
"vi í ïûl»

XXEX) XO 'X'i±£ Dí í Lí áJfSí^.ZB.ZZZ Z'Z 'Уѵ'.'ѵХХГ.Х."<.

\/ÍM ' ■

3 3 5 “. 5
^ S 4 f 6

/ S 3 3

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bilkent University Institutional Repository

https://core.ac.uk/display/52927881?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

UTILIZATION OF THE MVL
SYSTEM IN QUALITATIVE
REASONING ABOUT THE

PHYSICAL WORLD

A THESIS

SU BM ITTE D TO TH E DEPA R TM EN T OF C O M PU T E R

EN G IN EER ING AND INFO RM A TIO N SCIENCE

A N D THE IN ST IT U T E OF EN G IN EER IN G A N D SCIENCE

OF BILK ENT U N IV E R SITY

IN PARTIAL FU LFILLM ENT OF TH E REQ U IR EM EN TS

FO R TH E D EG R EE OF

M ASTER OF SCIENCE

By
Mine Ülkü Şencan

July, 1993

V... .

Q

■

m î

80U|¿üs

I certify that I have read this thesis and that in my opinion it is fully adequate,
in scope and in quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Varol Akman (Advisor)

I certify tha.t I have read this thesis and that in my opinion it is fully adequate,
in scope and in quality, as a thesis for the degree of Master of Science.

c z
----- -vM. / ----------------

A í̂st. Prof. 'OaviiQ Davenport

I certify that I have read this thesis and that in my opinion it is fully adequate,
in scope and in quality, as a thes)is fpr the degree of Master of Science.

İ4___
Altay Güvenir

Approved for the Institute of Engineering and Science:

Prof. Mehmeti^aray
Director of the Institute

ABSTRACT

U TILIZATIO N OF TH E M VL SYSTE M IN Q U ALITATIVE
REASO N IN G A B O U T TH E PH YSICAL W O R LD

Mine Ülkü Şencan
M .S. in Computer Engineering and Information Science

Advisor: Assoc. Prof. Varol Akman
July, 1993

An experimental progra.m, QRM, has been implemented using the inference
mechanism of the Multivalued Logics (MVL) Theorem Proving System of
Matthew Ginsberg. QRM has suitable facilities to reason about dynamical
systems in qualitative terms. It uses Kenneth Forbus’s Qualitative Process
Theory (QPT) to describe a physical system and constructs the envisionment
tree for a given initial situation. In this thesis, we concentrate on knowledge
representation issues, and basic qualitative reasoning tasks based on QPT.
We offer some insights about what MVL can provide for writing Qualitative
Physics programs.

Keywords; Multivalued Logics (MVL), Qualitative Process Theory (QPT),
Qualitative Physics, Envisioning, Cornmonsense Reasoning.

Ill

ÖZET

M V L d i z g e s i n i n f i z i k s e l d ü n y a H A K K IN D A NİTEL
U SL A M LA M A D A K U LLAN IM I

Mine Ülkü Şencan
Bilgisayar ve Enformatik Mühendisliği, Yüksek Lisans

Danışman: Doç. Dr. Varol Akman
Temmuz 1993

Matthew Ginsberg’ün MVL teorem tanıtlama dizgesinin çıkarım mekanizması
kullanılarak deneysel bir program, QRM, gerçekleştirilmiştir. QRM dinamik
dizgeler hakkında nitel terimler kullanarak uslamlama yapabilir. Kenneth For-
bus’un Nitel Süreç Kuramı’na (QPT) göre tanımlanmış fiziksel bir dizgenin ve­
rilen başlangıç durumundan itibaren ulaşabileceği diğer durumları betimleyen
ağacı öngörebilir. Bu tezde, bilgi gösterimi ve QPT’ye dayalı temel nitel us­
lamlama konuları üzerinde durulmaktadır. MVL’in Nitel Fizik programları
yazılımında neler sağlayabileceğine dair bazı önerilerde bulunulmaktadır.

Anahtar Sözcükler: Çok-değerli Mantıklar (MVL), Nitel Süreç Kuramı (QPT),
Nitel Fizik, Öngörme, Sağduyusal Uslamlama.

IV

ACKNOWLEDGMENTS

I would like to thank my advisor Assoc. Prof. Varol Akman for his guidance,
invaluable encouragement, and motivating suggestions throughout the develop­
ment of this thesis. (N.B. I am grateful to Prof. Matthew Ginsberg, Stanford
University, for his valuable help with MVL.)

I owe thanks to Asst. Prof. David Davenport and Asst. Prof. H. Altay Güvenir
for their valuable comments on the thesis.

I would also like to thank Prof. Mehmet Baray and the rest of the faculty
of the Department of Computer Engineering and Information Science for the
stimulating research environment they have created.

Finally, I am grateful to my family for their infinite moral support, particularly
in times of despair.

Contents

1 INTRODUCTION 1

2 QUALITATIVE PROCESS THEORY 4

2.1 Objects and Quantities.. 5

2.2 Processes 7

2.3 Basic D eductions.. 9

2.4 Some Other Qualitative Reasoning T asks...................................... 12

3 THE MVL SYSTEM 14

3.1 The MVL Database... 15

3.1.1 Representation .. 15

3.1.2 Truth Values 16

3.2 Inference M echanism .. 17

4 THE IMPLEMENTATION: QRM 21

4.1 Representation of Domain M od els... 22

4.1.1 Individuals and Quantities... 22

VI

4.1.2 Processes and Individual V ie w s ... 27

4.2 Basic D eductions.. 30

4.2.1 Finding Possible Processes... 30

4.2.2 Determining A ctiv ity ... 30

4.2.3 Determining C h a n g e ... 31

4.2.4 Limit Analysis 34

4.3 E nvisioning... .34

4.4 Basic E xperim ents... 37

4.5 Limitations of QRM 44

5 CONCLUSION 47

A A View on Fluids Domain Model 49

A.l Heat F lo w .. 49

A. 2 B oiling.. 51

B Scenarios for Examples 53

B. l liiquid Flow (Two Containers)... 53

B.2 Heat Flow and B o ilin g ... 54

B.3 Liquid Flow (Three Containers)... 55

C How to Access QRM 58

CONTENTS vii

List of Figures

1.1 Comparison of Classical and Qualitative Physics (adapted from
[39]) 2

2.1 A physical system where a liquid flow process can be active . . . 5

2.2 Some quantities that are used in the representation of liquids . . 6

2.3 A partial ordering among quantities. (Here arrows are implicitly
labeled with the relation 7

2.4 Description of C ontained-L iqu id ... 8

2.5 An example process description in QPT 10

4.1 The algorithm for elaboration ... 31

4.2 The algorithm for resolving influences.. 33

4.3 The algorithm for limit analysis.. 35

4.4 The algorithm for envisioning... 36

4.5 Envisionment for the two-container system. (VIS stands for in­
dividuals imposed by the views, PS indicates process structures
in the situation, and LH denotes the limit hypothesis.) 38

4.6 Heat flow and boiling. (STOVE is assumed to be a temperature
source, CAN is closed, and no explosion is considered.)................ 39

vm

LIST OF FIGURES IX

4.7 Envisionment for heat flow and boiling system. (LHl, LH2, and
LH.3 correspond to limit hypotheses.)... 40

4.8 The three-container system.. 41

4.9 A part of the envisionment for the first alternative situation.
The second alternative situation is similar. (EE denotes an ex­
ternal effect such as the controller.).. 4-3

4.10 A part of the envisionment for the third alternative situation . . 44

Chapter 1

INTRODUCTION

Qualitative Physics, an active area of research in Artificial Intelligence (AI),
deals with commonsense reasoning about the physical world [22, 30, 29, 44,
13, 32, 4, 12]. The motivation primarily comes from contemporary engineering
problem solving in which techniques for automating engineering practice are
sought (cf. [10] for an interesting personal account and motivation) as well
as from outstanding problems of cognitive science, computer-aided education,
simulation, etc. [34, 20, 39].

Qualitative Physics is an alternative approach for describing physical phe­
nomena around us. To this end, scientists and engineers normally use the for­
malism of conventional physics and mathematics. However, while they describe
physical phenomena using Classical Physics, they tend to understand and ex­
plain physical behavior in terms of causes and effects [31, 11, 3]. Clearly, most
of the time we must describe the behavior of a physical system using accurate
c[uantitative values and numerical equations, viz. Classical Physics. However,
it is doubtful that we gain much insight into the functioning of the system
when we do so.

Qualitative Physics provides valuable intuitions by giving a commonsense
description of behavior while enabling us to describe physical situations in a
simpler (yet formal) way using symbolic qualitative values [6]. This qualitative
representation requires quantity values to be chosen from a discrete quantity
space rather than from a continuous one. In Qualitative Physics, the behavior

CHAPTER 1. INTRODUCTION

Modeling

Physical
Situation

Modeling

ifferential
Equations

Qualitative
Differential
Equations

-Solve-

-^•Solve-

Analytic
"Solution

Interpret

Commonsense
"Description

Figure 1.1. Comparison of Classical and Qualitative Physics (adapted from
[39))

of a physical system is effectively characterized by the derivatives of its quan­
tities. Hence, a quantity may increase, decrease, or stay unchanged when the
sign of its first derivative takes the values 1, —1, or 0, respectively.

In Figure 1.1, Classical Physics and Qualitative Physics are compared. Ini­
tially, both of the physics attempt to formalize the physical situation, one using
complicated numerical equations and the other using simple qualitative con­
straints. Then, both solve their related equations using their own methods.
At the end, while Qualitative Physics arrives at a commonsense description of
the solution. Classical Physics arrives at numerical values which may not say
much intuitively.

A computer program for qualitative reasoning requires a qualitative model
of a physical system as input. This model must be adequate for specify­
ing what constitutes the physical system of concern and the observable re­
lationships. Currently, there are various well-established formalisms that of­
fer constraint-based, component-based, and process-based paradigms for the
representation of physical systems [42]. The constraint-based approach uses
a set of variables and assorted constraints on those variables [32]. In the
component-based approach, the behavior of a physical system is obtained from
the behaviors of its components [8]. The process-based approach uses the no­
tion of active processes that potentially exist in a physical situation [14]. This
is the approach we prefer to work with.

CHAPTER 1. INTRODUCTION

Among process-based approaches, Forbus’s Qualitative Process Theory (QPT)
provides the most comprehensive framework for modeling physical situations.
Thus, it serves as a primary guide for many of the current Qualitative Physics
programs— especially those dealing with dynamical systems [42, 17].

This thesis introduces a QPT-based experimental qualitative reasoning pro­
gram, QRM (Qualitative Reasoner in JVTVL), that has been implemented using
the formalism and the inference mechanism of the Multivalued Logics’ (MVL)
Theorem Proving System [24]. QRM gives some insights about what MVL can
provide for writing qualitative reasoning programs. QRM is a more sophisti­
cated version of a simple program, QREM, which we implemented some time
ago [38, 2].

In this chapter, various general ideas have been pointed out in order to give
a broad understanding of Qualitative Physics. A fine treatment which is much
more detailed can be found in [22].

The remainder of this thesis is structured as follows.

In Chapter 2, an informal review of QPT is given. Readers interested in
the details of QPT are referred to Forbus’s seminal paper [14] and his Ph.D.
thesis [15].

In Chapter 3, MVL is introduced. The terse but informative user’s guide
of the MVL system [26] may be helpful to learn more about the basic system
functions and predicates. However, our experience with MVL taught us that
learning by doing is a must.

Chapter 4 is a detailed account of QRM, our qualitative reasoning program.
QRM uses Forbus’s QPT for the description of physical situations within MVL.
It performs basic reasoning tasks of QPT and constructs envisionments from
some initial situation with the help of the inference mechanism of MVL.

Chapter 5 concludes the thesis with remarks on what lias been achieved
and what can be done to improve QRM further.

Chapter 2

QUALITATIVE PROCESS THEORY

QPT [15] is a formalism for describing physical situations. Forbus specifies
his theory as one with which reasoning about dynamical systems can be made
easily and effectively. He mentions this in [14]: “Qualitative Process Theory
defines a simple notion of physical process that appears useful as a language
in which to write dynamical theories.”

According to QPT, a dynamical system changes its state as a result of
active processes. In QPT, a process is understood as something that causes
changes in objects over time [14]. Moving, colliding, flowing, and boiling are
examples of processes acting on objects. A change may occur in a system only
when there are inequalities between property values of objects. In Figure 2.1,
a potentially existing process, LIQUID-FLOW, is represented in the framework
of a dynamical system consisting of two containers F and G, and a fluid path
P (which is supposed to hold no material in it). A flow from F to G imposes
changes on the levels of liquid in containers F and G.

A domain model of a dynamical system consists of descriptions of existing
objects in the system, relationships among those objects, and processes that
can occur in some physical situation. A specific process becomes active when
all of its preconditions hold. Active processes in each situation need not be
given explicitly; they can be inferred using the process specifications. When a
complete set of process descriptions is provided, QPT should be able to predict
physical behavior by identifying active processes and their influences.

CHAPTER 2. QUALITATIVE PROCESS THEORY

Container G

Figure 2.1. A physical system where a liquid flow process can be active

In general, a theory in Qualitative Physics is regarded as useful for quali­
tative reasoning if it has the following three properties [39, 14]:

1. It allows specification of effects and the means by which effects are prop­
agated.

2. It provides decomposable descriptions, i.e., a complicated situation can
be described by its parts.

3. It allows graceful extensions to the basic theory.

These properties will be investigated for QPT in the upcoming sections.

2.1 Objects and Quantities

In QPT, objects are represented by individuals. The nature of an individual
in general depends on the domain model used. However, process instances are
always regarded as individuals.

Processes influence the objects in a situation and cause changes on their
quantities. A quantity is a representation of an object property which takes
values from a number space and changes as a result of active process instances
(Figure 2.2).

CHAPTER 2. QUALITATIVE PROCESS THEORY

WaterF WaterG

amount-of pressure

level volume

bottom-height top-height

A[level(WaterF)] > A[level(WaterG)]

Figure 2.2. Some quantities that are used in the representation of liquids

A quantity consists of amount and derivative that are numbers represented
by their sign and magnitude [15]:

Am— magnitude of the amount,
As— sign of the amount,
Dm— magnitude of the derivative,
Ds— sign of the derivative.

The value of a number is specified using its quantity space, a partial order­
ing among quantities. Two ordered quantity values in a quantity space with
no other value between them are referred to as neighbors. The neighboring
(juantities in a quantity space facilitate the determination of process activities
through time. Figure 2.3 illustrates an example quantity space for the system
of Figure 2.2.

Individual views are individuals such as process instances. Their existence
depends on the facts of a situation. Individual views are used to describe
objects that can be put into existence and destroyed. Their properties can
change [16], e.g., when water in a container starts boiling, it changes its state.

CHAPTER 2. QUALITATIVE PROCESS THEORY

bottom-height(G)

bottom-height(F)

level(WaterG)

op-height(G)

level(WaterF) “top-height(F)

Figure 2.3. A partial ordering among quantities. (Here arrows are implicitly
labeled with the relation “ < ” .)

and if boiling continues long enough no liquid will be left in the container.

An individual view is designated by its individuals, quantity conditions
and preconditions (inequalities between quantities and other conditions that
are necessary for the view to hold), and relations (facts that are inserted into
the situation when the view holds). A distinction between preconditions and
quantity conditions needs to be made here. Quantity conditions are for predict­
ing the changes whereas preconditions are for determining whether the theory
is applicable to the situation at hand.

Figure 2.4 gives the description of an individual view Contained-Liquid.
(Notation is somewhat mixed. Forbus explains the details of this in [14, 15].)

2.2 Processes

The main surmise of QPT is the so-called sole mechanism assumption which
allows us to know all the potential changes in a physical situation [14]. It can
be stated as follows; All changes in a physical system are caused directly or
indirectly by processes.

QPT views a physical process as something which acts through time to
change the parameters of objects in a situation. A process is formally described
in QPT using the following:

• Individuals: Objects that the process acts on.

• Preconditions: Conditions that are imposed by the external world.

• Quantity Conditions: Conditions that relate quantity values.

CHAPTER 2. QUALITATIVE PROCESS THEORY

Individual View Contained-Liquid

Individuals:
c is a container
s is a liquid

Preconditions:
Can-Contain-Substance(c,s)

Quantity Conditions:
A[eimount-of-in(c,s)] > ZERO

Relations:
There is p which is a piece-of-stuff
ajnount-of (p) = ainount-of-in(c, s)
made-of(p) = s
container(p) = c

Figure 2.4. Description of Contained-Liquid

• Relations: Relationships a process imposes on the individuals it acts
upon (i.e., what holds when the process is active).

• Influences: Direct effects of a process. (Each process has at least one
direct influence.)

A process is specified just like an individual view, although it has one
additional part, viz., influences (Figure 2.5). When there are objects in a
situation that can be matched with the individual declaration of a process, a
process instance (PI) is created. A PI is said to be active when its preconditions
and quantity conditions hold. Preconditions are conditions outside of QPT, i.e.,
an open faucet remains open as long as nobody closes it. Quantity conditions
are related to and can be predicted by the theory, i.e., an open faucet may be
closed, if a physical process has indeed such an effect.

Influences become effective when process instances are active. Direct and
indirect influences determine the cause of change in a quantity. If a quantity Q
is directly influenced by a number n, this is written I+(Q ,n) (resp. I -(Q ,n))
when the influence is positive (resp. negative).

A quantity is said to be indirectly influenced if it is a function of some
other changing quantity. The representation Q1 aq+ Q2 (or its syntactically
sugared version, Q1 qprop+ Q2) indicates that Q1 is a function of some quantity
Q2 which is monotonically increasing whereas Q1 o;q_ Q2 (or Q1 qprop- Q2)
says that Q1 is a monotonically decreasing function of Q2.

According to QPT a quantity cannot be both directly and indirectly influ­
enced at the same time. When this happens the domain model is considered
to be inconsistent [14].

CHAPTER 2. QUALITATIVE PROCESS THEORY 9

2.3 Basic Deductions

Making deductions is the ultimate goal of any representation for Qualitative
Physics. QPT supports several deductions, including the basic ones: finding
possible processes, determining activity, determining change, and limit analy­
sis.

CHAPTER 2. QUALITATIVE PROCESS THEORY 10

Process Liquid-Flow

Individuals:
source is a contained-liquid
destination is a contained-liquid
path is a fluid-path
fluid-connection(path,source,dest ination)

Preconditions:
aligned(path)

Queuitity-Conditions:
A[pressure(source)] > A[pressure(destination)]
status (liquid-flow-support.Active)

Relations:
Let flow-rate be a quantity
A[flow-rate] > ZERO
flow-rate qprop+ (pressure(source) - pressure(destination))

Influences:
I-(aunount-of (source) , A [flow-rate])
I+(ajnount-of (destination) ,A [flow-rate])

Figure 2.5. An example process description in QPT

CHAPTER 2. QUALITATIVE PROCESS THEORY 11

Finding Possible Processes Processes whose “individuals” specification is
satisfied are potential processes, i.e., Pis, that can occur in a situation. Simi­
larly, view instances (Vis) can be determined by having views whose “individ­
uals” specifications are satisfied in the situation.

D eterm ining A ctiv ity A process instance is Active, if its preconditions and
quantity conditions hold. Changes in individuals are represented by process
and view structures. Process structures are constructed by taking Pis that are
A ctive. (View structures can be found similarly.)

D eterm ining Change Changes in quantities of an individual are indicated
by D3 . A quantity is said to be decreasing, increasing, or stable, when its Ds
takes the values —1, 1, and 0, respectively.

In order to determine D,, direct and indirect influences incurred by process
and view structures need to be resolved. Direct influences are resolved by
summing up the influences. If all influences have the same sign value then D,
will be that sign. In those cases where influences have conflicting sign values, it
is still possible to arrive at a solution by using the inequality information among
quantities. However, there is no guarantee that direct influences can always be
resolved, because information on quantities, inequalities, and derivatives may
not be adequate to determine the result all the time. (Obviously, this is a
natural weakness of Qualitative Physics vis-à-vis Classical Physics.)

Resolving indirect influences is the most difficult task and requires quali­
tative proportionalities. Qualitative proportionalities specify functional rela­
tionships between quantities, so they do not give enough information on the
strength of influences. While direct influences can be summed up easily, indi­
rect influences cannot be. In fact, most of the time it will not be possible to
resolve indirect influences in basic QPT [14].

Lim it Analysis Changes in quantities may alter some process and view
structures in a situation. Limit rmalysis is used to determine those changes
and changes in the Ds values of quantities.

The set of changes in single inequalities and combinations of those changes

CHAPTER 2. QUALITATIVE PROCESS THEORY 12

that are consistent in the situation constitute the quantity hypotheses for a
situation. A limit hypothesis is a quantity hypothesis which not only causes
a change in a Dg value, but also imposes a change in some view or process
structure.

Some changes in quantity spaces occur instantaneously whereas some others
span an interval of time as the equality change law below indicates [15]:

“With two exceptions, a process structure lasts over an interval of
time. It lasts for an instant only when either

1. a change from equality occurs, or

2. a change to equality occurs between quantities that were in­
fluenced away from equality for only an instant.”

The equality change law sometimes helps one obtain unique results from
limit analysis within basic QPT [14].

2.4 Some Other Qualitative Reasoning Tasks

P red iction Prediction involves determining the future events of a situation.
Since the information about a situation is usually incomplete, the exact events
cannot be predicted most of the time. Instead, all possible events can be
generated using some assumptions about the situation. Envisioning generates
the alternative next situations and shows the future events of those situations
as a directed graph [39, 36, 7].

P ostd iction Postdiction is used to infer how a particular qualitative state
has been reached. It is much more difficult than prediction because the as­
sumptions that can be made about the situation are numerous [14].

M easurem ent Interpretation Measurement interpretation is used to infer
what is happening in a situation given .some observations (measurements) about
the behavior of individuals [19]. The importance of this is emphasized in [44]:

CHAPTER 2. QUALITATIVE PROCESS THEORY 13

“The problem of interpreting observations of a system over time
is fundamental to intelligent reasoning about the physical world.
We view interpretation as the task of determining which possible
behaviors predicted by the current model are consistent with the
sensory data, including which are most plausible.”

Chapter 3

THE MVL SYSTEM

MVL (written in Common Lisp) is an implementation of theoretical work done
at Stanford University [24]. The core of the system relies on the multivalued
logics paradigm of Ginsberg [2.3].

Broadly speaking, MVL is like any other logic programming language, if
we view it as consisting of a database and an inference mechanism that tells
whether or not a query follows from the information in the database [26].
However, MVL does not just serve as a logic programming language. It also
provides facilities for making inferences using various techniques— default logic,
circumscription, temporal logic are some of these—and allows one to define new
logics.

The most important feature of MVL is its use of multiple truth values for
logical statements. Unlike Prolog, MVL does not simply label a statement to
be true; it considers “true by default,” “true by some assumption,” “false by
default,” etc., as reasonable values and uses them when answering a query [26].

In addition to above, MVL includes facilities for dealing with modal op­
erators [24]. (N.B. MVL is still being developed with occasional changes and
additions to the system. Bugs are being fixed whenever possible [25].)

14

CHAPTER 3. THE MVL SYSTEM 15

3.1 The M VL Database

3.1.1 Representation

An MVL database consists of sentences that are represented as Lisp s-expressions
and labeled with truth values. The logical connectives not, or, and and are
used in prenex normal form. An example statement “Tweety is a penguin and
it cannot fly” would be represented as:

(and (penguin Tweety) (not (flies Tweety))).

MVL provides two basic connectives for inference tasks: = > for forward
chaining and < = for backward chaining. The form of backward- and forward­
chaining rules are as follows:

(< = Conclusion Premise^ Prem ise2 . . . PremisCn)
(= > Premisei Prem ise2 . . . Premiscn Conclusion)

In addition to these basic connectives IF, IFF, and < = > can also be used
to represent various kinds of statements. An IF statement produces a pair of
rules depending on the value of the system variable * if-tra n s la t io n * . When
* if -t ra n s la t io n * is set to be (the default value),

(IF (penguin Tweety) (bird Tweety))

is translated into

(and (<= (bird Tweety) (penguin Tweety))
(<= (not (penguin Tweety)) (not (bird Tweety)))).

When the *if-translation* is set to f c the equivalent statement will be
the conjunction of the rule itself and its contraposition :

(and (= > (penguin Tweety) (bird Tweety))
(=> (not (bird Tweety)) (not (penguin Tweety)))).

CHAPTER 3. THE MVL SYSTEM 16

If the value is mix, a pair of contraposed rules are produced:

(and (<= (bird Tweety) (penguin Tweety))
(=> (penguin Tweety)) (bird Tweety)))).

The connectives IFF and < = > are used to represent equivalence. A database
rule

(IFF (bird Tweety) (flies Tweety))

is equivalent to:

(and (IF (bird Tweety) (flies Tweety))
(IF (flies Tweety)) (bird Tweety)))).

Equivalence translations of < = > change according to the value of the global
system variable *equivalence-translation*. Just like *if-translation*,
♦equivalence-translation* takes the values be, f c, and mix. Corresponding
translations of the previous equivalence for < = > produce the backward- and
forward-chaining forms shown below:

(eind (<= (bird Tweety) (flies Tweety))
(<= (flies Tweety)) (bird Tweety)))),

(and (=> (bird Tweety) (flies Tweety))
(= > (flies Tweety)) (bird Tweety)))),

(and (=> (bird Tweety) (flies Tweety))
(<= (bird Tweety)) (flies Tweety)))).

In MVL, LISP atoms beginning with a ? are regarded as variables. Un­
bound variables in database statements are assumed to be universally quanti­
fied. Existential quantification is handled using Skolem constants.

3.1.2 Truth Values

The truth value of a database sentence changes depending on the logic that
MVL considers as the basis of inference. To give an example, if we are using

CHAPTER 3. THE MVL SYSTEM 17

default logic, then the basic truth values will be “true,” “false,” “default true,”
and “default false.” On the other hand, if we are using first-order logic, then
the basic truth values will simply be “true” and “false.” When we assert
(not (flies Tweety)) in default logic, negation of the statement, i.e., the
truth value of (flies Tweety), is assigned the value df (false by default). If
we assert the same sentence in first-order logic the truth value assigned will
simply be false.

The truth values that underlie the power of MVL are represented within
a mathematical structure called a hilattice. The statements in the database
are labeled using the elements of the bilattice given for the specified logic.
Currently, some of the predefined bilattices in MVL are first-order, ATMS,
default, circumscription, and time bilattices.

Truth values of the MVL bilattices that we use in QRM are:

♦f i r s t -o r d e r -b i la t t ic e * The first-order logic has four truth values, namely,
true, fa ls e , unknown, and bottom (both true and fa lse).

♦ d e fa u lt -b ila tt ice * The default bilattice contains seven truth values. Three
extra truth values are dt (true by default), df (false by default), and * (both
true and false by default) [26]. Default values are valid until information is
supplied to the contrary. True and fa ls e subsume the default values since
they give more certain information about an MVL sentence than dt and df
(23|.

Besides the predefined bilattices, MVL provides facilities to incorporate new
logics into the system. This is why we consider MVL as a valuable inference
tool for Qualitative Physics. Depending on the nature of the physical system
and the reasoning task, an appropriate logic with relevant operators can be
described within MVL.

3.2 Inference Mechanism

The underlying inference mechanism of MVL is a first-order theorem prover.
This “simple natural-deduction style complete” [24] theorem prover differs from
a conventional one by having features to handle queries with negative subgoals

CHAPTER 3. THE MVL SYSTEM 18

containing free variables.

A multivalued query may produce several proof tasks to be accomplished
by the first-order prover. Each task requires an invocation of the prover and
initiates a proof search. The inference, in general, proceeds according to the
order of premises in the rule, and the proof search continues by choosing the
most promising proof attempt. When all the premises are satisfied, the system
returns the conclusion as the answer to the query.

Q uerying the Database In MVL, a query may initiate a proof search with
or without free variables. If there are free variables in the query, then the
returned answer will contain the bindings for those variables as well as the
truth value for the answer. An example query.

(flies ?x) ;; who flies?

may return with a binding ((?x . Tweety)) and a truth value dt, meaning

(flies Tweety) ;; Tweety flies

is true by default.

With the above representation, MVL provides various functions for search­
ing and querying the database. Functions such as lookup, lookups, contents,
and prfacts [26] are used to this end.

Backward Chaining Backward chaining is used to arrive at a conclusion
by first proving the consequences of the rules in the database.

The functions be and bes are used to initiate inference for a given query:

be (query) attempts to prove query from information in the database, look­
ing only for a single answer.

bes (query) attempts to prove query from information in the database,
looking for all possible answers.

CHAPTER 3. THE MVL SYSTEM 19

Those functions also accept some cutoff information in order to control the
nature of the proof search, e.g., using the succeeds keyword we can terminate
the search as soon as the final answer passes a given test.

Forward Chaining In MVL, forward chaining is somewhat complicated.
Unlike some of the other logic programming systems, adding a new sentence
into the database may cause a previous conclusion to be retracted, due to the
nonmonotonic nature of multivalued inference [26].

The functions f c and erase are used to manipulate the database in case
of forward inferencing:

fc (p r o p o s it io n) inserts p rop os ition into the database and forward chains.

e ra se (p rop os ition) removes p rop os ition from the database and forward
chains.

P rocedural A ttachm ent MVL allows the use of ordinary Lisp functions
for database manipulation and inference. The macros lisp -d e fin e d and
lis p -p r e d ic a te are employed to make Lisp functions known to the system.

M odal O perators The MVL system can deal with various sorts of modal
operators. Modal operators are defined as functions on the bilattice of truth
values. Bilattices supplied with some modal operators are as follows [26]:

ir s t -o r d e r -b i la t t i c e * Modal operator L, which maps p rop os ition into
“necessarily p ro p o s itio n ” and modal operator M, which maps the p rop os ition
into “possibly p ro p o s itio n ” are defined in the first-order bilattice.

*def a u lt -b i la t t ic e * This bilattice inherits the modal operators of the first-
order bilattice.

The modal operator L, in particular, provides retraction of the facts in the
database that became unsupported during an erase. The following forward
chaining rule inserts (B) into the database when an (f c ’ (A)) is encountered
and removes it when an (erase ' (A)) is chained upon the rule:

CHAPTER 3. THE MVL SYSTEM 20

(=> (L (A)) (B)) ;; if (A) is known then (B)

The following rule, however, does not remove (B) although (A) is erased
from the database:

(=> (A) (B)) ;; if (A) then (B)

QRM makes use of the modal operator L with the forward chaining rules for
inserting and removing the deduced facts and the hypotheses about a physical
situation.

* t im e -b ila t t ic e * provides both L and M as well as delay, propagate,
and at modal operators which are specific to temporal reasoning [26].

Chapter 4

THE IMPLEMENTATION; QRM

Theoretical studies in qualitative physics frequently offer new ideas for the
description of physical systems. However, these ideas need to be tested. As de
Kleer, one of the pioneers of the field, mentions in [42]: “Significant AI progress
can be made only by applying AI ideas to tasks. Otherwise, we tend to spin
our wheels.”

Forbus’s GIZMO formed a test environment for Q PT’s ideas [15]. Although
not all parts of QPT was implemented in GIZMO, this program provided highly
valuable information about the applicability of QPT.

QRM is a program (written in Lucid Common Lisp) that experiments with
QPT by making use of the MVL system. The reasoning tasks can be accom­
plished using MVL’s default logic (as well as first order logic) in the case of
incomplete information. The multivalued framework of MVL enables one to
incorporate other logics, e.g., hierarchical default logic and especially temporal
logic, in order to perform some demanding reasoning tasks about the physical
world.

Currently, we are working on qualitative reasoning in the fluids domain.
In the modeling of simple fluid dynamics an interesting representational prob­
lem arises. Liquids, unlike solids, cannot be individuated. In our case, the
“contained-Iiquid” (liquid within a container) ontology introduced by Hayes
[28] is used in the QPT formalism. Hence, our domain model consists of liq­
uids, containers, and fluid paths in the process and view descriptions.

21

CHAPTER 4. THE IMPLEMENTATION: QRM 2 2

4.1 Representation of Domain Models

A domain model in QPT can be specified by defining quantities, individuals,
and processes that exist in possible situations.

4.1.1 Individuals and Quantities

In QPT, objects, processes, and view instances are represented by individuals
[14, 16]. In general, two classes of individuals are considered in a situation:
static individuals and dynamic individuals. Static individuals do not vanish
or appear. Dynamic individuals may do so as a result of changing quantity
values.

The containers F and G (cf. Figure 2.1.) are given as static individuals; they
do not appear or vanish as a result of processes in the situation. Hence, we sim­
ply use the ind iv id u a l predicate for indicating their existence: (in d iv id u a l
F) and (in d iv id u a l G).

Other individuals in fluids domain are dynamic individuals. They come
into existence when some conditions are met:

(=> (L (substance ? s))
(con ta in er ?c)
(s ta te ? s t)
(contains-substaoice ?c ?s ? s t)
(and (in d iv id u a l (? c ?s ? s t))

(has-quantity (? c ?s ? s t) a jn ou n t-o f-in)))

If there is a substance ?s in state ?st , a container ?c in the situation,
and ?c contains ?s in ?st, then an individual (? c ?s ? s t) appears with a
quantity am ount-of-in. When the triggering fact ?s does not hold anymore
(or triggering facts in other related rules are not satisfied so far) the individual
(?c ?s ? s t) disappears.

Some individuals come into existence as a result of active process and view

CHAPTER 4. THE IMPLEMENTATION: QRM 23

instances in the situation. Those are inserted into the database when the in­

stances are activated, and removed when they are inactivated. The “relations”
part of the process and view definitions contains the new individual descrip­
tions and properties associated with those individuals:

(=> (L (relations (view CONTAINED-STUFF (individuals (?c ?s ?st)))))
(assign (c-s ?s ?st ?c) ?c-s)
(and (introduces-uniquely contained-stuff ?c-s)

(qprop+ (amount-of-in (?c ?s ?st)) (amount-of ?c-s))
(Q= (amount-of-in (?c ?s ?st)) (amount-of ?c-s))))

CONTAINED-STUFF introduces an individual (c -s ?s ?st ?c) as a
co n ta in ed -stu ff where ?s is the substance in state ?s t (i.e., solid, liquid, or
gas) and ?c is the container in which the substance stays (when an individual
(?c ?s ? s t) exists). Introduces-uniquely indicates that the new individual
appears when the view becomes active and vanishes when the view becomes
inactive.

Some individuals and associated relations can be specified by making use
of the existing ones. For example, (c -s WATER LIQUID F) can be inferred
as a con tain ed -liqu id from the following forward chaining rule, when we
already have an individual (c -s WATER LIQUID F) as a con tain ed -stu ff
(function -spec defines some relationships between quantities):

(=> (L (contained-stuff (c-s ?s LIQUID ?c)))
(assign (c-s ?s LIQUID ?c) ?c-s)
(zind (introduces-uniquely contained-liquid ?c-s)

(has-quEintity ?c-s level)
(qprop+ (pressure ?c-s) (level ?c-s))
(qprop+ (top-height ?c-s) (level ?c-s))
(qprop+ (level ?c-s) (amount-of ?c-s))
(qprop+ (bottom-height ?c-s) (bottom-height ?c))
(function-spec (qprop+ (level ?c-s) (amount-of ?c-s)))
(function-spec (qprop+ (pressure ?c-s) (level ?c-s)))
(Q= (level ?c-s) (top-height ?c-s))
(Q= (bottom-height ?c-s) (bottom-height ?c))

CHAPTER 4. THE IMPLEMENTATION: QRM 24

(correspondence (((A (level ?c-s)) (A (bottom-height ?c-s)))
((A (amount-of ?c-s)) Zero)))))

The quantity types in the domain are defined by (quantity-type <type>).
Some example quantity types in the fluids domain include ajnount-of, pressure,
and bottom-height.

Individuals possess the quantity properties of the objects they represent,
e.g., a conta iner is a p h y s ica l-o b je c t that inherits the following quantity
properties:

(=> (L (container ?i)) (physical-object ?i))

(=> (L (physical-object ?i))
(and (has-quantity ?i top-height)

(has-quantity ?i bottom-height)
(not (greater-than (A (bottom-height ?i))

(A (top-height ?i))))))

In QPT, relationships between quantities are basically indicated by qualita­
tive proportionalities, correspondences, and inequalities [15]. These are coded
in MVL with the same notational considerations as in QPT. Below ? c -s is
a con ta in ed -liqu id . Zero is the value 0, and A denotes the amount of a
quantity:

(qprop+ (level ?c-s) (amount-of ?c-s))
(correspondence (((A (level ?c-s)) (A (bottom-height ?c-s)))

((A (amount-of ?c-s)) Zero)))))

Here, qprop+ denotes that the level of ? c -s is qualitatively proportional to
its amount. On the other hand, correspondence basically says that “The value
of ? c - s ’s level is equal to its bottom height when the value of ? c - s ’s amount
is equal to Zero,” since le v e l and amount-of are qualitatively proportional.

The information a correspondence carries is inserted into the database
with the following rule:

CHAPTER 4. THE IMPLEMENTATION: QRM 25

(=> (L (correspondence ?pair-list))
(insert-correspondence ?pair-list)

(correspon den ce-in serted))

Insert-correspondence is a Lisp function that is made known to MVL. It
produces the rules needed to check the applicability of correspondence [15].

Qprops give little information about functional dependencies between quan­
tities. Function-specs are used to specify further relationships. The following
fu n ction -sp ec indicates a qualitative proportionality between pressure and
le v e l and specifies the equality of pressures for two con ta in ed -stu ffs when
their levels are also equal:

(function-spec (qprop+ (pressure ?c-s) (level ?c-s)))

The relationships are introduced by the following rules:

(=> (L (function-spec ?qprop))
(insert-function-spec ?qprop)

(function-spec-inserted))

(=> (L (function-spec ?qprop))
(car ?qprop ?rel)
(cadr ?qprop ?ql)
(caddr ?qprop ?q2)

(?rel ?ql ?q2))

In sert-fu n ction -sp ec is a Lisp function to handle the insertion and the
removal of the relationships a fu n ction -sp ec denotes.

A simple representation Q= is defined [15] for the illustration of more com­
plex correspondences and qualitative proportionality groups:

(q= (flo w -ra te ? in s) (Q- (pressure ?s r c) (pressure ? d s t))) }

CHAPTER 4. THE IMPLEMENTATION: QRM 26

Q= produces the following (?ins is an instance of LIQUID-FLOW process
where ?src and ?dst are the source and the destination contained-liquids
in the situation):

(qprop+ (flow-rate Tins) (pressure ?src))
(qprop- (flow-rate Tins) (pressure Tdst))
(correspondence (((A (flow-rate Tins)) Zero)

((A (pressure Tsrc)) (A (pressure Tdst))))

Inequalities can be given directly or inferred from the symmetry, duality,
and transitivity rules defined on quantity values. Greater-than, less-than,
and equal-to constitute a basis for algebraic manipulations:

(=> (L (greater-tham Tql Tq2))
(handle-inequalities greater-than Tql Tq2)

(inequalities-inserted))

(=> (L (less-thaui Tql Tq2))
(hauidle-inequalities less-than Tql Tq2)

(inequalities-inserted))

(=> (L (equal-to Tql Tq2))
(not (equal Tql Tq2))
(handle-equalities Tql Tq2)

(equalities-inserted))

Handle-inequalities and handle-equalities are defined as Lisp func­
tions known to MVL in order to reason about the equalities and the inequalities
[40] in the database. Consistency checks (i.e., if (<7! > q2) then (q2 > (7I) can­
not be true), symmetry (i.e., if {ql = q2) then {q2 = </1))), duality (i.e., if
{q\ > q2) then {q2 < (7I)), and transitivity (i.e., if («7I > q2) and {{q2 > qi) or
(q2 = qT)) then {ql > q’A)) rules are employed by these two functions.

CHAPTER 4. THE IMPLEMENTATION: QRM 27

4.1.2 Processes and Individual Views

Until now, we have given the basic components of a domain model; most of
these consist of forward chaining rules and produce known facts about the
situation. With only these rules and facts in the database, we can make simple
inferences, e.g., “What kind of individuals exist in the domain?” or “What are
the qualitative proportionalities?” However, we need more complex inferences
for qualitative reasoning tasks. For this purpose, we are going to represent
processes and other related concepts with backward and forward chaining rules.

In QRM, a process description is given in five parts, i.e., we have five rules
for each process. One rule describes a process along with its individuals. If
the specified individuals exist in the situation, the process is considered to be
potentially active; i.e., a process instance. The status of an instance can only
be determined by examining the preconditions and the quantity conditions.
Hence, two of the rules are used to check whether preconditions and quantity
conditions hold, and the remaining two employ relations and direct influences
when the process is found to be active.

A sample process description for LIQUID-FLOW captures all necessary con­
ditions (preconditions and quantity conditions) and individual specifications
for that process. Individuals for LIQUID-FLOW are contained-liquids, ?src
and ?dst, and ?path which allows flow of liquid.

(<= (process LIQUID-FLOW (individuals ?src ?dst ?path))
(contained-liquid ?src)
(contained-liquid ?dst)
(not (equal ?src ?dst))
(fluid-path ?path)
(fluid-connection ?path ?src ?dst)
(supports

(view LIQUID-FLOW-SUPPORTING
(individuals ?src ?dst ?path))))

When all the conditions hold, a process becomes ACTIVE. For LIQUID-FLOW,
(a lign ed ?path) is a precondition guaranteeing that the fluid path is isolated
from any other external effect:

CHAPTER 4. THE IMPLEMENTATION: QRM 28

(<= (hold-preconditions
(process LIQUID-FLOW (individuals ?src ?dst ?path)))

(aligned-path ?path))

If the pressure of ?src is greater than the pressure of ?dst and the geometric
properties of ?path allows, there will be a flow of liquid from ?src to ?dst:

(<= (hold-quantity-conditions
(process LIQUID-FLOW (individuals ?src ?dst ?path)))

(assign
(process LIQUID-FLOW (individuals ?src ?dst ?path)) ?name)

(assign
(greater-than (A (pressure ?src)) (A (pressure ?dst))) ?c)

(add-quantity-conditions ?name ?c)
(hold-conditions ?c Tresult)
(not (null ?result)))

Lisp function add-quantity-conditions constructs *comparison-table*
for limit analysis and determines the quantity conditions for process and view
instances that are not found to be ACTIVE or INACTIVE. Hold-conditions
checks whether the quantity conditions are satisfied in the situation.

The status of an instance is determined by a backward search via the fol­
lowing rules:

(<= (status (process ?name ?individuals) ACTIVE)
(process ?najne ?individuals)
(hold-all-conditions (process Tnaiae ?individuals)))

(<= (hold-all-conditions (process ?name ?individuals))
(hold-preconditions (process ?najne Tindividuals))
(hold-quantity-conditions (process ?name ?individuals)))

When the status of instance is determined to be active, the “relations” £ind
the “influences” parts of it are invoked:

CHAPTER 4. THE IMPLEMENTATION: QRM 29

(=> (L (status (process ?name ?individuals) ACTIVE))
(and (relations (process ?name ?individuals))

(influences (process ?najne ?individuals))))

The relations and the influences of a LIQUID-FLOW process are defined as
follows:

(=> (L (relations
(process LIQUID-FLOW (individuals ?src ?dst ?path))))

(assign
(process LIQUID-FLOW (individuals ?src ?dst ?path)) Tins)

(eind (has-quantity Tins flow-rate)
(individual Tins)
(greater-than (A (flow-rate Tins)) Zero)
(Q= (flow-rate Tins)

(Q- (pressure Tsrc) (pressure Tdst)))))

(=> (L (influences
(process LIQUID-FLOW (individuals Tsrc Tdst Tpath))))

(assign
(process LIQUID-FLOW (individuals Tsrc Tdst Tpath)) Tins)

(and (1+ (amount-of Tdst) (A (flow-rate Tins)))
(I- (ajnount-of Tsrc) (A (flow-rate Tins)))))

In QPT, processes are the only source of direct influences [14]. 1+ and I-
represent direct influences of flow-rate on the amount of Tsrc and Tdst when
LIQUID-FLOW is ACTIVE. If flow-rate is increasing, then the amount of Tdst
will increase whereas the amount of Tsrc will decrease.

The individual views are described using the same representation scheme.

CHAPTER 4. THE IMPLEMENTATION: QRM 30

4.2 Basic Deductions

4.2.1 Finding Possible Processes

Possible processes are characterized by their individuals. Processes whose indi­
viduals exist in a situation are potentially active and can be found by a simple
inference on the rules of process descriptions. The same procedure is also ap­
plicable for individual views. The following MVL query (backward) searches
for possible process and view instances in the situation:

(bcs ' (p -v -in stan ces ?naune))

The process and view instances are added into ♦process-view -instances*
using the rules:

(<= (p -v -in stan ces ?p-name)
(process ?p -n2ime ? in d iv id u a ls)
(add -process-in stan ce ?p-najne ? in d iv id u a ls t))

(<= (p -v-instem ces ?v-najne)
(view ?v-name ?in d iv id u a ls)
(add-view-instauice ?v-name ?in d iv id u a ls t))

In order to find all possible instances in the situation, new individuals
that may exist after activating the instances should also be considered. The
procedure which handles that is called elaboration (Figure 4.1).

4.2.2 Determining Activity

Process instances found by elaboration can be ACTIVE if they satisfy their
conditions. To find which process instances are ACTIVE, we may pose the
following query which tries to prove whether the potential processes are ACTIVE:

(bcs '(status ?instaince ACTIVE))

CHAPTER 4. THE IMPLEMENTATION: QRM 31

ELABORATION

1. repeat until no new instances or individuals are found
1.2. for each process and view in the database
1.2.1 find the process and view instances
1.2.2. add comparisons of quantity conditions

for instaoices into *comparison-table*
1.3. for each new instance
1.3.1. if instance is found to be ACTIVE then activate it
1.3.2. find new individuals after activating the instzince
2. inactivate ACTIVE process and view instances

Figure 4.1. The algorithm for elaboration

When a process or view instance cannot be found ACTIVE or INACTIVE its
status is UNKNOWN. The quantity conditions of such an instance are determined
in order to complete the situation for further reasoning.

4.2.3 Determining Change

In QPT, change is imposed by active processes (processes are the only source of
direct influences) [14, 16]. Quantities may change because of direct or indirect
influences on them. A quantity is said to be directly influenced if there exists
at least one process directly influencing it at a particular time. On the other
hand, a quantity is indirectly influenced if it is a function of some other quantity
that is changing. The derivative of a directly influenced quantity is equal to
the sum of all the direct influences on it. In QRM, an influence adder is used
to find this derivative value [15].

The algorithm used for resolving influences of the quantities of a process
instance is shown in Figure 4.2.

The quantities for individuals in the situation are determined by backward
searching with the following rule:

CHAPTER 4. THE IMPLEMENTATION: QRM 32

(<= (quantities ?obj) (individual ?obj)
(has-quantity ?obj ?q)
(sign-of-derivative ?q ?obj ?sign-val)
(mg-of-derivative ?q ?obj ?mg-val)
(add-quantity ?q ?obj ?sign-val ?mg-val)
(directly-influenced ?q ?obj))

Lisp functions sign-of-derivative and mg-of-derivative retrieve the
sign and the magnitude of a quantity derivative from the database (if already
known) whereas add-quantity forms »quantities*. Directly-influenced
computes the sign of the derivative for a directly influenced quantity by con­
structing an influence adder [15].

Add-p-inf luence and add-n-inf luence are used to find the positive and
the negative direct influences on a quantity:

(<= (inf+ ?q ?inf) (1+ ?q ?inf)
(add-p-influence ?inf))

(<= (inf- ?q ?inf) (I- ?q ?inf)
(add-n-influence ?inf))

Resolution of indirectly influenced quantities requires the constrainer and
the constrainee sets for a quantity to be formed. Hence, Lisp functions
add-p-constrainer, add-n-constrainer, and add-constrainee are defined:

(<= (p-constrainers ?ql ?q2) (qprop+ ?ql ?q2)
(add-p-constrainer ?q2))

(<= (n-constrainers ?ql ?q2) (qprop- ?ql ?q2)
(add-n-constrainer ?q2))

(<= (constrainees ?ql ?q2) (qprop ?q2 ?ql)
(add-constrainee ?q2))

(<= (qprop ?ql ?q2) (or (qprop+ ?ql ?q2)
(qprop- ?ql ?q2)))

CHAPTER 4. THE IMPLEMENTATION: QRM 33

RESOLVING-INFLUENCES

1. find *qu2Lntities* of individuals that exist in the situation
2. find all direct auid indirect influences in the situation
3. find derivative values of *quantities*,

determine the order of resolution
3.1. sort *quantities* depending on their depth of influence
3.1.1. for each Q in *quantitites* mark Q with 0
3.1.2. for each directly influenced Q MARK-DEPTH (Q,l)
3.2. return *quantities* in increasing order of marks into QUEUE
4. for each Q in QUEUE do

if Q is directly influenced then
if sum of influence adder is known
then derivative of Q is this sum
else
begin
find CONSTRAINERS of Q (i.e., take Q1 if Q qprop Ql)
for each Q do

for each Ql in CONSTRAINERS do
form PLUS, MINUS, and UNKNOWN sets
if UNKNOWN is nonempty or both

PLUS, MINUS sets are nonempty
then the sign of Q's derivative is undecided
else

if PLUS is nonempty then the sign is 1
else

if MINUS is nonempty then the sign is -1
else the sign is 0

end

MARK-DEPTH (Q, DEPTH)

1. if mark of Q is less than DEPTH then
1.1. mark Q with DEPTH
1.2. find CONSTRAINEES of Q (i.e., take Ql if Ql qprop Q)
1.3. for each Ql in CONSTRAINEES MARK-DEPTH (Ql, DEPTH+1)

Figure 4.2. The algorithm for resolving influences

CHAPTER 4. THE IMPLEMENTATION: QRM 34

4.2.4 Limit Analysis

Limit analysis is the most complex of the basic deductions [15]. It is used to
determine the changes in process and view structures, hence the changes in Dg
values of quantities, when the activity of processes changes.

The algorithm employed for limit analysis (Figure 4.3) constructs a set of
single quantity hypotheses by finding possible consistent changes in quantity
orderings [14]. The neighboring points in the quantity space designate the
changing quantities in the situation.

Since it is possible for some quantities to change together, combinations of
single quantity hypotheses are formed and tested for consistency. Consistent
hypotheses are then added.

Limit analysis may sometimes generate impossible physical situations [27,
33]. These situations and inherent ambiguities can be reduced using domain
dependent information.

4.3 Envisioning

Predicting the dynamic behavior of physical systems has been a challenging
research area in qualitative reasoning [14, 36, 33]. Envisioning, history gen­
eration, and measurement interpretation are all styles of reasoning related to
prediction.

Envisioning is a kind of qualitative reasoning where a graph of transitions
between the qualitative states of a given situation is formed by predicting the
future events [34, 35, 18, 36]. In general, an envisioning algorithm relies on the
generation of next situations and matching those situations with existing ones.
The envisioning algorithm used by QRM is illustrated in Figure 4.4.

The graph of qualitative state descriptions formed by envisioning is called
an envisionment. When constructing the envisionment two types of inference
are needed most of the time: one for the current situation to be completed and
the other for the next situations to be generated [L5].

CHAPTER 4. THE IMPLEMENTATION: QRM 35

LIMIT-ANALYSIS

1. find the set of quantity hypotheses
1.1. create and update the quantity spaces for

the quantities in *comparison-table*
by finding the neighboring quantities

1.2. update *comparison-table*
1.3. for each quantity in the quaintity space
1.3.1. if inequality relationship cam change then

create a quantity hypothesis
record assumptions about rate of change

2. generate all possible combinations of hypotheses
3. for each quantity hypothesis combination
3.1. form new situation
3.1.1. impose changes via hypotheses
3.2. determine the consistency of the situation
3.3. if hypotheses do not cause ainy inconsistency

then
record changes quantity hypotheses cause
into *next-situations*

3.4. form previous situation
3.4.1. remove changes via hypotheses

Figure 4.3. The algorithm for limit analysis

CHAPTER 4. THE IMPLEMENTATION: QRM 36

ENVISIONING

1. let S be the initial situation, *situations* be {S}
SITUATION-COMPLETIONS and *envisionment* be NIL

2. if process or view structures of S is incomplete
then SITUATION-COMPLETIONS is R-COMPLETIONS(S-COMPLETIONS(S))
else if any Ds value in S is unknown

then SITUATION-COMPLETIONS is R-COMPLETIONS(S)
else SITUATION-COMPLETIONS will consist of only {S}

3. while SITUATION-COMPLETIONS is not empty
3.1. take the first element of SITUATION-COMPLETIONS

and assign this alternative situation to SI
3.2. perform LIMIT-ANALYSIS on situation SI and

form *next-situations* with quantity hypotheses
3.3. for each situation S2 in *next-situations*
3.3.1. if it matches any situation S3 in *situations*

then
form a trainsition from SI to S3 eind insert it
into *envisionment* with quantity hypotheses

else
begin

form a transition from SI to S2 and insert it
into *envisionment* with quantity hypotheses,
add S2 into ^situations*
if all Ds values in S2 is known
then add S2 to SITUATION-COMPLETIONS
else add R-C0MPLETI0NS(S2) to SITUATION-COMPLETIONS

end

S-COMPLETIONS(S)
1. find alternative situations with consistent status assignments

R-COMPLETIONS(S)
1. find alternative situations with consistent influence resolutions

Figure 4.4. The algorithm for envisioning

CHAPTER 4. THE IMPLEMENTATION: QRM 37

4.4 Basic Experiments

In this section, some qualitative reasoning tasks performed in the fluids domain
(cf. Appendix A) will be presented with the input scenarios (cf. Appendix B)
of the physical situations. The example physical systems are similar to ones
that are also used to test GIZMO [15] and QPE [21]. They are naive models
but are informative about the reasoning process in more complex systems.

A scenario for a physical situation captures the definitions of static indi­
viduals, facts about the physical system, and facts about the initial situation.
The scenarios for situations are input using the following scheme:

(=> (L (scen ario ? s))
(and (in d iv id u a ls ?s)

(fa c ts ?s)
(always ?s)
(in i t ia l - s i t u a t io n - fa c t s ? s)))

The assumptions are denoted by dt and they remain true until information
to the contrary is given. Other facts inserted as the triggering effect of these
assumptions will also be labelled by dt. Hence, the assumptions are propa­
gated through the rules during the inference process. The physical situation is
described by the propositions and their truth values in the MVL database.

Liquid Flow (Two Containers) In this experiment, there are two contain­
ers F and G, a fluid path P between them, and some water (cf. Figure 2.1). F
and G have the same shape characteristics. P is not effected by the external
world and allows the flow of liquid between F and G.

The amount of water in F is initially given to be more than the amount
of water in G, and no steam exists in the situation. Then, we expect that the
amount of water in F will decrease while the amount of water in G will increase.

In Figure 4.5 the envisionment is shown graphically. Water in the containers
causes two individual views, namely CONTAINED-STUFFs for the water in F and
G, to be activated along with the LIQUID-FLOW process. There is a flow of water

CHAPTER 4. THE IMPLEMENTATION: QRM 38

VIS: (c-s WATER LIQUID F) (c-s WATER LIQUID G)

PS: LIQUID-FLOW ((c-s WATER LIQUID F)

(c-s WATER LIQUID G)

P)

LH: A[amount-of-in (F WATER LIQUID) = A[amount-of-in (G WATER LIQUID)]

VIS: (c-s WATER LIQUID F) (c-s WATER LIQUID G)

PS: None

Figure 4.5. Envisionment for the two-container system. (VIS stands for indi­
viduals imposed by the views, PS indicates process structures in the situation,
and LH denotes the limit hypothesis.)

from F to G initially. Envisioning predicts that after some time the amount of
water in F will be equal to the amount of water in G and the flow of water will
stop. Henceforth, no process will be active and the system will stay in this
stable state.

Heat Flow and B oiling In this experiment, there is a container with some
water, placed on a stove (Figure 4.6). The container is assumed to be closed and
does not allow the flow of steam (assuming no explosion). STOVE is described
as a constant heat source so that its temperature does not change. BURNER is
the heat path between STOVE and the water in CAN. By default, BURNER does
not allow heat flow, i.e., STOVE does not provide heat initially. This is inferred
from the domain model and is indicated by d f . Then, the scenario implies in
its always specification that BURNER will allow heat flow, i.e., STOVE supplies
heat— the truth value for (heat-a ligned-path BURNER) will be updated as
true. The heating of CAN will be ignored for simplicity’s sake.

Initially, a HEAT-FLOW process is active in the situation indicating the flow

CHAPTER 4. THE IMPLEMENTATION: QRM 39

r
BURNER

— STOVE

Figure 4.6. Heat flow and boiling. (STOVE is assumed to be a temperature
source, CAN is closed, and no explosion is considered.)

of heat from STOVE to the water in CAN. Thus the temperature of the wa­
ter increases. Figure 4.7 shows that envisioning predicts the following three
alternative situations:

• The temperature of the water in CAN will be equal to the temperature
of STOVE (LHl) and the flow of heat will stop. No process will be active
afterwards.

• The temperature of the water in CAN will be equal to the boiling temper­
ature of the water (LH2). Hence, BOILING will be active and steam will
be generated causing a heat flow from STOVE to the steam in CAN. After
some time, the liquid water in CAN will vanish and only steam will exist.
When the temperature of the steam in CAN rises to the temperature of
STOVE, heat flow will stop and no other change will take place.

• The temperature of the water in CAN will be equal to the temperature
of STOVE and the temperature of the water in CAN will be equal to the
boiling temperature of the water (LH3). Since the temperatures of water
in CAN and STOVE are the same, HEAT-FLOW will no longer be active.

CHAPTER 4. THE IMPLEMENTATION: QRM 40

VIS: (c-s WATER LIQUID CAN

PS: HEAT-FLOW (STOVE

(c-s WATER LIQUID CAN)
BURNER)

LHI LH2 LH3

VIS: (c-s WATER LIQUID CAN) VIS: (c-s WATER LIQUID CAN)VIS: (c-s WATER LIQUID CAN)

PS: None (c-s WATER GAS CAN) PS: None

PS: HEAT-FLOW (STOVE

(c-s WATER LIQUID CAN)

BURNER)

BOILING ((c-s WATER LIQUID CAN)

HEAT-FLOW)

LH: A[amount-of-in (WATER LIQUID CAN)] = Zero

VIS: (c-s WATER GAS CAN)

PS: HEAT-FLOW (STOVE

(c-s WATER GAS CAN)

BURNER)

LH: A[temperature(c-s WATER GAS)] = A[temperature STOVE]

VIS: (c-s WATER GAS CAN)

PS: None

Figure 4.7. Envisionment for heat flow and boiling system. (LHI, LH2, and
LH3 correspond to limit hypotheses.)

CHAPTER 4. THE IMPLEMENTATION: QRM 41

Figure 4.8. The three-container system

Liquid Flow (Three Containers) This experiment has three containers F,
G, and H that have the same shape and some water in them. There are fluid
paths between containers (Figure 4.8). The paths P-FG and P-GH are between F
and G, and between G and H, respectively. The fluid paths are initially assumed
to allow flow of water (indicated by dt in the scenario). However, an external
effect, say a controller which measures the amount of water in the containers,
may close the fluid paths. (P-FG will be closed when the amount of water in F
is equal to the water in G and P-GH will be closed when the amount of water
in G is equal to the water in H.) Initially, there is water flow from G to F and
from G to H.

Envisioning predicts three alternative situations:

• The amount of water in F will be equal to the amount of water in G (cf.
Figure 4.9). Hence, the flow of water from G to F will stop. On the other
hand, the flow of water from G to H will decrease the amount of water in
G. The amount of water in F would not change since the controller closed
P-FG. After some time, water in G will be equal to the water in H and the
water flow will stop. The controller will close P-GH.

• The amount of water in H will be equal to the amount of water in G.
The flow of water from G to H will no longer take place and P-GH will be

CHAPTER 4. THE IMPLEMENTATION: QRM 42

closed. The flow of water from G to F will increase the amount of water
in F. When the amounts of water in F and G are the same, water flow will
stop. P-FG will be closed.

• Both the amount of water in F and the amount of water in H will be equal
to the amount of water in G (cf. Figure 4.10). Both of the fluid paths
will be closed. No process will be active and hence no change will occur.

First two predictions show impossible physical situations which we call spu­
rious situations. The third prediction illustrates what will normally occur in
this physical system.

Representation of external effects, e.g., the controller above, is needed when
reasoning about some physical systems. Preconditions in QPT can initially be
assumed to be true (dt), allowing them to be falsified by the external effects
without causing an inconsistency in the database. For example, when someone
closes the fluid path mentioned above, the default true fact which says the
fluid path is open will be updated as fa ls e . If we consider first-order logic
instead, the truth value for “the fluid path is open” would simply be true.
When the fluid path is closed the truth value computed would be bottom
which indicates an inconsistency about the fact— it is both true and fa lse .
Hence, effects outside of QPT can be incorporated into the reasoning process
using the nonmonotonic nature of MVL’s default logic.

CHAPTER 4. THE IMPLEMENTATION: QRM 43

VIS: (c-s WATER LIQUID F) (c-s WATER LIQUID G) (c-s WATER LIQUID H)

PS: LIQUID-FLOW ((c-s WATER LIQUID G) (c-s WATER LIQUID F) P-FG)

LIQUID-FLOW ((c-s WATER LIQUID G) (c-s WATER LIQUID H) P-GH)

LH: A[amount-of-in (F WATER LIQUID) = A[amount-of-in (G WATER LIQUID)]

VIS: (c-s WATER LIQUID F) (c-s WATER LIQUID G) (c-s WATER LIQUID H)

PS: LIQUID-FLOW ((c-s WATER LIQUID G) (c-s WATER LIQUID H) P-GH)

EE: (aligned-path P-FG) is false

LH: A[amount-of-in (G WATER LIQUID) = A[amount-of-in (H WATER LIQUID)]

VIS: (c-s WATER LIQUID F) (c-s WATER LIQUID G) (c-s WATER LIQUID H)

EE: (aligned-path P-GH) is false

VIS: (c-s WATER LIQUID F) (c-s WATER LIQUID G) (c-s WATER LIQUID H)

PS: None

Figure 4.9. A part of the envisionment for the first alternative situation. The
second alternative situation is similar. (EE denotes an external effect such as
the controller.)

CHAPTER 4. THE IMPLEMENTATION: QRM 44

VIS: (c-s WATER LIQUID F) (c-s WATER LIQUID G) (c-s WATER LIQUID H)

PS: LIQUID-FLOW ((c-s WATER LIQUID G) (c-s WATER LIQUID F) P-FG)

LIQUID-FLOW ((c-s WATER LIQUID G) (c-s WATER LIQUID H) P-GH)

LH: A[amount-of-in (F WATER LIQUID) = A[amount-of-in (G WATER LIQUID)]

A[amount-of-in (G WATER LIQUID) = A[amount-of-in (H WATER LIQUID)]

VIS: (c-s WATER LIQUID F) (c-s WATER LIQUID G) (c-s WATER LIQUID H)

PS: None

EE: (aligned-path P-FG) is false

(aligned-path P-GH) is false

Figure 4.10. A part of the envisionment for the third alternative situation

4.5 Limitations of QRM

QRM works within the fluids domain. What about other domains? Is it still
possible to reason about other physical systems? The answer to this question
relies on the inherent limitations of QPT, and qualitative reasoning in general.

QPT provides an extensive language for modeling physical systems, espe­
cially dynamical systems. Currently, there are various theories for modeling
physical systems [42]. However, these theories alone are not suitable for reason­
ing about all the systems in the physical world. (For example, the component-
based theory [8] is fine for reasoning about systems such as electronic circuits
but not for systems where individuals appear and vanish.) Since QRM uses
QPT formalism, any physical system that can be modeled with QPT should
be available to our program.

On the other hand, QPT has its own limitations; it may produce ambiguous
or spurious behavior descriptions. In general, ambiguity can be identified by
the prediction of several possible behaviors for a physical situation. Information
about magnitudes of quantities or about relative magnitudes of numbers would

CHAPTER 4. THE IMPLEMENTATION: QRM 45

be helpful in reducing the ambiguity. D’Ainbrosio [1 , 5] proposes linguistic
influence sensitivities along this line.

Spurious behaviors are physically impossible behaviors that are produced by
the reasoning system. These may be avoided using domain dependent knowl­
edge. Another trick would be to generate the next states of a situation con­
sidering not only the current state but the previous states. The liquid flow
example (Figure 4.9) generates spurious behavior descriptions [15, 14].

Qualitative reasoning programs, in general, consume a considerable amount
of computing power [15, 21]. This is also true for QRM. The assumptions
made about situations and consistency checks for those assumptions along with
the main reasoning tasks take substantial computer time and space. ATMS
(Assumption-based Truth Maintenance Systems) [9] offer some promise in re­
ducing the time and space complexity. Since QRM was implemented as an ex­
perimental tool, efficiency was not our major concern. However, this is clearly
essential when reasoning about more complex physical systems.

In QRM, the behavior of a physical system is described using state tran­
sitions. Time inheritance is realized through propositions that do not change
during the course of reasoning. Hence, no explicit representation for time is
used. When envisioning, QRM takes only the initial situation description.
Time varying inputs and external effects cannot be described. Several possible
future events for a situation cannot be ordered, either.

The temporal logic in MVL provides three modal operators that facilitate
reasoning about durations and delays as well as specific time points [26]:

delay (t p) pushes the truth value of p into the future by an amount of t
time.

propagate(p) propagates the truth value of p between time points where
the truth value is known at time points and not known between.

a t (t p) returns the truth value of p at the time point t.

With these operators, time dependent effects can be reflected into the model
of a physical system. The physical behavior can be described in time order by
assigning time points to truth values of propositions.

CHAPTER 4. THE IMPLEMENTATION: QRM 46

The controller in the three-container experiment can close the fluid path
for only an instant, say 1 second, using the following:

(delay 1 (not (aligned-path P-FG)))

(delay 1 (not (aligned-path P-GH)))

If the fluid paths are known to be open at time point 5 and closed at time
point 8 then we may assume that they are also open at time points 6 and
7. The propositions (propagate (aligned-path P-FG)) and (propagate
(aligned-path P-GH)) provide this during inference.

Having the time information about the state of a physical system proves
to be useful for prediction. For example, the envisionment tree would be con­
structed more precisely if we could know which change occurs first.

The heat flow and boiling example presents three different next situations
for the given initial situation. If we know that the temperature of water in CAN
will be equal to the temperature of STOVE before it is equal to the boiling tem­
perature then only the first prediction would be valid. For example, suppose
that the system is at time point 3. The following queries give the truth value
for the hypotheses:

(be '(at 3 (equal-to (A (temperature (c-s WATER LIQUID CAN)))
(A (temperature STOVE)))))

(be '(at 3 (equal-to
(A (temperature (e-s WATER LIQUID CAN)))
(A (boiling-temperature (e-s WATER LIQUID CAN))))))

Only the first hypothesis is found to be true at time point 3. Hence, the
heat flow will stop and boiling will not occur at all. The only possible next
situation will be the one specified by the first prediction. On the other hand,
since QRM cannot order possible changes it gives all of them as potential next
situations.

Chapter 5

CONCLUSION

An experimental program, QRM, for qualitative reasoning about dynamical
systems has been introduced. The relevant knowledge representation and in­
ference issues have been addressed.

In general, representation of physical systems plays an important role in
qualitative reasoning. A clear and rich representation proves to be useful when
building the domain models and reasoning about the domain [6, 39, 27]. For-
bus’s QPT [14] is considered to be a comprehensive modeling language in this
regard, especially for dynamical systems. Accordingly, the domain models in
QRM are constructed according to QPT.

QRM makes use of the MVL theorem proving system [24] for representation
of domain models and basic reasoning tasks. MVL provides forward- and back­
ward chaining rules (allowing Lisp functions) during the inference process, as
well as other multivalued inference facilities. The underlying bilattice structure
of the prover enables one to define new logics. For example, MVL’s temporal
logic constitutes a valuable tool for temporal reasoning [43].

An important style of qualitative reasoning, namely envisioning, has been
developed within QRM in order to predict what might happen in the future of
a given physical situation. The default logic of MVL guarantees the reasoning
to continue even in the case of incomplete information.

In the future, other forms of qualitative reasoning, i.e., measurement inter­
pretation, postdiction, fault diagnosis, and comparative analysis [42, 19, 41],

47

CHAPTERS. CONCLUSION 48

and extensions to QPT [1 , 37, 2 1 , 13], e.g., linguistic influence variables [1 , 5],
may be embedded into QRM.

Appendix A

A View on Fluids Domain Model

A .l Heat Flow

;; a temperature source

(=> (L (temperature-source ?i))
(and (physical-object ?i)

(has-quantity ?i heat)
(has-quantity ?i temperature)))

;; initially a burner does not allow heat flow
» 9
:value dt
(=> (L (heat-path ?path))

(burner ?path)
(not (heat-aligned-path ?path)))

:value true

49

APPENDIX A. A VIEW ON FLUIDS DOMAIN MODEL 50

; ; heat connection is not symmetric between ?src
;; and ?dst, if ?dst is a temperature source
i >
(=> (L (heat-connection ?path ?src ?dst))

(not (equal ?src ?dst))
(lookup (temperature-source ?dst) ?res)
(null ?res)
(heat-connection ?path ?dst ?src))

; ; HEAT-FLOW process
f f

(<= (process HEAT-FLOW (individuals ?src ?dst ?path))
(physical-object ?src)
(physical-object ?dst)
(not (equal ?src ?dst))
(has-quantity ?src heat)
(has-quantity ?dst heat)
(heat-path ?path)
(heat-connection ?path ?src ?dst))

(<= (hold-preconditions
(process HEAT-FLOW (individuals ?src ?dst ?path)))

(heat-aligned-path ?path))

(<= (hold-quzuitity-conditions
(process HEAT-FLOW (individuals ?src ?dst ?path)))

(assign
(process HEAT-FLOW (individuals ?src ?dst ?path)) ?najne)

(assign
(greater-than (A (temperature ?src))

(A (temperature ?dst))) ?cond)
(add-qu2intity-conditions ?name ?cond)
(hold-conditions ?cond ?result)
(not (null ?result)))

APPENDIX A. A VIEW ON ELUIDS DOMAIN MODEL 51

(=> (L (relations (process HEAT-FLOW (individuals ?src ?dst ?path))))
(assign (process HEAT-FLOW (individuals ?src ?dst ?path)) Tins)
(and (has-quantity Tins flow-rate)

(individual Tins)
(process-instance Tins)
(greater-than (A (flow-rate Tins)) Zero)
(Q= (flow-rate Tins)

(Q- (temperature Tsrc) (temperature Tdst)))))

A .2 Boiling

;; BOILING process
f >

(<= (process BOILING (individuals T1 Theat-flow))
(contained-liquid Tl)
(process-instance Theat-flow)
(cadr Theat-flow HEAT-FLOW)
(caddr Theat-flow Ti)
(caddr Ti Tl))

(hold-preconditions
(process BOILING (individuals Tl Theat-flow))) 0

(<= (hold-quantity-conditions
(process BOILING (individuals Tl Theat-flow)))

(assign
(process BOILING (individuals Tl Theat-flow)) Tname)

(or (and (assign
(greater-than (A (temperature Tl))

(A (boiling-temperature Tl))) Tcond)
(add-quantity-conditions Tname Tcond)
(hold-conditions Tcond Tresult))

(and (assign
(equal-to (A (temperature Tl))

APPENDIX A. A VIEW ON FLUIDS DOMAIN MODEL 52

(A (boiling-temperature ?1))) ?cond)
(add-quantity-conditions ?name ?cond)
(hold-conditions ?cond ?result)))

(not (null ?result))
(status ?heat-flow ACTIVE))

(=> (L (relations (process BOILING (individuals ?1 ?heat-flow))))
(assign

(process BOILING (individuals ?1 ?heat-flow)) ?ins)
(cadr ?1 ?s)
(cadddr ?1 ?c)
(assign (c-s ?s GAS ?c) ?c-s)
(and (introduces contained-stuff ?c-s)

(process-instaince Tins)
(has-quantity Tins generation-rate)
(has-quamtity Tins absorption)
(individual Tins)
(val (sign (D (heat Tc-s))) 0)
(greater-than (A (absorption Tins)) Zero)
(greater-than (A (generation-rate Tins)) Zero)
(qprop+ (generation-rate Tins) (flow-rate Theat-flow))
(q= (temperature Tliquid) (temperature Tc-s))))

(=> (L (influences (process BOILING (individuals T1 Theat-flow))))
(assign

(process BOILING (individuals T1 Theat-flow)) Tins)
(cadr T1 Ts)
(cadddr T1 Tc)
(assign (c-s Ts GAS Tc) Tc-s)
(and (I- (heat Tl) (A (flow-rate Theat-flow)))

(I- (heat Tc-s) (A (absorption Tins)))
(1+ (amount-of Tc-s) (A (generation-rate Tins)))
(I- (amount-of Tl) (A (generation-rate Tins)))))

Appendix B

Scenarios for Examples

B .l Liquid Flow (Two Containers)

(=> (L (individuals two-containers))
(and (individual F)

(individual G)
(individual P)))

(=> (L (facts two-containers))
(and (container F)

(container G)
(substance WATER)
(contains-substance F WATER LIQUID)
(contains-substance G WATER LIQUID)
(fluid-path P)
(fluid-connection P

(c-s WATER LIQUID F)
(c-s WATER LIQUID G))))

(=> (always two-containers)
(auid (equal-to (A (max-height P)) (A (bottom-height G)))

(equal-to (A (max-height P)) (A (bottom-height F)))
(aligned-path P)))

53

APPENDIX B. SCENARIOS FOR EXAMPLES 54

(=> (L (initial-situation-facts two-containers))
(etnd

;; there is some water in F and G
(greater-thein (A (amount-of-in (F WATER LIQUID))) Zero)
(greater-them (A (amount-of-in (G WATER LIQUID))) Zero)
; ; water in F is more than water in G
(greater-than (A (amount-of-in (F WATER LIQUID)))

(A (amount-of-in (G WATER LIQUID))))))

B.2 Heat Flow and Boiling

(=> (L (individuals boiling))
(and (individual CAN)

(individual BURNER)
(individual STOVE)))

(=> (L (facts boiling))
(and (closed-container CAN)

(substance WATER)
(burner BURNER)
(temperature-source STOVE)
(contains-substance CAN WATER LIQUID)
(contains-substance CAN WATER GAS)
(heat-path BURNER)
(heat-connection BURNER STOVE (c-s WATER LIQUID CAN))
(less-than (A (temperature (c-s WATER GAS CAN)))

(A (temperature STOVE)))))

(=> (always boiling)
(and (heat-connection BURNER STOVE (c-s WATER GAS CAN))

(heat-aligned-path BURNER)))

(=> (L (initial-situation-facts boiling))
(and

;; there is some water in CAN

APPENDIX B. SCENARIOS FOR EXAMPLES 55

(greater-theoi (A (amount-of-in (CAN WATER LIQUID))) Zero)
; ; no steeun exist
(equal-to (A (amount-of-in (CAN WATER GAS))) Zero)
(less-than (A (temperature (c-s WATER LIQUID CAN)))

(A (temperature STOVE)))
(less-than (A (temperature (c-s WATER LIQUID CAN)))

(A (boiling-temperature (c-s WATER LIQUID CAN))))))

B.3 Liquid Flow (Three Containers)

(=> (L (individuals three-containers))
(and (individual F)

(individual G)
(individual H)
(individual P-FG)
(individual P-GH)))

(=> (L (facts three-containers))
(aind (container F)

(container G)
(container H)
(substance WATER)
(contains-substance F WATER LIQUID)
(contains-substance G WATER LIQUID)
(contains-substaince H WATER LIQUID)
(fluid-path P-FG)
(fluid-path P-GH)
(fluid-connection P-FG

(c-s WATER LIQUID F)
(c-s WATER LIQUID G))

(fluid-connection P-GH
(c-s WATER LIQUID G)
(c-s WATER LIQUID H))))

APPENDIX B. SCENARIOS FOR EXAMPLES 56

;; fluid paths are assumed to be open
f t

rvalue dt
(=> (L (facts three-containers))

(auxd (aligned-path P-FG)
(aligned-path P-GH)))

rvalue true

(=> (always three-containers)
(and (equal-to (A (max-height P-FG)) (A (bottom-height F)))

(equal-to (A (max-height P-FG)) (A (bottom-height G)))
(equal-to (A (max-height P-GH)) (A (bottom-height G)))
(equal-to (A (max-height P-GH)) (A (bottom-height H)))
(not (less-than (A (amount-of-in (G WATER LIQUID)))

(A (amount-of-in (H WATER LIQUID)))))
(not (less-thaui (A (amount-of-in (G WATER LIQUID)))

(A (amount-of-in (F WATER LIQUID)))))))

(=> (L (initial-situation-facts three-containers))
(and

(greater-than (A (ajnount-of-in (F WATER LIQUID))) Zero)
(greater-than (A (eunount-of-in (G WATER LIQUID))) Zero)
(greater-than (A (amount-of-in (H WATER LIQUID))) Zero)
(equal-to (A (ajnount-of-in (F WATER GAS))) Zero)
(equal-to (A (ajnount-of-in (G WATER GAS))) Zero)
(equal-to (A (amount-of-in (H WATER GAS))) Zero)
(greater-than (A (amount-of-in (G WATER LIQUID)))

(A (amount-of-in (F WATER LIQUID))))
(greater-than (A (aunount-of-in (G WATER LIQUID)))

(A (amount-of-in (H WATER LIQUID))))))

APPENDIX B. SCENARIOS FOR EXAMPLES 57

;; the effects of the controller
f f

rvalue true
(=> (L (equal-to (A (amount-of-in (G WATER LIQUID)) Zero)

(A (amount-of-in (F WATER LIQUID)) Zero)))
(and (initial-truth-value (aligned-path P-FG))

(not (aligned-path P-FG))
(final-truth-value (aligned-path P-FG))))

(=> (L (equal-to (A (amount-of-in (F WATER LIQUID)))
(A (amount-of-in (G WATER LIQUID)))))

(and (initial-truth-value (aligned-path P-FG))
(not (aligned-path P-FG))
(final-truth-value (aligned-path P-FG))))

(=> (L (equal-to (A (amount-of-in (G WATER LIQUID)))
(A (amount-of-in (H WATER LIQUID)))))

(and (initial-truth-value (aligned-path P-GH))
(not (aligned-path P-GH))
(final-truth-value (aligned-path P-GH))))

(=> (L (equal-to (A (cunount-of-in (H WATER LIQUID)))
(A (amount-of-in (G WATER LIQUID)))))

(eind (initial-truth-value (aligned-path P-GH))
(not (aligned-path P-GH))
(final-truth-value (aligned-path P-GH))))

Appendix C

How to Access QRM

The code for QRM is available under the directory

" s enc ain/mvl / QRM

QRM consists of various .lisp files and .mvl files residing in this directory.
Currently the total Lisp code is about 4000 lines and the total MVL code is

about 1500 lines.

.lisp files:

QRM.lisp
elaboration.lisp
individuals.lisp
limit-analysis.lisp
resolve-influences.lisp

complete-situation.lisp

envision.lisp
inequalities.lisp

lisp-p-f.lisp
save.lisp

determine-activity.lisp

functions.lisp
init-globals.lisp
macros, lisp

.mvl files:

domain-bc.mvl
fluids-domain-tax.mvl
inequalities.mvl
scenario, mvl

domain-fc.mvl
fluids-domain.mvl
number-tax.mvl

elaboration.mvl
individuals.mvl
resolve-influences.mvl

58

APPENDIX C. HOW TO ACCESS C .¿M 59

The README file in this directory explains how to load QRM within MVL
and how to perform qualitative reasoning tasks on the examples of liquids
domain.

N.B. MVL (updated version) can be obtained via anonymous ftp from
t. Stanford, edu. The mvl directory in this machine contains all the source
files, examples, and the documentation.

Bibliography

[1] V. Akman. Review of Qualitative Process Theory Using Linguistic Vari­
ables. SIGART Bulletin, 2:25-27, 1991.

[2] V. Akman and M. U. Şencan. Qualitative Process Theory and Multivalued
Logics. In E. Gelenbe, U. Halıcı, and N. Yalabık, editors. Proceedings of
Seventh International Symposium on Computer and Information Sciences,
pages 221-227. Presses de l’Ecole des Hautes Etudes en Informatique,
Université René Descartes, Paris, 1992.

[3] V. Akman and P. J. W. ten Hagen. The Power of Physical Representa­
tions. AI Magazine, 10:49-65, 1989.

[4] D. G. Bobrow, editor. Qualitative Reasoning About Physical Systems.
MIT Press, Cambridge, MA, 1985.

[5] B. D’Ambrosio. Qualitative Process Theory Using Linguistic Variables.
Springer-Verlag, New York, 1989.

[6] E. Davis. Representations of Commonsense Knowledge. Morgan Kauf­
mann, San Mateo, CA, 1990.

[7] J. de Kleer. Qualitative and Quantitative Knowledge in Classical Mechan­
ics. Technical Report TR-352, MIT AI Lab., Cambridge, MA, 1975.

[8] J. de Kleer. A Qualitative Physics Based on Confluences. Artificial Intel­
ligence, 24:7-83, 1984.

[9] J. de Kleer. An Assumption-based Truth Maintenance System. In M. L.
Ginsberg, editor. Readings in Nonmonotonic Reasoning, pages 280-297.
Morgan Kaufmann, San Mateo, CA, 1987.

60

BIBLIOGRAPHY 61

[10] J. de Kleer. Qualitative Physics: A Personal View. In D. S. Weld and
J. de Kleer, editors, Readings in Qualitative Reasoning About Physical
Systems, pages 1-8. Morgan Kaufmann, San Mateo, CA, 1990.

[11] J. de Kleer. A View on Qualitative Physics. Artificial Intelligence, 59:105-
114, 1993.

[12] B. Falkenheiner and K. D. Forbus. Compositional Modeling: Finding the
Right Model for the Job. Artificial Intelligence, 51:95-143, 1991.

[13] K. D. Forbus. Qualitative Reasoning About Space and Motion. In D. Ge-
lentner and A. Stevens, editors. Mental Models, pages 53-73. Erlbaum,
Hillsdale, NJ, 1983.

[14] K. D. Forbus. Qualitative Process Theory. Artificial Intelligence, 24:85-
168, 1984.

[15] K. D. Forbus. Qualitative Process Theory. Ph.D. thesis. Electrical Engi­
neering and Computer Science Department, MIT, Cambridge, MA, 1984.

[16] K. D. Forbus. The Problem of Existence. Technical Report UILU-ENG-
85- 1747, Department of Computer Science, University of Illinois at Ur-
bana Champaign, Urbana, IL, 1985.

[17] K. D. Forbus. The Role of Qualitative Dynamics in Naive Physics. In J. R.
Hobbs and R. C. Moore, editors. Formal Theories of the Commonsense
World, pages 185-226. Ablex, Norwood, NJ, 1985.

[18] K. D. Forbus. The Logic of Occurrence. Technical Report UILU-ENG-
86- 1778, Department of Computer Science, University of Illinois at Ur­
bana Champaign, Urbana, IL, 1986.

[19] K. D. Forbus. Interpreting Observations of Physical Systems. IEEE
Transactions on Systems, Man, and Cybernetics, 13:350-359, 1987.

[20] K. D. Forbus. Intelligent Computer-Aided Engineering. AI Magazine,
9:23-36, 1988.

[21] K. D. Forbus. QPE: Using Assumption-bcised Truth Maintenance for
Qualitative Simulation. Artificial Intelligence in Engineering, 3:200-215,
1988.

BIBLIOGRAPHY 62

[22] K. D. Forbus. Qualitative Physics: Past, Present, and Future. In
H. Shrobe, editor. Exploring Artificial Intelligence, pages 239-296. Morgan
Kaufmann, San Mateo, CA, 1988.

[23] M. L. Ginsberg. Multivalued Logics: A Uniform Approach to Reasoning
in Artificial Intelligence. Computational Intelligence, 4:265-316, 1988.

[24] M. L. Ginsberg. The MVL Theorem Proving System. SIGART Bulletin,
2:57-60, 1991.

[25] M. L. Ginsberg. Personal communication, January 1993.

[26] M. L. Ginsberg. User’s Guide to the MVL System. Computer Science
Department, Stanford University, Stanford, CA, 1993.

[27] S. G. Grantham and L. H. Ungar. Qualitative Physics. In R. B. Banerji,
editor. Formal Techniques in Artificial Intelligence, A Source Book, pages
77-121. Elsevier, Amsterdam, 1990.

[28] P. Hayes. Naive Physics 1: Ontology for Liquids. In J. R. Hobbs and
R. C. Moore, editors. Formal Theories of the Commonsense World, pages
71-107. Ablex, Norwood, NJ, 1985.

[29] P. Hayes. The Second Naive Physics Manifesto. In J. R. Hobbs and R. C.
Moore, editors, Formal Theories of the Commonsense World, pages 1-36.
Ablex, Norwood, NJ, 1985.

[30] P. Hayes. The Naive Physics Manifesto. In M. A. Boden, editor. The Phi­
losophy of Artificial Intelligence, pages 171-205. Oxford University Press,
New York, NY, 1990.

[31] Y. Iwasaki and H. A. Simon. Causality in Device Behavior. Artificial
Intelligence, 29:3-32, 1986.

[32] B. J. Kuipers. Commonsense Reasoning About Causality: Deriving Be­
havior from Structure. Artificial Intelligence, 24:169-203, 1984.

[33] B. J. Kuipers. The Limits of Qualitative Simulation. In Proceedings of
Ninth International Joint Conference on Artificial Intelligence, pages 128-
136. Morgan Kaufmann, San Mateo, CA, 1985.

BIBLIOGRAPHY 63

[34] B. J. Kuipers. Qualitative Simulation. Artificial Intelligence, 29:289-338,
1986.

[35] B. J. Kuipers. Qualitative Simulation: Then and Now. Artificial Intelli­
gence, 59:133-140, 1993.

[36] B. J. Kuipers and C. Chiu. Taming Intractible Branching in Qualitative
Simulation. In D. S. Weld and J. de Kleer, editors. Readings in Qualitative
Reasoning About Physical Systems, pages 261-267. Morgan Kaufmann,
San Mateo, CA, 1990.

[37] E. Sacks. Qualitative Mathematical Reasoning. In Proceedings of Ninth
International Joint Conference on Artificial Intelligence, pages 137-139.
Morgan Kaufmann, San Mateo, CA, 1985.

[38] M. U. Şencan and V. Akman. Qualitative Reasoning Experiments with the
MVL Theorem Proving System. In K. Oflazer, V. Akman, H. A. Güvenir,
and U. Halıcı, editors. Proceedings of First Turkish Symposium on Ar­
tificial Intelligence and Artificial Neural Networks, pages 29-36. Bilkent
University, Ankara, 1992.

[39] S. C. Shapiro, editor. The Encyclopedia of Artificial Intelligence, Volume
2, pages 807-813. John Wiley, Chichester, UK, 1987.

[40] R. Simmons. “Commonsense” Arithmetic Reasoning. In D. S. Weld and
J. de Kleer, editors. Readings in Qualitative Reasoning About Physical
Systems, pages 337-343. Morgan Kaufmann, San Mateo, CA, 1990.

[41] D. S. Weld. Comparative Analysis. Artificial Intelligence, 36:333-374,
1988.

[42] D. S. Weld and J. de Kleer, editors. Readings in Qualitative Reasoning
About Physical Systems. Morgan Kaufmann, San Mateo, CA, 1990.

[43] B. C. Williams. Doing Time: Putting Qualitative Reasoning on Firmer
Ground. In Proceedings of Fifth National Conference on Artificial Intelli­
gence, pages 105-112. Morgan Kaufmann, San Mateo, CA, 1986.

[44] B. C. Williams and J. de Kleer. Qualitative Reasoning About Physical
Systems: A Return to Roots. Artificial Intelligence, 51:1-9, 1991.

