FOR HESTED RELATIOHS

AA
76.9
.83
585
1993

AN EXTENDED RELATIONAL ALGEBRA FOR NESTED RELATIONS

A THESIS SUBMITTED TO
THE DEPARTMENT OF COMPUTER ENGINEERING AND INFORMATION SCIENCE

AND THE INSTITUTE OF ENGINEERING AND SCIENCE
OF BILKENT UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
MASTER OF SCIENCE
by
Eser Sükan
January 1993 Eser SüKAN

I certify that I have read this thesis and that in my opinion it is fully adequate, in scope and in quality, as a thesis for the degree of Master of Science.

I certify that I have read this thesis and that in my opinion it is fully adequate, in scope and in quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Varol Akman

I certify that I have read this thesis and that in my opinion it is fully adequate, in scope and in quality, as a thesis for the degree of Master of Science.

Asst. Prof. İlyas Çiçekli

Approved by the Institute of Engineering:

Prof. Mehmet Bares,
Director of the Institute of Engineering

ABSTRACT

AN EXTENDED RELATIONAL ALGEBRA FOR NESTED RELATIONS

Eser Sükan
M.S. in Computer Engineering and Information Science
Supervisor: Prof. Erol Arkun
January 1993

In this study the database models of Roth-Korth-Silberschatz (RKS) [cf. ACM TODS 13(4): 389-417, 1988] and Abiteboul-Bidoit (AB) [cf. Journal of Computer and System Sciences 33(4): 361-393, 1986] to formalize non-first-normal-form relations are presented along with their extended relational algebra. We show that the extended set operators union and difference of RKS and AB are not information equivalent. Using the model of RKS and restricting ourselves to union and difference, we define our extended set operators and show that these two operators and the extended intersection of RKS are information equivalent.

Keywords: Data models, normal forms, extended algebra, nested relations, non-first-normal-form relations, partitioned normal form

ÖZET

İçiçe ílişkiler íçin genişletilmiş bir ílişkisel CEBIR

Eser Sükan
Bilgisayar ve Enformatik Mühendisliği Bölümü, Yüksek Lisans
Tez Yöneticisi: Prof. Dr. Erol Arkun
Ocak 1993

Abstract

Bu çahşmada birinci normal biçimde olmayan ilişkileri formalize etmek için Roth-Korth-Silberschatz (RKS) [cf. ACM TODS 13(4): 389-417, 1988] ve Abiteboul-Bidoit (AB) [cf. Journal of Computer System Sciences 33(4): 361393, 1986] tarafindan geliştirilmiş veritabam modelleri ve bu modeller için tanımlanmıs bir ilişkisel cebir sunulmaktadır. Gerek RKS gerekse AB cebirleri içinde yer alan genişletilmiş küme operatörlerinden birleşim ve farkın, bilgi eşdeğer olmadığı gösterilmektedir. RKS'nin modeli kullamılarak, genişletilmis küme operatörlerinden birleşim ve fark yeniden tanmlanmaktadır. Ayrıca yeni tanımlanan birleşim, fark ve RKS'nin genişletilniş kesişim operatörlerinin bilgi eşdeğer olduğu gösterilmektedir.

Anahtar Sözcükler: Veri modelleri, normal biçimler, genişletilmiş cebir, içiçe ilişkiler, birinci normal biçimde olmayan ilişkiler, bölümlemeli normal biçim

ACKNOWLEDGEMENTS

I wish to express my deep gratitude to my supervisors Prof. Meral Özsoyoğlu and Prof. Erol Arkun for their invaluable support during the development of this thesis. I also want to thank to Dr. Varol Akman for the time he spent on reading and correcting this thesis.

Contents

1 Introduction 1
2 The Model 3
2.1 The Model of RKS 3
2.2 The Verso Model of AB 4
3 Extended Relational Algebra 7
3.1 Nest and Unnest Operators 7
3.2 The Partitioned Normal Form 9
3.3 Extended Set Operators 11
3.3.1 Extended Union 11
3.3.2 Extended Difference 24
3.3.3 Extended Intersection 35
4 Conclusions 39

List of Figures

2.1 Tree representation of STUDENT(COURSE(BOOK GRADE)*** 6
3.1 A sample flat relation 8
3.2 An example for nest operator 8
3.3 An example for unnest operator 9
3.4 Examples for \neg PNF and PNF relations 10
3.5 Purely hierarchical relations 12
3.6 Extended union of r_{1} and r_{2} 12
3.7 The desired-result 13
3.8 Examples for \neg purely hierarchical relations 14
3.9 Extended union of r_{1} and r_{2} 14
3.10 The desired-result 14
$3.11 r_{1} \cup^{e} r_{2(1)}$ and $r_{1} \cup^{c} r_{2(2)}$ 15
3.12 Flat forms of $r_{1} \cup^{e} r_{2(1)}$ and $r_{1} \cup^{e} r_{2(2)}$ 15
3.13 Extended difference of r_{1} and r_{2} 26
3.14 The desired-result 26
3.15 Extended difference of r_{1} and r_{2} 26
3.16 The desired-result 26
$3.17 r_{1}-{ }^{e} r_{2(1)}$ and $r_{1}-{ }^{e} r_{2(2)}$ 29
3.18 Flat forms of $r_{1}-{ }^{e} r_{2(1)}$ and $r_{1}-{ }^{e} r_{2(2)}$ 29
3.19 Extended intersection of r_{1} and r_{2} 36
3.20 The desired-result 36

Chapter 1

Introduction

The first-normal-form (1NF) assumption of traditional relational model (in which all values are atomic) [8] has been relaxed by the introduction of new applications of database systems in areas such as text and image processing, computer-aided design, etc. which require relations within relations. A new class of relations, that of $\neg 1 N F$ (non-first-normal-form or nested) relations, has been introduced for such applications. The nested relational model represents real world data better by allowing relation-valued attributes.

Nested relations have been au extensive research area since the late seventies. The nested relational model was first introduced by Makinouchi [5]; this was followed by works by others $[7,6,2,3,4,1]$. Among these, Schek and Scholl [7] introduced relations with relation-valued attributes and proposed a recursive relational algebra for these relations in which the standard set operators U, - , and \cap are applied to $\neg \mathrm{lNF}$ relations without any change. Abiteboul and Bidoit (AB) [2] presented the Verso model, which is a data model for $\neg 1 \mathrm{NF}$ relations. The nested structure of the Verso model is obtained by the recursive definition of the Verso instances, i.e., the attributes in a Verso instance may have Verso instances as well as atomic values. Relational algebra operators on Verso instances are also defined. (This will be discussed in the sequel.)

Roth, Korth, and Silberschatz (RKS) [6] introduced an extended relational algebra for a proper subset of nested relations which are considered to be in partitioned normal form (PNF). They defined extended set operators which are rather different than the ones in other works. The idea behind extended set operators is that tuples that agree on their atomic attributes are combined to
form a new tuple. Our thesis is based on this work and a detailed discussion of these set operators is presented in the third chapter.

Garnett and Tansel [4] proposed an extended relational algebra and showed that this algebra is equivalent in expressive power to relational calculus for nested relations. They used the standard set operators $U,-$, and \cap for nested relations without any change.

In this work we restrict ourselves to the set operators union, difference, and intersection for nested relations in partitioned normal form. Our aim is twofold: to show that the extended set operators, union and difference, defined in [6] and [2], are not information equivalent, and to define information equivalent set operators for nested relations. A set operator is information equivalent if it generates a result which becomes equal to the desired-result when it is flattened. Here the desired-result is the result obtained by first flattening the two relations and then applying the standard set operator to the flat relations.

This thesis is structured as follows. We present the models for nested relations introduced by RKS and $A B$ in the second chapter. The third chapter contains the relational algebra of RKS and AB. We show that their extended set operators union and difference are not information equivalent and introduce information equivalent set operators ($U^{e},-^{e}$). Proofs showing that our extended set operators and the extended intersection of RKS are information equivalent are also included in this chapter. Chapter four concludes the thesis.

Chapter 2

The Model

We assume that the reader is familiar with the relational model and do not go through well-known concepts such as attribute, domain, etc. We first present the model introduced by RKS. This is the model our work is based on. We then present the Verso model introduced by AB.

2.1 The Model of RKS

A $\neg 1 N F$ database scheme S is defined as a collection of rules of the form $R_{j}=\left(R_{j_{1}}, \ldots, R_{j_{n}}\right)$, where R_{j}, and $R_{j_{i}}, 1 \leq i \leq n$, are names. (The model uses names and attributes interchangeably.) Each of these rules represents a higherorder or a zero-order name. This means that the rules in a $\neg 1 N F$ database scheme may consist of any number of zero-order or higher-order names as long as the scheme is not recursive. A rule R_{j} is a higher-order name if it appears on the left-hand side of a rule, and is a zero-order name otherwise. The names on the right-hand side of a rule R_{j} form the set $E_{R_{j}}$, viz. the elements of R_{j}.

A zero-order name is an atomic attribute which has an associated domain. A higher-order name is a nested relation scheme whose domain is composed of the related domains of each zero-order name in this scheme.

Example: Consider a database scheme which contains the following rules:

$$
\begin{aligned}
& \text { STUDENT }=\text { (STUDENT_ID, STUDENT_NAME, COURSES }) \\
& \text { COURSES }=(\text { COURSE_NAME, BOOK, GRADE })
\end{aligned}
$$

The STUDENT database contains student identification (STUDENT_ID), student name (STUDENT_NAME), and the courses taken by the student (COURSES), for each student. STUDENT and COURSES are higher-order'names and the others are zero-order names.

A relation scheme R is called a subscheme if no zero-order name appears on the right-hand side of two different rules in the scheme. To define the subscheme of a database S, let R_{j} appear only on the left-hand side of some rule in S (i.e., R_{j} is an external name). The rules in S that are accessible from R_{j} form a subscheme of S defined as follows:

1. $R_{j}=\left(R_{j_{1}}, \ldots, R_{j_{n}}\right)$ is in the subscheme, and
2. Whenever a higher-order name R_{k} is on the right-hand side of some rule in the subscheme, the rule $R_{k}=\left(R_{k_{1}}, \ldots, R_{k_{n}}\right)$ is also in the subscheme.

An instance r of a name R is defined as an ordered tuple $<R, V_{R}>$ where V_{R} is a value for R. For zero-order names, V_{R} is an atomic value from the associated domain of R, while for higher-order names, it is a value composed of the values from the related domains of the names on the right-hand side of R.

A database structure $\mathcal{S}=\langle S, s\rangle$ is composed of the database scheme S and an instance s of that scheme. A relation structure $\mathcal{R}=\langle R, r\rangle$ is composed of the relation scheme R and an instance r of that scheme. Two structures \mathcal{S}_{1} and \mathcal{S}_{2} are equal if their schemes and instances are equal, respectively. (Two relation schemes R_{1} and R_{2} are equal if they consist of the same rules.)

NB. In this model (of RKS), null values in $\neg 1 N F$ relations are not considered.

2.2 The Verso Model of AB

Before we define the model, we present the notation of AB . The set of tuples over a relational scheme V is denoted $\operatorname{tup}(V)$, and the set of relations is denoted $\operatorname{rel}(V)$. The set of ordered tuples over some string X (i.e., a set of attributes,
$\left.X=A_{1} \ldots A_{n}\right)$ is denoted $\operatorname{Otup}(X)$ and the corresponding set of attributes in a string X is denoted $\operatorname{set}(X)(=\{A \mid A \in X\})$.

The data structure of the Verso model is defined by using the concept of format. A format is defined as follows:

1. If X is a finite string of attributes with no repeated attribute, then X is a flat format over $\operatorname{set}(X)$, and
2. If X is a nonempty finite string of attributes with no repeated attribute and f_{1}, \ldots, f_{n} formats over Y_{1}, \ldots, Y_{n}, respectively, then the string $X\left(f_{l}\right)^{*}$ $\ldots\left(f_{n}\right)^{*}$ is a format over the set $\operatorname{set}(X) Y_{1} \ldots Y_{n}$, where $\operatorname{set}(X), Y_{1}, \ldots$, Y_{n} are pairwise disjoint.

Null values can be represented in the Verso model. The empty string is a format which is denoted Λ. If $f=X\left(f_{t}\right)^{*} \ldots\left(f_{n}\right)^{*}$ is a format, and $f_{i}=\Lambda$ for some $i, 1 \leq i \leq n$, then $f=X\left(f_{1}\right)^{*} \ldots\left(f_{i-1}\right)^{*}\left(f_{i+1}\right)^{*} \ldots\left(f_{n}\right)^{*}$.

Example : If we let $f_{l}=$ STUDENT COURSE GRADE, then f_{l} is a format over \{STUDENT, COURSE, GRADE\}. Now if we let $f_{2}=$ STUDENT(COURSE(BOOK GRADE)*)*, then f_{2} is a format over \{STUDENT, COURSE, BOOK, GRADE $\}$.

Directed trees are used in [2] to represent formats. Figure 2.1 shows the tree representation of f_{2}. The root of the tree is STUDENT (the flat format of f_{2}), and the only branch of the tree is (COURSE(BOOK GRADE)*)*.

The set of all instances, inst (f), over a format f is defined as follows:

1. If $f \equiv X$ and $\operatorname{set}(X) \neq \emptyset$, then I is in inst (f) iff I is a finite subset of $\operatorname{Otup}(X)$, and
2. If $f \equiv X\left(f_{1}\right)^{*} \ldots\left(f_{n}\right)^{*}$, where f_{1}, \ldots, f_{n} are nonempty, then I is in inst (f) iff
(a) I is a finite subset of $\operatorname{Otup}(X) \times \operatorname{inst}\left(f_{1}\right) \times \ldots \times \operatorname{inst}\left(f_{n}\right)$, and
(b) if $\left\langle u, I_{1}, \ldots, I_{n}\right\rangle$ and $\left\langle u, J_{1}, \ldots, J_{n}\right\rangle$ are in I for some $u, I_{1}, \ldots, I_{n}, J_{1}, \ldots, J_{n}$, then $I_{i}=J_{i}$, for all $i, 1 \leq i \leq n$.

Figure 2.1: Tree representation of STUDENT(COURSE(BOOK GRADE)***

Thus, in the light of condition (2), the atomic attributes of a format constitute a key.

Chapter 3

Extended Relational Algebra

In this chapter we present the extended relational algebra of RKS, and AB by restricting ourselves to $\cup,-$, and \cap. We also show that the extended operators union and difference are not information equivalent and introduce our own extended set operators which are shown to be information equivalent.

3.1 Nest and Unnest Operators

Two new operators nest (ν) and unnest (μ) are introduced in the extended relational algebra of RKS. We use these operators in order to show that our extended set operators are information equivalent. These operators modify the relation structures that they act upon.

Nest combines the data values which agree on some of their attributes and is defined as follows in [6]:

Let R be a relation scheme, in database scheme S, which contains a rule $R=$ $\left(A_{1}, \ldots, A_{n}\right)$ for external name R. Let $\left\{B_{1}, \ldots, B_{m}\right\} \subset E_{R}$ and $\left\{C_{1}, \ldots, C_{k}\right\}=$ $E_{R}-\left\{B_{1}, \ldots, B_{m}\right\}$. Assume that either the rule $B=\left(B_{1}, \ldots, B_{m}\right)$ is in S or that B does not appear on the left-hand side of any rule in S and $\left(B_{1}, \ldots, B_{m}\right)$ does not appear on the right-hand side of any rule in S. Then $\nu_{B=\left(B_{1}, \ldots, B_{m}\right)}(\mathcal{R})$ $=\left\langle R^{\prime}, r^{\prime}\right\rangle=\mathcal{R}^{\prime}$ where:

1. $R^{\prime}=\left(C_{l}, \ldots, C_{k},\left(B_{1}, \ldots, B_{m}\right)\right)=\left(C_{t}, \ldots, C_{k}, B\right)$ and $B=\left(B_{l}, \ldots, B_{m}\right)$ is appended to the set of rules in S if it is not already in S, and
r

A	C	D	F	G
a_{1}	c_{1}	d_{1}	f_{1}	g_{1}
a_{1}	c_{1}	d_{1}	f_{2}	g_{2}
a_{1}	c_{1}	d_{1}	f_{3}	g_{3}
a_{1}	c_{2}	d_{2}	f_{1}	g_{1}
a_{1}	c_{2}	d_{2}	f_{2}	g_{2}
a_{2}	c_{3}	d_{3}	f_{1}	g_{1}
a_{2}	c_{3}	d_{3}	f_{4}	g_{4}
a_{2}	c_{4}	d_{4}	f_{1}	g_{1}
a_{2}	c_{4}	d_{4}	f_{4}	g_{4}

Figure 3.1: A sample flat relation

Figure 3.2: An example for nest operator
2. $r^{\prime}=\left\{t \mid\right.$ there exists a tuple $u \in r$ such that $t\left[C_{1} \ldots C_{k}\right]=u\left[C_{1} \ldots C_{k}\right]$ $\left.\wedge t[B]=\left\{v\left[B_{1} \ldots B_{m}\right] \mid v \in r \wedge v\left[C_{1} \ldots C_{k}\right]=t\left[C_{1} \ldots C_{k}\right]\right\}\right\}$

Example: Let r be a relation on the relation scheme $R=(A, C, D, F, G)($ Figure 3.1). Two relations $\nu_{B=(C, D)}\left(\nu_{E=(F, G)}(r)\right)$ and $\nu_{E=(F, G)}\left(\nu_{B=(C, D)}(r)\right)$ (Figure 3.2) with the scheme $R^{\prime}=(A, B, E), B=(C, D), E=(F, G)$ are obtained from r by applying the nest operators in different orders (i.e., in the first table of Figure $3.2 r$ is nested with respect to E, B and in the second table it is nested with respect to B, E.)

Unnest, on the other hand, flattens a relation on some attributes, and is defined as follows in [6]:

Let R be a relation scheme, in database scheme S, which contains a rule R
$\mu_{B}\left(r_{1}\right)$

A	C	D	E	
			F	G
a_{1}	c_{1}	d_{1}	f_{1}	g_{1}
			f_{2}	g_{2}
a_{1}	c_{2}	d_{2}	f_{1}	g_{1}
			f_{2}	g_{2}
a_{1}	c_{1}	d_{1}	f_{3}	g_{3}
a_{2}	c_{3}	d_{3}	f_{1}	g_{1}
			f_{4}	g_{4}
a_{2}	c_{4}	d_{4}	f_{1}	g_{1}
			f_{4}	g_{4}

$\mu_{B}\left(r_{2}\right)$

A	C	D	E	
			F	G
a_{1}	c_{1}	d_{1}	f_{1}	g_{1}
			f_{2}	g_{2}
			f_{3}	g_{3}
a_{1}	c_{2}	d_{2}	f_{1}	g_{1}
			f_{2}	g_{2}
a_{2}	c_{3}	d_{3}	f_{1}	g_{1}
			f_{4}	g_{4}
a_{2}	c_{4}	d_{4}	f_{1}	g_{1}
			f_{4}	g_{4}

Figure 3.3: An example for unnest operator
$=\left(A_{1}, \ldots, A_{n}\right)$ for external name R. Assume that B is some higher-order name in E_{R} with an associated rule $B=\left(B_{1}, \ldots, B_{m}\right)$. Let $\left\{C_{1}, \ldots, C_{k}\right\}$
$=E_{R}-B$. Then $\mu_{B=\left(B_{1}, \ldots, B_{m}\right)}(\mathcal{R})=\left\langle R^{\prime}, r^{\prime}\right\rangle=\mathcal{R}^{\prime}$ where:

1. $R^{\prime}=\left(C_{1}, \ldots, C_{k}, B_{1}, \ldots, B_{m}\right)$ and $B=\left(B_{1}, \ldots, B_{m}\right)$ is removed from the set of rules in S if it does not appear in any other relation scheme, and
2. $r^{\prime}=\left\{t \mid\right.$ there exists a tuple $u \in r$ such that $t\left[C_{l} \ldots C_{k}\right]=u\left[C_{t} \ldots C_{k}\right]$ $\left.\wedge t\left[B_{1} \ldots B_{m}\right] \in u[B]\right\}$.

Example: Let us unnest the relations $\quad r_{l}=\nu_{E=(F, G)}\left(\nu_{B=(C, D)}(r)\right) \quad$ and $r_{2}=\nu_{B=(C, D)}\left(\nu_{E=(F, G)}(r)\right)$ (Figure 3.2) with B. The results $\mu_{B}\left(r_{1}\right)$ and $\mu_{B}\left(r_{2}\right)$ are shown in Figure 3.3. If these results are unnested with E, the flat relation r (Figure 3.1) is generated.

3.2 The Partitioned Normal Form

Since it is possible to obtain different relations by nesting the same relation with respect to the same nest operators in different orders, the class of $\neg 1 \mathrm{NF}$ relations are restricted and only the relations in partitioned normal form (PNF) are considered in [6]. The partitioned normal form restriction guarantees that nest is an inverse of unnest and provides a less redundant representation of $\neg 1 N F$ relations.
r_{1}

A	B	
	C	D
a_{1}	c_{1}	d_{1}
	c_{2}	d_{2}
a_{1}	c_{3}	d_{3}
a_{2}	c_{4}	d_{4}
	c_{1}	d_{2}

A	B	
	C	D
a_{1}	c_{1}	d_{1}
	c_{2}	d_{2}
	c_{3}	d_{3}
a_{2}	c_{4}	d_{4}
	c_{1}	d_{2}

Figure 3.4: Examples for $\neg \mathrm{PNF}$ and PNF relations

Example: The relation r_{I} (Figure 3.4) is a $\neg 1 \mathrm{NF}$ relation that is not in PNF, while r_{1}^{\prime} in the same figure is a $\neg 1 N F$ relation in PNF that represents the same information as r_{l}.

Now let us introduce the definitions for PNF as presented in [6] :

Definition 5.1 Let $X, Y \subseteq E_{R}$ for some relation structure $\mathcal{R}=\langle R, r\rangle$. The functional dependency (FD), $X \rightarrow Y$, holds in r iff for all tuples t_{t}, t_{2} in r, if $t_{1}[X]=t_{2}[X]$ then $t_{1}[Y]=t_{2}[Y]$. (If X or Y is a higher-order name then we mean set equality.)

Definition 5.2 Let $\mathcal{R}=\langle R, r\rangle$ be a relation structure with attribute set E_{R} containing zero-order names A_{1}, \ldots, A_{k} and higher-order names X_{1}, \ldots, X_{l}. \mathcal{R} is in partitioned normal form (PNF) iff

1. $A_{1}, A_{2}, \ldots, A_{k} \rightarrow E_{R}$, and
2. For all $t \in r$ and for all $X_{i}, 1 \leq i \leq l, \mathcal{R}_{t_{i}}=\left\langle X_{i}, t\left[X_{i}\right]\right\rangle$ is in PNF.

In the light of these definitions, a nested relation without any zero-order attributes ($k=0$) is in PNF iff it contains a single tuple (cf. [6], p. 397).

The work of RKS aims to prove that given a relation in PNF, whenever an operator (nest or unnest) is applied, the result is also in PNF. This is true for unnest in any case, and true for nest in some special cases. These are stated as Theorems 5.1 and 5.2 and proved in [6]. For convenience, we state these
theorems now.

Theorem 5.1 The class of PNF relations is closed under unnesting.

Theorem 5.2 The nesting of a PNF relation is in PNF iff in the PNF relation $\mathcal{R}=\langle R, r\rangle, A_{l}, \ldots, A_{k} \rightarrow X_{1}, \ldots, X_{l}$ where A_{l}, \ldots, A_{k} are the zero-order names in E_{R} not being nested and X_{l}, \ldots, X_{l} are the higher-order names in E_{R} not being nested.

3.3 Extended Set Operators

A common point of extended set operators defined in [6], [2], and our work is that they are all recursive formulations. In another approach, two relations are flattened, any standart set operator is applied to these flat relations, and the resultant flat relation is restructured into its original structure. In this approach the property that nest is an inverse operator for unnest is required. (This is not always possible.)

3.3.1 Extended Union

Extended Union of RKS

To be able to take the union of two structures, the schemes R_{1} and R_{2} of these structures must be equal. We do not need restructuring, i.e., the scheme of the resultant structure is also equal to R_{1} and R_{2}. The extended union is defined by RKS as follows:

Let X range over the zero-order names in $E_{R_{1}}$ and Y range over the higherorder names in $E_{R_{1}}$. Then,

$$
\begin{aligned}
r_{1} \cup^{e} r_{2}=\{ & t \\
& \left(\exists t_{1} \in r_{1}, \exists t_{2} \in r_{2}:\right. \\
& \left.\left(\forall X, Y \in E_{R_{1}}: t[X]=t_{1}[X]=t_{2}[X] \wedge t[Y]=\left(t_{1}[Y] \cup^{e} t_{2}[Y]\right)\right)\right) \\
& \vee\left(t \in r_{1} \wedge\left(\forall t^{\prime} \in r_{2}:\left(\forall X \in E_{R_{1}}: t[X] \neq t^{\prime}[X]\right)\right)\right) \\
& \left.\vee\left(t \in r_{2} \wedge\left(\forall t^{\prime} \in r_{1}:\left(\forall X \in E_{R_{1}}: t[X] \neq t^{\prime}[X]\right)\right)\right)\right\}
\end{aligned}
$$

This definition of [6] should be corrected as follows:
r_{1}

r_{2}

Figure 3.5: Purely hierarchical relations

$$
r_{1} \cup^{e} r_{2}
$$

$$
\mu_{B}\left(\mu_{D}\left(r_{1} \cup^{e} r_{2}\right)\right)
$$

A	B		
	C	D	
		E	F
a_{1}	c_{1}	e_{1}	f_{1}
		e_{2}	f_{2}
		e_{7}	f_{7}
	c_{2}	e_{3}	f_{3}
	c_{4}	e_{4}	f_{4}
a_{2}	c_{3}	e_{4}	f_{4}
a_{3}	c_{5}	e_{5}	f_{5}

A	C	E	F
a_{1}	c_{1}	e_{1}	f_{1}
a_{1}	c_{1}	e_{2}	f_{2}
a_{1}	c_{1}	e_{7}	f_{7}
a_{1}	c_{2}	e_{3}	f_{3}
a_{1}	c_{4}	e_{4}	f_{4}
a_{2}	c_{3}	e_{4}	f_{4}
a_{3}	c_{5}	e_{5}	f_{5}

Figure 3.6: Extended union of r_{1} and r_{2}

$$
\begin{aligned}
r_{1} \cup^{e} r_{2}=\{ & \mid\left(\exists t_{1} \in r_{1}, \exists t_{2} \in r_{2}:\right. \\
& \left.\left(\forall X, Y \in E_{R_{1}}: t[X]=t_{1}[X]=t_{2}[X] \wedge t[Y]=\left(t_{1}[Y] \cup^{e} t_{2}[Y]\right)\right)\right) \\
& \vee\left(t \in r_{1} \wedge\left(\forall t^{\prime} \in r_{2}:\left(\exists X \in E_{R_{1}}: t[X] \neq t^{\prime}[X]\right)\right)\right) \\
& \left.\vee\left(t \in r_{2} \wedge\left(\forall t^{\prime} \in r_{1}:\left(\exists X \in E_{R_{1}}: t[X] \neq t^{\prime}[X]\right)\right)\right)\right\}
\end{aligned}
$$

The examples of extended union in [6] are interpreted with respect to this corrected definition. If they were interpreted with respect to the original RKS definition, it would not be possible to obtain the results in [6]. In the following examples the corrected extended union definition is applied to the relations r_{1} and r_{2} in Figure 3.5. The result $r_{1} \cup^{e} r_{2}$ and the flat form of this result $\mu_{B}\left(\mu_{D}\left(r_{l} \cup^{c} r_{2}\right)\right)$ are shown in Figure 3.6 . If we compare the flattened result with the desired-result that is found in Figure 3.7, we see that they are equal.

$$
\mu_{B}\left(\mu_{D}\left(r_{1}\right)\right) \quad \mu_{B}\left(\mu_{D}\left(r_{2}\right)\right) \quad \mu_{B}\left(\mu_{D}\left(r_{1}\right)\right) \cup \mu_{B}\left(\mu_{D}\left(r_{2}\right)\right)
$$

A	C	E	F
a_{1}	c_{1}	e_{1}	f_{1}
a_{1}	c_{1}	e_{2}	f_{2}
a_{1}	c_{2}	e_{3}	f_{3}
a_{2}	c_{3}	e_{4}	f_{4}

A	C	E	F
a_{1}	c_{1}	e_{1}	f_{1}
a_{1}	c_{1}	e_{7}	f_{7}
a_{1}	c_{4}	e_{4}	f_{4}
a_{3}	c_{5}	e_{5}	f_{5}

A	C	E	F
a_{1}	c_{1}	e_{1}	f_{1}
a_{1}	c_{1}	e_{2}	f_{2}
a_{1}	c_{1}	e_{7}	f_{7}
a_{1}	c_{2}	e_{3}	f_{3}
a_{1}	c_{4}	e_{4}	f_{4}
a_{2}	c_{3}	e_{4}	f_{4}
a_{3}	c_{5}	e_{5}	f_{5}

Figure 3.7: The desired-result

Although it is not mentioned in [6], the extended union operator produces correct results for only nested relations that are purely hierarchical. A purely hierarchical relation is a nested relation with n nesting levels, $n \in \mathrm{~N}^{+}$, for all nesting depths $i, 1 \leq i \leq n,\left|H A_{i}\right|=1$, where $H A_{i}$ is the set of higher-order attributes in the relation structure of the $i^{\text {th }}$ nesting-level. If a nested relation is not purely hierarchical (i.e., if it contains more than one higher-order attributes in at least one of the nesting levels), the extended union operator introduces some irrelevant tuples.

Example: Let us show the validity of our last remark with an example. r_{1}, r_{2}, $r_{1} \cup^{e} r_{2}, \quad \mu_{X}\left(\mu_{Y}\left(r_{1} \cup^{e} r_{2}\right)\right), \quad \mu_{X}\left(\mu_{Y}\left(r_{1}\right)\right), \quad \mu_{X}\left(\mu_{Y}\left(r_{2}\right)\right), \quad$ and $\quad \mu_{X}\left(\mu_{Y}\left(r_{1}\right)\right)$ $\cup \mu_{X}\left(\mu_{Y}\left(r_{2}\right)\right)$ are shown in Figures 3.8, 3.9, and 3.10. $\mu_{X}\left(\mu_{Y}\left(r_{1} \cup^{e} r_{2}\right)\right)$ includes some irrelevant tuples, e.g., $\left\langle a_{2} b_{7} k_{7} c_{3} d_{3}\right\rangle$ and $\left.<a_{2} b_{8} k_{8} c_{2} d_{2}\right\rangle$, which are neither in $\mu_{X}\left(\mu_{Y}\left(r_{1}\right)\right)$ nor in $\mu_{X}\left(\mu_{Y}\left(r_{2}\right)\right)$. As a result, the extended union operator of [6] is not information equivalent.

The class of PNF relations is closed under extended union of [6] which is stated as a theorem (Theorem 6.1) in [6]. This theorem states that the structure $\mathcal{R}_{3}=\left\langle R, r_{3}\right\rangle$ is in PNF, given that the structures $\mathcal{R}_{1}=\left\langle R, r_{I}\right\rangle$ and $\left.\mathcal{R}_{2}=<R, r_{2}\right\rangle$ are in PNF. We think that the PNF restriction on the resultant structure makes the extended union definition non information equivalent. Dropping this restriction on the resultant relation structures provides us with a new definition for extended union. The class of PNF relations is not closed under the new extended union.
r_{1}

A	X			Y	
	B	K	C	D	
a_{1}	b_{1}	k_{1}	c_{1}	d_{1}	
	b_{2}	k_{2}			
a_{2}	b_{1}	k_{1}	c_{1}	d_{1}	
	b_{7}	k_{7}	c_{2}	d_{2}	

r_{2}

A	X		Y	
	B	K	C	D
a_{2}	b_{1}	k_{1}	c_{1}	d_{1}
	b_{8}	k_{8}	c_{3}	d_{3}
a_{4}	b_{4}	k_{4}	c_{4}	d_{4}

Figure 3.8: Examples for \neg purely hierarchical relations

$r_{1} \cup^{e} r_{2}$			$\mu_{X}\left(\mu_{Y}\left(r_{1} \cup^{e} r_{2}\right)\right)$				
			A	B	K	C	D
			a_{1}	b_{1}	k_{1}	c_{1}	d_{1}
A	X	Y	a_{1}	b_{2}	k_{2}	c_{1}	d_{1}
	$\begin{array}{\|l\|l\|} \hline \mathrm{B} & \mathrm{~K} \\ \hline \end{array}$	$\begin{array}{\|l\|l\|} \hline \mathrm{C} & \mathrm{D} \\ \hline \end{array}$	a_{2}	b_{1}	k_{1}	c_{1}	d_{1}
a_{1}	$\begin{array}{ll} \hline b_{1} & k_{1} \\ b_{2} & k_{2} \end{array}$	$c_{1} d_{1}$	a_{2}	b_{1}	k_{1}	c_{2}	d_{2}
			a_{2}	b_{1}	k_{1}	c_{3}	d_{3}
a_{2}	$\begin{array}{ll} b_{1} & k_{1} \\ b_{7} & k_{7} \\ b_{8} & k_{8} \\ \hline \end{array}$	$\begin{array}{ll} c_{1} & d_{1} \\ c_{2} & d_{2} \\ c_{3} & d_{3} \end{array}$	a_{2}	b_{7}	k_{7}	c_{1}	d_{1}
			a_{2}	b_{7}	k_{7}	c_{2}	d_{2}
			a_{2}	b_{7}	k_{7}	c_{3}	d_{3}
a_{4}	$b_{4} k_{4}$	c_{4} d_{4}	a_{2}	b_{8}	k_{8}	c_{1}	d_{1}
			a_{2}	b_{8}	k_{8}	c_{2}	d_{2}
			a_{2}	b_{8}	k_{8}	c_{3}	d_{3}
			a_{4}	b_{4}	k_{4}	c_{4}	d_{4}

Figure 3.9: Extended union of r_{1} and r_{2}

$\mu_{X}\left(\mu_{Y}\left(r_{1}\right)\right)$					$\mu_{X}\left(\mu_{Y}\left(r_{2}\right)\right)$					$\mu_{X}\left(\mu_{Y}\left(r_{1}\right)\right) \cup \mu_{X}\left(\mu_{Y}\left(r_{2}\right)\right)$					
										A	B	K	C	D	
										a_{1}	b_{1}	k_{1}	c_{1}	d_{1}	
A	B	K	C	D	A	B	K	C	D	a_{1}	b_{2}	k_{2}	c_{1}	d_{1}	
a_{1}	b_{1}	k_{1}	c_{1}	d_{1}	a_{2}	b_{1}	k_{1}	c_{1}	d_{1}	a_{2}	b_{1}	k_{1}	c_{1}	d_{1}	
a_{1}	b_{2}	k_{2}	c_{1}	d_{1}	a_{2}	${ }^{b_{1}}$	k_{1}	c_{3}	${ }^{1}$	a_{2}	b_{1}	k_{1}	c_{2}	d_{2}	
a_{2}	b_{1}	k_{1}	c_{1}	d_{1}	$\frac{a_{2}}{a_{2}}$	b_{8}	k_{8}	c_{3}	d_{1}	a_{2}	b_{1}	k_{1}	c_{3}	d_{3}	
a_{2}	b_{1}	k_{1}	c_{2}	d_{2}	a_{2}	b_{8}	k_{8}	c_{3}	${ }^{1}$	a_{2}	b_{7}	k_{7}	c_{1}	d_{1}	
a_{2}	b_{7}	k_{7}	c_{1}	d_{1}	$\frac{a_{2}}{a_{4}}$	b_{4}	k_{4}	c_{4}	${ }_{4}$	a_{2}	b_{7}	k_{7}	c_{2}	d_{2}	
a_{2}	b_{7}	k_{7}	c_{2}	d_{2}	a_{4}	${ }_{4}$	${ }_{4}$	c_{4}	${ }_{4}$	a_{2}	b_{8}	k_{8}	c_{1}	d_{1}	
										a_{2}	b_{8}	k_{8}	c_{3}	d_{3}	
										a_{4}	b_{4}	k_{4}	c_{4}	d_{4}	

Figure 3.10: The desired-result

$r_{1} \cup^{e} r_{2(1)}$				$r_{1} \cup^{e} r_{2(2)}$				
A			Y	A	X		Y	
	B	K	C\|l		B	K		D
a_{1}	$\begin{aligned} & b_{1} \\ & b_{2} \\ & \hline \end{aligned}$	$\begin{aligned} & k_{1} \\ & k_{2} \end{aligned}$	$\begin{array}{ll}c_{1} & d_{1}\end{array}$	a_{1}	b_{1} b_{2}	k_{1} k_{2}		d_{1}
a_{2}	b_{1}		$\begin{array}{ll} c_{1} & d_{1} \\ c_{2} & d_{2} \end{array}$	a_{2}	b_{1} b_{7}	k_{1} k_{7}		d_{2}
			$c_{3} c^{c_{3}}$	a_{2}	$\overline{b_{1}}$	k_{1}		d_{3}
a_{2}	$b_{7} \quad k_{7}$		$\begin{array}{ll}c_{1} & d_{1}\end{array}$		b_{8}	k_{8}		
			$c_{2} \quad d_{2}$	a_{2}	b_{1}	k_{1}		d_{1}
a_{2}		k_{8}	$\begin{array}{ll} c_{1} & d_{1} \\ c_{3} & d_{3} \end{array}$	a_{2} a_{2}		k_{7} k_{8}		
a_{4}	b_{4}	k_{4}	$c_{4} l_{4} d_{4}$	a_{4}	b_{4}	k_{4}	c_{4}	d_{4}

Figure 3.11: $r_{1} \cup^{e} r_{2(1)}$ and $r_{1} \cup^{e} r_{2(2)}$
$\mu_{X}\left(\mu_{Y}\left(r_{1} \cup^{e} r_{2}\right)\right)_{(1)} \quad \quad \mu_{X}\left(\mu_{Y}\left(r_{1} \cup^{e} r_{2}\right)\right)_{(2)}$

A	B	K	C	D
a_{1}	b_{1}	k_{1}	c_{1}	d_{1}
a_{1}	b_{2}	k_{2}	c_{1}	d_{1}
a_{2}	b_{1}	k_{1}	c_{1}	d_{1}
a_{2}	b_{1}	k_{1}	c_{2}	d_{2}
a_{2}	b_{1}	k_{1}	c_{3}	d_{3}
a_{2}	b_{7}	k_{7}	c_{1}	d_{1}
a_{2}	b_{7}	k_{7}	c_{2}	d_{2}
a_{2}	b_{8}	k_{8}	c_{1}	d_{1}
a_{2}	b_{8}	k_{8}	c_{3}	d_{3}
a_{4}	b_{4}	k_{4}	c_{4}	d_{4}

A	B	K	C	D
a_{1}	b_{1}	k_{1}	c_{1}	d_{1}
a_{1}	b_{2}	k_{2}	c_{1}	d_{1}
a_{2}	b_{1}	k_{1}	c_{2}	d_{2}
a_{2}	b_{7}	k_{7}	c_{2}	d_{2}
a_{2}	b_{1}	k_{1}	c_{3}	d_{3}
a_{2}	b_{8}	k_{8}	c_{3}	d_{3}
a_{2}	b_{1}	k_{1}	c_{1}	d_{1}
a_{2}	b_{7}	k_{7}	c_{1}	d_{1}
a_{2}	b_{8}	k_{8}	c_{1}	d_{1}
a_{4}	b_{4}	k_{4}	c_{4}	d_{4}

Figure 3.12: Flat forms of $r_{1} \cup^{e} r_{2(1)}$ and $r_{1} \cup^{e} r_{2(2)}$

Extended Union of AB

Before defining the new extended union, let us go through the extended union of [2].

Let f be a format and I, J two instances over f. Then the union of I and J is the instance over f, denoted $I \oplus J$, defined by:

1. If $f \equiv X$, where X is nonempty, then $I \oplus J=I \cup J$, and
2. If $f \equiv X\left(f_{1}\right)^{*} \ldots\left(f_{n}\right)^{*}$, where f_{1}, \ldots, f_{n} are nonempty, then:

$$
\begin{aligned}
I \oplus J & =\left\{\begin{array}{l|l}
\left\langle u\left(I_{1} \oplus J_{1}\right) \ldots\left(I_{n} \oplus J_{n}\right)>\right. & \left.\begin{array}{c}
<u I_{1} \ldots I_{n}>\in I \text { and } \\
<u J_{1} \ldots J_{n}>\in J
\end{array}\right\} \\
& \cup\left\{\begin{array}{l|l}
<u I_{1} \ldots I_{n}> & <u I_{1} \ldots I_{n}>\in I, \text { and } \\
\forall J_{1} \ldots J_{n},<u J_{1} \ldots J_{n}>\notin J
\end{array}\right\} \\
& \cup\left\{\begin{array}{l|c}
<u J_{1} \ldots J_{n}> & \begin{array}{c}
<u J_{1} \ldots J_{n}>\in J \text { and } \\
\forall I_{1} \ldots I_{n},<u I_{I} \ldots I_{n}>\notin I
\end{array}
\end{array}\right\}
\end{array}\right.
\end{aligned}
$$

The extended union of [2] is similar to that of [6] and produces the same results with the previous examples; the tuples that agree on their atomic attributes are combined to form a new tuple. It produces correct results only for purely hierarchical relations (and therefore it is not information equivalent).

The New Extended Union

In the following extended union definition, $H A$ is the set of all higher-order names in E_{R}, and $H A_{Y_{i}}$ is the set of all higher-order names in $E_{Y_{i}} . X$ ranges over the zero-order names, while Y ranges over the higher-order names in E_{R}. Given two relation structures $\mathcal{R}_{1}=\left\langle R, r_{1}\right\rangle$ and $\mathcal{R}_{2}=\left\langle R, r_{2}\right\rangle$ in PNF, the extended union with the structure $\mathcal{R}_{3}=<R, r_{1} \cup^{e} r_{2}>$ is defined as follows at the instance level:

$$
\begin{aligned}
& r_{1} \cup^{e} r_{2}=\{ \left\{t \mid\left(\exists t_{l} \in r_{1}, \exists t_{2} \in r_{2}:\right.\right. \\
&\left(\forall X, Y \in E_{R_{1}},|H A| \leq 1: t[X]=t_{1}[X]=t_{2}[X]\right. \\
&\left.\left.\wedge t[Y]=\left(t_{1}[Y] \cup^{e} t_{2}[Y]\right)\right)\right) \\
& V\left(\exists t_{1} \in r_{1}, \exists t_{2} \in r_{2}:\right. \\
& \quad\left(\forall X, \exists Y_{i} \in E_{R_{1}}, 1 \leq i \leq|H A|,|H A|>1:\left(\exists Y_{j} \in\left(H A-\left\{Y_{i}\right\}\right):\right.\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.t_{1}\left[Y_{j}\right] \neq t_{2}\left[Y_{j}\right]\right) \wedge t[X]=t_{1}[X]=t_{2}[X] \\
& \wedge t\left[Y_{i}\right]=\left\{t_{\mathbf{y}} \mid\left(\exists t_{y_{i}}^{\prime} \in t_{l}\left[Y_{i}\right]: t_{y}=t_{y_{i}}^{\prime} \wedge\left(\forall t_{y_{i}}^{\prime \prime} \in t_{2}\left[Y_{i}\right]:\right.\right.\right. \\
& \left.\left.\left(\exists X \in E_{Y_{i}}: t_{y_{i}}^{\prime}[X] \neq t_{y_{i}}^{\prime \prime}[X]\right)\right)\right\} \\
& \left.\left.\wedge t\left[H A-\left\{Y_{i}\right\}\right]=t_{1}\left[H A-\left\{Y_{i}\right\}\right]\right)\right) \\
& \bigvee\left(\exists t_{1} \in r_{1}, \exists t_{2} \in r_{2}:\right. \\
& \left(\forall X, \exists Y_{i} \in E_{R_{i}}, 1 \leq i \leq|H A|,|H A|>1:\left(\exists Y_{j} \in\left(H A-\left\{Y_{i}\right\}\right):\right.\right. \\
& \left.t_{1}\left[Y_{j}\right] \neq t_{2}\left[Y_{j}\right]\right) \wedge t[X]=t_{1}[X]=t_{2}[X] \\
& \wedge t\left[Y_{i}\right]=\left\{t_{\mathbf{y}} \mid\left(\exists t_{y_{i}}^{\prime} \in t_{2}\left[Y_{i}\right]: t_{\mathbf{y}}=t_{\mathbf{y}_{i}}^{\prime} \wedge\left(\forall t_{y_{i}}^{\prime \prime} \in t_{i}\left[Y_{i}\right]:\right.\right.\right. \\
& \left.\left.\left(\exists X \in E_{Y_{i}}: t_{y_{i}}^{\prime}[X] \neq t_{y_{i}}^{\prime \prime}[X]\right)\right)\right\} \\
& \left.\left.\wedge t\left[H A-\left\{Y_{i}\right\}\right]=t_{2}\left[H A-\left\{Y_{i}\right\}\right]\right)\right) \\
& \bigvee\left(\exists t_{1} \in r_{1}, \exists t_{2} \in r_{2}:\right. \\
& \left(\forall X, \exists Y_{i} \in E_{R_{i}}, 1 \leq i \leq|H A|,|H A|>1:\left(\exists Y_{j} \in\left(H A-\left\{Y_{i}\right\}\right):\right.\right. \\
& \left.t_{1}\left[Y_{j}\right] \neq t_{2}\left[Y_{j}\right]\right) \wedge t[X]=t_{1}[X]=t_{2}[X] \wedge X_{Y_{i}}={ }_{\text {def }}\left\{X \mid X \in E_{Y_{i}}\right\} \\
& \wedge t\left[X_{Y_{i}}\right]=\left\{t_{y_{i}} \mid\left(\exists t_{y_{i}}^{\prime} \in t_{l}\left[Y_{i}\right], \exists t_{y_{i}}^{\prime \prime} \in t_{2}\left[Y_{i}\right]:\right.\right. \\
& \left.\left.\left(\forall X \in E_{Y_{i}}: t_{y_{i}}[X]=t_{y_{i}}^{\prime}[X]=t_{y_{i}}^{\prime \prime}[X]\right)\right)\right\} \\
& \wedge H A={ }_{\text {def }}\left(H A-\left\{Y_{i}\right\}\right) \cup H A_{Y_{i}} \\
& \wedge\left[\left(|H A|>1: t[H A] \in\left(t_{1}[H A] \cup^{e} t_{2}[H A]\right)\right)\right. \\
& \left.\left.\left.\vee\left(|H A| \leq 1: t[H A]=\left(t_{1}[H A] \cup^{c} t_{2}[H A]\right)\right)\right]\right)\right) \\
& \bigvee\left(\exists t_{1} \in r_{1}, \exists t_{2} \in r_{2}:\right. \\
& \left(\forall X \in E_{R_{i}}, 1 \leq i \leq|H A|,|H A|>1: t[X]=t_{I}[X]=t_{2}[X]\right. \\
& \wedge\left(\forall Y_{j} \in\left(H A-\left\{Y_{i}\right\}\right): t_{l}\left[Y_{j}\right]=t_{2}\left[Y_{j}\right] \wedge t\left[Y_{j}\right]=t_{l}\left[Y_{j}\right]\right) \\
& \left.\left.\wedge t\left[Y_{i}\right]=\left(t_{1}\left[Y_{i}\right] \cup^{e} t_{2}\left[Y_{i}\right]\right)\right)\right) \\
& \bigvee\left(t \in r_{1} \wedge\left(\forall t^{\prime} \in r_{2}:\left(\exists X \in E_{R_{1}}: t[X] \neq t^{\prime}[X]\right)\right)\right) \\
& \left.\bigvee\left(t \in r_{2} \wedge\left(\forall t^{\prime} \in r_{1}:\left(\exists X \in E_{R_{1}}: t[X] \neq t^{\prime}[X]\right)\right)\right)\right\}
\end{aligned}
$$

Example: When the new extended union operator is applied to the relations r_{1} and r_{2} (Figure 3.8), it is possible to obtain the results $r_{1} \cup^{c} r_{2(1)}$ and $r_{1} \cup^{c} r_{2(2)}$ (Figure 3.11). If we compare the flattened forms $\mu_{X}\left(\mu_{Y}\left(r_{1} \cup^{e} r_{2}\right)\right)_{(1)}$ and $\mu_{X}\left(\mu_{Y}\left(r_{1} \cup^{e} r_{2}\right)\right)_{(2)}$ (Figure 3.11) of $r_{1} \cup^{e} r_{2(1)}$ and $r_{1} \cup^{e} r_{2(2)}$ with the desiredresult (Figure 3.10), we notice that these three are equal. The difference between $r_{1} \cup^{e} r_{2(1)}$ and $r_{1} \cup^{e} r_{2(2)}$ is because of different permutations of Y_{i} 's in the above extended union definition. Y_{i} 's can be selected randomly among the
higher-order names in E_{R}. We have n permutations of Y_{i} 's with n higher-order names (that is, $r_{1} \cup^{e} r_{2}$ can be represented in n different formats). This is an expected result once we remember that $r_{1} \cup^{e} r_{2}$ is not in PNF and nest is not an inverse operator for unnest in this case.

Theorem 3.1 The extended union operator is information equivalent.
Proof The proof has several cases:

1. $|H A|=0$ (flat relations).
2. nesting-depth $=n\left(\in \mathrm{~N}^{+}\right)$, for all nesting-depth, $i, 1 \leq i \leq n:|H A|=1$ (purely hierarchical relations).
3. $|H A|>1$, and each higher-order attribute Y in E_{R} is a flat relation.
4. $|H A|=n\left(\in \mathrm{~N}^{+}\right)$and $\exists Y \in E_{R}:\left|H A_{Y}\right|=m\left(\in \mathrm{~N}^{+}\right)$.
(1) In this case r_{1} and r_{2} are flat relations, so we show that $r_{1} \cup^{e} r_{2}=r_{1} \cup r_{2}$.
\subseteq part: If $t \in r_{1} \cup^{e} r_{2}$, then t satisfies one of the following three disjuncts of the U^{e} definition:
(a) $\left(t \in r_{1} \wedge\left(\forall t^{\prime} \in r_{2}:\left(\exists X \in E_{R 1}: t[X] \neq t^{\prime}[X]\right)\right)\right)$
(b) $\left(t \in r_{2} \wedge\left(\forall t^{\prime} \in r_{1}:\left(\exists X \in E_{R 1}: t[X] \neq t^{\prime}[X]\right)\right)\right)$
(c) $\left(\exists t_{1} \in r_{1}, \exists t_{2} \in r_{2}:\left(\forall X, Y \in E_{R 1},|H A| \leq 1: t[X]=t_{1}[X]=t_{2}[X]\right.\right.$
$\left.\left.\wedge t[Y]=\left(t_{1}[Y] \cup^{e} t_{2}[Y]\right)\right)\right)$
(since $|H A|=0$, there is no higher-order attribute and there is no $t[Y]$)

If t satisfies the first disjunct, then $t \in r_{1}$ only, the second, then $t \in r_{2}$ only, and the third, then $t \in r_{1}$, or r_{2}, or in both. It is obvious that $t \in r_{1} \cup r_{2}$ in any of these three cases, therefore $r_{1} \cup^{e} r_{2} \subseteq r_{1} \cup r_{2}$.

〇 part: Let $t \in r_{1} \cup r_{2}$, then t is either in:
(a) r_{1} only, or
(b) r_{2} only, or
(c) r_{1} and r_{2}.

Since three disjuncts mentioned in the \subseteq part of the proof include all those tuples either only in r_{1}, or only in r_{2}, or in both, a tuple t in $r_{1} \cup r_{2}$ will be in $r_{1} \cup^{e} r_{2}$. Therefore $r_{1} \cup^{e} r_{2} \supseteq r_{1} \cup r_{2}$.
(2) In this case we show that

$$
\begin{aligned}
& \mu_{Y_{n}}\left(\mu_{Y_{n-1}}\left(\ldots\left(\mu_{Y_{1}}\left(r_{1} \cup^{e} r_{2}\right)\right) \ldots\right)\right) \\
& \quad=\mu_{Y_{n}}\left(\mu_{Y_{n-1}}\left(\ldots\left(\mu_{Y_{1}}\left(r_{1}\right)\right) \ldots\right)\right) \cup \mu_{Y_{n}}\left(\mu_{Y_{n-1}}\left(\ldots\left(\mu_{Y_{1}}\left(r_{2}\right)\right) \ldots\right)\right)
\end{aligned}
$$

where Y_{i} is the higher-order attribute of the $i^{\text {th }}$ nesting level. The proof is by induction on the nesting-depth n.

Basis: We show that $\mu_{Y}\left(r_{1} \cup^{e} r_{2}\right)=\mu_{Y}\left(r_{1}\right) \cup \mu_{Y}\left(r_{2}\right)$, where $n=1$ and Y $=X_{1} \ldots X_{m}$.

〇 part: We show that if $t \in \mu_{Y}\left(r_{1}\right) \cup \mu_{Y}\left(r_{2}\right)$, then $t \in \mu_{Y}\left(r_{1} \cup^{e} r_{2}\right) . \mu_{Y}\left(r_{1}\right)$ and $\mu_{Y}\left(r_{2}\right)$ are flat relations, so t is either only in $\mu_{Y}\left(r_{1}\right)$, or only in $\mu_{Y}\left(r_{2}\right)$, or in both, and it's either unnested from some u_{1} in r_{1}, or some u_{2} in r_{2}, or some u_{3} in both. We can say that $t\left[X_{1} \ldots X_{m}\right] \in u_{1}[Y] \vee t\left[X_{1} \ldots X_{m}\right] \in u_{2}[Y]$. In the extended union of r_{1} and r_{2}, u_{1} and u_{2} will be included either as two distinct tuples, or as a tuple u, where $u[Y]=u_{1}[Y] \cup^{e} u_{2}[Y]$. Obviously t will be included in $\mu_{Y}\left(r_{1} \cup^{e} r_{2}\right)$ in any case.
\subseteq part: We show that if $t \in \mu_{Y}\left(r_{1} \cup^{e} r_{2}\right)$, then $t \in \mu_{Y}\left(r_{1}\right) \cup \mu_{Y}\left(r_{2}\right)$. If we partition $\mu_{Y}\left(r_{1} \cup^{e} r_{2}\right)$ on $E_{R}-X_{1} \ldots X_{m}$ and obtain the partitions u_{1}, \ldots, u_{k}, then we must show that all tuples $t_{1}, \ldots t_{n}$ in any partition of $\mu_{Y}\left(r_{1} \cup^{e} r_{2}\right)$ are in $\mu_{Y}\left(r_{1}\right) \cup \mu_{Y}\left(r_{2}\right)$. The tuples t_{1}, \ldots, t_{n} are obtained by unnesting the set of tuples u_{1}, \ldots, u_{k}, each of which is a partition on $E_{R}-Y$ in $r_{1} \cup^{e} r_{2}$. This means that for all $i, 1 \leq i \leq n, \exists j, 1 \leq j \leq k$, such that $t_{i}\left[X_{1} \ldots X_{m}\right] \in u_{j}[Y]$, and $\bigcup_{j=1}^{k} u_{j}[Y]=\left\{t_{i}\left[X_{1} \ldots X_{m}\right] \mid 1 \leq i \leq n\right\}$. Each u_{j} is created by the extended union of two tuples, $u_{j}{ }^{1} \in r_{1}$ and $u_{j}{ }^{2} \in r_{2}$. Since Y is a flat relation, $\bigcup_{j=1}^{k} u_{j}[Y] \in\left(\bigcup_{j=1}^{k} u_{j}^{1}[Y] \vee \bigcup_{j=1}^{k} u_{j}^{2}[Y]\right)$. When the tuples $u_{j}{ }^{1}$ and $u_{j}{ }^{2}$ are unnested into tuples $v_{l}{ }^{1},\left(1 \leq i \leq p_{1}\right)$ and $v_{l}{ }^{2},\left(1 \leq l \leq p_{2}\right)$, we have $\bigcup_{j=1}^{k} u_{j}{ }^{1}[Y]$ $=\left\{v_{l}^{1}\left[X_{1} \ldots X_{m}\right] \mid 1 \leq l \leq p_{1}\right\}$ and $\bigcup_{j=1}^{k} u_{j}^{2}[Y]=\left\{v_{l}^{2}\left[X_{1} \ldots X_{m}\right] \mid 1 \leq l \leq p_{2}\right\}$, and we can say $\left\{t_{i}\left[X_{1} \ldots X_{m}\right] \mid 1 \leq i \leq n\right\} \subseteq\left\{v_{l}{ }^{1}\left[X_{1} \ldots X_{m}\right] \mid l \leq l \leq p_{1}\right\} \cup$ $\left\{v_{l}^{2}\left[X_{1} \ldots X_{m}\right] \mid 1 \leq l \leq p_{2}\right\}$. Therefore $\mu_{Y}\left(r_{1}\right) \cup \mu_{Y}\left(r_{2}\right)$ contains all the tuples

$$
t_{1}, \ldots, t_{n} \text { in } \mu_{Y}\left(r_{1} \cup^{e} r_{2}\right)
$$

Induction Step: By the induction hypothesis, we know that

$$
\begin{aligned}
& \mu_{Y_{n-1}}\left(\mu_{Y_{n-2}}\left(\ldots\left(\mu_{Y_{1}}\left(r_{1} \cup^{e} r_{2}\right)\right) \ldots\right)\right) \\
& \quad=\mu_{Y_{n-1}}\left(\mu_{Y_{n-2}}\left(\ldots\left(\mu_{Y_{1}}\left(r_{1}\right)\right) \ldots\right)\right) \cup^{e} \mu_{Y_{n-1}}\left(\mu_{Y_{n-2}}\left(\ldots\left(\mu_{Y_{1}}\left(r_{2}\right)\right) \ldots\right)\right)
\end{aligned}
$$

for the first ($n-1$) nesting levels, where Y_{i} is the higher-order attribute at the $i^{\text {th }}$ nesting level, $1 \leq i \leq n-1$. We now show that this is also true for n nesting levels. If we unnest both sides of the previous equation with Y_{n}, we obtain

$$
\begin{aligned}
& \mu_{Y_{n}}\left(\mu_{Y_{n-1}}\left(\ldots\left(\mu_{Y_{1}}\left(r_{1} \cup^{e} r_{2}\right)\right) \ldots\right)\right) \\
& \quad=\mu_{Y_{n}}\left[\mu_{Y_{n-1}}\left(\ldots\left(\mu_{Y_{1}}\left(r_{1}\right)\right) \ldots\right) \cup^{e} \mu_{Y_{n-1}}\left(\ldots\left(\mu_{Y_{1}}\left(r_{2}\right)\right) \ldots\right)\right]
\end{aligned}
$$

Let $r_{1}^{\prime}=\mu_{Y_{n-1}}\left(\ldots\left(\mu_{Y_{1}}\left(r_{1}\right)\right) \ldots\right)$ and $r_{2}^{\prime}=\mu_{Y_{n-1}}\left(\ldots\left(\mu_{Y_{1}}\left(r_{2}\right)\right) \ldots\right)$,
now we have

$$
\mu_{Y_{n}}\left(\mu_{Y_{n-1}}\left(\ldots\left(\mu_{Y_{1}}\left(r_{1} \cup^{e} r_{2}\right)\right) \ldots\right)\right)=\mu_{Y_{n}}\left(r_{1}^{\prime} \cup^{e} r_{2}^{\prime}\right) .
$$

Since r_{1}^{\prime} and r_{2}^{\prime} are relations whose nesting-depths are $1, \mu_{Y_{n}}\left(r_{1}^{\prime} U^{e} r_{2}^{\prime}\right)=$ $\mu_{Y_{n}}\left(r_{1}{ }^{\prime}\right) \cup \mu_{Y_{n}}\left(r_{2}^{\prime}\right)$, which is proved to be true in the basis step. If we substitute r_{1}^{\prime} and r_{2}^{\prime} by their equivalents, we will have

$$
\begin{aligned}
& \mu_{Y_{n}}\left(\mu_{Y_{n-1}}\left(\ldots\left(\mu_{Y_{1}}\left(r_{1} \cup^{e} r_{2}\right)\right) \ldots\right)\right) \\
& \quad=\mu_{Y_{n}}\left(\mu_{Y_{n-1}}\left(\ldots\left(\mu_{Y_{1}}\left(r_{1}\right)\right) \ldots\right)\right) \cup \mu_{Y_{n}}\left(\mu_{Y_{n-1}}\left(\ldots\left(\mu_{Y_{1}}\left(r_{2}\right)\right) \ldots\right)\right)
\end{aligned}
$$

(3) In this case we show that

$$
\begin{aligned}
& \mu_{Y_{n}}\left(\mu_{Y_{n-1}}\left(\ldots\left(\mu_{Y_{1}}\left(r_{1} \cup^{e} r_{2}\right)\right) \ldots\right)\right) \\
& \quad=\mu_{Y_{n}}\left(\mu_{Y_{n-1}}\left(\ldots\left(\mu_{Y_{1}}\left(r_{1}\right)\right) \ldots\right)\right) \cup \mu_{Y_{n}}\left(\mu_{Y_{n-1}}\left(\ldots\left(\mu_{Y_{1}}\left(r_{2}\right)\right) \ldots\right)\right)
\end{aligned}
$$

The proof is by induction on the number of the higher-order attributes at the first and only nesting level.

Basis: We show that $\mu_{Y_{1}}\left(\mu_{Y_{2}}\left(r_{1} \cup^{e} r_{2}\right)\right)=\mu_{Y_{1}}\left(\mu_{Y_{2}}\left(r_{1}\right)\right) \cup \mu_{Y_{1}}\left(\mu_{Y_{2}}\left(r_{2}\right)\right)$, where $|H A|=2$ and $Y_{1}=X_{1} \ldots X_{m}, Y_{2}=X_{l} \ldots X_{k}$.

〇 part: We show that if $t \in \mu_{Y_{1}}\left(\mu_{Y_{2}}\left(r_{1}\right)\right) \cup \mu_{Y_{1}}\left(\mu_{Y_{2}}\left(r_{2}\right)\right)$, then $t \in \mu_{Y_{1}}\left(\mu_{Y_{2}}\left(r_{1} \cup^{e}\right.\right.$ $\left.r_{2}\right)$). Since $\mu_{Y_{1}}\left(\mu_{Y_{2}}\left(r_{1}\right)\right)$ and $\mu_{Y_{1}}\left(\mu_{Y_{2}}\left(r_{2}\right)\right)$ are flat relations, t is only in $\mu_{Y_{1}}\left(\mu_{Y_{2}}\left(r_{1}\right.\right.$)), or only in $\mu_{Y_{1}}\left(\mu_{Y_{2}}\left(r_{2}\right)\right)$, or in both. So t is unnested from some $u_{1} \in r_{1}$, or $u_{2} \in r_{2}$, or u_{3} in r_{1} and r_{2}. Then we can say that $\left(t\left[X_{1} \ldots X_{m}\right] \in u_{1}\left[Y_{1}\right] \wedge\right.$ $\left.t\left[X_{l} \ldots X_{k}\right] \in u_{1}\left[Y_{2}\right]\right) \vee\left(t\left[X_{1} \ldots X_{m}\right] \in u_{2}\left[Y_{1}\right] \wedge t\left[X_{l} \ldots X_{k}\right] \in u_{2}\left[Y_{2}\right]\right)$. In the extended union of r_{1} and r_{2}, u_{1} and u_{2} will be included either as two distinct tuples, or as a new tuple (formed by u_{1} and u_{2}). In any case, t is in the unnested form of the tuple, therefore $t \in \mu_{Y_{1}}\left(\mu_{Y_{2}}\left(r_{1} \cup^{e} r_{2}\right)\right)$.
\subseteq part: We show that if $t \in \mu_{Y_{1}}\left(\mu_{Y_{2}}\left(r_{1} \cup^{e} r_{2}\right)\right)$, then $t \in \mu_{Y_{1}}\left(\mu_{Y_{2}}\left(r_{1}\right)\right) \cup$ $\mu_{Y_{1}}\left(\mu_{Y_{2}}\left(r_{2}\right)\right)$. In this case, t must be unnested from some u in $r_{1} U^{e} r_{2}$, and $t \in \mu_{Y_{1}}\left(\mu_{Y_{2}}(u)\right)$. Since $u \in r_{1} \cup^{e} r_{2}, u$ satisfies one of the disjuncts in the U^{e} definition. Each of these disjuncts includes those tuples either only in r_{1}, or only in r_{2}, or in both. Then $\mu_{Y_{1}}\left(\mu_{Y_{2}}(u)\right)$ is either:
(i) $\quad \mu_{Y_{1}}\left(\mu_{Y_{2}}(u)\right) \subseteq \mu_{Y_{1}}\left(\mu_{Y_{2}}\left(r_{1}\right)\right)$, or
(ii) $\quad \mu_{Y_{1}}\left(\mu_{Y_{2}}(u)\right) \subseteq \mu_{Y_{1}}\left(\mu_{Y_{2}}\left(r_{2}\right)\right)$, or
(iii) $\quad \mu_{Y_{1}}\left(\mu_{Y_{2}}(u)\right) \subseteq \mu_{Y_{1}}\left(\mu_{Y_{2}}\left(r_{2}\right)\right)$, and $\mu_{Y_{1}}\left(\mu_{Y_{2}}(u)\right) \subseteq \mu_{Y_{1}}\left(\mu_{Y_{2}}\left(r_{2}\right)\right)$

From (i), (ii), and (iii), $\mu_{Y_{1}}\left(\mu_{Y_{2}}(u)\right) \subseteq \mu_{Y_{1}}\left(\mu_{Y_{2}}\left(r_{1}\right)\right) \cup \mu_{Y_{1}}\left(\mu_{Y_{2}}\left(r_{2}\right)\right.$). Since we know that $t \in \mu_{Y_{1}}\left(\mu_{Y_{2}}(u)\right)$, then $t \in \mu_{Y_{1}}\left(\mu_{Y_{2}}\left(r_{1}\right)\right) \cup \mu_{Y_{1}}\left(\mu_{Y_{2}}\left(r_{2}\right)\right)$.

Induction Step: By the induction hypothesis, we know that

$$
\begin{aligned}
& \mu_{Y_{n-1}}\left(\mu_{Y_{n-2}}\left(\ldots\left(\mu_{Y_{1}}\left(r_{1} \cup^{e} r_{2}\right)\right) \ldots\right)\right) \\
& \quad=\mu_{Y_{n-1}}\left(\mu_{Y_{n-2}}\left(\ldots\left(\mu_{Y_{1}}\left(r_{1}\right)\right) \ldots\right)\right) \cup^{e} \mu_{Y_{n-1}}\left(\mu_{Y_{n-2}}\left(\ldots\left(\mu_{Y_{1}}\left(r_{2}\right)\right) \ldots\right)\right),
\end{aligned}
$$

for the first $(n-1)$ higher-order attributes of E_{R}, where $n \geq 3$. Now we show that this is also true for n :

$$
\begin{aligned}
& \mu_{Y_{n}}\left(\mu_{Y_{n-1}}\left(\ldots\left(\mu_{Y_{1}}\left(r_{1} \cup^{e} r_{2}\right)\right) \ldots\right)\right) \\
& \quad=\mu_{Y_{n}}\left(\mu_{Y_{n-1}}\left(\ldots\left(\mu_{Y_{1}}\left(r_{1}\right)\right) \ldots\right)\right) \cup^{e} \mu_{Y_{n}}\left(\mu_{Y_{n-1}}\left(\ldots\left(\mu_{Y_{1}}\left(r_{2}\right)\right) \ldots\right)\right) .
\end{aligned}
$$

The proof is similar to the induction step of case (2). If $\mu_{Y_{n-1}}\left(\ldots\left(\mu_{Y_{1}}\left(r_{1} \cup^{e}\right.\right.\right.$
$\left.r_{2}\right)$) \ldots) is unnested with Y_{n} and $r_{1}{ }^{\prime}$ and $r_{2}{ }^{\prime}$ are substituted as in case (ii), we obtain,

$$
\mu_{Y_{n}}\left(\mu_{Y_{n-1}}\left(\ldots\left(\mu_{Y_{1}}\left(r_{1} \cup^{e} r_{2}\right)\right) \ldots\right)\right)=\mu_{Y_{n}}\left(r_{1}^{\prime} \cup^{e} r_{2}{ }^{\prime}\right)
$$

Since $r_{1}{ }^{\prime}$ and $r_{2}{ }^{\prime}$ are relations which have one higher-order attribute and one nesting level, $\mu_{Y_{n}}\left(r_{1}^{\prime} \cup^{e} r_{2}^{\prime}\right)=\mu_{Y_{n}}\left(r_{1}^{\prime}\right) \cup \mu_{Y_{n}}\left(r_{2}\right)$, which is proved to be true in the basis of case(2). Therefore

$$
\begin{aligned}
& \mu_{Y_{n}}\left(\mu_{Y_{n-1}}\left(\ldots\left(\mu_{Y_{1}}\left(r_{1} \cup^{e} r_{2}\right)\right) \ldots\right)\right) \\
& \quad=\mu_{Y_{n}}\left(\mu_{Y_{n-1}}\left(\ldots\left(\mu_{Y_{1}}\left(r_{1}\right)\right) \ldots\right)\right) \cup \mu_{Y_{n}}\left(\mu_{Y_{n-1}}\left(\ldots\left(\mu_{Y_{1}}\left(r_{2}\right)\right) \ldots\right)\right) .
\end{aligned}
$$

(4) This is the most general case of a nested relation, viz. a nested relation with n higher-order attributes, each of which is also a nested relation with a finite number of higher-order attributes and nesting levels.

We show that the extended union operator is information equivalent with this kind of relation structures in several steps. Using a recursive procedure, we obtain the most general nested structure and show that the extended union operator is information equivalent to this structure.

Now let the relation structures of r_{1} and r_{2} have $n \in \mathrm{~N}^{+}$higher-order attributes, where each has a relation structure which is equal to that of (1), (2), or (3) and let this new structure be (4.a). To show that extended union is information equivalent in this case, we show that

$$
\begin{aligned}
& \mu_{\left(Y_{n}, Y_{n-1}, \ldots, Y_{1}\right)}\left(\mu_{S_{Y_{n}}}\left(\ldots\left(\mu_{S_{Y_{1}}}\left(r_{1} \cup{ }^{e} r_{2}\right)\right) \ldots\right)\right) \\
= & \mu_{\left(Y_{n}, Y_{n-1}, \ldots, Y_{1}\right)}\left(\mu_{S_{Y_{n}}}\left(\ldots\left(\mu_{S_{Y_{1}}}\left(r_{1}\right)\right) \ldots\right)\right) \cup \mu_{\left(Y_{n}, Y_{n-1}, \ldots, Y_{1}\right)}\left(\mu_{S_{Y_{n}}}\left(\ldots\left(\mu_{S_{Y_{1}}}\left(r_{1}\right)\right) \ldots\right)\right)
\end{aligned}
$$

where $S_{Y_{i}}$ is the unnest sequence (a set of higher-order names in $E_{Y_{i}}$) required to flatten the $i^{\text {th }}$ higher-order attribute in E_{R}.

The proof is by induction on the number of higher-order attributes in E_{R}.

Basis: In this case, $|H A|=1$ and there's only one higher-order attribute in E_{R}. The structure of this higher-order attribute is equal to that of (1),
(2), or (3). Since we've shown that the extended union operator is information equivalent with the structures of (1), (2), and (3), we conclude that

$$
\mu_{Y}\left(\mu_{S_{Y}}\left(r_{1} \cup^{e} r_{2}\right)\right)=\mu_{Y}\left(\mu_{S_{Y}}\left(r_{1}\right)\right) \cup \mu_{Y}\left(\mu_{S_{Y}}\left(r_{2}\right)\right)
$$

Induction Step: By the induction hypothesis we know that

$$
\begin{gathered}
\mu_{\left(Y_{n-1}, Y_{n-2}, \ldots, Y_{1}\right)}\left(\mu_{S_{Y_{n-1}}}\left(\ldots\left(\mu_{S_{Y_{1}}}\left(r_{1} \cup^{e} r_{2}\right)\right) \ldots\right)\right) \\
=\mu_{\left(Y_{n-1}, \ldots, Y_{1}\right)}\left(\mu_{S_{Y_{n-1}}}\left(\ldots\left(\mu_{S_{Y_{1}}}\left(r_{1}\right)\right) \ldots\right)\right) \cup^{e} \mu_{\left(Y_{n-1}, \ldots, Y_{1}\right)}\left(\mu_{S_{Y_{n-1}}}\left(\ldots\left(\mu_{S_{Y_{1}}}\left(r_{2}\right)\right) \ldots\right)\right)
\end{gathered}
$$

for the first $(n-1)$ higher-order attributes of E_{R}. We now show that this is also true for all the higher-order attributes of E_{R}, which is stated as follows:

$$
\begin{gathered}
\mu_{\left(Y_{n}, Y_{n-1}, \ldots, Y_{1}\right)}\left(\mu_{S_{Y_{n}}}\left(\ldots\left(\mu_{S_{Y_{1}}}\left(r_{1} \cup^{e} r_{2}\right)\right) \ldots\right)\right) \\
=\mu_{\left(Y_{n}, \ldots, Y_{1}\right)}\left(\mu_{S_{Y_{n}}}\left(\ldots\left(\mu_{S_{Y_{1}}}\left(r_{1}\right)\right) \ldots\right)\right) \cup^{e} \mu_{\left(Y_{n}, \ldots, Y_{1}\right)}\left(\mu_{S_{Y_{n}}}\left(\ldots\left(\mu_{S_{Y_{1}}}\left(r_{2}\right)\right) \ldots\right)\right)
\end{gathered}
$$

If we nest both sides of the equality introduced by the induction hypothesis with Y_{n} and $S_{Y_{n}}$, we obtain

$$
\begin{gathered}
\mu_{Y_{n}}\left(\mu_{S_{Y_{n}}}\left(\mu_{\left(Y_{n-1}, \ldots, Y_{1}\right)}\left(\mu_{S_{Y_{n-1}}}\left(\ldots\left(\mu_{S_{Y_{1}}}\left(r_{1} \cup^{e} r_{2}\right)\right) \ldots\right)\right)\right)\right)=\mu_{Y_{n}}\left(\mu_{S_{Y_{n}}}\right. \\
\left.\left[\mu_{\left(Y_{n-1}, \ldots, Y_{1}\right)}\left(\mu_{S_{Y_{n-1}}}\left(\ldots\left(\mu_{S_{Y_{1}}}\left(r_{1}\right)\right) \ldots\right)\right) \cup^{e} \mu_{\left(Y_{n-1}, \ldots, Y_{1}\right)}\left(\mu_{S_{Y_{n-1}}}\left(\ldots\left(\mu_{S_{Y_{1}}}\left(r_{2}\right)\right) \ldots\right)\right)\right]\right)
\end{gathered}
$$

Let

$$
\begin{aligned}
& r_{1}^{\prime}=\mu_{\left(Y_{n-1}, \ldots, Y_{1}\right)}\left(\mu_{S_{Y_{n-1}}}\left(\ldots\left(\mu_{S_{Y_{1}}}\left(r_{1}\right)\right) \ldots\right)\right) \quad \text { and } \\
& r_{2}^{\prime}=\mu_{\left(Y_{n-1}, \ldots, Y_{1}\right)}\left(\mu_{S_{Y_{n-1}}}\left(\ldots\left(\mu_{S_{Y_{1}}}\left(r_{2}\right)\right) \ldots\right)\right)
\end{aligned}
$$

If we replace $\quad \mu_{\left(Y_{n-1}, \ldots . Y_{1}\right)}\left(\mu_{S_{Y_{n-1}}}\left(\ldots\left(\mu_{S_{Y_{1}}}\left(r_{1}\right)\right) \ldots\right)\right) \quad$ and $\mu_{\left(Y_{n-1}, \ldots, Y_{1}\right)}\left(\mu_{S_{Y_{n-1}}}\left(\ldots\left(\mu_{S_{Y_{1}}}\left(r_{2}\right)\right) \ldots\right)\right)$ with $r_{1}{ }^{\prime}$ and $r_{2}{ }^{\prime}$ respectively, we have

$$
\mu_{Y_{n}}\left(\mu_{S_{Y_{n}}}\left(\mu_{\left(Y_{n-1}, \ldots, Y_{1}\right)}\left(\mu_{S_{Y_{n-1}}}\left(\ldots\left(\mu_{S_{Y_{1}}}\left(r_{1} \cup^{e} r_{2}\right)\right) \ldots\right)\right)\right)=\mu_{Y_{n}}\left(\mu_{S_{Y_{n}}}\left(r_{1}^{\prime} \cup^{e} r_{2}^{\prime}\right)\right.\right.
$$

The structure of $r_{1}{ }^{\prime}$ and $r_{2}{ }^{\prime}$ contains one higher-order attribute which is in one of the forms (1), (2), or (3). Since it is shown in the basis step that extended union is information equivalent to the structures of (1), (2), and (3), we conclude that

$$
\mu_{Y_{n}}\left(\mu_{S_{Y_{n}}}\left(r_{1}^{\prime} \cup^{e} r_{2}^{\prime}\right)=\mu_{Y_{n}}\left(\mu_{S_{Y_{n}}}\left(r_{1}^{\prime}\right)\right) \cup \mu_{Y_{n}}\left(\mu_{S_{Y_{n}}}\left(r_{2}^{\prime}\right)\right)\right.
$$

Using this equation, we obtain the following equality:

$$
\begin{gathered}
\mu_{Y_{n}}\left(\mu_{S_{Y_{n}}}\left(\mu_{\left(Y_{n-1}, \ldots, Y_{1}\right)}\left(\mu_{S_{Y_{n-1}}}\left(\ldots\left(\mu_{S_{Y_{1}}}\left(r_{1} \cup \cup^{e} r_{2}\right)\right) \ldots\right)\right)\right)\right. \\
=\mu_{Y_{n}}\left(\mu_{S_{Y_{n}}}\left(r_{1}^{\prime}\right)\right) \cup \mu_{Y_{n}}\left(\mu_{S_{Y_{n}}}\left(r_{2}^{\prime}\right)\right),
\end{gathered}
$$

If $r_{1}{ }^{\prime}$ and $r_{2}{ }^{\prime}$ are substituted with their equivalents, we obtain

$$
\begin{gathered}
\mu_{Y_{n}}\left(\mu_{S_{Y_{n}}}\left(\mu_{\left(Y_{n-1}, \ldots, Y_{1}\right)}\left(\mu_{S_{Y_{n-1}}}\left(\ldots\left(\mu_{S_{Y_{1}}}\left(r_{1} U^{e} r_{2}\right)\right) \ldots\right)\right)\right)\right. \\
\quad=\mu_{Y_{n}}\left(\mu_{S_{Y_{n}}}\left(\mu_{\left(Y_{n-1}, \ldots, Y_{1}\right)}\left(\mu_{S_{Y_{n-1}}}\left(\ldots\left(\mu_{S_{Y_{1}}}\left(r_{1}\right)\right) \ldots\right)\right)\right)\right) \cup \\
\mu_{Y_{n}}\left(\mu_{S_{Y_{n}}}\left(\mu_{\left(Y_{n-1}, \ldots, Y_{1}\right)}\left(\mu_{S_{Y_{n-1}}}\left(\ldots\left(\mu_{S_{Y_{1}}}\left(r_{2}\right)\right) \ldots\right)\right)\right)\right)
\end{gathered}
$$

By Theorem 8.1.b of RKS, given a relation structure \mathcal{R}, the following property holds: $\quad \mu_{A}\left(\mu_{B}(\mathcal{R})\right)=\mu_{B}\left(\mu_{A}(\mathcal{R})\right)$. With respect to this theorem, the order of unnest is not important, so we can reorganize the previous equality by changing the unnest sequence and obtain the following:

$$
\begin{aligned}
& \mu_{\left(Y_{n}, Y_{n-1}, \ldots, Y_{1}\right)}\left(\mu_{S_{Y_{n}}}\left(\ldots\left(\mu_{S_{Y_{1}}}\left(r_{1} \cup^{e} r_{2}\right)\right) \ldots\right)\right) \\
& =\mu_{\left(Y_{n}, \ldots, Y_{1}\right)}\left(\mu_{S_{Y_{n}}}\left(\ldots\left(\mu_{S_{Y_{1}}}\left(r_{1}\right)\right) \ldots\right)\right) \cup \mu_{\left(Y_{n}, \ldots, Y_{1}\right)}\left(\mu_{S_{Y_{n}}}\left(\ldots\left(\mu_{S_{Y_{1}}}\left(r_{2}\right)\right) \ldots\right)\right)
\end{aligned}
$$

3.3.2 Extended Difference

Extended Difference of RKS

Difference is similar to union in the sense that it does not need restructuring of the relation structures. To be able to find the difference of two structures \mathcal{R}_{1} $=\left\langle R_{1}, r_{1}\right\rangle$ and $\mathcal{R}_{2}=\left\langle R_{2}, r_{2}\right\rangle$, their schemes R_{1} and R_{2} must be equal. The structure of the resultant relation is $\left\langle R_{3}, r_{1}-{ }^{e} r_{2}\right\rangle$, where R_{3} is equal to R_{1} and R_{2}. The extended difference is defined by RKS as follows.

Let X range over the zero-order names in $E_{R_{1}}$ and Y range over the higherorder names in $E_{R_{1}}$. Then,
$r_{1}-{ }^{e} r_{2}=\left\{t \mid\left(\exists t_{1} \in r_{1} \wedge \exists t_{2} \in r_{2} \wedge \exists Y \in E_{R}:\right.\right.$

$$
\begin{aligned}
& \left(\forall X, Y \in E_{R_{1}}: t[X]=t_{1}[X]=t_{2}[X]\right. \\
& \left.\left.\wedge t[Y]=\left(t_{1}[Y]-{ }^{e} t_{2}[Y]\right) \wedge t[Y] \neq \emptyset\right)\right) \\
& \left.\vee\left(t \in r_{1} \wedge\left(\exists t^{\prime} \in r_{2}:\left(\forall X \in E_{R_{1}}: t[X] \neq t^{\prime}[X]\right)\right)\right)\right\}
\end{aligned}
$$

This definition of [6] should be corrected as follows:

$$
\begin{aligned}
r_{1}-^{e} r_{2}=\{ & \mid \\
& \left(\exists t_{1} \in r_{1} \wedge \exists t_{2} \in r_{2} \wedge \exists Y \in E_{R}:\right. \\
& \left(\forall X, Y \in E_{R_{1}}: t[X]=t_{1}[X]=t_{2}[X]\right. \\
& \left.\left.\wedge t[Y]=\left(t_{1}[Y]-{ }^{e} t_{2}[Y]\right) \wedge t[Y] \neq \emptyset\right)\right) \\
& \left.\vee\left(t \in r_{1} \wedge\left(\forall t^{\prime} \in r_{2}:\left(\exists X \in E_{R_{1}}: t[X] \neq t^{\prime}[X]\right)\right)\right)\right\}
\end{aligned}
$$

The examples of extended difference in [6] are interpreted with respect to this corrected definition. If they were interpreted with respect to the original definition of RKS, it would not be possible to obtain the results in [6].

Example: In the following the corrected extended difference definition of [6] is applied to the relations r_{1} and r_{2} (Figure 3.5). The result $r_{1}-{ }^{e} r_{2}$ and the flat form of this result $\mu_{B}\left(\mu_{D}\left(r_{1}-{ }^{e} r_{2}\right)\right)$ are shown in Figure 3.13. If we compare the flattened result with the desired-result (Figure 3.14), we see that they are equal.

Although it is not mentioned in [6], the extended difference operator produces correct results for only nested relations that are purely hierarchical as the extended union operator does. If a nested relation is not purely hierarchical, then the extended difference operator loses some of the tuples that must be in the result.

Example: Now let us illustrate this last claim. Extended difference operator is applied to the relations in Figure 3.8. $r_{1}-{ }^{e} r_{2}, \mu_{X}\left(\mu_{Y}\left(r_{1}-{ }^{e} r_{2}\right)\right), \mu_{X}\left(\mu_{Y}\left(r_{1}\right)\right)$, $\mu_{X}\left(\mu_{Y}\left(r_{2}\right)\right)$, and $\mu_{X}\left(\mu_{Y}\left(r_{1}\right)\right)-\mu_{X}\left(\mu_{Y}\left(r_{2}\right)\right)$ are shown in Figures 3.15 and 3.16. $\mu_{X}\left(\mu_{Y}\left(r_{1}-^{e} r_{2}\right)\right)$ loses some tuples that's in desired-result, e.g. $\left\langle a_{2} b_{1} k_{1} c_{2} d_{2}\right\rangle$ and $<a_{2} b_{7} k_{7} c_{1} d_{1}>$ which are in $\mu_{X}\left(\mu_{Y}\left(r_{1}\right)\right)$ but not in $\mu_{X}\left(\mu_{Y}\left(r_{2}\right)\right)$. As a result, the extended difference operator of $[6]$ is not information equivalent. $[$

The class of PNF relations is closed under extended difference of [6] which

$$
r_{1}-^{e} r_{2} \quad \mu_{B}\left(\mu_{D}\left(r_{1}-{ }^{e} r_{2}\right)\right)
$$

A	B		
	C	D	
		E	F
a_{1}	c_{1}	e_{2}	f_{2}
	c_{2}	e_{3}	f_{3}
a_{2}	c_{3}	e_{4}	f_{4}

A	C	E	F
a_{1}	c_{1}	e_{2}	f_{2}
a_{1}	c_{2}	e_{3}	f_{3}
a_{2}	c_{3}	e_{4}	f_{4}

Figure 3.13: Extended difference of r_{1} and r_{2}
c
$\mu_{B}\left(\mu_{D}\left(r_{1}\right)\right)$

A	C	E	F					
$\mu_{B}\left(\mu_{D}\left(r_{2}\right)\right)$	$\mu_{B}\left(\mu_{D}\left(r_{1}\right)\right)-\mu_{B}\left(\mu_{D}\left(r_{2}\right)\right)$							
a_{1}	c_{1}	e_{1}	f_{1}					
c_{1}	c_{1}	e_{2}	f_{2}					
a_{1}	c_{2}	e_{3}	f_{3}					
a_{2}	c_{3}	e_{4}	f_{4}	\quad	A	C	E	F
:---:	:---:	:---:	:---:					
a_{1}	c_{1}	e_{1}	f_{1}					
a_{1}	c_{1}	e_{7}	f_{7}					
a_{1}	c_{4}	e_{4}	f_{4}					
a_{3}	c_{5}	e_{5}	f_{5}	\quad	A	C	E	F
:---:	:---:	:---:	:---:					
a_{1}	c_{1}	e_{2}	f_{2}					
a_{1}	c_{2}	e_{3}	f_{3}					
a_{2}	c_{3}	e_{4}	f_{4}					

Figure 3.14: The desired-result
$r_{1}-{ }^{e} r_{2}$
$\mu_{X}\left(\mu_{Y}\left(r_{1}-{ }^{e} r_{2}\right)\right)$

| A | X | | Y | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | B | K | C | D |
| | B | K | | |
| a_{1} | b_{1} | k_{1} | c_{1} | d_{1} |
| | b_{2} | k_{2} | | |
| a_{2} | b_{7} | k_{7} | c_{2} | d_{2} |
| A | B | K | C | D |
| a_{1} | b_{1} | k_{1} | c_{1} | d_{1} |
| a_{1} | b_{2} | k_{2} | c_{1} | d_{1} |
| a_{2} | b_{7} | k_{7} | c_{2} | d_{2} |

Figure 3.15: Extended difference of r_{1} and r_{2}
$\mu_{X}\left(\mu_{Y}\left(r_{1}\right)\right)$

$$
\mu_{X}\left(\mu_{Y}\left(r_{2}\right)\right)
$$

$$
\mu_{X}\left(\mu_{Y}\left(r_{1}\right)\right)-\mu_{X}\left(\mu_{Y}\left(r_{2}\right)\right)
$$

A	B	K	C	D
a_{1}	b_{1}	k_{1}	c_{1}	d_{1}
a_{1}	b_{2}	k_{2}	c_{1}	d_{1}
a_{2}	b_{1}	k_{1}	c_{1}	d_{1}
a_{2}	b_{1}	k_{1}	c_{2}	d_{2}
a_{2}	b_{7}	k_{7}	c_{1}	d_{1}
a_{2}	b_{7}	k_{7}	c_{2}	d_{2}

A	B	K	C	D
a_{2}	b_{1}	k_{1}	c_{1}	d_{1}
a_{2}	b_{1}	k_{1}	c_{3}	d_{3}
a_{2}	b_{8}	k_{8}	c_{1}	d_{1}
a_{2}	b_{8}	k_{8}	c_{3}	d_{3}
a_{4}	b_{4}	k_{4}	c_{4}	d_{4}

A	B	K	C	D
a_{1}	b_{1}	k_{1}	c_{1}	d_{1}
a_{1}	b_{2}	k_{2}	c_{1}	d_{1}
a_{2}	b_{1}	k_{1}	c_{2}	d_{2}
a_{2}	b_{7}	k_{7}	c_{1}	d_{1}
a_{2}	b_{7}	k_{7}	c_{2}	d_{2}

Figure 3.16: The desired-result
is stated as a theorem (Theorem 6.1) in [6]. This theorem states that the structure $\left.\mathcal{R}_{3}=<R, r_{I}-{ }^{e} r_{2}\right\rangle$ is in PNF, given that the structures $\mathcal{R}_{1}=$ $<R, r_{t}>$ and $\mathcal{R}_{2}=<R, r_{2}>$ are in PNF. We think that the PNF restriction on the resultant structure makes the extended difference definition non information equivalent as in extended union. Dropping this restriction on the resultant relation structures provides us with a new extended difference. The class of PNF relations is not closed under the new extended difference.

Extended Difference of AB

Before defining the new extended difference operator, let us go through the extended difference of [2].

Let f be a format and I, J two instances over f. Then the difference of I and J is the instance over f, denoted $I \ominus J$, defined by:

1. if $f \equiv X$, where X is nonempty, then $I \ominus J=I-J$, and
2. if $f \equiv X\left(f_{l}\right)^{*} \ldots\left(f_{n}\right)^{*}$, where f_{1}, \ldots, f_{n} are nonempty, then :

$$
\begin{aligned}
& I \ominus J=\left\{\begin{array}{c|c}
<u\left(I_{l} \ominus J_{l}\right) \ldots\left(I_{n} \ominus J_{n}\right)> & \begin{array}{c}
\left\langle u I_{l} \ldots I_{n}>\in I\right. \text { and } \\
<u J_{l} \ldots J_{n}>\in J \text { and } \\
\text { for some } i, I_{i} \ominus J_{\mathrm{i}} \neq \emptyset
\end{array}
\end{array}\right\} \\
& \cup\left\{\begin{array}{c|c}
\left\langle u I_{l} \ldots I_{n}>\right. & <u I_{1} \ldots I_{n}>\in I \text { and } \\
\forall J_{l} \ldots J_{n},<u J_{l} \ldots J_{n}>\neq J
\end{array}\right\}
\end{aligned}
$$

The extended difference of [2] is similar to that of [6] and produces the same results with the previous examples. It produces correct results only for purely hierarchical relations, therefore it's not information equivalent.

The New Extended Difference

In the following extended difference definition, $H A, E_{Y_{i}}, H A_{Y_{i}}$, and X represent the same things as they do in the new extended union definition. Given two relation structures $\mathcal{R}_{1}=\left\langle R, r_{1}\right\rangle$ and $\mathcal{R}_{2}=\left\langle R, r_{2}\right\rangle$ in PNF, the extended difference with the structure $<R, r_{1}-{ }^{e} r_{2}>$ is defined as follows at the instance level:
$r_{1}-{ }^{e} r_{2}=\left\{t \mid\left(\exists t_{l} \in r_{1}, \exists t_{2} \in r_{2}:\right.\right.$

$$
\begin{aligned}
& \left(\forall X, Y \in E_{R_{1}},|H A| \leq 1: t[X]=t_{1}[X]=t_{2}[X]\right. \\
& \left.\left.\wedge t[Y]=\left(t_{1}[Y]-{ }^{e} t_{2}[Y]\right) \wedge t[Y] \neq \emptyset\right)\right) \\
& \bigvee\left(\exists t_{1} \in r_{1}, \exists t_{2} \in r_{2}:\right. \\
& \left(\forall X, \exists Y_{i} \in E_{R_{1}}, 1 \leq i \leq|H A|,|H A|>1: t[X]=t_{1}[X]=t_{2}[X]\right. \\
& \wedge t\left[Y_{i}\right]=\left\{t_{y} \mid\left(\exists t_{y_{i}}^{\prime} \in t_{1}\left[Y_{i}\right]: t_{y}=t_{y_{i}}^{\prime} \wedge\left(\forall t_{y_{i}}^{\prime \prime} \in t_{2}\left[Y_{i}\right]:\right.\right.\right. \\
& \left.\left.\left.\left(\exists X \in E_{Y_{i}}: t_{y_{i}}^{\prime}[X] \neq t_{y_{i}}^{\prime \prime}[X]\right)\right)\right)\right\} \\
& \left.\left.\wedge t\left[H A-\left\{Y_{i}\right\}\right]=t_{l}\left[H A-\left\{Y_{i}\right\}\right]\right)\right) \\
& \bigvee\left(\exists t_{l} \in r_{l}, \exists t_{2} \in r_{2}:\right. \\
& \left(\forall X, \exists Y_{i} \in E_{R_{1}}, 1 \leq i \leq|H A|,|H A|>1: t[X]=t_{1}[X]=t_{2}[X]\right. \\
& \wedge X_{Y_{i}}={ }_{\text {def }}\left\{X \mid X \in E_{Y_{i}}\right\} \\
& \wedge t\left[X_{Y_{i}}\right]=\left\{t_{y_{i}} \mid\left(\exists t_{y_{i}}^{\prime} \in t_{1}\left[Y_{i}\right], \exists t_{y_{i}}^{\prime \prime} \in t_{2}\left[Y_{i}\right]:\right.\right. \\
& \left.\left.\left(\forall X \in E_{Y_{i}}: t_{y_{i}}[X]=t_{y_{i}}^{\prime}[X]=t_{y_{i}}^{\prime \prime}[X]\right)\right)\right\} \\
& \wedge H A={ }_{\text {def }}\left(H A-\left\{Y_{i}\right\}\right) \cup H A_{Y_{i}} \\
& \wedge\left[\left(|H A|>1: t[H A] \in\left(t_{1}[H A]-{ }^{e} t_{g}[H A]\right)\right.\right. \\
& \left.\wedge\left(t_{1}[H A]-{ }^{e} t_{2}[H A]\right) \neq \emptyset\right) \\
& \left.\left.\left.\vee\left(|H A| \leq 1: t[H A]=\left(t_{1}[H A]-{ }^{e} t_{2}[H A]\right) \wedge t[H A] \neq \emptyset\right)\right]\right)\right) \\
& \left.\bigvee\left(t \in r_{I} \wedge\left(\forall t^{\prime} \in r_{2}:\left(\exists X \in E_{R_{1}}: t[X] \neq t^{\prime}[X]\right)\right)\right)\right\}
\end{aligned}
$$

Example: When the newly defined extended difference operator is applied to the relations r_{1} and r_{2} in Figure 3.8, it is possible to obtain the results $r_{1}-{ }^{e} r_{2(1)}$ and $r_{1}-{ }^{e} r_{2(2)}$ in Figure 3.17. If we compare the flattened forms $\mu_{X}\left(\mu_{Y}\left(r_{1}-{ }^{e} r_{2}\right)\right)_{(1)}$ and $\mu_{X}\left(\mu_{Y}\left(r_{1}-{ }^{e} r_{2}\right)\right)_{(2)}$ (Figure 3.18) of $r_{1}-{ }^{e} r_{2(1)}$ and $r_{1}-{ }^{e} r_{2(2)}$ with the desired-result (Figure 3.16), we notice that these three are equal. The difference between $r_{1}-{ }^{e} r_{2(1)}$ and $r_{1}-{ }^{e} r_{2(2)}$ is because of the same reason explained for extended union.

Theorem 3.2 The extended difference operator is information equivalent Proof The proof has several cases.

1. $|H A|=0$ (flat relations).
2. nesting-depth $=n\left(\in \mathrm{~N}^{+}\right)$, for all nesting-depths $i, \mathrm{l} \leq i \leq n:|H A|=1$ (purely hierarchical relations).

$$
r_{1}-{ }^{e} r_{2(1)} \quad r_{1}-{ }^{e} r_{2(2)}
$$

A	X		Y	
	B		K	C
D				
a_{1}	b_{1}	k_{1}	c_{1}	d_{1}
	b_{2}	k_{2}		
a_{2}	b_{7}	k_{7}	c_{1}	d_{1}
			c_{2}	d_{2}
a_{2}	b_{1}	k_{1}	c_{2}	d_{2}

A	X		Y	
	B		K	C
D				
a_{1}	b_{1}	k_{1}	c_{1}	d_{1}
	b_{2}	k_{2}		
a_{2}	b_{1}	k_{1}	c_{2}	d_{2}
	b_{7}	k_{7}		
a_{2}	b_{7}	k_{7}	c_{1}	d_{1}

Figure 3.17: $r_{1}-^{e} r_{2(1)}$ and $r_{1}-{ }^{e} r_{2(2)}$

$$
\mu_{X}\left(\mu_{Y}\left(r_{1}-{ }^{e} r_{2}\right)\right)_{(1)} \quad \mu_{X}\left(\mu_{Y}\left(r_{1}-{ }^{e} r_{2}\right)\right)_{(2)}
$$

A	B	K	C	D
a_{1}	b_{1}	k_{1}	c_{1}	d_{1}
a_{1}	b_{2}	k_{2}	c_{1}	d_{1}
a_{2}	b_{1}	k_{1}	c_{2}	d_{2}
a_{2}	b_{7}	k_{7}	c_{1}	d_{1}
a_{2}	b_{7}	k_{7}	c_{2}	d_{2}

A	B	K	C	D
a_{1}	b_{1}	k_{1}	c_{1}	d_{1}
a_{1}	b_{2}	k_{2}	c_{1}	d_{1}
a_{2}	b_{1}	k_{1}	c_{2}	d_{2}
a_{2}	b_{7}	k_{7}	c_{2}	d_{2}
a_{2}	b_{7}	k_{7}	c_{1}	d_{1}

Figure 3.18: Flat forms of $r_{1}-{ }^{e} r_{2(1)}$ and $r_{1}-{ }^{e} r_{2(2)}$
3. $|H A|>1$, and each higher-order attribute Y in E_{R} is a flat relation.
4. $|H A|=n\left(\in \mathrm{~N}^{+}\right)$and $\exists Y \in E_{R}:\left|H A_{Y}\right|=m\left(\in \mathrm{~N}^{+}\right)$.
(1) In this case r_{1} and r_{2} are flat relations, so we show that $r_{1}-{ }^{e} r_{2}=r_{1}-r_{2}$.
\subseteq part: Let $t \in r_{1}-{ }^{e} r_{2}$, then t can only satisfy the following disjunct of the $-{ }^{e}$ definition: $\left(t \in r_{1} \wedge\left(\forall t^{\prime} \in r_{2}:\left(\exists X \in E_{R_{1}}: t[X] \neq t^{\prime}[X]\right)\right)\right)$. This disjunct states is that t is a tuple only in r_{1}, so t is obviously in $r_{1}-r_{2}$.
\supseteq part: Let $t \in r_{1}-r_{2}$, then t is only in r_{1}, and there is at least one atomic attribute that differentiates t from all the tuples in r_{2}. If this statement is formalized, we obtain the disjunct of $-{ }^{e}$ mentioned in the \subseteq part. Since t satisfies a disjunct of $-{ }^{e}$ definition, $t \in r_{1}-{ }^{e} r_{2}$
(2) In this case we show that

$$
\begin{aligned}
& \mu_{Y_{n}}\left(\mu_{Y_{n-1}}\left(\ldots\left(\mu_{Y_{1}}\left(r_{1}-{ }^{e} r_{2}\right)\right) \ldots\right)\right) \\
& \quad=\mu_{Y_{n}}\left(\mu_{Y_{n-1}}\left(\ldots\left(\mu_{Y_{1}}\left(r_{1}\right)\right) \ldots\right)\right)-\mu_{Y_{n}}\left(\mu_{Y_{n-1}}\left(\ldots\left(\mu_{Y_{1}}\left(r_{2}\right)\right) \ldots\right)\right),
\end{aligned}
$$

where Y_{i} is the higher-order attribute of the $i^{\text {th }}$ nesting level. The proof is by induction on the nesting-depth n.

Basis: We show that $\mu_{Y}\left(r_{1}-{ }^{e} r_{2}\right)=\mu_{Y}\left(r_{1}\right)-\mu_{Y}\left(r_{2}\right)$, where $n=1$ and Y $=X_{1} \ldots X_{m}$.
\supseteq part: We show that if $t \in \mu_{Y}\left(r_{1}\right)-{ }^{e} \mu_{Y}\left(r_{2}\right)$, then $t \in \mu_{Y}\left(r_{1}-{ }^{e} r_{2}\right)$. t is only in $\mu_{Y}\left(r_{1}\right)$ and it is unnested from some u_{1} in r_{1}. Since t is not in $\mu_{Y}\left(r_{2}\right)$, t cannot be unnested from any u_{2} in r_{2}. We can say that $t\left[X_{1} \ldots X_{m}\right] \in u_{1}[Y]$ and $\forall u_{2} \in r_{2}: t\left[X_{1} \ldots X_{m}\right] \notin u_{2}[Y]$. In the extended difference of r_{1} and r_{2}, u_{1} will be included either completely as u_{1} or partially as a new tuple u, where $u[Y]=u_{1}[Y]-{ }^{e} u_{2}[Y]$. In any case t will be included in $\mu_{Y}\left(r_{1}-{ }^{e} r_{2}\right)$.
\subseteq part: We show that if $t \in \mu_{Y}\left(r_{1}-{ }^{e} r_{2}\right)$, then $t \in \mu_{Y}\left(r_{1}\right)-\mu_{Y}\left(r_{2}\right)$. If we partition $\mu_{Y}\left(r_{1}-{ }^{e} r_{2}\right)$ on $E_{R}-X_{1} \ldots X_{m}$ and obtain the partitions u_{1}, \ldots, u_{k}, then we must show that all tuples $t_{1}, \ldots t_{n}$ in any partition of $\mu_{Y}\left(r_{1}-{ }^{e} r_{2}\right)$ are in $\mu_{Y}\left(r_{1}\right)-\mu_{Y}\left(r_{2}\right)$. The tuples t_{1}, \ldots, t_{n} are obtained by unnesting the set of tuples
u_{1}, \ldots, u_{k}, each of which is a partition on $E_{R}-Y$ in $r_{1}-{ }^{e} r_{2}$. This means that for all $i, 1 \leq i \leq n, \exists j, 1 \leq j \leq k$, such that $t_{i}\left[X_{1} \ldots X_{m}\right] \in u_{j}[Y]$, and $\cup_{j=1}^{k} u_{j}[Y]$ $=\left\{t_{i}\left[X_{1} \ldots X_{m}\right] \mid 1 \leq i \leq n\right\}$. Each u_{j} is created by the extended difference of two tuples, $u_{j}{ }^{1} \in r_{1}$ and $u_{j}{ }^{2} \in r_{2}$. Since Y is a purely hierarchical relation, $\bigcup_{j=1}^{k} u_{j}[Y] \in\left(\bigcup_{j=1}^{k} u_{j}{ }^{1}[Y]-{ }^{e} \bigcup_{j=1}^{k} u_{j}{ }^{2}[Y]\right)$. When the tuples $u_{j}{ }^{1}$ and $u_{j}{ }^{2}$ are unnested into tuples $v_{l}{ }^{1},\left(1 \leq i \leq p_{1}\right)$ and $v_{l}{ }^{2},\left(1 \leq l \leq p_{2}\right)$, we have $\cup_{j=1}^{k} u_{j}{ }^{1}[Y]$ $=\left\{v_{l}{ }^{1}\left[X_{1} \ldots X_{m}\right] \mid 1 \leq l \leq p_{1}\right\}$ and $\bigcup_{j=1}^{k} u_{j}^{2}[Y]=\left\{v_{l}^{2}\left[X_{1} \ldots X_{m}\right] \mid l \leq l \leq p_{2}\right\}$, and we can say $\left\{t_{i}\left[X_{1} \ldots X_{m}\right] \mid 1 \leq i \leq n\right\} \subseteq\left\{v_{l}^{1}\left[X_{1} \ldots X_{m}\right] \mid 1 \leq l \leq p_{1}\right\}-$ $\left\{v_{l}^{2}\left[X_{1} \ldots X_{m}\right] \mid 1 \leq l \leq p_{2}\right\}$. Therefore $\mu_{Y}\left(r_{1}\right)-\mu_{Y}\left(r_{2}\right)$ contains all the tuples t_{1}, \ldots, t_{n} in $\mu_{Y}\left(r_{1}-{ }^{e} r_{2}\right)$.

Induction Step: By the induction hypothesis, we know that

$$
\begin{aligned}
\mu_{Y_{n-1}} & \left(\mu_{Y_{n-2}}\left(\ldots\left(\mu_{Y_{1}}\left(r_{1}-{ }^{e} r_{2}\right)\right) \ldots\right)\right) \\
& =\mu_{Y_{n-1}}\left(\mu_{Y_{n-2}}\left(\ldots\left(\mu_{Y_{1}}\left(r_{1}\right)\right) \ldots\right)\right)-^{e} \mu_{Y_{n-1}}\left(\mu_{Y_{n-2}}\left(\ldots\left(\mu_{Y_{1}}\left(r_{2}\right)\right) \ldots\right)\right)
\end{aligned}
$$

for the first ($n-1$) nesting levels, where Y_{i} is the higher-order attribute at the $i^{\text {th }}$ nesting level, $1 \leq i \leq n-1$. We now show that this is also true for n nesting levels. If we unnest both sides of the last equation with Y_{n}, we obtain

$$
\begin{aligned}
& \mu_{Y_{n}}\left(\mu_{Y_{n-1}}\left(\ldots\left(\mu_{Y_{1}}\left(r_{1}-{ }^{e} r_{2}\right)\right) \ldots\right)\right) \\
& \quad=\mu_{Y_{n}}\left[\mu_{Y_{n-1}}\left(\ldots\left(\mu_{Y_{1}}\left(r_{1}\right)\right) \ldots\right)-^{c} \mu_{Y_{n-1}}\left(\ldots\left(\mu_{Y_{1}}\left(r_{2}\right)\right) \ldots\right)\right]
\end{aligned}
$$

Let $r_{1}^{\prime}=\mu_{Y_{n-1}}\left(\ldots\left(\mu_{Y_{1}}\left(r_{1}\right)\right) \ldots\right)$ and $r_{2}^{\prime}=\mu_{Y_{n-1}}\left(\ldots\left(\mu_{Y_{1}}\left(r_{2}\right)\right) \ldots\right)$,
now we have

$$
\mu_{Y_{n}}\left(\mu_{Y_{n-1}}\left(\ldots\left(\mu_{Y_{1}}\left(r_{1}-{ }^{e} r_{2}\right)\right) \ldots\right)\right)=\mu_{Y_{n}}\left(r_{1}{ }^{\prime}-{ }^{e} r_{2}^{\prime}\right) .
$$

Since r_{1}^{\prime} and r_{2}^{\prime} are relations whose nesting-depths are $1, \mu_{Y_{n}}\left(r_{1}^{\prime}-^{e} r_{2}^{\prime}\right)=$ $\mu_{Y_{n}}\left(r_{1}{ }^{\prime}\right)-\mu_{Y_{n}}\left(r_{2}^{\prime}\right)$, which is proved to be true in the basis step. If we substitute r_{1}^{\prime} and r_{2}^{\prime} by their equivalents, we have

$$
\begin{aligned}
& \mu_{Y_{n}}\left(\mu_{Y_{n-1}}\left(\ldots\left(\mu_{Y_{1}}\left(r_{1}-{ }^{e} r_{2}\right)\right) \ldots\right)\right) \\
& \quad=\mu_{Y_{n}}\left(\mu_{Y_{n-1}}\left(\ldots\left(\mu_{Y_{1}}\left(r_{1}\right)\right) \ldots\right)\right)-\mu_{Y_{n}}\left(\mu_{Y_{n-1}}\left(\ldots\left(\mu_{Y_{1}}\left(r_{2}\right)\right) \ldots\right)\right)
\end{aligned}
$$

(3) In this case we show that

$$
\begin{aligned}
& \mu_{Y_{n}}\left(\mu_{Y_{n-1}}\left(\ldots\left(\mu_{Y_{1}}\left(r_{1}-^{e} r_{2}\right)\right) \ldots\right)\right) \\
& \quad=\mu_{Y_{n}}\left(\mu_{Y_{n-1}}\left(\ldots\left(\mu_{Y_{1}}\left(r_{1}\right)\right) \ldots\right)\right)-\mu_{Y_{n}}\left(\mu_{Y_{n-1}}\left(\ldots\left(\mu_{Y_{1}}\left(r_{2}\right)\right) \ldots\right)\right)
\end{aligned}
$$

The proof is by induction on the number of the higher-order attributes at the first and only nesting level.

Basis: We show that $\mu_{Y_{1}}\left(\mu_{Y_{2}}\left(r_{1}-{ }^{e} r_{2}\right)\right)=\mu_{Y_{1}}\left(\mu_{Y_{2}}\left(r_{1}\right)\right)-\mu_{Y_{1}}\left(\mu_{Y_{2}}\left(r_{2}\right)\right)$, where $|H A|=2$ and $Y_{1}=X_{1} \ldots X_{m}, Y_{2}=X_{l} \ldots X_{k}$.
\supseteq part: We show that if $t \in \mu_{Y_{1}}\left(\mu_{Y_{2}}\left(r_{1}\right)\right)-\mu_{Y_{1}}\left(\mu_{Y_{2}}\left(r_{2}\right)\right)$, then $t \in \mu_{Y_{1}}\left(\mu_{Y_{2}}\left(r_{1}-{ }^{e}\right.\right.$ $\left.\left.r_{2}\right)\right)$. Since $t \in \mu_{Y_{1}}\left(\mu_{Y_{2}}\left(r_{1}\right)\right)-\mu_{Y_{1}}\left(\mu_{Y_{2}}\left(r_{2}\right)\right)$, we know that t is only in $\mu_{Y_{1}}\left(\mu_{Y_{2}}\left(r_{1}\right)\right)$ and it is unnested from some $u_{1} \in r_{1}$. Then we can say that $\left(t\left[X_{1} \ldots X_{m}\right] \in\right.$ $\left.\left.u_{1}\left[Y_{1}\right] \wedge t\left[X_{1} \ldots X_{k}\right] \in u_{1}\left[Y_{2}\right]\right) \wedge \forall u_{2} \in r_{2}: t \notin u_{2}\right)$. In the extended difference of u_{1} and u_{2}, u_{1} will be included either completely as u_{1}, or partially as a new tuple u. Since $\forall u_{2} \in r_{2}, t \notin u_{2}, t \in u_{1}$ or $t \in u$. Therefore $t \in \mu_{Y_{1}}\left(\mu_{Y_{2}}\left(r_{1}-{ }^{e} r_{2}\right)\right)$.
\subseteq part: We show that if $t \in \mu_{Y_{1}}\left(\mu_{Y_{2}}\left(r_{1}-{ }^{e} r_{2}\right)\right)$, then $t \in \mu_{Y_{1}}\left(\mu_{Y_{2}}\left(r_{1}\right)\right)-$ $\mu_{Y_{1}}\left(\mu_{Y_{2}}\left(r_{2}\right)\right)$. In this case, t is unnested from some u in $r_{1}-^{e} r_{2} . u$ satisfies one of the disjuncts in the $-{ }^{e}$ definition and all the disjuncts in this definition include those tuples only in r_{1}, so

$$
\left(\forall u^{\prime} \in \mu_{Y_{1}}\left(\mu_{Y_{2}}(u)\right): u^{\prime} \in \mu_{Y_{1}}\left(\mu_{Y_{2}}\left(r_{1}\right)\right) \wedge\left(\forall t^{\prime} \in \mu_{Y_{1}}\left(\mu_{Y_{2}}\left(r_{2}\right)\right): u^{\prime} \neq t^{\prime}\right)\right)
$$

The last statement is the definition of the standard set difference, therefore $t \in \mu_{Y_{1}}\left(\mu_{Y_{2}}\left(r_{1}\right)\right)-\mu_{Y_{1}}\left(\mu_{Y_{2}}\left(r_{2}\right)\right)$.

Induction Step: By the induction hypothesis, we know that

$$
\begin{aligned}
& \mu_{Y_{n-1}}\left(\mu_{Y_{n-2}}\left(\ldots\left(\mu_{Y_{1}}\left(r_{1}-{ }^{e} r_{2}\right)\right) \ldots\right)\right) \\
& \quad=\mu_{Y_{n-1}}\left(\mu_{Y_{n-2}}\left(\ldots\left(\mu_{Y_{1}}\left(r_{1}\right)\right) \ldots\right)\right)-^{e} \mu_{Y_{n-1}}\left(\mu_{Y_{n-2}}\left(\ldots\left(\mu_{Y_{1}}\left(r_{2}\right)\right) \ldots\right)\right)
\end{aligned}
$$

for the first $(n-1)$ higher-order attributes of E_{R}, where $n \geq 3$. Now we show that this is also true for n :

$$
\begin{aligned}
& \mu_{Y_{n}}\left(\mu_{Y_{n-1}}\left(\ldots\left(\mu_{Y_{1}}\left(r_{1}-e r_{2}\right)\right) \ldots\right)\right) \\
& \quad=\mu_{Y_{n}}\left(\mu_{Y_{n-1}}\left(\ldots\left(\mu_{Y_{1}}\left(r_{1}\right)\right) \ldots\right)\right)-^{e} \mu_{Y_{n}}\left(\mu_{Y_{n-1}}\left(\ldots\left(\mu_{Y_{1}}\left(r_{2}\right)\right) \ldots\right)\right) .
\end{aligned}
$$

The proof is similar to the proof of induction step of case (2). If $\mu_{Y_{n-1}}\left(\ldots\left(\mu_{Y_{1}}\right.\right.$ $\left.\left(\mathrm{r}_{1}-{ }^{e} r_{2}\right)\right) \ldots$) is unnested with Y_{n} and $r_{1}{ }^{\prime}$ and r_{2}^{\prime} are substituted as in case (2), we obtain,

$$
\mu_{Y_{n}}\left(\mu_{Y_{n-1}}\left(\ldots\left(\mu_{Y_{1}}\left(r_{1}-{ }^{e} r_{2}\right)\right) \ldots\right)\right)=\mu_{Y_{n}}\left(r_{1}{ }^{\prime}-{ }^{c} r_{2}{ }^{\prime}\right)
$$

Since $r_{1}{ }^{\prime}$ and $r_{2}{ }^{\prime}$ are relations which have one higher-order attribute and one nesting level, $\mu_{Y_{n}}\left(r_{1}^{\prime}-{ }^{e} r_{2}^{\prime}\right)=\mu_{Y_{n}}\left(r_{1}^{\prime}\right)-\mu_{Y_{n}}\left(r_{2}{ }^{\prime}\right)$, which is proved to be true in the basis of case (2). Therefore

$$
\begin{aligned}
& \mu_{Y_{n}}\left(\mu_{Y_{n-1}}\left(\ldots\left(\mu_{Y_{1}}\left(r_{1}-{ }^{e} r_{2}\right)\right) \ldots\right)\right) \\
& \quad=\mu_{Y_{n}}\left(\mu_{Y_{n-1}}\left(\ldots\left(\mu_{Y_{1}}\left(r_{1}\right)\right) \ldots\right)\right)-\mu_{Y_{n}}\left(\mu_{Y_{n-1}}\left(\ldots\left(\mu_{Y_{1}}\left(r_{2}\right)\right) \ldots\right)\right) .
\end{aligned}
$$

(4) This is the most general case of a nested relation, that is a nested relation with n higher-order attributes, each of which is also a nested relation with a finite number of higher-order attributes and nesting levels.

We show that the extended difference operator is information equivalent to this kind of relation structures in several steps. In these steps, using a recursive procedure, we obtain the most general nested structure and show that the extended difference operator is information equivalent to this structure.

Now let the relation structures of r_{1} and r_{2} have $n \in \mathrm{~N}^{+}$higher-order attributes, where each has a relation structure which is equal to that of (1), (2), or (3) and let this new structure be (4.a). To show that extended difference is information equivalent in this case, we show that

$$
\begin{aligned}
& \mu_{\left(Y_{n}, Y_{n-1}, \ldots, Y_{1}\right)}\left(\mu_{S_{Y_{n}}}\left(\ldots\left(\mu_{S_{Y_{1}}}\left(r_{1}-c r_{2}\right)\right) \ldots\right)\right) \\
= & \mu_{\left(Y_{n}, Y_{n-1}, \ldots, Y_{1}\right)}\left(\mu_{S_{Y_{n}}}\left(\ldots\left(\mu_{S_{Y_{1}}}\left(r_{1}\right)\right) \ldots\right)\right)-\mu_{\left(Y_{n}, Y_{n-1}, \ldots, Y_{1}\right)}\left(\mu_{S_{Y_{n}}}\left(\ldots\left(\mu_{S_{Y_{1}}}\left(r_{1}\right)\right) \ldots\right)\right)
\end{aligned}
$$

where $S_{Y_{i}}$ is the unnest sequence (a set of higher-order names in $E_{Y_{i}}$) required to flatten the $i^{\text {th }}$ higher-order attribute in E_{R}. The proof is by induction on the number of higher-order attributes in E_{R}.

Basis: In this case, $|H A|=1$ and there is only one higher-order attribute
in E_{R}. The structure of this higher-order attribute is equal to that of (1), (2), or (3). Since we have shown that the extended difference operator is information equivalent to the structures of (1), (2), and (3), we conclude that

$$
\mu_{Y}\left(\mu_{S_{Y}}\left(r_{1}-{ }^{e} r_{2}\right)\right)=\mu_{Y}\left(\mu_{S_{Y}}\left(r_{1}\right)\right)-\mu_{Y}\left(\mu_{S_{Y}}\left(r_{2}\right)\right)
$$

Induction Step: By the induction hypothesis we know that

$$
\begin{gathered}
\mu_{\left(Y_{n-1}, Y_{n-2}, \ldots, Y_{1}\right)}\left(\mu_{S_{Y_{n-1}}}\left(\ldots\left(\mu_{S_{Y_{1}}}\left(r_{1}-e r_{2}\right)\right) \ldots\right)\right) \\
=\mu_{\left(Y_{n-1}, \ldots, Y_{1}\right)}\left(\mu_{S_{Y_{n-1}}}\left(\ldots\left(\mu_{S_{Y_{1}}}\left(r_{1}\right)\right) \ldots\right)\right)-{ }^{e} \mu_{\left(Y_{n-1}, \ldots, Y_{1}\right)}\left(\mu_{S_{Y_{n-1}}}\left(\ldots\left(\mu_{S_{Y_{1}}}\left(r_{2}\right)\right) \ldots\right)\right)
\end{gathered}
$$

for the first $(n-1)$ higher-order attributes of E_{R}. We now show that this is also true for all the higher-order attributes of E_{R}, which is stated as follows

$$
\begin{aligned}
& \mu_{\left(Y_{n}, Y_{n-1}, \ldots, Y_{1}\right)}\left(\mu_{S_{Y_{n}}}\left(\ldots\left(\mu_{S_{Y_{1}}}\left(r_{1}-{ }^{e} r_{2}\right)\right) \ldots\right)\right) \\
& =\mu_{\left(Y_{n}, \ldots, Y_{1}\right)}\left(\mu_{S_{Y_{n}}}\left(\ldots\left(\mu_{S_{Y_{1}}}\left(r_{1}\right)\right) \ldots\right)\right)-{ }^{e} \mu_{\left(Y_{n}, \ldots, Y_{1}\right)}\left(\mu_{S_{Y_{n}}}\left(\ldots\left(\mu_{S_{Y_{1}}}\left(r_{2}\right)\right) \ldots\right)\right)
\end{aligned}
$$

If we nest both sides of the equality introduced by the induction hypothesis with Y_{n} and $S_{Y_{n}}$, we obtain

$$
\begin{aligned}
& \mu_{Y_{n}}\left(\mu_{S_{Y_{n}}}\left(\mu_{\left(Y_{n-1}, \ldots, Y_{1}\right)}\left(\mu_{S_{Y_{n-1}}}\left(\ldots\left(\mu_{S_{Y_{1}}}\left(r_{1}-{ }^{e} r_{2}\right)\right) \ldots\right)\right)\right)\right)=\mu_{Y_{n}}\left(\mu_{S_{Y_{n}}}\right. \\
& \left.\left[\left.\mu_{\left(Y_{n-1}, \ldots, Y_{1}\right)}\left(\mu_{S_{Y_{n-1}}}\left(\ldots\left(\mu_{S_{Y_{1}}}\left(r_{1}\right)\right) \ldots\right)\right)\right|^{e} \mu_{\left(Y_{n-1}, \ldots, Y_{1}\right)}\left(\mu_{S_{Y_{n-1}}}\left(\ldots\left(\mu_{S_{Y_{1}}}\left(r_{2}\right)\right) \ldots\right)\right)\right]\right) \\
& \text { Let } \quad r_{1}{ }^{\prime}=\mu_{\left(Y_{n-1}, \ldots, Y_{1}\right)}\left(\mu_{S_{Y_{n-1}}}\left(\ldots\left(\mu_{S_{Y_{1}}}\left(r_{1}\right)\right) \ldots\right)\right) \quad \text { and } \\
& r_{2}{ }^{\prime}=\mu_{\left(Y_{n-1}, \ldots, Y_{1}\right)}\left(\mu_{S_{Y_{n-1}}}\left(\ldots\left(\mu_{S_{Y_{1}}}\left(r_{2}\right)\right) \ldots\right)\right)
\end{aligned}
$$

If we replace $\quad \mu_{\left(Y_{n-1}, \ldots, Y_{1}\right)}\left(\mu_{S_{Y_{n-1}}}\left(\ldots\left(\mu_{S_{Y_{1}}}\left(r_{1}\right)\right) \ldots\right)\right) \quad$ and $\mu_{\left(Y_{n-1}, \ldots, Y_{1}\right)}\left(\mu_{S_{Y_{n-1}}}\left(\ldots\left(\mu_{S_{Y_{1}}}\left(r_{2}\right)\right) \ldots\right)\right)$ with $r_{1}{ }^{\prime}$ and r_{2}^{\prime} respectively, we obtain

$$
\mu_{Y_{n}}\left(\mu_{S_{Y_{n}}}\left(\mu_{\left(Y_{n-1}, \ldots, Y_{1}\right)}\left(\mu_{S_{Y_{n-1}}}\left(\ldots\left(\mu_{S_{Y_{1}}}\left(r_{1}-{ }^{e} r_{2}\right)\right) \ldots\right)\right)\right)=\mu_{Y_{n}}\left(\mu_{S_{Y_{n}}}\left(r_{1}{ }^{\prime}-{ }^{e} r_{2}{ }^{\prime}\right)\right.\right.
$$

The structure of $r_{1}{ }^{\prime}$ and $r_{2}{ }^{\prime}$ contains one higher-order attribute which is in one of the forms (1), (2), or (3). Since it is shown in the basis step that extended difference is information equivalent to the structures of (1), (2), and (3), we conclude that

$$
\mu_{Y_{n}}\left(\mu_{S_{Y_{n}}}\left(r_{1}^{\prime}-{ }^{e} r_{2}^{\prime}\right)=\mu_{Y_{n}}\left(\mu_{S_{Y_{n}}}\left(r_{1}^{\prime}\right)\right)-\mu_{Y_{n}}\left(\mu_{S_{Y_{n}}}{ }^{\prime}\left(r_{2}^{\prime}\right)\right)\right.
$$

With the introduction of this equation, we obtain the following equality

$$
\begin{gathered}
\mu_{Y_{n}}\left(\mu_{S_{Y_{n}}}\left(\mu_{\left(Y_{n-1}, \ldots, Y_{1}\right)}\left(\mu_{S_{Y_{n-1}}}\left(\ldots\left(\mu_{S_{Y_{1}}}\left(r_{1}-{ }^{e} r_{2}\right)\right) \ldots\right)\right)\right)\right. \\
=\mu_{Y_{n}}\left(\mu_{S_{Y_{n}}}\left(r_{1}{ }^{\prime}\right)\right)-\mu_{Y_{n}}\left(\mu_{S_{Y_{n}}}\left(r_{2}{ }^{\prime}\right)\right)
\end{gathered}
$$

If $r_{1}{ }^{\prime}$ and $r_{2}{ }^{\prime}$ are substituted with their equivalents, we have

$$
\begin{aligned}
& \mu_{Y_{n}^{\prime}}\left(\mu_{S_{Y_{n}}}\left(\mu_{\left(Y_{n-1}, \ldots, Y_{1}\right)}\left(\mu_{S_{Y_{n-1}}}\left(\ldots\left(\mu_{S_{Y_{1}}}\left(r_{1}-{ }^{e} r_{2}\right)\right) \ldots\right)\right)\right)\right. \\
& \quad=\mu_{Y_{n}}\left(\mu_{S_{Y_{n}}}\left(\mu_{\left(Y_{n-1}, \ldots, Y_{1}\right)}\left(\mu_{S_{Y_{n-1}}}\left(\ldots\left(\mu_{S_{Y_{1}}}\left(r_{1}\right)\right) \ldots\right)\right)\right)\right)- \\
& \left.\mu_{Y_{n}}\left(\mu_{S_{Y_{n}}}\left(\mu_{\left(Y_{n-1}, \ldots, Y_{1}\right)}\left(\mu_{S_{Y_{n-1}}}\left(\ldots\left(\mu_{S_{Y_{1}}} r_{2}\right)\right) \ldots\right)\right)\right)\right)
\end{aligned}
$$

With respect to Theorem 8.1.b of [6], the order of unnest is not important, so we can reorganize the previous equality by changing the unnest sequence and obtain the following equality:

$$
\begin{aligned}
& \mu_{\left(Y_{n}, Y_{n-1}, \ldots, Y_{1}\right)}\left(\mu_{S_{Y_{n}}}\left(\ldots\left(\mu_{S_{Y_{1}}}\left(r_{1}-{ }^{e} r_{2}\right)\right) \ldots\right)\right) \\
& \left.=\mu_{\left(Y_{n}, \ldots, Y_{1}\right)}\left(\mu_{S_{Y_{n}}} \ldots\left(\mu_{S_{Y_{1}}}\left(r_{1}\right)\right) \ldots\right)\right)-\mu_{\left(Y_{n}, \ldots, Y_{1}\right)}\left(\mu_{S_{Y_{n}}}\left(\ldots\left(\mu_{S_{Y_{1}}}\left(r_{2}\right)\right) \ldots\right)\right)
\end{aligned}
$$

3.3.3 Extended Intersection

Extended intersection is another set operator that does not need restructuring. As with union and difference, to be able to find the intersection of two structures $\mathcal{R}_{1}=\left\langle R_{1}, r_{1}\right\rangle$ and $\mathcal{R}_{2}=\left\langle R_{2}, r_{2}\right\rangle$, their schemes R_{1} and R_{2} must be equal. The structure of the resultant relation is $\left\langle R_{3}, r_{1}-{ }^{e} r_{2}\right\rangle$, where R_{3} is equal to R_{1} and R_{2}. The extended intersection is defined as follows [6]:

$$
\begin{aligned}
r_{1} \cap^{e} r_{2}=\{t & \mid\left(\exists t_{1} \in r_{1}, \exists t_{2} \in r_{2}:\right. \\
& \left(\forall X, Y \in E_{R_{1}}: t[X]=t_{1}[X]=t_{2}[X]\right. \\
& \left.\left.\left.\wedge t[Y]=\left(t_{1}[Y] \cap^{e} t_{2}[Y]\right) \wedge t[Y] \neq \emptyset\right)\right)\right\}
\end{aligned}
$$

The extended intersection in [2] is defined as follows:

Let f be a format and I, J two instances over f. Then the intersection of I
$r_{1} \cap^{c} r_{2}$

A	X		Y	
	B	K	C	D
a_{1}	b_{1}	k_{1}	c_{1}	d_{1}

A	B	K	C	D
a_{2}	b_{1}	k_{1}	c_{1}	d_{1}

Figure 3.19: Extended intersection of r_{1} and r_{2}

	(μ_{Y}				$\mu_{X}\left(\mu_{Y}\left(r_{2}\right)\right)$					$\mu_{X}\left(\mu_{Y}\left(r_{1}\right)\right) \cap \mu_{X}\left(\mu_{Y}\left(r_{2}\right)\right)$				
A	B	K	C	D	A	B	K	C	D					
a_{1}	b_{1}	k_{1}	c_{1}	d_{1}	A	b_{1}	K	c_{1}	$\frac{\mathrm{D}}{1}$					
a_{1}	b_{2}	k_{2}	c_{1}	d_{1}	a_{2}	b_{1}	k_{1}	c_{3}	d_{3}	A	B	K	C	D
a_{2}	b_{1}	k_{1}	c_{1}	d_{1}	$\frac{a_{2}}{a_{2}}$	b_{8}	k_{8}	c_{1}	d_{1}	a_{2}	b_{1}	k_{1}	c_{1}	d_{1}
a_{2}	b_{1}	k_{1}	c_{2}	d_{2}	a_{2}	b_{8}	k_{8}	c_{3}	d_{3}					
a_{2}	b_{7}	k_{7}	c_{1}	d_{1}	a_{4}	b_{4}	k_{4}	c_{4}	d_{4}					

Figure 3.20: The desired-result
and J is the instance over f, denoted $I @ J$, defined by:

1. if $f \equiv X$, where X is nonempty, then $I ® J=I \cap J$, and
2. if $f \equiv X\left(f_{l}\right)^{*} \ldots\left(f_{n}\right)^{*}$, where f_{1}, \ldots, f_{n} are nonempty, then:

$$
I @ J=\left\{\begin{array}{l|c}
<u\left(I_{1} @ J_{1}\right) \ldots\left(I_{n}(1) J_{n}\right)> & \begin{array}{c}
<u I_{1} \ldots I_{n}>\in I \text { and } \\
<u J_{2} \ldots J_{n}>\in J
\end{array}
\end{array}\right\}
$$

Both of these extended intersection operators are information equivalent. Since we use the model of RKS, we use their extended intersection as well.

Example: If the extended intersection operator of [6] is applied to the relations r_{1} and r_{2} in Figure 3.8, we obtain the result $r_{1} \cap^{e} r_{2}$ in Figure 3.19. The flat form of $r_{1} \cap^{e} r_{2}$ is also shown in the same figure. This flattened result is equal to the desired-result depicted in Figure 3.20.

The class of PNF relations is closed under extended intersection which is stated in Theorem 6.1 of [6]. What this theorem states is that the structure $\mathcal{R}_{3}=$ $<R, r_{1} \cap^{e} r_{2}>$ is in PNF, given that the structures $\mathcal{R}_{1}=<R, r_{1}>$ and $\mathcal{R}_{2}=$
$<R, r_{2}>$ are in PNF.

Theorem 3.3 The extended intersection operator is information equivalent, that is

$$
\mu_{Y_{1}}\left(\ldots\left(\mu_{Y_{n}}\left(r_{1} \cap^{e} r_{2}\right)\right) \ldots\right)=\mu_{Y_{1}}\left(\ldots\left(\mu_{Y_{n}}\left(r_{1}\right)\right) \ldots\right) \cap \mu_{Y_{1}}\left(\ldots\left(\mu_{Y_{n}}\left(r_{2}\right)\right) \ldots\right),
$$

where $Y_{1} \ldots Y_{n}$ is the unnest sequence (the set of higher-order attributes in the relation structure) required to flatten the relations r_{1}, r_{2}, and $r_{1} \cap^{c} r_{2}$.

Proof In this proof we use Theorem 8.2.a of RKS. This theorem is stated as follows in [6].

Given two relation structures \mathcal{R} and \mathcal{S}, the following property holds

$$
\mu_{A}\left(\mathcal{R} \cap^{e} \mathcal{S}\right)=\mu_{A}(\mathcal{R}) \cap^{e} \mu_{A}(\mathcal{S})
$$

(A is an higher-order attribute in $E_{R}, \mathcal{R}=\langle R, r\rangle$, and $\mathcal{S}=\langle S, s\rangle$.)

Let us flatten $r_{1} \cap^{e} r_{2}$ by unnesting it with the sequence $Y_{1} \ldots Y_{n}$. We know that $\quad \mu_{Y_{n}}\left(r_{1} \cap^{e} r_{2}\right)=\mu_{Y_{n}}\left(r_{1}\right) \cap^{e} \mu_{Y_{n}}\left(r_{2}\right) \quad$ (by Theorem 8.2.a [6]), so we have

$$
\mu_{Y_{1}}\left(\ldots\left(\mu_{Y_{n}}\left(r_{1} \cap^{e} r_{2}\right)\right) \ldots\right)=\mu_{Y_{1}}\left(\ldots\left(\mu_{Y_{n-1}}\left[\mu_{Y_{n}}\left(r_{1}\right) \cap^{e} \mu_{Y_{n}}\left(r_{2}\right)\right]\right) \ldots\right)
$$

If we let $r_{1}{ }^{1}=\mu_{Y_{n}}\left(r_{1}\right)$ and $r_{2}{ }^{1}=\mu_{Y_{n}}\left(r_{2}\right)$, and replace $\mu_{Y_{n}}\left(r_{1}\right)$ and $\mu_{Y_{n}}\left(r_{2}\right)$ with $r_{1}{ }^{1}$ and $r_{2}{ }^{1}$ respectively, we obtain

$$
\mu_{Y_{1}}\left(\ldots\left(\mu_{Y_{n}}\left(r_{1} \cap^{e} r_{2}\right)\right) \ldots\right)=\mu_{Y_{1}}\left(\ldots\left(\mu_{Y_{n-1}}\left(r_{1}^{1} \cap^{e} r_{2}^{1}\right)\right) \ldots\right)
$$

The class of PNF relations is closed under unnesting (Theorem 5.1 [6]), and it is given that r_{1} and r_{2} are in PNF, so $r_{1}{ }^{1}$ and $r_{2}{ }^{1}$ are also in PNF, and we can apply extended intersection to $r_{1}{ }^{1}$ and $r_{2}{ }^{1}$. By Theorem 8.2.a [6], we know that $\mu_{Y_{n-1}}\left(r_{1}{ }^{1} \cap^{e} r_{2}{ }^{1}\right)=\mu_{Y_{n-1}}\left(r_{1}{ }^{1}\right) \cap^{e} \mu_{Y_{n-1}}\left(r_{2}{ }^{1}\right)$, so we have

$$
\mu_{Y_{1}}\left(\ldots\left(\mu_{Y_{n}}\left(r_{1} \cap^{e} r_{2}\right)\right) \ldots\right)=\mu_{Y_{1}}\left(\ldots\left(\mu_{Y_{n-2}}\left[\mu_{Y_{n}}\left(r_{1}^{1}\right) \cap^{e} \mu_{Y_{n}}\left(r_{2}^{1}\right)\right]\right) \ldots\right)
$$

If we let $r_{1}{ }^{2}=\mu_{Y_{n-1}}\left(r_{1}{ }^{1}\right)$ and $r_{2}{ }^{2}=\mu_{Y_{n-1}}\left(r_{2}{ }^{1}\right)$, and replace $\mu_{Y_{n-1}}\left(r_{1}{ }^{1}\right)$ and $\mu_{Y_{n-1}}\left(r_{2}{ }^{1}\right)$ with $r_{1}{ }^{2}$ and $r_{2}{ }^{2}$ respectively, we obtain

$$
\mu_{Y_{1}}\left(\ldots\left(\mu_{Y_{n}}\left(r_{1} \cap^{e} r_{2}\right)\right) \ldots\right)=\mu_{Y_{1}}\left(\ldots\left(\mu_{Y_{n-2}}\left(r_{1}^{2} \cap^{e} r_{2}^{2}\right)\right) \ldots\right)
$$

$r_{1}{ }^{2}$ and $r_{2}{ }^{2}$ are in PNF and extended intersection can be applied to them because of the same reasons explained in the previous steps.
If we keep on applying the same procedure until the relation structures contain no more higher-order attributes (i.e., the relation structures are flat), we finally obtain

$$
\begin{aligned}
& \mu_{Y_{1}}\left(\ldots\left(\mu_{Y_{n}}\left(r_{1} \cap^{e} r_{2}\right)\right) \ldots\right)=r_{1}{ }^{n} \cap^{e} r_{2}{ }^{n}, \text { where } \\
& r_{1}{ }^{n} \\
& =
\end{aligned} \mu_{Y_{1}\left(r_{1}{ }^{n-1}\right)} \text { and } r_{2}{ }^{n}=\mu_{Y_{1}\left(r_{2}{ }^{n-1}\right)}^{r_{1}{ }^{n-1}} \begin{array}{lllll}
& & \mu_{Y_{2}}\left(r_{1}{ }^{n-2}\right) & \text { and } r_{2}{ }^{n-1} & =\mu_{Y_{2}}\left(r_{2}{ }^{n-2}\right) \\
\vdots & \vdots & & \vdots \\
r_{1}{ }^{1} & = & \mu_{Y_{2}}\left(r_{1}\right) & \text { and } r_{2}{ }^{1} & =\mu_{Y_{2}}\left(r_{2}\right)
\end{array}
$$

Using the above equations, we find that

$$
r_{1}{ }^{n}=\mu_{Y_{1}}\left(\ldots\left(\mu_{Y_{n}}\left(r_{1}\right)\right) \ldots\right) \text { and } r_{2}^{n}=\mu_{Y_{1}}\left(\ldots\left(\mu_{Y_{n}}\left(r_{2}\right)\right) \ldots\right) .
$$

Since $r_{1}{ }^{n}$ and $r_{2}{ }^{n}$ are flat relations, we have $r_{1}{ }^{n} \cap^{e} r_{2}{ }^{n}=r_{1}{ }^{n} \cap r_{2}{ }^{n}$ (which obviously follows from the extended intersection definition). By replacing $r_{1}{ }^{n}$ and $r_{2}{ }^{n}$ with their equivalents, we finally obtain the following equality, which is what we are trying to show

$$
\mu_{Y_{1}}\left(\ldots\left(\mu_{Y_{n}}\left(r_{1} \cap^{e} r_{2}\right)\right) \ldots\right)=\mu_{Y_{1}}\left(\ldots\left(\mu_{Y_{n}}\left(r_{1}\right)\right) \ldots\right) \cap \mu_{Y_{1}}\left(\ldots\left(\mu_{Y_{n}}\left(r_{2}\right)\right) \ldots\right)
$$

Chapter 4

Conclusions

In this study, we presented the database models of RKS [6] and AB [2] to formalize $\neg 1 N F$ relations with their extended relational algebra. In these models the notions of database and relation structures, database and relation schema, instance, domain, and attribute are extended for $\neg 1 \mathrm{NF}$ relations.

Extended relational algebra operators are defined recursively both in RKS and AB. We have restricted ourselves to only extended set operators union, difference, and intersection. We have introduced the notion of information equivalent set operator, which generates a result that is equal to the desired-result when it is flattened. (Hence, an information equivalent set operator does not lose any tuples in the desired-result or does not introduce extra tuples that are not in the desired-result.) We have shown that the extended set operators union and difference of RKS and AB are not information equivalent.

The extension we have introduced was the new extended union and difference operators which were shown to be information equivalent. The model of RKS is used in these definitions. Furthermore, we have proved that the $e x$ tended intersection operator of RKS is information equivalent.

We did not consider all the extended relational algebra operators in this study. Further research may be carried out to define other extended relational algebra operators such as selection, join, etc.

References

[1] S. ABITEBOUL, C. BEERI, M. GYSSENS, and D. V. GUCHT. An introduction to the completeness of languages for complex objects and nested relations. In Volume 361 of Lecture Notes in Computer Science, pages 117-138, Berlin, 1989. Springer-Verlag.
[2] S. ABITEBOUL and N. BIDOIT. Non first normal form relations: An algebra allowing data restructuring. Journal of Computer and System Sciences, 33(4):361-393, 1986.
[3] L. S. COLBY. A recursive algebra and query optimization for nested relations. ACM SIGMOD Record, 18(2):273-283, June 1989.
[4] L. GARNETT and A. U. TANSEL. Equivalence of relational algebra and calculus languages for nested relations. Technical report, Baruch College, CUNY (City University of NewYork), May 1988.
[5] A. MAKINOUCHI. A consideration on normal form of not-necessarilynormalized relations in the relational data model. In Proceedings of the Third International Conference on Very Large Data Bases, pages 447-453, Tokyo, October 1977.
[6] M. A. ROTH, H. F. KORTH, and A. SILBERSCHATZ. Extended algebra and calculus for nested relational databases. ACM Transactions on Database Systems, 13(4):389-417, December 1988.
[7] H. J. SCHEK and M. H. SCHOLL. The relational model with relationvalued attributes. Information Systems, 11(2):137-147, 1986.
[8] J. D. ULLMAN. Principles of Database and Knowledge-Base Systems. Computer Science Press, Rockville, MD, 1988.

