
OBJECT-ORIENTED ΜΟΊΊΟΝ ABSTRACTION

î‘S2S ί'αΒΜΪΤΤϊΏ- T í

y if  С О Ы Р о ІЗ Н  S K чЗXiîE31İ2ii

ϊιΙιΟ'ϋΖτίτΙίΝίΙϊΐ:

T R
837.7 
• £  75 
7393



OBJECT-ORIENTED MOTION ABSTRACTION

A THESIS SUBMITTED TO

THE DEPARTMENT OF COMPUTER ENGINEERING AND 

INFORMATION SCIENCE

AND THE INSTITUTE OF ENGINEERING AND SCIENCE 

OF BILKENT UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS 

FOR THE DEGREE OF 

MASTER OF SCIENCE

by
Bilge Erkan 

September 1993



τ (^

1992



II

I certify that I have read this thesis and that in my opinion it is 
fully adequate, in scope and in quality, as a thesis for the degree 
of Master of Science.

Prof. Bülent Özgûç (Principal Advisor)

I certify that I have read this thesis and that in my opinion it is 
fully adequate, in scope and in quality, as a thesis for the degree

I certify that I have read this thesis and that in my opinion it is 
fully adequate, in scope and in quality, as a thesis for the degree

Approved by the Institute of Engineering and Science:

Prof. Mehmet Baray,
Director of the Institute of Engineering and Science



ABSTRACT

OBJECT-ORIENTED MOTION ABSTRACTION

Bilge Erkan
M.S. in Computer Engineering and Information Science 

Supervisor: Prof. Bülent Ozgüç 
September 1993

An important problem in the production of an animation sequence is the great 
amount of information necessary to control and specify the motion. Specification 
of complex animation sequences with less amount of information is possible if 
they are built over some abstracted sequences. Abstraction supports dealing 
with complexity by structuring, so that the necessary features are made available 
while those that are not necessary are hidden. In our work, motion abstraction 
is used to build complex animation sequences by the help of object oriented 
concepts. Parametric key-frame interpolation method is used for producing the 
in-between frames of an animation sequence. In this technique, the parameters of 
the model are interpolated for smooth in-betweens. The parameters that define 
the motion of a model, in our work, are position, orientation, size, shape and color. 
Orientation transformations are implemented by unit quaternions. Sufficient and 
good kinetic control provides a good illusion of dynamics, so timing, slow-in and 
slow-out controls are being supported.

Keywords: Object-oriented animation, parametric key-frame interpolation, 
motion abstraction, quaternions



ÖZET

NESNEYE y ö n e l ik  HAREKET SOYUTLAMASI

Bilge Erkan
Bilgisayar Mühendisliği ve Enformatik Bilimleri Bölümü

Yüksek Lisans
Tez Yöneticisi: Prof. Bülent Özgüç 

Eylül 1993

Bir animasyon dizisi üretiminde önemli bir problem hareketi tanımlamak ve 
denetlemek için verilmesi gereken çok yoğun bilgidir. Karma.§ık animasyon 
dizilerinin üretimi, bu dizilerin bazı soyutlanmış diziler üzerine kurulmasıyla, 
daha az miktarda bilgi vererek olasıdır. Soyutlama, önemli özelliklerin ön plana 
çıkartılıp önemli olmayanların gizlenmesi şeklinde bir yapılaşma ile karmaşıklıkla 
başa çıkılmasını sağlar. Bizim çalışmanuzda, nesneye yönelik kavramlar 
yardımıyla, karmaşık animasyon dizileri hazırlanması için hareket soyutlaması 
yapılmıştır. Bir animasyon dizisinin ara çerçevelerinin üretiminde parametrik 
anahtar-çerçeve interpolasyon tekniği kullanılmıştır. Bu teknikte, akıcı ara 
çerçeveler üretilmesi için modelin parametreleri interpole edilir. Çalışmamızda, 
bir modelin hareketini ifade eden parametreler, yer, yön, büyüklük, şekil ve renk­
tir. Yön değişimleri birim quatemion\a.r ile gerçekleştirilmektedir. Yeterli ve 
iyi bir kinetik denetim sayesinde dinamik hareketin iyi bir hayali görünümü ver­
ilebilir. Bu nedenle zamanlama ve yavaş giriş, yavaş çıkış denetimleri sağlanmışır.

Anahtar kelimeler: Nesneye yönelik animasyon, parametrik anahtar-çerçeve 
interpolasyonu, hareket soyutlaması, quatemion\гir
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Chapter 1

Introduction

Animation is generating a series of frames of a scene, where each frame is an 
incremental alteration of the previous frame. Three-dimensional computer ani­
mation is the process of generating and displaying transformed images through 
time to give the illusion of motion. While the other areas in computer graphics 
deal with static images, computer animation conveys information in the form of 
motion or more generally, in the form of transformations through time.

Three dimensional computer animation involves three main phases [26]:

• Modeling; creating a three-dimensional computer model of the scene and 
the characters in it,

• Motion specification and synchronization; describing how a model will 
transform through time, and

• Rendering; producing realistic images by removing hidden surftices and 
adding effects like shading, shadows, transparency and texture for each

t:

frame in the sequence obtained from the model and motion data.



Generally, modeling and the rendering phases have taken the most attention 
and proportionally, less research has been done on the motion itself. Both tradi­
tional and computer animation require great amount of human labour to generate 
an animated sequence. The main purpose in many of the computer animation 
systems developed so far is to decre<ise the amount of human labour used during 
the generation of the animation while still giving good enough control to the 
animator so that he can translate his artistic vision to the product.

An important problem in the production of an animation sequence is the great 
amount of information necessary to control and specify the motion. Many de­
pendable systems need lots of specification even for a short animation sequence. 
If the scene gets more complicated and more realistic, the user has more trouble 
because of the great amount of information he has to provide for the system. A 
good approach to this kind of problem is the use of abstraction mechanism [10]. 
Different levels of abstractions can be used to decre<ise the amount of informa­
tion to generate complicated animation sequences. In higher levels, the details 
decrecise because the most useful features are abstracted while the features that 
are not needed are hidden, hence less information that is built over lower levels 
in a step-wise manner will suffice for complex ideas.

In fact, if motion is considered as a building block and abstractions are made 
on motion, then many different kinds of motion can be obtained and this makes 
the animation richer and more complicated.

CHAPTER 1. INTRODUCTION 2

A very helpful idea for computer animation and motion abstraction is the 
object orientation. Many implementations have been done for computer anima­
tion using object oriented paradigm as in [6, 9, 10, 12, 14, 17, 33]. Some of 
those authors implemented scripting languages for the description of animation

t

sequences [10, 12], while in [6, 9, 14] both interactive and scripting facilities have 
been supplied. Our approach is not to use any scripting language that is hard 
to use for naive users, but instead, provide an interactive environment for the



specification of motion. The object oriented idea facilitates both the implemen­
tation of an animation program and the generation of animation sequences. It is 
thus advantageous, useful and natural to use object orientation in computer ani­
mation. Our work mainly deals with motion abstraction through object oriented 
paradigm to decrease the amount of information needed to specify a complicated 
animation sequence. The system is implemented in C-|—1- [25] under Unix and 
XView.

The organization of the text is as follows. Chapter 2 presents a short overview 
of traditional animation and the evolution of computer animation. The methods 
of computer animation, an explanation of motion abstraction and related work 
done in object-oriented animation are given in respective sections in this chapter.

In Chapter 3, the low level details and controls on sequences are introduced. 
The classes designed for the problem, the creation of the geometric objects and 
their characteristics, the animation parameters and their interpolation schemes 
are explained.

In Chapter 4, the high level control mechanism and the abstractions on motion 
are presented. Different sequence types and their characteristics are explained in 

detail.

CHAPTER 1. INTRODUCTION 3

Chapter 5 gives a conclusion of the work. Appendix A presents some conver­
sions and derivations about quaternions and Appendix B presents some colored 
images of the animations generated by the motion abstraction system imple­

mented.



C hapter 2

A nim ation

2.1 A n Overview o f Traditional and Computer 

A nim ation

Early computer animation techniques were based on traditional animation. Two- 
dimensional animation techniques were used such as story-boarding, key-framing, 
in-betweening, painting and multi-plane backgrounds which are some steps of line 
and cel animation [3]. Line and cel animation is the traditional cartoon or char­
acter animation. Traditional animation production is a complex and elaborate 
process. It passes through a complicated sequence of production steps. A film 
usually starts with a script which is followed by its graphical form, the storyboard. 
It identifies key moments, specifies the sound, movement, composition and color 
aspects. Animators draw key-frames for each foreground character on paper, and 
specify general timing and movement on the exposure sheet. Exposure sheet is the 
essential book-keeping device of the process. It records all timing and sequencing 
information in tabular form. Assistant animators prepare the in-between frames 
based on the key-frames created by the animators. This step is the most time



and labour intensive part of the production process. Before the post-production, 
line test can be made which is the quick shooting of uncolored sketched frames, 
to verify the animation.

Computer animation has been developed for years to accomplish and speed up 
the process of the in-between frames generation. There are basically four methods 
for producing computer animation. These are key-frame animation, parametric 
key-frame interpolation, procedural or script based methods and dynamic simu­
lation [31].

CHAPTER 2. ANIMATION 5

2.1.1 Key-Fram e A nim ation

Based on the traditional animation, this method uses the shape and form of the 
scene at a number of fixed times, and generates the rest of the frames at other 
times by means of point-wise interpolation. This technique is the same as that 
is used in traditional character animation where the in-betweening is done by 
assistant animators. This can be done in a mechanical way by the assistants 
since it is a less artistically demanding task than the creation of the key frames. 
Besides the lack of smoothness and loss of depth and joint information in the 
in-between frames produced by this method, one more essential drawbau:k is that 
every detail of the motion can only be defined to depend on one single global 
time parameter and there is no way to assign autonomous behavior to an object 
or define other dependencies between motions of the objects.

2.1 .2  Param etric Key-Fram e Interpolation

A scene can be parameterized in terms of a set of parameters, and the variationsr
of these parameters generate the motion. Like key-frame animation, again some 
key-frames are given at key times, but this time in terms of some parameters that



are called key values. The intermediate values of the parameters are calculated 
to generate each frame. Typically the parameter values are interpolated by spline 
techniques to generate smooth animation. The advantages of this method over 
key-frame animation are, the compact representation of motion by the key values 
of the parameters, the implicit interactivity that comes during the specification of 
those key values, and the smoothness in the motion generated. The smoothness 
is achieved by the interpolation being based on spatial or physical parameters of 
the model [24]. However, this method also lacks the definition of dependencies 
between motions as key-frame animation.

CHAPTER 2. ANIMATION 6

2.1.3 Procedural or Script Based M ethods

Script based methods offer a better way to specify kinematic behavior, enables 
to describe autonomous motion and if the script language is powerful enough 
then dependencies between motions can be introduced as well. However, script 
based systems are single-shot systems where the animator writes down a script 
in a language interpreted by the system and does not see the result and get any 
feedback until he compiles and runs the script. If the script needs modification, 
he duplicates the same steps once more. Though the script based methods are 
more expressive than the previous two methods, the advantage of direct control 
that comes by the interactive methods is laeking. A second disadvantage is 
the obstacle of the scripting language while nontechnically trained animators 
are using it. Using a scripting language generally requires the knowledge and 
experience of programming.

2.1.4 Dynam ic Sim ulation

Sometimes motions rely on constraint based dynamics, like the motions of falling 
and tumbling articulated rigid bodies which cannot be generated exactly by script



based methods. Therefore there has been research on dynamic simulation, how­
ever this method is again a single-shot method and needs many trials for the 
adaptation of the initial conditions until the desired motion is obtained.

CHAPTER 2. ANIMATION 7

2.2 M otion Abstraction

Computer animation is an art and like any art form, it requires artistic ability and 
creativity to reach an acceptable final product. An animator using a computer 
animation system must be able to translate his artistic vision to the animation 
he is creating. For this purpose the system must be easy to use, interactive, 
flexible and fast. It can be thought that giving the animator the ability to control 
every single polygon or pixel in every single frame gives a great flexibility. But 
this does not provide any power to the animator other than pushing him into 
a bunch of cumbersome utilities during the production phcise of the animation. 
However, main purpose of a computer animation system should be to give users 
high-level controls, but also provide them ability to command on the system 
in the lower levels. The great amount of specification information necessary to 
produce an animation sequence is an important problem in computer animation. 
A technique widely used in computer community to manage such problems is the 
use of abstraction [22].

Abstraction is a fundamental human capability that permits to deal with com­
plexity. It is the selective examination of certain aspects of a problem. The goal of 
abstraction is to isolate those aspects that are important and useful for some pur­
pose and suppress those that are unimportant and conceptually unnecessary [21].

Our system supports motion abstraction to decrease the effort the animator 
spends for the creation of a complex animation sequence which may consist of 
several different models and motion classes. The abstraction mechanism allows 
the user, both to command on many low level details of the animation and to



control it with increasingly higher levels of control mechanisms. The main idea 
in this kind of abstraction is that once an animation sequence is defined, its spec­
ification can be viewed as a unit sequence and it can be used as a building block 
for the definition of more complex animation sequences [7]. A sequence created 
in lowest abstraction level, with good and detailed control of the animator can be 
used later, whenever it is needed, as a building block for a new sequence, hence 
helps the creation of the new sequence by letting it be defined at a higher level of 
abstraction. If thought recursively and repeatedly, this abstraction mechanism 
lets the creation of complex and detailed motions with dependencies among them, 
easily and without much detailed information except those in the lowest level.

As a result, with motion abstraction, the animator has high level controls but 
he can also command on the animation he is producing whenever he wants to, by 
controlling the lowest level sequences in detail. In this way, the system is easy to 
use, powerful, interactive and flexible. It gives the user the opportunity to re-use 
previously generated productions, in conjunction and relation with newer ones, 
in a well defined abstraction.

CHAPTER 2. ANIMATION 8

2.3 Object-O riented Anim ation

Many implementations have been done for computer animation using object- 
oriented paradigm as in Clockworks [6, 14], SOLAR [10], Pinocchio [17], and in 
others like [9, 12, 33]. Some of these have been influenced by earlier systems that 
carry object-oriented ideas. The important ones among these earlier systems are 
ASAS (Actor/Scriptor Animation System) [20] and Mira [27].

ASAS is a high level animation language, an extension of a Lisp based actor 
system and essentially object-oriented. It supports abstractions and a form of 
adaptive motion control. Actors pass messages to others for synchronization and 
this facilitates the awiaptive motion.



Mira system is based on structured programming and data types. It consists 
of some data types like animated bcisic types, actor types and camera types. It 
provides some abstraction levels similar to ASAS but does not support message 
passing, however, synchronization can be provided through the use of common 
parameters. A preprocessor called Miranim which is a command-driven and 
director-oriented interface was developed for creating CINEMIRA code. CINEI- 
MIRA is an extension in MIRA system.

These two systems carry the initial ideas of abstraction and object orientation 
for computer animation. The later systems are obviously more object-oriented. 
Fiume et al. have developed a temporal scripting language for object-oriented 
animation [12]. In their work, an object is an encapsulation of activities and data, 
and the basic properties of an object are inherited from its prototype. With their 
own words, “the object-oriented approach favors viewing an application as a set 
of communicating capsules of activity, perhaps executing concurrently, rather 
than a large single piece of code”. They have provided an environment in which 
animated objects are fashioned into complex animations using a concise, directly 
executable specification language. They support the idea that computer anima­
tion is inherently object-oriented. Their language facilitates to specify a global 
temporal behavior and constrain local temporal behavior to meet the specifica­
tion. It carries the idea from BGRAF2 [4] that time is a quantity that can be 
directly sampled and can be used to drive animation so that it is possible to sep­
arate the static representation of a graphical object from how it is animated. The 
motion specification is encapsulated also, so that the complex motion generated 
by the language is concise, re-usable and open-ended. The similarities of our sys­
tem to this one is in motion abstraction, specification of complex animation with 
global temporal behavior based on local temporal behaviored animations, and 
the discrimination of static representation of graphical objects from how they are 
animated so that an animation sequence can be assigned to any graphical object.

CHAPTER 2. ANIMATION 9

The language SOLAR (Structured Object-oriented Language for AnimatoRs) 
provides high level abstractions and adaptive motion through class inheritance



CHAPTER 2. ANIMATION 10

and message passing mechanisms of object-oriented paradigm [10]. They make 
five levels of abstractions which are structural, motion, functional, character and 
world modeling. These abstractions enable an animation sequence to be defined 
in steps as, starting from the simple object structure and motion descriptions to a 
more complex level of functional definition, object character building with adap­
tive skills, and world modeling of interacting objects. As apparent, structural 
abstraction supports the definition of the graphical objects, motional abstraction 
defines motion independent from the graphical objects, functional abstraction 
supports the grouping of a set of motions with a structural element, called skill, 
character abstraction associates skills with a class of object structures and sup­
ports adaptive motion, and world modeling abstraction defines the environment 
with all the objects in it.

Clockworks is an object-oriented computer animation system with integrated 
capabilities like modeling, image synthesis, animation, programming and simu­
lation [6, 14]. It has been implemented in portable C under Unix with object- 
oriented features like objects with methods, instances, class hierarchies, inher­
itance, instantiation and message passing. Clockworks is made up of simple 
basic tools that can be combined. They provide both a scripting language and 
an interactive environment where the user can get direct feedback by sending 
messages to the objects. With their own words about object orientation in ani­
mation “We have found the object-oriented paradigm an extremely useful one for 
computer animation. It offers <idvantages both in software engineering and ani­
mation itself.. . .  Overall the object-oriented paradigm is an advantageous, useful 
and natural concept for computer animation”. They say that object-oriented 
programming results in maintainable and extensible code and hierarchies of the 
animation system directly map into the hierarchies in geometric modeling. In 
Clockworks an actor-director model with autonomous objects communicating 
through messages is implemented by the scene and cue objects. Scene and cue 
objects constitute the basic building blocks of a script. A cue object represents a 
set of actions performed by a single object, over a specified span of time. Scene
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object coordinates cues. Scene is a subclass of cue and ais cue hcis a clock, it 
inherits this. At every clock tick, the scene sends a message to all of its cues to 
update their clocks and a message to the cameras to render the scene. Scenes and 
cues offer a low level time-based control. Because of writing scripts directly using 
scenes and cues is difficult, the system provides keyframe, keypoint and chronos 
objects that allow the user to interactively generate a script. Chronos object 
supports the time relations between a scene and its cues and actions. Keyframe 
provides the user to script an object interactively and generate cues automat­
ically. Keypoints represent values for a particular object attribute pair over a 
period of time in a cue.

Pinocchio is an animation system that controls human motion with some 
sequencing facilities [17]. Movements performed by real actors are digitized by a 
3D vision system called Elite. A general movement dictionary has been developed 
to classify movements and sequences of movements are described by an animation 
script where the characters themselves take care of their coordinations in the scene 
before display. Tokens in the motion dictionary are elementary movements that 
are not decomposable into submovements. Elementary movements are building 
blocks and can be combined to describe complex motions. An object-oriented 
mechanism is associated to the movements retrieved from the motion database for 
synchronizing the characters in the scene. This mechanism provides the animator 
with high level control. The transitions between sequences of movements are 
controlled by this object-oriented environment. Every entity in this system is 
an object and all the objects operate independently and concurrently. The time 
constraints in a sequence are relative times, the actual starting time of a scene is 
set by a director object and hence absolute times are generated. In our system 
this is done in a similar way where sequences have their own local times and 
the absolute times are generated according to their combinations controlled by a 
controller object.

Chmilar et al. have built a software architecture integrating the data struc­
tures for 3D modeling and animation so that time-based models that can change
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shape during animation can be described [9]. They have implemented the sys­
tem in They designate the modular animation systems that isolate the
modeling, animation and rendering phases as reductionist approaches, and sig­
nify that in these systems, éis the geometry and structure of the models are given 
before motion control is specified, animation is limited to the basic transforma­
tions like scaling, rotation and translation, and it is difficult to animate changes 
in geometry. However in their approach which they call holistic approach, they 
use the powerful mechanism, object-oriented programming, that provides data 
and function encapsulation and multidirectional communication scheme between 
modules. In their approach, they integrate modeling and animation processes 
which makes an orthogonal system where anything: position, orientation, size, 
shape and structure, can be animated. They supply both an interactive environ­
ment and a scripting facility. Our system supports shape and geometric structure 
change during motion as well. The geometric structure change is accomplished by 
the motion abstractions on sequences where hierarchically dependent sequences 
can be constructed and, as this dependence is done on the motion level, it can 
be changed through time.

Zeleznik et al. have presented an interactive modeling and animation sys­
tem that facilitates the integration of a variety of simulation and animation 
paradigms [33]. Their system extends modeling tools to include animation con­
trols and provides the modeling of objects that change in shape, appearance 
and behavior over time. The system has an object-oriented architecture with 
objects like displayable objects, controllers, cameras, lights, renderers and user 
interfaces. Objects send and receive messages, and inquire information from 
each other. Through messages, objects can be transformed, deformed, colored, 
shaded, texture mapped, dynamically moved and volumetrically carved. Mes­
sages are functions of time and an object’s list of messages describes the object’s 
time varying structure and behavior and this list can be edited to alter the struc­
ture and behavior over time. Their system is a delegation system rather than a 
class-instance system, where in a class-instance system an object heis two sorts of
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associations which are «issociation of an instance with its class, and association of 
a class with its super-class and these are static relations. However, a delegation 
system has only one relation which is between an object and its prototype. An 
object in a delegation system interprets a message by using one of its prototype’s 
techniques. In this style an object called extension is created from another object 
called its prototype. Their system provides indications that next generation of 
graphics .systems is headed towards an environment with time and behavior as 
first class notions rather than shape description and rendering as in the earlier 
systems.

2.4 O bject-O riented D esign

Object-oriented modeling and design is a way of thinking, using the real world 
concepts and model of the problem [21]. In this style of programming the soft­
ware is constructed as a collection of discrete objects that incorporate both data 
structure and behavior, which is in contrast with conventional programming style 
where data structure and behavior are loosely connected. Generally four basic 
characteristics are required in an object-oriented approach. These are: identity, 
classification, polymorphism, and inheritance. Identity is quantization of data into 
discrete, distinguishable entities called objects. Each object has its own inherent 
identity and every object is distinct and unique. Classification is grouping ob­
jects that have the same data structure (attributes) and behavior (operations), 
into a class. Etich class describes a possibly infinite set of individual objects and 
each object is an instance of its class. Polymorphism means that the same op­
eration may behave differently on different classes. A specific implementation of 
an operation by a certain class is called a method. An object-oriented language 
automatically selects the correct method to implement an operation, based on 
the name of the operation and the class being operated on. Therefore, the user 
of the operator need not be aware of how many methods exist to implement a
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polymorphic operation. Hence new classes can easily be added without changing 
the existing code, providing the methods for each applicable operation on the new 
class. Thus polymorphism facilitates the extendibility in designs. Inheritance is 
the sharing of attributes and operations among classes bcised on a hierarchical 
relationship. A subclass inherits all of the properties of its superclass and adds 
its own unique properties. The factorization out of common properties of some 
classes into a common superclass and inheritance of them reduces the repeti­
tion within designs. As a result, the characteristics in object oriented approach 
facilitates extensible, re-usable and well designed softwares.
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M otion A bstraction System : 
Low Level Controls

There are two major environments in our system. These are graphical object 
creation environment and sequence generation environment as seen in Figure 3.1. 
Graphical object creation environment has two subparts which are curve design 
and extended volume creation, and sequence generation environment also has two 
subparts which are key-framing and sequencing environments. There is a close 
relation between the key-framing and extended volume creation environments. 
During the key-framing phase the extended volume creation environment sup­
ports the creation of other transformable objects as well, like camera and light. 
Hence a transformable object created in this environment can be easily used in 
the key-framing environment as these two environments are closely related.

There is no need to switch from one environment to another because these 
four environments can all be active simultaneously. Hence, there is no restric­
tion for separating modeling and animation steps. As all environments can be 
active at the same time, the animator can easily go back to the object creation 
environment while he is dealing with sequencing, so that no work is lost because

15
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Figure 3.1: Structure of the system

of things forgotten during modeling or key-framing, etc. The interactive editing 
facility provided in the key-framing environment supports editing key values of 
the parameters easily. In this manner, the system provides a flexible, extensible 
and modular environment in which the user can work comfortably.

3.1 The Classes in the M otion A bstraction  

System

In this section the triangle sign denotes inheritance, the diamond sign denotes 
aggregation and the dot sign denotes multiplicity in associations. This style is 
taken from the Object Modeling Technique (OMT) by Rumbaugh et al [21].

The lowest level classes used in the system as seen in Figure 3.2 are the basic
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Figure 3.2: Lowest level cleisses

concepts used in any graphics subject like points, edges, vectors, etc. An edge 
is made up of two and a triangle is made up of three point objects. Conversion 
methods from a quaternion object to a matrix object and from a point object to 
a vector object and vice versa exist. All these classes have their own methods of 
their behavior on their own data. Although matrix class is implemented, it is not 
used for applying any transformations to any graphical object, instead quaternion 
is used for rotations, scale is used for scalings and point is used for translations. 
Matrix objects are used in some cases for representing and concatenating trans­
formations but their quaternion and point conversions are used for applying those 
transformations.

Generic linked lists and arrays are implemented as classes which can keep any 
kind of object in them and generic mesh class is implemented which keeps points, 
doubles or integers. The advantage of genericity is that it enables parameterized 
modules so that it provides re-usability in code.

There is a spline clгıss that has three subclasses namely, nurbs, hermite and 
b-spline as seen in Figure 3.3. This class provides the Hermite spline interpola­
tion on the key values of the animation parameters and NURBS (Non-Uniform 
Rational B-Splines) approximation on the curves and meshes that the graphical 
objects are made of.
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Figure 3.3: Spline class

Figure 3.4: Curve clciss
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Figure 3.5: Transformable object clciss and its subclasses

There are two subclasses of curve class, Figure 3.4, which are profile and 
trajectory. Curve objects are used for the creation of the extended volumes which 
are volumes of swinging and volumes of sweeping. Swinging is a generalization 
of revolution. One profile and one trajectory curve is needed for an extended 
volume. Curve class has attributes like, vertices which are arrays of points 
that make up the curve and weights which exist for each point in the vertices. 
These weights are used when NURBS approximation is applied onto the curve. 
The most important methods in the curve class are apply.nurhsQ, transformQ, 
and mapQ. The last one is for comparing two curves and generating a map for 
shape interpolation on curves. This shape interpolation is a base for the shape 
interpolation on the extended volumes explained in Section 3.3.3.

The transformable object class is one of the biggest classes in the system, 
and has an important role because it is the highest abstraction of the animating 
elements. It has the subclasses actor, camera and light as seen in Figure 3.5.
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Figure 3.6: Frames and animation parameters classes

Some important methods in this cl£iss are transformQ and displayQ, and like 
almost all of the other methods of this class, these methods are virtual. Vir­
tual methods support overloading by run-time resolution of methods. This class 
has the attributes position and o rien tation  because size has no meaning for 
its subclasses camera and light. The subclass camera has attributes like up and 
norm al which are vectors. Obviously, norm al shows the viewing direction and 
up  shows the inclination of the camera. The other attributes are ref_pnt, speci­
fying the position and rn d .ty p e , specifying the rendering type that the camera 
will use. The other important subclass of transformable object, actor, is the par­
ent class of the graphical objects. It has two subclasses, extended volume and 
mesh volume and the subclass extended volume has two more subclasses, volume 
of swinging and volume of sweeping. Actor class has the attributes, size, color 
and dsp_type. The last one denotes the display type of the actor, which can 
be smoothed (NURBS applied), unsmoothed (as its control points), box (as its 
bounding box) or triangulated (for exporting information of a scene to external 
renderers like radiosity).
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Figure 3.7: Sequence class and its subclasses

There are three levels of hierarchy in frames class as seen in Figure 3.6. The 
upper most class is for the transformable objects so it has the two animation 
parameters, position and orientation, its subclass is for iictors and has the extra 
animation parameters, size and color, and finally the lowest subclass is for ex­
tended volumes, so as the extended volumes can change shape, it has an extra 
shape parameter.

The most important class of our system is the sequence class because it is 
the highest abstraction of the animation sequences. As seen in Figure 3.7, the 
sequence class has two major subclasses, simple sequence and compound sequence. 
Simple sequence has an attribute kin_type that denotes the kinetic information 
type of the sequence. Simple sequence has a subclass combined sequence which 
has an attribute, a ttached , denoting that the sequences combined will be at­
tached into each other providing a smooth transition. Compound sequence class 
has more varieties. It has two subclasses, temporally and spatially dependent 
sequences. A compound sequence is made of two sequences that is denoted by
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Figure 3.8: Relations among some of the classes

the recursive aggregation in the Figure 3.7. There are three subclasses of tempo­
ral dependent sequence^ concatenated, simultaneous and overlapped sequences and 
two subclasses of spatial dependent sequence, guided and hierarchic sequences. 
Sequences will be explained in detail in Chapter 4.

In Figure 3.8, some important associations and aggregations between some 
classes are presented. Aggregation is a special form of association, it is not an 
independent concept. If two objects are tightly bound by a part-whole relation­
ship then it is an aggregation but if they are considered independent even though 
they may be often linked then it is an association [21]. An extended volume hcis 
two curves, a profile and a trajectory, animation parameters are parts of a frames 
object, a frames object and a transformable object are parts of a simple sequence 
and finally, controller controls the sequences and has references to the current 
camera, light and background objects through the sequence.
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3.2 Transformable Objects

Transformable objects are actors, cameras or lights. Two kinds of light objects are 
designed, one is a transformable object which hcis the same properties as an actor 
and the other one is a point light source, again a transformable object but has no 
geometry. The light source which has a geometry just as an ordinary actor, is for 
the purpose of rendering by radiosity methods, while the other one is for the other 
shading techniques like constant, Gouraud and Phong shading that are provided 
by our system. By sending the frames to the radiosity renderer developed on 
the IPSC/2 Hypercube in Bilkent University, more realistically rendered images 
can be obtained [8]. An animation sequence rendered in this way can be seen in 
Figure B.5.

3.2.1 Actors

An actor can be defined either as a network of 3D data, a mesh volume, available 
by some other means, such as a data file containing the 3D network data of an 
object, or it can be defined as a 3D volume extended from 2D, such as a volume 
of swinging or volume of sweeping. If preferred the 3D geometry of an aw:tor can 
be smoothed by fitting a NURBS on it.

There are a number of general advantages of NURBS [18] among which the 
following are especially useful in our application: •

• manipulation of the control points and the weights provide the ease and 
flexibility to design different kinds of shapes with local control,

• the evaluation of NURBS is reasonably f<ist and computationally stable, 

and
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• they are invariant under affine* transformations, and perspective and par­
allel projections.

These are some useful properties of NURBS that become advantageous in ani­
mation.

The definition of a NURBS curve is as follows:

r'fu) = ^«’=0 (3.1)

where u),· are the weights, Pi are the control points and A',,p(u) are the normalized 
B-spline basis functions of degree p, the definition of which can be found in [18].

A NURBS surface can be defined as:

(3.2)

where Wij are the weights, Pij form a control net, and Ni,p(u) and Nj,q(v) are the 
normalized B-spline basis functions of degree p and q in the u and v directions 
respectively.

The definition of the NURBS curve can be rewritten in a simplified form as 
follows :

C(u) = E  ««·>(“)
t= 0

^.p(«) =

(3.3)

(3.4)
E ”=0*"i^J.p(«)

where Ri,p(u) are rational basis functions and their analytic properties determine 
the geometric behavior of curves. These geometric behaviors are as follows:

some special cases of NURBS curve are Bezier and B-spline curves. *

* Affine transformations are the linear transformations such as scaling, rotation and shearing 
followed by a translation.
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• a NURBS curve can be locally^ approximated,

• it lies within the convex hull of the control points,

• it is invariant under affine and perspective transformations,

• it has the same differentiability properties as with the basis functions,

• if a weight is set to zero, then that control point hcis no effect on the curve,

• if a weight diverges to infinity, then the curve, at the related parameter 
values, converges to that point.

Extended Volume Generation

An actor may be an extended volume obtained from surfaces of swinging or 
surfaces of sweeping [1]. For obtaining a surface of sweeping, a profile curve must 
be swept through a trajectory curve, and for obtaining a surfгıce of revolution, a 
profile curve must be rotated around an axis of the plane it lies on. Revolution 
can be generalized under the word swinging. If there is a profile curve P(u) on 
the xj/ plane and a trajectory curve T(v) on the xz plane defined as NURBS 
curves as follows:

F(u) =
t= 0
m

T(v) =  ^ T iR i„ (v )
j - o

(3.5)

(3.6)

swinging the profile curve through the trajectory curve gives the following surfaw:e 

as seen in Figure 3.9:

5(«,.,) = (Fx(u)r.(t,),F,(u).F.(ti)r.(t.)) (3.7)

L̂ocal approximation is that, if a control point or the weight of a control point is modified, 
this modification affects the shape of the curve only in p + 1 knot spans where p is the degree 
of the curve. /
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Figure 3.9: A volume of swinging

Figure 3.10: A volume of sweeping 

where the control points for this surfcice are

and the weights are

U7.J =  WiWj

(3.8)

(3.9)

Sweeping the profile curve through the trajectory curve gives the following 
faice as seen in Figure 3.10:

sur-

S{u, v) -  (P^(u) + T;(u), PJ(u) +  Ty{v), P'{u) + T^(v)) (3.10)
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Figure 3.11: World and viewing coordinate systems, 

where the control points for this surface are

QiJ — i,Pix d" 'I'jxi +  Tjyy +  Tjf) (3.11)

and the weights are obtained as in the sweeping case. Here, the P- is the rotated 
version of the control point Pi according to the inclinations of the trajectory 
curve. So both for swinging and sweeping cases, we can use a profile curve and 
a trajectory curve, hence swinging volumes are generated giving more flexibility 
than revolutions volumes.

The network of control points for extended volumes are obtained in this way 
and NURBS is applied over it by equation 3.2.

3,2 .2  Cameras

Both the world and the viewing coordinate systems are defined as left handed 
coordinate systems. Figure 3.11 shows the world and viewing coordinate systems 
according to each other. Xw, Vw, are the unit vectors on the positive x, y, z
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axes of the world coordinate system. 0  is the origin, ((0,0,0) point) of the 
world. x„, y„, are the unit vectors on the positive x, y, z axes of the viewing 
coordinate system. is the N  (normal) and y„ is the U (up) vector of the 
camera. R  is the reference point of the camera in world coordinates.

In order to obtain what is seen from the camera, everything defined in the 
world coordinate system must be redefined in the viewing coordinate system. 
For this purpose, the origin (O) of the world system is translated to R, then the 
world system is rotated to fit on the viewing system exactly. For the rotation 
transformation in this process, the following method as explained in [28] has been 
used. In this method, the transformation matrix from one coordinate system to 
another that has the same origin is obtained in the following way.

rpv _
f l l  f l2  ¿13 

¿21 ¿22 ¿23

¿31 ¿32 ¿33

where T" is the transformation matrix from world coordinate system to viewing 
coordinate system. The i^s are as follows:

¿11 ”  ¿12 ““ y w ^ v  ¿13 ”

¿21 ~  ^ w V v  ¿22 ~  y w V v  ¿23 “

¿31 — ¿32 =  y w ^ v  ¿33 =  Zy,Z^,

where ¿¿xj is the dot product of the two unit vectors and gives the cosine of the 
angle between them. A vector p in the world coordinate system can be redefined 
in the viewing coordinate system as

nr*v
Pv =  T^Pti (3.12)

where and are the representations of the vector p in the viewing and world 
coordinate systems respectively. Hence, T” is the transformation matrix that 
maps a vector represented in the world coordinate system to a vector represented 
in the viewing coordinate system. After this matrix is calculated once for a par­
ticular orientation of a camera, it is converted to a unit quaternion that represents
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this rotation, and this quaternion is used for the rotation purposes. Quaternions 
will be explained later in detail in Section 3.3.2, and the conversions from a 
rotation matrix to a unit quaternion and vice versa are shown in Appendix A.

3.3 Anim ation Parameters and Their In- 
betweening

An animation sequence, must have a frame data where the key values for the 
animation parameters and their key frame numbers (times) are defined.

There are some differences on the parameters applied to the transformable 
objects. The parameters applicable to a camera are position and orientation 
parameters, and to an actor are size and color parameters as well as position and 
orientation ones. Position, orientation and size parameters are defined as triples 
X, y, z. Color parameters are reflectivity and emission values defined as triples 
of /?, (7, H, where these parameters are used in rendering by radiosity.

For actors, if they are created as volumes of swinging or sweeping, then morph­
ing (shape change) is also possible and the shape of the actor is also a parameter 
of the animation.

The key values of these parameters are interpolated to generate the in-between 
values and resultantly, the in-between frames.

3.3.1 Interpolation Scheme

A very common technique used in computer animation is the key frame anima­
tion where the in-between frames are generated automatically based on a series 
of key frames supplied by the animator. If linear interpolation is used during
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the generation of the in-between frames then undesirable side effects occur giv­
ing the animation a mechanical look. These problems are lack of smoothness, 
discontinuities in speed of motion, and distortion during rotations.

The most important advantage of an interpolation technique compared to 
an approximation technique is that in an interpolation scheme, the interpolated 
values for the parameters pass exactly through the key values, while an approxi­
mation scheme only approximates the key values but the approximated values do 
not necessarily pass through them. This property of the interpolation techniques 
is mostly preferred in animation because it guarantees that the the key-frames 
given by the animator are respected.

The best approach is to use a non-linear interpolation technique for the gener­
ation of the in-between values, both to avoid the problems of linear interpolation 
and the inadequacy of the approximation techniques.

Polynomial interpolation is the most fundamental of all interpolation concepts. 
It is mostly of theoretical value because nowadays, faster and more accurate 
methods have been developed. These methods are piecewise polynomial methods 
which rely on the polynomial methods. Polynomial interpolation is not restricted 
to interpolation on point data; derivative data can also be interpolated. This 
leads to an interpolation scheme called Hermite interpolation. The piecewise 
polynomial scheme constructs curves that consist of polynomial pieces of the 
same degree and that have an overall smoothness.

piecewise cubic Hermite interpolation is one of these schemes [11]. It is a 
simple interpolation technique although not the most practical one, but has some 
advantages for the purposes of animation. It solves the following problem:
Given some data points xo,...,XL·, their corresponding parameter values 
«o> · . . ,  and tangent vectors mo,. . . ,  m¿, find a C* piecewise cubic polynomial
S  that interpolates to these data points, i.e,

d
S{ui) =  Xi

du
S{ui) = m,· t =  0, . . . ,  L. (3.13)
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Over interval t € [u,, u,+i] the representation of the interpolant S  in terms of 
the cubic Hermite polynomials h^{t) is

S{t) =  Xihl(t) + m,Aj(i) + tni+ihl(t) + Xi+ihl(t) 0 < i < 1 

where t is the local parameter of the interval [u,·, u,+j] [2].

The Hermite basis polynomials are defined as

(3.14)

hiit)

*2(0

*^(0

-  3<̂  + 1 

- 2 Û + t

= - 2 i^ + 3<̂ (3.15)

As the low level motion in our system is supplied by parametric key-frame 
interpolation method, the key values for the position, size, color and shape param­
eters given at the key frames are interpolated through this interpolation which 
provides the respection of the key values. The orientation parameter is inter­
polated through a special interpolation scheme for quaternions explained in the 
next section.

Each of the component polynomials of the animation parameters are inter­
polated by piecewise cubic Hermite interpolation. Two constraints are given by 
the interpolation conditions and other two constraints are given by specifying 
tangent vectors at i = 0 and < =  1. Thus Qi{t) is completely determined by the 
data points, and the tangent vectors at them, m,-,m,+i.

The tangent vectors at the key positions can be calculated purely from local 
geometry information as

— 2 i]

~  2 ^̂ '̂···* “  ^«) d" (̂ * ~ ®«-i)]

(3.16)
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which is simply the average of the source chord x, — x,_i and the destination 

chord x,+i — X,.

A smooth animation through a given set of key values does not always pro­
duce the desired effect that the animator expects. Sometimes a wider, more 
exaggerated motion, or a motion that overshoots a key value may be desired [16]. 
For these purposes, adjustments on tension, bias and continuity are very helpful 
and generate good and challenging results for the animation. Especially, bias 
control easily simulates the traditional animation effects “following through af­
ter an action” by overshooting the key value or “exaggerating a movement” by 
undershooting a key value. These adjustments are introduced to the piecewise 
cubic Hermite interpolation process by means of some parameters that are used 
in the calculation of the resultant values of the tangent vectors that are put into 
the calculation of the interpolant as values m,·, m,+i, at the key positions [2]. 
These parameters bring the advantage of this interpolation scheme for animation 
purposes. They are introduced to the interpolation process by separating each 
tangent vector into two parts, an incoming part, from source chord and an out­
going part, to destination chord. The single value for tangent vector m,· in the 
default interpolant at each x,· is replaced by these two parts.

The complete values of tangent vectors of source chord ms,· and destination 
chord mdi are as follows with the use of the continuity(c), bias(b) and tension(t) 

parameters.

ms,· =

mdi =

(x,· -  X,_i)

( l - t , ) ( l - b c , ) ( l - 6,)

(1 — ii)(l + c,)(l + hj)

(®i+l

(x,· X|_x)

(3.17)

(3.18)

( l - l i ) ( l - c i ) ( l - M

Here are some effects of the parameters on the interpolant:
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• ti 1, reduces the length of the tangent vector to zero and tightens the 
curve to a corner,

• i,· —> — 1, increases the tangent vector to twice its default length and pro­
duces more slack in the curve,

• t,· > 1, produces loops.

• c ,=  0, tangent continuity,

• increasing |c,| results in two tangent vectors becoming increasingly distinct,

• c,· =  — 1, msi reduces to the source chord, md, reduces to the destination 
chord, producing a pronounced corner in the curve,

• c,· —> —oo, corner more acute and curve buckles inward,

• c,· —» oo, corner pointing opposite direction.

• bi — 0, two chords are weighted equally,

• 6,· =  — 1, tangent vector is determined by the destination chord,

• 6,· =  1, tangent vector is determined by the source chord,

• bi —» —oo, more the trajectory bends to one side of

• bi —» oo, more the trajectory bends to the other side of Pi,

The composite formulas, ms, and mdi provide a considerable flexibility in the 
construction of the resultant interpolant.
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Figure 3.12: The specification of vector n

3.3.2 R epresentation  and Interpolation o f the Orienta­
tions by Q uaternions

Quaternions were discovered by Sir William R. Hamilton in October, 1843, while 
he was trying to extend the complex plane to three dimensional space. He was 
trying to find a way to multiply triples so that the norm was preserved for 14 
years, and finally realized that quadruples would work. By an odd quirk of 
mathematics, only 2, 4 or 8 components are norm preserving as Sir Hamilton 

desired [23].

The common solution to the problem of representing general rotations and 
in-betweening them is using the Euler’s angles interpolated independently. This 
is not an ideal solution because the Euler angles given for rotations around dif­
ferent axes must be used in the given order as rotations do not commute. In­
stead, quaternions with interpolation on the unit sphere is better for representing 
and in-betweening rotations [19, 23]. Quaternions are compact and require less 
number of calculations for concatenating and applying rotations than the ma­
trix representation. An homogeneous transformation matrix in three dimensions 
representing a rotation is 4 x 4, hence requires 16 floating point numbers, while
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a quaternion requires only 4 of them. Quaternions are not widely known, but 
conversion from Euler angles to quaternions and vice versa are well defined [23].

E u le r’s Theorem : If two coordinate systems S  and S have the same origin 
O, then the system S  can be fitted on the system E by a rotation a around a 
line S which is the axis of rotation passing from the origin [32]. The line ex­
plicitly the vector that determines the line S and lies over it, can be determined 
by two angles (6 i and $2 ) in the system S  as seen in Figure 3.12. Therefore, the 
orientation of the system E according to S  can be determined by three angles, 
^1, 6 2  and the amount of rotation a. These three independent angles that pro­
vide the transformation from S to E are called Euler’s angles. The matrix that 
transforms 5” to E can be obtained by the concatenation of the rotations by these 
angles. In literature, different groups of Euler’s angles are used that provide this 
transformation. In [28], it can be found that the transformation matrix Tg that 
transforms E to S, is as follows for the group of 313 Euler’s angles with rotations 
of (ft around X3, 6  around Xi and rft around X3  again.

cos ̂  cos ^ — sin ̂  cos 0 sin ^ — sin V· cos ^ — cos 0008 0 sin ^ sin 0 sin 0 
cos 0  sin 0 -f-sin 0 cos 0 cos 0 — sin 0 cos 0 -f cos 0  cos 0 cos 0 — sin0cos0

sin 0  sin 0 cos iftsinO cos 0
(3.19)

Again in [28], it is found that the transformation matrix can also be shown as

T(n, O') =  cos a l  + ( 1 — cos a)nn^ -f sin aN  (3.20)

where n is the unit vector that determines the axis of rotation, a is the angle of 
rotation as explained in Euler’s theorem, I  is the identity matrix, and N  is the 
skew symmetric matrix generated from vector n.

Therefore, these two expressions can be solved to obtain the axis and angle 
of rotation in terms of Euler’s angles. Instead of using the Euler’s angles in these 
expressions, which are very complicated, the Euler’s parameters can be used, 
which are much more compact [32]. Now, the axis and angle of rotation can be
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defined in terms of four parameters called Euler’s parameters as follows.

, X = cos(a/2) (3.21)
Uj

V = V = sin (a/2) «2
.C. . ”3 .

As the vector of rotation n is unit, then

= 1 (3.22)

When 3.20 is rewritten in terms of Euler’s parameters, it is obtained that

T(u, a) =  (2x^ -  v^v)I  + 2vv'^ + 2x V (3.23)

When this matrix is written explicitly and compared with the matrix in 3.19 
the Euler’s parameters can be found in terms of Euler’s angles. These are

6 0 - 0  (  =  ± s i n 2 C O S  2 (3.24)

. 0 .  0 - 0
n =  ± s m „ s i n  
' 2 2

(3.25)

^ , 0 . 0 + 0  
C =  ±COS2Sin  2 (3.26)

, 0 0 +  0  
^  2 2

(3.27)

and the signs must be taken the same for all the Euler’s parameters.

When the Euler’s parameters are used in a quadruple, it is seen that this 
quadruple is a quaternion and it is unit because of the relation in equation 3.22. 
Hence, a unit quaternion represents a rotation.

9 =
V
C 
X J

(3.28)
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The key values for orientation which are quaternions, are interpolated by 
slcrp (spherical linear interpolation) which is an interpolation scheme for quater­
nions [23]. It generates in-between quaternions of two unit key quaternions by 
the method of great arc in-betweening on the unit sphere where unit quaternions 
lie.

As a brief summary of quaternions; a quaternion has four components, three 
of them give the axis of rotation and the fourth is obtained by the angle rotated 
about that axis. So, q =  [s, (x, y, z )Y  is a quaternion, where the vector v = 
(x, is the axis of rotation and s = cos |  where 0 is the angle of rotation.
The multiplication of two quaternions is as follows:

[si, vi][s2, V2] =  [(51S2 -  v{V2), (SlUl +  S2V1 -I- iTi X 2̂)] (3.29)

A vector, u, can be rotated by a quaternion, q, as follows, which is shown in detail 

in Appendix A.
^  = Rot{v) = q[0,i^q-^ (3.30)

assuming that the vector can be represented as a quaternion of [0, w] of which the 
rotational part is eliminated. The inverse of a quaternion is obtained as follows

q = [S,ut

9-^ =
1

h r
h f  = s^ + v.v

(s, -v]^ (3.31)

(3.32)

The quaternion that transforms qi into q2  by analogy to the vector translation is

^ 7  =  9i”V2 (3-33)

and spherical linear interpolation in the unit quaternion space is

I

q =  slerp{qi,q2 ,u) 0 < u < l

=  9i(<7r*92)“
sin(l —u)0 sinuö

= ----- -------- il H— r - 7Tİ2sin 6 sin 9

(3.34)

(3.35)
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where <7x̂ 2 = cos^ and the interpolated quaternion goes along a great arc on a 
AD unit sphere which is the shortest way between q\ and q̂ · The equation 3.35 is 
simpler for practical purposes and its derivation is shown in Appendix A. Other 
related operations on quaternions and conversions between quaternions and Euler 
angles can be found in [2.3].

3.3.3 Interpolation o f Shape

As mentioned previously, the actors that are created as volumes of swinging or 
sweeping can have changes in their shapes. These are extended volumes based 
on two curves, a profile and a trajectory. For generating a volume of swinging, 
the profile curve is swung over the trajectory curve, and for volume of sweeping, 
the profile curve is swept through the trajectory curve, hence extended volumes 
are obtained as explained in Section 3.2.1 and seen in Figures 3.9 and 3.10. A 
vertical cut on this volume hcis the shape of its profile curve and a horizontal cut 
has the shape of its trajectory curve. As extended volumes are based on their 
profile and trajectory curves, a shape change applied to these curves will generate 
a similar shape change on the volume itself.

Our approach to shape change is based on the two-dimensional profile and 
three-dimensional trajectory curves that make up the three-dimensional extended 
volumes. A curve is kept as its control points and when an extended volume is 
obtained from its profile and trajectory curves, it is kept as its control points 
as well. As mentioned in Section 3.1, a transformable object has an attribute 
for specifying its display type, smoothed or unsmoothed. If it is smoothed, then 
NURBS will be applied on the control points of the volume and curve, based on 
the weights of the control points, so a smooth curve and volume will be obtained. 
The weights of the volume are obtained from the profile and trajectory curves as 
mentioned in Section 3.2.1. If the display type is unsmoothed then the volume 
will be displayed as its control points. The shape change of a volume has been
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Figure 3.13: Shape interpolation by changing the weights of the control points

Figure 3.14: Shape interpolation by changing the control points 

accomplished in two ways.

In the first approach, by the help of the weights and NURBS, it is possible to 
change the shape of a volume without changing the control points of its profile and 
trajectory curves. In this approach, the shape change is performed by changing 
the weights of the control points of its profile and/or trajectory curves, thus when 
NURBS is applied to the old control points with new weights, a new shape will 
be obtained as seen in Figure 3.13.

In the second approach to shape change, not only the weights of the control 
points but also the control points themselves can be changed. The control points 
will have geometrically different positions, so that the shape of the volume will 
change obviously as seen in Figure 3.14. In this approach, a problem of mapping 
two curves to each other occurs where one curve is for the current shape of the 
volume and the other one is for the next shape. The profile curve of the current 
shape of the volume must be mapped to the profile curve of the next shape and

I

the trajectory curves must also be mapped accordingly.
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Figure 3.15: Mapping of three curves and their in-betweening

For obtaining a smooth shape change, some key shape values are given for 
the shape parameter in addition to the other animation parameters. A key shape 
value is an extended volume that is to be interpolated. Hence, some extended 
volumes are given as key shape values at key frames and their profile and tra­
jectory curves are mapped. The new key curves generated by this mapping are 
interpolated by the same interpolation mechanism explained in Section 3.3.1, as 
the other animation parameters do, to obtain a smooth shape change, both for 
their control points and the weights of their control points.

In Figure 3.15 curves A, B  and C are the profile curves of the key shape values 
given at successive key frames. In this figure the large dotted curves show the 
mapping and the small dotted curves are the smoothed in-between shapes of the 
curves. The key shape values of each successive key frame must be mapped in 
such a way that the curve will be transformed into the next curve as smoothly as 
possible. The smoothness must be achieved in two manners. Firstly, when one 
curve is put over the other curve, the control points that stand nearest and have 
similar convexity or concavity must be mapped to the each other. The algorithm 
for this mapping can be seen in Figure 3.17. Secondly, after this mapping is done, 
the control points that are mapped to each other must be transformed from one 
to the other, passing through the key values smoothly. For example, Figure 3.15
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Figure 3.16: Determination of the angle of a control point

shows a suitable mapping that achieves the first smoothness concern. Control 
point 1 of curve A is mapped to control point 1 of curve B  and to 1 of curve 
C. Control point 2 of A is mapped to control points 2 and 3 of control point 
2 of B is mapped to control points 2 and 3 of C, and the other control points 
are mapped in a similar manner. The second smoothness concern is achieved 
by generating the in-between values of the control points of the curves using the 
interpolation scheme mentioned previously. The mapped control points are given 
to the interpolation process <ts key values and the in-between values are obtained 
that are shown as holes in the figure. The in-between profile and trajectory curves 
obtained in this way are used to generate the in-between extended volumes so 
that when displayed one after the other, shows a smooth shape change on the 
volume.

A preprocessing is done on the curves for mapping and some angles are ob­
tained for each control point of the curve. These angles are then used in the map­
ping algorithm. In this preprocessing step, if the curve is not in two-dimensions 
then it is mapped into two-dimensions. Then for each vertex, an angle is obtained 
in the range of 0 — 360 degrees as seen in Figure 3.16 and the index of the smallest 
angle is kept as starting index. These angles are used in the mapping algorithm 
of two curves as seen in Figure 3.17, where first curve has more number of control 
points than the second one. This algorithm does not guarantee that two curves

l·
that have great discrimiuations will be mapped suitably. But it gives acceptable
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curvei -  f i r s t  curve 
curvt2  -  second curve 
i -  s ta r t in g  index of curve\ 
j  * s ta r t in g  index of curvc2

{In the  follow ing l in e s ,  su b sc rip t i i s  used fo r  a vertex  of 
curvei, su b sc rip t j  i s  used fo r  a vertex  of curuej} 
map vertexj to  vertexi 
for each vertexi 

rep ea t
if angle{vertexi) > angle{vertexi-\) then

fin d  a vertex j th a t  has a g re a te r  angle from the 
l a s t ly  mapped vertex  of curve2  

else if angle(vertexi) < angle{vertexi^i) then
fin d  a verteXj th a t  has a sm aller angle from the 
l a s t ly  mapped vertex  of curve2  

until abs{angle{vertexj) — angle{vertexi)) < 
ab$(angle{vertexj+i) — angle{vertexi)) 

map the  vertexj to  vertex,
if some v e rtic e s  are  l e f t  unmapped on curve2 then  

map those remaining v e r tic e s  to  vertex.

Figure 3.17: Algorithm for mapping two curves

results in mapping of two curves that do not have great discriminations. There­
fore, giving key shape values with small incremental changes will produce a better 

mapping.

3.3.4 Interpolation o f Color

In our system, the color parameters are represented by RGB color model. This 
model uses a Cartesian coordinate system. The RGB primaries are additive 
such that every color can be represented as an ordered triple (r, g, b) whose 
components indicate the relative amounts of each primary color to be added
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together [30]. The RGB color model is of interest because it is the color model 
used in color TV monitors and in many raster displays [13]. The Young-Helmholz 
theory of color [5] states that there are three bcisic colors (red, green, and blue), 
and three kinds of cones in the eye, each most sensitive to one of these three 
primary colors [30], hence this is another reason for the popularity of the RGB 
color model.

Color interpolation is done for smooth-shadings, like Gouraud [15] shading, 
as follows:

C = ( l - u )5 - l - u £ ;

= 5 - f u ( £ ; - 5 ) ; 0 < u <  1 (3.36)

where S  is the starting color, E  is the end color and C is the interpolated color 
obtained.

Since the colors red, green and blue are linearly independent, meaning that 
none of them can be formed by adding appropriate amounts of the other two 
colors, they can be interpolated as follows extended from equation 3.36 [30].

Tc r . re r.

9c = 9s -f u ^ 9c — 9s l ·
j [

r, +  «(re -  r,) 

9s +  «(l7e -  9s)

b,  -I- u(6e -  b,)

(3.37)

Based on the linear independence of the r, g, b components, we applied the 
interpolation schema, piecewise cubic Hermite interpolation, explained in Sec­
tion 3.3.1, to the key values, for each color component and obtained smooth 
in-between colors passing through the key values.
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3 in-betweens 7 in-betweens

3.4 Kinetic Control

Ke^3
\

Frame 13

V

Sufficient and good kinetic control, without any dynamic concepts such as forces, 
masses, torques and their expensive calculations for an animation, can create a 
good illusion of dynamics in the motion. A motion may appear correct spatially 
but be inappropriate temporally. Therefore an animation system must provide 
good and easy kinetic control over the animation. The possibility of altering the 
kinetics of the animation parameters independent from each other is a challenge 
in an animation system [24].

In our system, the animation parameters are interpolated and their in-between 
values are generated as explained in the previous section. The resultant in- 
between values of the parameters differ «iccording to the kinetic control applied 
on them. We provide constant and varying number of in-between generations 
between two key values in kinetic control.

In varying number of in-between generations, the key values of animation 
parameters are given at key times. Different parameters may have different key 
times for their key values. The only limitation in their key times is that, the key
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3 in-betweens 3 in-betweens

A

Key 1

Ke^3

Total it o f frames = 9

Figure 3.19: Constant number of in-betweens

V

values of every animation parameter used in that specific animation sequence 
must be given at the first and last key times of the sequence. Then, for each pa­
rameter in the animation, the key values are interpolated as explained previously, 
but the in-between values generated depend on the key times of the key values, 
as seen in Figure 3.18.

In constant number of in-between generations, the key values of the parame­
ters are interpolated au:cording to the total number of frames to be displayed for 
this sequence, without dealing with any key times. Equal number of in-between 
values are generated between each key value for each parameter, as seen in Fig­
ure 3.19.

In both of the kinetic types, the notions of timing (speed) and slow-in, slow-out 
are included. As explained in [16], timing, or speed of an action, is an important 
principle in animation because the meaning of the action comes from its speed. 
The speed reflects the weight of the object being animated and it can even give an 
emotional meaning to the action such that according to its speed a character may 
seem excited, nervous or relaxed. Two objects with identical size and shape can 
appear to have very different weights ticcording to the tinging of their motion. A 
heavy body moves slower than a light body. The weight effect that an animating
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object gives depend directly on the spacing of its in-between values, not on the 
in-between values themselves. This spacing of in-between values is specified and 
determined according to the timing information. Slow-in and out deals with the 
spacing of in-between values between the key values. In early animation, the 
motion was limited to mainly fast and slow moves with even spacing between the 
in-betweens. Later, the animators found that grouping the in-betweens closer to 
each key with only one fleeting in-between halfway between, they could achieve 
an interesting result, slowing out from one key pose, then slowing in to the next 
key pose. This situation is achieved by the tension, continuity and bias controls 
on the interpolation scheme cis explained in Section 3.3.1.

An on off parameter is introduced to the simple sequence during the specifi­
cation of its key-frames. If this parameter is set to off then the in-between frames 
will not be displayed at that time interval. This control is especially useful when 
there are more than one camera or light in a sequence. Different cameras and 
lights can be set on or off by the help of this parameter during their sequences 
at desired intervals. One more advantage of this parameter is seen in hierarchic 
sequences explained in Section 4.2.2.



Chapter 4

M otion A bstraction System: 
H igh Level Controls

In our system high level controls are provided by the help of motion abstraction 
and object orientation. These high level controls provide the user an easy to use 
environment for generating highly complex animation sequences in a recursive 
manner based on lower level abstractions that play the role of building blocks. 
A detailed explanation was given about what we mean by motion abstraction in 
Section 2.2.

The highest level controls available for the user are forwarding and backward- 
ing a sequence and framing to the specified frames through the sequence. By 
forwarding a sequence setting the camera to display in wire frame, a quick shoot­
ing can be done to verify the animation. Forward, backward and frame commands 
achieve their job according to the properties of the sequence under consideration. 
These properties are explained in detail in the following sections. The forward, 
backward and frame commands are controlled by the highest authority in the 
system, the controller. Forwarding and backwarding of a sequence are called by 
the controller so that at each call one frame is generated. As long as the sequence

47



CHAPTER 4. HIGH LEVEL CONTROLS 48

Concatenated sequence  ̂ Guided sequence

O - J O
Simultaneous sequence Sequence

( C ^ j
>

Overlapped sequence

i n — ]
[ O -

---- N

. —/

a

Simple sequence

O —

Combined sequence

O

a
(Q

Hierarchic sequence

tune space

Figure 4.1: Visual representations of sequences

has not ended, it will be forwarded or backwarded again and again until it ends, 
and forward or backward returns a zero result. The forwarding and backwarding 
of a sequence is achieved in a recursive manner according to the properties of its 
building blocks as will be explained in the following sections.

Some brief explanation about sequence class was given in Section 3.1. This is 
the most important cleiss in our system because it supports the motion abstraction 
concept. In Figure 4.1, some visual representations for each sequence class are 
given. These visual representations help in a way for visualizing what we mean 
by these different sequence types.

A sequence has some important methods as follows:

• forwardQ, runs the sequence in forward direction,

• hackwardQ, runs the sequence in backward direction,
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• framer(frame.no), displays the specified frame of the sequence,

• totaLframe.number(), returns the total number of frames that this sequence 
will last, and

• currenLframe.number(), returns the current frame number that this se­
quence is at.

All these methods differ in their implementation in different sequence classes of 
the sequence hierarchy. These methods, for each sequence, will be explained in 
their corresponding sections.

As seen in Figure 3.7, there are basically two kinds of sequences, simple se­
quence and compound sequence.

4.1 Simple Sequence

A simple sequence consists of a transformable object, actor, light or camera, and a 
frame data where the key values and the key times of the animation parameters 
used in this sequence are specified, as seen in Figure 3.8. A simple sequence 
generated for a transformable object can be used for any other transformable 
object as long as there is no shape parameter in the frames data of the sequence. 
The reason for this limitation is that, the key values for the shape parameter 
generally depend on the transformable object of the sequence so using such a 
sequence for a very different transformable object may produce an undesirable 
result.

Some important attributes of the class simple sequence are total frame num­
ber, denoting the total number of frames that this sequence will be displayed, 
current frame number, denoting the current frame that the sequence is at locally, 
and kinetic type.
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When a simple sequence is forwarded or backwarded, its attribute, current 
frame number is incremented or decremented. Then, the in-between value for each 
parameter contributing to the sequence, for this current frame is retrieved from 
the previously interpolated in-between values in the frames data of the sequence, 
and these parameter values are applied to the transformable object that this 
sequence acts on. This process continues until the local current frame number 
of the sequence reaches to its total frame number and hence the sequence ends. 
When the simple sequence has ended it returns 0 from forward and backward 
calls. A simple sequence that has reached to its end does nothing when it is 
forwarded or backwarded again and again, just returns 0 from those calls, until 
it is reset to its beginning.

When the simple sequence is framed to a particular frame number, the process 
performed is similar to forwarding or backwarding, except it is «issumed that, the 
sequence has been run until the previous frame. To manage this, the current 
frame number is set to the previous frame number artificially and the next frame 
is displayed, and the process stops.

4.1.1 Com bined Sequence

This is a simple sequence generated by the combination of two simple sequences. 
There are two ways of combining them, denoted by an attribute in this class 
named a ttached . The first way is attached combination, where the second sim­
ple sequence is spatially combined to the end of the first simple sequence. In this 
case, the second sequence starts from the position, with the orientation and size 
that the first sequence has ended. The second way is nonattached combination, 
where the two simple sequences are combined by substituting some smoothing 
in-betweens between the last key of the first sequence and the first key of the 
second sequence. In both cases, as a result a single simple sequence will be gen­
erated that is a combination of the two original sequences where the combination
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is done by providing a smooth transition between them. In the first way, at­
tached combination, the second sequence is modified to fit to the end of the first 
sequence while in the second way, uonattached combination, the second sequence 
is not affected but some in-between values are introduced between the sequences 
to manage a smooth transition between them. This concept of smooth transition 
between motions has been dealt in [24], in a manner called phrased tratisition. 
By phrased transition, it is meant that an alteration in the nature of the mo­
tions is done so that they become perceptually integrated into one single motion 
producing a transition that flows smoothly.

4.2 C om pound Sequences

Compound sequences are high level abstractions that provide a base for many 
other abstractions in the sequence hierarchy. A compound sequence is made of 
any two independent sequences, either simple or compound. As seen in Fig­
ure 3.7, there is a recursive aggregation on the compound sequence. This re­
cursive aggregation shows that a compound sequence consists of any other two 
sequences where these sequences can be again any compound sequence or a sim­
ple sequence. Hence there is a recursive definition on this class that leads to 
a recursive definition again for keeping these sequences in a sequence library. 
Therefore, if a compound sequence is defined by two other sequences, only the 
names of these sequences are kept, and in order to generate it, these sequences 
are instantiated according to their own definitions. By recursively instantiating 
all the sequences in this manner, resultantly the lowest level sequences, simple 
sequences, are reached. This idea of recursion fits very well to motion abstrac­
tion. Generating higher level sequences using the lower level ones in a recursive 
manner supports motion abstrciction easily, concisely and precisely.
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4.2.1 T em porally  D ependent Sequences

These sequences are compound sequences created according to the temporal be­
haviors of their building block sequences. The building blocks of such a sequence 
have their own spatiotemporal behavior and behave according to their local infor­
mation. However, this local behavior of the building sequences is converted into 
a global behavior with temporal dependence. This is achieved in terms of time. 
The temporal behavior of building sequences is according to relative times. Ab­
solute times for these sequences are generated when they are joined «is temporally 
dependent sequences. Hence a global temporal behavior is generated at this level 
without touching the spatial behaviors of the individual sequences. Fiume et al. 
have developed a temporal scripting language for object oriented animation [12] 
as we have mentioned in Section 2.3 briefly. Our work has some similarities with 
theirs in terms of temporal behavior, however we did not implement any scripting 
language that hiis some overheads as mentioned previously.

Concatenated Sequence

This is a temporally dependent compound sequence, made up of two independent 
sequences, inheriting the features of its parent class, compound sequence. The 
two independent sequences are made temporally dependent under the abstraction 
of concatenated sequence where the second sequence starts its execution just after 
the first one ends.
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forwardQ
if sequence\->forward0  != 0 then  

re tu rn  ( - 1)
if sequence2 ->forward() != 0 then  

re tu rn  ( - 1) 
else

re tu rn  (0)

As seen above, a concatenated sequence is forwarded by forwarding its first 
sequence until it ends. After it is ended returning 0 from its forward call, the 
second sequence starts execution. The concatenated sequence ends when its 
second sequence ends, and returns 0 from forward.

currenLframe-numberQ
if  sequence\->currenL·frame.nuτnber() < 

sequencei~>totaLframe-number() th en  
re tu rn  isequencex~>curTtnLframe-number()) 

else
re tu rn  (sequencei->totaLframe.number() + 

sequence2 ~>currenLframe^number())

The current frame number of a concatenated sequence is the current frame 
number of its first sequence if it did not reach to its end yet. Otherwise it is 
the sum of the total frame number of its first sequence and the current frame 
number of its second sequence, meaning that the first sequence is finished and 
the concatenated sequence is currently executing its secqnd sequence.
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to taL fram e.num bcr()

return {sequ en cei-> to taL fram e.n u m ber() + 
sequ en ce 2 ~>totaLfram e.num ber())

Total frame number that a concatenated sequence has is the sum of the total 
frame numbers of its sequences.

Simultaneous Sequence

This is a temporally dependent compound sequence where the two sequences 
start execution at the same time.

forw ardQ

if $ tq u tn c€ \-> fo rw a rd () != 0 | I 
sequ en ce 2 ~>forw ard() != 0 then 
return(-l) 

else
return (0)

A simultaneous sequence is forwarded by forwarding both of its sequences at 
the same time. Such a sequence ends when the longer of its sequences ends.
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curτtnL·fгaτne.number()
if seq u tn ce \-> to ta L ira m t.n u m b er() > 

sequ en ce 2 -> totaLfram e-nuinber() then 
return (sequenceı->currenL ·fram €-num ber()) 

else
return (.sequence2->curre7iLframe-numb€r()')

The current frame number of a simultaneous sequence is the current frame 
number of its longer sequence.

totaLfram e.num ber()

if sequence\-> to taL fram e.num ber() > 

sequ en ce 2 -> totaL fram e.num ber() then 
return (sequ en cei-y to taL fram e-nu m berQ )  

else
return isequ en ce 2 -> totaL fram e.num ber()')

And the total frame number of a simultaneous sequence is the total frame 
number of its longer sequence.

Overlapped Sequence

Overlapped sequence is the last temporally dependent compound sequence that 
our system provides. In such a sequence, the second sequence overlaps the first 
sequence starting execution at the specified overlapping frame number.
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forwardQ

if sequence\->cui'i'ciit.fram e.no0 < overlapJrm jao  th en  
re tu rn  (,sequencei~>forward())

else if sequencti->forward() !* 0 II $equence-2 ->forward() != 0 then  
r e tu rn ( - l )  

else
re tu rn  (0)

It is forwarded by only forwarding its first sequence until the overlapping 
frame is reached. After that point, it does not have any difference from the 
simultaneous forwarding. It ends when the longer of its sequences ends.

currenLfram e.num berQ

if sequ en cei-> cu rren t.fram e.n u m ber() < 

sequ en cei-> to taL fram e.n u m ber() th en  
re tu rn  C sequencei-> curren t.fram e.num b€r())  

else
re tu rn  (overlapjfrm .no + sequ en ce 2 ~ > cu rren t.fram e.n u m ber())

If it is currently executing its first sequence, then the current frame number 
of a simultaneous sequence is the current frame number of its first sequence. 
Otherwise, it is the sum of its overlapping frame number and the current frame 
number of its second sequence.
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totaLframe.numberQ
if sequencei~>totaLframe-tiumber() >

overlap_frm_no + sequence2 ->totaLframe.numbcr() th en  
re tu rn  (.sequencei->totaLframe.number()) 

else
re tu rn  (overlapjfrm_no + sequence2 ->currenLframe-number())

If the total frame number of its first sequence is greater than the sum of its 
overlapping frame number and the total frame number of its second sequence then 
the total frame number is the total frame number of its first sequence. Otherwise, 
it is the sum of its overlapping frame number and the total frame number of its 
second sequence.

4.2.2 Spatially  D ependent Sequences

These sequences are compound sequences created according to the spatial behav­
iors of their building block sequences. The building blocks of these sequences have 
their own spatiotemporal behavior but under the control of such a sequence, the 
spatial behaviors of them get modified. The spatially dependent sequences have 
one of their building blocks as a simple sequence. This simple sequence plays the 
parent role while the other building block can be any kind of sequence playing 
the child role. The spatial behavior of the child sequence is modified according 
to the spatial behavior of the parent sequence. The first sequence is the parent 
sequence and the second one is the child sequence. The temporal behavior of 
such sequences are straight forward as seen below.
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fo rw a rd Q

if seq u en ce \-> fo rw a rd () != 0 then 
seq u en ce 2 ~>forw ard() 

return(-l) 
else

return (0)

The sequences are forwarded simultaneously until the parent sequence ends.

curreuL fram e-num berQ

return is e q u e n c e i->  currenL fram e.num ber()')

to taL fram e-num berQ

return iseq u en ce i-> to ta L fra m e .n u m b er())

The current and total frame numbers depend only on the parent sequence.

Guided Sequence

Guided sequence is a spatially dependent compound sequence where the spatial 
behavior of the child sequence is modified so that it is being guided by its parent. 
Figure 4.2 shows examples of spatially dependent sequences. In this figure the 
sequences drawn by the dotted lines are the child sequences. As seen in that fig­
ure, in guided sequence, the child sequence is affected by the size, orientation and 
position parameters of its parent. These parameters of its parent are contributed 
to its corresponding parameters, so that the total values of those parameters at
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a frame t is zis follows:

r e s u l t^ iz c i  = size,· x p a r e n t s i z c i  

r e s u l t jo r ie n ta t im ii = orien ta tio rii x p a re n tjo r ie n ta tio n i

r e s u l t  jp o s itio u i = positiou i +  p a re n tjp o s itio u i (4.1)

These parameters are applied to a point in ZD in the order of size, orientation 

and position as follows:

((p o in t x r e s u lt js iz e i)% r e s u lt jo r ie n ta tio n i)  + re su ltjp o s itio n i (4-2)

where the % operator is for rotating a point by a quaternion.

H ierarch ic  Sequence

This is the other spatially dependent compound sequence. This behavior is ex­
actly the hierarchic behavior seen at a linked body. However in our system, the
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definition for linking bodies to generate hierarchic action is done in the sequenc­
ing level. An advantage of this definition mechanism is that the linkage of the 
bodies in animation is not defined statically, such that any different linkage may 
be defined by the help of motion abstractions at a sequence. Thus geometric 
structure can change during a sequence. One more advantage is the easy and 
reusable motion definitions as well as other sequence types that are supported in 
our system. The definition of the child sequence is very eîisy by the help of motion 
abstraction mechanism. However, this approach is not powerful enough for defin­
ing a precise linked body and its motion, as human animation systems support. 
As seen in Figure 4.2, in hierarchic sequence, the child sequence is affected by 
the size, orientation and position parameters of its parent in a hierarchic manner. 
These parameters of its parent are contributed to the corresponding parameters 
of the child and a complete 4 x 4  transformation matrix is obtained as follows:

T  =  [orientationi]\positioni]\parent.orientationi]\parent.positioni] (4.3)

The quaternion that represents the resultant orientation is obtained from this 
matrix by converting the upper left 3 x 3  part, the rotational part, into a quater­
nion. The resultant position and size are the same as in guided sequence and all 
these values are applied in the same way.

By the help of the hierarchic sequence definition and the on off control that 
can be set at any time interval of a simple sequence, an initial setting can be given 
to the child sequence. The parent sequence can be set with some parameters and 
switched off at its time interval, and when the child sequence is joined to this 
sequence hierarchically, the parent will not be displayed but will provide an initial 
setting to the child sequence. In this way a sequence can be executed starting at 
a  desired position, with desired orientation and size.
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C onclusion

Our system is a motion abstraction system designed and implemented using ob­
ject oriented techniques. Due to object orientation in its design, it contains 
modular, extensible and re-usable code. Object-orientation is advantageous for 
animation both in the implementation of the system and generation of the ani­
mation sequences. New sequence or transformable object classes can be inserted 
to the system in their hierarchy.

The advantages of motion abstraction in an animation system come in the 
specification phase of the animation sequences. Creating realistic and complex 
animation sequences generally requires great amount of information. By motion 
abstraction, the amount of information given at an abstraction level decreases 
considerably being built on lower levels in a stepwise manner. Hence, in our sys­
tem motion abstraction is provided to decrease the effort for creating a complex 
animation sequence by supporting control with less information at increasingly 
higher levels while still giving enough control at lowest levels as well. This brings 
re-usability of existing sequences and flexibility in the creation of new ones with 
concise and precise definitions. For the specification of the animation sequences

61



CHAPTERS. CONCLUSION 6 2

no scripting language is needed wliich has some overheads like parsing and ex­
perience of programming. Instead, an interactive environment is provided at all 
levels that gives ease, flexibility and speed during specification. The created se­
quences, key-frames or graphical objects, briefly everything created in the system, 
can be saved in their specific libraries to support re-usability. As every high level 
specification is based on low level specifications, only the names of the lower level 
building blocks and their dependencies are kept for a high level specification in 
the libraries.

Extended volumes are used in the system that can have shape change either 
by changing the weights used in the smoothing NURBS approximation applied 
over them or by changing the shapes of their profile or trajectory curves. Shape 
interpolation done in this way produces better results if it is applied on small 
incrementally changed shapes.

The lowest level sequences are generated by parametric key-frame interpola­
tion and Hermite spline interpolation is applied on the key values with tension, 
continuity and bias parameters that provides slow-in, slow-out effects.

Quaternions are used instead of Euler’s angles and matrix representation of 
rotations that cause some overheads. Although the common approach to rota­
tions is by using Euler’s angles, it is not an ideal solution since Euler’s angles must 
be used in the given order as rotations are not commutative. Instead quaternions 
with interpolation on the four-dimensional unit sphere, is a better way of repre­
senting and applying rotations than doing it with Euler’s angles using the matrix 
representation. Quaternions are compact and require less number of calculations 
for concatenating and applying rotations than the matrix representation, and 

conversions to and from quaternions are well defined.

Two important kinds of dependencies are introduced between sequences. 
These are temporal dependency and spatial dependency. In the first one, lo­
cal temporal behaviored sequences are joined and their global temporal behavior
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is generated according to their temporal dependency. In the second one, not the 
temporal behavior but the spatial behavior of the sequences is affected by their 
dependency.

As a result, this motion abstraction system provides an environment to gener­
ate flexible, re-usable, concise and precise animation sequences. As a future work, 
new sequence or transformable object classes, other interpolation techniques and 
new animation parameters can be introduced to the system, and shape interpo­
lation can be improved. These can be done without much effort because of the 
object-oriented design of the system.



A ppendix A

D erivations

In this appendix the capital letters denote the skew symmetric matrix of the 
vectors denoted by small letters. Representations like Ah means a x  6. Other rules 
about vector algebra can be found in [28]. All the derivations in this appendix 
are from the course notes MATH 672 [29].

A .l  Conversion from a rotation  m atrix to a 

unit quaternion

Let T  be an orthogonal 3 x 3  matrix representing a rotation. It can be written 
as in equation A.l where n and a  are the axis and angle of rotation respectively.

T(n, a) = cos a /  +  (1 — cos a)nn^  +  sin a N lull = 1

S  and K  are the symmetric and skew symmetric parts of T  respectively.

T

S

= 5  +  A 
1

(A.1)

(A.2)

\ { T  + T-^)
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K

= cos a /  + (1 — cos a)nn

=  j ( r - r ^ )
= sin aN

The axis of rotation, n, can be obtained from the skew symmetric part as

k = sin an  
1 rn =

sin a (A.3)

and the angle of rotation, a, can be obtained from the trace of the matrix T.

trace{T{n,a)) =  trace{S) + trace{K)

= cos atrace(I) + (1 — cos a)trace{nnT) +  sin atrace(N) 

= 3 cos a  +  (1 — cos a) +  0

= 1 4· 2 cos a

cosa =  ^(irace(r(n,o:)) -  1) (A.4)

A quaternion q = [s, that represents a rotation with angle a  and rotation axis 
n is

V = sin (a/2)ri , s — cos(or/2) (A-5)

A .2 Conversion from a unit quaternion to a 

rotation m atrix

Given a quaternion q =  [i, q, C> x]^ it can be converted to a rotation matrix as 

follows:

r (n ,o )  =
2 ( f + x’) -  1 2(i, -  Cx) 2(ff + ,x)

+ Cx) 2(7̂  + X^)-1 2(vC -  (x)
2(iC -7X ) 2(7C + ix )  2(Ĉ  +  x ^ ) - l

(A.6)
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Figure A.l: Derivation of the slerp formula

A .3 D erivation o f the spherical linear interpo­

lation  formula

The interpolated unit quaternion q of two unit quaternions 91, ft can be obtained 
as follows:

q =  s le r p {q i ,q 2 ,u )  0 < u < 1

= kiQi + ¿2ft Iİ9İI = llftll = llftll = 1

where ¿1 and ¿2 are functions of u. As ||9|| =  1 we can continue tis

q^q = { h q j  +  h q l){ h q i  +  ¿2ft)

1 = k\q![qx + ¿ı¿29?’ ft + kikxqlqx + ¿İ9^ft

1 = ¿ılkı IP + ¿2İİ92İP + 2¿ı¿29?’ ft 

1 =  ¿?lkılP +  ¿llk2ІP +  2¿ı¿2Іkılllk2І|cos<?

1 =  ¿j + ¿2 — 2¿ı ¿2 cos (180 — 6 )

(A.7)
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From Figure A.l, we obtain that

sin (1 — u ) 0h {u )  =
sin B

sinu^
S1U0

(A.8)

A .4 R otation  o f a vector by a quaternion

VVe can rewrite equation A.l using the information in equation A.5 as

T(n, a) = (s^ — v^v)I + 2 vv^ + 2 s ( A . 9)

A vector r  can be rotated by a quaternion q = [s, u]^ to obtain as seen below. In 
order to do quaternion multiplication, the vector can be rewritten cis a quaternion 
which has no rotational part as [0,

[0, r ]  = 9[0,r]<7"‘

= [s, u] [û r, sr + Vf]

=  [s v ^ r  — sv ^ f— if^Vf,s^r +  s V r  +  +  s K r  +  W r ]

= [0, ŝ r + 2sVr + vv^f+ {vxp· —

=  [0, s ^ r  +  2s V r  +  viFr +  vxFr — v^vf]

= [0, (ŝ  — v^v)f + 2s Vr + 2vv^f]

= [0, ((ŝ  -  u^v)/+ 2uu )̂r + 2sV] (A.IO)

Hence the rotated vector r is

r
-Jr

((s^ -  v^v)I + 2vv^ + 2sV)r 

T{n, o)r

(A.ll)

from equation A.9.



A ppendix  B

Colored Im ages

In this appendix, some colored images are presented for giving a visual presen­
tation of the animation sequences generated by our system. The frames of the 
sequences seen in the first four figures were rendered by Phong shading that is 
available in our motion abstraction system. The last one was rendered by radios- 
ity methods [8].
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mgt rgb

Figure B.I: Frames from the animation Jellybon

The sequence seen in Figure B.I presents an hierarchic sequence generated by 
making the simple sequences of mouth and eyes hierarchically dependent to the 
simple sequence of the head. Then this hierarchic sequence is made simultaneous 
with the simple sequence of the floor. Hence the resultant sequence is a simulta­
neous sequence generated by making a simple sequence and a hierarchic sequence 
temporally dependent as a simultaneous sequence. The head and mouth have 
shape changes in their simple sequences.
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Figure B.2: Frames from the animation Spin

The sequence seen in Figure B.2 presents a simple sequence with color inter­
polation. The spin rotates around its vertical axis and after some time it gets 
slower and stops.
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Figure B.3: Frames from the animation Sunny

In Figure B.3, the sequence of spin seen in Figure B.2 is used as building block 
and an overlapped sequence is generated by two of these sequences. Then this 
sequence is overlapped with the spin sequence once again. The initial positions 
and orientations of the spins are given by hierarchic dependence to initializer sim­
ple sequences as explained in Section 4.2.2. The resultant overlapped sequence is 
made simultaneous with the sequence of a light source that changes its orientation 
from pointing into lower left to pointing into lower right.
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Figure B.4: Frames from the animation Glass

In Figure B.4, a simultaneous sequence generated by the sequences of camera 
and glass is presented. The glass rotates and changes color, then the camera 

changes position and orientation.
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Figure B.5: Frames from the animation Glass rendered by radiosity

Figure B.5 presents the sequence of glass rendered by the radiosity renderer 
developed on the IPSC/2 Hypercube in Bilkent University [8].
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