
ri »·,.*« SS Í.S-,. 5; Λ., !. il JiH» i|?' lî“ 'v ;'ÜS
'ί.*ν· • '^ i !2 й""^ и d ÉA»$ ¿*¿ 4Іі““ч* 4,»r« йіл» ·*<Ιϊ/ Ü . ' A ^ і*̂ Л·

;| . J J 5^4. '|Г;; ·;>*« ·ί_;4 | “f** -I· ̂ I ' tí ' м V̂'

.J ';ад>

USER INTERFACES FOR

COMPUTER-AIDED ARCHITECTURAL DESIGN

A THESIS

SUBM ITIED TO THE DEPARTMENT OF

INTERIOR ARCHITECTURE AND ENVIRONMENTAL DESIGN

AND THE INSTITUTE OF FINE ARTS

OF BtLKENT UNIVERSITY

IN PARTIAL FULFILLIVIENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF FINE ARTS

tarafindan bayidanmijtir.

Ry

AYGUNKULAKSIZ

Fehruaiy, 1993

/Ѵ//9

.k i e ç

ή 9 ζ

ь ш

I certify that I have read this thesis and that in my opinion it is fully adequate,
in scope and in quahty, as a thesis for the degree of Master of Fine Arts.

Prof. Dr. Bülent Özgüç (Principal Advisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,
in scope and in quahty, as a thesis for the degree of Master of Fine Arts.

Prof Dr. Mustafa Pultar

I certify that I have read this thesis and that in my opinion it is fuUy adequate,
in scope and in quahty, as a thesis for the degree of Master of Fine Arts.

Assist. Prof Dr. Hahme Demirkan

Approved by the Institute of Fine Arts.

Prof. Dr. Bülent Özgüç, Director of the Institute of Fine Arts

11

ABSTRACT

USER INTERFACES FOR

COMPUTERr AIDED ARCHITECTURAL DESIGN

Aygiin Kulaksız

M. F. A. in

Interior Architecture and Environmental Design

Supervisor: Prof. Dr. Bülent Özgüç

February, 1993

The rapidly developing technology of the twentieth century has transformed the
general use of computers into a specific, convenient, and necessary tool for
professionals. As in each profession, they are also used by architects. But,
architects have some problems with the properties of user-computer interface
that inherit from the times when computers were only used by computer
professionals. Considering the architects professional needs and expectations,
this thesis intends to avoid the unsatisfying results of this poor dialogue. After
mentioning the development of human-computer interaction, the specific
problems that a new user may face and the characteristics of a well designed
interface are described. Although there are much more primitive action units
performed by the user, the essential ones such as interaction tasks, the
complementaries like controlling tasks that may be preferred by architects are
examined. Different types of interaction techniques which respond to the various
kinds of requirements of these tasks are explained, by identifying their
advantages and disadvantages. In order to establish the architects’ intended
goals, some formal specifications, standards and prototypes that are required by
the increasing needs for communication, the access of information technology and
the rising involvement of architects into the computer-aided technology, are
identified. Gradually the evaluation of the interface is stated as a guidehne both
for the architect who wants to use a software and the computer programmer who
wants to write a software for the architects.

Keywottis: computer-aided architectural design, user interface, human-computer
interaction, human-machine interface.

Ill

ÖZET

BİLGİSAYAR DESTEKLİ MtMARİ TASARIMDA

KULLANICI ARABİRİMLERİ

Aygün Kulaksız

İç Mimarlık ve Çevre Tasarımı Bölümü

Yüksek Lisans

Tez Yöneticisi: Prof. Dr. Bülent Özgüç

Şubat, 1993

Günümüzün hızlı gelişen teknolojisi bilgisayarı genel amaçlı kullanımdan
çıkarıp meslekler için özgün, münasip ve gerekli araçlar haline çevirmiştir.
Bilgisayarlar birçok meslekte olduğu gibi mimarlar tarafından da kullanılmıştır.
Fakat mimarların kuUanıcı-bilgisayar arabirimleri ile ügüi bazı sorunları vardır.
Bunlar bilgisayarların, sadece bilgisayar uzm anlan tarafından kullanıldığı
zamandan miras kalmıştır. Bu tezin amacı, mimarlann mesleki ihtiyaçlannı ve
beklentilerini dikkate alarak bu zayıf diyaloğun başansız sonuçlarını
incelemektir. Insan-bilgisayar etkileşiminin gelişimi incelendikten sonra, yeni
kullanıcıların karşılaşabileceği özgün sorunlar ve iyi tanım lanm ış bir
etkileşimin özellikleri temellendirilmiştir. Kullanıcıların çok çeşitli temel
çalışma birimleri olduğu için, daha çok mimarların tercih ettiği ana etkileşim
birimleri ve bunların tamamlayıcı kontrol mekanizmaları incelenmiştir. Bu
etkileşim birimlerinin çeşitli gerekliliklerini yerine getirecek farklı etkileşim
teknikleri avantaj ve dezavantajları açıklanarak tanımlanmıştır. Mimarın
beklenen hedeflerini karşılamak amacıyla, artan iletişim ihtiyacı, bilgi erişim
teknolojisi ve bilgisayar destekb teknolojiye mimarlann katılımının artışının
getirdiği bazı resmi şartlar, standartlar ve prototipler incelenmiştir. Sonuç
olarak hem bir mimari bilgisayar yazıbmı kullanmak isteyen mimara, hem de
mimarlar için bilgisayar yazdımı hazırlayacak olan programcılara rehber olması
amacıyla, bilgisayar insan etkileşimi sonuçlan değerlendirilmiştir.

Anahtar Kelimeler bilgisayar destekb mimari tasanm, kullanıcı arabirimi,
insan-bUgisayar etkileşimi, insan-makine arabirimi.

IV

ACKNOWLEDGEMENTS

I have thoroughly enjoyed the professional manner in preparing this master’s
thesis. I am indebted to many for their ideas and assistance. My primary
obhgation is to my advisor Prof. Dr. Bülent Özgüç who helped make this study
possible with his precious knowledge, critique, time and support.

This thesis reached its final printed form with the tireless and encouraging
efforts of my sister Ind. Eng. Aycan Kulaksız during each step of the project. I give
my special thanks for her contributions.

This work has benefited significantly from comments and suggestions received
from various academics. 1 deeply appreciate the kindness and generosity of
Assist. Prof. Dr. Hahme Demirkan and Com. Eng. Mesut Gbktepe for hours of
discussions and for supplying me with valuable information.

Most of aU, special encouragement was given to me during the writing of this
thesis by my family, Melda, Aysun, and Ayşen Kulaksız. My indebtedness to an
understanding family is by hereby reaffirmed.

TABLE OF CONTENTS

Rage

ABSTRACT
ÖZET
ACKNOWLEDGEMENTS
TABLE OF CONTENTS
LIST OF TABLES
LIST OF FIGURES

111

iv
V

vi
VİÜ

ix

1. INTRODUCTION 1

2. HUMAN - COMPUTER INTERACTION 10
2.1. Development of Human Computer Interaction.. 11
2.2. Typical Problems F’aced By New Users..16
2.3. Characteristics of a well Designed Human - Computer Interface............ 18

2.3.1. Human Side of the Interface... 23
2.3.1.1. User Interface Requirements... 24
2.3.1.2. Accessibility... 25
2.3.1.3. Starting and Terminating Sessions...26
2.3.1.4. Training and User Aids.. 26
2.3.1.5. Vocabulary.. 28

2.3.2. System Side of the Interface... 29
2.3.2.1. Functionality and Visual Interface.. 30
2.3.2.2. System Dynamics and Response Time....................................31
2.3.2.3. Work-session Interrupts......................... 32
2.3.2.4. Consistency and Compatibility in Interaction...................... 33
2.3.2.5. Visibility and Simplicity..34
2.3.2.6. Data Organization.. 34
2.3.2.7. Dialogues.. 35

VI

3. GRAPHICAL INTERACTION AND CONTROLLING TASKS 37
3.1. Ijooking For Guidance.. 38
3.2. Scope of the Problem.. 39
3.3. Measures of Ergonomic Quality...40

3.3.1. Primary Criteria.. 40
3.3.2. Secondary Criteria...41

3.4. interaction Tasks..42
3.4.1. Select..43
3.4.2. Position...44
3.4.3. Orient...45
3.4.4. Path..45
3.4.5. Quantify...46
3.4.6. Text.. 47

3.5. Controlling Tasks.. 48
3.5.1. Stretch..48
3.5.2. Sketch...49
3.5.3. Manipulate...51
3.5.4. Shape... 53

4. INTERACTION TECHNIQUES 54
4.1. Command Language Interface.. 56
4.2. Natural Language Interface.. 59
4.3. Menu-Driven Interface...62
4.4. Iconic Interface... 67
4.5. Graphical Interface...71
4.6. Form-PfQing Interface.. 74
4.7. Window-Oriented Interface...76
4.8. Direct Manipulation... 80
4.9. Speech Communication..83
4.10. Multi-Media Communication...86
4.11. Virtual ReaUty... 89

5. TOOLS FOR ARCHITECTURAL USER INTERFACE DESIGN 93
5.1. Formal Specification of the Architectural User Interface Design.............. 94
5.2. Need for Prototypes of the Architectural User Interface.Design................. 97
5.3. Standardization of the Architectural User Interface Design.....................100

6. CONCLUSION; EVALUATION OF THE INTERFACE FOR
CAAD 103

REFERENCES 107

VII

U ST OF TABLES

Table Page
Table 2.1. Developments through seven generations...12
Table 2.2. Typical problems faced by new users...17
Table 2.3. Typical characteristics of an exploratory environment.............................18
Table 2.4. To be successful, design for interaction between user, task and the

system must be based upon these five fundamental features............. 23
Table 2.5. Dialogue design recommendations... 36
Table 4.1. The items used in graphic communication workstations.........................74
Table 4.2. Considerations in the development, selection and evaluation of

automatic speech recognition system...86

VIII

UST OF FIGURES

Figure Page
Figure 1.1. The man-machine system design process.. 4
Figure 1.2. The expected inversion of the pattern of the design effort over the

total brief-design-build-use process...5
Figure 2.1. Use of human resources in interface design...19
Figure 2.2. Knowledge required in an interaction.. 20
Figure 3.1. Selection techniques.. 43
Figure 3.2. Positioning techniques...44
Figure 3.3. Orienting techniques... 45
Figure 3.4. Quantifying techniques... 47
Figure 3.5. Text-entry techniques.. 47
Figure 3.6. Typical stretching techniques..49
Figure 3.7. Computer recognition of a freehand sketch prepared as an input......50
Figure 3.8. Translation of an object... 51
Figure 3.9. Rotation of an object.. 52
Figure 3.10. Scaling an object... 52
Figure 3.11. Reflection of an object... 52
Figure 4.1. A sample of command language interface... 57
Figure 4.2. A sample of natural language menu.. 61
Figure 4.3. Different types of menu selection applications..63
Figure 4.4. The pull-down menu on the Apple Macintosh MacWrite program.....64
Figure 4.5. The linear sequence of menus on the Xerox Star....................................65
Figure 4.6. The scope of iconic communications.. 67
Figure 4.7. Object-based objects currently found on the Apple Macintosh............69
Figure 4.8. An abstract/symbol icon for “utilities”.. 69
Figure 4.9. Drawing icons carrying a relational structure similar to the one

found in the Une/rectangle/rectangular prizm relationship................. 69
Figure 4.10. An example of a multidimensional icon which represents a file and

its five distinct views... 71
Figure 4.11. The way the user interacts with a multidimensional icon..................71

IX

Figure 4.12. A CAD software on the Apple Macintosh.. 72
Figure 4.13. A form ilU-in design for a department store..75
Figure 4.14. A window-oriented interface from a software of the

Apple Macintosh.. 77
Figure 4.15. An Apple Macintosh software that offers direct manipulation......... 81
Figure 4.16. Components of a Media View document...88

1. INTRODUCTION

The concept of the machine seems to have dominated architectural design
philosophy in the twentieth century. Every architect knows Le Corbusier’s slogan
of the 1920's: “a house is a machine for living in”, and many will also have heard
of “the architecture machine” of half a century later (Negroponte, 1970).

Although the “machine for living in” and the “architecture machine” may appear
to share a common philosophical heritage, they actually represent very different
concepts of the role of the machine in architectural design. For Le Corbusier the
machine was a source of aesthetic inspiration; he was concerned primarily with
the architectural product, which he wanted to look like, feel like, and be
constructed like a machine. However, the “architecture machine” relates
primarily to the architectural process] it is a machine for designing; a computer
which might have a human partner, but which might also be a designer in its
own right.

Negroponte has “adopted the position that computer-aided architecture had to
be treated as an issue of machine intelligence”. His ideal was a concept of an
architecture machine that “must understand our metaphors, must solicit
information on its own, must acquire experiences, must talk to a wide variety of
people, must improve over time, and must be inteUigent”. He wanted to build
machines “that can learn, can group, and can fumble” (Negroponte, 1970).

The rapid advance in computer technology transformed the computer into a
useful, convenient and necessary tool for a wide variety of users including
students, business people, managers, designers and researches. The style of the
existing user interface software inherits properties from the times when
computers were used only by computer professionals. The outcome of this is a
poor user-computer dialogue and dissatisfying results in meeting the end user’s
wider job needs and expectations.

The earliest forms of the man-machine communication were numerical
machines codes (in the late 1940s). In the 1950’s these codes were gradually
superseded by primitive computer programming languages, but it was not until

1

the 1960’s that high level languages enabled non specialist users to have access
to computers. Even the widespread computer applications of the 1970’s do not
permit much more man-machine communication than may be possible through a
standardized format of predetermined question-answer interrogation.

Today, there is a growing concern for the usability and user friendliness of
computer systems as stated by Moran in the following quotation:

A system does not, alas, terminate at its terminals-users attached. The
user is one of the critical components determining whether the system is a
whole -the human-computer system- works or not (Moran, 1981).

Both the designer and the machine should track each other’s design maneuvers,
evoking a rhetoric that cannot be anticipated. The event is circular in as much as
the designer-machine unity provokes a dialogue and the dialogue promotes a
stronger designer-machine unity. Negroponte stated this progressively intimate
association of the two dissimilar species as “symbiosis”. In order to have a
cooperative interaction between the designer and a machine, the two must be
congenial and must share a common language (Negroponte, 1970).

With direct, fluid, and natural man-machine discourse, two former barriers
between architects and computing machines would be removed. First, the
designers, using computer-aided design hardware, would not have to be
specialists. Instead, with simple negotiations, the job would be formulated and
executed in the designer’s own idiom. As a result, a vibrant stream of ideas could
be directly channeled from the designer to the machine and back (Negroponte,
1970).

Tbe second obstruction overcome by such close communion is the potential for re­
evaluating the procedures themselves. At first a designer may have only a
meager understanding of his specific problem and thus require machine
tolerance and compatibility in his search for the consistency among criteria and
form and method, between intent and purpose. Tbe progression from visceral to
intellectual can be articulated in subsequent provisional statements of detail
and moment-to-moment réévaluations of the methods themselves (Negroponte,
1970).

If a system is not tailored to the needs and limitations of users, then the users
will face difficulties in using the system and this will cause a decrease in
productivity, waste of time, and waste of effort.

An interactive computer program may be intended to enable its user to do a
variety of different things -find information, compose and format a document,
play a game or explore a virtual world. The user’s goals for a given application
may be recreational, utilitarian, or some combination of both, but it is only
through engagement at the level of the interface that those goals can be met. An
interface like a play, must represent a comprehensible world comprehensibly.
That representation must have qualities which enable a person to become
engaged, rationally and emotionally, in its unique context.

One of the major difficulties that hinder progress in this field of man-computer
symbiosis is that “cognitive work” is not itself an established, static concept.
The role that a computer can play in a problem-solving system will depend on
what is known about how to solve the particular problems that the system is
designed for. In this respect, the original perspective insight of Lady Lovelace in
reference to Babbage’s Analytical Engine in the mid-nineteenth century still
holds; a computer can do “whatever we know how to order it to perfoiTn”.

Licklider outlines that “the question is not ‘What is the answer?’ The question is
‘What is the question?’ ” One of the main aims of man-computer symbiosis is to
bring the computing machine effectively into the formulative parts of technical
problems. The other main aim is closely related. It is to bring computing
machines effectively into processes of thinking that must go in “real time”, time
that moves too fast to permit using computers in conventional ways (Licklider,
1960).

Drawing with a computer is a little hke driving: if the destination and route are
planed, the trip will be more pleasant and efficient. Planning might result in the
fastest possible trip, or it might leave opportunities for scenic side trips.
Likewise, successful computer-aided drawing requires certain amount of
preparation; both the objectives and the basic structure of a drawing can be
defined, much as the goal and intermediate points of a trip are mapped out. If
the schedule allows for side trips,this time can be used for additional drawing or
for exploration of alternative designs.

In the user’s mind, a computer should be a complement: computers have
considerable power for data manipulation, but no creative ability, but the
architect has the intuition and experience, which is difficult to build into
computer systems. The problem is to match the attributes of the architect with
those of the computer system.

Conventionally the man-machine systems designer adopts a procedure based on
the identification and specification of functions to be performed in the system,
and the subsequent allocation of these functions to man or machine in
accordance with relative human and machine abihties flfigure 1.1.).

Figure 1.1. The man-machine systems design process (Cross, 1977)

Humans learn particulars and remember generalities, study the specific and act
on the general, and in this case the general conflicts with the particular. The
problem is therefore twofold: first architects cannot handle large scale problems
for they are too complex, second architects ignore small scale problems for they
are too particular and individual. Architects do not appear to be well trained to
look at the whole urban scene; nor are they apparently skilled at observing the
needs of the particular, the family, the individual (Negroponte, 1970).

The operations that fill most of the time allegedly devoted to technical thinking
are operations that can be performed more effectively by machines than by men.
Severe problems are posed by the fact tha t these operations have to be
performed upon diverse variables and in unforeseen and continually changing
sequences. If those problems can be solved in such a way as to create a symbiotic
relation between a man and a fast information-retrieval and data-processing
machines, however it seems evident that the cooperative interaction would
greatly improve the thinking process.

A good drawing program insulates the architect from having to think too much
about the organization of the database, and translates instructions into easy to

understand terms that relate to drawing, rather than to database management.

Computers can supplement familiar skills in remarkable ways. But also
computer-aided architecture is not without problems; because it is bringing a
transformation, demanding not only new skills, but also new promises and
principles. They are changing the ways we draw and the ways we use
information. These tools have the potential to make the labor of architecture
more productive, but, more importantly, they promise to transform the way we
design. If used well, they are tools that can add to the creative spark that is so
important to architecture.

An overall change in structure of the total design-budd-use process which was
forecast in the Department of the Environment report was the inversion of the
present pattern of effort applied over the process (Figure 1.2.).

O OOOOOOooq

^̂ OOOOOOOO®̂

o O o o o future

present

briefing sketch
design

detail production construction use
de'ign information

Figure 1.2. The expected inversion of the pattern of design effort over the total brief-design-build-
use process (Cross, 1977)

Currently the process is organized with a large “hump” of effort in the middle,
around the generation of production information, working drawings, schedules,
etc. The general changes, such as the use of computer-aided design systems, are
already operating to depress this “hump” and to shift some of the design effort
towards either end of the total process (Cross, 1977).

It will be better to examine these changes at different phases of design process:

. Briefing: The briefing, sketch-design, and design-in-use stages, can take
advantage of new computer models for the design and allocation of spaces and/or
activities.

The computer applications do have the merit of involving the users of buildings
in some of design decision making from which they are conventionally excluded.
The connection between computer aids and user participation in design has been
developed by Cross and Maver;

Users’ involvements with their building have been in two main areas-
either early in the design process, during the briefing and preliminary
design stages, or very late on, actually modifying the building in use. Both
of these areas need some aids if they are to progress beyond their current
limitations. Principally, they need a common language for user and
designer to share during the early stages, and a similar (perhaps the
same) common language for user and designer to share during the
continuous reconstruction of flexible buildings. The common languages
could be already emerging in the predictive models of the computer
programs (1973).

One of the most exciting promises of computer-aided design is the prospect of
being able to sit down with a client and design a project while discussing it. In
terms of complete buildings, this may be more of a client’s fantasy than an
architect’s dream, since designers often prefer to work out ideas in private,
checking for feasibility before presenting solutions to a client.

. Sketching: Sketching and drafting manually are line-based drawing techniques.
Often it is more useful to think in terms of objects or patterns. For example, an
already drawn image as a reference beneath tracing paper might be used
instead of drawing it from scratch. In a computer-aided architectural design
such a drawing would be object-based instead of line-based. Object-based
drawing can allow the creation of drawing libraries, sets of parts that can be
assembled into drawings. It provides rapid feedback that gives the designer new
opportunities to experiment and test ideas. The ability to assemble and change
drawings encourages design exploration. Seeing the implications of a change in a
repeated element can remove some of the guess-work from the design process.

Drawing with computer assistance is also like multiplication, because of mass
reproduction of drawing elements .

Many computer-based CAD systems also provide the ability to project simple
two-dimensional drawings into a third dimension. Views can be selected in
orthographic modes or true perspective. Images are generally displayed as wire­
frame shapes, in which lines are used to outline planes and forms. Hidden Unes
behind the foremost planes can be automatically removed, providing more
realistic views. Some programs allow on-screen surface shading, and some allow
shadow studies by providing a user-selected light source. The appearance of
three dimensional modeling for architects promises an extraordinary impact on

the design professions. It allows the creation of drawings that are interrelated in
plan, section, and elevation, such that changes in one are immediately reflected
in all the others.

. Detailing; It is important to select which parts of a drawing will be developed
in detail. One of the greatest advantages of computer-aided architectural
drawing is the ability to change scale effortlessly. Zooming in and out of a
drawing can be enormously useful. Just as a designer often goes back and forth
between large and small scales, drawing produced with computer assistance can
be constructed in a way that might be described as cyclical. The first, simple
parts of a drawing can be assembled, then returned to and developed in detail.
The advantage of this cyclical process is in the creation of a drawing made up of
parts over which the draftsman has a tremendous amount of control. It also
permits a designer to work at several different levels of detail almost
simultaneously.

Architectural drawings have traditionally been small scale representations of
large objects. A computer perceives all drawings as if they were drawn full-
scale, using different units. Although the CAD display screen is smaller than a
typical drawing sheet, it can be used as a telescopic window into a drawing,
magnifying it or shrinking it without regard for scale. In fact, the idea of scale is
almost meaningless when working on an electronic drawing, since it can be
moved from a view of a detail in second. It can be worked at real-world scale: it
is the viewpoint that changes.

. Production Information Stage; Computerization of the production information
procedures, such as computer selection and combination of standard details,
computer-produced schedules and drawings, and computer-information
retrieval, should drastically reduce the amount of effort needed at that stage of
the process. After having enough information at hand, drawings, schedules,
specifications, and cost estimates can be produced almost simultaneously. The
extra effort and opportunities for error th a t inherent in doing these
independently can be eliminated.

. The Management Pyramid: The introduction of computer systems into
architects' offices would clearly bring about major changes in the method of
working and in the composition of the typical office. One principal effect of
computerization is a flattening of the pyramid of management hierarchy.

7

Whitfield suggests that,

the allocation of functions can be pictured also as the positioning of the
interface or boundary between the human operators and the hardware of
the system in terms of the relative amount of information processing to be
performed by each part (Whitfield, 1967).

This thesis examines the peculiarities which will create this interaction and
describe the steps that must be taken in the design and implementation of user
-machine interface for architects.

The purposes are to present the concept and to foster the development of
architect-computer symbiosis by analyzing some problems of interaction
between architects and computing machines, calling attention to applicable
principles of man-machine engineering, and pointing out a few questions to
which research answers are needed.

In research of interface design the creation of environments for enhanced
interaction and problem solving will be frequently alluded. Similarly, the
aesthetic of an interface will be distinguished from its functionality, and the
importance of the satisfaction of an architect will be emphasized as a criterion
for evaluation rather than the objective analysis of the technological power of a
particular system.

Interestingly, the language which will be used in the expressions comes quite
directly from an examination of our physical environments and of the topics
which we consider when we alter their form. They refer to the field of
architectural design of buildings, a well estabhshed field in which controversies
that have generated a range of different kinds of buildings in our environments
as well as a history of the particular ideas.

In this thesis the topics that seem common to architectural and interface design
will be outlined trying to use architectural examples and experiences as a way to
make a concrete number of complex issues in the interface domain. We hope that
consideration of this analogous domain might offer insights to individuals
working in the design and evaluation of the interface. The intent of this thesis is
to offer short-cuts to our early analyses as well as some time-saving cautions.

For this aim the second section will give a definition of user interface and locate
its component in a computer assisted system. The problem faced by novice users
and the required characteristics of a well-designed user interface will also be
explained in this section. It will be examined from two different points of view as

8

the human side of the interface and the system side of the interface. The
examination points of the human side of the interface will be: user interface
requirements, accessibiUty, starting and terminating sessions, training and user
aids, and the vocabulary. F’or the system side of the interface they will be:
functionality and visual interface, system dynamics and response time, work-
session interrupts, consistency and compatibility, visibility and simplicity, data
organization and dialogues.

In the third section it will be looked for guidance, and the scope of the problem is
to be identified. After the statement of designer’s interaction tasks, the
controlling ta.sks will be examined.

The fourth section wiU provide detailed information about common styles of
interaction techniques -which wiU solve these tasks -namely command language
interface, natural language interface, menu-driven interface, iconic interface,
graphical interface, form-filling interface, window-oriented interface, direct
manipulation, speech communication, multi-media communication and virtual
reahty.

The fifth section will present the effort to construct a specification method. For
this reason architectural formal specifications will be examined and the reason
of the need for architectural prototypes and standardization will be explained.

The sixth section will summarize the work done, evaluate the interface for
computer-aided architectural design and offer a guideline which consists of the
attention points both for the architect who wants to buy and use a software and
for the computer programmer who wants to write a software for the architect.

2. HUMAN-COMPUTER INTERACTION

A computer system consists of three major components: hardware, software, and
the user. The intersection of these components is probably the most important
part of a successful system -the human-computer interface.

A user interface can be thought of as an input language for the user, an output
language for the machine, and a protocol for interaction. Rissland views the
interface as more than a simple “membrane”. It is not only a screen which
separates the user and his computing environment. It is more than a simple
“gateway” which through user input and output pass. It includes physical aids
(like mouse). The interface is not only characterized by physical attributes.
Rather than that, it includes aspects like the user's intentions. Schematically,
this is the difference between indicating the scope of the interface as a box
around both the user and machine rather than as line or a zone between them
(Rissland, 1984).

According to Botterill, the term user interface is defined as “the way the
software communicates or interacts with the user to help in accomplishing
his/her tasks” (Botterill, 1982). This interface, then, includes the means by
which the system accepts requests from the user and the way information is
returned to the user. The level of ease of use depends on what user must learn
and to acquire the desired end results.

Gittins et. al. (1984) define the user interface as consisting of there elements:

. a “user model” of the system,

. a set of “operations” that may be performed, and

. the “media” used between the user and the operations.

The “user’s model” denotes the conceptual model of the information to be
manipulated and the process to be applied to the information. The degree to
which the system concurs with the model is the degree to which it is viewed as
user-friendly. The “operations” and the “media” are the computer component of
the interface. The media types form an envelope around the operations. It serves

10

t.() efiect a transfer from an internal representation of data to some external one
(CJittinset. al., 1984).

With this respect, after hrieily mentioning the development of human-computer
interaction, this section will describe typical problems faced by new users and
will define characteristics of a well designed interface.

2.1. Development of Human-Computer Interactian

Interactive computing came into widespread use in the 1960s and Human-
Computer Interaction (HCI) came to have high significance for applications. By
a lot of specialist researchers, it is regarded as basic concern in computer-based
system design and application. Now researchers treat HCI as a distinct
discipline with its own methodologies, foundations and techniques. Its focus of
attention and area of change are accepted as a larger part of the total
development of computer systems. Caines and Mildred show the development in
computing, artificial intelligence and human-computer interaction through seven
generations in table 2.1 (Gaines and Mildred, 1986).

With respect to this table we can express that there is the introduction of new
technologies at the transition between generations. In the zeroth generation
electromechanical relays are replaced with vacuum tubes which can be accepted
as a breakthrough in electronic device technology (EDT). In the first generation
Mauchly and Von Neum ann’s breakthroughs brought the concept of
programmability with the digital computers that are leading to the virtual
machine architecture fVMA) principle. They defined computing science as a
separate discipline from electronic engineering. The second generation
corresponded to breakthroughs in problem-oriented languages (POLs) that made
programming easier. The third generation corresponded to breakthroughs in
operating systems which gives time-sharing and human-computer interaction
through conversational computing. The fourth generation corresponded to
breakthroughs in expert systems which allow the development of knowledge-
based systems (KBSs). The fifth generation corresponded to breakthroughs in
machine learning which gives inductive inference systems (IISs) and promote
the current research to the learning systems. The sixth generation is still under-
thought. It will probably involve new technologies for high density information
storage and processing which are under irrvestigation now. It seems that the
“breakthrough” into the sixth generation will come from work on robotics
relating to autonomous activity systems (AASs). These systems will be goal

11

GENEKATIOJN HARDWARE/ SOFTWARE STATE OF AI STATE OF HCI
0

1940-47
Up and Down

Relays to vacuum tul)es
Mind as Mechanism

Logic of neural networks
Behavior, purpose & technology

D esigner as User
Judge by ease of use

1
1948-55

Gee Whiz
Tubes, delay lines, clnims
Numeiic control, navaids

Cybernetics
Turing test
Ashby’s homeostat
Gi’ey Walter's tortoise
Samuel's checkers player
Design for a Brain

M achine Dominates
Person adapts to machine
Use o f human beings

2
1956-63

Paper Pushers
Transistors <& core stores
C'ontrol programs
Fortran, Algol, Cobol
Comm an icaUons of ACM

Generality/Simplicity
The Oversell

Learning Machines
S^df organizing systems
Darthmouth AI conference
Mechanization of thoughs Process

Ergonomics
Console ergonomics
Job control languages
wSimulators, Graphics
Breakthrough to HCI

3
1964-71

Communicators
Interactive terminals
Relational model

Perform by Any Means
Semantic nets
Scene analysis
Resolution principle
Machine intelligence
Artificial intelligence

Man-Machine studies
Interactive Experience

Time-sharing services
Interactive terminals
Speech synthesis
Int, J. Man-Machine Studies

4
1972-79

Personal resources
Personal computers
Supercomputers
Very large file stores
Databanks, videotex

Encoded Expertise & Over Reaction
Smalltalk, frames
Scripts, systematic grammars
Cognitive science

HCI Design Rules
Personal computing
Dialogue rules
Videotex services
Altair and Apple PC's
Byte

5
1980-87

Action Aids
PC's with power & storage
of mainframes plus graphics
& speech processing
Networks, utilities

Commerci al i zation
LISP and Prolog machines
PJxpert system shells
Knowledge bases
Handbook of A l

User-Natural
System ic Principles

Xerox Star, IBM PC
Apple Macintosh
Video Disk
Human protocol

6
1988-93

Partners
Optical logic and storage
Organic processor elements
AI in routine use

Learning and Emotion
Parallel knowledge systems
Audio and visual sensors
Multi-Modeling

User-Similar
Automated Design

Integrated multi-modal systems
Emotion detection

Table 2.1. Developments through seven generations (Gaines and Mildred, 1986)

12

directed and their activities will be generated by internal planning which take
into account both their goals and their interaction with the environment.

The third column of table 2.1 shows the concept of HCI developments through
generations. In the first generation, the operator was part of the design team.
His behavior is adapted to that required by the machine. Early computers were
slow, expensive and unreliable; so that interactive use was rare. Interacting with
machines were a skilled operation. Operators accepted the problems of the
interface as minor within all the other difficulties of using computers.

Professional ergonomic considerations of computer systems commenced in the
second generation, it focused attention to the potential of the computer as a
facilitator of aspects of human creativity and problem solving. P’irst recorded
paper about this concept in the literature was by Licklider (1960), who imagined
a pair of human and machine capabilities that he labeled “man-computer
symbiosis”. His purpose was to present the concept and to foster the
development of man-computer symbiosis by analyzing some problems of
interaction between men and computing machines. Licklider goes on to justify
his belief that computers integrated effectively into the thought process would
improve or facilitate thinking and problem solving. In a later paper, Licklider
and Clark (1962) outline applications of man-computer communication to
military command and control mathematics, programming, war gaming and
management gaming, planning and design, education and scientific research.
They report some early experiments and prototype systems that demonstrate
the potential of using computers in these applications. During the same
generation a number of investigators began thinking that the computer could be
used to manipulate pictures as well as numbers and text; and they began
exploring the potential for enhanced graphical communication between human
and machine. Ivan Sutherland (1963) was successful with his work about
“sketchpad” system. In developing Sketchpad, he introduced many powerful new
ideas and concepts such as the concept of the internal “hierarchic” structure of a
computer-represented picture, the concept of a “master” picture and of its
“instances”, the concept of the constraint, the ability to display and manipulate
“iconic” representations of constraints, the ability to copy as well as instance
both pictures and constraints, some elegant techniques for picture construction
using a light pen, the separation of the co-ordinate system and some operations
such as “move” and “delete”. At the same time Coons (1963) outlined the
requirements for a computer-aided design (CAD) system, Ross and Rodriguez
(1963) presented the requirements for CAD in terms of languages and data
structures, Stotz (1963) described the hardware requirements for CAD, and
Johnson (1963) generalized sketchpad to allow input and manipulation of three-

13

dimensional line drawings.

The significance of HCI and its importance in time-sharing was recognized at
the beginning of the third generation by the first conference on HCI; the IBM
Scientific Computing Symposium on Man-Machine Communication, held at
Yorktown Heights in May 1965. The sessions covered were, Scientific Problem-
Solving, Man-Computer Interface, Languages and Communication, New Areas
of Application and Man-Computer Interaction in the Laboratory. Davis (1966),
P’ano and Corbato (1966), and Licklider (1968) had also proposed the
development of the time-sharing system as a means of allowing the computer to
work on several jobs simultaneously. Sutherland et. al. (1969) suggested the
tremendous potential of computer graphics which required advances in graphics
hardware and software. On the software front there was progress in two major
directions: Investigators at Lincoln Laboratory and other sites developed
operating systems that are capable of supporting interactive graphics under
time-sharing , another step towards making the technology more cost-effective.
Simultaneously a number of languages were developed with embedded graphics
support that facilitated the production of graphics applications. Psychologists
and human factors specialists also began at that time looking more broadly at
issues in human-computer interaction where they could play a useful role.
Shackel (1969) and Nickerson (1969) were two representative workers for such a
concept. Ergonomics was a special subject of the papers given at an
International Symposium on Man-Machine Systems held in Cambridge,
England, in 1969; the IEEE Transactions on Man-Machine Systems reprinted
the same papers to remind of the same subjects and the InternationalJournal
of Man-Machine Studies (IJMMS) started to be published in 1969. Technical
Group on Computer Systems within the Human P’actors Society, was
established in 1971.

While such publications provided a forum for HCI research on the variety of user
experience of interactive systems applied to many tasks, the papers from
commercial sources expanded the fifth generation HCI literature. By
encouraging programmers to think about how they could improve their own
interface to their computerized tools, and thereby increase their productivity and
enhance programmability and maintainability, led them to improve user
interface design. A book summarizing the first decade of this activity was that
by vSheneiderman (1980). The monthly publication of IJMMS and two new
journals on human factors in computing. Behavior and Information Technology
(1982) and Human-Computer-Interaction (1985) were the others. A large
number of sessions of human factors meetings were devoted also to similar
topics. Conference on Easier and More Productive Use of Computing was held at

14

the University of Michigan in 1981. Annual ACM Special Interest Group on
Computers and Human Interaction (SIGCHI) Conference on Human Factors in
Computing Systems, begun with the successful 1982 meeting in Gaithersburg,
Maryland. IFIP Conference entitled Interact was held initially in 1984 and
again in 1987. British Computer Society Conference entitled HCI began to be
held annually since 1985. Journal of Human-Computer Interaction, began to be
published in 1985.

The availability of low-cost computers with graphic displays increased their use
in psychological studies. The fall in computer costs and the decreasing
differences in hardware and software capabihties from different manufacturers
led to increasing commercial interest for good human factors. Ease-of-use and
user-friendliness began to be seen as saleable aspect of computer systems. The
introduction of Xerox Star in 1981 and the Apple Macintosh in 1984 are good
examples to this end. Xerox pioneered the development of congenial graphical
interfaces to workstations and to applications such as text editing, creation of
illustrations, document creation and electronic mail that could be supported
within the workstation. These user interfaces incorporated various kinds of
windows, menus, scroll bars, mouse control and selection mechanism, and views
of abstract structures, all presented to the user and integrated in a consistent
manner.

At the 1989 A/E/C Systems show, a major trade show of computer hardware and
software for the construction industry, Autodesk, which produces the widely used
CAD program AutoCAD, conducted an invitation -only demonstration of
cyberspace that it described as a “virtual reality system”. Special head-mounted
computer displays permitted the user to enter into a computer graphics image
and, by donning a special glove, manipulate objects within that computer­
generated environment. At the 1990 A/E/C Systems show, other vendors
introduced systems that produced similar effects. Whether or not virtual reality
gains rapid market acceptance, it is time for architects to take a fresh look at
how they are using computers. F’rom the dollars and cents perspective, the low
cost of personal computers has permitted architectural firms to implement
computer technology over the past five years. Realizing the benefits of this
investment in automation is now a business concern for most practices.

15

2.2. Typical Problems Faced by New Users

A user who is trying to learn a system puts forth effort in an unfamiliar
environment to over come certain types of learning difficulties. These difficulties
are inevitable characteristics of human-computer interaction. They are potential
problems in any system.

The novice user (as opposed to the skilled user) is the most sensitive indicator of
good or bad dialogue design decisions. Observations of hundreds of causal users
have shown that they are mainly concerned with knowing what kind of things
they are dealing with at any given instant during the dialogue, and what can
they do with them. Nievergelt and Weydert characterize the difficulties
experienced by users unfamiliar with a given interactive system with the
following questions:

Where am I?
What can I do here?
How did I get here?
Where can I go, and how do I get tliere? (Nievergelt and Weydert, 1987)

A well designed system allows the user at all times to obtain a conveniently
clear answer to the above questions. In order to be easily understood, the
information which the user may want to know about the state of the dialogue
must be structured.

According to Carroll (1987), the type of learning environment affects how the
user perceives the system and how easily she/he learns to use it. He specifies the
problems that are shared by a person learning to use a system, in table 2.2.

People have difficulty to start at all, because they are disoriented by the screen
display, by the manual, and by the bad fit of both to their own expectations. The
system is unresponsive to what they do (illusive ness); the screen is empty and/or
unchanging. When information does appear on the screen, it is for them like a
mystery message and often useless. It may stay on the screen too long and
confuse later work; it may flash momentarily, or be located in a remote part of
the display, and be missed. Delicacies of command interpretation and command
architecture make the causal connection between commands and functions
appear unpredictable (slippery) or paradoxical. Invisible side-effects of user
actions enhance this impression. Finally the system’s laissez-faire structure
allows the new user to become lost in mystery messages, commands, and side-
effects.

16

Disonentiition

i 11 u si V (m OSS

Emptiness

MysU^ry messages

wSlipperiness

Side effects

Paradox

Laissez-faire

Thi‘ us('i' does not know what U) do in the
sysU‘m (environment

What the user wants to do is deflected
tx)wards other, perhaps undesired goals

l"he screen is effectively vacant of hints as to
what to do or what went wrong

The system provides feedback that is useless
and/or misleading

Doing the ^same thing’' in different
situations has unexpectedly different consequences

Taking an action has consequences tha t are
unintended and invisible, but caust‘ timible later

The system tells the learner to do something
that is clearly inappropriate

Tlie system provides no support or guidance
for overall goals (e.g. “creating a program”)

Table 2.2. Typical pvobliuns faced by new users (Can'oll, 1987)

Monk suggests to people with little or no expertise in computing learn how t.o use
an interactive software package, acquire a good deal of new knowledge in order
to achieve their task objectives in an efficient and effective manner. In order to
invoke the operations, he proposes to learn to communicate with the system via
the interface dialogue. This requires an understanding not only of the dialogue
syntax but also how the domain of application is represented in the computer, in
terms of systems objects, their attributes and their relationships (Monk, 1984).

The first solution approach that comes to Carroll’s mind is using “common
sense”. A serious common-sense analysis of the new user’s may provide some
knowledge, but it alone does not solve the problem. Tlie more fundamental point
is that people want to (h things with computers and, particularly when they are
learners, they make errors. These errors complicate the pure forms of the
problem and are impossible to prevent (or to analyze) by mere common sense.
The key point is motivation. In an exploratory environment the learner
experience belongs to the learner. The environment affords, encourages, and even
demands conceptual and empirical experiment. This motivational orientation
overcomes the cognitive learning problems. Carroll listed the properties that
should exist in the exploratory environment in table 2.3.

17

iiesponsivenoss

Benchmarks

Acceptable uncerUunty

Safe conduct

learning by doing

Opportunity

Taking charge

Control

When the user does something, he gets some feedback (at least
informational)

The user can tell where he is within a given episode or
session. He has the means for assessing achievement and
development of skill

Being less than fully confident of his undersUinding and
expertise is OK

The user cannot do anything too wrong

The user doen so that he can learn to do: he designs a plan; he
does not merely follow the recipe

Most of the things the user learns to do work everywhere. He
can reason out how to do many other things

If progress stagnates, something new is suggested or happens
spontaneously

He is in control, or a t least has the illusion of being in control

Table 2.3. Typical characteristics of an exploratory environment (CaiToll, 1987)

These properties transform the problems of new users. Now the difference
between the challenge and an obstacle can be identified. It depends on the
character of the learning environment. If the learner’s motivation is task
oriented and if the learner feels in control of the situation, then obstacles can
become challenges. A person working in an exploratory environment expects
laissez-faire and illusiveness; regard paradox, side effects and slipperiness as
interesting potential keys to the internal logic of the environment; and is calm
by disorientation, emptiness, any mystery messages. Each new problem is a
direct invitation to learn. In such an environment, the learning belongs to the
learner.

In any case, if we assume that learners will always make some errors -no matter
how good our cognitive solutions to interface design are- then the issue becomes
motivating learners. This actively solves the problems they encounter.

2.3. Characteristics of a Well D e s ir e d Human-Computer Interface

With interactive computing systems there are important differences in the
nature of the tasks being automated. The control and display of physical
systems is being replaced by the manipulation and display of conceptual ones.

18

The existence of the two gulfs refer to the critical requirement for the design of
the interface: to bridge the gap between goals and system. According to Norman,
there are only two ways to do this: move the system closer to the user or move
the user closer to the system. Moving from the system to the user means
providing an interface that matches the user's needs. In that form it can be
readily interpreted and manipulated. This confronts the designer with a large
number of issues; because not only do users differ in their knowledge, skills and
needs, but for even a single user’s requirements for one stage of activity can
conflict with the requirements for another (Norman, 1986).

Winfield identifies the amount of user participation in the actual design of the
interface, from absolutely no involvement to total control. He illustrated this
continuum in figure 2.1.

no involvement
(the passive consumer)

limited involvement
Tokenism
(pseudo­
involvement)

-f
user representatives
may 1x3 consulted by
the designer

some limited
participation
in design

maximum involvement
(workers control)

--------------1---------- >
user designs
interface or·
system; the
expert is simply
there to advise

Figure 2.1. Use of human resources in interface design (Winfield, 1986)

According to him, a major force in human behavior is the desire to control. In
using computers the desire for control increases with experience. Novice
terminal users choose to follow the computer’s instructions and to accept the
computer as the controlling system in the interaction. With experience and
maturity, users reject the computer's dominance and prefer to use it as a tool.
The users perceive the computer as an aid in accomplishing their own job or
personal objectives and reject messages that suggest the computer is in charge.
So, there might be user involvement because of perceived user demands. The
user can here demand the right to examine and, if felt necessary, challenge the
system design plans. Effective systems generate positive feelings of success,
competence, and clarity in the user community. The users are not hindered by
the computer and can forecast what happens with each of their actions
(Winfield, 1986).

For this aim some classes of knowledge can be inferred from the nature of the
task and the system. The “primaiy knowledge”, indicated by double borders in
figure 2.2. is required for successful use of the system. An idealized user should

19

have these primary knowledge. As well as having information about the problem
in hand, the user would have to know about physical aspects of the interface,
about the interface dialogue, about the nature of the operations performed by
the system and finally about the aspects of the particular problem area
represented in the computer. That means the user must translate goals
conceived in psychological terms to actions suitable for the system. Then, when
the system responds, the user must interpret the output. He must translate the
physical display of the interface back into psychological terms. With any real
interaction, however, the user will call upon secondary sources of knowledge
(boxes with single borders in figure 2.2.) in order to infer primary knowledge
which is lacking or uncertain. During learning, these sources of secondary
knowledge will have a strong influence on performance (Hammond and Barnard,
1984).

Figure 2.2. Knowledge required in an interaction. The blocks with double boundaries, connected
by double hnes, indicate primary infonnation use by the ideal user; other blocks and
lines indicate secondary sources of interference and facilitation (Hammond and
Barnard, 1984).

Different representations allow different inferences to be drawn. Different types
of knowledge can be used to deal with different aspects of the interaction. The
major responsibility should rest with the system designer. He must assist to the
user in understanding the system. This means providing a good, coherent design
model and a consistent, relevant system image.

Norman defines three different concepts th a t must be considered: The
conceptual model held by the designer, which he calls Design Model, the
conceptual model formed by the user, which he calls the User’s Model, and the

20

image resulting from the physical structure that he calls the System Image
(Norman, 1986).

The “Design Model” is based on the user’s tasks, requirements, and capabilities.
The conceptualization must also consider the user’s background, experience, and
the powers and limitations of the user’s information processing mechanism,
most especially processing resources and short-term memory limits.

’Fhe “User’s Model” is not formed from the Design Model; it results from the way
the user interprets the System Image. Thus, in many ways, the primary task of
the designer is to construct an appropriate System Image. He must realize that
everything the user interacts with, help to form that image: the physical knobs,
dials, keyboards and displays, and the documentation, including instruction
manuals, help facilities, text input and output, and error messages. The
designer should want the User’s Model be compatible with the Design Model.
This can only happen by the interaction with the System Image. These
comments place some difficulties on the designer. If one hopes for the user to
understand a system, to use it properly, and to enjoy using it, then it is up to the
designer to make the System Image explicit, intelligible, consistent (Norman,
1986).

Based on these considerations the following three concepts are introduced by
Nievergelt and Weydert as the fundamental structuring tools for the design of
man-machine dialogues:

. Site: At any moment a user wants direct access to only a small part of the data
present in a system. A collection of data which interest the user for some
purpose can be attached to a site. Thus it becomes a unit that can be operated
as a whole in certain ways (such as copying); for other purposes data attached to
a site can be regarded as being hierarchically structured into subsites. A site
may be identified with the set of data attached to it and a description of its type
and structure.

. Mode: At any moment the user needs only a small part of all the commands
available in the system. In response to a request for a list of active commands,
only these and a few general commands used for mode changing should be
displayed. A larger menu only makes the user’s selection more difficult. Thus the
set of all commands must be structured into a space of modes. The commands
grouped together in a mode must correspond to a meaningful activity in the
user's mind. The nature relationship among these modes give the space of modes
its structure.

21

. Trail; The order in which a user visits various sites is a relationship among the
sites which is likely to be important for the current task. In order to make this
relationship, which is created during a dialogue, the notion of a trail as a
manipulable object is introduced. A trail is a feasible time sequence of pairs
(current mode, current site), which describes a user dialogue (Nievergelt and
Weydert, 1987).

In a recent review Dean notes that systems designers have been experienced to
design messages so tha t they are: concise, grammatical, consistent and
understandable. He suggests that these are the lowest common characteristics
of computer-to-human communication. Messages should also be highly relevant,
specific, timely and helpful. We will assume that the main forms of computer-to-
human communication are to be messages or instructions presented via a VDU
screen. Computer-to-human communication is likely increasingly to take the
form of synthesized or recorded human speech. Many of the guidelines advocated
for communication via a screen will apply to this area too (Dean, 1982).

Winfield reports these guidelines as follows:

. System should be tolerant.

. People should be allowed to correct errors as they make them.

. Messages should not be over-terse.

. Never compel people to reread.

. Let the audience and situation dictate the message.

. Requests for clarification or correction of input (Winfield, 1986).

Finally we can say that there are two sides of this interface: the system side and
the human side. The stages execution and perception go between psychological
and physical representations; and the input mechanism and output displays of
the system go between psychological and physical representations. The quality
of the interaction depends upon the “directness” of the relationship between
these two variables. We change the interface at the system side through proper
design. We change the interface at the human side through training and
experience. The next sections provide detailed information about the
characteristics of these two sides of the interface.

2 2

For the settlement of execution and perception stages, which have been
examined in the previous section, the concept of communication must he
sufficiently well motivated to understand what it should involve and why it is
important. Understanding is a key function of interactive systems. It is a
multidimensional quality rather than as something one has or one does not
have.

Riley relates understanding to three characteristics of the user’s knowledge;
internal coherence, validity and integration. Coherence concerns the degree to
which the user's components of knowledge are related in an integrated structure.
Validity concerns the extent to which the user's components of knowledge
accurately reflect the behavior of the system. Integration concerns the degree to
which the components of the knowledge are related to other components of user’s
knowledge. The degree of internal coherence, validity, and integration does not
depend on single aspect of knowledge, but upon several. This emphasizes that a
user should not be considered as either performing with or without
understanding. It is possible for him/her to have acquired some components of
knowledge and not others iRiley, 1986).

Shackel bases a successful design for interaction between user, task and system
upon five fundamental features:

2.3.1. Human Side cf the Interface

1. User-centered design

2. Partici{)ative design

3. Experimental design

4. Iterative design

5. User-supportive design

- focused from the start on users and tasks

- with users as members of the design team

- with formal u.ser tests of usability in pilot trials,
simulations and full prototype evaluations

- design, test and measure, and redesign as a regular cycle
until results satisfy the usability specification

- training, selection (when appropriate) manuals, quick
reference cards, aid to “local experts” and “help” systems

TaWe 2.4. To be successful, design for interaction between user, task and system must be based
upon these five fundamental features (Shackel, 1990)

The next sections provide detailed explanations about the characteristics which
will create these fundamental features of the human side of the interface.

23

We know that improving particular interfaces and computer systems into
different environments fundamentally alter these environments, in terms of
social interactions as well as personal development. We realize that a
consideration of the nature of these environments in the preparation of the
systems is imperative. In addition, it is most probably the case that the
cognitive processing of computer users will change this new system. Given this.
Hooper asks that;

2.3.1.1. User Interface Requirements

just who is the user we should be studying in designing the interfaces? Is it
the current novice or current sophisticate? Or is it our guesses about future
sophisticates? And do we design for a majority of people, or for an elite
whom we judge to be good models of what the majority will be in the
future? Moreover, how much of our effort do we put into adapting our
machines to people, and how much in adapting people to our machines (e.g.
in providing good tutorials)? And just how will we deal with issues of future
changes? (Hooper, 1986)

In addition, Cockton’s questions are as follows:

. Is the user experienced in the use of computers?

. Is the user experienced in the task domain of the application?

. How regularly does/will the user use the application?

. How long has the user been using the application? (Cockton, 1990)

According to him, if the answer to the first two questions is “no”, then a
supportive user interface is required. The user wants to understand the controls,
all the displayed information or the significance of all the activity. The common
solution to this problem is a sequence of orientation, making clear the purpose of
questions, the possible answer and the significance of questions and answers
(Cockton, 1990).

Users will not become experts immediately after their interaction became
automatic, unconscious, skilled behavior. They will have to pass a conscious
problem solving phase. Cockton’s solution at this point is a good signposting in
the interaction, that in some means of “suggesting” the next possible steps in an
interaction, rather than “enforcing” them. The interaction may still be
sequential, but modeless direct manipulation can be just as supportive for this
stage of user experience. Prompting signposts are replaced by timely feedback
which allows users to evaluate their problem solving and backtrack to try
another plan if necessary (Cockton, 1990).

24

If interaction offers always sufficient cues, comments or user-requested help
that reduce the user’s need to progress the fully accurate and optimal skilled
interaction, many users may never leave this problem solving phase. Often the
realization of this fact is masked behind designer's and system commissioners’
complaints. Most users are only using a part of a system’s capabilities. So, it
could be the designers commissioners who are responsible for developing a
system for a typical user.

If users are already skilled in the task domain, this means that they wdl be
coming to the system with present ways of achieving task goals. They will know
where they are, where they want to be and how they can go from here to there. No
technical specialists wiU be able to see an adequate description of a system’s
intended users. Another fact about expertise is that skilled performance varies
from one individual to another. One expert’s way of doing something may be no
more acceptable to another expert. According to Cockton, the need here is
“llexibility”. To the requirements for sequence, flexibility, signposting, safe and
profitable exploration, he adds the need for interleaved activities. He also
emphasizes that the level of interleaving is important (Cockton, 1990).

P’inally, the most important element is the user. The golden rule is: “use the
user”. Test the message out; if need run a controlled experiment. Do not assume
that the user is a passive static system to be controlled, modeled and directed
by the computer. Evaluate all actions of the system in terms of their effect.
Counsel the users, listen to their comments. Redesign the communication in the
light of these (Winfield, 1986).

2.3.1.2. Aocjessibility

The users would like to have immediate access to the computer on a continuing
basis. They would like to be able to work on a problem whenever, and for however
long as, they wish. This is a difficult objective for many systems, but to provide
maximal access should be an objective of the designer. According to Fallon there
are four elements which will create this aim (F’allon, 1990):

First is the “availability” of computer workstation. You cannot maintain aU
information in computer environment unless everyone has access to a
workstation whenever needed. This means a 1:1 ratio between people and
machines.

25

Second is “training and support”. Everyone must receive sufficient training to be
completely comfortable working within the automated environment.

Third is the issue of “ease of use”. The interface should reduce the level of
programming expertise required to program applications and manage the
system. In this way the system functions would be easier for them to use. The
interface should also increase ease of use for the end user who is not a data
processing professional. It must give the programmers what they need to
conveniently produce easy to use applications for the end users. This should
provide the end user a simple way to request applications, enter data, and
request the results (Botterill, 1982).

Fourth is the question of “reliability”. Working in a computer based
environment, hardware, software and network failures will prove equally
disastrous. Reliability should be a major selection criterion for all three
components of the computer infrastructure.

2.3.1.3. Starting and Terminating Sessions

The user requires some time to access the particular software system. During
that time he wants to interact and to initiahze the system for the needs of
his/her particular work session. This time should not involve consuming
preliminaries.

A lot of users may use the same tools on different occasions. According to
Nickerson the user identification should be sufficient for initializing the session.
The system should have the capability to bring the user to the point he has left
and automatically re-establish the software when the user returns to the
computer after the termination of a work session. At termination, the user
should not have disconnect every connection that was established in starting the
session (Nickerson, 1981).

2.3 .I.4 . Training and User Aids

There are many systems in existence that are easy to use and that provide the
users to have the necessary experience with, and understanding of, them.
Typically, however, such knowledge and experience are gained only at a
considerable cost in time and effort. The problem is to provide to potential users

26

the information they need to determine how much they must learn and provide
them when and if they require it.

New users beginning work with a system require assistance to get started.
According to Baecker and Buxton this can he done through “teaching” them the
relevant principles of operation, and/or through “training” them in the skills
required for successfully carrying out the desired tasks. New users may he
novice or expert in a particular technology, and the approaches required for
teaching them will need to be dramatically different. Users also bring different
kinds of expertise to bear upon a situation. Depending upon their motivation
and upon their readiness to certain kinds of tasks, users may also be receptive
or closed to absorbing instruction (Baecker and Buxton, 1987).

Nickerson identifies two types of training material that are desirable for any
person-computer system: one which will introduce one to the system and another
which will facilitate the advancement of a user from novice to expert status. It is
not reasonable to expect that a novice user .should be able to exercise the full
power of a system the first time he uses it; but he should be able to do
something he perceives as nontrivial and helpful. Introductory training material
should be de.signed, and bring the beginner to the point of interest quickly. The
further training that is necessary to increase the user’s capability with the
system should be provided both by conventional documentation and by training
facilities incorporated within the system itself. Ideally, the training facilities
incorporated within the system should include the ability to monitor a user’s
skill level and volunteer information in order to encourage and facilitate the
acquisition of new knowledge and expertise (Nickerson, 1981).

Brown explains his thought on this problem in the following quotation:

Perhaps more important, we need to consider designing instruction
explicitly to help users develop strategies for ongoing learning -strategies
for drawing on themselves and others as resources such as documentation
in ways that help them extend their understanding. In order to help users
become comfortable with guessing as a mode of extending their knowledge,
we might purposely teach incomplete submodels of a system and then
provide student with problems that force them to use those models as a
basis for deriving solution strategies (Brown, 1986).

Schneider (1985) proposes a new set of working guidelines to promote the
training of high performance skills:

Present information in a consistent manner.
Allow numerous trials of critical skills.

27

. Do not overload short-term memory; do minimize memory decay.

. Vary aspects of the task that vary in the operational setting.

. Maintain active participation of the trainee.

. Maintain high motivation of the trainee.

. Present information in a context that illustrates in a several points at once.

. Intermix training of various component skills.

. Train under slightly speed-up conditions.

. Train strategies that minimize the workload of the operator.

. Train skills for time-sharing under situations of high workload.

2.3.1.5. Vocabulary

There are some strategy differences between the vocabularies used in
constructing the interfaces. These differences are not only a function of the type
of command set. The fundamental point here is that different types of users
have different cognitive strategies. These distinctions influence their individual
dialogues with the interactive system.The different types of command names
had an effect over and above these individual differences in cognitive strategy.
The content of the vocabulary must modulate the individual user’s
predispositions for controlling the exchange of information between the system
and the user.

Furnas et. al. state that people use a surprisingly great variety of words to refer
to the same thing. The study of spontaneous word choice for objects in five
application-related domains showed that people choose the same term with a
probability of less than 0.20. The popular approach in which access is via one
designer’s favorite single word wiU result in 80-90 percent failure rates. The
data obtained in the experiments shows that there is no one good access term for
most objects. It follows that, there can exist no rules, guidelines, or procedures
for choosing a good name in the sense of “accessible to the unfamiliar user”
(Furnas et. al., 1987).

Regardless of the number of commands or objects in a system and whatever the
choice of their official names, the designer must make available several
alternate verbal access routes to each.

The inherent ambiguity of user’s own words, may cause the actions not
compatible with the users intentions. To avoid this, either the user can be made
to memorize precise system meanings, or the system and the user may interact

28

to identify the precise reference. When users invoke it with their own words, the
system would pick its best guesses, and present them in a menu. Each of the
guesses would be labeled by some standard access terminology and be
accompanied by a description of the standard referent. Actual execution would
always be via the standard name, thereby to avoid the disambiguation, the
learning of precise terms are required.

Kenzie summarizes the main features of the vocabulary tha t should be
considered in constructing the messages as follows:

-words: special categories are: -prompts (to signal that the user or computer
is ready to send or receive a message)

-actions
-objects
-conjunctions
-punctuations
-terminators (to signal the end of a message
or part of a message)

-abbreviations (shorthand words)
-characters Ithe sub-units of words) (Kenzie, 1988).

Wright defines that, computer-based writing tools can help to detect some
difficult terminology. For example, long words are more unfamiliar than short
ones. Nouns created from existing verbs (for example reduction from reduce) are
usually longer than the verb forms and make the comprehension more difficult
for readers. Words involving negation either explicitly (not, un-, dis-) or implicitly
(decrease, reduce) can cause readers more difficulties than their antonyms. As
structure of the dialogue, he suggests sequences of steps be mentioned in the
order in which these steps will be carried out by the user. “Do this than do that”
is a safer communication than the equivalent “Do that after doing this” (Wright,
1988).

2.3.2. System Side of the Interface

The failure to provide information and get the job done, not knowing what
options are available or what is happening, frustrate the user. In the ideal case,
not much more effort is required. The system must allow the user to obtain a
convenient way to reahze his/her task. The problem is to design the system by
means of compiling the criteria according to the user’s intentions. The next
sections give detailed information about these criteria.

29

A primary consideration in the design of an interface for a computer system is
that it works, that it fulfills the purposes for which it was intended. If a system
is developed to meet the needs that exist only in the mind of the developer, the
target users may fail to use it. The potential users must be involved in the
initial design, so that the system developer must know what the users will need
and deal with the functionality of the computer application.

According to Kammersgaard, dealing with the functionality of a computer
application means dealing with what can be done with a computer application,
with the set of possible products and with the purposes for which the computer
application is valuable for the user. An application is developed to fulfill some
purposes within a domain. Functionality relates to tasks performed within the
domain. It is primarily characterized in relation to these tasks
(Kammer.sgaard, 1990).

Nelson defines these tasks as follows:

The frequent tasks are easy to determine, but the occasional tasks, the
exceptional tasks for emergency conditions, and the repair tasks to cope
with errors in use of the system are more difficult to discover (Nelson,
1987).

Task analysis is central, because systems with inadequate functionality
frustrate the user and are often rejected. If the functionality is inadequate, it
does not matter how well the human interface is designed. Nelson emphasizes
that excessive functionality is also a danger. Probably the more common
mistake of designers is to make the implementation, maintenance, learning,
and usage more difficult by clutter and complexity (Nelson, 1987).

Hooper argues that the designers only have had access to computing resources,
and they have not considered the relationship between tbe functionality and
visual interface. For example windowing systems provide a deviation from other
systems, as do systems tha t focus on graphical as opposed to textual
interactions. Therefore we can say that different forms may represent the same
functionality. In this way we need to provide the relevant information for the
task at hand, and to provide the most articulate, and appropriate manner
possible. In doing it we exploit the human capacity for perceiving structure and
organization, in short for understanding. We must consider carefully how
graphical and textual elements relate on this visual channel, that means on the
two dimensional screen. An interface will not be effective unless the

2.3.2.1. Functionality and Visual Interface

30

functionality of a system is revealed directly; because the interface infers the
structure of the computer system and informs the user about the particular
system (Hooper, 1986).

Szekeley insists on the minimization of the dependencies between the
implementation of an application’s functionality and the visual interface. He
believes that the abihty to change an application’s visual interface without
impacting the implementation of the functionality is crucial; and explains the
benefits of separating the functionahty and visual interface as:

Multiple visual interfaces can be developed for a single application, each
one tailored to a different class of users, or to a different set of input and
output devices; the functionality of an application can he called from
another program directly, without simulating the input required by the
visual interface; the visual interface can be specified by means other than
programming, for example, by interactively drawing and demonstrating
how the interface should behave (Szekeley, 1987).

Other works of the researchers about visual interfaces can be found in following
references:

. Bowman provides a systematic introduction to the visual language. He
describes with an extensive design library of examples of showing what,
showing how, showing how much, and showing (Bowman, 1968).

. Dondis stresses that the process of composition is the most crucial step in
visual problem solving. She views the compositional technique as most
important contrast (Dondis, 1973).

. Marcus demonstrates the importance of careful selection and arrangement in
using typography, signs and symbols, charts and diagrams, color, and spatial
and temporal arrangement (Marcus, 1983).

2.3.2.2. System Dynamics and Response Time

One of the chief determinants of user satisfaction with interactive computer
systems is response time. A second determinant is the variability in response
time. Task characteristics and individual user characteristics interact with
response time. Many computer professionals believe in the simple principle that
faster is always better. Evidence from several IBM studies and other sources
suggests that programmers are more productive when system response time is

31

kept within the one second range or even faster. On the other hand, isolated
studies have shown that in some computer-assisted instruction, complex order
entry, and introductory session with novices, rapid performance leads to poorer
learning, less effective decisions, higher error rates, and occasionally decreased
satisfaction (Nelson, 1987).

Winfield also adds that response time is the “thinking time” of the terminal
user. For complex decision making there is some evidence that locking the
terminal for a short period, may improve user performance on the decision
making and increase user satisfaction. If users perceive the computer as a tool
they may be more willing to take their time and reflect on decisions. If users feel
they are involved in a dialogue in which they must respond promptly, anxiety
and poorer performance may result (Winfield, 1986).

As second determinant of user satisfaction with interactive computer systems
Winfield suggests to minimize the variability in response time. It is well known
to all users that increasing the variability of response time generates poorer
performance and lower user satisfaction. When there is a report on a programs
reaction to input, the response can be message of one of three types; that the
input is being processed and results are forthcoming, that there is a delay, and
that the computer is unable to deal with it. People have a need for “closure” in
tasks: i.e. the feeling that portions are completed. If there is a delay people need
to be told whether the information has been accepted or not. Moreover if the
delay continues beyond that expected they need to be told that processing is still
under way and the system is not malfunctioning. If the system cannot accept the
user's input the user needs to know it immediately (Winfield, 1986).

2.3.2.3. W ork-Session Interrupts

System crashes are important problems for both system designers and
researchers interested in the study of human-computer interaction. The
designer’s solution must be not only minimizing the frequency and duration of
crashes, but also making the effect of crashes as harmless as possible. According
to Nickerson, if it can be warned that a crash will occur, it will be very helpful.
Minimizing the negative impact of a crash, in terms of lost work, by backing up
files is also helpful. Providing the user with some indication of how long the
system will be non-operational, may relieve the annoyance (Nickerson, 1981).

32

The initial working of an interface can be formulated in terms of the notions of
consistency and compatibility. These terms are potentially confusable, so the
distinction requires clarification. Barnard et. al. make it as follows:

Consistency refers to relationships within the components of a user’s
representation of operators and operations were to agree in some way, then
this agreement termed as consistency. Compatibility refers to relationships
between e.g. natural language representations of the operators and
operations. However, unsystematic labeling of operations should be
described as inconsistent rather then incompatible (Barnard et. al., 1981).

Baecker and Buxton define consistency as the use of existing skills that they call
“skill transfer”. That is, in a well designed system, when user is confronted with
a new situation, all of the feedback mechanisms will say “this is like this other
task which you have done before”, and the user will be able to transfer what has
already been learned, to the new situation (Baecker and Buxton, 1987).

In general, consistency and compatibility are known as the basic and useful
ergonomic principles. A system which provides the user with a consistent
representation within a particular type of knowledge is easier to learn and less
prone to error than an inconsistent one. Since it allows the user to follow the
same procedures, invoke the same command and display code, interact with the
same format on the screen or window and interact input devices in the same way
in spreadsheets and drawings. The problem of lack of consistency which occurs
when large software systems are collections of components developed by
different designers constrains users to think in terms of systems and
subsystems.

Similarly, incompatibilities between system characteristics and types of
knowledge of the user cause loss of time and accuracy. So the format of displayed
information should be clearly linked to the format of the data entry. Another
issue with compatibility is other computer and noncomputer systems that the
user may be using. Small differences among systems can cause annoyance and
dangerous errors. Gross differences among systems require substantial
retraining and force the users. Incompatible storage formats, hardware and
software versions cause frustration and delay. So Nelson concludes that
“designers must decide whether the improvements they offer are enough to offset
the disruption to the users” (Nelson, 1987).

2.3.2.4. Consistency and Compatibility in Interaction

33

Boulay et. al. describe simplicity and visibility as two important characteristics
for novices. Accordinfj to them, novices start programming with very little idea of
the properties of the system which they are going to learn to use. To help them
learn these properties, the system should be simple. It should consist of a small
number of parts presented in a way that can be easily understood. This can be
done by analogy to other mechanism with which the novice is more familiar.
Visibility is concerned with methods for viewing selected parts and processes of
the system in action. Expressing the characterization of the system in either
text or pictures on the user’s terminal provides visibility (Boulay et. al., 1981).

Wright’s point of view is that the physical appearance of visual information can
affect both the legibility and the interpretation of the material displayed. Space
can give a visual grouping of functionality of related elements. Appropriate use
of space specifies the legibility of information. Design features are not good or
had in themselves; much depends on the way they are used. The position on the
screen may lead readers to suppose that the information is distinctive; for
example text under an illustration may be thought as a caption and perhaps
ignored for that reason (Wright, 1988).

2.3.2.5. Visibility and Simplicity

2.3.2.6. Data CKganizaticn

Mantei and Haskell illustrate that more than half of the problems encountered
by an individual in learning a system had to do with the data organization, and
particularly with its perceived incompleteness and its lack of “user orientation”
(Mantei and Haskell, 1983).

The transfer of data among computer applicationsshould be automated. This
takes the ehmination of redundancy one step further. In fact, the emerging trend
is toward dynamic data exchange, e.g. the automated extraction of quantities
and updating cost estimates whenever CAD drawings are changed.

Data should be reduced and validated. One very usual mistake is failing to
distinguish between data and information. Fallon provided a succinct and useful
distinction; “Information is data endowed with relevance and purpose” (Fallon,
1990).

34

Some problem arises because of the various expertise of users and different
needs of various tasks. As a result of that there must be a large class of useful
data types. Beginning users need to be able to read something that introduce
concepts and information in a logical sequence and that the answers of the
questions that they do not know to ask. P’or this aim there must be tutorial
guides that will help them. More experienced users need an information source
where they can find answers of specific questions. In that case there must be
principles of operation manuals, reference manuals and command summarizes
for them. The organization, form and content of these kinds of data should
improve the user interface of many systems. They should be clear, accurate,
complete, well organized and current. When users need assistance during the
work, what is needed could be provided on-hne.

2.3.2.7. Dialogues

P’or many dialogues, Hammond and Barnard characterize the exchange of
information in terms of its “style”, “structure” and “content”. The term style
refers to differences in the character and control of the information exchange.
The use of command languages, menu selection, question answering, query-by­
example, and spatial control, represent different styles of dialogue. The term
structure refers to the formal description of dialogue elements, their ordering
within and between dialogue exchanges and the concept of dialogue content
describes the semantics of the information exchange. They suggest to establish
guidelines concerning the style, structure and content of human-computer
dialogues for different applications and user population. They formulate the
questions that must he thought as follows:

e.g. is it more appropriate to use a menu-oriented system or a conunand-
oriented system for this application or that user population? (style); how
should we order the elements of dialogue? (structure); or, what kind of
command vocabulary is appropriate? (content) (Hammond and Barnard,
1984).

Maguire (1982) summarizes other recommendations as shown in table 2.5.

35

Area of ixwisicfcration llocommcndation

Handling different levels of ust^r

Input precision

Non-verbal signs

. Novice users will need explanatory dialogues
while more experienced users will require a
briefer form of interaction. Systems should
thus contain two levels of dialogue.

. Make use of input data expressed in vague
teims.

. l"he dialogue may be enriched by the use of
bells, bleeps, reverse video and flashing
characters.
. Clear layout and the use of lower case
lettering will improve the appearance of displayed
data.

''fable 2.5. Dialogue design recommendations (Maguire, 1982)

36

3. GRAPHICAL INTERACTION AND CONTROLLING TASKS

The aim of interaction systems is to provide a responsive and favorable user-
computer communication. These interaction sequences can be decomposed into a
series of basic interaction tasks. Therefore, the most import,ant elements in the
design of user-computer interfaces are the identification of interaction tasks, the
statement of controlling tasks, and the selection of interaction techniques and
devices which will perform these tasks. The purpose of this section is to offer a
systematic structure which will aid the designer in the identification of the
interaction and controlling tasks.

“Interaction task” is defined by Foley et. al. as “an entry of each symbol by the
user, performed by means of an interaction technique” (1990). Each task has
certain requirements associated by the context of the application and the
characteristics of the user. In addition, the same task can be implemented by
many different techniques. The function of the system’s designer must be the
selection of the interaction techniques th a t best match both the user’s
characteristics and the specific requirements of the tasks, and the selection of
appropriate devices for these tasks. In some cases the devices are
predetermined by the hardware procurers, not by the user interface
designers.Those cases limit the set of interaction techniques that can be
considered by the designer. On the contrary, when device selection is part of the
design process, the designer can make a link between the techniques and the
hardware prerequisites.

In making the best decomposition of interaction sequences with some basic
interaction tasks, the system designer must take into account some types of
human processes. Foley et. al. (1990) state these processes as perception,
cognition and motor activity.

Most interaction techniques start with visual perception. The way of displaying
the information can quickly locate the items that user needs. The methods such
as color coding, spatial coding, blinking, brightening are important elements for
the specific parts of the display. Issue of display brightness, flicker, line
thickness and character font and sizes are also relevant.

37

The study of cognitive process shows some advantages to structure hierarchical
menus to present the number of choices to use, the types of words to name and
abbreviate commands. If the information concerns some categories or concepts
that the user already understands, he can learn rapidly; if not he learns slowly.
Using symbols or names already known, grouping the choices in several logically
related subsets will bring a legible communication.

The motor process plays an important role in the reception and decision of how
to respond to the stimuli and in the responses to physical actions.This may
involve the movement to a particular point on the screen with picking as a
stylus, mowing it to the tablet. In general, the design goal must be to minimize
the time taken by each of these processes. In addition, identification of these
processes is an important concept.

For the performance of a complete action, some series of tasks must be carried
out as a single unit. Sequential actions should be grouped into action concepts.
For example a user should be able to select an object, position it at the desired
location and attach appropriate labels to it.

For this reason this section will provide some conductors for the actions. Firstly
the guidances will be proposed, secondly the scope of the problem will be
identified, thirdly the measures of ergonomic qualities will be examined. After
these, the interaction and controlling tasks will be examined.

3.1. Looking For Guidance

The various kinds of interaction techniques which have different purposes have
implemented with some device such as a tablet, joystick, keyboard, light pen,
trackball, etc. The properties of these techniques, their advantages and
disadvantages according to some specific tasks will be examined in the fourth
section. Before that, we must look at some guidelines. Foley et. al. offer three
basic sources of information:

1. Experience-based guidelines.
2. Experiments with interaction techniques.
3. The human factors literature, especially that dealing with equipments

design (Foley et. al. , 1990).

There are some papers explaining various interaction devices and tecliniques
that represent a source of guidance. Some special interest group for Human
Computer Interaction (HCl) such as Special Interest Group on Computers and

o o OO

Human Interaction (SIGCHI) and some conferences such as those organized by
Human Factors Society have also began to serve as focal points. In addition, the
growing human factors literature is a promising source of guidance. These
guidelines have been searched in detail in the second section under the title of
the development of human-computer interaction. The common objective off all
these works is to achieve functional effectiveness of both the physical equipment
and the facilities that people use.

Human factors research has always confronted some methodological
differences.Both the collection of data from people who actually use computers
and the conduct of human experimentation that can be applied to the design of
man-machine systems posed problems.

In addition, these different sources of guidance are not usually in the same
disciplinary jargon and they use different terminology. Our aim must be to
integrate a significant and useful body of the experiential and experimental
conclusions in a unified and logical structure inferred from all these sources.

3.2. Scope of the Problem

The designer of an interactive system must define everything about the user-
computer interface. He must specify various factors from the concepts that user
must understand, to the finer details of screen formats, interaction techniques
and device characteristics.

Firstly, he must understand the application area and user’s type. The currently
treated applications can aid to him/her. Hornbuckle (1967) comments on this by
saying, “observing what man does normally during his creative efforts can
provide a starting-point for the designer”. Hansen’s (1971) advice is “Know the
user -watch him, interact with him, learn to understand how he thinks and way
he does what he does”. This process is defined as “requirements definition” or
“task analysis” which has been examined in detail in the second section.

The aim of this process has to be defining the capabilities of the system that can
be best presented to the user. The analysis must identify the type of the user for
whom the system will be designed. This also will identify the language of
interaction between computer and user. Foley et. al. define the input language as
“starting with the user’s conceptual model, then the command structure, the
syntax and finally the assignment of physical devices and activities” (Foley et.
al., 1990).

39

The conceptual model of the user concerns the detailed semantics of the
components. Semantics is the meanings of the modifiers of the language. The
syntax is the way of the assemblage of the units. The lexical design is the
selection of hardware devices and of the interaction techniques by which the
devices will be used. The distinction between the syntactic and lexical designs is
that the syntactic design is device independent, while the lexical design is device
dependent (Foley et. al., 1990).

The aim of this section is not to make the physical design of the interaction
devices, such as key shape, light pen diameter, etc. They are in the scope of the
hum an factors’ researches. We will consider these devices as their
characteristics under user computer communication, not as their hardware
characteristics.

3.3. Measures of Elrgonomic Quality

In an effective interaction design a user must be able to do bis work with
minimum mindful attention, and maximum effectiveness. The ideal design
must minimize some psychological blocks such as boredom, panic, frustration,
confusion and discomfort.

The context of the tasks and the techniques by which these tasks will be
implemented are significant. The technique selected may provide simple use of
physical input devices, modify the device characteristics, make the process more
natural, more interactive, easier and more satisfying. This section examines the
criteria which will determine the quality of the interaction techniques.

3.3.1. Primary Criteria

The primary criteria which will identify the quality of an interaction design is
proposed by Foley et. al. with three important items: the time, the accuracy and
the pleasure. The time is the duration that user spend to realize a particular
project with the intended system. The accuracy is the notion with which the user
can accomplish the project. The pleasure is the item which maximizes the
creativity (Foley et. al., 1990).

The characteristics of the physical devices influence the relationship between a
task and its appropriate technique. In the same technique, but in different

40

degrees, the primary performance criteria depend on some several factors. Foley
et. al. summarizes them as follows;

. the content of the task, and the existence of some task sequencing
patterns.

. the experience and knowledge of the user.

. the physical characteristics of the device (1990).

3.3.2. Secondary Criteria

The primary criteria examined in the previous section must be influenced by a
number of secondary criteria. Foley et. al. give a hst of them as follows:

. learning time

. recall time

. short-term memory load

. long-term memory load

. error susceptibility

. fatigue susceptibility

. naturalness

. boundedness (1990)

. Learning and Recall Time: Users spend some time to learn the properties and
the abilities of the technique. The time that users spend to learn the patterns
that used to identify the elementary figures and sounds of a particular technique
is “the perceptual learning time”. The time that users spend to learn to use the
technique to achieve the desired effect is “the cognitive learning time”. The time
that passes in achieving the necessary physical skill to carry out the action is
“the motor learning time”. The time that measures the ease with which a user
regains competence after a period of disuse of the technique is “the recall time”.
These time can be measured as the skdl level of the users that allow them to
apply the technique in a practical sense. The allegation of these time will affect
the task time.

. Memory Load: User’s memory has two forms of load: short-term and long-term
memory load. If the user is obliged to remember the unprompted knowledge of
some task elements it can be said that the technique has a high short-term
memory load. If the technique conserves to have the sense of touch using
physical devices such as mouse, it augments the load on short-term memory;
because these devices are out of the field of user’s view and his/her hand has to
be able to hang on them with minimum effort.

41

Recalling the details to use the technique requires long-term memory. This
occurs in learning the key symbols of a technique, such as menu list; and in
remembering the shape and identity of objects to be manipulated during some
sequences of tasks. Decreasing number of steps and amount of key information,
applying regular patterns to call techniques, prompting the actions and the data
reduce long-term memory load.

The amount of memory load influence the learning time and skill of the user. If
short-term memory load exceeds the capacity of the user, poor performance and
frustration can occur. If long-term memory load augments, learning and recall
time will be long.

. F'atigue and Error: A lot of causes may result in the sense of fatigue. Foley et.
al. summarizes some of these causes as follows: insufficient variety in a regular
task, uncertainty and unrealistic memory loads, poor mechanical design and
uncomfortable position of physical devices, etc. (F’oley et. al., 1990)

The end results of these facts such as low attention and slow reflexes affect
user’s satisfaction, pleasurability and ta.sk time harmfully.

. Convenience: The criteria of naturalness and boundedness can be grouped
under the heading convenience. The transfer of activity from daily exercises may
be defined as naturalness. For perception, naturalness refers to the visual
forms. For cognition, it refers to the appropriate order of the facts and data. For
motor activity, it refers to the devices with surroundings and context.

The size of the space where user must work can be defined as boundedness -
perceptual, cognitively and mechanically. A physical limited space where users’
eyes try to reach to the relevant information and ears to adjust the sounds, is
perceptual boundedness. The intellectual space such as ideas, concepts, facts is
limited by cognitive boundedness. The distance that user’s limbs must move to
use the technique is defined by mechanical boundedness (Foley et. al., 1990).

3.4. Interaction Tasks

Although there are lots of primitive action units performed by the user, the six
fundamentals of them -namely select, position, orient, path, quantify, text- that
are used especially by architects wUl be examined.

42

3.4.1. Select

The alternatives with which a user can make a selection are the following:

1. Menu selection with a light pen.
2. Menu selection with a cursor controlled by a tablet or mouse.
3. Type-in of name, abbreviations or number on an alphanumeric keyboard.
4. Programmed function keyboard.
5. Voice input.

Right along with commands, the information presentation of the application
formed with displayed entities may also be a set of alternatives. These entities
may be the symbols that represent equipment of positions. Similar interaction
techniques to those for command selection can be used also for this case. (Figure
3.1.) They are as follows;

1. Pointing with a Light pen.
2. Using a cursor controlled by a tablet or mouse.
3. Type-in of the entity name.
4. Pointing on a touch-sensitive panel.
5. Voice input of the entity name.

From screen with ------ S l.l Light pen
direct pick device '" ^ S l . 2 Touch panel

Indirect with ------ S2.1 Tablet
cursor match — -S2.2 Mouse

Joystick (absolute)
Joystick (velocity)

\ N s 2.5 Trackball
\S 2 .6 Cursor control keys

/S3 With character
string name

/S4 Time scan

/S5 Button push

SELECTION I

/S6

-S7

Sketch recognition ·

Voice in p u t------

-S4.1 Programmed function keyboard
i.2 Alphanumeric keyboard

-S5.1 Programmed function keyboard
35.2 Soft keys

-S6.1 Tablet and stylus
~S6.2 Light pen

-S7.1 Voice recogniser

Figure3.1. Selection techniques (Foley et. a t, 1990)

43

The application requirements for a selection task are:

1. Size of the set from which the selection is made, if size is fixed.
2. Range of set size, if variable.

A fixed set with two choices (such as “yes” and “no”) or a large set with variable-
size of displayed entities may be different techniques for selection.

3.4.2. Position

To place an entity at its particular position, the user has to be carrying out a
positioning task. Commonly used interaction techniques for positioning are
(Figure 3.2.):

1. U.se of a cursor controlled by a tablet, mouse or joystick.
2 .1'ype-in of the numeric coordinates of the position.
3. Use of light pen and tracking cross.

/PI Direct with —
locator device

rP3

P̂4

"P5

Indirect with
directional command

With numerical
coordinates

Direct with
pick device

-P l .l Touch panel

P2.1 Tablet
P2.2 Mouse
P2.3 Joy sticki absolute)
P2.4 Joy sticki velocity -con trolled)
P2.5 ^lYackball
P2.6 Cursor control keys with

auto-repeat

-P3.1 Up-down-left-right arrow keys
‘(See sidection)

POSITION

Figure 3.2. Positioning techniques (Foley et. al., 1990)

The application requirements for a positioning task are

P5.1 Light pen tracking
P5.2 Search for light pen

1. Dimensionality: ID, 2D or 3D.
2. One loop or closed loop: If the user knows in advance the exact coordinates of

the position, the visual feedback is not a fundamental part of the process; but

44

if he adjusts the position to obtain the desired visual result, the visual
feedback is important.

3. Resolution: The accuracy over the maximum range of coordinate value specify
the resolution.

3.4.3. Orient

An entity may be oriented in 2D or 3D space. In 2D, rotation can be used for
orientation. In 3D, the control of the pitch, roll, and yaw of the view are
necessary. Useful interaction techniques for orientation are (Figure 3.3):

1. Control of orientation anglc(s) (one angle for 2D, up to three angles for 3D)
using dial(s) or joystick.

2. Type-in of angle)s) using alphanumeric keyboard.

01 Indii’ect with ■
locator device

02 With numerical
value

-01.1 Joystick (absolute)
*01.2 Joystick

(velocity-con trolled)

Orienting· techniques (Foley et. al., 1990)

The application requirements for a orientation task are:

1. Degrees of freedom: In 2D space, a single degree of rotational freedom; in 3D
space two or throe degrees of freedom are available. In 3D, one degree of
freedom makes a rotation about an arbitrary axis.

3.4.4. Path

Generating a path is a series of positions or orientations. Because it consists of
other primitive tasks (position or orient) it is a fundamental task. Another basic
dimension is “time” which changes the user’s perception. While the position and
orientation task attract the user’s attention on a single action, path generation
which is a series of positions or orientations and their order focuses the
attention on multiple actions.

45

A user can ffenerate a path of position by digitizing a sketch, indicating a route
on a circuit board or showing a route on a map. He can generate a path of
orientation by a similar process over the model.

The interaction techniques for generating a path are:

1. Positioning task techniques that involve use of a tablet, mouse, joystick
and/or dials.

2. Orientation task techniques that involve use of a tablet, mouse, joystick
and/or dials.

The application requirements for a path task are:

1. Position or orientation task along the path.
2. The interval between each element on the path defined hy the time or

distance.
2. Dimensionality: 2D or 3D.
4. Open loop or closed loop.
5. Resolution.
6. Type: po.sition, orientation or both.

3.4.5. Quantify

The quantifying task is a measure, i.e. the height of an entity, specified by a
value. Typical interaction techniques for a quantifying task are (Figure 3.4.):

1. Value type-in on a keyboard.
2. Rotary or slide potentiometer.

The apphcation requirements for a quantifying task are:

1. Resolution: the number of resolvable units expresses the resolution.
2. Open loop or closed loop.

46

Q l.l Rotiiry potentiometer
Q1.2 Linear potentiometer

Q3.1 Tablet
Q3.2 Mouse
Q3.3 Joystick (absolute)
Q3.4 Joystick (velocity-controlled)
Q3.5 lYackbaU

Q4.1 Light pen
Q4.2 Tablet with sytlus

Q5.1 IVogrammed function keyboard
Q5.2 Alphanumeric keyboard

QUANTIFY

Figure 3.4. Quantifying techniques (Foley e t al., 1990)

3.4.6. Text

The text input is another interaction task. The user inputs a text string as a
commentary for a drawing or as a part of a page of text. It is stored in the
computer as an information. It does not serve to a command, position or
orientation.

Typical interaction techniques for text input are (Figure 3.5.):

1. Type-in from an alphanumeric keyboard.
2. Character selection from a menu.

1 Keyboard -

/T2 Stroked character ·
i-ecognition

Voice recognition ■

Direct pick
from menu with
locator device

Indirect pick----
from menu with
locator device

-T L l Alphanumeric
'T L 2 Chord

-T2.1 Tablet with stylus

- T3.1 Voice recogniser

-T4.1 Light pen
-T4.2 Touch panel

----- (See positioning)

TEXT INPUT i

F"igure3.5. Text-entry techniques (Foley et. al., 1990)

47

Another requirements for text input task may be a specific character set.
However it does not affect the choice of technique or device.

3.5. Contwdling Tasks

Fundamentally, the concepts of each interaction task such as select, position,
orient, path, quantify, text is choosing. An entity among a set can be chosen hy
the selection task, a place in the space can be chosen by the positioning task, an
angle in the space hy the orientation task, a number by the quantifying task, a
sequence of characters among a special set of entities by the text task. But none
of these interaction tasks modifies the objects directly. It is the basic purpose of
another set of interaction tasks: continuous modification. These are “controlling
tasks”. Their purpose is to form and transform visible objects. They
characteristically control something, rather than specifying something. They are
named according to the type of modification that they effect on the object:

. stretch

. sketch

. manipulate

. shape.

3.5.1. Stretch

A user takes a target object, moves it to new position distorting its shape by
forcing one of its points to be agree with the position. P’oley et. al. define typical
stretching techniques as:

. stretched lines.

. stretched horizontal and vertical lines.

. stretched vertices (lines possessing a common end point).

. horizontal-vertical connections (called a zigzag).

. stretched polygons, prisms and pyramidal forms (Foley et. al., 1990).

The interaction techniques and the appUcation requirements of positioning task
are similar with those of the stretching task. In particular, stretching techniques
can be performed with continuous or discrete feedback, they can be direct or
indirect and be used in two or three dimensions. The choice of the form of the
object which will be stretched and the type of stretching differ also from
positioning techniques. We can give more detailed information about typical

48

stretching techniques -such as extending a line from a fixed point to a specified
point, stretching a line horizontally or vertically, drawing a number of rubber-
banded lines, stretching a rectangle, expanding a circle or drawing a three
dimensional figure such as rubber pyramid- are shown in figure 3.6.

_______I
A rul)bcr rectangle

B .·II Ki

r '

____ I
A stretched horizontal line

H ··
4- f i

-----I-M 11

\
\
•î l II

\c
1
II

/
/

Displaying .V and \
Cll|.JI
I ■■·. I I I-aj-M I -̂------------1u I

A /ig/.ag line (two alternatives)

n I

Figure 3.6. IVpical stretxihmg techniques (Foley et. al., 1990)

3.5.2. Sketch

Sketching is a form of communication suited to architectural research, because
architects do much of their work graphically. An architect sketches for two
purposes: first, to convey to other people information that is difficult to express
verbally, and second, to act as a sort of external memory, or in a sense to convey
information to himself Once the sketch has been committed to paper, he can
modify it to change the information it contains. Changes can be prompted either
by the decrease and flow of dialogue with an observer or by a change in the
architect’s own idea, brought about by the feedback loop running through brain,
hand, paper, and eye. In either case, the sketch is important because of the
intended meanings it contains. In a similar way, a computer system will be

49

useful as a sketching tool to be able to attach some meaning to the objects being
sketched and creating an object by freehand sketching, by manipulating a
locating device as it were a pen.

Durgun and Ozgiif specify the main purpose of architectural sketch recognition
as “understanding the intention of the architect from these rapid and
unconstrained sketches” (Figure 3.7.) (Durgun and Ozgiif, 1990). For this reason,
the computer has to be knowledgeable enough about the subject matter being
sketched to be able to ask some questions, and perhaps to offer some
information of its own. So, the computer should be able to enter into a dialogue
with the user. To provide it, the user has to specify a starting position, a path
and an end. In this case, the requirements of this task are dimensionality,
resolution, sampling criterion and smoothing method. Since the technique has a
continuous-feedback, all the requirements for positioning task can be used. In
addition it is also similar to the pathing task.

Freehand sketch prepared as an input. Computer recoypdtion of I' iyure

l̂ "igure3.7. Computer recognition of a freehand sketch prepared as an input (Durgun and Ozgii?,
1990)

In sketching, the time sampling -that means speed at which the user draws-, the
pressure sampling and the space sampling are important requirements which
will facilitate determining the user’s graphical intentions. The drawing speed of
the user reflects his degree of purposefulness and his interest. It is usually true
that when a person is drawing quickly, he is not so interested in detail as when
he is drawing slowly. In a quick sketch, the person is usually interested in the
general impression of the lines, rather than in the exact reproduction of those
lines. Conversely, a slowly drawn sketch is often more detailed. In this case, the
position of each line becomes important, and the sketcher wants his drawing to
be seen exactly as drawn.

50

Another research that consists of 85 architects, made by Durgun and Ozgiif, to
find the determinant and graphical intentions, concludes the parameters to be
considered as follows: the type of sequence in which the sketch is drawn, the
most often used and predominant elements of a sketch -such as lines-, line
conditions -such as straight lines, parallel lines, intersecting lines and curves-,
corner conditions, distinction of openings from the unintended and discontinued
lines (Durgun and Ozgii?, 1990).

Foley et. al. add another requirement of the task as “approximation”. Its
manner includes a specification of whether it is an exact matching or a smoothed
approximation. In a smoothed approximation, the samphng points are used as
control points (Foley et. al., 1990).

3.5.3. M anipulate

Changing the position and orientation of an object, without changing its form,
can be made by a manipulation technique. It is carried out by applying
appropriate geometric transformations to the coordinate points of a displayed
object. The basic transformations can be defined as translation, rotation, scaling
and reflection.

. A translation is a straight-line movement of an object from one position to
another. A user picks or locates an object on the screen, adds the translation
distances to the coordinates of the object or moves it to a new location; so a
reference point on the object change with the other specified point (Figure 3.8).

Figure 3.8. Translation of an object (Foley et. al., 1990)

. A rotation occurs with the transformation of displayed object’s points along a
circular path. This path can be specified by an axis and an angle which

51

determines the amount of rotation for each vertex of a polygon. The movement
is normally continuous (Figure 3.9.).

Possible axis
OÍ twist

Figure 3.9. Rotation of an object fFoley et. al., 1990)

. A scale defines the size of an object displayed on the screen. The larger or the
smaller appearance of the object on the screen can be manipulated by changing
the scale. It is carried out by multiplying the coordinate values of each
boundary vertex by scaling factors (Figure 3.10).

. A reflection is a transformation that produces a mirror image of the displayed
object. This image can be generated relatively to an axis of reflection (Figure
3.11).

! ' Original
Po.sitiun

Reflected
Position

Origiiud
Position

RcJkclcd
Position

A)riginal y=.\
/ \ Position

^ \ \ / Reflected
Position

Rei lection ol an object about Rel lcction ol an object about Rellection ol an object about
the .\ axis the y axis with respect to the line y=x

î igure 3.11. Reflection of an object (Heam, Baker, 1989)

52

3.5.4. Shape

An object can be reached at the desired form by a shaping technique. This
technique is dependent on how lines and surfaces are represented inside the
system. A particular shape can be represented by control points. Two shaping
techniques which use control points are the Bezier method and the spline
method. They can be used to represent the complex curved lines in two or three
dimensions. In the Bezier representations the control points are external to the
curve, while in spUne representations they he on the curve. These methods can
also be used to represent the surfaces by taking the Cartesian product of two
curves which will represent the cross-section of the surface. To select and drag
displayed control points to a new position using a locator is the most common
technique for forming or reshaping curved lines and surfaces.

53

4. INTERACTION TECHNIQUES

The notion of interactive representation which is a communication system offers
to the users some choices. The users have to think about the principles for the
selection of materials and tools included in th a t representation. Those
materials and tools will be shared both by the system and the user during the
interaction. Users have also to consider how well these systems support the
different stage of design. These are action specification and execution stages
which can be done by a command language, or by pointing at menu options or
icons, or communicating with speech or direct manipulation, or with another
interaction technique. Each of these techniques has advantages and
disadvantages that depend on several factors. Gaines distinguishes these
different techniques by three main style of dialogue (Gaines and Mildred,
1986b):

. Formal Dialogue: the activities and data structures are presented externally in
a direct representation of the computer. Examples to formal dialogue are job
control languages, simple prompt-response systems, menus, form filling
systems and command driven systems.

. N atural Language Dialogue: man uses the language to communicate
information and commands. The dialogue is simulated within the context of
the activities and data structures within the computer. Natural language is
attractive because users already use it to communicate with other people.

. Graphic Dialogue: man manipulates the objects to communicate information
and commands. Its apphcations are in the form of light pens, touch screens,
windows and icons.

54

Another categorization of human-computer interaction is given by Moran:

. Application: Text Editing System
Line Drawing Systems
Computer Aided Design Systems
Computer Assisted Instruction Systems
Quality Assurance Systems
Process Control Systems

. Dialogue Style: Function Key Systems
Menu Systems
Form-Filling Systems
Answer-the-Question Systems
Mixed-Initiative Systems

. Language Type: Command Language Systems
Programming Language Systems
Natural Language Systems (Moran, 1981)

Baecker organizes the presentation of various techniques in terms of nine major
general categories of interaction technique:

1. Command line dialogues
2. Programming language dialogues
3. Natural language interfaces
4. Menu systems
5. Form-filling dialogues
6. Iconic interfaces
7. Window systems
8. Direct manipulation
9. Graphical interaction (Baecker and Buxton, 1987)

We can say that there is no best overall interaction technique. All techniques
have their specific pros and cons when different user groups, tasks and
application areas are taken into consideration.

For example the peculiarities of command language interfaces -such as
supporting user initiative, creating user defined macros and flexibility- may be
an advantage for expert users; but also may be an errorless environment for
novice users. The properties of menu-driven interfaces -such as reducing
keystrokes, structuring decision making, permitting use of dialogue
management tools- may be profitable for some tasks; but may also slow
frequent users and consume screen space for some tasks where spacing is an
important factor. The benefit of simplifying data entry when working with form-
fill-in technique may be an handicap -because of consuming screen space- for
some task types. Presenting task concepts usually in a direct manipulation may
be hard for some users. Natural language interaction usually provides little
context for identifying the next command and frequently requires clarification

55

dialogue; and this may be slower than the alternatives. But still, if users are
knowledgeable about a task domain with a hmited scope and their lore inhibit
command language training, there exist opportunities for natural language
interfaces. For some purposes, graphs, pictures and moving images will be
significant and superior to words; in other situation words will be superior.

In conclusion the various kinds of requirements of different tasks can be
responded by different interaction techniques. In other words, different kinds of
interaction techniques have different properties which will be advantageous for
some users or some tasks and disadvantageous for another. Therefore the
dialogue should be designed to complement the task and the user. It should also
allow both the user and the apphcation to develop within the system structure
and ensure not only the functionality but also usabihty.

For these aims the subtitles of the fourth section give detailed information
about different types of interaction techniques and will be helpful for the
selection of one of them for a particular task.

4.1. Command Language Interface

A command language interface is a system where the user enters instructions
using well-specified and restricted grammar and vocabulary. This language may
consist of single commands or have complex syntax. It may have only a few
operations or a large number. Commands may have a hierarchical structure or
permit possibilities to form variations. A typical form may be a verb followed by
a noun and its quahfiers and arguments. Abbreviations may be permitted.
Feedback may be generated for error messages. It may offer the user brief
prompts or be close to menu selection systems. Finally natural language can be
considered as a complex form of it. Figure 4.1. shows an example of a command
language interface. This section will try to bring some clarifications to these
options.

Shneiderman states the basic goals of language design as:

. preasion

. compactness

. ease of writing and reading

. speed in learning

. simplicity to reduce errors

. ease of retention over time

56

And the higher level goals as:

. a close correspondence between reality and the notation

. convenience in carrying out manipulations relevant to the user's tasks

. compatibility with existing notations

. flexibility to accommodate novice and expert users

. expressiveness to encourage creativity and

. visual appeal (Shneiderman, 1987).

For these goals an effective command language must not only represent the
user's tasks and satisfy the human needs for communication; but must also
integrate the recording, manipulating and displaying mechanisms of the
language in the computer.

________________ C O M M A N D O P T I O N S _________________
(T y p e ' h e l p ' f o r f u r t h e r cJ e I d i I s)

append cancel
front insert
r u b o u t s e n d

e n d f e t c
Join prefix
s p l i t

T A R G E T S E N T E N C E
a 5 t i t c fi i n t i m e s a v e s n i n e

s t i t c t i i n a t i m e x p q y a v e s n i n e
5 t i t c h i n a t i m e a v e s n i n e
a s t i t c h i n t i m e a v e s n i f i e

T y p e y o u r n e x t c o m m a n d ;
J o I n _

Figure 4.1. A sample of command language interface (Hammond and Barnard, 1984)

Command languages are distinguished from other systems by their devices and
information. For example they are distinguished from menu selection systems
(which will be examined in detailed in section 4.3.) by the fact that the users of
command languages must recall notation and initiate the action. Menu selection
users receive instructions and choose one of them from a limited set of
alternatives; they respond to an action more than initiating it.

Shneiderman determines the first step for the designer as “functionahty” and
the common design error as “excess functionality” and “insufficient
functionality”. For these problems, he suggests the “transition diagrams”
showing how each command takes the user to another state, and “macro facility”
which can be programmed and include specification of arguments, conditionals,
iteration, integers, strings, screen manipulation, plus hbrary and editing tools
(Shneiderman, 1987).

57

After having adopted a concept and a model for operations, the designer must
choose a strategy for the command structure. Each command may be in a simple
form to carry out a single task. For this case the number of commands will be
equal to the number of tasks. With a small number of tasks this system will be
simple to learn and use; but with a large number of commands, there will be the
danger of confusion. In another situation a command may have one or more
arguments indicating the objects manipulated or in another, they may have
options indicating special cases. The arguments may also have options. But if
the number of options augments, the complexity and error rate will increase. For
a different situation all commands may be organized into a structure, like a
menu tree. The first level might be the command action, the second one the
object argument and the third one the destination argument.

A meaningful command structure will facilitate the human’s learning, problem
solving, and retention over time. If command languages are well-designed, users
can recognize the structure and put it in their semantic knowledge storage.
Command languages should firstly give the possibility to express the simple,
familiar or well-understood features and secondly consider the more varying
aspects. For this aim, using consistent argument positions is favored than the
consistent direct object positions (Shneiderman, 1987).

On the other hand, Carroll (1982) suggests the organization of the names into
paradigms incorporated with the concept of “congruency” and “hierarchicalness”.
The words chosen should reflect the functional relation between the name and
the concept. In addition, the positional consistency and the grammatical
consistency are important factors for recognition.

It is also shown that mnemonic names facilitate the comprehension better than
the arbitrary names; so it is evident that specific names are slightly better than
general names. They may be more descriptive, more distinctive; so more
memorable. But in some cases general terms may be more famihar; therefore
easier to accept. A syntax employing both familiar and descriptive with everyday
words wül provide a language that can be easily and effectively used. But it is
also known that the concept of “naturalness” differs enormously from one
individual to another (Baecker and Buxton, 1987).

Even though command names should be meaningful for human learning,
problem-solving and retention, they must also be in harmony with the
mechanism for expressing the commands to the computer. Shneiderman states
the traditional and widely used command entry mechanism as the keyboard.
This requires the brief and easy use of commands. In this case abbreviations

58

become attractive and necessary. Several strategies support tha t the
abbreviation should be made by a consistent strategy.

The formal representation of command language syntax is also an important
factor for the understanding of the user. Some interactive systems use special
meta-characters to represent grammatical representations, someone use a form
of prompt called command menus where users are shown a hst of words and
make a selection between them, (this type of interface will be examined in
detailed in section 4.3.); or a graphic method (which will he examined in detailed
in section 4.5.) or a hybrid system such as a menu-based system with command
specification offered as an override fadhty.

4.2. Natural Language Interface

Natural language interface is the operation of computers by people using
famihar natural language to give instructions. This interaction technique may
increase the expressiveness of the user input and allow users to gain access to
systems since they do not have to learn a command syntax nor select from
menus. Enghsh is a common standard and is complete. It is natural besides
being concise and no additional equipment is required. Transactions completed
by a computer that understands English are cheaper, more accurate and more
predictable than responses given by people. English does not grow old. Unlike a
graphical interface whose novelty wears out, expressing questions in Enghsh is
always a comfortable method of communicating. These are all advantages of an
automated natural language interface (Miller and Walker, 1990).

Besides all these advantages there are also problems with this interaction
technique such as implementation on the computer and desirabiUty for large
number of users for a wide variety of tasks. Natural language can be effective for
the user who is knowledgeable about some task domain and computer concepts
but who is an intermittent user who can not retain the syntactic details.
Disadvantages of the technique include wordiness of natural language and the
degree of coverage provided -a system that can understand only very limited part
of Enghsh wih not provide an effective natural interface. But people have not yet
achieved an effective natural language communication with computers. So there
are some factors be considered in deciding whether to use a natural-language
interface. Baecker and Buxton (1987) states seven of them:

1. Cost of the interface: The natural language interface is more expensive
compared with other more restricted interfaces with respect to its design and

59

implementation as well as the execution time.
2. Ease of learning: Since people already know a natural language they spend
the minimum time and effort to learn such an interface.
3. Conciseness: Communication between the user and the computer depends on
the number of keystrokes he must make.
4. Need for precision: Many English sentences stand for one more than one
meaning so for programs where precision is important natural language
interface may not be such adequate.
5. Need for pictures: With computer-aided design systems natural languages
may be a good choice but with aid of graphic-based communication tools.
6. Semantic complexity: The power of English grows as the problem-solving and
reasoning capabilities of target programs grow.
7. Promising more than can be delivered: If there is not a good match between a
program and its interface, the close connection between the range and
complexity of a program and the range and complexity of the interface to the
program may cause problems.

As Shneiderman states:

Computers have impressive speed, storage and accuracy and unique
input^output devices which are bypassed if we use natural language. Novel
methods of pointing to, manipulating or changing displayed objects may be
more appealing than lengthy and tedious natural language. Instead of
building machines which mimic people, we need to develop an
understanding of the distinct capabilities of computers and people (1987).

TTie technology of natural language processing: For a computer to interpret a
relatively unrestricted natural language communication, a great deal of
knowledge is required. Knowledge is needed of the structure of the sentence, the
meaning of words, the morphology of words, the model of the beliefs of the
sender, the rules of conversation, and an extensive shared body of general
information about the world. Natural language communication between humans
is very dependent upon shared knowledge, models of the world, models of the
individuals they are communicating with, and the purposes or goals of the
communication.

Many of the issues in natural language understanding center around the way
people use language. Given speech acts can serve many purposes, depending on
the goals, intentions and strategies of the speaker. Thus, methods for
determining the underlying motivation of a speech act is a major issue. Another
issue is understanding how humans process language.

60

Components a natural-language understanding system: The process of
translating statements from the language in which they are made into a
program-specific form that causes appropriate actions to be performed consists
of three parts:

. Words and the lexicon: The first thing to do to understand a statement is to
brake it into its components; words. Dividing a sentence into words is lexical
analysis.

. Grammar and the structure of the sentence: In finding the meaning of a
statement the first step is to assign to the statement a structure that will
probably correspond in some way to the structure of its meaning. Assigning
such a structure to an unstructured object is syntactic analysis.

. Semantics and the meaning of sentences: Assigning a meaning to a statement
for it to be understood is semantic processing (Baecker and Buxton, 1987).

Baecker and Buxton (1987) combine these components with three approaches:

Approach 1. Language through windows: If the number of statements the user
needs to make to the target program is not large the system may display the
available options to the user. The user chooses among these options and
constructs a complete statement. Figure 4.2. shows an example of a screen
presented to the user. A window-based, natural language systems runs
efficiently because options available to the user are accurately constrained.

COMMANDS: Find Find the Find all the

FEATURES: CONNECTORS: QUALIFIERS: COMPARISONS:
part number and supplied by between >=
part name or whoose colors are equal to <
quantity of whose price is > <=
supplier name the average with shipment number not equal to
supplier address the lowest whose name is
supplier number whose address is ATTRIBUTES:
price NOUNS: who supply <part number>
color parts <quantity>

suppliers <supplier>
shipments <price>

<color>
QUERY SO FAR:

Figure 4.2. A sample natural-language menu (Baecker and Buxton, 1987)

Approach 2. Semantic grammars: This is a straightforward extension of the
window system to allow a greater number of user options. First by lexical
analysis a statement is separated into words then words are analyzed for
syntax and semantics in a single step. Semantic grammars are useful only when

61

a small subset of a language is to be recognized.

Approach 3. Syntactic grammars: In this approach both the input language and
the program actions are examined and grammar rules that map as directly as
possible are written. The rules thus appear semantic in that they relate directly
to the target actions. But separating syntactic and semantic processing is
necessary to make it possible to construct a grammar for a language once and to
reuse it in many interfaces.

4.3. Menu-Driven Interface

A menu is a collection of selections displayed on the screen. The selections may
be displayed in the form of text (usually words or short phrases) or icons. The
user need only select an option to set the correct programs in motion. Menu
selection is especially effective when users have little training and are
unfamiliar with the terminology since they reduce the amount of information the
user needs to remember. Menus provide an effective way to present a limited set
of options to users. People use simple search strategies for ordinary menu sizes,
are sensitive to menu length, and search easier with sorted menus.

Effective menu selection systems emerge only after careful consideration and
testing of numerous design issues, such as semantic organization, menu system
structure, the number and sequence of menu items, titling, prompting format,
graphic layout and design, phrasing of menu items, display rates, response time,
shortcuts through the menus for knowledgeable frequent users, availability of
help, and the selection mechanism.

According to Shneiderman (1987), the primary goal for menu designers is to
create a sensible, comprehensible, memorable, and convenient semantic
organization relevant to user’s tasks. Users should have a clear idea of what will
happen when they make a choice. The user of a dialogue constructed with menus
is faced with two basic problems: finding the item in the menu which he wants
(this includes the problem of understanding different items in the menu) and
knowing where he is in the system and thinking ahead to the next menu or
menus. Menus have the advantage compared with yes-no questions in that the
user has more alternatives to choose from, which gives more user power and
fewer steps toward a desired user goal.

The simplest appUcations consists of a single menu; the second group includes a
linear sequence of menu selections; strict tree structures make up the third

62

group; and acyclic (menus which are reachable by more than one path) and cychc
(menus with meaningful paths that allow users to repeat menus) networks
make up the fourth group (Figure 4.3.) (Shneiderman, 1987).

Linear Sequence Tree Structure

F%ure4.3. Different types of menu selection applications (Shneiderman, 1987)

Single menus may have two or more items, may require two or more screens or
may allow multiple selections. Single menus may pop up on the current work
area or may be permanently available. For these menus, a simple descriptive
title that identifies the situation is aU that is necessary.

The simplest case of single menus is a binary menu with yes/no or true/false
choices. The menu items can be identified by a single letter which makes it more
clear and memorable. If the single menu have more than two items then it is
called the multiple item menus. If the list of menu items require more than one
screen but allow only one meaningful item to be chosen then they make up the
extended menus. The first portion of the menu is displayed with an additional
menu item that leads to the next screen in the extended menu sequence. Another
type, pop-up or puU-down menus appear on the screen in response to a click with
a pointing device such as a mouse. Selection is made by moving the pointing

63

device over the menu items. Since the pop-up menu covers a portion of the screen
the menu text is kept as small as possible (Figure 4.4.). Permanent menus,
another type of single menus, can be used for permanently available commands
that can be applied to a displayed object. A further variation on single menus is
the capacity to make multiple selection from the choices offered.

i Pile Edit Search Fonnat Font
I UntitI

'..' . l·̂ . 1 .. 1.. * I . i.-l

□ 6

OEPa PTMENT of CCir-

'-■•i.. □ 6 liiies/inrji

E 2 0 L
yP Id lineH t :#;p

B o ld

HdlU
Underline
BmQOOfflQ m
Q[j]Q(0(D[!S
Superscript ‘t.'H
Subscript ■ 1̂

0 [?0OmQ

m PfflOffiQ

[?0O(d Q

il ' i) [? 0 Q 0 il

HQ P 0O0Q

m P 0D0QI Till::, evijluat.ion form hot· been
lielpful miormdt.ion for oelecling coureei· and leachers. If 10 aiio inlended
t. 0 a 0 ̂ 1 i 1. p r 0 f e i. i. 0 r i. 1 n e V a 1 u a 1 1 n q f h e 1 r p e r f 0 r m a n c e a t . e a c 11 e r >

The form, divided inio tv/o pari;., con-MMi.
. . . n i l ir .l .· . .-l..-.n -.'. I I . W . . . H D c .-I P ..l·...-

Figure 4.4. The pull-down menu on the Apple Macintosh MaeWrite program (Shneiderman, 1987)

lin ea r sequence of menus are simple and effective for guiding the user through a
decision-making process. The user should know the position within the sequence
and have the ability to go back to earlier choices. With a linear sequence of
menus, the titles should accurately represent the stages in the linear sequence
(Figure 4.5.).

Tree structured menus have the power to make large collections of data. The
depth (number of levels) of a menu tree item depends on the breath (number of
items per level). If more items are put into the main menu, then the tree spreads
out and has fewer levels. This seeing the full picture continuously aids decision­
making. Kiger (1984) carried out a set of experiments in 1980 which aimed to
look at the effect of the depth of a search on the response times and error rates
at each level of the tree. He found that optimal menu interfaces take advantage
of the limitation by pushing the upper limit on individual menus, and thereby
reducing the depth requirements of the tree structure. As a general principle, he
stated, the depth of a tree structure should be minimized by providing broad
menus of up to eight or nine items each.

64

Figure 4.5. ITie linear sequence of menus on the Xerox Star (Shneiderman, 1987)

As Shneiderman suggests the rules for forming menu trees are:

. Creating groups of logically similar items,

. Forming groups that cover all possibihties,

. Making sure that items are non overlapping.

. Using famUiar terminology, but making sure that items are distinctive from
each other (1987).

Acydic and cyclic menu networks are used when paths are permitted between
disparate sections of a tree rather than user beginning a new search from the
main menu.

Once the item in the menu have been chosen the designer is still faced with the
problem of presentation sequence. In sequencing of items timing may be in
chronological ordering; numeric ordering may be in ascending or descending
order; physical properties Hke length, area, volume, temperature, weight,
velocity may be in increasing or decreasing order.

A critical variable that effect users in menu selection is the speed at which he
can move through the menus. This speed depends on the system response time,
the time it takes for the system to begin displaying information in response to a
user selection, and display rate, the rate in characters per second at which the
menus are displayed. If the response time is long then menus with more items
on each menu should be created to reduce the number of menus necessary. If the
response time is long and the display rate is low then command language
strategies become more interesting.

65

Shneiderman summarizes the menu selection guidelines as follows:

. Use task semantics to organize menu structure (single, linear sequence,
tree structure, acyclic networks, and cyclic networks)

. Try to give position in organization by graphic design, numbering and
titles

. Items become titles in walking down a tree

. Make meaningful groupings of items in a menu

. Make meaningful sequences of items in a menu

. Items should be brief and consistent in grammatic style

. Permit type-ahead, jump-ahead, or other short-cuts

. Permit jumps to previous and main menu

. Use consistent layout and terminology

. Consider novel selection mechanisms and devices

. Consider response time and display rate impact

. Consider screen size

. Offer help facilities (Shneiderman, 1987).

Just because a system has menu choices written with English words, phrases, or
sentences does not guarantee comprehensibility. In phrasing of menu items
famihar and consistent terminology should be used, each item should be clearly
distinguished from other items, items should ensure consistency and
conciseness, and the first word should help the user in recognizing among items.

The constraints of screen width and length, display rate, character set, and
highhghting techniques strongly influence the graphic layout of menus. But there
are some consistent menu components.For example left justification is an
acceptable approach for titles. Also items should be left justified with the item
number or letter preceding the item description. The instructions, if identical in
each menu and placed at the same position help the user more. Some systems
indicate which portion of the menu structure is currently being searched, which
page of the structure is currently being viewed, or which choices must be made to
complete a task. This information and any other error message should appear in
a consistent position.

So the designer in menu-driven interface should understand the semantic
structure of his application. Then should concentrate on organizing the sequence
of menus to match the user’s tasks ensuring that each menu is a meaningful
semantic unit. If some users make frequent use of the system, then typeahead,
shortcut, or macro strategies should be allowed. Simple traversals to the
previously displayed menu should be permitted. When the system is
implemented the designer might collect usage data and error statistics to guide
refinement. Commercial menu creation systems are available and should be
used to reduce implementation time, ensure consistent layout and instructions,
and simphfy maintenance.

6 6

4.4. locnic Interfiaoe

Iconic communication is an interaction technique which conveys ideas or
information in a nonverbal manner, using images. The images related to the
idea are chosen either by resemblance (pictograph), by analogy (symbol) or by
the selection from a previously defined and learned group of arbitrarily designed
images (signs) (Lodding, 1983). In fact, a unique discipline of iconic
communication does not exist. For understanding the design, the application
and the potential of an image, some diverse fields must be understood. Figure
4.6. indicates the scope of the iconic communications.

Figure 4.6. The scope of iconic communications (Huggins and Entwisle, 1974)

The graphic display provides a means to present final information results. In
addition to this, the apparent complexity of the information systems tool itself
can be reduced by a mechanism: by an iconic interface. The iconic form of
programming uses special and object knowledge, and replace the linguistic
means of words with logos. It can represent a lot of information in a small space
and visually is more distinctive than a set of words. Commands and system
information presented in the form of icons benefit the new capabilities of
graphics displays, reduce the learning time and effort, and facilitate user
performance while reducing errors. People have always found natural to
communicate with images. Because, a person has to make a special effort to
remember all the detail of a hnguistic message. Generally when we remember
something, it is restatement or a translation of the original. But an iconic
interface requires only that the user recognizes an image. This recognition can be
unclear; the user does not have to describe the image, nor name it; he only pick
the icon to select. In addition the human mind has powerful image memory and
processing capabilities, so he finds easier an image-based interface requiring to

67

recognize and point than a text-based interface requiring to remember and type.
Besides these advantages, using icons has also the difficulties. The user finds an
image clear and easy to understand when it possess a close resemblance to a
particular object; in that case the number of expected messages is limited. But,
in other situations, the user needs additional support to decode the message.
Furthermore, the speed of image processing and the accuracy of image
recognition are two important factors for iconic-based man-machine interface.
Also the display unit with too low resolution, causes icons to be poorly
represented, so replacing them with text should be considered. Lodding stares
the requirements for the correct interpretation of an image with three factors:

. the image code

. the caption, and

. the context (Lodding, 1983)

The image code is the representation -the image itself. The caption is the
additional lexical channel which reinforces and expands the picture message.
And the context is a frame of reference which interprets the image and the
caption.

From the designers’ point of view, a unique difficulty for iconic communication is
that they have no “dictionary” from which to select an appropriate image. They
choose a representation that they try to give the intended information. If they
essay to be too realistic, the details can slow down recognition and
interpretation. In contrary a highly stylized design will be either not understood
or interpreted in many different ways.

From the users’ point of view, there are some difficulties about the acceptance of
an icon. For example an image can convey certain undesirable messages or non-
understandable language and cultural barriers. Because icon designs are
influenced by a large number of factors, including the designer’s cultural
background, education and environment which can result a “nonuniversal” icon.
There is also the problem of the confusion of images that are used to convey
information. Amheim (1969) suggests a taxonomy which wül aid to order this
confusion; and he identifies the starting point for developing an icon taxonomy
as “understanding the functions supported by images”. The tenus used to define
the usage of the image are “picture, symbol” and “sign”. Picture reflect the
relevant quahties of an object or an activity. A symbol presents a concept rather
than a particular object. A sign functions as a reference to the object or concept.
Arnheim (1969) classifies an icon by its design style, and pairs each of the image
function with a design styles as follows:

6 8

Design:
rep resen ta tio n a l
a b s tra c t
a rb itra ry

Function:
picture
symbol
sign

A “representational image” serves to a general class of objects. That means, it is
typical. The advantage of this design style is to recognize easily objects referred
to it. They can also taught, learned and retained easily. The major difficulty of
this design stylo is the change of form of the most technical/cultural objects over
time. Figure 4.7. shows representational pictographic/object based icons from
the Apple Macintosh system.

“Abstract icons” presents a concept to the viewer who is away from the concrete
image. The intention is not to show the object. It is to convey a concept at a
higher level of abstraction than the symbol itself. In an abstract design the
image is reduced to its essential elements. Because the designer is attempted to
focus on a particular concept rather than the object itself. Figure 4.8. shows an
abstract/symbol icon.

Consequently, when the purpose of an icon is not representation, an “arbitrary
icon” can be “invented” and assigned a meaning. When it does not aimed to tie
the intended message to an object, arbitrary icons can be used. Figure 4.9. shows
an arbitrary/sign icon supported by caption.

FILE
VVVii

FOLDER ARCHIEVE

—

\ ..

LINE

RECTANGLE

RECTANGULAR
PRIZM

Figure 4.7.
Object- based objects
currently found on
the Apple Macintosh
system

Figure 4.8.
An abstract^
^m bol icon for
‘‘utilities”

Figure 4.9.
Drawing icons carrying a
relational structure similar
to the one found in the
line/rectangle/rectangular
prizm relationship

69

Lodding divides the design process of icons into three different steps (Lodding,
1983):

1. stating the message,
2. rendering the design, and
3. testing the resulting icon.

identifying and defining the initial icon design in terms of the caption and the
context points is the first step in the icon design process. Another and the most
difficult part of the process is choosing one of the design style among
representational, abstract or arbitrary types for the image. For the second -
rendering the design- stage of the process considerations must be countered:
image specific or image grouping. A weU-designed icon should have simple
shapes, grouped elements, and distinct separation of figure from ground. Color
and spatial distortion are also two another factors that must be considered. The
solution for color distortion is never allow color to carry information in the icon;
and for spatial distortion is to avoid the use of extremely complex hnes and
shapes. For testing the resulting icon some several factors are :

. being able to infer the intended meaning at the first view of the user.

. appearing only appropriate icons for one selection.

. not conveying any unnecessary negative connotations (Hersh, 1982).

While the single-view single-icon model has proven very intuitive and easy to
use, some objects have more than one logical view. (Draper, 1986)
Multidimensional icons group set of icons, each describing a unique view of an
object, into a single entity. The individual icons are located onto the sides of a
simulated cube. Henry and Hudson argue two distinct advantages of using a
cube instead of displaying all of the icons in a menu: The first one is that cubes
are very familiar objects, and for a natural mental model the faces of a cube can
be thought as the view of the entire cube, that means of the actual object. The
second advantage is that the rotation of the cube which shows the accessible
icons, uses only a small part of the screen space. (Henry and Hudson, 1990)
Figure 4.10. shows an example of a multidimensional icon which represents a
file and its five distinct views.

Since only three of them are visible at any one time, rotating the cube allows the
selection of hidden faces. The way the user interacts with a multidimensional
icon is illustrated in figure 4.11.

70

c c
011011
110010
001001

a. out

t̂ igure 4.10. an example of a multidimensional icon Figure 4.11. The way user interacts with a
which represents a file and its five multidimensional icon
distinct views (Henry and Hudson, 1990) (Henry and Hudson, 1990)

The multidimensional icons group commands with objects, and they avoid the
users applying commands to inappropriate objects. In addition, the cube analogy
provides a reminder to the user forgetting hiding views and remember that there
are some views on the back of the cube.

4.5. Grajdiical Interface

Graphic communication is a design language made up picture images that are
used to compress and convey ideas of shape, size, and construction of parts or
whole objects. This interaction is a set of actions of a computer graphics system
and its user on each other. The user provides input to the system via a set of
devices; the system provides output to the user via a set of displays. These
inputs and outputs must be reciprocal, that is, they must be related to one
another. Thus, graphical interaction is a succession of interrelated actions and
reactions.

In order to build useful interfaces, some displays techniques and pointing
devices are required. Salvendy (1984) argues that the naturalness of object-
based interfaces is based on the experience and skdl of the user that the
developed when dealing with physical objects. Interfacing with dynamic physical
objects allow the user to reasoning about the system by maintaining the
information, depicting topology, and permitting direct manipulation.

71

In this case, instruments and tools wiU be two important metaphors that can
define the desirable properties of interactive graphics systems. They can be
instruments for expression or measurement, tools to cause effects, vehicles for
exploration and media for communication. In figure 4.12. Some of the tools of a
CAD software are shown in Apple Macintosh.

Ryan (1986) states that to have optimum value, the format of these graphics
must be clear, concise and subject to one and only one interpretation. Even more
important is the method chosen to produce those graphic images. Baecker and
Marcus (1989) add ten fundamental principles, and seven secondary principles
which allow to use effectively the elements of this visible language. They states
the ten fundamentals as “legibility, readability, clarity, simplicity, economy,
consistency, relationships, distinctiveness, emphasis and, focus and
navigabdity”; secondaries as “page characteristics, page composition and layout,
typographic vocabulary, typesetting, symbolism, color and texture, and
metatext”.

If* n i f '

Figure 4.12. A CAD software on the Apple Macintosh

Baecker and Buxton categorize graphics systems, architecturally in four groups:
Stand-alone single-user graphics machines, time-shared graphics systems,
single-user graphics satellites, and time shared graphics satellite systems. In a

72

stand-alone single user machine, immediate feedback to graphical input can be
achieved by calling input primitive with the code to generate output. Since aU
systems resources are available for this task, response time is only hmited by
the available computational bandwidth and the characteristics of the display
device. However, in the other kind of graphics systems, there may be delays
between the execution of the functions. This may be due to the competition of
other users in time-sharing systems. To guarantee the integrity and
responsiveness of feedback of interactive input, appropriate modifications,
should be chosen (Beacker and Buxton, 1987).

Any graphical user interface is composed of two parts: the presentation or
layout, which defines what pictures are on the screen, and the interaction and
behavior, which determines how these pictures change with user actions.
Baecker and Buxton (1987) distinguish inferencing in three different ways: First
way infers how various objects in the scene are related graphically. When the
designer draws an object, it usually has some relation with other objects that
have already been drawn. For example, a box might be placed next to or inside
another box. If the picture was simply a static background that never changed, it
would not be important for the system to notice these relationships. The second
type of inferencing is to try to guess when control structures are needed. For
example, when the designer displays the fist two elements of a hst, the system
infers that the entire hst should be displayed and will generate an iteration.The
final type of inferencing is to try to guess when actions should happen during the
execution of an interaction. For example, a highUght bar might be displayed
when the mouse button goes down.

One of the primary innovations of graphical interface is to allow the interaction
portion of a user interface to be specified by demonstration. Just as what the
end user sees is always visible to the designer, what the end user willcfo can also
be executed at any time. The designer can either use the simulated or the real
devices while in execution mode. Green (1979) sees these input devices as
clustering into four categories, providing discrete or continuous data in single
units or in sequences. A button box or an interval timer are devices that produce
single discrete data items. A mouse, tablet, or light pen can produce single
continuous data items if it is tracking or dragging and continuous sequences if it
is inking, and single discrete data items if it is pointing or selecting (picking). In
effect a set of seven virtual devices -a signal, a timer, a selector, a writer, a
tracker, a dragger, and a inker- can be defined. A “signal” consists of the
depression or release of a button or a contact switch or the change of state of a
toggle switch.A “timer” consists of the provision of an alarm or signal after some
period of time has passed. A “selector” consists of pointing to a particular

73

segment with a mouse, tablet, or light pen. A “writer” consists of a sequence of
keystrokes on a keyboard. A “tracker” consists of a movement of the mouse or
stylus terminated by a signal. A “dragger” is similar to a tracker except that the
segment moved is one of the currently visible picture segments rather than a
special tracking symbol. An “inker” consists of a movement by the mouse or
stylus which results in a sequence of coordinate pairs. These positions are
displayed by the appearance of an ink trad.

On the other hand Whitehead (1984) makes a distinction between input devices
as direct or indirect devices. He argues that indirect devices (e.g. mouse, tablet,
joystick), after some initial learning, allow a more comfortable operating
position with extended use, get round the visual feedback difficulties of direct
devices (e.g. light pen, touch screen) and have the facilities for signal
transformations. The tablet has a particular advantage in its flexibihty, since it
can be used for selection or for digitizing or sketching.

In addition Ryan (1986) lists the items used in graphic communication
workstations in table 4.1.

Traditional

drawing board
t-square or parallel bar
triangles
scales
drafting machines
protractors/machine controls
typewriters
drafting surface
curves and templates
drafting aids
pencil pens and knives
pencil pointers
erasers and shields
sheet fasteners
compass and dividers
lettering guides/devices
drawing paper
sketchpad/notebook

CAD approach

digitizing surface
coordinate measuring device
function keyboards
factors
digital plotters
subroutines
keyboards for digitizers
graphics tablet
menu items
tablet accessories
hght pen, pencil, mouse
pen functions, joysticks
page, delete keys
electrostatic hold-downs
image generators
character generators
drawing paper/films
personal computer/accessories

Table 4.1. The items used in graphic communication workstations (Ryan, 1986)

4.6. Foam Filling Interface

For the types of interaction tasks where many fields of data are necessary, “form
fill-in” interaction technique may be an appropriate style. For this case the
keyboard which can be viewed as a continuous single menu from which multiple

74

selections are made rapidly, may also be an appropriate device. For example, the
user might be presented with a purchase order form for ordering from a catalog,
as in figure 4.13.

Type in the information below,
pressing TAB to move the cursor, and
press ENTER when done.

Name; Phone: (__) __

Address:

City: State: Zip Code:

Charge Number:

Catalog
Number Quantity

Catalog
Number Quantity

Figure 4.13. A form fill-in design for a department store (Shneiderman, 1987)

The form filling approach is an attractive system. The user can see the full
complement of information. This visibility gives the user a feehng of being in
control of the dialogue. Some few instructions are required from the user where
it is an approach resembhng famihar to paper forms. But in some cases -
especially for expert users- this locus of control which tend to be very much based
within the computer may feel constraint and frustrate the user. For this reason
some shortcuts should be provided where possible. The navigation, should allow
the user to move freely within the form but prevent him/her also from getting
lost through the options. Form filhng approach must be done on displays, not on
hard copy devices. Consequently the display device must support cursor
movement.

The types of form filhng interaction may be system driven or spreadsheet. For
the first type user inputs data in highly structured, system driven way. For the
second, user is presented with a blank shell which can be filled with many types
of data and options.

75

The primary factors which influence the quahty of form filling interfaces are
stated by Baecker as: The extend to which the logic of the form reflects the logic
of the system structuring the input, the clarity of the design and the visual
presentation of the screen, and the input form which facihtate the keying of data
(Baecker and Buxton, 1987).

In addition Shneiderman explains the form fill-in guidelines as follows:

. Meaningful guideline

. Comprehensible instructions

. Logical grouping and sequencing of fields

. Visually appealing layout of the form

. Familiar field labels

. Consistent terminology and abbreviations

. Visible space and boundaries for data entry fields

. Convenient cursor movement

. Error correctior for individual characters and entire fields

. Error messages for unacceptable values

. Optional fields should be marked

. Explanatory messages for fields

. Completion signal (Shneiderman, 1987)

In addition to these, the designer should be alert to some special cases such as
addition of extensions or the nonstandard formats.

4.7. Window-Oriented Interface

The graphical technique of defining a number of windows on a single display
screen allows the user to see multiple sets of information at the same time.
Windows are originally designed as explicit supports for the conduct of multiple
activities. Window systems make possible the display of considerable
information for each of the multiple activities that are currently active, subject
to limitations on the size of the screen and the memory space allowed to handing
the screen map (Figure 4.14.). They can be enlarged or shrunk to an appropriate
size, moved around the screen and overlaid upon one another. All sorts of
reminders can be presented on the screen because a major portion of them are
continually visible. Windows themselves can serve as reminders of the existence
of the activities contained within them. Windows, icons, or other reminders
should have fixed positions, and each time the computer system is used, the
same position is always used for the same information.

76

Figui>e 4.14. A window-oriented interface from a software of the Apple Macintosh

As Card et al. indicate seven task needs and types to which multiple windows
could suitably be applied can be summarized as follows;

1. Fitting large amounts of information onto the screen (using overlapping or
compressed windows).

2. Gaining access to multiple sources of information (one source per window).
3. Combining multiple sources of information.
4. Independently controUing multiple programs.
5. Keeping track of information bkely to be used in the near future.
6. Setting the context for a set of commands.
7. Presenting multiple representations of the same task (Card et al. 1984).

Some different current designs for window systems stated by Baecker and
Buxton (1987) are as follows:

Tiine-iiuiltiplexed windows: These type of windows can come up in two different
forms; scrolling windows and frame at-a-time systems. Scrolling windows are
often used with text-editors. The user edits his text in a window, but has
available commands that can cause the text to move up, down or to a certain
place, as if the user had a movable window he could position in front of a long

77

scroll. In frame-at-a-time systems while using a menu the user slips back and
forth among a number of frames but only one frame is visible at a time.

Space-imilt^exed windows: This type of windows can be one-dimensional, two-
dimensional, two-and-a-half dimensional, or split vs. independent forms which
are classified with respect to them divided into separate windows with different
number of dimensions; their placement while being overlaid by the others; or one
being split into smaller ones with carrying closely related information.

loons: These are very small windows, generally represented on the screen by a
small symbolic picture of some sort.

Bifocal windows: In this type, information is organized hierarchically in full
detail in the center.

Optical fish-eye windows: Information in the window is compressed hke the
image of a convex mirror.

Logical fish-eye windows: Information detail may be reduced according to its
logical distance from some focal point.

Zooming window: Data in the window or the window itself gets larger or smaller
in the manner of a zooming camera.

Reichman states three forms of interaction: indirect, limited direct, and direct.
The screen is the visual interface to the computer, it echos back the user the
commands being issued to the computer and it reflects the computer’s responses
to these commands. This is the indirect interaction since there is not a direct,
real time interaction between the user and the computer. While communication
between the user and the computer is not direct as a result of their sharing a
fuller and richer environment, the communication is stiU hmited and at any
point the user is only actively engaged in a single process; this is then the
limited direct interaction. Windows divide one screen into multiple virtual
screen, each behaving like a complete one where within each a different process
can be carried out. So it is composed of a whole set of interactive processes,
many of which are simultaneously visible to the user where direct interaction
occurs (Reichman, 1986).

Windows provide us with a visual display of contextualization. In particular,
there is no differentiation in activity status between the different nonactive
windows in the environment. Because the window systems give visual evidence

78

of contextualization, users often assume that the conventions of
contextualization used in everyday interaction are also supported by these
systems.

A main feature of context support is supporting the relations between objects
within a single or multiple context. Supporting context entails two things:
knowing when things should be interpreted together and knowing when they
should be interpreted separately. Context switching and interleaving are basic
features of human interaction, whether in ordinary everyday conversation, using
computer databases, main frame editors, or personal machine facilities
(Reichman, 1986).

Not all windows are functionally independent. The language of communication
in multi-window systems should include primitives for specifying the
interrelation between the different context that user is setting up in the
different windows. The problem of context visualization and support extends
beyond just the windows. The problem is systematic to all graphical objects on
the display. Basically, the user needs a visual constraint language for display
objects, whether they are entire window contexts or particular entities within
these contexts.

A differentiation between the status of different context/activities is important
in the window-system. Open contexts do not have to remain on the display while
the interrupting activity is executed; controlling contexts in contrast do and thus
should be left on the display automatically by the system. A context is either
active or nonactive and differential access to them, in general, is not supported
via functional or structural markers.

To support user needs:

1. There should be underlying support to define individual contexts and the
relations between these contexts and the objects they contain.

2. These dependencies and interrelationships should be made explicit on the
visual display.

3. There should be a separate language that allows users to note the types of
activity shifts being made.

4. There should be a correspondence between contexts and windows. The
semantic import of a window should be that it constitutes a context. Linking
contexts then becomes the equivalent of linking the visual reflection of these
contexts, that is, windows.

5. The constraints derived from a context’s status and interrelationship with

79

other windows should be self-evident to the user.
6. Navigational schemes should be provided to users so that they can navigate

back to old contexts via reference to a functional relation that this proceedings
context has with a current one (Reichman, 1986).

The displays should reflect status assignment. A minimum of four categories
are required:

1. active
2. controlling
3. generating
4. closed (Reichman, 1986).

Only windows related to the current development of the active window would be
visible at any given time.

A set of activity interrelationships should be defined. A set of object
interrelationships should be defined. There should have a dynamic, easy, and
nondestructive m eans for users to communicate these types of
interrelationships to the computer. The computer should then visually reflect
these relations back to users and provide them with a set of varying navigation
mechanism which are derived from, and are based on, the different types of
relations involved.

4.8. Direct Manipulation

The promise of direct manipulation is that instead of an abstract computational
medium, all the “programming” is done graphically, in a form that matches the
way one thinks about the problem. The desired operations are done simply by
moving the appropriate icons onto screen and connecting them together.
Connecting the icons is the equivalent of writing a program or caUing on a set of
statistical subroutines, but with the advantage of being able to directly
manipulate and interact with the data and the connections. There are no hidden
operations, no syntax or command names to learn. So it is an interface style in
which the user can point at a visual representation of the task, manipulate it
and immediately observe the results and is in control of the interaction. What
you see is what you get (WYSIWYG). Sheneiderman has suggested that direct
manipulation system have the following features:

80

1. Novices can leam basic functionality quickly, usually through a demonstration
by a more experienced user.

2. Experts can work extremely rapidly to cany out a wide range of tasks, even
defining new functions and features.

3. Knowledgeable intermittent users can retain operational concepts.
4. Error messages are rarely needed.
5. Users can see immediately if their actions are furthering their goals, and if

not, they can simply change the direction of their activity.
6. Users have reduced anxiety because the system is comprehensible and

because actions are so easily reversible (Sheneiderman, 1982).

The term “direct manipulation” was coined by Sheneiderman to refer to
interfaces having the following properties:

1. Continuous representation of the object of interest.
2. Physical actions or labeled button presses instead of complex syntax.
3. Rapid incremental reversible operations whose impact on the object of

interest is immediately visible fSheneiderman, 1982).

A special type of direct manipulation, called WIMPS which stands for Windows,
Icons, Mouse, and Pull-down menus, is typified by Apple Macintosh desktop.
(Figure 4.15.) Objects such as apphcations, documents, files and drawings are
represented as icons which the user can address with a mouse -controlled
pointer. Pointing and selection invoke a system operation such as opening a
document for word processing. The objects can also be moved or dragged around
the screen.

1 TÍ
1 \
1 □
1 о
1 о
|· ^ 4-П ►o·̂ :
1 Ш
□
H □
1 1
iNo Dash |
1 Copy 1
cm

Figure 4.15. An Apple Macintosh software that offers direct manipulation

81

The main advantage of direct manipulation systems is in ease of learning and
ease of use. If mapping is done correctly, then both the form and the meaning of
commands is easier to acquire and retain. Interpretation of the output is
immediate and straightforward. Direct manipulation provides a far easier
means of constructing a drawing in architecture than by entering coordinate
values through the keyboard. It can also be used as support for other interaction
techniques hkes selecting menu options, pointing to function keys and buttons.
It has the power to attract users because it is comprehensible, natural, rapid,
and even enjoyable. Since it is easy to learn and use, it retains over time.
Actions are rapid, incremental, reversible, and often performed with physical
actions instead of complex syntactic forms. The results of operations are
immediately visible, and error messages are needed less often, where is a big
relationship of what is done and seen by the user, and the effect of the operation
on the inner state of the system. Modeling direct manipulation requires
understanding of the relationship between key and command, state and display.
Hence, pressing the delete key deletes immediately; mouse movement moves the
pointer; join clicking invokes a function that corresponds in some sense to the
meaning suggested by the icon.

One of the problems with direct manipulation is that use of spatial or visual
representations is not necessarily an improvement. The content of graphic
representations is a critical determinant of utility. The wrong information, or a
too cluttered presentation, can lead to greater confusion. A second problem is
that users must learn the meaning of components of the graphic representation.
Another problem is that the graphic representation may be misleading. The user
may rapidly grasp the analogical representation but then make in correct
conclusions about permissible actions. Also graphic representations make the
excessive screen display space. Another problem is that for experienced typists,
moving a mouse or raising a finger to point may sometimes be slower than
typing.

Direct manipulation interfaces have difficulty in handling variables, or
distinguishing the depiction of an individual element from a representation of a
set or class of elements. Direct manipulation interfaces have problems with
accuracy, for the notion of mimetic action puts the responsibility that is often
best handled through the intelligence of the system, and sometimes best
communicated symbolically.

82

4.9. Speech Ccxnmvinicaticn

Speech is an efficient and convenient vehicle for communication, being fast,
universal and resistant to mispresentations. Speech also has undisputed
advantages in certain situations where other media are impossible or
inconvenient to use, and for particular classes of users. Speech is useful
primarily for complex tasks requiring cognitive and visual effort, whereas simple
tasks involving the copying of numeric data is carried out more quickly and
accurately with keyboard entry as compared with voice entry. The benefit to be
dehvered from voice input and output is highly dependent on the specific task
and environment. The selection of tasks for speech recognition should be based
on specific task requirements. Speech is not a useful substitute for manual data
entry when such tasks are already being performed successfully. Speech input is
to improve system throughout only the complex tasks that involve high cognitive,
visual, and manual loading.

Tlie design of task-and-hear interface is not üke the design of conventional type-
and-see interfaces. One of the four reasons for this is the structural properties of
the speech medium. In the usual type-and-see interface, an output to the
machine stays on the screen until the user takes some action to dismiss it. The
users deal with outputs similarly. Speech, on the other hand is transitory, once
said it is gone. The second reason is short coming of today’s speech technology.
People can separate meaningful speech from noises, machines cannot.
Pronunciation varies as a function of talker, rate of speech, and other factors;
machines do not have such specifications. The third reason is the human as
speech producer and perceiver. Successful recognition rate increases after first
weeks as if machines were training the user. On the output side, the main factor
is the Mmit of short-term memory. Finally the fourth reason why talk-and-hear
interface is not hke type-and-see interface is the kinds of tasks that speech is
asked to do. Tasks that talk-and-hear interfaces do well are ones that involve
simple data input, usually with hands and eye busy (Salvendy, 1984).

Speech recognition system is composed of a human speaker, a recognition
algorithm, and a device that responds appropriately to the recognized speech.
This system varies in complexity along several dimensions. Miller states them
as speed, speaking mode,vocabulary size, response time, background noise,
quality and training (Miller and Walker, 1990).

One small problem with conversational interaction is you cannot even point to
something you said a few lines ago in order to say it again. A second
disadvantage of conversational interaction is that large scale structures are

83

difficult to manipulate as a whole. Noise tolerance is another problem where
with systems susceptible to extraneous noise confusion, errors in recognition
occur.

Systems need to have the capability of dropping down or moving up, to an
appropriate interaction level on the basis of users’ interactive behavior. One way
to minimize user difficulty with voice based systems is to give control of the
interactive process and the presentation of auditory information to the user. If
he can slow, speed up, stop and repeat announcements, page backwards and
forwards through the dialogue, the memory problem arising from the use of
speech might be prevented. Another approach is to make the system sensitive to
the user, by procedures hke reaction time measurement, detection, etc. The user
in difficulty can then be identified by the system itself and the dialog can be
tailored accordingly. These two approaches are actually comphmentary. The first
involves providing control of facilities, and giving the user a helpful model of the
system, so the he can take control of the dialogue. The second is system which
develops a model of the user so tha t appropriate guidance can be given
automatically. In this way the man-machine interaction moves towards a closer
approximation of the way in which people converse together and control the
dialogue process, on the basis of a model which shares knowledge about
conversational usage (Monk, 1984).

Speech recognition systems do just what their name suggests; they recognize
spoken words. Speech recognition detects words from speech. However, the
recognition system does not analyze what those words mean. It only recognizes
that they are words and what words they are. To be of any further use, these
words must be passed on to higher level software for syntactic and semantic
analysis. If the spoken words happen to be in the form of natural language, then
they must be passed on to a natural language understanding system. It is
important to understand that the “words” tha t make up a vocabulary to be
recognized need not be words in the normal sense. Rather, speech recognition
systems typically work by matching the acoustic pattern of an acoustic signal
with the features of a stored template. According to Baecker and Buxton (1987)
speech recognition systems vary along a number of dimensions:

Speaker dependieat vs. independent: Speech recognition systems which are
speaker independent are designed to recognize the speech of most
speakers.Systems with hmited vocabulary allows to enter data without logging
on again each time a different person needs to use the system. However the
speaker dependent systems are trained by the operator by repeating each word
in the vocabulary several times and the system recognizes only the voice of him.

84

Dialects, ascents or the language itself make no difference. Generally, systems
with larger vocabularies are speaker dependent.

Continuous vs. dependent ^leech recognition: In continuous-speech recognition
word endpoints are uncertain, since the user speaks a t a normal conversational
pace, and they can be determined by the aid of knowledge of the language syntax.
In the discrete system word endpoints are determined by the periods of silence.
According to Baecker and Buxton the factors that affect recognition system
performance are:

. user characteristics

. enrollment

. adaptive recognition algorithms

. system feedback

. error correction

. environmental factors (Baecker and Buxton, 1987)

Voice recognition devices gather sound waves, remove unwanted noises, and
compare the incoming signal against a template stored in memory. If the
incoming sound is similar to what is on the template, then the word is
recognized. If the sound is not similar enough to any stored template, then the
system fails to recognize it.

The classes of errors that occur speech is presented to machines can be classified
in four categories:

1. substitution errors: one word from the vocabulary is mistaken for another,
2. insertion errors: a word is reported that was not spoken,
3. deletion errors: a word that was spoken was not reported,
4. rejection errors: a word that is a legal item in the vocabulary is detected but

not recognized (Baecker and Buxton, 1987).

Automatic output and input of speech from and to machines can be achieved
using several different procedures, each with different advantages and
disadvantages for a given application. First one is speech output using natural
speech. Where recordings in sampled-data format can be stored in memory or on
some rapid mass-storage device and played out as required. This strategy is
appropriate for apphcations where a restricted set of high quantity words or
phrases is required in providing commands or giving information. Second one is
the speech output using syntactic speech. This is appropriate for applications
with output of unpredictable messages from an unrestricted set, provided there

85

is no strict requirement that the speech sounds completely natural. The third
procedure is Automatic Speech Recognition (ASR). Some form of speech
recognition system in a prerequisite for a voice based user-machine interface.
For now no system exists with capabihties near those of human listeners.
However, by careful choice of constraints on the flexibility required for a given
ASR application. Some useful working systems have been developed (Monk,
1984). Some of the issues that must be considered in their selection, evaluation
and use are shown in table 4.2.

Type of speech:

Number of bilkers:

Type of talkers:

Environment:

Channel to recogniser:

IVpe and amount of
system training:

Vocabulary size:

Speech format:

Error tolerance:

isolated words, phrases, continuous speech

single talker, several designated talkers, unlimited

co-operative, casual, male, female, child

sound-attenuating booth, computer room, public place

high quality microphone, high quality audio, noisy low-
bandwidth telephone link

none, fixed training set, continuous

small (<20 words), medium (<100 words), large

constrained text, free speech

high, low

Table 4.2. Considerations in the development, selection and evaluation of automatic speech
recognition system. (Monk, 1984)

Speech is a discrete, single-channel, directional, well-known, semantically
sophisticated system for the transmission of information. If properly
implemented speech can reduce the need for the user to learn computer­
programming, like languages and can provide an alternative to manual input
systems.

4.10. Multi-Media Coanmunication

Human-computer interaction techniques can include some pecuharities which
enrich human dialogue and communicative possibdities with machine. These
techniques have been listed by Baecker and Buxton as follows:

. large display surfaces, such as provided by large format screens and video
projection, that permit user to better manipulate spatial relationships and
increase the amount of information.

8 6

. voice input and output, and the use of non-speech audio output.

. large capacity video storage with random access avadahle by the compact disk
technologies.

. large scale digital data storage with random access available on the CD-ROOM
technologies.

. enhanced passing over and navigational tools, for example using spatial
relationships.

. the use of visual channel for input: a video camera which is used exploiting
pattern recognition and machine vision techniques (Baecker and Buxton, 1987).

The use of these and other techniques can be combined in an multi-media
environment. Variously termed multi-media, interactive media, or the new
media, recent developments in electronic technology have made possible and
accessible complicated technology. With this technique which include not only
text, line art, and still images, but also sound, video sequences, computer
graphics and computer-based animation, the mathematical content of a
document can be symbolically and numerically manipulated. So, new results can
be derived and different situations with different parameters can be simulated.
Computer generated images can be explored by moving the eye point, changing
the hghting conditions or using the model with algorithm. The user could also
listen to recordings of the sounds or to view a visual, diagrammatic
representation of those sounds and go on to compare this data with other
species. The extend of information which can be made available is limited only
by storage capacity and the resources of the creator.

Phühps states the most important potential of a document as “visualization”.
Animations and still images in the original or a new document can be
incorporated and transmitted electronically for viewing and analysis (Phillips,
1991).

Media View, for example, which is a system developed at Los Alamos National
Laboratory on a Nexr workstation provides a generic infrastructure for creating
and interacting with multimedia documents (Phillips, 1991). It is based on
WYSIWYG. Figure 4.16. shows some of the potential components of a Media
View document.

This document can have the following features:

any word or phrase in the volume can be retrieved and it can be accessed to any
part of the document. Any piece of the document can be copied and pasted into
a text editor or word processing program.

87

figures that support text can be viewed and if desired, selected for processing by
another program.
an audio insert for Ustening is indicated by another icon style; for example it
can be a part of the question and answer session. The sound can be arranged by
a sound editor for incorporation in another multimedia document.

. some notes can be made in the margin of the document by voice annotations or
textual or graphical “stick-on” notes attached to the document.

live
animation

live
video

g Ins^fliponant to remind ourselves (hat the refinemcni process produces ¡p exact re-
I reprnRlution. The W-defined surface is the same as its V-ctefined paimt. Figure I shows

a small portion of a uniform, bicubic, V -defined surface in ctxks scctik^wiih circles
indicating the V’s), and Figure 2 shows a view of the same surface in a W definition
(with black dots indicating die W's and with the Vs included as circles for comparison).
Refincmeot has been applied to the middle ponion of the surface (centcrcld about the

V). The right and left margins of the surface have ikn been included in the

voice
annotation

graphical,
annotation

If one of the W control vertices is moved, then the Yf surface departs from hs V parent,
I but only in the area influenced by the W control vertex that has been changed. Outside of

and Mathematical!

Figure 4.16. Components of a Media View document (Phillips, 1991)

Other available multimedia systems include Inter Media, developed at Brown
University, and the Andrew Toolkit, from Carnegie Mellon University. Inter
Media runs on an Apple Macintosh and uses the famUiar look and feel of the
Macintosh graphics user interface. The Andrew Toolkit runs on many Unix
platforms, requiring only the X Window System (Phillips, 1991).

Another possibility of multi-media techniques for analysis and visualization is
performing a simulation and using the data set animation facility to view the
result. In addition to this, live video segments can be included in a document
and facilitated by the video input and output capabilities. A click on the video

8 8

button will make the appearance of a video window and send the command to
the appropriate device to begin video playback.

Recent developments in software marketing alter also the nature of what and
how designers produce to a new degree, thus it challenges the role and the nature
of graphic design, education and research. Gromala identifies the most
significant feature of these authoring programs as “interactivity” which affects
learning. Because it allows an intuitive interaction and offers information in
textual, pictorial, animated, audio or video type. This learning environment give
to the user the opportunity to perceive information in visual, aural, kinetic, or
other sensory learning models. With these opportunities the user can
contextualize information relating it to other types of content such as culture,
society, polity, history or technique.In this respect users have options to create
information and individualize them according to their own purposes
(Gromala,1992).

For the creation of these types of environments, the designer has to develop the
conceptual framework of the complex array of information and technologies, to
determine, construct and facilitate the possible ways where the user can work in
this multi-media environment. The information must be comprehensible,
accessible, and significant for the user; and he should not be forced to explore
them.

On the other hand, installation of multi-media components into a document
rehes upon the ability to insert subclasses into the data structure of an instance
class. The developer must implement methods for the cell’s default behavior,
such as how it should be highlighted, react to events, and draw itself. Most
important, the developer must implement aU subclasses of the class that give
the multi-media components their distinctive behaviors (PhiUips, 1991).

4.11. Virtual Reality

In some extreme cases a highly developed multi-media environment can be
termed as “virtual reality”. In this three dimensional computer-generated
environment where visual and audio capabihties exist, the user enters in a
space with a high degree of simulation. This requires extensive computational
capabihties. Combining real time graphics with 3D display systems is the first
step toward achieving that may see as the ultimate goal of computer modehng -
virtual reahty- where the senses are immersed in a computer generated reality.

89

It could potentially fill the gap between “what you see” and “what you get” for
three dimensional design. Gromala defines user experiences in this environment
as “immediate feedback to his actions” (Gromala, 1992). Because of the user is
isolated from all the outside conditions, he makes believe himself to be inside
this computer-generated environment. With virtual reahty, not only the can user
see imaginary worlds (projected on screens right in front of his eyes, and with the
illusion of infinite spaces) but now how can “feel” them (through specially
constructed gloves) and (seem to) move around in them, as well (White, 1991).

In such a space there are no icon metaphors, keyboards, or specific language
required from the user. According to the media, the user will soon aU be involved
in computer-generated worlds of incredible splendor. Wearing goggles that house
miniature television screens, he will see these worlds in full stereoscopic vision,
and wearing gloves wired with fiberoptics he will able to interact with these
imaginary settings-flying through them simply by pointing a finger or grasping
objects by making a fist with his “datagloves” (MacLeod, 1992).

If the eyes are surrounded by the virtual image of a computer-generated
building, the mind is there as well. But how can the body follow: The mouse for
virtual reality simulations is often referred to as 6D devices, since it measures
movement in three dimensions and rotated about three possible axis. These
devices include modified joysticks that are twisted and pushed, and magnetic
trackers, such as an electronic glove, for instance, translate your pointing
forward into moving forward towards a wall. Tapping the wall twice could
represent a command to add a door. The system converts gestures and
movements into electronic signals.

An additional element being added to datagloves is the sensation of touch or
tactile feedback. If a glove could provide tactile feedback, the user feel an object
in his hand as if he actually had something there. This more important for
applications hke remote robot hand control, but it also helps to maintain an
equüibiium between what the eyes see and what the body feels (Yu, 1992).

A representation of a virtual building need not be limited to one person. Several
people can strap on equipment and enter in the virtual world, seeing each
other’s virtual bodies while the designer narrates a tour and music plays in the
background.

Another possibility to input instructions is a microphone. Instead of keys on a
keyboard there is already software that can execute a command or a series of
commands from words spoken into a microphone. But, each user must prerecord

90

his or her own voice into the system. Considering the differences among voices
and regional accents, this is an understandably difficult feature. Some have even
Up reading as a simpler solution (Yu, 1992).

Drury beheves tha t “virtual reahty could revolutionize interactive electronic
communication. It has the potential for removing a lot of the social boundaries
tha t cause no end of trouble today”. He argues that “the next generations of
virtual reaUty wdl allow people to create ideahzed constructs of themselves; and
by adding a level of make-beheve to reality, it becomes easier to communicate
directly” (Drury, 1992).

A number of researchers and artists have been working in this relatively new
field for several years. Nicole Stenger has been taking advantage of advances in
virtual reahty hardware to develop “Angels”, a “virtual reahty movie”. Beverly
Reiser occupies with Mandala Software’s complex interface to create interactive
poems and stories. Working with both computer and video input, Michael
Maimark develops multi-media and virtual reahty projects hke EAT -a “virtual
dinning environment” and moviemaps of Karlsruhe, Germany and Aspen,
Colorado. Working on the borders of computer science and beyond, these virtual
reahty artists approach their work as both serious art and serious science
(Haggerty, 1992). In addition to these fields, virtual reahty has been used by the
mihtary as a method for training pilots example, by the doctors in training
surgical techniques, or by the entertainment industries, etc. The most relevant
and exciting field for architects that they have been using it to “walk through” or
“fly by” simulations of spaces they design before the building is ever constructed
(Gromala,1992). This “experiential prototyping” aUows designers to see models
simultaneously in true 3D, but without simultaneous viewing constraints
(Gantz, 1992).

Virtual reahty can be employed effectively in the applications defined above.
But accurate and complete experience requirements must be assembled. Lanier
states the toughest technical chaUenges of virtual reahty as “connectivity” -that
is, reading data from disparate systems and processing them in a virtual reahty
setting (Lanier, 1992). Cook identifies good virtual reahty software as software
that makes the best use of virtual reahty’s unique capabihties and minimizes
the weaknesses of the underlying hardware. According to him, it should let the
user do something completely different in a way tha t either does not invite
comparison with existing interfaces (Cook, 1992). Bryson asserted that faster
computers, graphics, and access to data; higher resolution wide-field displays;
more responsive input devices for 3D or higher, and interactive data exploration
tools are needed. To evaluate visualization to research -not ju st use it for

91

display- it must be interactive (Bryson, 1992). In addition to this, Naimark
defines the “camera” as the template for future virtual reality models. He
suggests to virtual reality researchers to combine a knowledge of computers and
computer graphics with an awareness of the conventions and capabilities of film
(Naimark, 1992).

Virtual reality, the immersion of a user’s senses in computer-generated world, is
often considered the far-fetched dream of eccentric computer buffs and science
fiction fans. To present more practical functions for this technology, a two person
virtual reahty station for the creation of building prototypes running on PC
computers is founded. The viewers donned helmets with separative view screens
for each eye. As they turned or raised their heads, the screens smoothly reflected
the shifting orientation. A joystick and a pointing wand were then manipulated
to move walls, floors, and roofs in the “virtual world”, and to change the
appearance of different surfaces. This rudimentary two person interaction is
intended to represent an architect working with a chent in the initial stages of a
design project. This demonstration illustrates th a t the technological
underpinnings for virtual reahty exist, and the only necessary thing for practical
use is time (Yu, 1992).

In fact, Autodesk, the worker of AutoCAD, has a virtual reahty software project
of its own cahed Cyberspace. The name “cyberspace” derives from science fiction
author Wihiam Gibson’s books and stories which describe a decaying society
where people plug themselves directly into global computer networks. Ah input
and output is handled through direct neural connections into this haUucinatory
“cyberspace”, bypassing the need for display devices and body suits (Yu, 1992).

The advantage or disadvantage of virtual reahty is that it approaches reahty. At
what point it can be considered to be close enough to actual reahty. Naimark
asked what exactly is real time anyway, and began to analyze what makes a
work virtual and real. “We have to be careful when we use the word real” he said.
Realness, he explained, depends on both presence and interactivity. In computer
graphics, we say something is real if it is of sufficient resolution. But real also
belongs to the physical world. When do the two definitions coincide (Naimark,
1992)? It remains as an unclear but significant question for designers.

92

5. TOOLS FOR ARCHITECTURAL USER INTERFACE DESIGN

Although it is a common perspective that architectural design begins on a piece
of paper and progresses through many stages until a blueprint, it does not mean
that this is correct. However, some architect’s view held in which they use a
model that specify a way integrating the computer into the design process, is
worth to pay attention. Negroponte’s “architecture machine” must acknowledge
and fit into the mentioned way of working tha t has initiated a search for
hardware and software devices which would integrate; the machine with other,
more traditional, aspects of computer-aided architectural design.

In practice, the world of computer-aided architectural design has grown away
from this model. When “computer-aided architectural design” is translated as
“computer-aided architectural draughting” it is recognized that the machine is
used predominantly not as an aid to design, but as one of the specialized
instrum ents of office practice: an instrum ent used to produce specific,
dimensioned and annotated production drawings. Eastman’s (1989) review of
the state of the art goes so far as to suggest that idea of “integrated” CAD was
misplaced.

All these suggest that there are two diametrically opposite approaches to CAD
in architecture. The first stresses the central role that computing could play: it
promotes a search for computing ways of doing the whole job and wdl be fully
satisfied only when computer and design are inseparable. Brown and Horton
(1992) caU this the “strong” approach to CAD. The second, or “weak” approach is
more pragmatic and seeks to automate only some parts of the design process
which can be readily and naturally helped by computing. Both the “strong” and
“weak” positions pose empirical questions about the architect and how the
architect does his work. In computer terms these are questions about the user
interface, about how architect and machine interact. In the strong CAD program
they interact all the time from the first to the last point m the design sequence.
In the weak model there are points where what is done by hand is to be
presented to the machine and vice versa. The strong and weak approaches to
CAD share a common set of problems to do with the way that designing and
computing relate.

93

Drawing lines first and imaginary movements suggest that the tactile elements
and graphic tools in drawing are the important parts of the experience.
Repeating the pattern whilst drawing to screen would be possible in simple
modeling type programs but would result in a number of irrelevant and
confusing objects in a more sophisticated vector-based software. Furthermore,
the utihty of improved ergonomics -which are examined in the third section-
should be asked. This might be an important and useful advance if talked about
the gains obtained by making the work of a tracer quicker and more productive.
For the architect such gains are likely to be less important since any time
savings made will be spent by thinking time: intellectual work is not easily
improved by time and motion study. However, there may be real gains to the
architect in such an improved interface since it can speed up the way that ideas
are transferred from mind to machine. For the experienced draughter sketching
is a fast process which could be embedded by an unskillful machine interface.
Work of the kind reported here by this thesis is valuable if it leads to a more
natural use of the machine by architect, to the design of a better component.

In this respect, rising involvement of architects in computer-aided technology,
the increasing need for communication and workability of information
technology and the need for natural use of the machine are major factors that
will require identification of some formal specifications, some standards and
prototypes that will establish the intended goals.

5.1. Foniial Specification of the Architectural User Interface Design

Since no stage in the transformation from problem definition and preliminary
sketching phase to production of documents and working drawings, and
construction the structure is thoroughly determined, design, in a creative sense,
is involved at all architectural phases. In a computer-aided environment, it is
moreover, dangerous to dissociate software design from design of the interface,
because of unexpected interpretations of the specification and the danger that
the system design may not coincide with the architect’s intentions through
constraints imposed by the interface. However, formal specification is a useful
vehicle because it minimizes unnecessary dependencies, and allows transference
of solutions from one problem domain to another. For this reason, formal
specification of the user interface design should ideally remain open to
modification throughout the architectural product development process.

94

A formal specification allows the designer to be rigorous about proving the
internal consistency of that design, and about proving implementations with
respect to design. Ideally, a formal specification should be exphcit at the level of
the primitive objects in its domain. The activity of design in architecture
involves both the interpretation of a set of needs or desired performances in
terms of a design, and the organization, composition, and transformation of
combinations of (physical and symboUc) elements of buildings. Some architects
set out a series of themes on and exercise in the syntax of architecture,
concentrating on the nature and importance of the plan as an abstraction of
architectural designs. Besides them some other architects carried out the
essential formal elements of architecture as space and matter. AH of them are
equally important: the space between walls is to be designed as well as walls,
the space between buildings as well as buildings. In a computer-aided
environment the edges of architectural elements which wül define these spaces
can be manipulated: hard or permeable boundaries can be given to space. The
operations on these elements may be transformations to and additions of plan,
space and matter which are subject to ordering systems: axes, grids, proportions,
the precedents set by formal specifications. For example when thinking about a
project related especially for children or differently-abled people, the dimensions
-such as maximum reaching height, minimum passage area, accessibility of the
space, etc.- will be different than a project related to other people. In this
respect, the interface with the machine may offer a guideline in forms of axes or
grids that are derived from the preconditions. In another way, it may warm the
designer with an error message -hke “the child cannot reach to this point”-and
evaluate the project according to these conditions. These contingencies will give
the possibility to the architect to compose an infinite variety of forms of
buildings.

In addition to this, color and texture should also be given to the matter. It can be
made by different ways: In one way that is the designer who will define the
model. The components of a texture or an element can be given by a firm and the
designer can compose them in a manner as he wants. In the other way, the firm
can give the different types and models of the element or texture. A draper for
example can give the updated models and their costs in the form of modules
which can be loaded to the system and then designer can choose among them. A
more idealized system is that the firm can be dedicated to a network and load
the updated models and their costs to this network and the designers in
different environments can reach to them by this network. Alternatively, firms
can also offer the life time, sound absorption, light reflecting and heat
absorption values of the materials. They may be given by a model based system
where these characteristics for example, may be simulated by the aid of color.

95

Another possibility of the interface may be the analysis of cost of the project
according to the updated values; and when the designer changes the texture with
another, the system should be able to change the estimated cost.

Formal specification is a valuable discipline and help to eliminate the
ambiguity that is often present with informal specifications. The functionality of
a system and the behavior of a system are essentially two subjects for a formal
definition. Functionality can be defined as model-based or as algebraically. A
model-based specification is more suited to systems for architectural design
which uses drawings to represent physical objects and their configurations in
space. But with simple set of operations algebraic specifications are also
adequate. In a purely algebraic specification, the data type is imphcit in the
operations, while in a model-based specification it is expressed in the constructs
of the model hke sets and hsts. In an architectural project, when thinking about
the types of lamps for example; serial codes, some numeric values, etc. wdl not
give enough information about the effect of this lamp when it is used in the
project. Instead of the hsts of numbers, the simulation of physical effects of
these lamps will aid the architect more for decision making.

On the other hand, the behavior of a system may be defined as possible
sequences of its states by model-based specifications. Expert systems for
example, express operations as mappings between states, with pre-and-post-
conditions. Baecker and Buxton state the importance of pre and post conditions
with three reasons: 1. the checking of particular constraints is tied to particular
operations, 2. the pre and post constraints for the operations act as a guide for
the implementor, 3. they are used to prove th a t the specification and
implementation are correct. (Baecker and Buxton, 1987) These arguments can
be illustrated for the design of two-dimensional layouts of rectangles for
example, that may be adapted to different domains. The expert system should
be able to systematically enumerate alternative solutions with interesting
tradeoffs, taking into accounts broad spectrum of criteria and practical concerns.
The domain knowledge may be incorporated as test rules, and may be adapted
to some domains, for example to the remodehng of residential kitchens:

l.The preprocessor may accept from the architect a problem statem ent
consisting of a context description and a list of objects to be allocated. For the
present domain, the context typically will consist of walls, windows and doors
forming the boundary of the kitchen; to these may be added existing fixtures
such as a radiators. All of these objects may be considered rectangles, and their
shape and position may be specified by architect through their corner
coordinates. From these specifications, the preprocessor may generate a

96

configuration that represents the given arrangement of context elements; it may
function as the starting configuration for the search.

2. Tester: The rectangles that have to be allocated can be called cfes^n objects to
distinguish them from the rectangles that make up a context. The design objects
may be allocated as: work area, sink, refrigerator, range, work counter. After
that, some conditions for each object may be described to lead to the criticism.
These conditions may be such as “back of refrigerator cannot be placed against a
wall”, “sink should have space on either side for a work counter” or “work area
should be accessible from the door or opening that leads to dining area” etc. The
complete set of test rules leads to the alternatives.

3. Post-processor: The post-processor invoked by the control strategy, should
refine solutions.

The inference mechanism controls the strategy of the system. It should be
capable of handling both goal driven and data driven strategies. The sequence of
strategy should be such that only the information required is asked and the
architect should be able to provide information at as high a level as he is
capable. It must have an efficient selection mechanism and the capability of
undoing any portion processed if required. It should distinguish between the
inability to arrive at a particular consequence and that consequence failing. The
explanation facihty must be able to explain why the system needs a particular
piece of information; how it arrived at a particular conclusion; which conclusions
failed and why, and why a particular conclusion was not reached.

The user interface provides access to the architectural operations, that is it
generates a model within the user interprets the effects of the operation. The
architect’s interpretation of the operation is therefore strongly modified by its
interface. So interface constraints on their design, since unless such effects are
taken into account, what the architect perceives may be at odds with the system
designer’s intentions.

5*2. N eed for nxytotypes of the A niiitectural U ser Interface Design

One difficulty in designing interactive systems is that the designer and the user
may not have a clear idea if what the system wiU look like when it is done. So
several works must exist. First, there must be good evaluation techniques so
that the strengths and weaknesses of the design can be determined. Second,

97

there must be rapid prototyping tools that make it easy to try out new ideas. As
prototype versions become available, testing can be more elaborate. These
prehminary tests help build confidence that the acceptance test can be satisfied
when the implementation is complete. Rapid prototyping has the advantages
that ideas can be tested immediately while they are still fresh in mind, and that
users and designers get immediate feedback, thus -rewarding their sense of
participation in the design.

More recently, emphasis has been placed on the importance of architectural
design knowledge as the origin of the intuitive and irrational decisions made by
the interface designer. The availability of knowledge to extend the design space
in a computer based environment, coupled with effective prototypes for searching
the design space for alternative solutions, has become the basis of a promising
new direction in computer-aided architectural design.

For many interactive systems, the optimal design and prototyping approach is
to perform the complete interaction design on a major subsystem. The
interaction design for that subsystem then becomes the model for other
subsystems to be used by other users having similar skills, to achieve a
consistent user interface throughout the system. In a computer-aided
architectural environment, architects’ experts can be simulated by a set of
prototypes in which each system has a special domain. In this respect the main
system will not be too loaded, and each subsystem will be expert in its context
and customize for the needs of a particular area. A coordination facihty can
integrate these subsystems such that the computer system as a whole will
participate as an assistant during the development of a design solution. In
functional terms, such an assistance facility could be referred to as a design
advisor. The design advisor in the prototype interprets a drawing as it is being
made by a designer working in a CAD environment. It reacts in real-time to
monitor the evolving floor plan from the viewpoints of experts in the domains of
access, climate, cost, hghting, sound, structure, etc.

One of these systems may be a prototype for sunhght design for example. The
interface may be shown to the architect with the sunlit room under investigation
which may be presented as five rectangular black areas, representing the floor
and the four walls folded flat into the plane of the computer screen. Building
orientation, latitude and times of day and year should be selected by architect
using familiar computer techniques such as scroll bar and click-dragging. AH
these variables should be easily accessed and be visible on the interface to
facilitate modification at any time. The final element of the interface may be the
simple graphical toolbox which allows the architect to draw on the walls or floor

98

of the room. The tool should be able to be used in two principal ways. The
architect should be able to draw any desired window shape on the room wall and
the tool immediately shows the areas of sunlight cast for the times, location and
orientation specified. Alternatively, and more interestingly in the context of the
present prototype, the architect should be able to sketch a desired patch of
sunlight to which the tool responds by showing the shape and location of the
window(s) needed to cast a patch of sunlight of this particular shape. This
clearly gives the architect access to a real design tool; window locations should
be able to be chosen to give a desired performance characteristic.

This proposed application may be only a prototype. It may be applicable to
complex room shapes and fine control over orientation. The principal is
establishing, and that is the important issue. However, the tool is actually aid to
the architect’s understanding of sunlight penetration into the buildings.

An obvious development would be to hnk the kind of apphcation described here
to a drawing-modelling CAD package, the aim being to give the architect
interactive feedback about the technical performance of the building as it is
being developed in the CAD application. For example the system may give some
ideas to the architect about the electromagnetic smoke of the room, its
ionization, mineral and non-mineral balance, etc. -that means the effects that
cannot be seen easily by pure eye. It can analyze the conditions of the room -such
as light, heat, effect of sun, etc.- and suggest an appropriate plant for example,
for the current room. A proposal for the system in making these suggestions
may be for example the simulation of color spectrum.

Another prototype may be introducing the time dimension. A serious drawback
may be to optimize the system’s speed as an administrative aid. A number of
the key views may be colored with a color paint program. This may be a slide
show utdity, as well as the ability to cycle colors through time. It may be easy to
create the appearance of night gradually falhng over the building and hghts
coming on, as well as the reflections of passing clouds in the exterior mirror
glass. The computer screen may introduce the passage of time and the effects of
moving light and shadow.

In addition, to express ideas in architectural language, current systems must
model objects. More powerful systems can add other features such as texture
mapping and can be faster and smoother. Yu (1992) defines the ways that a
computer can prepare the prototype of an architectural design element with the
following perceived dimensions:

99

. Computers can create holographic projections, but this “synthetic dynamic
holography” requires tremendous computer power. Systems under development
at such research sites utihze supercomputers to provide the number crunching
required, and even then only small and short animations are made.

. Cylindrical displays that display an image from any angle in 3D; these “true
volume images” rotate a 2D matrix of light emitting diodes or similar light
sources inside a clear cylinder to create a 3D image.

. CAD systems can produce models with processes often used in computer-aided
manufacturing for product design. This “sohd prototyping” generates model of
3D images by using lasers to fuse metal powders or hght sensitive plastics,
forming a physical model. However this is difficult to implement when an
object has many surfaces inside other surfaces as in the simplest house.

. Polarization system which allows to view the object from different angles and
gives a sense of three dimensional.

. Miniature television screens, goggles and gloves which make believe the user to
be inside of a computer-generated environment: virtual reahty.

In conclusion, the need for prototypes of user interfaces can be summarized as
follows:

1. It enables the user to evaluate the interface in practice and to suggest changes
to the interface.

2. It enables the developer to evaluate user performance with the interface and
to modify it so as to minimize user errors and improve user satisfaction.

3. It facilitates experimentation with a number of alternative interfaces and
modification of interfaces.

4. It gives the user a more immediate sense of the proposed system and thereby
encourages users to think more carefully about the needed and definable
characteristics of the system.

5. It reduces the likelihood of project failure (Preece and Keller, 1990).

5. 3. Standardizatioai cf the Architectural User Interface Design

The increasing need for intercommunication and information technology affects
the developments in standardization. The single user becomes an important
factor in the standardization process. Studies have proved that the character
set, graphics, languages, software apphcation, screen and board are the issues
with the highest percentages of standards produced.

100

User Interface Management System is a software system that supports the
presentation of data on the screen and accepts users reactions, it also manages
all user interactions with the computer independent of the application it is
running. User Interface Development System is an integrated set of tools used
by programmers for the user interface design and development. A major
advantage of this system is that it helps separate the design of the user
interface from its implementation.

In computer-aided architectural design, standards in information of structural
conceptions onto the constructs of a given system are very important. Effective
use of a draughting system to construct a plan or elevation, for example often
depends on recognition of repeating parts and the structure of the repetition,
followed by shrewd use of copy-and-transform operations. During this work, the
architect should have to know where he is, how did he get here, where can he go
and how to get there. So, the site and mode properties where the architect works
should be defined in a standard manner.

On the other hand, effective use of a surface modeler may depend on the ability
to see building as a collection of translationaUy and rotationaUy swept profiles.
Effective use of a solid modeler may depend on the capacity to see complex
shapes as unions, intersections or differences of simpler ones. And, effective use
of an interactive walk-through system may depend on the ability of selection and
identification mechanism. For this reason a proposal may be as follows: Clicking
on the left or right side of the screen may turn one in that direction. Clicking in
the centre may move one forward. Clicking on a door, skylight or window, may
jump one through it. Such standards can be developed through practice in
construction of representations of conceptually demanding objects, such as
major works in architecture.

Early CAD systems provided such primitive interfaces (e.g. keyboard
commands) that they virtually eliminated the need for hand-eye skills. But as
architectural systems provide broadband interfaces, and are able to interpret
complex gestures and to provide much richer forms of feedback, the need for
hand-eye skills becomes important. Skilled architects of CAAJD systems should
be able to execute complex gesture patterns, attuned to all the nuances of the
feedback that flows from them, and ready to make subtle adjustments in
response. So for architects who express their ideas graphically, the most
important features of the graphical user interface is the device independence. In
addition to this, the look and feel composition, and the data interchange
possibilities are very important. In this respect, all software packages of a
dominating system which should offer these possibdities in all different micro’s

101

operating system environments should have the same feature, and operate in
essentially the same manner. So once an architect learns one apphcation, they
should have learned the basics of them all. Because of this consistency,
architects can copy the work they have done in one application and paste it into
another. This situation will let the architect devote more time to getting work
done, and less to memorizing difficult computer commands and provides the
possibihty to influence the finalization of the standards in a way favorable for
the interests of the architects.

Standardization bodies should be encouraged to bring together the different
standardization activities concerning the user interface areas that are spread
across different sectors and form standardization sectors dedicated to the user
interface area. But however integrated stand-alone CAAD systems that store all
the required information in a single file sometimes require the architect to
commit himself to decisions that he is not yet ready to take. Typically a system
might require the designer to specify all components in a hbrary before a single
line can be drawn. Whereas architects prefer to leave themselves room to
manoeuvre by not being too definitive with their ideas at the beginning. By
slowly building up design information from sketch doodles to sketch plans,
through models and general arrangement plan to detailed schedules and
specifications, there should be a better chance that the right decisions are taken
at the appropriate time.

Regional and local deviations, such as different date, time and addresses
formats, currency symbols, punctuation and decimal point marks, and also more
general ones such as character sets and collating sequences, appear to play an
im portant role on the user perception of the computer system. The
standardization bodies should be encouraged therefore to reflect more on the
interests of local user groups with different cultural traditions, languages,
alphabets hke standards on character sets, keyboards, command languages and
presentation formats.

102

6. CONCLUSION:
EVALUATION OF THE INTERFACE FOR CAAD

Very often the software instruments compel the architect to organize his own
work according to the logic and the methodology offered by the software used,
which sometimes do not coincide with his working method. The instruments
which aid design, should make it possible for the architect, even he is not an
expert, to describe, access and control the desired aspects of the buildings in the
process of definition in language which is simple and adequate to his own
working method. So, it can be argued that, the nature and power of the
conceptual tools available to the designer determine in no small measure what
he can conceive and accomphsh. And conversely, the hmitations of methods will
be expressed as hmitations of the design. For this reason it should be accepted
that, the aspects of architectural design activity should be at the basis of the
creation of software systems aimed at collaborating with the architect in this
type of activity. The architectural product will need to be evaluated during the
development process. This evaluation should be intended to estabUsh that the
usability goals have been achieved, and redesign of the user interface may be
necessary. First of all evaluation of architect-computer interface must address
all interfaces between the architect and the computer, and not only just the
display interface. Secondly, an evaluation, to be effective in producing an
improved system, must begin earher than when the program is completed.

When thinking about the role of architects, we express that they represent
physical objects and their configuration in space. Since they prefer to describe
their designs through drawings as well as specifications, the system should
allow a familiar language -the picture- where the designer can talk to the
machine graphically and the machine can graphically respond in turn. This
graphical representation will allow for the dynamic manipulation of geometry,
which will provide the direct interaction between the architect and the object
form. This is a valuable feature of the craft process that may be potentially
recovered by CAAD.

There are, however some problems attached to the integration of computer-aided
architectural design with application programs. The first problem is that.

103

usually, the CAAD programs contain graphic databases in a form not readily
accessible from the application programs. Another problem is that the typical
CAAD system today is a general purpose graphical system. It understands lines
and circles, text, and perhaps raster images. In some cases, it understands
three-dimensional forms -planes, surfaces and sohds. It does not know anything
about buddings or architecture. AH the meaning mapped from this graphical
representation is derived by architects using their knowledge and experience.
These systems have low intelligence but are highly flexible. The same software
is equally adept at drawing a budding, a landscape or a ship.

A proposal especially for a computer-aided architectural design may be an
approach on a different level. The elements that the system deals with may be
slabs and walls, doors and windows and roofs and roof-hghts. This wdl be more
intelligent to an architect; but it can be less flexible at the same time. There
may be general purpose objects intended for furniture and equipment, but how
about columns, beams, rafters, pipes, ducts, pdes and all the hundreds of other
elements that might occur in a building? In general it wdl be hai’der to deal with
them than in a general purpose system.

Another approach which treats buddings as sculptural volumes, knows about
their subdivisions into floors and zones, and knows the location of cores and
circulation. Additionally it may deal with occupants -people, plant and
processes. This wdl be a more functional model than the others, and at the same
time hard to combine with them. Yet it wdl be better whde a budding concept is
being formed, and for cost planning and environmental analysis.

Another proposal may be the introducing the fourth dimension -the time- into
the computer-aided design process. With the virtual reahty technique architects
will soon be able to walk their clients through their proposed design in three
dimensions. However, they have some technical problems -such as the low
resolution of the head-mounted displays, the lag time between moving the eyes
and changing of the display, and the limited range of the tracking devices.
Virtual reality gives a whole new real estate to be developed. In other words, in
the future architects may find themselves designing virtual environments rather
than buddings, as these environments may be radicaUy different from anything
they have ever designed before. When thinking of virtual reality as a place to go,
the kinds of things that cannot be done in architect-designed buddings today can
be explored in it. The process of designing in this environment may in itself be a
radicady different approach to architecture. But if virtual reahty has a real
effect on architecture it must offer improved hardware; because in its most
common form it is really just graphics. Until the information that defines a

104

building is organized in a coherent, complete, and structured form, virtual
reality is just another means for making interesting pictures, and as such, is a
dead-end for the real business of using computers to describe the design of
buildings. Rather than another rendering device, architects need tools that unite
all the various aspects of design -plans, sections, specifications, estimates, and
code checks- into a single database.

Gradually virtual reality is not also a panacea for either the world’s or
architecture’s problems. There are technical, conceptual, and even ethical
questions that must be answered before it can be used in any meaningful way.
And these questions will not answer themselves. They demand that architects
re-examine both the way they design buildings and their social responsibility to
ensure that new technologies are used widely. They show promise, but its
growing pains are sufficiently disturbing to require that architects have to pay
careful attention to their continued development.

If what is required in architecture is a means of modeling so that a design may
be presented graphically, the elements modeled should be recognized and
understood by the mechanism before carrying out an operation. The machine
must further be able to communicate, access knowledge, discern changes in
meaning brought by changes in context, and reason i.e. make inferences: arrive
at conclusions and advise, explain, and/or justify the reasoning: revise the
reasoning and learn. In order for a computer system to understand a graphical
representation and make inferences it is necessary to incorporate sufficient
knowledge about the underlying physical objects for the system to carry out the
mapping between the syntactical representations and the required semantics.
Such a degree of understanding and discerning changes can be introduced in a
system through explicit knowledge representation, intelligence, inference
mechanism and explanation facility. To do this, the system must have a
sophisticated set of sensors, effectors and processors to view the real world
directly and indirectly. What makes this behavior unique and particularly
difficult to emulate machines is its extreme dependence on context: time,
locality, culture, mood, and so forth.

As a result, the future role of the CAAD system designer should be know how to
combine them so as to achieve both flexibility, intelligence and time without
excessive complexity.

The most likely route may be to construct a system in layers. This will treat the
system as composed of a hierarchy of objects, with each level being more
specialized and intelligent. At the root there will be general purpose object, from

105

which ascend user interface objects such as windows, icons and menus, process
objects such as commands and undo stacks and the famdiar graphical objects of
the general purpose CAAD system.
Intelligent building objects (like slabs and walls), will be at a higher level, and
will know how to represent themselves in the more primitive terms of graphical
objects in two-dimensions and three-dimensions, or even as text. They will also
contain their own rules for intelligent behavior, for example a window will know
that it must make an appropriate opening in a wall and a wall will know that it
must extend upwards to the ceding or to the structural slab. To retain generahty
it wdl be essential that these rules be easy to formulate and change according to
the needs of a project. This can be reahzed by the use of logic programming and
intelhgent knowledge-based systems.

The storage of a model constructed hke this, in such a way that it is accessible to
many different applications, presents an important problem. The techniques of
clipboard, scrapbook and import and export procedures may not be adequate,
and anyway cannot be used for substantial models. Current approach may be to
suggest a database to isolate the data from its applications and allow for
parallel access from all members of the team. However, relational databases are
not a good match with the object-oriented phdosophy, and something new wdl be
needed. Some hope may be that current research should be related with the
entity modeling, engineering databases and object-oriented databases which
should be converged into a post-relational solution.

If the objects in system have variable intelhgent behavior, then the way that a
designer interacts with them should be similarly variable. Thus the user
interface must be customizable. But, there is still no satisfactory way of deahng
with the ‘Teel” -the resulting behavior of the interface and the objects it controls-
other than a textual programming language.

In summary, tomorrow’s computer-aided architectural design systems will
combine graphical representation with direct interaction between the architect
and the object form; knowledge representation, intelligence, inference
mechanism and explanation facdity which will evaluate the budding elements
modeled, arrive at conclusions, and explain, justify and revise the reasoning; and
the fourth dimension -the time- which will provide walk through the proposed
design in three dimensions; and achieve both flexibility and customizable user
interface.

1 0 6

REFERENCES

Amheim, R. 1969. Visual Thinking. Berkeley: University of CaUfomia Press.

Baecker, M., and Buxton, W. A. S. ed. 1987. Readings in Human-Computer
Interaction: A Multidisciplinary Approach. California: Morgan
Kaufmann Publishers, Inc.

Baecker, R. M., and Marcus, A. 1989. Human Factors and Typography for More
Readable Programs. USA: Addison-Wesleyn Pubbshing Company,
ACM Press.

Barnard, P. J. et al. 1981. “Consistency and Compatibüity in Human-Computer
Dialogue.” International Journal of Man-Machine Studies. 15:87-
134.

BotteriU, J. H. 1982. “The Design Rationale of the System/38 User Interface.”
IBM Systems Journal 21: 384-423.

Boulay, B. D. et al. 1981. “The Black Box Inside the Glass Box: Presenting
Computing Concepts to Novices.” International Journal of Man-
Machine Studies 14: 237-249.

Bowman, W. J. 1968. Graphic Communication. New York: John Wiley and
Sons.

Brown, A. G. P., and Horton, F. 1992. “Computer Aids for Design Development.”
Computers In Architecture. Ed. P. François. UK: Longman Group
Limited. 15-24.

Brown, J. S. 1986. “From Cognitive to Social Ergonomics and Beyond.” User
Centered System Design. Ed. D. A. Norman and S. W. Draper.
London: Lawrence Erlbaum Associates. 474-475.

Bryson, S. 1992. “VR and Fluid Flows” IEEE Computer Graphics and
Application 12:18.

Card, S. K., Pavel, M., and Farrell, J. E. 1984. “Window-Based Computer
Dialogues.” Interact ‘84. 355-359.

Carroll, J. M. 1982. “Learning, Using and Designing Command Paradigms.”
Human Learning 1:31-62.

____, 1987. “The Adventure of Getting to Know a Computer.” Readings in
Human-Computer Interaction: A Multidisciphnarv Approach. Ed.
R. M. Baecker and W. S. Buxton. California: Morgan Kaufmann
Publishers, Inc. 639-648.

107

Chi, U. H. 1985. ‘Tormal Specifications of User Interfaces: A Comparison and
Evaluation of Four Axiomatic Approaches.” IEEE Transactions on
Software Engineering SE-11: 671-685.

Cockton, G. 1990. “Designing Abstractions for Communication Control.” Formal
Methods in Human-Computer Communication. Ed. M. Harrison
and H. Thimbley. Cambridge: Cambridge University Press. 240-
242.

Cook, R. 1992. “Serious.” Computer Graphics World May: 40-48.

Coons, S. A. 1963. “An Outhne of the Requirements for a Computer-Aided
Design System.” AFIPS Conference Proceedings 23: 299-304.

Cross, N., and MAVER T. W. 1973. “Computer Aids for Design Participation.”
Architectural design May” 46-50.

Cross, N. 1977. The Automated Architect. London: Pion Limited.

Davis,R. M. 1966. “Man-Machine Communication.” Annual Review of
Information Science and Technology. Ed. C. A. Cuadra. New York :
Interscience. 1: 221-254.

Dean, M. 1982. “How A Computer Should Talk to A People.” IBM Journal 21:
424-453.

Dondis, D.A. 1973. A Primer of Visual Literacy. Cambridge, Mass: MIT Press.

Draper, S. W. 1986. “Display Managers. ’’User Centered System Design. Ed. D.
Norman and S. Draper. London: Lawrence Erlbaum Assoc. 339-
352.

Drury, M. 1992. “VirtuaUv Endless Possibhities.” CompuServe Magazine. 2:6.

Durgun, F. B., and Ozgiif B. 1990. “Architectural Sketch Recognition.”
Architectural Science Review 33: 3-16.

Eastman, C. 1989. Architectural CAD: A Ten Year Assessment of the State of
the Art Computer-Aided Design. London: Butterwoths.

Fallon, K. 1990. “Beyond Computers as Pencils.” Architectural Record
November: 28-31.

Fano, R. M., and Corbato, F. J. 1966. “ Time Sharing on Computers.” Scientific
American 214: 129-140.

Foley, D. J. Wallace, V. L. and Chan, P. 1990. “’fhe Human Factors of Computer
Graphics Interaction Techniques.” Human-Computer Interaction .
Ed. J. Preece and L. KeUer. UK: Prentice HaU International Ltd.
67-121.

Furnas, G. W. et al. 1987. “The Vocabulary Problem in Human-System
Communication.” Communication of the ACM 30: 948-955.

Gaines, B. R.,. and Mildred, L. G. S. 1986a. “Foundations of Dialogue
Engineering: the Development of Human-Computer Interaction.”
International Journal of Man-Machine Studies Part 1, 24:1-27.

108

____ , 1986b. “Foundations of Dialogue Engineering: The Development of
Human-Computer Interaction.” International Journal of Man-
Machine Studies Part II, 24: 101-123.

Gantz, J. A 1992. “Virtual Market.” Computer Graphics World May : 27-28.

Gittins, D. T. et al. 1984. “An Icon-Driven End-User Interface to Unix.”
International Journal of Man-Machine Studies 21: 451-461.

Green M. A. 1979. “Graphical Input programming System.” Diss. Toranto U.

Gromala, D. J. 1992. “Multi-Media in Graphic Design.” Academic Computing
In Macintosh Environment I I I . Eskişehir: Anadolu University
Press. 1-9.

Haggerty, M. 1992. “Serious Lunacy: Art in Visual Worlds.” IEEE Computer
Graphics and Apphcation 12: 5-7.

Hammond, N., and Barnard P. 1984. “Dialogue Design: Characteristics of User
Knowledge.” Fundamentals of Human-Computer Interaction. Ed.
A. Monk. London: Academic Press, Inc. 130-143.

Han.sen, W. J. 1971. ‘TJser Engineering Principles for Interactive Systems.”
AMPS Conferences on Proceedings 39 :523-532.

Henry, T. R., and Hudson, S. E. 1990. “Multidimensional Icons.” ACM
'IVansactions on Graphics 9:133-137.

Hersh, H. N. 1982. “Icon Assessment. ” London: Digital Equipment Corp.,
Corporate Research, unpubhshed document.

Hix. D., and Schulman, R. S. 1991. “Human-Computer Interface Development
Tools.” Communications of the ACM 34: 74-87.

Hooper, K. 1986. “Architectural Design: An Analogy.” User Centered System
Design. Ed. D. A. Norman and S. W. Draper. London: Lawrence
Erlbaum Associates. 10-13.

Hornbuckle, G. D. 1967. “The Computer Graphics/User Interface.” IEEE
Transactions on Human Factors in Electronics HFE-8:17-22.

Huggins, W. H., and Eentwisle, D. R. 1974. Iconic Communication: An
Annotated Bibhographv . Baltimore: The Johns Hopkins Press,
Md.

Johnson, T. E. 1963. “Sketchpad III.: Three-Dimensional Graphical
Communication with a Digital Computer.” AFIPS Conference
Proceedings 23:347-353.

Kammersgaard, J. 1990. “Four Different Perspectives on Human-Сотриter
Interaction.” Human-Computer Interaction. Ed. J. Preece and L.
KeUer. UK: Prentice HaU International Ltd. 44.

Kenzie, J. Me. 1988. “Guidehnes and Principles of Interface Design.” Designing
End User Interfaces. England: State of the Art Report, Pergamon
Infotech Limited. 82.

109

Kiger, J. I. 1984. “The Depth/Breath Trade-off in the Design of Menu-Driven
User Interfaces.” International Journal of Man-Machine Studies.
20: 201-213.

Lanier, J. 1992. “A Virtual Market.” Computer Graphics World May: 27-28.

Licklider, J. C. R. 1960. “Man-Computer Symbiosis.” IRE Transactions on
Human Factors in Electronics HFE 1: 4-11.

____, 1968. “Man-Computer Communication.” Annual Review of Information
Science and Technology. Ed. C. A. Cuadra. New York: Interscience.
3: 201-240.

Licklider, J.C.R., and CLARK, W. E. 1962. “On-Line Man-Computer
Communication.” AFIPS Conference Proceedings 21: 113-128.

Lodding, K. N. 1983. “Iconic Interfacing.” IEEE Computer Graphics and
Applications March/April: 11-20.

Macleod, D. 1992. “Computers: Virtual ReaUty.” Progressive Architecture 73:
55-56.

Maguire, M. 1982. “An Evaluation of Published Recommendations on the
Design of Man-Computer Dialogues.” International Journal of
Man-Machine Studies 16: 237-261.

Mantei, M., and Haskell, N. 1983. “Autobiography of a First-time Discretionary
Microcomputer User.” СНГ 83 Proceedings 2: 286-290.

Marcus, A. 1983. “Graphic Design for Computer Graphics.” IEEE Computer
Graphics and Application 3: 63-70.

МШег, R. K., and Walker, T. C. 1990. Natural Language and Voice Processing.
Lilburn The Fairmont Press, Inc.

Monk, A. ed. 1984. Fundamentals of Human-Computer Interaction. London:
Academic Press, Inc.

Moran, T. P. 1981. “The Command Language Grammar: A presentation for the
User Interface of Interactive Computer Systems.” International
Journal of Man-Machine Studies 15: 3-50.

Naimark, M. 1992. “Serious Lunacy: Art in Visual Worlds.” IEEE Computer
Graphics and AppUcation 12: 5-7.

Negroponte, N. 1970. The Architecture Machine. Cambridge, Massachusetts:
MIT Press.

Nelson, T. H. 1987. “Human Factors of Interactive Software.” Designing the
User Interface: Strategies for Effective Human-Computer
Interaction . Ed. B. Shneiderman. USA: Addison-Wesley
Publishing Company. 9.

Nickerson, R. 1969. “Man-Computer Interaction, A Challenge for Human
Factors Research.” Ergonomics 12: 501-517.

110

Nickerson, R. 1969. “Man-Computer Interaction, A Challenge for Human
Factors Research.” Ergonomics 12: 501-517.

____, 1981. “Why Interactive Computer Systems are Sometimes not Used by
People Who Might Benefit From Them.” International Journal of
Man-Machine Studies 15: 469-483.

Nievergelt, J., and Weydert J. 1987. “Sites, Modes and Trials: Telhng the User
of an Interactive System Where He Is, What He Can Do, and How
to Get to Places.” Readings in Human-Computer Interaction: A
Multidisciplinary Approach. Ed. R. M. Baecker and W. A. S.
Buxton. Cahfomia: Morgan Kaufmann Pubhshers, Inc. 438-441.

Norman, A. D. 1986. “Cognitive Engineering.” User Centered System Design.
Ed. A. D. Norman and S.W. Draper. London: Lawrence Erlbaum
Associates. 41-54.

Philhps, R. 1991. “An Interpersonal Multimedia Visuahzation System.” IEEE
Computer Graphics and Applications 11: 20-27.

IVeece, J. and Keller, L. ed. 1990. Human-Computer Interaction. UK: Prentice
Hall International Ltd.

Reichman, R. 1986. “Communication Paradigms for a Window System.” User
Centered System Design. Ed. D. A. Norman and S. W. Draper.
London: Lawrence Erlbaum Associates. 285-313.

Riley, M. S. 1986. “User Understanding.” User Centered System Design. Ed.
D. A. Norman and S. W. Draper. London: Lawrence Erlbaum
Associates. 161-169.

Rissland, E. L. 1984. “Ingredients of Intelligent User Interfaces.”
international Journal of Man-Machine Studies 21: 377-388.

Rosenman, M. A. et. al. 1988. “Solarexpert: an Expert System for Passive Solar
Energy Design in Housing.” People and Technology: Sun. Climate
and Building. Ed. S. V. Szokolay. Brisbane: Proceeding of the Joint
Conference of Anzasca and Anzses, University of Queensland. 121-
128.

Ross, D. T., and Rodriguez, J. E. 1963. ‘Theoretical Foundations for the
Computer-Aided Design System.” AFIPS Conference Proceedings
23: 305-322.

Ryan, D. L. 1986. Modern Graphic Communications. A CAD Approach . USA:
Prentice HaU.

Salvendy, G. ed. 1986. Human-Computer Interaction. New York: Elsevier
Science Pubhshing Company Inc.

Schneider, W. 1985. “Training High-Performance Skills: Fallacies and
Guidelines.” Human Factors 27: 285-300.

Shackel, B. 1969. “Man-Computer Interaction: the Contribution of the Human
Sciences.” IEEE Transactions on Man-Machine Systems 10: 149-
163.

111

Shneiderman, B. 1980. Software Psychology: Human Factors in Computer and
Information Sciences. Cambridge, MA: Wintrop Pubbshers.

____, 1982. “The Future of Interactive Systems and the Emergence of Direct
Manipulation.” Behavior and Information Technology 1: 237-256.

___ , ed. 1987. Designing the User Interface: Strategies for Effective Human-
Computer Interaction. USA: Addison-Wesley Pubhshing Company.
135-177.

Stotz, R. 1963. “Man-Machine Console Facihties for Computer-Aided Design.”
AFIPS Conference Proceedings 23: 323-328.

Sutherland, I. 1963. “Sketchpad.” Siggranh Video Review. New York: ACM.

Sutherland, W. R., Forgie, J. W., and MoreUo, M. V. 1969. “Graphics in Time-
Sharing.” A Summary of the TX-2 Experience 34: 629-636.

Szekeley, P. 1987. “Separating the User Interface from the Functionality of
Apphcation Programs.” ACM SIGCHI Bulletin 18: 45-46.

White, R. 1991. “Into the New World.” Artweek 22: 15.

Whitehead, A. 1984. Human Factors Aspects of Pointing as an Input Technique
in Interactive Computer Systems. London: Ergonomic Unit,
University CoUege.

Whitfield, D. 1967. “Human Skills as a Determinate of Allocation of Function.”
The Human Operator in Complex Systems. Eds. W. T. Singleton,
R. S. Easterby, and D. Whitfield. London:Taylor and Francis. 54-
60.

Winfield, I. 1986. Human Resources and Computing. London: William
Heinemann Ltd. 52-60.

Wright P. 1988. “Communicating with the User.” Designing End-User
Interfaces. England: State of the Art Report, Pergamon Infotech
Limited. 123-129.

Yu, L. 1992. “Virtual Reahty Demonstrated.” Progressive Architecture 73: 30.

112

