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ABSTRACT

AN EXTENDED RELATIONAL ALGEBRA
FOR NESTED RELATIONS

Eser Sikan
M.S. in Computer Engineering and Information Science
Supervisor: Prof. Erol Arkun
January 1993

In this study the database models of Roth-Korth-Silberschatz (RKS) [cf. ACM
TODS 13(4): 389—417, 1988 and Abiteboul-Bidoit (AB) [cf. Journal of
Computer and System Sciences 33(4): 361—3893, 1986] to formalize non-first-
normal-form relations are presented along with their extended relational alge-
bra. We show that the extended set operators union and difference of RKS and
AB are not information equivalent. Using the model of RKS and restricting
ourselves to union and difference, we define our extended set operators and

show that these two operators and the eztended intersection of RKS are infor-

mation equivalent.

Keywords: Data models, normal forms, extended algebra, nested relations,

non-first-normal-form relations, partitioned normal form
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OZET

ICICE ILISKILER ICIN GENISLETILMIS BIR ILISKISEL
CEBIR

Eser Stikan
Bilgisayar ve Enformatik Miihendisligi Bolumu, Yiksek Lisans
Tez Yoneticisi: Prof. Dr. Erol Arkun
Ocak 1993

Bu ¢aligmada birinci normal bigimde olmayan iligkileri formalize etmek igin
Roth-Korth-Silberschatz (RKS) [cf. ACM TODS 13(4): 389-417, 1989 ve
Abiteboul-Bidoit (AB) [cf. Journal of Computer System Sciences 33(4): 361-
393, 1986] tarafindan geligtirilmig veritabani modelleri ve bu modeller igin
tanimlannug bir iligkisel cebir sunulmaktadir. Gerek RKS gerekse AB cebir-
leri iginde yer alan genisletilmis kiime operatorlerinden birlegim ve farkin, bilgi
esdegjer olmadigy gosterilmektedir. RKS'nin modeli kullamlarak, genigletilmis
kiime operatérlerinden birlegim ve fark yeniden tanimlanmaktadir. Ayrica yeni
tanimlanan birlegim, fark ve RKS’nin genigletilmig kesigim operatorlerinin bilgi

egdeger oldugu gosterilmektedir.

Anahtar Sozcikler: Veri modelleri, normal bigimler, genigletilmis cebir, igige

iligkiler, birinci normal bigimde olmayan iligkiler, bélimlemeli normal bigim
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Chapter 1
Introduction

The first-normal-form (1NF) assumption of traditional relational model (in
which all values are atomic) [8] has been relaxed by the introduction of new
applications of database systems in areas such as text and image processing,
computer-aided design, etc. which require relations within relations. A new
class of relations, that of =1NF (non-first-normal-form or nested) relations, has
been introduced for such applications. The nested relational model represents

real world data better by allowing relation-valued attributes.

Nested relations have been an extensive research area since the late seventies.
The nested relational model was first introduced by Makinouchi [5]; this was
followed by works by others {7, 6, 2, 3, 4, 1]. Among these, Schek and Scholl [7]
introduced relations with relation-valued attributes and proposed a recursive
relational algebra for these relations in which the standard set operators U,
—, and N are applied to —INF relations without any change. Abiteboul and
Bidoit (AB) [2] presented the Verso model, which is a data model for ~1NF
relations. The nested structure of the Verso model is obtained by the recur-
sive definition of the Verso instances, i.e., the attributes in a Verso instance
may have Verso instances as well as atomic values. Relational algebra oper-

ators on Verso instances are also defined. (This will be discussed in the sequel.)

Roth, Korth, and Silberschatz (RKS) [6] introduced an extended relational
algebra for a proper subset of nested relations which are considered to be in
partitioned normal form (PNF). They defined extended set operators which are
rather different than the ones in other works. The idea behind extended set

operators is that tuples that agree on their atomic attributes are combined to
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form a new tuple. Our thesis is based on this work and a detailed discussion

of these set operators is presented in the third chapter.

Garnett and Tansel [4] proposed an extended relational algebra and showed
that this algebra is equivalent in expressive power to relational calculus for

nested relations. They used the standard set operators U, —, and N for nested

relations without any change.

In this work we restrict ourselves to the set operators union, difference, and in-
tersection for nested relations in partitioned normal form. Our aim is twofold:
to show that the extended set operators, union and difference, defined in [6]
and [2], are not information equivalent, and to define information equivalent
set operators for nested relations. A set operator is information equivalent if
it generates a result which becomes equal to the desired-result when it is flat-
tened. Here the desired-result is the result obtained by first flattening the two

relations and then applying the standard set operator to the flat relations.

This thesis is structured as follows. We present the models for nested rela-
tions introduced by RKS and AB in the second chapter. The third chapter
contains the relational algebra of RKS and AB. We show that their extended
set operators union and difference are not information equivalent and intro-
duce information equivalent set operators (U°, —°¢). Proofs showing that our
extended set operators and the eztended intersection of RKS are information

equivalent are also included in this chapter. Chapter four concludes the thesis.



Chapter 2

The Model

We assume that the reader is familiar with the relational model and do not go
through well-known concepts such as attribute, domain, etc. We first present
the model introduced by RKS. This is the model our work is based on. We
then present the Verso model introduced by AB.

2.1 The Model of RKS

A —INF database scheme S is defined as a collection of rules of the form
R; = (R,,,-..,Rj,), where R;, and R;;,1 < ¢ < n, are names. (The model uses
names and attributes interchangeably.) Each of these rules represents a higher-
order or a zero-order name. This means that the rules in a ~1INF database
scheme may consist of any number of zero-order or higher-order names as long
as the scheme is not recursive. A rule R; is a higher-order name if it appears
on the left-hand side of a rule, and is a zero-order name otherwise. The names

on the right-hand side of a rule R; form the set Eg;, viz. the elements of R;.

A zero-order name is an atomic attribute which has an associated domain.
A higher-order name is a nested relation scheme whose domain is composed of

the related domains of each zero-order name in this scheme.
Fzample: Consider a database scheme which contains the following rules:

STUDENT = (STUDENT.ID, STUDENT_NAME, COURSES)
COURSES = (COURSE.NAME, BOOK, GRADE)
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The STUDENT database contains student identification (STUDENT.ID), stu-
dent name (STUDENT_NAME), and the courses taken by the student (COUR-
SES), for each student. STUDENT and COURSES are higher-order names and

the others are zero-order names. O

A relation scheme R is called a subscheme if no zero-order name appears on the
right-hand side of two different rules in the scheme. To define the subscheme
of a database S, let R; appear only on the left-hand side of some rule in § (i.e.,
R; is an external name). The rules in S that are accessible from R; form a

subscheme of S defined as follows:

1. R; = (Rj,,...,Rj,) is in the subscheme, and

2. Whenever a higher-order name Ry is on the right-hand side of some rule

in the subscheme, the rule Ry = (Ry,,..., Ry, ) is also in the subscheme.

An instance v of a name R is defined as an ordered tuple < R, Vp > where
Vg is a value for R. For zero-order names, Vg is an atomic value from the
associated domain of R, while for higher-order names, it is a value composed

of the values from the related domains of the names on the right-hand side of R.

A database structure S = < S,s > is composed of the database scheme S and
an instance s of that scheme. A relation structure R = < R, r > is composed
of the relation scheme R and an instance r of that scheme. Two structures S,
and S, are equal if their schemes and instances are equal, respectively. (Two

relation schemes R; and R, are equal if they consist of the same rules.)

NB. In this model (of RKS), null values in ~INF relations are not consid-

ered.

2.2 The Verso Model of AB

Before we define the model, we present the notation of AB. The set of tuples
over a relational scheme Vis denoted tup(V), and the set of relations is denoted

rel(V). The set of ordered tuples over some string X (i.e., a set of attributes,
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X =A;...A,) is denoted Otup(X) and the corresponding set of attributes in
a string X is denoted set(X) (= {A|A € X}).

The data structure of the Verso model is defined by using the concept of for-

mat. A format is defined as follows:

1. If X is a finite string of attributes with no repeated attribute, then X is

a flat format over set(X), and

2. If X is a nonempty finite string of attributes with no repeated attribute
and f;,..., f, formatsover Y,,..., Y;, respectively, then the string X (f;)”
... (fa)" is a format over the set set(X)Y, ...Y,, where set(X), Y,, ...,

Y, are pairwise disjoint.

Null values can be represented in the Verso model. The empty string is a for-
mat which is denoted A. If f= X(f;)"...(fa)" is a format, and f; = A for some
i, 1 < i< n,then f=X(fi)"...(fict) (fiss) - ()"

Ezample : If welet f; = STUDENT COURSE GRADE, then f; is a format over
{STUDENT, COURSE, GRADE}. Now if we let , = STUDENT(COURSE-
(BOOK GRADE)*)*, then f, is a format over {STUDENT, COURSE, BOOK,

GRADE}.

Directed trees are used in [2] to represent formats. Figure 2.1 shows the tree
representation of fo. The root of the tree is STUDENT (the flat format of f»),
and the only branch of the tree is (COURSE(BOOK GRADE)*)*. O

The set of all instances, inst(f), over a format fis defined as follows:

1. If f= X and set(X) # 0, then [ is in inst(f) iff I is a finite subset of
Otup(X), and

2. If f=X(fi)*...(fn)", where fi,..., fu are nonempty, then [ is in inst(f)
iff
(a) I1is a finite subset of Otup(X)xinst(f;) x ... x inst(f,), and
(byif<u,ly,....,0In> and <u,J,...,Jn >arein [ for some
u, Iy, ly, Jyy.ooyJo, then I = J;y foralli1 <2< n.
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STUDENT

COURSE

BOOK GRADE

Figure 2.1: Tree representation of STUDENT(COURSE(BOOK GRADE)*)*

Thus, in the light of condition (2), the atomic attributes of a format constitute

a key.



Chapter 3

Extended Relational Algebra

In this chapter we present the extended relational algebra of RKS, and AB
by restricting ourselves to U, —, and N. We also show that the extended
operators union and difference are not information equivalent and introduce

our own extended set operators which are shown to be information equivalent.

3.1 Nest and Unnest Operators

Two new operators nest(r) and unnest(u) are introduced in the extended re-
lational algebra of RKS. We use these operators in order to show that our

extended set operators are information equivalent. These operators modify

the relation structures that they act upon.

Nest combines the data values which agree on some of their attributes and

is defined as follows in [6]:

Let R be a relation scheme, in database scheme S, which contains a rule R =
(Ay,...,A,) for external name R. Let {By,...,Bn} C Eg and {C},...,C} =
Er — {B,,...,Bn}. Assume that either the rule B = (By,...,By,)isin Sor
that B does not appear on the left-hand side of any rule in S and (B,,..., By)

does not appear on the right-hand side of any rule in S. Then vg_(s,,..8.)(R)

=< R, r' > =R where:

1. R'=(C,,...,Ck,(B,,...,B,,,))=(C,,...,Ck,B)andB=(B,,...,Bm)

is appended to the set of rules in § if it is not already in .5, and
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r

A|C|D|F |G
ap|aldi|f A1
ay|ald|fi g2
apfald| fi|gs
a|cldy| fil;g
ap ez dz | f2| g2
a;laldy| fi| ¢
ay|c3lds| fal ga
ay|cqlds| fi |
ay|cyl|dy| fal g4

Figure 3.1: A sample flat relation

ve=(re)(vB=(c,0)(7))  vB=(c,D)(VE=(F.c)(7"))

A B E

A B E C ] DI|F ] G
C l D F | G a Ci dl fl (1
arja d|hi ¢ f2 9
e dy| fo g f3 g3
ap|la di|fs g3 ai|lca | i @
azlecs ds| fi ¢ fa 9
ca dy| fa 94 a;|es dz| i ¢

ca di| fs 94

Figure 3.2: An example for nest operator

2. r = {t | there exists a tuple u €r such that {C;...Ci] = 4[C;...Ci]
ABl = {v[B;...Bu] | vE r AC,...C] = {{C,...Ci]}}

Ezample: Let rbe a relation on the relation scheme R = (A, C, D, F, G) (Fig-
ure 3.1). Two relations vp=(c,p)(VE=(F,6)(7")) and ve(F,G)(vB=(c,p)(r)) (Figure
3.2) with the scheme R = (A, B, E), B = (C, D), E = (F, G) are obtained
from r by applying the nest operators in different orders (i.e., in the first table

of Figure 3.2 r is nested with respect to E, B and in the second table it is

nested with respect to B, E.) O

Unnest, on the other hand, flattens a relation on some attributes, and is defined

as follows in [6):

Let R be a relation scheme, in database scheme S, which contains a rule R
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#B(r1) #5(r2)
A|C|D E A[(C]|D E
F| G F| G
ai|a|d|fhH @ alal|ld|fi ¢
fa g2 f2 g2
a|la|ld | i 5 3 93
fr @ ajce|d|fi g
a|la|di|fs g3 f2 g
ay | c3 | ds | fi ) a; | c3 | ds| fi Y31
fa 94 fi 94
ay{cifda| i 0 alca|dy | fi ¢
i 94 fi s

Figure 3.3: An example for unnest operator

= (Ay,..., A,) for external name R. Assume that B is some higher-order
name in Ep with an associated rule B = (B,,..., B,). Let {C,,..., Ci}
= Eg — B. Then pp—(s,,..B.,)(R) = < R,7" > =R where:

1. R = (Cy,...,C,By,...,B,) and B = (B,,...,B,) is removed from

the set of rules in S if it does not appear in any other relation scheme,

and

2. r' = {t | there exists a tuple u €r such that {{C; ... C] = 4[C, ... C{]
A B, ...By] € u[B]}.

Erample: Let us unnest the relations r; = ve=(Fc)(VB=(c,0)(7)) and
re = vp=(c,D)(VE=(F,G)(r")) (Figure 3.2) with B. The results ,uvB(rl) and ppg(r;)

are shown in Figure 3.3. If these results are unnested with F, the flat relation

r (Figure 3.1) is generated. O

3.2 The Partitioned Normal Form

Since it is possible to obtain different relations by nesting the same relation
with respect to the same nest operators in different orders, the class of ~1NF
relations are restricted and only the relations in partitioned normal form (PNF)
are considered in [6]. The partitioned normal form restriction guarantees that

nest is an inverse of unnest and provides a less redundant representation of

-1NF relations.
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™ ™

A B A B
C]D CID

a | ¢ dl a | dl
Cy d2 Cy dg

ay | C3 d3 C3 d3

a; | ¢4 dy ay [ c4 d4
a dy a dy

Figure 3.4: Examples for -PNF and PNF relations

Ezample: The relation r; (Figure 3.4) is a ~1NF relation that is not in PNF,

while r; in the same figure is a ~INF relation in PNF that represents the same

information as r,. O
Now let us introduce the definitions for PNF as presented in [6] :

Definition 5.1 Let X, Y C Ep for some relation structure R = < R, r >.
The functional dependency (FD), X — Y, holds in riff for all tuples ¢,, ¢, in
r, if t;[X] = ts[X] then ¢,[Y] = t,[Y]. (If X or Y is a higher-order name then

we mean set equality.)

Definition 5.2 Let R = < R,r > be a relation structure with attribute set
ER containing zero-order names A4,, ..., A; and higher-order names X, ..., X.

R is in partitioned normal form (PNF) iff
1. A;,As,..., At — Epg, and
2. For all ter and for all X;, 1<7 <1, Ry, = < X;, t[X;]> is in PNF.
In the light of these definitions, a nested relation without any zero-order at-

tributes (k = 0) is in PNF iff it contains a single tuple (cf. [6], p. 397).

The work of RKS aims to prove that given a relation in PNF, whenever an
operator (nest or unnest) is applied, the result is also in PNF . This is true for
unnest in any case, and true for nest in some special cases. These are stated

as Theorems 5.1 and 5.2 and proved in [6]. For convenience, we state these
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theorems now.
Theorem 5.1 The class of PNF relations is closed under unnesting.

Theorem 5.2 The nesting of a PNF relation is in PNF iff in the PNF relation
R =<R,r> A...,As = X,..., X| where A,,..., Ay are the zero-order
names in Er not being nested and X,,..., X, are the higher-order names in

ER not being nested.

3.3 Extended Set Operators

A common point of extended set operators defined in [6], [2], and our work is
that they are all recursive formulations. In another approach, two relations
are flattened, any standart set operator is applied to these flat relations, and
the resultant flat relation is restructured into its original structure. In this

approach the property that nest is an inverse operator for unnest is required.

(This is not always possible.)

3.3.1 Extended Union

Extended Union of RKS

To be able to take the union of two structures, the schemes R, and R; of these
structures must be equal. We do not need restructuring, i.e., the scheme of the

resultant structure is also equal to R, and R;. The eztended union is defined

by RKS as follows:

Let X range over the zero-order names in Eg, and Y range over the higher-

order names in Eg,. Then,

rmUsr,={t | (3t €r, I, €ry:
(VX,Y € Eg,: t{X]|=t:[X]=t:[X] A t[Y] = (4[Y] U° t5[Y])))

V(ter AV €r: (VX € Ep: t[X] # t'[X])))
V(t€r, A(VE €r : (VX € Er,: t[X] £ [X])))}

This definition of [6] should be corrected as follows:
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- T
A B A B
C D C D
E |F E{F
apjale | N ap|lalel|h
ez | fa er | fr
c2{es| fa cq | €| fa
ay | ca|es| fu az | cs|es| fs
Figure 3.5: Purely hierarchical relations
r Uy pB(pp(r1 U° 1))
A B
C D A|JC|E|F
E|F aj|lale|fi
alale|h G jale|f
ex | f2 ay (¢ |er| fr
er | [+ ayj|c | e3| fa
c2les| fa ay | ca|eq| fa
cq|es| fa az | c3|eq| fu
az | C3 | €4 f4 asz | Cs | €s f5
az | Cs | €5 fs

Figure 3.6: Extended union of r; and r;

P U T ={t | (3t €r, It €ry
(VX,Y € Eg,: t{X]=t:[X]=ts{X] A t[Y] = (t[Y] U° £2[Y])))
V(ter AVt €ry: (3X € Eg,: t{X] # t[X]))
V(ter, AVt €r: (3X € Ep,: t[X] £ [X]))}

The examples of extended union in [6] are interpreted with respect to this
corrected definition. If they were interpreted with respect to the original RKS

definition, it would not be possible to obtain the results in [6]. In the following

examples the corrected extended union definition is applied to the relations
r; and rp in Figure 3.5 . The result r; U¢ r» and the flat form of this result
p(pp(ry U¢ 12)) are shown in Figure 3.6 . If we compare the flattened result

with the desired-result that is found in Figure 3.7, we see that they are equal.
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#e(pp(r)) pB(pp(r2)) pe(pp(r)) U us(pn(r:))
A|C|E|F
ATCIETF A[CTE[F alalelh
a | ¢ | € fl a | C | € f1 :1 zl :2 1{2
ay  C1 | €2 f2 @ | | €7 f7 al Cl e7 f7
a [ C2 | €3 f3 Q) | C4 | €4 f4 al c2 63 f3
az [ C3 | €4 f4 a3 [ Cs | €5 fs 1 4 4 4
az | C3 | €4 f4
az | Cs | €5 fs

Figure 3.7: The desired-result

Although it is not mentioned in [6], the eztended union operator produces
correct results for only nested relations that are purely hierarchical. A purely
hierarchical relation is a nested relation with n nesting levels, n € N¥, for all
nesting depths ¢,1 < i < n, |HA;| = 1, where HA; is the set of higher-order
attributes in the relation structure of the i** nesting-level. If a nested rela-
tion is not purely hierarchical (i.e., if it contains more than one higher-order

attributes in at least one of the nesting levels), the eztended union operator

introduces some irrelevant tuples.

FEzample: Let us show the validity of our last remark with an example. ry, r;,
riUry, px(py(riUir)), px(py(ri)), px(py(rz)), and  px(py(r1))
U px(py(r2)) are shown in Figures 3.8, 3.9, and 3.10. px(py(r1 U° 7)) in-
cludes some irrelevant tuples, e.g., < azbrkscads > and < ajbgkscod; >, which
are neither in px(py (1)) nor in px(py(rz)). As a result, the extended union

operator of [6] is not information equivalent. O

The class of PNF relations is closed under eztended union of [6] which is stated
as a theorem (Theorem 6.1) in [6]. This theorem states that the structure
Rs = < R,rg > is in PNF, given that the structures R; = < R,r, > and
R, = < R,rs > are in PNF. We think that the PNF restriction on the resul-
tant structure makes the eztended union definition non information equivalent.
Dropping this restriction on the resultant relation structures provides us with

a new definition for extended union. The class of PNF relations is not closed

under the new eztended union.
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™ T2
A X Y x X v
B|K|[C]|D BTRKICTD
ai bl kl Cy dl ‘ l
by k, az | by ko 4
ag bl kl C1 dl b8 ]Cs S d3
b7 k7 cs d2 ay b4 k4 C4 d4

Figure 3.8: Examples for ~purely hierarchical relations

U px (py(r U r2))

A|B|K|C|D
a) b] k] (5] d]
a; bg k'g (53] dl

A B IXK C IYD az bl kl C1 dl
a o ke 4 ay | b | k|| dy
b2 kg as ‘bl k] C3 d3
a; | b k| o d ay | by | k7| | dy
by kr| e d; ay | by | k7| c; | dy
bB k8 cs d3 as b7 k7 C3 d3

a; | bg | ks | ci | dy
a | bg | kg | c2 | dy
ay [ bg | kg | c3 | d3
ag | by | kg | cq | ds

a4 b4 k4 Cq d4

Figure 3.9: Extended union of v, and r;

px(py (1)) px(py (r2)) px(py (1)) U px(py(r2))

A|{B|[K|C{D
. ap | b | ky|a | dy
A B K C D A B KICID ay b2 kg (53] d]
a b |k |a|d
az | by [ by | e | dy
a I)l kl C3 d3
a b7 k7 Cy d]
ax | b | k| c | dy
a; bg kg (5] d]
ay {bg | ks | c3 | d3
ay b4 k4 C4q4 d4

ay | b | by | dl by | oy

az
ay b2 kz (5] d 1
a; bl kl a dl as bl k 1| C3 d3

bs | k d
a2 b] kl Co dz at: bs ks a dl
as 8 8 | C3 3

Qa3 b7 k7 (5] dl s b k c d
a; b7 k7 s d2 4 4 4 4 4

C1 d1

Figure 3.10: The desired-result
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™ U 72(1) ™ Ue 1‘2(2)
A X Y A X Y
B[K|C[D B[K|C[D
a|lbh khla 4 a | b ko d
by kg by k,
as b] kl (5] dl as b] k] Cy d2
c2 dy br ks
c3  ds az | bi ki fcz ds
ay | bz ki 4 bs ks
C d2 a b1 kl (5] d]
a I)s kg (5] dl az l)7 ]C7
C3 d3 as bg kg
ay | by kg cqg dy ag | by kg | cqg dyg

Figure 3.11: 71 U ry() and 1y U® 1y

px (py (r1 U° 12)) g px (py (r1 U° 12)) 5
A|IB|(K|C|D A|B|{K|C|D
ay | by | k|| d ap | by | k| a | d
a | by | k2| d; ay | by | ky | | dy
az | by | ki |a|d a | by | ki |2 | dy
ay | by | ky | ;| da ay | by | kz |2 | dy
ay | by | ky|c3|ds ay [ by | ky | c3|ds
az | bz | ks | | dy | a | bs | ks | c3 | d3
a | bz | k7| | da a | b [k [ | dy
a2 | bg | ks | a | d ay | b | k| | dy
ay | bg | ks | c3 | d3 ay [bg | ks | a1 | dy
a4 b4 k4 Cq dq a4 b4 k—i C4 d4

Figure 3.12: Flat forms of r; U ry(;) and ry U® ry(y)

15
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Extended Union of AB

Before defining the new eztended union, let us go through the extended union

of [2].

Let f be a format and I, J two instances over £ Then the union of [ and

J is the instance over f denoted I®J, defined by:

1. If f= X, where X is nonempty, then IJ = I UJ, and
2. If f= X(fi)*...(fu)*, where f1,..., f. are nonempty, then:

<ul,...I,> € I and
<u;...J.>€ J }
<ul,...I,> € I, and

VJip.oodw, < udp...J, >¢J }
<uJ;...Jn> € J and }

[9J= { <u(l; @) ... (L@ Jn) >

U { <uly...I, >

VI ... Ly<ulp... I, >¢I

U { <UJ1...J,.>

The extended union of [2] is similar to that of [6] and produces the same results
with the previous examples; the tuples that agree on their atomic attributes

are combined to form a new tuple. It produces correct results only for purely

hierarchical relations (and therefore it is not information equivalent).

The New Extended Union

In the following eztended union definition, HA is the set of all higher-order
names in Eg, and HAy, is the set of all higher-order names in Ey,. X ranges
over the zero-order names, while Y ranges over the higher-order names in Ep.
Given two relation structures Ry = < R,r; > and R, = < R,r, > in PNF,

the extended union with the structure Rz = < R,r; U¢r, > is defined as follows

at the instance level:
T u° Te = {t I (3!, € T[,atg € e
(VX,Y € Eg,,|HA| < 1: tX] = t,[X] = t:[X]
At[Y] = (4 [Y] U t[Y])))

V(Et, € r,,3t3 €ErTs:
(VX,3Y; € Eg,,1 <i < |HA|,|HA| > 1:(3Y; € (HA-{Y:}):
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L[Y;] # t[V]) A t[X] = £, [X] = to[ X]
ALY = {413, € 4[Yi] 4y = t, A (Y, € ts]Vi]:
(3X € Ey, : t,[X] # ¢, [X]))}
AN [HA-{Y;}] = ¢, [HA-{Y:}]))
\/(Bt, €r;, Aty Ery:
(VX,3Y; € Er,,1 <i < |HA||HA| > 1:(3Y; € (HA-{Y;}):
t[Y;] # to[Vi]) A t[X] = 4, [X] = t:[X]
A[Y] = {4,1(3t,, € ta[Yi] s ty = 8, A (Y2, € 4,[Vi]:
(3X € Ey, : t,,[X] # ¢, [X])}
At[HA—{Y:}] = to[HA-{Y}}]))
V@ €r, It s
(VX,3Y; € Ep,,1 <i <|HA|,|HA| > 1: (3Y; € (HA-{Y;}):
t[Y;] # to[Vi]) A t[X] = & [X] = t2[X] A Xy, =4 {X|X € Ev,}
At[Xy,] = {t,,|(3t,, € t,[Vi],3t, € t.[V]]:
(VX € By, : t,,[X] = t, [X] = ¢, [X]))}
AHA =5 (HA—{Y:}) U HAy,
A[(JHA| > 1: ¢{{HA] € (¢, [HA] U° t,[HA]))
V(IHA| < 1: t{HA) = (t, [HA] U to[HAD)))
V3t er,Ats€re:
(VX € Eg,,1 <i < |HA|,|HA| > 1: t[X] = t;,[X] = to[X]
NVY; € (HA - {Yi}) : t[Yj] = to[V;] A t[Y}] = 1, [V]])
At[Yi] = (L[Yi]U° t[Yi])))
\/(t € i AV € ra: (3X € Eg, : t[X] # £ [X])))
\/(t € rs AVt € 1y : (3X € Eg, : t[X] # £ [X])))}

Ezample: When the new extended union operator is applied to the relations r
and r; (Figure 3.8), it is possible to obtain the results rj U® r3(y) and 7y U® 73()
(Figure 3.11). If we compare the flattened forms px(uy(r U 13)),, and
px (py (11 U° 12)) ) (Figure 3.11) of 71 U rp(3) and rq U° 1) with the desired-
result (Figure 3.10), we notice that these three are equal. The difference be-
tween ry U ry(y) and 7y U® ry(y) is because of different permutations of Y;’s in

the above eztended union definition. Y;’s can be selected randomly among the
g
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higher-order names in Er. We have npermutations of Y;’s with n higher-order
names (that is, 7 U° r, can be represented in n different formats). This is an
expected result once we remember that r; U® r; is not in PNF and nest is not

an inverse operator for unnest in this case. O

Theorem 3.1 The eztended union operator is information equivalent.

Proof The proof has several cases:

1. |HA] = 0 (flat relations).

2. nesting-depth = n (€ N*%), for all nesting-depth, ¢, 1 <: < n: [HA| =1

(purely hierarchical relations).

3. |HA| > 1, and each higher-order attribute Y in ER is a flat relation.

4. |HA| =n (€ N*) and 3Y € Eg: |HAy| = m (€ N*).

(1) In this case ry and r; are flat relations, so we show that vy U¢ ry =, Ur,.

C part: If t € ry U® ry, then ¢t satisfies one of the following three disjuncts

of the U® definition:

(a)  €rm A(VE €ry:(3X € Epy : t[X] # t'[X])))
(b) (t €ra A(VE €ry:(IX € Epy : t[X] # £'[X])))
(c) (Bt € m,Ft2 €72: (VXY € Egy, |HA| < 1: ¢[X] = t41[X] = t2[X]
A[Y] = (t[Y] U 22[Y])))
(since |[HA| = 0, there is no higher-order attribute and there is no #[Y])

If t satisfies the first disjunct, then ¢ € r; only, the second, then ¢ € r; only,

and the third, then ¢ € r{, or ry, or in both. It is obvious that ¢ € r; Ur; in

any of these three cases, therefore r; U¢r; C ry Urs.

D part: Let t € r; U ry, then t is either in:
(a) r, only, or
(b) r2 only, or

(c) r1 and r,.
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Since three disjuncts mentioned in the C part of the proof include all those

tuples either only in 7, or only in rz, or in both, a tuple ¢ in r; Ur; will be in

ry U® ry. Therefore r, Uy D ry U r,.
(2) In this case we show that

Ky, (.uYn-—x ( . (/‘Yx (7‘1 ue 1‘2)) .. ))
= Y (8 (- (v (1)) - - ) U iy (v, (- - (pn (72)) - 1)),

where Y; is the higher-order attribute of the :** nesting level. The proof is

by induction on the nesting-depth n.

Basis: We show that py(r; U r2) = py(r1) U py(rz), where n = 1 and Y
= Xl cee Xm.

D part: We show that if ¢t € py(r1) U py(r2), then t € py(r; U° rp). py(m)
and py(r;) are flat relations, so ¢ is either only in uy(r;), or only in uy(r:),
or in both, and it’s either unnested from some u; in r;, or some u; in ry, or
some u3 in both. We can say that ¢[X; ... X,,] € wh[Y] V¢[X:... X.] € ua[Y].
In the extended union of r{ and r;, u; and u, will be included either as two

distinct tuples, or as a tuple u, where u[Y] = u;[Y] U® u,[Y]. Obviously ¢ will

be included in py(ry U ;) in any case.

C part: We show that if t € py(ry U® rp), then ¢t € py(r1) U py(rz). If we
partition py (rl U® r3) on ER—X; ... X,, and obtain the partitions u,, ..., u,
then we must show that all tuples ¢,,...¢, in any partition of py(r U° ;) are
in py(r1) U py(ry). The tuples t4,...,t, are obtained by unnesting the set of
tuples uy,...,ux, each.of which is a partition on Er — Y in r; U° rp. This
means that for all 7, 1 <: < n, 35,1 < j <k, such that ;[X; ... Xn] € 4;[Y],
and Ule u;[Y] = {t:{Xi1... Xu] |1 < i < n}. Each u; is created by the ex-
tended union of two tuples, u;! € r; and u;? € ry. Since Y is a flat relation,
Ut wslY] € (Uks wi'[Y] Vv US, w?[Y]). When the tuples u;' and u;? are
unnested into tuples v;!, (1 < i < p1) and v/?, (1 <1 < p;), we have Uf:_l u;'[V]
= {v![X;...Xn]) |1 <1< p} and Uf=, w2 Y] = {v?[X1... Xu) |1 £1< pa},
and we can say {t;[X;...Xm]|1 <i<n} C {v'[X;... X,][1 1<} U
{v?[X1...Xn] |1 <1< p2}. Therefore py(r1) U py(rz) contains all the tuples
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ti, ...y ty in py (r) U 12).

Induction Step: By the induction hypothesis, we know that

1Yy (Y, (- - (B, (1 U 12)) .. )
= 1ty (B¥us (- (ari (1)) - ) U® prv, (By,_a (- - - (v (72)) - 2))

for the first (n — 1) nesting levels, where Y; is the higher-order attribute at
the :** nesting level, 1 < i < n — 1. We now show that this is also true for

n nesting levels. If we unnest both sides of the previous equation with Y;,, we

obtain

B (8 (- (1 (1 U 12)) - 1))
= pya [y, (- (Br (1)) .- ) U° v, (o (1 (r2)) - )]

Let 1‘; = KYno ( .- (ﬂyl (7‘1)) .- ) and T; = KYo, ( .. (I‘Yl (1‘2)) .. '),
now we have

#a (1Yo (- (i (U0 12)) ) = py, (' U ry).

Since r; and r, are relations whose nesting-depths are 1, py,(r; U° 1) =
pv..(r1') U py, (r3), which is proved to be true in the basis step. If we substitute

r, and r, by their equivalents, we will have

Ky, (f‘Yn—l ( .. (#Yl (7‘1 u° 7'2)) .. ))
= ¥a (Bnci (- (b1 (1)) - ) U v (v, (- - (81 (2)) - )

(3) In this case we show that

1o (1Y, (- (pr (1 U° 1)) L))
= vy (1Y, (- - (v (1)) - - D)) U v, (Yo, (- - - (812 (72)) - - )

The proof is by induction on the number of the higher-order attributes at

the first and only nesting level.
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Basis: We show that py, (py,(r1 U° r2)) = py, (v, (1)) U py, (2, (72)), where
|[HA|=2and Y, = X1... Xn, Yo = X,... X,

2 part: We show that if t € py, (uy, (1)) U sy, (v, (72)), then ¢ € py, (py,(r1 U
r2)). Since py, (py, (1)) and py, (py, (r2)) are flat relations, ¢ is only in uy, (uy,(r1
)), or only in py, (py,(r2)), or in both. So ¢ is unnested from some u; € ry,
or uz € rg, or uz in 7y and r;. Then we can say that (¢[X; ... X\u] € wi[V1] A
{Xi... Xe] € m[Y2]) V (t[X1...Xn] € wo[N1) A t[Xi... Xi] € uz[Y2]). In the
ezxtended union of r; and ry, uy and uz will be included either as two distinct
tuples, or as a new tuple (formed by u; and u;). In any case, t is in the

unnested form of the tuple, therefore t € py, (py, (r1 U® r2)).

C part: We show that if ¢ € py,(py,(r1 U° 72)), then t € py, (py,(r)) U
iy, (4y,(r2)). In this case, ¢ must be unnested from some u in r; U° 1z, and
t € py,(py,(w)). Since u € ry U° ry, u satisfies one of the disjuncts in the U°
definition. Each of these disjuncts includes those tuples either only in r, or
only in ry, or in both. Then py, (v, (u)) is either:

(i) en(pn(v) € pn(pn(n)), or

(ll) En (:uyz (u)) Cc 191 (/‘Yz (7'2))1 or
(iii) w1y (w) € sy (w1 (r2)), and oy, (e (v) S v (1, (72)

From (1)7 ("), and (1")7 154 (#Yz (u)) C py, (FY;("I)) Uy, (I‘yz(rz))' Since we
know that ¢ € py, (1y,(u)), then t € py, (v, (1)) U pr, (py, (72))-

Induction Step: By the induction hypothesis, we know that

B s (BYna (- - - (pr (11 U 12)) . )
= HYnoy (#Yn—2(' .. (/“Yx (1‘1)) .. )) ue 24 49 (/‘Yn-z(' - (:uyl (7'2)) . ))’

for the first (n — 1) higher-order attributes of Eg, where n > 3. Now we

show that this is also true for n:

1Y, (#Yn—l ( .. (l“yl (rl ue 1‘2)) . ))
= o (8, (- (1, (r1)) - ) U° pva(pvas (- - (i (72)) - - ))-

The proof is similar to the induction step of case (2). If uy,_, (... (py,(r1 U°
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. . ’ ! . . .o
r2))...) is unnested with Y, and ;" and r; are substituted as in case (i), we

obtain,
#Yn(/‘Yn—l (' i (”Yl (7'1 Ue r2)) . ')) = luyn(rl’ Uc 7'2,)'

Since r;’ and r;’ are relations which have one higher-order attribute and one
nesting level, py, (r; U® 1) = py, (1) U py, (r2"), which is proved to be true in

the basis of case(2). Therefore

BYa (1¥sy (- (1 (11 U 12)) )
= Y (B¥asy (- (o (1)) - - D) U v (v, (- (012 (12)) - - )

(4) This is the most general case of a nested relation, viz. a nested relation
with n higher-order attributes, each of which is also a nested relation with a

finite number of higher-order attributes and nesting levels.

We show that the eztended union operator is information equivalent with this
kind of relation structures in several steps. Using a recursive procedure, we

obtain the most general nested structure and show that the ertended union

operator is information equivalent to this structure.

Now let the relation structures of r; and r, have n € N* higher-order at-
tributes, where each has a relation structure which is equal to that of (1), (2),

or (3) and let this new structure be (4.a). To show that extended union is

information equivalent in this case, we show that

VY r¥i) (BSy, (- - 5y, (1 U 12)) .. )
= (¥ Yaorrath) WSy, (- (3, (1)) - - DU ¥ Yurs i) (B5y, (- - - (854, (1)) - - )

where Sy, is the unnest sequence (a set of higher-order names in Ey;) required

to flatten the ¢** higher-order attribute in Eg.
The proof is by induction on the number of higher-order attributes in Eg.

Basis: In this case, |[HA| = 1 and there’s only one higher-order attribute

in Eg. The structure of this higher-order attribute is equal to that of (1),
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(2), or (3). Since we’ve shown that the eztended union operator is information

equivalent with the structures of (1), (2), and (3), we conclude that

py (sy (11 U° r2)) = py (ps, (1)) U py (us, (72))

Induction Step: By the induction hypothesis we know that

B(Ynos YoV ) (BSy,_, (- (fsy, (11 US 12)). )
= B¥or i) By, (oo (s (1)) - DU vy vy (sy (o (54, (72)) - .2)

for the first (n — 1) higher-order attributes of Eg. We now show that this

is also true for all the higher-order attributes of Egr, which is stated as follows:

(¥n Yoo r)) (B8y, (- - (Bsy, (1 U 72)) .. ))

.....

If we nest both sides of the equality introduced by the induction hypothe-

sis with Y;, and Sy,, we obtain

1Ya (BSy, (B(Vnor, i) By, _, (- (s, (M US 12)) .. 1)) = pv.(psy,
By ..y (Bsy,_, (- - (s, (11)) - - DVU° pv_y,vi) sy, (- (B3, (72)) - )])

Let ™= p(Yoor,i)(sy,_, (- (Hsy, (r))..))  and
r2,= /‘(Yn—l,---.yl)(l‘sv,,_l (.. (,USyl (r2))--.)

If we replace  p(yv,_,,..vu)(#sy,_ (- (Bsy, (11))--.))  and
B(Yarr,.r1)(Bsy. (... (sy, (r2))...)) with r," and r," respectively, we have

1y, (/‘SY,. (ﬂ(Yn-x,---'Yl)(/‘SY,,_l (- (/‘Syl (rUsrs))...)))) = py, (ksy, (rll u* 7'2’)

The structure of 7;" and r,’ contains one higher-order attribute which is in
one of the forms (1), (2), or (3). Since it is shown in the basis step that ez-

tended union is information equivalent to the structures of (1), (2), and (3), we

conclude that

By, (Bsy, (1 U 12') = py, (psy, (1)) U gy, (psy, (r2))
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Using this equation, we obtain the following equality:

1¥n (BSy, (B(Ynoy i) (Bsy,_, (- - (s, (11 U 12)) ..0))))
= py, (Ksy, (1)) U pv,, (psy, (r2)),

If r; and ;" are substituted with their equivalents, we obtain

1Y, (15, (B(Vnor i) (Bsy,_ (- - (B8, (11 U° 72)) .. 1))
= 1By, (BVuer,. i)y, (- - (15, (1)) ...)))) U
1Yu (BSy, (B i) sy, (- - (Bsy, (72)) --))))

By Theorem 8.1.b of RKS, given a relation structure R, the following prop-
erty holds:  pa(uB(R)) = us(pa(R)). With respect to this theorem, the

order of unnestis not important, so we can reorganize the previous equality by

changing the unnest sequence and obtain the following:

B(Yn Yarrnti) (B3, (- - - (s, (11 U 2)) .. )

.....

3.3.2 Extended Difference

Extended Difference of RKS

Difference is similar to union in the sense that it does not need restructuring of
the relation structures. To be able to find the difference of two structures R;
= < Ry,r1 > and R, = < Rp,ry >, their schemes R; and R; must be equal.
The structure of the resultant relation is < R3,r; —°r; >, where Rj is equal

to R; and R;. The extended difference is defined by RKS as follows.

Let X range over the zero-order names in Eg, and Y range over the higher-

order names in Eg,. Then,

n—r={t|E@3tenAdter,AdY € Eg:
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(VX,Y € Ep,: t{X] = t1[X] = t,[X]
AY] = (t[Y] = L[Y]) AtY] # 0))
V(ter A@t ery: (VX € Er,: t[X] # [X])))}

This definition of [6] should be corrected as follows:

rmm—fro={t| (3t €rnAI,€ryAIY € Eg:
(VX,Y € Eg,: t{X] = t:[X] = t,[X]

A tY] = (a[Y] = t[Y]) ALY] #0))
V(ter AVt €ry: (3X € Er,: t[X] #t'[X]))}

The examples of eztended difference in [6] are interpreted with respect to this
corrected definition. If they were interpreted with respect to the original defi-

nition of RKS, it would not be possible to obtain the results in [6].

Ezample: In the following the corrected extended difference definition of [6] is
applied to the relations r; and r, (Figure 3.5). The result r; —¢r, and the flat
form of this result pg(pp(r1 —°r2)) are shown in Figure 3.13. If we compare

the flattened result with the desired-result (Figure 3.14), we see that they are

equal.O0

Although it is not mentioned in [6], the ezxtended difference operator produces
correct results for only nested relations that are purely hierarchical as the ez-
tended union operator does. If a nested relation is not purely hierarchical, then

the extended difference operator loses some of the tuples that must be in the

result.

Ezample: Now let us illustrate this last claim. Eztended difference operator is
applied to the relations in Figure 3.8. ry —¢ry, ux (py(r1 —¢72)), px(py(r1)),

px(py(r2)), and px(py(r1)) — px(py (r2)) are shown in Figures 3.15 and 3.16.
px (py (r1 —¢r2)) loses some tuples that’s in desired-result, e.g. < azbikicod; >

and < aybrkr;c;dy > which are in px(py(r1)) but not in ux(uy(r2)). As a

result, the eztended difference operator of [6] is not information equivalent.O

The class of PNF relations is closed under ertended difference of [6] which
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T = 712 #e(pp(ry —°r2))
A B
C D A|C|E]|F
E|F aijjc |e| fa
apla|e|f ay [c2|es| fs
c2les| fa a; | c3|eq| fa
az | C3 | €4 f4

Figure 3.13: Extended difference of r; and r,

es(pp(r1)) pB(pp(ra)) es(up(r1)) — us(ep(rz))
A|C|E|F A[C|E|F ATCTETTF
ay | € | € f1 a |G | & f1
a || €2 fz
a, C1 €2 f2 ay 1 (44 f7
a | c2 | €3 f3
a | C2 | €3 f3 ay | C4 | €4 f4 a P e f
az | C3 | €4 f4 az | Cs | €s f5 2 3 1 4

Figure 3.14: The desired-result

r =1 px(py(r —°r2))

g = CFD A[B[K[C[D
l ay b] kl (5] dl
a bl k] (5] d] @ bz kg o dl

b, k,
az | by k7 | ¢z d; az | b7 | k7 | c2 | dy

Figure 3.15: Extended difference of r; and r;

px (py (1)) px(py (r2)) ix (py (1)) — px(py (r2))

AIBIKICID A|{B|K|C|D A|B]K|C|D

! bl kl a dl ay b] IC] (5] dl a) bl kl (5] dl
a8 k| d ay [by |k |cs|ds ay [ by | by | & dy
42 bl kl ! dl a) bs ks C1 dl as bl kl C2 d2
G2 bl kl 2 dz az bg ICg C3 d3 as b7 k7 Ci d1
a2 b7 k7 a dl aq4 b4 k4 Cq4 dq a b7 k7 C2 d2

ay [ br | kz|c | dy

Figure 3.16: The desired-result
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is stated as a theorem (Theorem 6.1) in [6]. This theorem states that the

structure R3 = < R,r; —°r. > is in PNF, given that the structures R; =
< R,r; > and R; = < R,rs > are in PNF. We think that the PNF restric-
tion on the resultant structure makes the extended difference definition non
information equivalent as in eztended union. Dropping this restriction on the
resultant relation structures provides us with a new eztended difference. The

class of PNF relations is not closed under the new extended difference.

Extended Difference of AB

Before defining the new eztended difference operator, let us go through the

eztended difference of [2].

Let f be a format and [, J two instances over f Then the difference of I

and J is the instance over f, denoted I6J, defined by:

1. if f= X, where X is nonempty, then I6J = I — J, and
2.if f= X(fy)*...(fa)*,where fi,..., fu are nonempty, then :

<ul;...I, > € I and

IeJ= <u([&J))...(Lo)> | <uJ;...Jn> € J and

for some i, [ ©J; #0
<ul,...I, > € I and }

U« <ul,...l; >
{ ’ Vi d < ud Ja># T

The eztended difference of [2] is similar to that of [6] and produces the same

results with the previous examples. It produces correct results only for purely

hierarchical relations, therefore it’s not information equivalent.

The New Extended Difference

In the following eztended difference definition, HA, Ey,, H Ay,, and X represent
the same things as they do in the new eztended union definition. Given two
relation structures R; = < R,r; > and R; = < R, rs > in PNF, the ertended

difference with the structure < R,r;, —° rs > is defined as follows at the in-

stance level:

rp—rs = {t | (3, €r, s €Ers:
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(VX,Y € Eg,,|HA| < 1:t[X] = t,[X] = t.[X]
ALY = (8[Y] =% to[ Y]) A t]Y] £ 0))
V3t €r,3ts€re:
(VX,3Y; € Er,,1 < i < |HA| |HA| > 1: t[X] = t,[X] = t;[X]
ALY = {413, € u[Yi]: t, =1, A (VL € to[Vi]:
(3X € Ey, : 4, [X] # ¢, [X])}
AHA-{Y:}] = t,[HA—{ Y:}]))
V3t €3t €rp:
(VX,3Y; € Eg,,1 < i < |HA|,|HA| > 1 : t[X] = t,[X] = ts[X]
AXy, =45 {X|X € Ev,}
At[Xy,] = {t,;|(3t,, € ,[Yi], 3¢, € t:[Yi] :
(VX € By, : t,,[X] = t, [X] = ;[ X]))}
AHA =4y (HA—{Y:}) U HAy,
A(|HA| > 1: t{HA] € (t,[HA] —° to[HA])
A(t[HA] —° ts[HA]) # 0)
V(IHA| < 1: t{HA] = (t,[HA] —* ts[HA]) A t{HA] # 0)]))
V(t€ri AVt € 1o (3X € Er, : t{X] # ¢[X])))}

Fzample: When the newly defined eztended difference operator is applied
to the relations r; and r; in Figure 3.8, it is possible to obtain the results

r —°ryq) and 1y —°ry(y) in Figure 3.17. If we compare the flattened forms
px(py (1 —=°12))qy and px(py(r1 —°r2))e) (Figure 3.18) of r —°ry(;) and
r1 —°ryz) with the desired-result (Figure 3.16), we notice that these three

are equal. The difference between ry —°ry(;) and ry —°ry(y) is because of the

same reason explained for extended union. O

Theorem 3.2 The extended difference operator is information equivalent

Proof The proof has several cases.

1. |[HA| = 0 (flat relations).

2. nesting-depth = n (€ N*%), for all nesting-depths ¢, 1 <i<n: |[HA| =1

(purely hierarchical relations).
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™ _e 7.2(1) ™ _e 7.2(2)
A X Y A X Y
B[K|C|D B[K|C[D
ay b1 kl (] d] a; bl kl C dl
b2 k2 b2 k2
() b7 k7 (5] dl a; b] kl C dz
C2 d-z b7 k7
az b] kl C d2 a; b7 k7 (5] dl

Figure 3.17: r1 —°ry(;y and 1y —° ry(,

px (py (re =°12))) px(py (1 —°12)) g
A|B[K|C|D A|B|K|C|D
ay [ b | k|| dy ay by | kyfa|d
ar | by | k|| dy ay | by | ka || dy
ay | b | k|| dy ay | by [ ke | dy
az | bz | kr | | dy az | by [ k7 | | dy
ay | b7 | k7 | ca | d ay | b | k7 | | dy

Figure 3.18: Flat forms of r; —°rz(;) and ry = ry(y)
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3. |HA| > 1, and each higher-order attribute Y in Eg is a flat relation.

4. |[HA| =n (€ N*) and 3Y € Ep: |[HAy| = m (€ N*).

(1) In this case ry and r, are flat relations, so we show that r; —¢r, = r; — rs.

C part: Let t € ry —°ry, then t can only satisfy the following disjunct of
the —¢ definition: (t € 1y A (V¢' € 5 : (3X € Ep, : t[X] # ¢[X]))). This

disjunct states is that ¢ is a tuple only in rq, so ¢ is obviously in r; — r,.

2 part: Let t € r; — ry, then ¢ is only in 7, and there is at least one atomic
attribute that differentiates ¢ from all the tuples in r,. If this statement is for-

malized, we obtain the disjunct of —° mentioned in the C part. Since ¢ satisfies

a disjunct of —¢ definition, £ € r; —°r,
(2) In this case we show that

1Yo (Y (- - (v (11 =% 12)) .. ))
= 1n (B (- (B (1)) - ) = pyva (v, (- - (pn (r2)) .. )),

where Y; is the higher-order attribute of the :** nesting level. The proof is

by induction on the nesting-depth n.

Basis: We show that py(ry —°r;) = py(r1) — py(r2), where n = 1 and Y

=X1...Xm.

D part: We show that if ¢ € py(r1) —° py(r2), then t € py(ry —°ry). tis
only in py(r1) and it is unnested from some u, in r;. Since ¢ is not in py(r;),
t cannot be unnested from any u, in r,. We can say that ¢[X; ... X,,] € y[Y]
and Yu, € rp : [ X ... X,n] ¢us[Y]. In the extended difference of vy and ry,u,
will be included either completely as u; or partially as a new tuple u, where

ulY] = w1[Y] —° u2[Y]. In any case ¢ will be included in py (r; —° r3).

C part: We show that if ¢ € uy(r; —° r2), then t € py(r1) — py(r2). If we
partition py(r1 —°r2) on Er — X; ... X,, and obtain the partitions u,,...,u,
then we must show that all tuples ¢,,.. . ¢, in any partition of uy (11 —°r;) are in

py (r1)—py (r2)- The tuples ¢, ..., ¢, are obtained by unnesting the set of tuples
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Uy, ..., U, each of which is a partition on Eg—Y in r; —°r,. This means that for
all 4,1 <1< n, 35,1 <j <k, such that ;[X; ... X,x] € 4;[Y], and U}, u;[Y]
= {ti[X1...Xm] | 1 £i < n}. Each u; is created by the extended difference
of two tuples, u;! € 71 and u;% € rp. Since Y is a purely hierarchical relation,

f_ui[Y] € (Ul w'[Y] —° Uk, w;2[Y]). When the tuples u;! and u;? are
unnested into tuples v, (1 <7 < p;) and v/, (1 <1< p;), we have U;-‘=1 u;'[Y]
= {v'[X1... Xn] |1 <1< p1} and US; w?[Y] = {02 X1... Xa] | 1 <1< pa},
and we can say {t;[X;... X,,]|1 <i:<n} C {v!'[X)...Xu]|1 <1<} -
{v*[X1...Xu] |1 £1< py}. Therefore py () — py (r2) contains all the tuples

tl, cen ,tn in [.tY(Tl —* 7'-2).

Induction Step: By the induction hypothesis, we know that

8ot (8o (- (1 (1 =% 72)) )
= Wi (v, (- (B (7)) -+ 2)) =° vy (e (- - (01 (r2)) - )

for the first (n — 1) nesting levels, where Y; is the higher-order attribute at

the ¢** nesting level, 1 < ¢ < n — 1. We now show that this is also true for

n nesting levels. If we unnest both sides of the last equation with Yy, we obtain

Ky, (/‘Yn—l ( . (/‘Yx (7'1 —° 7‘2)) .- ))
= 1 t¥ai (- (1)) .- ) = pyas (- (i (r2)) - )]

Let 75 = py,y(c-- (i (1)) ..} and 7 = oy, (... (ri () -.),

now we have
HY, (:uyn—l ( .o (ﬂyl (7‘1 —° 7.2)) .- )) = HUY, (rll — rlz)

. ’ ’ . . ! ’
Since r; and r, are relations whose nesting-depths are 1, uy,(rn —°ry) =

sy, (r1') = py, (r2), which is proved to be true in the basis step. If we substitute

ry and r, by their equivalents, we have

HYy (/‘Yn-x ( .. (/‘Yn (T1 —€ 7'2)) .. ))
= u¥a (¥ (- (pn (1)) - ) = pva (v, (- (pri(r2)) - )
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(3) In this case we show that

pYa (1Yo, (- (v, (11 =% 12)) .. )
= v, (1ypoi (- - (Bri (1)) - - 2)) = pv (v, (- - (pri(r2)) .. )

The proof is by induction on the number of the higher-order attributes at

the first and only nesting level.

Basis: We show that py, (py, (r1 —° r2)) = gy, (pv,(r1)) — py, (py, (r2)), where
|[HA|=2and V1 =X, ... X, 2 = X;... X,.

2 part: We show that if t € py, (v, (1)) — pv, (ky, (r2)), then t € py, (py,(r1 =°
r2)). Since t € py, (v, (r1))—pv, (1y, (r2)), we know that ¢is only in uy, (uy, (1))
and it is unnested from some u; € ry. Then we can say that (¢[X;... X\] €
w1 Y] A t[Xi. .. Xi] € ur[Y2]) A Vug € ry 1 t ¢uy). In the extended difference
of u; and wuy,u; will be included either completely as u;, or partially as a new

tuple u. Since Vu; € r2,t ¢uy,t € uy or t € u. Therefore ¢ € py, (py, (11 —°72)).

C part: We show that if t € py,(py(r1 —°r2)), then t € py,(pn(r1)) —
ty, (py,(r2)). In this case, t is unnested from some u in r; —° 7. u satisfies

one of the disjuncts in the —¢ definition and all the disjuncts in this definition

include those tuples only in ry, so
(Vu' € py, (ny, (w)) : 6 € py, (mry (11)) A (V2 € py, (v, (72)) 1w’ # 1)),
The last statement is the definition of the standard set difference, therefore

t € py, (ouyz (7‘1)) — by, (,uy2 (7.2))'

Induction Step: By the induction hypothesis, we know that

HYny (:uYn—z(' .. (.u'Yx (7‘1 - Tz)) . ))
= ¥y (B¥nea (- (a1 (1)) -2 2)) = ¥y (Y (- - (B0 (72) - - ),

for the first (n — 1) higher-order attributes of Ep, where n > 3. Now we

show that this is also true for n:

1Yo (B, (- - - (yi (1 =5 12))...))
= 1Y (¥ (- (v (1)) - ) =° v (vas, (- - (v (r2)) - )
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The proof is similar to the proof of induction step of case (2). If uy,_, (... (uy,

(r1 =°73))...) is unnested with Y, and r," and r,’ are substituted as in case

(2), we obtain,
1Y (Yo (- (i (1 =% 12)) ) = gy (1| =2 12).

Since r,’ and r;' are relations which have one higher-order attribute and one
nesting level, uy, (r; —°r3) = py, (r;) — gy, (r2'), which is proved to be true in

the basis of case (2). Therefore

uY (v, (- - - (v (11 =% 12))...))
= py, (1¥us, (- - - (Bvi (1)) - ) = oy (v, (- - (v (72)) - . ).

(4) This is the most general case of a nested relation, that is a nested rela-
tion with n higher-order attributes, each of which is also a nested relation with

a finite number of higher-order attributes and nesting levels.

We show that the eztended difference operator is information equivalent to
this kind of relation structures in several steps. In these steps, using a recur-
sive procedure, we obtain the most general nested structure and show that the

extended difference operator is information equivalent to this structure.

Now let the relation structures of r; and r, have n € N* higher-order at-
tributes, where each has a relation structure which is equal to that of (1), (2),

or (3) and let this new structure be (4.a). To show that eztended difference is

information equivalent in this case, we show that

B(Yn Yarr,Y) (BSy, (- - (s, (11 = 12))...))
= (¥ Yaorra1) B8y, (- (31, (11)) - - )= B¥aYaoy i) (Bsy, (- < (#5y, (1)) - )

where Sy, is the unnest sequence (a set of higher-order names in Ey,) required

to flatten the i** higher-order attribute in Eg. The proof is by induction on

the number of higher-order attributes in Eg.

Basis: In this case, |HA| = 1 and there is only one higher-order attribute
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in Er. The structure of this higher-order attribute'is equal to that of (1), (2),
or (3). Since we have shown that the eztended difference operator is informa-

tion equivalent to the structures of (1), (2), and (3), we conclude that
py (psy (r = 12)) = py (s, (1)) — py (psy (r2))

Induction Step: By the induction hypothesis we know that

B(Ynos Ynozti) By, (- (Bsy, (11 =% 12))..))
= Vo) sy, (- (s, (1)) - )= B, i) (B, (- - (5, (12)) -+ 2))

for the first (n — 1) higher-order attributes of Er. We now show that this

is also true for all the higher-order attributes of Eg, which is stated as follows

B(¥nYnorY1) (BSy, (- - (5y, (11 =% 12)) . .))

.....

If we nest both sides of the equality introduced by the induction hypothe-

sis with Y;, and Sy,, we obtain

1¥o (BSy, (B(Yarr,. ) (Bsy,_ (- (Bsy, (11 =°72)) . .)))) = pya(psy,
(s iriy By, (- (B8, (1)) -+ )= B¥us, 0) (Bsy,,_, (- - (B5y, (72)) - ))])

Let  m'= p(oey,.vi)(sy,_, (- (psy, (1)) ...))  and
7'2,= /‘(Yn—l.--qyn)(ﬂsy,,_l ( . (,“Syl (7’2)) ot ))
If we replace  py,_,,..v)(sy,_ (---(#sy,(r1))-..))  and

B(¥noyri) By, (- (esy, (r2)) .. .))  with ri and ro respectively, we obtain

1, (s, (Yo ti) (BSy,_, (- (53, (11 =572)) .. )))) = v (isy, (1" =°1)

The structure of r;" and r," contains one higher-order attribute which is in
one of the forms (1), (2), or (3). Since it is shown in the basis step that ez-

tended difference is information equivalent to the structures of (1), (2), and

(3), we conclude that
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1a (B33, (11 = 12)= v, (psy, (M) = pv, (s, (7).
With the introduction of this equation, we obtain the following equality

1o sy, (BYay,..v0)(Bsy,_, (- (ksy, (1 =% 12))...))))
= v, (#sy, (1)) — bva (isy, (r2))

If ;" and r," are substituted with their equivalents, we have

1va (B3y, (B(Vner i) sy, _ (- - (sy, (11 = 72)) .. ))))
= w¥a sy, (B(Vur ) (Bsy,_ (- (Bsy, (71)) .. ) —
1o (sy, (B(Vaiy, i) sy, (- (Bsy, (r2)) - . .))))

With respect to Theorem 8.1.b of [6], the order of unnest is not important,

so we can reorganize the previous equality by changing the unnest sequence

and obtain the following equality:

B(Yn Yar, Vi) (BSy, (- - - sy, (M =% 12)) ...))
= (Y1) By, (- (B5y, (1)) -+ ) = B(¥a,vi) (Bsy, (- - (usy, (72)) -+ ) O

3.3.3 Extended Intersection

Extended intersection is another set operator that does not need restructuring.
As with union and difference, to be able to find the intersection of two struc-
tures Ry = < Ry,r; > and Ry = < Ry, ry >, their schemes R, and R; must
be equal. The structure of the resultant relation is < R3,r; —°rs >, where R3

is equal to R; and R;. The eztended intersection is defined as follows [6]:

N ry={t | (3t €r, 3, € ry:
(VX,Y € Eg,: t[X] = t;[X] = t2[X]

A Y] = (L[Y] 0 &[Y]) At[Y] #0))}
The eztended intersection in [2] is defined as follows:

Let f be a format and I, J two instances over f Then the intersection of I
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r N7y px (py(r N°ry))

A X Y A|B|K|C|D
B[K|C|D = :

aQ b] kl (5] dl 92 1 ! & 1

Figure 3.19: Extended intersection of r; and ry

px (py(r1)) kx(py(r2)) px (py (m)) N px(py(r2))

A|B|K|{C|D

P S A B A|B|K|C]|D
a | by | k2 | | &y ay | b | k[ | dy
= b1 kl S d] as bl kl C3 d3 A[{B]K|C|D
a2 | b | i (e | da a; | bs | ks | ci | dy a | b |k || dy
az | b7 | k7 | ¢ | dy az | bs | ks | c3| ds
az | b7 | Er | | ds ag [ by [ kg | cq | dy

Figure 3.20: The desired-result

and J is the instance over f, denoted I @©J, defined by:

1. if f= X, where X is nonempty, then I @J = I NJ, and
2. iff f= X(fi)*...(fa)*, where fi,..., fu are nonempty, then:

L...L,>¢ I and
10/={ <u(L@®J)...(h@J)> | SH> € fan
<ulp...Jn> € J

Both of these extended intersection operators are information equivalent. Since

we use the model of RKS, we use their extended intersection as well.

Ezample: If the extended intersection operator of [6] is applied to the relations
ry and 7, in Figure 3.8, we obtain the result r; N° r; in Figure 3.19.' The flat

form of r, N® r; is also shown in the same figure. This flattened result is equal

to the desired-result depicted in Figure 3.20. O

The class of PNF relations is closed under eztended intersection which is stated
in Theorem 6.1 of [6]. What this theorem states is that the structure R3 =
< R,r;N°ry > is in PNF, given that the structures R; = < R,r; > and R; =
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< R,r; > are in PNF.

Theorem 3.3 The ertended intersection operator is information equivalent,

that is
pri (- (pra(m N re)) ) = pn (o (pva () - ) D pn (. (v (72)) - - ),

where Y;...Y, is the unnest sequence (the set of higher-order attributes in

the relation structure) required to flatten the relations ry,r,, and rq N° ry.

Proof In this proof we use Theorem 8.2.a of RKS. This theorem is stated

as follows in [6].

Given two relation structures R and S, the following property holds

pa(R0°8) = pa(R) N° pa(S).
(A is an higher-order attribute in Er, R = < R,r >,and S = < 5,5 >.)

Let us flatten r; N° r, by unnesting it with the sequence Y;...Y,. We know

that  py,(r1N°r2) = py,(r1)N° py,(r2) (by Theorem 8.2.a [6]), so we have
a1, (- (v (re 00 12)) ) = i (- (¥, (v () OF v, (r2)]) - )

If we let ' = py,(r1) and r!' = py,(r2), and replace uy,(r1) and py, (r2)

with ri! and r,! respectively, we obtain
s (e a0 72)) ) = 3 - (o (e 0 7)) )

The class of PNF relations is closed under unnesting (Theorem 5.1 [6]), and
it is given that r; and r; are in PNF, so r;! and r;! are also in PNF, and we
can apply eztended intersection to r;! and r;'. By Theorem 8.2.a [6], we

know that uy,_, (ri! N°r2?) = py,_, (m') N py,_, (r2'), so we have
sy, (o (pra (1 N0 12)) ) =y (- - (v [ova (M) O° gy, (r2Y)]) - )

If we let rn? = py,_,(r") and r2? = py,_,(r2'), and replace py,_, (') and

py._, (r2!) with r1? and r,? respectively, we obtain
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By, (- (ra (100 72)) ) = v (- - (v, (M2 N0 10%)) )

ri2 and r;? are in PNF and eztended intersection can be applied to them

because of the same reasons explained in the previous steps.
If we keep on applying the same procedure until the relation structures contain

no more higher-order attributes (i.e., the relation structures are flat), we finally

obtain

py, (- (py,(r N rz))...) =" Ny, where

™ n — ﬂyl (7‘1 n—l) a.nd 7.271 — uyl (7.2n-1 )
™ n—1 — LY, (rln—2) and 7.211.--1 =y, (1.2n~2)
n' = py,(r1) and 1! = py(ra)

Using the above equations, we find that
= i (e (i (1) ) and 72" = i e (i (2) ).

Since r™ and ry® are flat relations, we have 1™ N° r;® = ™ N 2™ (which
obviously follows from the eztended intersection definition). By replacing r"

and r," with their equivalents, we finally obtain the following equality, which

is what we are trying to show

iy (e (v (0 72)) ) = (e (7)) - ) O (- (v (r2)) ) ©



Chapter 4

Conclusions

In this study, we presented the database models of RKS [6] and AB [2] to for-
malize —=1NF relations with their extended relational algebra. In these models
the notions of database and relation structures, database and relation schema,

instance, domain, and attribute are extended for ~1NF relations.

Extended relational algebra operators are defined recursively both in RKS and
AB. We have restricted ourselves to only extended set operators union, differ-
ence, and intersection. We have introduced the notion of information equivalent
set operator, which generates a result that is equal to the desired-result when
it is flattened. (Hence, an information equivalent set operator does not lose
any tuples in the desired-result or does not introduce extra tuples that are not

in the desired-result.) We have shown that the extended set operators union

and difference of RKS and AB are not information equivalent.

The extension we have introduced was the new extended union and differ-
ence operators which were shown to be information equivalent. The model of
RKS is used in these definitions. Furthermore, we have proved that the ez-

tended intersection operator of RKS is information equivalent.

We did not consider all the extended relational algebra operators in this study.

Further research may be carried out to define other extended relational algebra

operators such as selection, join, etc.
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