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ABSTRACT

NUMERICAL STUDY OF PLANE WAVE SCATTERING 
FROM CYLINDRICAL CAVITY-BACKED APERTURES 

WITH OUTER OR INNER MATERIAL COATING

Dilek Çolak
M.S. in Electrical and Electronics Engineering 
Supervisors: Assoc. Prof. Dr. Ayhan Altıntaş

July 1993

In this thesis, a dual-series-based solution is obtained for the scattering of 
a time harmonic plane wave from a cavity-backed aperture(CBA) which is 
formed by a slitted infinite circular cylinder coated with absorbing material. 
The material coating can be done on the inner or outer surface of the cylinder. 
For both cases, numerical results are presented for the radar cross section (RCS) 
and comparisons of the suppression of RCS are given for two different realistic 
absorbing materials. Finally, the dependence of RCS on the thickness of the 
absorbing layer and on the aspect angle of the screen are presented numerically. 
To the best of our knowledge, this is the first study made so far to solve the 
problems of CBAs with material coating inside or outside with this approach.

Keywords : Radar Cross Section (RCS), cavity-backed aperture (CBA), 
Riemann-Hilbert problem (RHP), Electromagnetic Scattering, Dual-Series 
Equations.
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ÖZET

DUVARLARI İÇTEN VEYA DIŞTAN KAPLANILMIŞ 
MAĞARALI AÇIKLIKLARDAN ELEKTROMANYETİK 

SAÇINIM PROBLEMİNİN NÜMERİK ANALİZİ

Dilek Çolak
Elektrik ve Elektronik Mühendisliği Bölümü Yüksek Lisans 

Tez Yöneticisi: Doç. Dr. Ayhan Altıntaş 
Temmuz 1993

Bu tezde, iki boyutlu ve yüzleri yalıtkan maddeyle kaplı, yanı açık iletken 
silindirden elektromanyetik saçınım problemi, Riemann-Hilbert yöntemiyle in
celendi. Radar kesit sonuçları, kovuk duvarlarının içerden ya da dışardan 
kaplanmasına göre, değişik malzemelere göre elde edildi, ve sonuçlar kendi 
aralarında karşılaştırıldı. Ayrıca, değişik silindir yarıçapları, kaplama 
malzemesinin kalınlığı, gelen dalganın frekansı, değişik gelme açıları gibi 
parametrelerin sonuca etkileri araştırıldı. Riemann-Hilbet problemi yöntemi 
ile, içerisi veya dışarısı malzeme kaplı kovuklu açıklıklardan saçınım problemi
nin çözümüne literatürde daha önce rastlanmamıştır.

Anahtar Kelimeler : Radar kesidi, kovuklu açıklık, Riemann-Hilbert problemi 
(RHP), Elektromanyetik Saçınım, ikil seri denklemleri.
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Chapter 1

INTRO DUCTIO N

Cavity-backed apertures (CBA) are encountered as parts of any airborne 
or spaceborne radar targets. Most familiar of them are, probably, air inlets 
and engine tubes, known to contribute a great deal to radar cross section 
of jet aircraft. What is even more dangerous, the CBAs are famous for the 
internal resonances, which can easily result in recognizing the shape of a target. 
More often than not, these effects are considered as undesired and are to be 
suppressed. To this end, the walls of the cavity are covered with some lossy 
material.

The problem of electromagnetic wave scattering from partially open cylin
drical and spherical cavities have been studied extensively in the literature. 
To simulate the scattering from these CBA geometries, two dimensional (2- 
D) and three dimensional (3-D) models of open-ended waveguide-type cavities 
are usually employed. Absorption for thin coatings is generally modeled by 
introducing boundary conditions of impedance type. In the papers [1-6], the 
scattering from such cavities is treated by various approximate asymptotic 
approaches, such as Geometrical Theory of Diffraction (GTD), Uniform The
ory of Diffraction (UTD), bouncing ray and hybrid methods (modal and ray 
approaches). The simplicity and physical appeal of these high frequency ap
proaches are not complemented by the clear limits of accuracy. Besides, it 
is principally difficult to take into account various parts of the scatterer and 
their interaction with uniform accuracy. Also, the mentioned high frequency 
approaches fail for cavities with dimensions comparable to the wavelength. A 
Wiener-Hopf-based approach to solve similar 2-D problems for unloaded and

1



loaded rectangular CBA [7] is free of these difficulties. But, it becomes cum
bersome if the walls of the cavity are covered with absorbers. In a recent study
[8], the multiple parameter perturbation analysis has been applied to the slit- 
ted loaded cavity problem comprising two eccentric circular cylinders. Mautz 
and Harrington proposed a generalized network formulation [9] and applied 
this method to solve circular cylindrical shell with an infinitely long slot [10]. 
The same problem has also been treated in [11] by using characteristic mode 
theory and in [25] by using three different methods, i.e., aperture field integral 
equation, H-field and E-field integral equation. The discussion on the compar
ative advantages of different techniques is still continuing (see [11] and the list 
of references).

For certain canonical geometries, there exists an accurate approach of an
alytical numerical nature which ensures any desired accuracy of the obtained 
results. This is the dual-series-based Riemann-Hilbert Problem (RHP) ap
proach of complex variable theory. It has been under intensive study in the 
former US.SR since the 1960’s [12]. In the 70’s and 80’s large amount of results 
have been obtained on free-space scattering from open screens and collections 
of screens (see [13] and the cited literature). This approach has been utilized to 
solve the problem of plane wave scattering from an infinitely long circular cylin
der with a longitudinal slot by Nosich [14]. In the West the dual-series-based 
approach was exploited by Ziolkowski [16]-[15]. It was unfortunate that a nu
merical error was present in [17] for E-case (reported in [20]), which obviously 
should not discredit the method. Actually, correct RHP-based RCS analysis 
results were published in [21], but remained unknown for Western readers.

The main advantage of the dual-series-based approach is that it is based on 
the idea of partial analytical inversion of the scattering operator. Final matrix 
equations are proven to be of the Fredholm 2nd kind, so the solution exists 
and it can be approximated through truncation.

In present study, the dual-series-based RHP technique has been extended 
to solve the problems of CBAs with material coating inside or outside. Our 
canonical geometry is a circular shell formed by a zero-thickness, perfectly- 
conducting screen having an opening. An arbitrarily-thin lossy homogeneous 
material can be introduced as a concentric layer on either inner or outer surface 
of the shell, [22]. We do realize that this 2-D model geometry is far from a real 
jet inlet. Nevertheless such a scatterer exhibits resonant behavior of quite a 
general nature. Studying this behavior and the effect of absorber in details, one



can judge about more realistic geometries. Another important thing is that, 
the method is equally effective for any angular width of the shell from 0 to 2tt. 
The size of the matrix is determined by the electrical radius of curvature, and 
fairly large structures can be treated accurately.

E-wave and H-wave excitation results are considered. Unlike the E- 
polarized case, there appear a low frequency spike in RCS for the H-polarized 
case which does not correspond to any interior resonance of the closed cavity. 
This resonance is called quasi-static or slot-mode, as the corresponding elec
tric field is concentrated at the slot. Nosich has shown that this resonance is 
similar to the Helmholtz resonance known in acoustics [19]. The location of 
this spike is found from approximate solution of exact eigenfrequency equation 
in [19], and also from an equivalent LC circuit in the vicinity of the slot in 
[17], [19], [23], and [24]. Since the wall current in H-polarized case flows in 
circumferential direction, there appears oscillations in RCS pattern even for 
closed cylinder case, which is not case in E-polarized excitation.

Although we have considered only circular cylindrical cavities, the numeri
cal data obtained can obviously bring a better understanding of the scattering 
behavior of loaded cavities. It can also serve as a reference data for checking 
numerical codes for more complicated scatterers, e.g. solved by method of 
moments [23], [24], [25].

The outline of this thesis as follows: In Chapter 2, a brief explanation of the 
theory of analytical functions of complex variable and Cauchy type integrals 
are given, and then the method of solution for canonical dual series equations 
is presented. In the third Chapter, the problem is formulated, and then solved 
via RHP technique for both polarizations. Sample numerical results and dis
cussions on the results are presented in Chapter 4. Finally, some conclusions 
are given in Chapter 5.



Chapter 2

MATHEMATICAL  
PRELIM INARIES FOR THE  
M ETHOD

The Riemann-Hilbert problem technique of complex variable theory 
makes it possible to obtain analytical solutions to canonical wave scattering 
and diffraction problems. Examples of canonical problems solvable with this 
technique include a plane wave incidence on a circular cylinder with an infinite 
axial slot and with multiple infinite axial slots, on diffraction grating of plane 
strips and on a slitted cone. Due to periodicity of boundaries, all the problems 
can be rearranged in the form of dual series equations with the set of functions 

n = 0, · · · as the kernel.

In this chapter, a brief explanation on the theory of analytical functions 
of complex variable and Cauchy type integrals is given, since Riemann-Hilbert 
problem is concerned with finding an analytical function that satisfies a pre
scribed transition condition on an open or closed curve. And, the method of 
solution for canonical dual series equations is presented in the last section of 
this chapter.



2.1 R iem ann-H ilbert Problem  in the Com
plex Variable Theory

Consider a simple closed, smooth curve L which divides the complex 
plane into two domains such that — extL and Q~ = intL. Let X(z) 
be a sectionally analytic function such that X{z) = X^(z)  for z € Q^. If we 
assume that X(z) vanishes at infinity, and also satisfies the transition condition

X + ( Z o ) - X - i Z o )  =  B { Z o ) ,  Z ^ e L (2.1)

with at least Holder continuous function of position on that contour, and B(zo) 
is a known function usually denoted as the free term, then the Cauchy integral

X{z)  = 7 ^  /  7^  
2m Jl (zo —

B M  ,/ \ d,ZQ
[Zo -  Z)

(2 .2 )

gives the solution. For such integrals, the Plemelj-Sokhotskii formulas [29] are 
valid

(2.3)

The RHP is a generalized version of this problem. Another known function 
A{zo) is also introduced which is also Holder continuous function on the curve 
L, such that X(z) satisfies the following transition condition

X+{z„) -  A{z,)X-{z,) = B{z,) . (2.4)

A further generalization of this problem is possible by introducing discon
tinuous coefficients, A(zo) and B{zo) in (2.4). In addition, the behavior of X(z) 
at infinity can also be modified. For instance, it may also be described by a 
polynomial function of z. Let, the curve L be divided into two sets, M and 
S, such that MU*? = L, as shown in Figure 2.1. Consider a boundary value 
problem of finding an analytic function X(z) with the boundary expressions

x+(zo) + x-{zo) = Biz,), z ^ e M ,

x + { z o ) - x - { z , ) ^ 0  z , e s  .

The two equations in (2.5) can be rearranged as a single one as

X+iz„) -  A{z,)X-{zo) ^  B{zo)

(2.5)

(2.6)



L=MUS

Figure 2.1: Simple closed curve on the complex plane 

by introducing discontinuous coefficient and free term functions

Mz,)  = I "  , B (z ,)= I "
[ +1, \  0, Z , e s

Note that equation (2.6) is valid on the whole closed contour L.

(2.7)

To make further derivations, it is necessary to specify the behavior of the 
unknown function X(z) at infinity and at the end points of the open curve 
M where A(z) and B{z) becomes discontinuous. It is assumed that X(z) has 
singularities of order 1/2 at each of the end points and is zero at infinity, which 
is a typical behavior for the electromagnetics problems of wave scattering and 
diffraction by perfectly conducting zero thickness slitted cylinders. However, 
the RHP technique can actually handle solutions with other singularities of the 
order less than 1, with nonzero behavior at infinity, [29].

2.2 Solution of the R iem ann-H ilbert Prob

lem

By making the assumptions introduced in the previous section, we can 
define a function R(z), which is also called characteristic function, such that the

6



multiplication of R(z) with X(z) becomes nonsingular everywhere, i.e. regular 
on the whole complex plane [29]. It is given as

(2.8)

where z = ai ̂ 2 are the endpoints, and the branch is chosen such that brunch- 
cut is from ai to «2 along S. Then the limit values as z —>■ Zg E S  of R(z) differ 
by sign, i.e. R(z) -4 R'<'(zg) = :^R-'-(zg).

By introducing functions Y(z) and D(zg) such that

Y { z )  =  X ( z ) R ( z )

D(2.) = (2.9)

we come to a RHP with continuous coefficient function on the closed curve L

K + (-- ,) - r - (2 .)  = D(2<,) . (2.10)

Since the characteristic function has a simple pole at infinity, the solution 
of (2.10) is given as [29]

Y(z) = ± J ^ A z .  + C .
ZTTI J L ( Z o — z )

( 2. 11)

The equation (2.11) can be written for the function X(z)

X ( z ) = ± ^ i  c
27tz Riz) JM (zo — z) Ii{z)

(2.12)

which is the exact solution of the initial Riemann-Hilbert problem (2.5) with 
the restricted behavior of X(z) at the infinity and at the endpoints of the curve 
M. Because of the singular character of the integral on the right hand part 
of (2.12), this solution is not much effective computationally. The unknown 
constant C on the right hand can usually be obtained due to certain additional 
conditions from the physical nature of the initial problem which is converted 
to RHP.



2.3 Solution of Canonical Dual Series Equa
tions

Consider the dual series equations with trigonometric kernel for the infi
nite sequence of coeflficients a:„, n = 0, =f=l, · · · is given as

OO

^  a :„ |n |e ‘"'" = F(e'‘"), >peS=\<p\<e  (2.13)
n =  — OO

OO

^  = 0, ip e M  = {0 <\(f\< tt) . (2.14)
n =  — OO

These dual series equations can be solved by converting the problem into a 
Riemann-Hilbert problem. Assuming that the series in (2.14) is term-by-term 
differentiable, we replace it with the derivative with respect to tp. Then we 
have the following equations

¿  1 n | e”‘̂  = f ’(e·'"), on S
l =  — OO

OO

^  ;c„ne'"‘" = 0, on M (2.15)
n =  — OO

OO

E  •rne‘”" = 0 .

The last equation is obtained by substituting (p = ir into (2.14) to account for 
the elimination of the constant term due to differentiation.

By introducing functions X^{z)  of complex variable such that

OO

X~^iz) = x^nz"', analytic in Q'*’, and \ z\< \
n = l

- 1

X  (z) = — E  analytic in Q , and | z |>  1 (2.16)
7 l=z — OO

we obtain a functional equation valid on the whole unit circle | z |=  1

X+(,,‘V) _  AX-{e''^) = B (2.17)



with known, however, discontinuous coefficient and free term functions

i 7-,/ \ i c>n S
, ,  .7 n «  P·'*)[ +1, on M 0, on M

To arrive at the exact solution of (2.17), it is necessary to restrict the 
behavior of the unknown function X{z)  at the infinity and at the end points of 
the screen. By assuming that X{z)  vanishes as | z |—> oo, and has a square root 
singularity at the endpoints, z = the solution is given by the equation
(2.12). By using Plemelj-Sokhotskii formulas [29] for the limiting values of the 
X(z), we obtain

X^{U) -  X - { Q  = ^  + ‘̂CQ{to) (2.19)Z7T JS [t — to)

where t,to E L and

Q{to) =
[/2+(io)]-\ t o e s

0 , toe  M

The definition in (2.16) yields

X ^ { to ) -X - { to )  = ' £ n x J
( n )

uup (2.20)

By taking the Fourier inversion of (2.20), we obtain

mx,n =  Vm{F,6) + 2CRm{0), m = 0 ,T l, (2.21 )

where
1 /•2’T 1 r

V „(F ,0 )  =  —  / i J ( e * ) y ( F , e ' * » ) c ^  /Z7T Jo ZTT JA
1 f  K(F,e‘̂ '')e-‘”*̂ °

M R+{e''t'o) (ilpo

V(Fy*‘) = -P.V. j (it



The constant term in (2.19) can be found by setting m = 0 in (2.21) as

v;c =
2Ro

(2.22)

Assuming that the free term function has the Fourier expansion as

one can obtain

where

(2.23)
(n)

(2.24)
(n)

27T Jm i7+(e‘’/'°) (2.25)

Vnito^O) = - P . V .  j  .
Z7T Jm t — to (2.26)

Therefore, the equation in (2.19) can be reduced to

Xm-m = Y^fnVZ  
( n )

where
R_ 7̂1 _ T/^__L
ILqm  771

From the last equation in (2.15), one can find as

yn
^o = - J 2 f n  E  ( - 0

(ri) (m^io)

771 771

m

(2.27)

(2.28)

The calculation of u„, and requires a fine technique of integration in 
the complex plane and it was performed by Agranovich et. al. [12]. In terms 
of Legendre polynomials Pn[cosO) the results are as follows

v,:(coso) =  -
m + 1

2(m — n) 

R,n(cos0) = y„^(cosO), 

V^ZlicosO)

[Pm(cOs0)P„+i(<Xls0) -  Pm+l{ws0)P„{cOs0)]

E ( - ‘)
771:̂ 0

yn  _  yn-\
771 ^771— 1 (2.29)

771 I 1+cosg 
2 n — 0

10



The final solution to the Riemann-Hilbert problem is found as

Xm = fnTmnicOS 6)
(n)

(2.30)

where

r„,n(coŝ ) =
mK^-i(cos6>), m ^ O  
^ V~\  (cos 0), m = 0, n 7̂  0 

m = n = 0
(2.31)

_  In1 1 1 2 5
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Chapter 3

SCATTERING FROM  
CAVITY-BACKED  
APERTURES W ITH  
MATERIAL COATING

The problem of electromagnetic scattering of a time harmonic plane wave 
from a thin, perfectly conducting, slitted infinite cylinder which is coated with 
absorbing material either from inside or from outside is analyzed in this chapter. 
The formulation of the problem is given in the first section. The dual-series 
equations are derived and then solved via RHP approach in the following two 
sections. The time dependence has been assumed and suppressed.

3.1 Formulation of the Problem

The geometries analyzed in this thesis are shown in Figures 3.1 and 3.2. The co
ordinate system is coaxial with the cylinder. The plane wave is assumed
to be normally incident on the cylinder; hence the problem is two dimensional. 
Two types of polarization for the incident plane wave are considered separately. 
For the transverse magnetic polarization (E-polarization), the incident E-field 
is parallel to the axis. For the transverse electric polarization (H-polarization),

12



E-Wave

Figure 3.1: Plane wave scattering by an inner-coated cavity-backed aperture

the incident H-field is parallel to the axis. The screen which has a radius of 
”a” is taken to be in the interval of 0 <\ if — ifo |< tt. Angular width of the 
slit is 29, and the angle between the center of the slit and the x axis is ipo- The 
cylindrical cavity is coated with absorbing material with a thickness t. The 
radius ”6” is at either a —t ov a-[-t depending on whether the coating is on the 
inside or on the outside, respectively. The relative permittivity and permeabil
ity of the absorbing material are tr and ^ri respectively. Our objective is to 
analyze the radar scattering behavior of this geometry for various frequencies. 
The problem is scalar, so the total field can be characterized by the single Uz 
component.

First, consider the geometry shown in Figure 3.1. The total field can be 
expressed as follows

U z in  = {
-I- f / f  ( r ) ,  r > a

b < r < a
t / f  ( r ) ,  r <h

(3.1)

where Ui"' and stand for incident and scattered fields, respectively.

The scattered field satisfies the 2-D Helmholtz equations:

(V^ + ) t / f ( r )  = 0 , r > a ,  r < b
(V2 + klcr f irW^ir)  = 0, b < r < a

(3.2)



E-Wave

Figure 3.2: Plane wave scattering by an outer-coated cavity-backed aperture

where ko = is the free-space wave number and is the Laplacian
operator in 2-D.

In addition, we impose the boundary conditions: Uz and its radial deriva
tives should satisfy

[U,\ = 0, (3.3)

= 0 (3.4)dr
respectively, with

8 =
^ for E-pol 
I for H-pol

on the closed contour r = b. The square brackets in (3.3) and (3.4) denote 
the jump of the field function on the specified contour. The electric field is 
continuous on the clo.sed contour r = a which imposes either (3.3) for E-pol. 
or (3.4) for H-pol. to be valid. In addition, magnetic field is continuous at 
the aperture, | ip — (po\< 0, implies that (3.4) for E-pol and (3.3) for H-pol. 
are to be employed. Besides, the electric field must vanish on the screen, i.e., 
depending on the type of the polarization of the incident field, either Uz (for 
E-pol) or its derivative with respect to r (for H-pol) vanishes on the screen.

Because of the sharp edges of the screen, the field should satisfy certain 
edge conditions. The total electrical and magnetic energy stored inside any

14



finite neighborhood of the edge is limited, i.e.,

j ( k l  I i / f  p +  I V t / f  R  d r  <oo (3.5)

where B is any bounded domain around the edge. Finally, the Sommerfeld 
radiation condition

inkaV

1/2 JkoT (3.6)

should be satisfied far from the scatterer as r ^  oo.

3.2 Derivation of Dual Series Equations

The scattered field expansions in three regions of Figure 3.1 are assumed to be

E
AnHniKr) r > a
BnJn{kr) + CnHn{kr) b < r  < a 
DfiJn.lko'r) T h

eITUp (3.7)

where k = koy/fh^. Jn «̂ nd //„ represent the Bessel and Hankel functions of 
first kind and order n, respectively.

The incident plane wave of unit amplitude has the Fourier expansion as
OO

I j i n  ^  ^ i k o x  ^  ^ x k o r c o s ^  ^  ( 3 . 8 )

The number of unknown coefficients in (3.7) can be reduced by applying 
boundary conditions that are valid on the closed contours at r  =  6 and at r = a

and

where

py _  ̂ Jui^kgU) -(- Hjl(^kod^An ^
" "  Jn{ka)U -  H4ka)r)n ’

py _ * Jni^od^ T  Hn( k̂g<X̂ An
" "  "  Jn{ka)^n -  IUka)r^n

2z l
Dn = 'Kkobf-Lj- Jni k̂ci^̂ Yi Mjiî hct̂ Tjji

(3.9)

(.3.10)

(3.11)

f„  =  . - H ' , ( k h ) U K b )  -  U„(kb)j:XKb)
V ßr
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Vn =
'■r j!J'^{kb)Jn{Kh) -  Ukh)J'^{kob)

for E-poIarized case, and for the other polarization with the corresponding 
boundary conditions we obtain

Bn =
Hr J'n{ka)^n -  H!^{ka)Hn

[e7-i^Jn{koa) + Hl,{koa)An 
Hr Jn{f^a)^n -  H'^{ka)T]n Vn

and

where now,

2i + H:{k,a)A,
“ M  J',(ka)U -  K(ka)ri„

(3.12)

(3.13)

(3.14)

i„ = J^H 'Jkb)Jn(Kb)  -  H4kb)j;,(k.b)
y

Vn = ^^J'n{kb)Jn{kob) -  J'nikob)

and prime denotes derivative with respect to the argument.

The boundary conditions that are continuity of the magnetic field at the 
aperture and vanishing electric field on the screen lead to dual series equations 
for the expansion coefficients

^  a:„7„e
n= —oo

%rnp -  -  X] dn&
n= — oon= — oo

X  = 0 , ^<|<^ —

where

--
i^Jn(koa) + Hn{koa)An , for E-pol 
i^Jn^koo) + H'^{koo)An , for H-pol

2t”+>
dn — TTko(iHn(koa)

7Γ̂·oα//4(̂ ·oα)

for E-pol 
for H-pol

and

I n  =  <

tVAkpa) _  l 7 7 J'Aka)in-H'„{ka)vn
Hn{ko(i) y Mr *̂ n{kd)̂ n~̂ in{k(i)Tin
Hni^kpa) __ / Cy <Jn{k(i)^Ti~i f̂n{kci)7}n
//'(̂ ·oα) V Mr J;,{ka)̂ n-H;,(ka)rjn

for E-pol 

for H-pol .

(.3.15)

(3.16)

(3.17) 

(.3.18)

(3.19)
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3.3 Dual-Series-Based Solution

3.3.1 E-polarized Plane Wave Incidence

Investigating the asymptotic behavior of 7„ as ( n |^ o o , based on the 
corresponding expressions for cylindrical functions [26], we find

I n H  +
kô i' \  fJ'r /

where

/9« — 1 + 2
+ 1 \Cij

2n

1 -

/̂ r -  1 / b' 
Hr + 1 \a^

2n1 - 1

(3.20)

(3.21)

For b ^  a, the dominant term in (3.21) is the first term, which is 1. The 
remaining terms decrease very fast as n increases. To have a fast convergence 
of the solution, we add and subtract the asymptotic expression (3.20) from 7„ 
in (3.15), and get the following result

E
7l =  — OC

where

x„. n eintp = t  (x .A „ + e -nir'oo V Hr + l J

 ̂  ̂ I 1 ^ 1— . 7nT 1^1 >

(p-(poi<0  (3.22)

Hr + 1
Xn and dn are given in (3.17) and (3.18), respectively.

Equation (3.22) and (3.16) form canonical dual series equations. This dual 
series system can be solved by converting into the Riemann-Hilbert problem 
which is explained in the previous chapter. Assuming that the series (3.16) is 
term-by-term differentiable, we replace it with the derivative with respect to 
(f. The termwise differentiation can be justified as described in [13]. Denoting 
xj) = ip — poi we have the following equations

l= —oo
oo

\ i , \< 0 (3.23o)

. = —OO
X̂)

0 <\ xl)\< TT (3.236)

E  ( - u “i» =  o (3.23c)

17



where £·„ = The last equation is obtained by substituting (/? =  tt +
into (3.16) to account for the elimination of the constant term due to differen
tiation. The function on the right-hand side of (3.23a) has a Fourier expansion 
as

OO

F (e '^ )=  X: (3.24)

where the coefficients are given as

fn ~  “t" Hr “h 1
(3.25)

By introducing functions of complex variable a =| z | e‘'̂  such that

X(z) =
H  Xnnz'^,
n> 0

X~(z) = XnUz’'
n< 0

k l < i

Ul > 1
(3.26)

A(ip) =

and using (3.23a) and (3.236), the functional equation valid on the whole unit 
circle I z 1= 1

X+ie''^) -b AA"-(e‘̂ ) = B  (3.27)

is obtained with

+ 1, IV’|< 0  IV'I<«
— 1, ^ < |^ |< ; r  ’ I  0, 9<\^l)\<n .

This is the equation which is known to constitute RHP. To arrive at the exact 
solution of (3.27), it is necessary to restrict the behavior of the unknown func
tion X{z)  at the infinity and at the end points of the screen. One may .see from 
(3.23), (3.2.5) that the frequency dependence is contained only in F(e*’̂ ) term. 
Assuming that F{e''^) is known, (3.27) forms a static problem {k = 0) for X{z). 
However, at static limit, the incident plane wave constitutes a superposition 
of two cross polarized constant fields: electric and magnetic Hy. Perfectly 
conducting cylinder does not perturb axial electric field, but it does perturb 
transverse magnetic one. So, function X{z)  corresponds to the perturbation 
of Hy by the presence of the screen which then vanishes as |  ̂  ̂ oo. From
(3.5), the field behavior at the edges for and will be like (I V’ l 
and (I î/>| —61)“ */̂ , respectively. So, A (̂z) must have a square root singularity 
at the edges of the screen.

Further, following the Riemann-Hilbert solution technique described in the 
previous chapter, we arrive the solution in the form

= X] fnT,nn(cosO)
7 l =  — OO

18
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where fn is the Fourier expansion coefficient given in (3.25). Tmn{u) is related 
to the Legendre polynomials ( Pm and P„) and is given in Appendix A.

This form of the solution of the dual series equations is simpler than the 
one in [12], [16]-[15], since it does not require the separation of equations for 
m = 0 and m ^  0 parts.

By defining
Pn — ^ n !  )

one can write (3.28) as

OO

Pm 'y ] P m n P n  "h S m i  ^  ~  0, i l ,  . . .
n = —oo

where
A TJ/— TT 77 ry  77 P mykoQJ Jm(koO,j

Sm =

and

1
___ I___+ _______ _______ Y] J rt (^'oa)/^n 2ifj.r{pr +  1) *

TTHniKa)

(3.29)

(3.30)

(3.31)

W m n

(3.32)

Wmn = e^^ -̂ ’̂̂ ‘̂̂ °Tmn(cos9) . (3.33)

The coefficients Wmn contain all the information about the angular geometry 
of the screen, as functions of 0 and ¡po· Expression (3.30) can be written as a 
single operator equation

( /  -  K)p = S  (3.34)

where p = {pn)n=-oo^ ^ identity matrix and K  = {Kmn}m,n=-oo· Operator 
K can be shown (see [13]) to be compact in the Hilbert space of /2 {p € h if

OO

< 00). Besides, vector S = {Sm}m--oo ^ 2̂ as well. It means that
n =  — OO

(3.34) is a regularized operator equation, and therefore well known Fredholm’s 
theorems are valid [30]: solution p does exist and is unique. Moreover, any 
solution of (3.34) can be shown (see [1.3]) to satisfy

n z=  — OO

n  + 1 |< OO (3.35)

iis pn decay as 0{n~^l^) when | n ( ^  00. Hence, (3.35) ensures the validity of 
the edge condition (3.5), [13]. Further, this solution can be approximated with 
any desired accuracy by means of truncation of the matrix K = {i^mn}m,n=-ooi
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and vector S  = {>5'm}m=-oo l^l> 1̂ 1 > ^tr- The sequence of ap
proximate solutions is guaranteed to converge to the exact solution for any 
koa^bj a^€r, ^ir,0^ipo as Ntr —*■ oo, which is not the general case in the method 
of moments. In practice, simple numerical rule has been verified. To provide 
an accuracy of 0.1 %, we had to take NtT = integer part of {koo) -f 15. It is 
noted that, all the field coefficients in (3.7), namely y4„, 5„, Cn and Dn are 
calculated using equations (3.29), (3.9), (3.10) and (3.11), respectively.

We treat the second problem (for outer covering) in a similar way. In 
(3.7), we replace a ’s with 6’s; afterwards the same procedure is followed. The 
resultant infinite system of linear equations is formally the same as in the 
previous problem (3.30). ft is rewritten below for convenience

Pm  — ^ ] I^mnPn  “b Sm·, TTl — 0, dll, . . .

where now

( n )

_ Jn{,kooi) Hn{kd)^n Jn{k(i^Tjn .
Jm{ko(i) Hm̂ kd̂ i^YYi Jjn(ko?jTlyy

and the coefficients are

= Ukb)H'^kob) -  ^¡^J'^{kb)Hn{kob)
P-r

(3.36)

(3.37)

and

where

= H,{kb)H',{kob) -  J^H',{kb)Hn{kob)
y /̂ r

A P r k o d  I I
, , 7n+ I «Il̂ r I i

J'Xkoa) flZH'̂ {ka)̂ n ~ JL{f̂ a)Vn
I n  —

(3.38)

Coefficient Sm in (3.36) is now given by

Sm ~ Jjri  ̂ [^m

+ m * ” {[//n (^ ’«)'5'2n -  Jn{ka)s4n]An  +  8 fa “ *[//„(Â;a)<f„ -  J„(A;a)77„]~*| Wmn)
(n)

(3.39)
where

nr =  Tr'^{kobY Hr{pr + 1)

= jjkb)j:xkob) -  . i^.r ,{kb)Ukob)
V
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54„ = H^{kb)J'^{Kb) -  ^¡-^K{kb)J^{Kb)
fj>r

The second problem has the same type of operator equation as the previous
one.

3.3.2 H-polarized Plane Wave Incidence

Investigating the asymptotic behavior of 7„ as | n |—>oo, based on the 
corresponding expressions for cylindrical functions [26], we find

I n
ko(̂  (■.
R l  R

where

—  1 +  2
€r — I i  b 2n

67. -f" 1 \cL
1 - Cr — 1 i  b 2n

C7· -f- 1 \cL

-1

(3.40)

(3.41)

For b ^  a, the dominant term in (3.41) is the first term, which is 1. The 
remaining terms decrease very fast as n increases. To reduce the problem into 
canonical dual series equations, we make the following transformation

(3.42) 

(3.44)

' ' » - - r ' l — TTi ■KqCL V 67. -|- 1 /

Adding and subtracting the asymptotic expression (3.45) from 7„ in (3.44), we 
get the following result

E Vn I « I =  E [yn^n  +  (I n  I - A „ ) d „ ]  0 < \ ^ - < p , \ < ^  (3 .46 )
(71) (n )

J/71 — ' n̂'yn "i" dji

which leads to the following dual series equations

E2/ne‘”^ = 0 ,
in)

0 <\(p -ipo\<T^
(”) ('0

where 7,1 is equal to l / 7„ and its large index behavior is given as

n\ 1

where
A „  — A.f,u(cr “b l ) ^ n T  I I i 
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y„ and dn are given in (3.42) and (3.18), respectively.

Equation (3.46) and (3.43) form canonical dual series equations. This dual 
series system can be solved by converting the problem into Riemann-Hilbert 
problem [13], [16], described in the previous chapter. Assuming that the series 
(3.43) is term-by-term differentiable, we replace it with the derivative with 
respect to 9?. Denoting ip = (p — ipo n and a = tt — 0, we have the following 
equations

I n) =  F(e '^ ), \ i p \ < a
in)

(X <\ ip\< IT (3.48)=  0 ,
(n)

Y v n  = o
in)

where =  ?/„( —l)"e'"''^°. The last equation is obtained by substituting 9? = 
7T 9>o into (3.43) to account for the elimination of the constant term due to 
differentiation. The free-term function on the right-hand side of (3.48) has a 
Fourier expansion as

F{e'' '̂) = Y f n e ' ^ ^  (.3.49)
(")

where the coefficients are given as

/„ =  (-l)"[y„A „ + d J ln j-A „ )]e - '" °  . (.3..50)

By introducing functions of complex variable z =\ z\ such that

x*(~) = |i | < 1
X(z) = n> 0

(~) = -  E  ^nnz'\ \z\ > 1
n< 0

(3.51)

we transform the first two equations of (3.48) to functional equation valid on 
the whole unit circle 1 2 ]= 1

with

A+(e'·'^) AX~{e''^) = B (3..52)

— I ,  i , V < ] i / ) | < 7 r  ) 0 ,  Q ; < | 0 ) < 7 r .

The exact solution of (3..52) is given by the RHP solution subject to neces
sary restrictions, that is the behavior of the unknown function X{z) at infinity
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and at the end points of the screen. In this problem, function X(z)  corresponds 
to the perturbation of static electric field by the presence of the screen. That 
is why it is clear that X(z)  vanishes as | 2: |—> 00, and has a square root singu
larity at the edges of the screen. The field behavior at the edges, from Meixner 
edge condition, for and Hz, will be like (| tp \ and (| -tp | —
respectively.

Hence the solution is obtained as

Vm — 'P ] fn Tmn ( COS 
( n )

(3.53)

where /„ is the Fourier expansion coefficient given in (3.50). Tmn is related to 
Legendre polynomials, and is given in Appendix A. By defining

fin — An/i/n(^o^) )

one can write (3.53) as

flm — Anin/̂ n T Sm, — 0. i  1, . . .

where

( n )

fr,^{koa)j;^{Ka) 7n  ̂
//,'n(U)j;(A:<,a)7n. " "

(3.54)

(3.55)

(3.56)

—  7,

2i

and

wkoaH'^{koa) 

W,nn = e‘("-”*)‘"°(-l)'"+"T,„„(-cos0) .

Wr r rr, (3.57)

(3.58)

The coefficients Wmn contain all the information about the angular geom
etry of the screen.

Expression (3.55) can be written as a single operator equation

{ l - K) ^ ı  = S  (3.59)

Similar to E-pol. case, one can show that (3.59) is a regularized operator 
equation which satisfies the well known Fredholm’s theorems: solution n does
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exist and is unique. Moreover, any solution of (3.59) can be shown to satisfy

/z„p| n + 11< oo (3.60)
H

Hence, (3.60) ensures the validity of the edge condition (3.5). Finally, 
this solution can be approximated with any desired accuracy by means of 
truncation of the matrix K  = {Kmn}m,n=-ooJ vector S - for
all |m|, |n| > Ntr- The sequence of approximate solutions is guaranteed to 
converge to exact solution for any koa,b/a,er,fJ’r ,0 ,‘po as Ntr oo, which is 
not the general case in the method of moments. The field coefficients in (3.7), 
namely, An·, Bn, Cn, and Dn are calculated by using equations (3.54), (3.12), 
(3.13) and (3.14), respectively.

The outer covering case is also treated in a similar way. In (3.7), we replace 
a’s with b’s; afterwards the same procedure is followed. The resultant infinite 
system of linear equations is formally the same as in the previous problem 
(3.55)

fhn — 'y  ̂B'mnf^n T S,yi, 7 T l = 0, Ü ,  . . .

where now
(")

_  J 'n i k o a )  H ^ { k a ) ^ n  ~  J n ( k a ) r ] n  7 n  ^
m.n. — V __ y, V

and the coefficients are

(3.61)

(3.62)

and

where

6. = Jn{kh)H'n{koh) -  J!^J'^{kb)Hn{kob)

rjn = IUkb)H[Xkob) -  J^H'^{kb)Hniky,b)

A n = \ n koCiî  1 4“ ^r)
I n

I n  =
,Jn{ko(l) I Cr HniJ^ '̂j^n '-̂ n(̂ ’ö)7'i 
■^niha) y t̂r H'^{ka%, -  Jn{ka)T]n

Coefficient S,n in (3.61) is now given by

(3.63)

Sny =
- i ”'[Hln{ka)s2m -  J'n{fi:a)s4m] + Sia *[//^.(¿a).^,^ ~ J'„yika)j},n] 7̂,,/ 

JL{f^oa)[Ĥ n{f^a)^rn -  JL{f^a)r},n]
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( n )

{[//'(^·α)52„ -  J'(fca)54n]A„7n +  8ia [̂H' {̂ka)^n ~  Jn{ka)r)n]

where
(3.64)

J'm{koa)[H'^{ka)U -  J'm[ka)r]mhn

a = ir^{koa){kob)^ fir^T 

S2n =  J n { k b ) J ' , { k o b )  -  , f ^ J ' ^ { k b ) U K b )

s , n  =  H n { k b ) J ' ^ k o b )  -  J ^ i r , { k b ) U k o b )
6-r

The second problem has the same type of operator equation as the previous
one.
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Chapter 4

NUM ERICAL RESULTS and 
DISCUSSION

In this chapter numerical results are obtained for the radar cross section 
(RCS) behavior of a CBA which is coated either from inside or from outside 
with absorbing materials. The associated formula for RCS for E-pol incidence 
is given as

which can be written in terms of expansion coefficients as
2

^hs —
N t r

^   ̂ Pn  ̂  *^n ( ̂ ’o O' ) 
-N.r

We have normalized RCS with respect to tto which is the geometrical op
tics value for the perfectly conducting closed circular cylinder. The normalized 
RCS results are presented with respect to frequency, aspect angle of the screen, 
thickness of the absorbing layer and different aperture sizes for both polariza
tions.

If otherwise not stated, 0 is taken as .30° (aperture size of 60°), and the 
materials used for coating are shellac, natural XL (ê  = 3.45 -|- 0.25f, /Zr = 1) 
[28] (dashed curves) and poly-2.5-dichlorostyrene (cr = 7-3, Pr = 0.91 -|-0.32i) 
[5] (solid curves). The thickness of the absorbing layer is 10% of the radius 
of the screen. For comparison, dotted curves represent the RCS calculated for 
the same CBA without any coating.
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4.1 Radar Cross Section versus Frequency

4.1.1 E-Polarized Case

The normalized RCS results are presented in Figures 4.1 to 4.6 as a 
function of frequency for different coating materials and different orientations 
of the aperture.

It is noted that for ipo = 180° case, the average level of RCS of uncoated 
CBA is much higher than that of closed uncoated circular cylinder of the same 
radius (dash-dotted curve in Figure 4.2). In addition, strong resonances are 
observed in the RCS. The resonances are due to the excitation of the damped 
natural modes of the screen as a cavity-backed aperture. The damped modes 
originate from the eigenmodes of the closed cylinder, Emn·, being shifted in 
frequency and splitted into even/odd pairs, due to cutting of the slot.

The shifted frequency locations have been calculated previously [14] for 
uncoated CBA. Iterative-perturbation analysis of the characteristic equation 
det{I — K) = 0, under assumption that r  = sin(^/2) —> 0, had been carried 
out due to the strongly-diagonal shape of the matrix. The natural frequencies 
are complex-valued with real parts smaller than the corresponding zeros of the 
Bessel functions. They are found as asymptotic series

7 + ^ 2
1 + ( 2 ~ + O(r^),

for the even modes (m = 0,1,2,...), and

Knn(>· =  ''m n -  ( l  +  -I- 0 { t ^°)

(4.1)

(4.2)

for the odd modes (m = 1,2,...) of the empty circular slitted cavity. In (4.1) 
and (4.2),

Cmn = 7T ' ^  Sslfisil/mn)] ^  mn = ‘ X )  •S |̂//,(i-
.5=0,

and So = l,¿í = 2 for s ^  0, and Vrnn is the n-th zero of

1 -2 (4.3)

The shifted frequency locations show good agreement with the minima of 
RCS in the mimerical results for uncoated CBA at ipo = 180°. Note that, for 
the symmetrical position of the slitted cylinder, i.e. when (po = 0° or 180°,
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Figure 4.1: The normalized RCS of an uncoated and outer-coated CBA 
for E-pol. incidence for two different absorbing materials with CBA hav
ing 60° aperture size, ipo = 180° and the coating radius b= l.la ; solid line: 
Cr = 7.3, /ir = 0.91 -|-0.32z; dashed line: Cr = 3.45 -f 0.25f, =  1; dotted
line: uncoated cylinder, i.e. = 1, /x̂  = 1.

there may exist only even modes, i.e. however for unsymmetrical cases
both resonances, even and odd modes, i.e and do appear. The excited 
modes corresponding to the first four resonance frequencies for (fo = 180° case 
are known as 1 ^t\ i  ^02i [17].

The effect of the presence of the absorbing material on the outer and inner 
wall of CBA are demonstrated in Figures 4.1 and 4.2, respectively for the 
case of aperture in the illumination region. As observed in these figures, the 
lowest order peak cannot be reduced by using absorbing dielectric material. 
However when the frequency increases, the resonance peaks are reduced. It 
is due to the fact that low frequency E-field has zero value on the screen and 
has a maximum on the axis of the cylinder, as zeroth harmonic is dominating. 
But when the frequency is increased, the number of azimuthal harmonics of
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Figure 4.2: The normalized RCS of an unslitted cylinder, uncoated and in- 
ner-coated CBA for E-pol incidence for two different absorbing materials with 
CBA having 60® aperture size, ipo = 180° and the coating radius b=0.9a; solid 
line: Cr = 7.3, [ir = 0.91 + 0.32i; dashed line: =  3.45 + 0.25f, = 1;
dotted line: uncoated cylinder, i.e. = 1, =  1; dot-dashed line: unslitted
cylinder.

comparable amplitude also increases and the location of the maximum of E- 
field moves away from the axis. Therefore, resonances of higher order modes 
can be suppressed by coating the screen with the absorbing material from 
inside. To reduce the lowest order resonance peak, one needs to use magnetic 
absorbing material as seen in Figures 4.1 and 4.2. Since the magnetic field has 
an azimuthal component, which is not zero on the screen, it can be suppressed 
by using lossy magnetic material which results in a lower back scattered power. 
Coating from outside has no effect on the internal resonances but it helps only 
to decrease the amplitude of the incident field entering into cavity. Therefore, 
the sharp minima cannot be suppressed, but the average level of RCS is reduced 
as seen in Figure 4.1. So the resonances are still sharp which may cause the 
target to be easily identified.
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Figure 4.3: The normalized RCS of an uncoated and outer-coated CBA 
for E-pol. incidence for two different absorbing materials with CBA hav
ing 60° aperture size, ipo = 90° and the coating radius b= l.la ; solid line: 
tr = 7.3, fir — 0.91 -f 0.32f; dashed line: = 3.45 -J- 0.25f, /Xr = 1; dotted 
line: uncoated cylinder, i.e. Cr = 1, = 1-

As an example of nonsymmetrical excitation, we examine the case of 90° 
orientation, i.e. when the aperture is looking up. Coating from outside is much 
effective for reducing the average level of the RCS, but there are still sharp 
resonances (See Figure 4.3). If the coating is from outside, some of the energy 
is absorbed by the coating material. So, the amplitudes of the resonance peaks 
are reduced. On the other hand, as seen in Figure 4.4, coating from inside 
is again effective for suppressing the resonances, except the lowest one. The 
resonance phenomena are greatly reduced if the frequency is increased and 
magnetic coating is used.

In Figures 4.5 and 4.6, the results are obtained for the case when the aper
ture is in the shadow region. Coating from outside is more effective as seen 
in Figure 4.5. There is no effect of coating from inside, simply because there 
are almost no resonances in RCS as seen in Figure 4.6. The results are very
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Figure 4.4: The normalized RCS of an uncoated and inner-coated CBA 
for E-pol. incidence for two different absorbing materials with CBA hav
ing 60° aperture size, ipo = 90° and the coating radius b=0.9a; solid line: 
Cr = 7.3, /ir = 0.91 -|- 0.32z; dashed line: tr = 3.45 + 0.25z, fir = 1; dotted 
line: uncoated cylinder, i.e. tr = 1, fir = I·
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Figure 4.5: The normalized RCS of an uncoated and outer-coated CBA 
for E-pol incidence for two different absorbing materials with CBA hav
ing 60° aperture size, (/?<, = 0° and the coating radius b= l.la ; solid line: 
tr — 7.3, /Xr = 0.91 -1- 0.32x; dashed line: tr — 3.45 -|- 0.25t, /Xr = 1; dotted 
line: uncoated cylinder, i.e. Cr = 1, /Xr = 1·

similar to the closed cylinder case (see Figure 4.2, dash-dotted curve). This 
happens because the E-polarized excitation induces only longitudinal current 
on a cylindrical scatterer, hardly reaching the shadow part of surface, and 
hence, not exciting the interior of CBA. It is also noted that the solid curve in 
Figure 4.5 is similar to the one in Figure 4.3. The frequency value at which RCS 
has a broad minimum in those figures corresponds to the frequency at which 
the reflection coefficient is minimum for quarter-wavelength magneto-dielectric 
coating on a perfectly conducting plane.

32



Figure 4.6: The normalized RCS of an uncoated and inner-coated CBA 
for E-pol incidence for two different absorbing materials with CBA hav
ing 60° aperture size, ipo = 0° and the coating radius b=0.9a; solid line: 
e,. = 7.3, fir =  0.91 -f-0.32z; dashed line: tr = 3.45 + 0.25?, fir = 1; dotted 
line: uncoated cylinder, i.e. = 1, /?r = 1·
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Figure 4.7: The normalized RCS of an uncoated and outer-coated CBA 
for H-pol. incidence for two different absorbing materials with CBA hav
ing 60° aperture size, Kpo — 180° and the coating radius b= l.la ; solid line: 
Cr = 7.3, Hr =  0.91 -f- 0.32e; dashed line: tr = 3.45 -f 0.25z, //r =  1; dotted 
line: uncoated cylinder, i.e. = 1, /̂ r =  1·

4.1.2 H-polarized Case

Unlike the E-polarized case, there appears a low frequency spike in the 
RCS which does not correspond to any interior resonance of the closed cavity 
(see Figures 4.7 and 4.8). From mathematical point of view, the low frequency 
resonance has a singular nature. Any interior Neumann boundary-value prob
lem is known to have the zero as the lowest eigenvalue with arbitrary constant 
as eigen function. However, in electromagnetics this constant can be shown to 
be identically equal to zero. The effect of cutting the slot is to shift this zero 
frequency by a small complex number

(-21n(sin^)) ‘/^(1 + ^ l n  *(sin^)) . (4.4)

The other effect is that the corresponding (generalized) eigenfunction is no 
more an identical zero with E-field taking maximum values in the vicinity of
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the slot.

As it was pointed out in [19], this low frequency resonance is of the same 
nature as so-called Helmholtz mode of oscillations in acoustic cavities investi
gated by Rayleigh [.33].

The contour plots of the electric field lines (parallel to =const lines) are 
given in [17], [19]. It is observed that the electric field is concentrated in the 
aperture region of the cylinder whereas the magnetic field is maximum in its 
interior which resembles the acoustic Helmholtz resonator in which the kinetic 
energy of the acoustic oscillations is maximum at the aperture and the potential 
energy of the compression is maximum in the cavity. Hence, the concentration 
of electric and magnetic fields in different bounded regions makes it possible 
to regard the slitted cylinder as a high Q circuit with lumped parameters. The 
edges of the slit play the role of capacitance, while the walls of the cylinder play 
the role of inductance. Since the wavelength is much larger than any linear 
dimension, one may use static methods to find out capacitance and inductance 
values as [14]

47T
L ^  — a 

c c 1 1 2

where c is the speed of light, then the resonant frequency is

l\/0 1, - i 2 l>/2
(4.5)

which is the real part of (4.4). The location of the low frequency resonance is 
correctly determined in [14] via finding the root of the characteristic equation, 
and by using equivalent ring resonator approach in [8]. Helmholtz resonance 
is of special interest as its eigen frequency in (4.4) tends to zero as 0 0. At
the resonant frequency, =Re{ kgo)·,

= t;- + 0{k[^a^)
ôo

for a slitted cylinder [1.3],[14]. So, the resonant value tends to infinity as 9 
0, in contrast with so-called Rayleigh rule for low frequency scattering from 
smooth cylinders which is cri,, = 0{k^a'^).

The shifted frequency locations have been calculated previously [14] for 
uncoated CBA. Iterative-perturbation analysis of the characteristic equation 
det[I — K) = 0, under assumption that r  = sin(fl/2) —>· 0, had been car
ried out due to quasi-diagonal shape of the matrix. The natural frequencies
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are complex-valued with real parts higher than corresponding zeros of Bessel 
functions. They are found as asymptotic series

~  i'mn + -  m^)/nr] V), (4.6)

for the even modes (m = 1,2,...), and

(4.7)

for the odd modes (m = 1,2,...) of the empty circular slitted cavity. In (4.6) 
and (4.7),

Cmn =  7T ^  = 7T  ̂ Y  Ŝ \H'XUr,
5=^0,m s=l,^m

1-2

(4.8)
and So = l^8s = 2 for 5 ^ 0 ,  and Umn is the n-th zero of The details of
this solution technique is given in the Appendix B for completeness.

The shifted frequency locations show good agreement with the maxima of 
RCS in the numerical results for uncoated CBA at ipo = 180°. Note that, for 
the symmetrical position of the slitted cylinder, i.e. when ifo = 0° or 180°, 
there may exist only even modes, i.e. however for unsymmetrical cases
both resonances, even and odd modes, i.e and do appear in closely 
spaced pair. All the peaks of RCS are of finite amplitude. This is because 
the perturbed eigen-frequencies are now complex numbers with negative imag
inary parts, see (4.4), (4.6) and (4.7). The quality factor of odd modes are 
much higher than even modes since the imaginary part of is less than 
of [14]. The excited modes corresponding to the first four resonance fre
quencies for ipo = 180° case are known as Ĥ x·, Contrary to
E-polarized case, all the resonances are slightly higher than the corresponding 
closed cavity resonances. This is due to the difference in the direction of the 
induced current which flows circumferentially in the H-polarization whereas 
axially in E-polarized case. Also, it is noted that the quality factor of the res
onance spikes in RCS spectrum is much larger in E-polarized case than H-pol. 
case (see Figures 4.1 and 4.7). Since the current flows in the circumferential 
direction in H-pol. case, it causes a much more loss of energy than E-pol case.

Figure 4.7 and 4.8 illustrate the effect of the presence of the absorbing ma
terial on the outer and inner wall of CBA, respectively, for the case of aperture 
in the illuminated region. As observed in these figures, when the frequency 
increases, the resonance peaks are reduced. It is due to the fact that when
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Figure 4.8: The normalized RCS of an unslitted, uncoated and inner-coated 
CBA for H-pol. incidence for two different absorbing materials with CBA 
having 60° aperture size, ipo — 180° and the coating radius b=0.9a; solid line: 
tr = 7.3, ¡Xt =  0.91+0.32f; dashed line: tr = 3.45 + 0.25^, Ht = 1; dotted line: 
uncoated cylinder, i.e. Cr = 1, ¡.ir = I·, dot-dashed line: unslitted cylinder.

the frequency is increased, the resonance field is concentrated near the walls 
of the cavity. Therefore, resonances of higher order modes can be suppressed 
by coating the screen with the absorbing material from inside. Coating from 
outside has no effect on the Q-factor of the internal resonances as in the case 
of E-pol. incidence (see Figure 4.7).

For 90° orientation of the screen, as in the case of E-pol incidence, coat
ing from outside is again effective for reducing the average level of RCS, but 
there are still sharp resonances (see Figure 4.9), on the other hand coating 
from inside is again effective for suppressing the resonances. As the frequency 
increases, the resonance phenomena are greatly reduced and RCS approaches 
to the geometric optics value as seen in Figure 4.10.

In Figures 4.11 and 4.12, similar results are obtained for the case when the
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Figure 4.9: The normalized RCS of an uncoated and outer-coated CBA 
for H-pol. incidence for two different absorbing materials with CBA hav
ing 60° aperture size, ipo = 90° and the coating radius b= l.la ; solid line: 
Cr = 7.3, Hr = 0.91 -|- 0.32i; dashed line: = 3.45 -|- 0.25?, ¡ir — 1; dotted 
line: uncoated cylinder, i.e. Cr — I, /?r = 1.

aperture is in the shadow region. Contrary to E-polarized case, the results are 
different from the closed cylinder case (See Figure 4.2, dash-dotted curve). This 
happens because the E-polarized excitation induces only longitudinal current 
on a cylindrical scatterer, hardly reaching the shadow part of surface, and 
hence, not exciting the interior of CBA, whereas, H-polarized excitation induces 
current in the circumferential direction. Therefore, the presence of aperture 
causes a much stronger response than E-polarized case. At lower frequencies 
there is no actual shadow zone on the surface of the CBA. That’s why, the 
resonances are equally effective for any aspect angle of the aperture. It is 
noted that the solid curve in Figure 4.11 is similar to the one in Figure 4.9. 
The frequency value at which RCS has a broad minimum in those figures 
corresponds to the frequency at which the reflection coefficient is minimum for 
magneto-dielectric coating on a perfectly conducting plane.
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Figure 4.10: The normalized RCS of an uncoated and inner-coated CBA 
for H-pol. incidence for two different absorbing materials with CBA hav
ing 60° aperture size, ipo = 90° and the coating radius b=0.9a; solid line: 
€r = 7.3, /ir = 0.91 -b 0.32f; dashed line: =  3.45 + 0.25f, /ir = 1; dotted 
line: uncoated cylinder, i.e. = 1, /̂ r = 1·

39



Figure 4.11: The normalized RCS of an uncoated and outer-coated CBA 
for H-pol incidence for two different absorbing materials with CBA hav
ing 60° aperture size, = 0° and the coating radius b= l.la ; solid line: 
e,. = 7.3, /ir = 0.91 4-0.322; dashed line: Cr = 3.45 4-0.252, /2r = 1; dotted 
line: uncoated cylinder, i.e. Cr = 1, =  1·
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Figure 4.12: The normalized RCS of an uncoated and inner-coated CBA 
for H-pol incidence for two different absorbing materials with CBA hav
ing 60° aperture size, (/?„ = 0° and the coating radius b=0.9a; solid line: 
ty. — 7.3, Hr = 0.91 4- 0.32i; dashed line: ty = 3.45 + 0.25i, /ir = 1; dotted 
line: uncoated cylinder, i.e. Cr =  1, = 1.
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Figure 4.13: The normalized RCS versus aspect angle of the screen, 
i.e. for E-pol. incidence for the magnetic absorbing material with
€r = 7.3, fir = 0.91 + 0.32i at kga =  8; solid line: Inner-coated CBA, dashed 
line: Outer-coated CBA, dotted line: uncoated cylinder, i.e. =  1, = 1·

4.2 RCS versus A spect A ngle o f the Screen

4.2.1 E-poIarized Case

The dependences of normalized RCS on the angle of aperture orientation 
(fo are presented in Figures 4.13 and 4.14 for two sample frequencies, namely 
kott — 8.0 (close to a local maximum RCS of uncoated CBA) and kgO =  8.5 
(close to a local minimum RCS of uncoated CBA). Only lossy magnetic coating 
results are given, for the same parameters of absorber as before. In spite of the 
fact that these two frequencies are close to each other, the RCS behaviors for 
uncoated CBA are quite different (dotted curves). This proves that numerical 
analysis of frequency scan is very important and must precede any study of 
RCS at fixed frequencies. One also notes that at on-aperture incidence, the
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Figure 4.14: The normalized RCS versus aspect angle of the screen, 
i.e. ipo, for E-pol. incidence for the magnetic absorbing material with 
Cr = 7.3, /ir = 0.91 +0.32г at kga =  8.5; solid line: Inner-coated CBA, dashed 
line: Outer-coated CBA, dotted line: uncoated cylinder, i.e. Cr =  1, fir = \-

inner coating (solid curves) serves much better for reducing the RCS, than 
outer one (dashed curves). As observed in Figures 4.1 and 4.2, when the wave 
hits the aperture directly, the effect of resonances makes the structure strongly 
frequency-dependent. Therefore, RCS dependence on the angle of orientation 
at two different frequencies, even they are close to each other, will be quite 
different. The same conclusion is also valid for off-resonance frequencies.

4.2.2 H-polarized Case

The dependences of normalized RCS on the angle of aperture orientation 
ipo are presented in Figures 4.15 and 4.16 for two sample frequencies, namely 
koa = 6.94 (close to a local minimum RCS for uncoated CBA) and koa = 7.54 
(close to a local maximum RCS of uncoated CBA). One notes again that at
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Figure 4.15: The normalized RCS versus aspect angle of the screen, 
i.e. for H-pol. incidence for the magnetic absorbing material with

= 7.3, /ir =  0.91 TO.32?’ at ¿„a = 6.94; solid line: Inner-coated CBA, dashed 
line: Outer-coated CBA, dotted line: uncoated cylinder, i.e. Cr = T /̂ r = 1·
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Figure 4.16: The normalized RCS versus aspect angle of the screen, 
i.e. <̂o) for H-pol. incidence for the magnetic absorbing material with 

= 7.3, Hr = 0.91+0.32г at koa = 7.54; solid line: Inner-coated CBA, dashed 
line: Outer-coated CBA, dotted line: uncoated cylinder, i.e. = 1, //r = 1.
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Figure 4.17: The normalized RCS of an outer-coated CBA. versus relative thick
ness of the layer, for E-pol incidence; CBA has 60° aperture size, ipo = 180° 
and tr = 7.3, fir = 0.91 -(- 0.32г; solid line: kgU = 9.39; dashed line: кой =  8.5; 
dotted line: кой =  1.71.

on-aperture incidence, the inner coating (solid curves) serves much better for 
reducing the RCS, than outer one (dashed curves).

4.3 RCS versus R elative Thickness o f the  

Absorbing Layer

4.3.1 E-polarized Case

The dependence of RCS on the thickness of the absorbing layer are pre
sented in Figures 4.17 and 4.18, for outer and inner coating respectively. The 
results are obtained only for the lossy magnetic material for coating from inside
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Figure 4.18: The normalized RCS of an inner-coated CBA versus relative thick
ness of the layer, for E-pol incidence; CBA has 60° aperture size, <po = 180° 
and 6r = 7.3, =  0.91 -f 0.32г; solid line: кой =  9.39; dashed line: koa = 8.5;
dotted line: koa = 1.71.

and from outside at some specific frequencies, namely for koa = 1.71 (dotted 
curves), koa = 8.5, (dashed curves) and koa = 9.39 (solid curves). As ”6” ap
proaches to ”a”, RCS approaches to the value for the uncoated CBA response 
at those frequencies (see Figures 4.17 and 4.18). As seen from the figures, 
the curves have an oscillation at first, and then stabilize as the thickness is 
increased. Mainly, there are two mechanisms involved. The first one is the 
interference of the waves reflected from both surfaces of the material coating 
at the aperture, and the second one is the absorption inside the coating. The 
former prevails when the thickness is small and the latter when it is larger. 
The location of the minima in Figure 4.17 and 4.18 are in good agreement 
with the calculated ones for a lossy material slab of parameters t, and /Zr, 
especially for higher frequencies. This validates the above explanation, since 
our circularly curved material coating is closer to a planar slab for higher fre
quencies. Hence, for the practical purposes, the thickness of the dielectric slab
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Figure 4.19: The normalized RCS of an outer-coated CBA versus relative thick
ness of the layer, for H-pol incidence; CBA has 60° aperture size, ipo = 180° 
and tr = 7..3, Hr =  0.91 + 0.32г; solid line: koU = 9.39; dashed line: кой = 8.5; 
dotted line: kc,a = 1.71.

can be chosen so that RCS has a minimum value at a specified frequency. On 
the other hand, if the absorbing layer were covering only the walls of CBA, but 
not the aperture itself, one could expect the absence of interference minima in 
Figures 4.17 and 4.18.

4.3.2 H-polarized Case

The dependence of RCS on the thickness of the absorbing layer is pre
sented in Figures 4.19 and 4.20 for coating from outside and from inside, re
spectively, with lossy magnetic material, and for the case of aperture in the 
illuminated region. There are again oscillations in the RCS for lower thickness 
values and then stabilizes as the thickness is increased. This can be explained 
in the same way that is proposed in E-pol. case.

48



Figure 4.20: The normalized RCS of an inner-coated CBA versus relative thick
ness of the layer, for H-pol incidence; CBA has 60° aperture size, tpo = 180° 
and tr = 7.3, Hr = 0.91 -f- 0.32f; solid line: kga =  9.39; dashed line: ·̂<,α = 8.5; 
dotted line: kga = 1.71.
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Figure 4.21: The normalized RCS of an uncoated CBA having three different 
aperture sizes, ipo =  180°, for E-pol incidence; solid line: 6 =  5°; dashed line: 
9 = 30°; dotted line: 9 = 60°.

4.4 RCS for Various A perture Sizes

4.4.1 E-Polarized Case

The dependence of RCS on the aperture size is presented in Figure 4.21 
for uncoated CBA. It is observed that, as the size of the aperture increases, 
the resonant frequencies decrease and the bandwidth increases. The physical 
interpretation is as follows. The field inside the cavity extends to the outside 
through the aperture opening. It can also be interpreted as the loss of energy. 
Therefore, as the aperture opening size increases, the energy loss also increases 
which leads to broadening of the resonance spikes, i.e. quality factor of the 
resonant spike decreases. The decrease in resonance frequency is also consistent 
with equations (4.1) and (4.2).

The effect of coating on the outer and inner walls of the screen for 9 = 5°
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Figure 4.22; The normalized RCS of an uncoated and outer-coated CBA 
for E-pol. incidence for two different absorbing materials with CBA hav
ing 10° aperture size, (fo = 180° and the coating radius b= l.la ; solid line: 

=  7.3, fir = 0.91 +  0.32f; dashed line: = 3.45 -|- 0.25i, fir = 1; dotted 
line: uncoated cylinder, i.e. €r — I, fir = I-

(aperture size of 10°) and 0 = 60° (aperture size of 120°) is demonstrated in 
Figures 4.22 through 4.25 for the case of on-aperture incidence. Similar results 
are obtained as in the case of  ̂ = 30° in Figures 4.1 and 4.2.
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Figure 4.23: The normalized RCS of an uncoated and inner-coated CBA 
for E-pol. incidence for two different absorbing materials with CBA hav
ing 10° aperture size, ipo = 180° and the coating radius b=0.9a; solid line: 
Cr = 7.3, Hr = 0.91 +  0.32i; dashed line: =  3.45 + 0.25f, Hr = 1; dotted 
line: uncoated cylinder, i.e. Cr = T Hr —
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Figure 4.24: The normalized RCS of an uncoated and outer-coated CBA 
for E-pol. incidence for two different absorbing materials with CBA hav
ing 120° aperture size, ipo = 180° and the coating radius b= l.la ; solid line: 

= 7.3, fir — 0.91 -f 0.32i; dashed line: Cr = 3.45 + 0.252, ¡ir = 1; dotted 
line: uncoated cylinder, i.e. Cr = 1, fir = I-
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Figure 4.25: The normalized RCS of an uncoated and inner-coated CBA 
for E-pol. incidence for two different absorbing materials with CBA hav
ing 120° aperture size, fpo = 180° and the coating radius b=0.9a; solid line: 

= 7.3, /Zr = 0.91 + 0.32i; dashed line: = 3.45 -|-0.25z, /ẑ  =  1; dotted
line: uncoated cylinder, i.e. = 1, /ẑ  — 1.
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Figure 4.26: The normalized RCS of an uncoated CBA having three different 
aperture sizes, ipo = 180®, for H-pol incidence; solid line: 0 = 5®; dashed line: 
d =  30®; dotted line: 0 — 60®.

4.4.2 H-Polarized Case

The dependence of RCS on the aperture size is presented in Figure 4.26 
for uncoated CBA. Contrary to E-pol. case, as the opening increases, the 
resonant frequencies also increase as seen in Figure 4.26. This is consistent 
with the formulas (4.6) and (4.7). One also notes that, as the size of the 
opening increases, the bandwidth also increases which is the same observation 
in the E-pol. case.

The effect of coating on the outer and inner walls of the screen for 0 = 5® 
and 9 =  60° is demonstrated in Figures 4.27 through 4.30 for the case of on- 
aperture incidence. .Similar results are obtained as in the case of 0 = 30® in 
Figures 4.7 and 4.8.
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Figure 4.27: The normalized RCS of an uncoated and outer-coated CBA 
for H-pol. incidence for two different absorbing materials with CBA hav
ing 10° aperture size, (po =  180° and the coating radius b= l.la ; solid line: 
tr = 7.3, Hr = 0.91 + 0.32i; dashed line: Cr = 3.45 -|- 0.25f, /Ur = 1; dotted 
line: uncoated cylinder, i.e. Cr = T /̂ r = 1·
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Figure 4.28: The normalized RCS of an uncoated and inner-coated CBA 
for H-pol. incidence for two different absorbing materials with CBA hav
ing 10° aperture size, p̂o = 180° and the coating radius b=0.9a; solid line: 
tv = 7.3, /ir =  0.91 H- 0.32i"; dashed line: Cr = 3.45 +  0.25?, pr = dotted 
line: uncoated cylinder, i.e. Cr = C /ir = 1·
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Figure 4.29: The normalized RCS of an uncoated and outer-coated CBA 
for H-pol. incidence for two different absorbing materials with CBA hav
ing 120° aperture size, ipo = 180° and the coating radius b= l.la ; solid line: 
€r = 7.3, /ir = 0.91 -f- 0.32i; dashed line: Cr =  3.45 -|- 0.25f, = 1; dotted
line: uncoated cylinder, i.e. = 1, = 1.
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Figure 4.30: The normalized RCS of an uncoated and inner-coated CBA 
for H-pol. incidence for two different absorbing materials with CBA hav
ing 120° aperture size, ipo = 180° and the coating radius b=0.9a; solid line: 

= 7.3, /tr = 0.91 -j- 0.32i; dashed line: =  3.45 + 0.25i, fir = 1; dotted 
line: uncoated cylinder, i.e. = 1, fir — 1.
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Chapter 5

CONCLUSION

In this thesis, we considered the problem of electromagnetic wave scatter
ing from a thin, perfectly conducting, slitted infinite cylinder which is coated 
with absorbing material either from inside or from outside. To the best of our 
knowledge, this is the first study made so far to solve the problems of CBAs 
with non-homogeneous space inside or outside with this approach.

The problem is first reduced into dual series equations and then solved 
by using RHP technique of complex variable theory. Since the final matrix 
equations are proven to be of Fredholm second kind, one can be sure about 
the existence and uniqueness of the solution and the solution can be obtained 
with any desired accuracy. Therefore, the numerical results obtained can serve 
a reference data for more complicated scatterers.

Numerical results are obtained for radar cross section (RCS) as a function of 
frequency for different coating materials and different orientation of the aper
ture. Also, presented are dependence of RCS on the relative thickness of the 
absorbing layer and on the aspect angle of the screen. Finally, dependence on 
the aperture size of the screen is presented numerically. The results generated 
for E-pol incidence are compared with those generated for H-pol. incidence.

According to our numerical results, the lossy magnetic material results in 
a better reduction of resonances in RCS behavior of the CBA. Further, it is 
much better to make coating from inside to suppress the resonances when the 
interior resonance is the dominant feature in the back scattering characteristics. 
In the case of direct on aperture incidence, the inner coating is better at any

60



frequency. On the other hand, coating from outside can be preferred to reduce 
the average level of the RCS, but it has no effect on the internal resonances. 
The dependence of RCS on the aperture size is examined numerically and 
comparison is made for both polarizations. Finally, it is possible to adjust 
the thickness of the absorbing layer at a specific frequency so that RCS has a 
minimum value.

For future research, we can study on non-perfect conductors by RHP tech
nique by making impedance surface modeling. Also, impedance-surface CBA 
on a periodic material interface can also be solved with this approach.
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Appendix A

COEFFICIENT DEFINITION

In this appendix, the coefficient Tmn is defined. Tmn(‘<̂) is related to the 
Legendre polynomials, Pn{u) through the following expressions

Qmn(ri), m 7̂  0
m = 0, n 7̂  0 (A.l)

where

1
2(m — n)

— ln[(l + ii)/2], m = n =  0

[Pm-l{u)Pn(u)- Pm{u)Pn-l{u)], TTl^n

5=0

qo{u) =  l , 9 i ( t i )  =  - u , ... qs{u) = P,{u)  -  2 u P s - i { u )  + Ps-2{u)  

and we make use of the relation = Ps{u)·
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Appendix B

NATURAL MODES OF OSCILLATIONS OF UNCLOSED 
CIRCULAR CYLINDRICAL SHELL

Natural modes of oscillations are obtained by assuming = 0 for
the incident field.

Consider free oscillations of H-type. As in the diffraction, can be rep
resented by a double layer potential as

where is the unknown current density and n is the outward unit
normal vector. The current density is discretized in terms of angular exponents 

= 0,±1,··· as

(n)

Besides, by employing addition theorem of the cylindrical functions, we 
have

G ( r  r t )  = -  y "  /  Jn{kn)H !^\kr) r > r! I  
 ̂ 4^1  Ukr)H'^\hvl) r<r/ /

After imposing the boundary conditions, one can obtain a homogeneous 
system of functional dual series equations for the coefficients //„ . The RHP 
technique as described in the second chapter yields homogeneous matrix equa
tions for even and odd electromagnetic fields.

n=0
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n=l
respectively, where t,i =  1 for n = 0 and r  = 2 for n > 0.

Equating the determinants of these matrices to zero yields the characteristic 
equation for determining the resonance frequencies of even

I ~  d· ^ - m n )  Im,n=0 (^-1)

and of odd type of oscillations

I ~  2 ' ^ n ( A m n  ~  A - m n )  l m , n = l  ( B - 2 )

where is the Kronecker delta.

Since it is proved in [14] that

I ^mn i  A - m n  I < oo ,
771,71

the characteristic equation can be solved through truncation with any desired 
accuracy.

In case the slot is narrow (9 —> 0), the matrices are close to diagonal one. 
Therefore the complex roots of the characteristic equation can be obtained 
analytically as an asymptotic power series which is dependent on the opening 
width, 29.

The asymptotic behavior of Amn and A-mn for small 9 is examined and it 
is found that the matrix in (B.l) has nonzero elements at the main diagonal, 
at zeroth row and column, and remaining cells have values proportional to 9 .̂ 
Similarly, the matrix in (B.2) has nonzero elements only at the main diagonal. 
Therefore the iterative-perturbation analysis is applicable (see [14]). Hence, 
the roots of the characteristic equation are approximately found as,

~  + l̂ mn ~  (1 -f- (B.3)

for the even modes (m = 1,2,...), and

~  ^^77172 H "  i ^ m n  ^  ) (B.4)
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for the odd modes (m = 1,2,...) of the empty circular slitted cavity. In 
(B.3) and (B.4),

Cmn = 7T
s=^0,m

m n  j \  ?

5=1,^771

1-2

(B.5)

and 6o = l,Ss = 2 for 5 ^ 0 ,  and i/mn is the n-th zero of 

The details of this analysis are given in [14].
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