge algorithm on
Hypercube Topology

R d Naive
Communication

Tightly-Coupled Loosely-Coupled
time 1 speedup time speedup

50
1 460 283 1.63 276 1.67
2 1017 448 2.27 439 2.32
3 1599 543 2.94 523 3.06
4 2190 592 3.70 576 3.80

75
1 962 633 1.52 617 1.56
2 2160 1005 2,15 984 2.20
3 3441 1214 2.83 1177 2.92
4 4680 1319 3.55 1290 3.63

CHAPTER 5. PARALLELIZATION: HEMICUBE MERGING 101

The 4-Processors in Master-slave scheme

Figure 5.10. Master-Slave scheme

CHAPTER 5. PARALLELIZATION: HEMICUBE MERGING 102

E f ficiency = 1 TsEQ
P TpAR

Here, TsEQ and Tpar denote the execution time taken for the sequential
and the parallel algorithm on P processors, respectively to converge to the same
tolerance value. Note that, the total shooting patches required for convergence
of the parallel algorithm is the same for that of the sequential algorithm. As
is seen in Fig.5.11, the efficiency values for a particular number of processors
increases with increeising number of patches N because of the almost constant
amount of communication required since the hemicube communication is the
most time-consuming part. Thus, the granularity increases with increasing
number of patches in the scene.

Figure 5.11. Efficiency of the Hemiqube Merging Scheme

Table 5.3 shows the execution times of the distributed form-factor com­
putation during a single iteration of the parallel algorithm. Note that, the
advantage of the Hemicube Division Scheme decreases with increasing number
of patches. This result is due to the fact that the load imbalance among differ­

ent side faces of the hemicube becomes more crucial with increasing number

CHAPTER 5. PARALLELIZATION: HEMICUBE MERGING 103

of patches. Furthermore, the performance of the Hemicube Division Scheme
increases in comparison to the Hemicube Merging Scheme with increasing num­
ber of processors.

Table 5.3. Effect of the Hemicube Division Scheme on the Performance of the
Parallel Solution

N

522

856

3424

8352

16

16

16

16

5.5 Conclusion

Hemicube
Merging

Scheme (sec)

1.632
1.196
0.981
1.945
1.374
1.091

3.803
2.250
1.545
7.508
5.230
2.579

Hemicube
Division

Scheme (sec)

1.449
0.934
0.689
1.815
1.109
0.788

3.328
2.151
1.414

8.573
4.799
2.147

percent
decrease

11.21
21.90
29.77
6.68
19.29
27.77

1.25
4.40
8.48

-12.42
8.24
16.75

In this chapter, an efficient synchronous parallel progressive radiosity algorithm
based on Hemicube Merging corresponding to Level 2 of the classification is
presented. Efficient communication schemes are proposed for increasing the
performance of the parallel solution.

The performance of the Hemicube Merging Scheme increases with increas­

ing number of patches with a given hemicube resolution. Furthermore, as this
scheme follows the shooting patch sequence of the sequential algorithm, the
parallel algorithm performs well for high tolerance values without increasing
the number of shooting patches. Hence, this scheme can be used in order to
obtain approximated solutions for complex scenes, which requires less number
of shooting patches than the Patch Circulation Scheme.

Chapter 6

Conclusion

In this thesis, the progressive refinement radiosity method has been investi­
gated for parallelization on multicomputers. Two schemes based on two levels
of parallelism have been proposed and implemented on hypercube-connected
and ring-connected multicomputers. The proposed parallel schemes utilize a
synchronous type of parallelism based on static task assignment. This chapter
includes the concluding remarks and the comparison of the proposed schemes.

The radiosity method correctly approximates the light distribution among
the objects in an environment, because it is based on physical principles. Chap­
ter 2 introduced the radiosity method, and summarized the further improve­
ments of the method. The radiosity method requires excessive amount of com­
putation. The method slows down significantly when highly specular surfaces
are included in the environment. Also, non-polygonal objects are not easily
handled by the method.

Chapter 3 introduced the parallelism preliminaries and design criteria for
parallel computer graphics applications. Although the given list of criteria
is not complete, it includes the general concepts of parallel computer graphics
algorithm design. Then, the previous work on parallelization of the progressive

refinement radiosity method was classified and presented.
'/

Chapter 4 presented the first proposed parallelization scheme based on
patch data circulation. The scheme is a modification to the sequential progres­

sive radiosity method. In this method, P patches are selected as the shooting
patches and processed simultaneously. The synchronous parallelism has shown
to be scalable for even very simple topologies such as the ring, whereas the

104

CHAPTER 6. CONCLUSION 105

performances of the asynchronous parallel solutions that were proposed in the
literature downgrade significantly on simple topologies with a small number of
links per processor. The synchionous parallelism additionally allows to main­
tain shooting patch selection coherence, because the light energy distributed
by the shooting patches at an iteration reflects the effect of the distributions
at the previous iterations. However, load imbalance problem is a critical issue
for synchronous parallelism. Experimental results have shown that scattered
decomposition of the scene geometry yields adequate load balance during par­
allel hemicube production computations. The new contribution computation
scheme proved to decrease the total volume of communications by an asymp­
totical factor. Modification of the original progressive radiosity for the sake
of efficient parallelization is experimentally found to yield good results for rel­
atively small number of processors. The performance of this modification is
expected to increase with decreasing tolerance values which necessitate larger
number of iterations for convergence.

In Chapter 5, the second scheme for the parallelization of the progressive
radiosity method, the Hemicube Merging Scheme, has been presented. The
scheme is based on the environment-projection Hemicube Method for form-
factor computation, which is the most efficient method that can be performed
with the existing hardware. The scheme processes one shooting patch at a time
and is based on a divide-and-conquer approach. First, each processor computes
the projection of a different local subset of the patch data, then the resulting
hemicubes are merged in order to compute the final hemicube. Load balance
qualities of the decomposition schemes are compared, and scattered decom­

position achieved adequate load balance. The total volume of communication
and the extra computation in order to merge the computed hemicubes is a
critical problem for this scheme. A new communication scheme that decreases
the total amount of extra computations and the volume of communications by
an asymptotical factor, has been presented. The Hemicube Merging Scheme is
shown to be scalable with even simple topologies such as the ring.

For both schemes, we have tried to minimize the memory requirements, by
avoiding the duplication of the scene in each processor’s local memory. Thus,
complex scenes which could not be handled by a single processor can be pro­
cessed. The results show that we can reach a good speed-up for any hemicube
size, and any number of patches, by using one of the proposed schemes. The
Hemicube Merging Scheme performs more efficiently for small hemicube size
and large scenes, whereas the Patch Circulation Scheme works well for large

CHAPTER 6. CONCLUSION 106

hemicube sizes and small scenes, comparatively. The modification in the Patch
Circulation Scheme increases the total number of shooting patch selections in
comparison with the original sequential algorithm, and hence the Hemicube
Merging Scheme. This increase has shown to become more crucial with greater
tolerance values. Thus, the Hemicube Merging Scheme works better for large
tolerance values, whereas the Patch Circulation Scheme can reach good per­
formance with smaller tolerance values.

For future work, better patch decomposition schemes based on a prede­
termined heuristic that provide better load balance can be investigated. The
total volume of communications can be decreased if the patch-to-patch visi­
bility is pre-computed and only the required patches are communicated and
processed. The parallel solutions combined with adaptive subdivision of the
input geometry should be investigated. Other accurate form-factor computa­
tion techniques (such as analytical form-factor, Wallace’s ray tracing) present
new problems such as load balancing. These techniques should be investigated
for parallelism. Other methods such as hierarchical radiosity, discontinuity
meshing, should also be considered for parallelization for future work.

Bibliography

[1] Aykanat, Cevdet, Tolga K. Çapın, Bülent Özgûç, “Progressive Refine­
ment Radiosity Based on Patch Data Circulation for Multicomputers” ,
unpublished manuscript, 1993.

[2] Baum, Daniel R., John R. Wallace, Donald P. Greenberg, “The Back
Buffer: An Extension of the Radiosity Method to Dynamic Environ­
ments” , The Visual Computer, Vol.2, No.5, pp 298-306, 1986.

[3] Baum, Daniel R., Holly E. Rushmeier, James M. Winget, “Improving
Radiosity Solutions Through the Use of Analytically Determined Form-
Factors” , Proceedings of SIGGRAPH ’89. In Computer Graphics Vol.23,
No.3, July 1989, pp325-334.

[4] Baum, Daniel R., James M. Winget, “Real Time Radiosity Through Paral­
lel Processing and Hardware Accelaration” , Proceedings of the 1990 Sym­
posium on Interactive 3D Computer Graphics, In Computer Graphics,
Vol.24, No.2, 1990, pp 67-75.

[5] Baum, Daniel R., Stephen Mann, Kevin P. Smith, James M. Winget,
“Making Radiosity Usable: Automatic Preprocessing and Meshing Tech­

niques for the Generation og Accurate Radiosity Solutions” , Proceedings
of SIGGRAPH ’91. In Computer Graphics, Vol.25, No.4, July 1991, pp
51-60.

[6] Bouatouch, Kadi, Daniel Menard, Thierry Priol, “Parallel Radiosity Using
a Shared Virtual Memory” , Proceedings of ATARV’93, Ankara, Turkey,
1993, pp 71-83.

[7] Bu, J. and E.F. Deprette, “A VLSI System Architecture for High Speed
Radiative Transfer in Three-Dimensional Image Synthesis” , The Visual
Computer, Vol.5, pp 131-133, 1989.

107

BIBLIOGRAPHY 108

[8] Buckalew, C., Donald Fussell, “Illumination Networks: Fast Realistic Ren­
dering with General Reflectance Functions” , Proceedings of SIGGRAPH
’89. In Computer Graphics, Vol.23, No.3, July 1989, pp 89-98.

[9] Bui-Tuong, Phong, “Illumination of Computer Generated Pictures” , Com­
munications of the ACM, Vol.18, No.6, June 1975, pp 311-317.

[10] Campbell, A.T. Ill, Donald S. Fussell, “Adaptive Mesh Generation for
Global Diffuse Illumination” , Proceedings of SIGGRAPH ’90. n Computer
Graphics Vol.24, No.4, August 1990, ppl55-164.

[11] Çapın, Tolga K, Cevdet Aykanat, Bülent Özgüç, “Progressive Refinement
Radiosity on Ring-Connected Multicomputers” , Proceedings of Visualiza-
tion’93 Parallel Rendering Symposium (San Jose, California), 1993.

[12] Chalmers, Alan G., Derek J. Paddon, “Parallel Processing of Progressive
Refinement Radiosity Methods” , Proceedings of the Second Eurographics
Workshop on Rendering, Barcelona, Spain, May 1991.

[13] Chen, Shenchang Eric, “Incremental Radiosity: An Extension of Progres­
sive Radiosity to an Interactive Image Synthesis System” , Proceedings of
SIGGRAPH ’90. In Computer Graphics, Vol.24, No.4, August 1990, pp
135-144.

[14] Cohen, Micheál F., Donald P. Greenberg, “The Hemi-Cube: A Radios­
ity Solution for Complex Environments” , Proceedings of SIGGRAPH ’85
(San Fransisco, California, July 1985). In Computer Graphics, Vol.l9,

No.3, 1985, pp 31-40.

[15] Cohen, Micheál F., Donald P. Greenberg, David S. Immel, Philip J. Brock.
“An Efficient Radiosity Approach for Realistic Image Synthesis, IEEE
Computer Graphics and Applications, Vol. No., March 1986, pp 26-35.

[16] Cohen, Michael F., Shenchang Eric Chen, John R. Wallace, Donald P.
Greenberg, “A Progressive Refinement Approach to Fast Radiosity Image
Generation” , Proceedings of SIGGRAPH ’88 (Atlanta, Georgia, August
1988). In Computer Graphics, Vol.22, No.4, 1988, pp 75-84.

[17] Dekel, E., D. Nassimi, S. Sahni, “SIAM Journal on Computing” , Vol. 10,

No.4, 1981, pp 657-675.

BIBLIOGRAPHY 109

[18] Drucker, Steven M. and Peter Schroder, “Fast Radiosity Using a Data
Parallel Architecture” , Proceedings of the Third Eurographics Workshop
on Rendering, Bristol, England, May 1992, pp 247-258.

[19] Feda, Martin, Werner Purgathofer, “Progressive Refinement Radiosity on
a Transputer Network” , Proceedings of the Second Eurographics Work­
shop on Rendering, Barcelona, Spain, May 1991.

[20] Flynn, MJ, “Very High-Speed Computing Systems” , Proceedings of IEEE,
Vol.54, Dec. 1966, pp 1901-1909.

[21] Foley, James D., Andries van Dam, Steven K. Feiner, John F.
Hughes, “Computer Graphics; Principles and Practice (Second Edition)” ,
Addison-Wesley Publishing Company.

[22] Coral, Cindy M., Kenneth E. Torrance, Donald P. Greenberg, Bennett
Battaile, “Modelling the Interaction of Light Between Diffuse Surfaces” ,
Proceedings of SIGGRAPH ’84 (Boston, Massachusetts). In Computer
Graphics, Vol.18, No.3, July 1984, pp 213-222.

[23] Gouraud, H., “Continuous Shading of Curved Surfaces” , IEEE Transac­

tions on Computers, C-20(6), June 1971, pp 623-629.

[24] Guitton, P., J. Roman, C. Schlick, “Two Parallel Approaches for a Pro­
gressive Radiosity” , Proceedings of Second Eurographics Workshop on
Rendering, Barcelona, Spain, May 1991.

[25] Hanrahan, Pat, David Salzman, Larry Auperle, “A Rapid Hierarchical Ra­

diosity Algorithm” , Proceedings of SIGGRAPH ’91. In Computer Graph­

ics, Vol.25, No.4, July 1991, pp 197-206.

[26] Heckbert, Paul S., “Adaptive Radiosity Textures for Bidirectional Ray
Tracing” , Proceedings of SIGGRAPH ’90. In Computer Graphics, Vol.24,
No.4, August 1990, pp 145-154.

[27] Immel, David S., Michael F. Cohen, “A Radiosity Method for Non-Diffuse
Environments” , Proceedings of SIGGRAPH ’86 (Dallas, Texas). In Com­

puter Graphics, Vol.20, No.4, 1986, pp lß3-142.

[28] Jessel, J.P., M. Paulin, R. Caubet, “An Extended Radiosity Using Parallel
Ray-traced Specular Transfers” , 1991.

BIBLIOGRAPHY 110

[29] Lischinski, Dani, Filippo Tampieri, Donald P. Greenberg, “Discontinuity
Meshing for Accurate Radiosity” , IEEE Computer Graphics and Applica­
tions, Vol. No., November 1992, pp 25-39.

[30] Nishita T ., E. Nakamae, “Continuous Tone Representation of Three-
Dimensional Objects Taking Account of Sheidows and Interreflection”,
Proceedings of SIGGRAPH ’85. In Computer Graphics Vol. 19, No.3, pp
23-30, 1985.

[31] Price, Martin and Greg Truman, “Radiosity in Parallel” , Proceedings of
the First International Conference on Applications of Transputers, 1989.

[32] Puech, Claude, Francois Sillion, Cristophe Vedel, “Improving Interaction
with Radiosity-based Lighting Simulation Programs” , Proceedings of the
1990 Symposium on Interactive 3D Computer Graphics, In Computer
Graphics, Vol.24, No.2, 1990, pp 51-57.

[33] Purgathofer Werner, M. Zeiller, “Fast Radiosity by Parallelization” , Pro­
ceedings of Eurographics Workshop on Photosimulation, Realism and
Physics, 1990, pp 173-185.

[34] Recker, Rodney J, David W . George, Donald P. Greenberg, “Acceleration
Techniques for Progressive Refinement Radiosity” , Proceedings of the 1990
Symposium on Interactive 3D Computer Graphics, In Computer Graphics,
Vol.24, No.2, 1990, pp 59-66.

[35] Siegel, R. and J.R. Howeol, “Thermal Radiation Heat Transfer” , Hemi­

sphere Publishing Corp., Washington DC, 1981

[36] Shao, Min-Zhi, Qun-Sheng Peng, You-Dong Liang, “A New Radiosity
Approach by Procedural Refinements for Realistic Image Synthesis” , Pro­
ceedings of SIGGRAPH ’88 (Atlanta, Georgia, August 1988). In Computer
Graphics, Vol.22, No.4, 1988, pp 93-101.

[37] Smits, Brian E., James R. Arvo, David H. Salesin, “An Inportance-
Driven Radiosity Algorithm” , Proceedings of SIGGRAPH ’92, In Com­

puter Graphics, Vol.26, No.2, July 1992,, pp 273-282.

[38] Sutherland, I.E., G .W . Hodgman, “Reentrant Polygon Clipping” , Com­
munications of the ACM, Vol.17, No.l, January 1974, pp 32-42.

BIBLIOGRAPHY 111

[39] Sutherland, I.E., R.F. Sproull, R.A. Schumacker, “A Characterization of
Ten Hidden-Surface Algorithms” , ACM Computing Surveys, Vol.6, No.l,
March 1974, pp 1-55.

[40] Teller, Seth J., Carlo H. Sequin, “Visibility Preprocessing for Interactive
Walkthroughs” , Proceedings of SIGGRAPH ’91, In Computer Graphics,
Vol.25, No.4, July 1991, pp 61-69.

[41] Varshney, Amitabh and Jan F. Prins, “An Environment Projection Ap­
proach to Radiosity for Mesh-Connected Computers” , Proceedings of the
Third Eurographics Workshop on Rendering, Bristol, England, May 1992,
pp 271-281.

[42] Wallace, John R., Micheál F. Cohen, “A Two-Pass Solution to the Render­
ing Equation: A Synthesis of Ray Tracing and Radiosity Methods” , Pro­
ceedings of SIGGRAPH ’87, In Computer Graphics, Vol.21, No.4, 1987,
pp 311-320.

[43] Wallace, John R., Kells A. Elmquist, Eric A. Haines, “A Ray Tracing
Algorithm for Progressive Radiosity” , Proceedings of SIGGRAPH ’89, In
Computer Graphics Vol.23, No.3, July 1989, pp 315-324.

[44] Whitted, T ., “An Improved Illumination Model for Shaded Display” ,
Communications of the ACM, Vol.26, No.6, 1980, pp 342-349.

Appendix A

Scene Images

This appendix contains the final images of the scenes for testing the perfor­

mances of the parallel algorithms.

Figure A.l . House Scene Data with 5648 Patches

112

APPENDIX A. SCENE IMAGES 113

Figure A .2. Another view of the house scene data

Figure A.3. A Frame from an animation sequence (3424 patches)

APPENDIX A. SCENE IMAGES 114

Figure A.4. Image of a Volkswagen Data

