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ABSTRACT

MATHEMATICAL MODELS OF EVOLUTION

Hakan Ozaktasg
M.S. in Industrial Engineering
Supervisor: Assoc. Prof. Béla Vizvdri
November, 1992

Two categories of evolutionary models are analyzed. The first category
is the so-called autogenesis phenomenon. The emergence of self-organization,
which has been discussed previously by Csanyi and Kampis is verified. The
model is extended to an interrclated multi-level autogenesis system. Similarly,
self-organization is observed in a hierarchical order for each level. The sec-
ond category is the optimization model ol evolution. An ongoing process of
consecutive LP runs associated with random perturbation of the parameters
at each step, is designed to simulate the evolutionary mechanisms (mutations,
variations and selection) and the population dynamics ol a hypothetical cco-
logical system. Two different LP approaches for Lotka-Volterra systems are
compared and contrasted. A briel history of evolution and some mathemat-
ical models that have been constructed up to date are also described in the

beginning chapter.

Key words: Isvolution theory, evolution models, neo-Darwinism, neutral-
1sm, mutation, selection, autogenesis, population dynamies, modelling theory,

linear programmin g, duality.
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OZET
EVRIMIN MATEMATIKSEL MODELLERI

Hakan Ozaktas
Endustri Muhendisligi Bolumi Yiksek Lisans
Tez Yoneticisi: Dog. Béla Vizvari
Kasim, 1992

IEvrim modelleri iki kategoride incelenmektedir. Birincisi kendindenyaratilis
ad1 verilen sirecin modelidir. Bu titr modellerde var olan ve daha énce Csanyi
ve Kampis tarafindan basit bir modellemesi de yapilmig bulunan, zaman i¢inde
‘kendi kendini diizenleme’ dogrulanmaktachr. Model ¢ok duzeyli kendinden
yaratilig sistemi bi¢iminde daha kapsaml bir hale getirilmektedir. Benzer bir
kendi kendini diizenleme siireci, her dizeyde hiyerarsik bir bicimde meydana
gelmektedir.  Ikinci kategoride, evrimin optimizasyon modeli incelenmigtir.
Burada, parametrelerin her defasinda rassal bir bigimde biraz degigtigl; pesi
sira tekrar eden dogrusal programlama algoritmalanyla, bir ckolojik sistemin
dinamik yapisi ve evrimsel mekanizmalarm henzetimi yapilmaktadir. Lotka-
Volterra sistemleri igin dogrusal programlama yaklagimlar incelemesi ve kargi-
lagtiriimast yapilmaktadir. Fveim Georisinin tarihi ve bugtine kadar vapilong

olan bazi matematiksel modeller raporun baginda kisaca dzetlenmektedir,

Anahtar sézcukler. IEvrim teorisi, cvrim modelleri, yeni-Darvinizin, not-
ralizm, mutasyon, dogal segme, kendindenyaratilig, niifus dinamigi, modelleme

teorisi, dogrusal programlama, ikillik.

\



“...it at once struck me that under these circumstances favorable
variations would tend to be preserved, and unfavorable ones to be
destroyed.  The result of this would be the formation of a new

species.”

Charles Darwin!

"“The Autobiography of Darwin and Selected Letters.”, Dover Publications, Inc.
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Chapter 1

Introduction

Ivolution has been a field of bitter controversy since the time of the invention
of the concept The discussions on the issue have previously been based on the
contradictions with the existing beliels related to creation. Later on, criticisms
on the plausibility of the theory have also been made and alternative opinions

to Darwinism have been placed.

svolution has been a field of interest to many scientific disciplines, The pri-
mary concern of evolution is related Lo biology, but the ficld has been popular
for physicists, applied mathematicians and statisticians as well. The contri-
butions of these disciplines, even to the purely biological aspects of evolution

have been mostly indispensable.

The popularity of evolution is even though surprising. Probably not any
other field of science has taken so much recognition by the entire world of
scientists. Tt is even a fact that this much atlention to this specific concept
may become harmful to the original idea itsell. In general evolution is an
overused term, mostly it is used indicating some progress or change-—as it
does also for Darwinian evolution--so one has to be careful when interpreting

the written material npon the issuc.

The approaches Lo the problems related to evolution have been diverse.
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There is not a generally accepted mathematical model for evolution, the models
which have been constructed so far are able to describe simple population

dynamics and some biological phenomena such as mutation.

Despite the considerable developments of the mathematical models of evo-
lutionary problems the field is still in its infancy [Feistel and Ebeling, 1989].
The reason is probably the just stated fact; there hasn’t been a unified ap-
proach, an outlined subdiscipline for evolution in general, instead there have
been many different attempts to solve some subproblems of the field. So de-
spite the immense literature contained, the point that has been reached is not
too far, though significant results have been obtained. Of course modeling of
this very complicated process is not trivial and immediate developments are

not to be expected.

A Dbrief history and underlying concepts of the theory of evolution and
natural selection is given in the next chapter. Also some mathematical models
which have been dealt so far are discussed shortly. However the ones that
are described are those which are most popular and it has to be reminded
that a comprehensive summary of the evolution models is almost impossible.
This is both due to the widespreadness of the topic and the fact that most
models in literature are small, very specific cases of interest. ISvolution is a
topic of concern to physicists, biochemists, mathematicians, system theorists,
statistical physicists and operations researchers as well as biologists. Some
related topics, self-organization, chaos, thermodynamics are briefly outlined.
It has to be reminded that these issues have extreme importance for the further
developments in evolutionary theory. It wouldn’t be surprising if a significant

progress in evolution is achieved within the next decade.

The models that have been constructed can be divided into two classes.
The first is the models of molecular (primitive) biological structures. All the
living structures from viruses to elephants carry their genetical identities in
their chromosomes, in the form of DNA and RNA chains. For an individual
this genetic code is unique. Tt is evident that life has begun as an accidental

gathering of certain molecules, which have formed the simple DNA and RNA
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molecules and thus triggered the process of formation of the living structures.
The evolution of such molecules have been studied by Eigen mainly, in [Eigen,
1971] where the biochemical foundations of the process is given and in [Bigen
and Schuster, 1977], [Eigen and Schuster 1978a}, [Eigen and Schuster, 1978b]

where the kinetic model is constructed.

A certain autogenesis model has been defined by Csdnyi and Kampis in
[Csényi and Kampis, 1985]) where the model foundations are described and in
[Kampis and Csdnyi, 1987) where the implementation of the model is made.
The essence of the model is the emergence of a living structure, throughout
the process of forming of an informational organization of the molecules, a
functional structure by means of itself, i.e. sell-organization. The genetic code
stored as a form of DNA or RNA molecules is a sort of functional organization.
So the idea descends from the appearance of the RNA and DNA molecules by
self-organization. Similar models have existed in literature and are discussed
in [Csanyi and Kampis, 1985] and [Kampis and Csanyi, 1987]. Though each
of them are different models the idea in all of them is similar. Formation of a

primitive organization of molecules enables the emergence of life.

A similar program to the simulation model described in [Kampis and Csanyi,
1987] has been written and implemented. The results obtained have been quite
similar. After that the program was extended to the multi-level structure of
autogenesis process, which was described in the formal models in [Kampis and
Csdnyi, 1987]. The model universe has been slightly altered for this model. The
discrete grid space was replaced by a set of randomly distributed components,

with an initial random formation of a functional structure.

As a result of this new model; a similar development of an organized struc-
ture was viewed. Additionally the formation of more complicated structures
were also analyzed, by the use of this hierarchical system. The results are

demonstrated in the following chapters.

The second model of interest has been a simple model of an ecological en-

vironment, the descendant of a Lotka-Volterra model of population dynamics.
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The core part of this model is the lincar balance inequalities of limited re-
sources; the feasible set of the population sizes for all of the species that are
of concern. Within this system the cumulative value of Darwinian fitness (the
survivor of the fittest principle) for different populations, is tried to be maxi-
mized, as a measure of the total fitness of the entire ecosystem. Thus an LP
model is adopted, because of its simplicity and its reasonable representative
characteristic of the dynamics of the problem. The LP optimization is consid-
ered at a fixed point in time where the parameters of the problem are assumed
to be stable. Thus the idea at such a time is to determine the objective target-
ing position of population sizes, that would be tried to attained, in the next

equilibrium point.

The next task that has been done was led from the different approaches
of the dynamics modeling. Apart from the consumption balance cquations,
one might consider the minimal benefit inequalities for the whole ecosystem
to survive. Here of course, those species are seeking the ways of exploiting
natural resources to survive, and the objective should be to minimize the total
loss that is given to Nature in this way, so Nature is trying to minimize the

increase of entropy throughout the exploitation of resources.

So the model remains the same except the instant of optimization which
finds out the best value of the ecosystem that would be a future target state.
The two approaches are compared and contrasted. [t is left as an open question
whether two types of optimization have something common in reality and this

sort of similarity can be generalized to some economical models.

Some of the terminology used may be unknown to the persons who are not
involved with biology. A short glossary of the fundamental terms and several
concepts (such as the Hardy-Weinberg equilibrium) that have been used mostly,
has been put at the end of the report, to faciiitate the understanding of the

text.



Chapter 2

History

In this chapter a brief description of the developments achieved in the subject of
evolution models will be presented. Also some underlying concepts of evolution
will be introduced to serve as a background for the discussions that will be made

in later chapters.

As an initial discussion; a short history of the emergence of evolutionary
thought will be given, starting fromn Darwin’s theory of natural selection. Fol-
lowing this, some mathematical models of the evolution problem will be briefly

discussed.

2.1 Darwin’s Principle of Selection

In this section a summary ol Darwin’s ficld rescarch and his inference of the
theory of evolution is given. It is not intended to cover all details of his work,
but only to remind (or make acquaintance if the topic is not familiar at all)
the fundamental facts that are important for understanding the present work.

The details can be found in [Starr and Taggart, 1989].

Darwin was led to his theory of evolution after decades of studies, travel-

ing around the world. He had noticed two things which were striking, during

D
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his trip to South America. The first was the glyptodont fossils which he had
encountered in Argentina. It was an animal that had been extinct, hut it was
queer that the fossils indicated a surprising similarity between the glyptodonts
and the armadillo, an animal existing in South America. It was interesting that
two such similar animals had been living in the same part, of the world, though
I quite different time intervals. Another fact was the variation of traits of lo-
cal populations of the same species; the famous example he had observed was
the finch species of the Galdpages Islands, where the local populations were
confined to several islands, separated with some distance. Each local popula-
tion had differentiation in characieristics such as the beak shape, coloration,
etc. He had seen nothing like this in England, which was a small island where

environmental conditions did not vary much.

After years of study, Darwin published his theory in 1858, after having re-
ceived a paper from Alfred Wallace, who also concluded in a similar theoretical
framework. Wallace had also carried out ficld investigations in South America

and Malay Archipelago and obtained similar results with those of Darwin.

While formulating his theory of natural sclection, he based his observations
on artificial selection; which was used for sclective breeding of several domestic
animals such as dogs, cows, or pigeons. To illustrate an example of artificial
selection , il a pigeon type with black tail is desived, only those with black tails
are permitted to mate. Continuing on in this manner after 3 or 4 generations,

the whole population becomes black tailed.

The principle of natural sclection is similar. A certain species population
exhibits a diverse variely of characteristics. The competition for survival takes
place both within and between the populations of species. Because of scarce
resources the struggle for life enables only those species with favorable charac-
teristics to survive and reproduce properly-—and thus inherit those favorable
characteristics. The remaining ones die out, in time. Thus the {requency of
those favorable characteristics and traits within a population (or throughout
the entire ecosystem) increases gradually. So evolution occurs. Here it can be

seen that Nature is mainly the determining factor.
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The source of variation that arouses new characteristics is genetic mutation.
There are other sources of variation as well, such as crossover effect or chromo-
somal aberration, but the determinant factor is mutation. Though mutations
are rare events, they can canse an incredible amount of variation, by shuffling

existing alleles by other effects [Starr and Taggart, 1989].

Now it is possible to understand why so much different species have ever
existed in the world. Furthermore, the theory of evolution states that life has
originated as a simple form of organizational structure, and then it has evolved
to more complicated organisms, and thus different forms of living things have

spread out in this way.

To illustrate the formation of differentiation within a certain population
we may cousider the example ol the finch species of Galapagos Islands. Most
probably the species had originated on the mainland of South America, and
were spread to the islands from there. Now each of these islands are places
where environmental conditions vary considerably and even more important
is that the islands arc separated by a significant distance so that the local
finch populations are not in interaction with cach other. The reasoning that
leads Lo the conclusion that all of these different finch species have descended
from a single species which had heen originated on the mainland, millions of
years ago. At the time ol their formation the finches were a single population.
Throughout time some groups of those finches have migrated to those islands
where each group became isolaled. Svolution has occurred independently in
cach of the isolated groups according to the environmental conditions, thus
after some considerable time has passed (up to now) different formations of
characteristics and traits have developed. So today we have several different

finch species in Galdpagos Islands [Welch and Arnon, 1976].

The process can be generalized like this. At the beginning there is a certain
population in a certain geographic region. ISither a portion of this population
migrates to other regions which are geographically apart or some groupings

occur, so that interaction between these groups become impossible. Due to
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this isolation adaptations of different groups to different environmental condi-
tions through mutations and natural selection will result with the development
of thoroughly different phenotypic characteristics. At a certain time the local
populations will become so apart that successful mating hetween them will be-
come impossible. By this time those populations will be considered as different

species (Welch and Arnon, 1976].

Darwin’s theory of evolution has aroused everlasting discussions and always
been challenged. Ifossil evidence that have been obtained supports the theory,
though the subject matter is still open to discussion, and objections to the
weaknesses of the theory are still made. It is another fact that at Darwin’s
time the state of biology was quite subdeveloped when compared to that of
now. Mendel’s genetic inheritance principle, the structure of the chromosomes,
the DNA and RNA chains were yet unknown. So after these developments
the theory had to be revised under the light of these new achievements, but
his fundamental principles had remained the same. The revised evolutionary

thought is also named as neo-Darwinism.

The principles of selection have been applied to some other biological sys-
tems, which have similaritics to living organisms with such attribules as meta-
bolism, self-replication, mutation etc. The prerequisites for the so called Dar-

winian systems have been listed as [Bigen and Schuster, 1977);
e The system has to be self-selective. Tt has to stabilize certain structures
at the expense of others,
o The nature of this stability 1s dynamic.

e To evaluate this stability, there has to be some feedback mechanism which
ensures that advantage is reflected to those dynamic properties which are

responsible for amplification (sclf reproduction).
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2.2 Criticisms of Natural Selection and Ad-

ditional Discussions

As stated the theory of natural selection, has always been criticized and chal-
lenged with alternative views of evolution. The controversies are not, several
but quite numerous and it is beyond the scope of this rescarch to give an ex-
tensive study of these. Some of these criticisms and opposing ideas will be

discussed 1n this section.

The main controversy with the evolutionary thought arises from the im-
portance of chance effects in nature; is this a major factor determining the
evolution of species or is it only an insignificant factor unaffecting the prin-
ciples of natural selection? The conflict is also known as ncutralism versus
selectionism [Karlin, 1984]. To make the controversy clearer the phenomenon

of random genetic drift will be shortly explained.

Random genetic drift is the change of allele {requency in a population, due
to chance effects. In a population the frequency of an allele is constant but
random fluctuations occur, due to the dynam:c structure of the population.
Sometimes, il is possible that these fluctuations oceur in one direction only,
so that the frequency of an allcle changes afte: some considerable amount of
time. It is clear that the effect of genetic drift is more significant when the
population size 1s small, and it is moestly effective for isolated small populations.
Sometimes the effcct of chance leads to so much differentiation that new species
populations may arise. This is called the Founder effect [Starr and Taggart,
1989]. 1t is claimed by some neutralists that the major part of evolution is

occurring through random fixation, not selection [IKimura, 1990].

Some evolutionists claim that evolution takes place mostly due to chance
effects than the survival ol the fittest principle of natural sclection. According
to them much of the variations occur during the bottleneck periods, where the
population sizes arc reduced due to catastrophic events; and evolution is led by

genetic drift. Thus there arises another controversy: whether the evolutionar
- J)
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changes are gradual (as stated by the Darwinists), or sudden (as stated by the

neutralists, at times of bottlencecking periods).

Even in the case that the gradualist (Darwinist) view is adopted; the effect
of sudden changes during the bottlenecks of time can not he overlooked; since
in the history of the world there have heen some important bottleneck periods
following some catastrophic events, such as the formation of oxygen in the
atmosphere leading to the destruction of the unacrobic living structures, or
the presumed meteoric clash which led to the extinction of the dinosaurs and

many other species.

It has been of great interest for many scientists to apply the findings of
biological evolution to other arcas as well, such as sociology and cconomics.
However it is clear that the analogies between the principles of evolution re-
lated to these areas are very limited. Some system theorists have claimed that
biological game theory is a sort of economics [Rapoport, 1985]. But it is quite

doubtful that economical principles are applicable to biology and evolution.

More important than these controversies of evolutionary theory is the fact
that the topic has heen so widespread and diversified-—mostly independent be-
tween these disciplines--that there aren’t much accepted standards, approaches
to the theory, and the huge amount of related publications with so much dis-
tinctions have already become intractable. When a physicist writes a paper
on evolution, this may be quite unrelated to the author of another applied
mathematics paper in a biology journal. So under the field of evolution, there
are so many rescarchers studying, most being unaware of the things that are

done by their contemporary scientists.

Darwin’s theory of biological evolution is based on Newtonian mechanics; a
population at Hardy-Weinberg cquilibrinm is unchanged, unless it is outdated
by selection-—just as an object stays al rest until a force is exerted. However
this view has been criticized by biologists like von Bertalanffy, in that the living
systems have thermodynamic character and the classical views of physics 1s not
quite applicable. Atomistic view is only suitable for Newtonian physics and

obviously not for biological or social systems [Kampis, 1989]. The discussion
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1s made in some detail in the next section. Still today the relation hetween
biological evolution and physical or thermodynamical evolution is not clear,
there is no interdisciplinary consensus in the field of evolution. The issue is a

topic of debate [Brooks et al. 1984].

Another counter-argument that has heen put forward related to selection is
the following. The neo-Darwinian view regards natural selection as an external
force to the biological system, leading to genetic variations. The cocvolutionary
view that has been placed in the seventies, claims that evolutionary forces
(selection) can not be defined above the living populations, but rather within

close relation with them [KKampis, 1991].

2.3 Chaos, Self-Organization and Thermody-

namics

The theory of chaos is dealing with the question; is disorder in nature due
to chance effects only, or is there a certain order hehind this ‘disorder’? The
origin of the theory goes back to the analysis of meteorological events, and

[Bdward Lorenz was the first to formulate this theory.

There is a certain disorder in Nature, the shapes and positions of clouds
cte., a certain snapshot in time is never repeated. The theory tries to reveal the
uncertainties, insufficiencies of theoretical newtonian physics, such as entropy
and turbulence. Several related matters concerning the chaotic theory are
meteorological events, the shape of snow crystals and the fluctuation of the

population sizes of several wild animals.

The behavior of some simple lincar models of motion are nonproblematic.
However with nonlincar systems (such as the motions of fluids), the dynamics
are totally unknown in advance. The principle feature of chaos 1s that sim-
ple deterministic systems can generate random, unpredictable behavior [Crilly,

1991].  Such systems are very sensitive to initial conditions, if these initial
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conditions arc slightly modified, then the behavior of the system is drastically

affected.

The Lorenz model of a dynamic environment is a system of differential
equations and the characteristic of such a model is the existence of a certain
chaotic attractor!, and an orbit forming around this attractor. An initially
perturbed point, follows quite a different orbit around this attractor. This

type of unpredictable behavior is called chaotic.

This dynamic model (such as the atmosphere) is very sensitive to small
changes in the environment (weather). This fact is known as the ‘Butterfly
Effect’; i.e. the flap of a butterfly has drastic effects on the meteorological
events, a single flap of a butterfly here, may cause a cyclone in the Pacific

Islands after several weeks.

Until the 19" century physics was dealing with a mechanistic world, in
which natural phenomena were directed according to strict, previously defined
rules. This determinism led eventually to Laplace’s famous claim that given
enough facts, one could not merely predict the future but retrodict the past as

well.

However, the rise of thermodynamics in the 19" century-—-the only branch
of physics realizing the existence of an ‘arrow of time’, as stated in the pref-
ace of [Feistel and Ebeling, 1989]--challenged the timelessness implied by the
mechanistic picture of the universe. So if the world was a big machine, this new
field stated, that it was running down, using its useful energy and increasing

its entropy [Prigogine and Stengers, 1984].

The theory of evolution presents an immediate difliculty, by contradicting
the Second Law of Thermodynamics. This problem has lor long, been puzzling
and even still it is a topic for debate. The difficulty is the following. The
Second Law states that entropy is a nondecreasing quantity through time,

thus disorder should be increasing, whercas the theory of evolution states that

"Attractor is defined for fictitions point(s), center(s) for the chaotic system where the
orbiting trajectory is located around, for a set of initial starting points.
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information and complexity is increasing and thus better organized species are

forming and evolving.

To make the contradiction clearer, if the imagery of the world as a running
machine is reconsidered, the Darwinian paradigm introduces a contradictory
thought. Despite the fact that the world machine is running down, losing its
energy and organization, some subsystems of it---here biological subsystems-—

are running up, increasing their organization [Prigogine and Stengers, 1984].

The difficulty with the Sccond Law has been counteracted by the idea that,
the evolving systems are not systems in thermodynamic equilibrium. This is
an open system which takes in a flux of energy and may use it {or its self-
organization, so that by this assumption the law does no more conflict with

the structure of these systems [Feistel and Ebeling, 1989], [Haken, 1988).

It is clear that the closed systemn assumption is not adequate to explain
evolutionary phenomena. The concept of an open system is necessary to facil-
itate the compiehension of this behavior. In their celebrated bestseller hook
‘Order Out of Chaos’ Prigogine and Stengers argue that emergence of order
and increasing complexity is possible where the Second Law is interpreted in a
different way than that of the classical view, and thus increase of organization

and decrease of entropy can occur, under certain assumptions.

To restate briefly, in thermodynamics a system is a.])proach_i ng thermal equi-
librium, with mcrease of disorder and elimination of complex structures. In
biological evolution on the other hand, the sysiem structure is increasing its
complexity and organization, therefore entropy is decrcasing. So the open sys-
tem assumption is put forward, i.e. these systems have a huge amount of encrgy
input, at the expense of their surroundings. However, some physicists claim
that this type of reasoning is not plansible and thermodynamics is an unrelated

issue Lo biological evolution [Brooks et al. 1934].

The final word in this section will be on sell-organization. Apart from man-
made systems, some systems in Nature exist [Haken, 1988], which have been

produced by theirselves. Or as stated in [Jumarie, 1987):
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A self-organizing system is a system which can spontaneously mod-
ify its internal structure, that is to say the hierarchical internal re-
lation between its elements in order to achieve its own objective

which is defined by itsell.

The significance of the Darwinian thought is evident for this type of systems,

since they have been cvolving with increasing organization and complexity.

Quite clearly, the biological systems might be seen as self-organizing. In-
deed, there are examples of sell-organization in nature. To give an example,
the autopoiesis model of the Chilean scientists Varela and Maturana is a self-
organizing system. The autogenesis model, which is described in the next

chapter is also a system of self-organization.

The discussion on the related issues of evolution can be extended indef-
initely, but it is not our intention in this research work to deal with these
physical concepts in detail. Only an overview of the principles relevant to evo-
lution have been of interest; and a slight introduction of the views of some

physicists and philosophers has heen suflicient.

2.4 Mathematical Models of EVolution

The appearance of mathematical models of evolution in literature dates back
to the 20’s and 30’s, more than 60 ycars after the appearance of Darwin’s
book ‘On the Origin of Species by Mecans of Natural Sclection’. The pioneers
of this development are, Volterta (1931), Fisher (1930) and Wright (1932).
[lowever it was not before the 5H0's that these works have been recognized. The
next attempts are clustered around in the 70’s, namely the famous works of
Dobzhansky (1970), Eigen (1971), Eigen and Schuster (1977), Maynard-Smith
and Price (1974), etc. [Feistel and Ebeling, 1989].

[}

Ilere some of these models will be introduced briefly, to serve as a back-

ground to the discussions thal will be made in the following chapters.
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Before starting, we will classify the types of approach to evolution modeling

in three groups. We may state these as:

e Equilibrium dynaimnics approach: These are models that constitute of
a set of differential equations, representing the rate of increase (or de-
crease) of the populations concerned. Ilere the equi]ibrit.xm points and
stability are of interest. These models represent a certain correspondence
with real life evolution problems; since natural selection drives the pop-
ulation quantities of the universe from one equilibrium to another, and
the behavior of the evolutionary dynamics depends on the stability of
the current solution. In dynamical systems three major types of solution
(large scale hehavior) is possible: fixed points, limit cycles and chaotic
behavior. For nonlinear systems the behavior of the systems is unstable
and mostly chaotic [Kampis, 1991]. The dynamics of ‘the population,
thus cither converges to a stable or an asymptotically stable equilibrium
or remains al an oscillating it cyele, unless the system is chaotic, de-
pending on the structure of the underlying differential ecquations. Most,

of the models that have appeared in the literature are of this type.

e Game theoretic approach: It was Maynard-Smith and Price (1974) who
had first introduced a formal model of the game theoretical approach
to evolution modeling. Here animal conflicts are treated using game
theory. Instead of representing the ponulation dyunamics, strategy (re-
quency equations are considered, and the concept ol evolutionary stable
strategies-——those strategies where even small deviations are penalized——

are ()f maln Concern.

e Optimization approach: This is an approach that seems interesting, but
up to now some criticising have been made. Here the question of what is
to be optimized is a bil vague. Also it might be demanded that whether
Nature is concerned with oplimization or even if that is so, what are
the relevant objectives. Regarding the problem as a hill climbing proce-
dure for each species population, does each population have the means

of determining somchow, the optimal search divection. [t is claimed that
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Darwinian evolution in this sense, is niyopic [Simon, 1981]. The tendency
1s towards a local optimum or a salisficing result. More will be said about
this approach in the following chapters. The reason of these criticisms are
probably due to the fact that no standard models have been accepted for
optimization models of evolution. In the following chapters an LP-type

optimization model of evolution will be constructed.

It has to be remarked that these approaches are neither exclusive nor ex-
haustive. Actually Maynard Smith’s game theoretic approach is also of the
cquilibrivm dynamics type, thongh this doesn’t mean that a game theoretic

approach should be also of this type.

Now we will deseribe briefly some mathematical models of the existing liter-
ature. Only very famous examples are given in this section, lurther propositions
will also be discussed later. As it was just said the models are not confined
to a single type that have been described above, so the descriptions are not

presented in a classified order.

2.4.1 Fisher’s Selection Equations

Fisher was one of the pioncering mathematicians who made a breakthrough
by applying mathematics to the evolulionary theory. He was the first to re-
late genetical behavior to the theory of natural sclection [Biirger, 1983]. He
formulated the genetic allele frequencies, as a set of differential equations. His
contemporary Wright was the first mathematician to have produced an alter-
nate theory to natural sclection, the effect of random drift [I[Sarlin, 1984]. The
Wright-Fisher stochastic model is of great interest and will be briefly discussed

at the end of this section.

Fisher’s differential equations represent the dynamics of allele frequencies
(a genotype configuration of a chromosome) in a certain population of species,
under the assumption that the state of the ecosystem is at Ilardy-Weinberg

equilibrium.
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So the classical selection equation of Fisher is the following:

. -y =
Xy = Ly L WL — Z Wyslr T
]' TS

Here o = ... nis the index of an allele in the population, w;; is the fitness of
a certain genotype A;A;, and ¥ w, 2,7, is the mean fitness of the population

which is monotonically increasing.

A related model of interest is the Wright-Fisher model of genetic frequency.
Assume that two alleles at a gene locus, A and a, are of concern with initial
respective frequencies 1 and N — ¢ in a constant haploid population of size N.
We have discrete periods o= 0, 1,2, ... cach representing a certain generation in
the population, and for each generation the [requency of alleles are determined
by binomial sampling [rom the previous generation, with parameters N and
pi. Let X, be the number of A type alleles (the state space is finite between 0
and N). The stochastic process is a finite state Markov chain. Another useful
process is Y, = X, /N; and il represents the fraction of A type alleles in the

population at nth generation [I{lchaner, 1988].

The expected fraction of A type alleles is [Karlin and Taylor, 1981]
(1 8)[i(1 = @)+ (N =2)f]
)y = vy N : v
PE AR —a) + (N =D+ ia+ (N = )(1 - §))

where initial frequencies are 1 and N — ¢ for A and a types respectively; «, f

are the mutation parameters, and s is the selection parameter.

In this typical model, a mutation means, an allele of type A being converted
into an allele of type a or vice versa. o is the rate of transitions from A to a,
and f from a to A. By selection, it 1s meant that allele A is selectively superior
to a; and the snrvival abilities of A and a are in proportion (1 +s)/1, where s

is a small positive value.

The neutral model (s = 0) is shown [Karlin and Taylor, 1981] to converge
to a diffusion process as N — oo and 1s relatively easy. For s different from
0 however, this is not the casc. Nevertheless for large populations, where s
is small the genetic dynamies still can be approximated by a diffusion model

[Schuster and Sigmund, 1989].
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The single population two allele is relatively an easy model. Extended
models have also been studied; such as multi-locus models. A two population
two allele haploid model example (with migration) is analyzed in [Asmussen,

1983).

2.4.2 Volterra’s Ecological Equations

The general Lotka-Volterra equations, modei the population dynamics of an
ecosystem which is characterized by the mutual relationships hetween the
species. In an ecosystem these interspecies, relations can be defined by a mutual
consumption matrix, and such a matrix is capable of representing predation,

competition, symbiosis and possibly more complicated types of relationships.

The LP model which is defined and discussed in the next chapter is also

based on this type of ecological dynamics.

The differential equations represent the dynamics of a group of several

species populations interacting. We have;
gi = i | bio + D iy
i

where y; represents the population size of species © and by is for the external
effects (nature) and b;; represents the benefit obtained by the species 7 from the
presence of one unit of species 7. These equations describe mutual relations
between the different populations; prey-predator, symbiotical, parasitical or

more complicated food chain structures.

Simple Volierra models including 2 populations are easy to be dealt with,
all possible cases have been analyzed, for predation competition, combat etc.
(see for example, [Beltrami, 1987] ) and the solutions arc asymptotically stable,
except for the prey-predator model where unstable oscillations can occur. To
give an example, for the linear competitive model, there is either stable coexis-
tence, a single equilibrium where both populations exist with certain amounts

or mutual exclusion where there are two cquilibria—which the problem can



CHAPTER 2. HISTORY 19

so that in each, only one of the populations survives [Munoz and

Selgrade, 1989).

converge

For higher dimensions, only special cases are analyzed; a 4 population
model with 2 prey 2 predator system of Lotka Volterra dynamics is given
in [Kirlinger,1989]. It has been shown that for n > 3 limit cycles occur and
the hehavior of models of higher dimensions is chaotic [Schuster and Sigmund

1983).

2.4.3 Eigen’s Molecular Hypercycle Equation

A hypercycle is defined to be a catalytic (sometimes antocatalytic) reaction
process, in which at some step one or more of the products is identical with
some of the reactants and are thus continuously entering the reaction cycle.
Some of the famous hypercycles are the carbon cycle (a reaction process which
turns hydrogen into helium) and the citric acid cycle (a typical process of
oxidation of fuels). Hypercycle is the essence of vital functions. The self-
catalytic cycleis crucial for sell-reproduction of hiological structures. Without
hypercycles, the replication of DNA or RNA molecules and other life processes,

would have been impossible [Eigen and Schuster, 1977].

The concept of hypercycle was first introduced in [Eigen, 1971}, where the
biochemical analysis is made. The kinetic model of hypercycle is given in three
conseculive papers [IBigen and Schuster, 1977], [Bigen and Schuster, 1978a],

[Eigen and Schuster, 1978b]. In its simplest form the hypercycle equation is:

. U
B = v | ki — ) kjrgago
3

To = Ty

In these equations z; represents the concentration of a certain macromolecule
and the cumulative concentration of the system is fixed to he one. Specifically
for n < 4 there is an asymptoticelly stable optimum so that all trajectories
starting from the f[easible set converge to that point. Il n > 5, then the

solutions are limit cycles. The assumptions outlined in this model is of extreme



CHAPTER 2. ILISTORY 20

importance for models of self-organization. This will be apparent, when the

autogenesis models in the next chapter are introduced.

2.4.4 Maynard-Smith’s Strategy Dynamics

The application of game theory to evolution has been criticized by some authors
and has to be regarded with some carefulness. The game between nature and
the living beings 1s a conflict but unlike game theory in the evolution game,
the players are not free to choose their strategies, (but they inherit them)
and the outcome of the game is determined only through an endless series of

conflicts—if a stable solution exists [Vincent, 1985].

In this game theoretical approach, the differential equations represent the
dynamics of a certain strategy. with frequency (z,,...,z,). A strategy called
evolutionary stable (ESS) is sought, which is a stable solution of the system.

Here;
. =~
X, =Ly Z(ng:l,'_.,‘ - Z Ayl T
rs

and it 1s quite similar to Fisher’s equations.

The ESS concept introduced by Maynard-Smith and Price (1974) charac-
terize strategies that when adopted by a large majority of the population, they
become the optimal strategy for each individual of the society—by maximiz-
ing the expected fitness ol the strategy maker. However, it has to be stated
that natural selection does not always favor the formation of ESS strategies
[Liberman, 1988]. An ‘ISS population strategy’ is the uninvadable strategy, if
it 1s the strategy that is applied by the population in gencral, except some rare
deviant strategies which are disfavored by natnre and selected in time [Liber-
man, 1988]. Therelore the equilibrinm is stable; and in fact there is some

resemblance between an SS point and the Nash equilibrium [Crawford, 1990].

An evolutionary stable point (hehavior, strategy) is optimal, and that’s
why it is of interest because that means that no alternative mutant strategy

(phenotype) can invade. But if is dubious that whether INSS really exists, even
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in small ecological systems [Vincent and Brown, 1984].
A formal definition of an ESS can be given as [Lessard, 1990]

either As™, s™) 2 Als, ™)

or A(s*,s*) = A(s,s*) and A(s*,s) > A(s,s)

where

N
Als,s™) = 5 siags] =sT As™

i1
and a;; = A(7,7) is the expected payoff to an individual adopting a strategy 1,

to an opponent adopting strategy j. A = ””’ij“{?,,jzl is the payofl matrix.

So IS5 guarantees protection of population against invasion by mutants
(deviated phenotypes) and this can be easily shown, for example in [Rapoport,
1985). When n = 2 every nontrivial matrix A has at least one ESS, but for

n > 3 this need not be so [Haigh, 1988].

As can be seen the set of equations, though for quite distinct problems,
are somewhat similar. For example Fisher’s equations given above is a special
case of the Maynard-Smith contest equations. It has been stated that ISigen’s
model of evolution of macromolecules, is formally equivalent to the haploid
mutation-selection model [Biirger, 1989]. The so called replicator dynamics

equations have been defined to cover all these [Schuster and Sigmund 1983]:
2 = a; (Fi(ay . x,) — ¢/c¢)

The above equations is a generalization of the stated for models of differential
.

equations.

2.5 Evolution and Optimization

Before closing the chapter on the background issues and some of the models of
evolution, a hrief discussion about the relation of evolution and optimization

will be given. The question whether nature is concerned with optimization
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when evolving itself is debatable and is put forward in the next chapter when
an LP type of modeling is made. Though discussed later, the maximization of
a certain potential function (which can be regarded as the overall Darwinian
fitness) has been of concern to the physicists dealing with evolution [Eigen,
1971], [Schuster, 1989]. Some of the rescarchers devoted to the field, have
defined evolution as a hill climbing procedure in the phenotypic landscape of
living species [[Feistel and Ebeling, 1989] and some have remarked that this hill

climbing process converges to a local optimum [Simon, 1981].

It is true that evolution is understood as a sort of progress but is it really
true that biological species evolve [rom primitive to complicated structures?
Whether evolution has a direction is a question of debate as well. Some scien-
tists claim that progress in this direction is not necessarily true. An algorithmic
example of a simulation program (which is designed to play checkers) is given
in [Kuarka, 1987] in which the intelligence level of the program decreases within
a period of subsequent playings of the game, throughout the ‘had learning

process’ which is attained of course unwillingly.

Several topics of evolution have been ol interest to OR scientists. Topics like
evolution of body size, where the optimal cnergy allocation between physical
growth and reproduction is sought [Zi6lko and Kozlowski, 1983] have been

dealt.

A graph theoretical model has been constructed [(or certain protein se-
quences of animal species, to show that these are tied by phylogenetic trees,
and thus the theory of evolution holds true [Foulds, 1986]. The topic has been
quite popular and similar analyses have been carried out by other researchers

as well.

The objective criterion of these models is the maximum parsimony prin-
ciple. The assumption of this principle is the phylogeny trees of the related
species (nodes of the graph) are huilt so that the overall length is minimized

as possible [rdos and Székely 1991].
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An interesting paper on natural selection, which is tightly related to math-
ematical programming is [Galar, 1989]. Most commonly used algorithms are
myopic descent/ascent, procedures; which scarch improvement at cach step,
aiming to a local optimal point so that gap crossings arc not possible. In the

related paper a scarch algorithm where gap crossings arc possible, is analyzed.



Chapter 3

Models of Molecular Evolution

In this chapter some models related to evolution will be discussed. Since the
whole picture of even a relatively simple ecosystem is quite complex, our con-
cern will be with those simple models representing elementary organisms, at
molecular levels. However similarities with broader ecological structures are
evident and extensions of the results to larger problems are almost straightfor-

ward (with several simplifying assumptions, of course).

The models described differ in their mathematical sense than those sum-
marized previously. Still, we are concerned with equilibrium points and how
to reach them, but the methodology is different. It was seen in the former

discussions that, the set of differential equations were not easily solvable at all.

In the autogenesis model the tool is computer simulation. This model
represents a simple organization consisting ol a set of components; which un-
M ~{ . M e 1 m . o a N M
dergoes a process of imperfect replication. The system reaches an equilibrium
of organization throughout time.
For the LP model the approach consists of consecutive runs of linear opti-

mization, each time with slightly modified data. The model represents a small

ccosystem subject to formation of new species through mutation.
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3.1 Autogenesis

Genetic information is stored in DNA, RNA chains written in a certain genetic
cocle, which is realized by the biochemical process of replication, transcriplion
and translation; and this code determines the phenotypic properties of the
organism. Mutation can be regarded as a kind of an imperfect copying pro-
cedure of the genetic informalion The essence of life is replication, a copying

procedure of genetic information [Kirka, 1987].

The hypercycle model construcied by Eigen (1971), represents the dynam-
ics of molecular evolution, the autocatalytic eycles which govern the life pro-
cesses of the self-organizing DNA and RNA molecules. The model that is
described in this scction also is an attempt to model the life processes of such
molecules. The model is mainly concentrated on the replication phenomena

(i.c. self-reproduction) of these.

One of the main concerns of this thesis study has been the modeling of
the so-called autogenesis phenomenon. This phenomenon is discussed in detail
by the inventors of the term, in the papers ‘Autogenesis: The Evolution of
Replicative Systems’, [Csanyi and Kampis, 1985] and ‘A Computer Model of
Autogenesis’, [Kampis and Csanyi, 1987]. Here we present a brief description

of the model structure.

Autogenesis, in the light of above papers can be described in the following
manner. The system is assumed to be consisting of different levels of subsys-
tems, each somewhat similar in structure. The process taking place in one of

these subsystems is considered as Aulogenesis.

Autogenesis is the evolulion ol a replicative system where the replication
is an imperfect copying process of its functional information. The system is
actually a component space and this information describes the organization of

this space.

The main idea of such a modeling approach, is to represent the develop-

ment of an organization, a working structure by time; throngh the so-called
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Figure 3.1: System: Autogenesis takes place in each of the subsystems.

process of imperfect replication. The elements of the model are; components:
which are areas of local heapings or certain populations, functions: which rep-
resent the relations (of the transportable quantities) between the components.
The current organization of the system is represented by this model universe
consisting of a set of components and the interrelating functions (two dimen-
sional in the examples discussed here). The notion of functional information
can be visualized as the total figure outlining these components and functions;
which are assumed to be forming this organization. Throughout the process of
imperfect replication as time goes on, the whole organization (the functional
structure) undergoes some changes, and at the end reachs some sort of a steady

state; thus representing the development of a sclf-organizing system.

The analyses have heen pursued in two steps. The first one was confined to
a single level autogenesis problem (representing the autogenesis phenomenon
in one subsystem only). The next step was to consider the system as a whole,

where each subsystem is involved with distinct but interrelated autogenests.
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Figure 3.2: Autogenesis: Grid space

3.1.1 Single Level Autogenesis

The fundamentals of this model have been taken from the exemplary model
described in [KKampis and Csanyi, 1987]. The model is not unrelated to a for-
mer autopoiesis model of Varela, Maturana and Uribe (1974), which is a finite
two dimensional grid space, where cach grid point is reserved for a distinct
component of the system. The dynamics of the system is governed by trans-
formalion of a certain amount of material between these components; so that
the total mass of the system is conserved. Now it is assumed that functional
relations exist between adjacent pairs (not necessarily symmetric) of compo-
nents. If a function from a certain component to another exists, this means
that material flow is possible. The essence of this material flow is that, it rep-
resents the informational flow (organization) within the molecule (for example
the RNA molecule) that is of concern. At each iteration the functional picture
is changed slightly, this being achieved by a probabilistic addition of new func-
tions (arrows) to the grid space and removal of the existing functions of the
components whose quantities have just hecome zero. This is the reason that
this evolutionary process is declared as imperfeet replication of the system at
cach iteration. After this revision a certain amount of material displacement
is made. For that, the required quantity is removed randomly from the sys-
tem, and then it is replaced according to the current functional picture of the

universe. A portion of the removed quantity is replaced nonsystematically to
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Figure 3.3: Autogenesis: Functions

Figure 3.4: AGSP

be considered as random ellects. Evolution comes to an equilibrium with error

free replication, that is without mutations [Schuster, 1989].

The beginning quantities of the components are either distributed randomly
or the initial state of the system is donated by an inhomogencous structure
representing a closed organization which is called the auto-genetic system pre-
cursor (AGSP). Simulation runs have shown that the system converges to a
state where the material is deposited in high amounts to a certain region of
the grid space, thus having almost closed loops (organizations) of arrows and
in this way forming sinks. The formation of these regions (compartmentaliza-
tion) is facilitated by the existence of an AGSP in the initial state, however

even for a completely random initial state, compartmentalization takes place,
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maybe i more time. If for an unoccasional case two compartments occur, one
of them is contracted after a suflicient amount of time clapses, resulting with
a single compartment. Our simulation program written in Turbo Pascal has

also produced similar results.

3.1.2 Description of the Process and Illustration of Re-

sults

To illustrate the process of autogenesis, one needs to consider the probabilistic
formation of functions. Initially, a uniform space of components (which is yet
unrelated, i.e. without functions) is donated with a beginning set of functions;
so that each component can have communication only with its neighbouring
components (in north, south, east and west directions) and [ollowing this, at
each iteration, some set of material flow is made with respect to this functional
figure, but formation of new functions is also allowed at cach iteration, though
with a small probability thronghont the process. Thus the functional figure is
perturbed at cach time unit, and in addition, the amount of masses of each

components change. The total amount of mass is conserved in the grid space.

The redistribution process functions atl cach iteration in the following way.
A certain amount of material is removed from the entire space randomly, and
redistributed regarding the functional picture. To represent the random noise

effect, some amount of random displacement is made as well.

The formation and deletion of functions (arrows) are carried out in the
following manner. At cach iteration with a certain amount of probability (for
example p = 0.1) for each component an arrow is placed to its neighbouring
4 components; if it has some certain amount of material. If the component
has zero mass, then all the arcs emanating from it (in the previous figure) are

deleted.

Thus the process continues with the formation of a self organized figure.

The functional figure (formation of arcs) determines the new distribution of
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the total mass of the space, in which a concentrated, organized region occurs.
As the process continues on, the formation of these arcs, lead to (as expected)
some [ormation of denser regions (by the material flow through these arcs) and
as the process outlined is a greedy one, the most favorable region (with more
arcs leading flows inside) tends to collect the majority of the mass. Since the
exemplary models used in this research, are relatively small, it is not surprising
that only a single region of concentration is fcrmed, at the end. The [ormation
of the figure resembles a somewhat closed loop area, suspended from the outside
by flowing arcs, until the steady state is reached; and this functional region
becomes a sort of closed (though vot fully, due to random effects) organization.
The process can be visualized by a typical simulation run which is illustrated
in Figures 5. As stated, the existence of an AGSP may speed up the formation
of a concentrated (organized) region; the existence of 2 or more AGSP’s may
lead to tentative formation of several concentrated regions, but eventually the
process favors, the survival of one of these regions. Detailed discussions and

examples are illustrated in [Kampis and Csany', 1987].

3.2 Multilevel Autogenesis Model

After having implemented a model for a single level autogenesis problem, the
next attempt was to extend the model, so that it would cover several levels of
subsystem organizations (the entire system). IHowever before doing that the

autogenesis model of the subsystems is slightly modified.

Here we are concerned with still a 2-dimensional, but continuous universe
instead of the discrete grid space. Here the components are spread out in a
more sparse way. They are distributed at random initially, and are assumed to
be fixed after then. Now for a subsystem, there corresponds a single component
: \ - : : C
in an upper level of a larger system. Thus the model universe is something like
that shown in Figure 3.6. and it is symmetric in the sense that, if the upper

level has 20 components, then we have 20 subsystems beneath that level.
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level has 20 components, then we have 20 subsystems bencath that level.
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Pigure 3.5: Autogenesis: The states of the grid space after 28 7% and 24
iterations. A closed loop organization occurs in the upper middle part of the
grid space. The model had started to iterate in a uniform grid space. The
redistribution parameters were set to n = 30.0 (for random exchange) and
m = 150.0 (for functional redistrilution). The initial probability of placing
a functional flow between two components was set to pl = 0.5 for the first
iteration and the initial values of cach point had been set to 1.0. After the first
iteration, new functional flows were placed hetween nonzero components, with
a probability of p2 = 0.1. The amount ol functional redistribution is equivalent
to the fourth of the amount of material in the component from where the
functional flow emanates. The functions emavating from the newly deserted
points are removed at the end of the iteration. The detailed description of the

algorithm is given in [Kampis and Csdnyi, 1987].



CHAPTER 3. MODELS OF MOLECULAR EVOLUTION 32

Figure 3.6: Multilevel Autogenesis: System Structure

The principles of an autogenesis evolilion are same with the previous
model. The imperfect replication of the functional structure, removal and

redistribution of the components are similar,

Here the procedure is as [ollows: The process starts at the lower levels, at
first. The convergence criterion is the formation of some peaks on the lower
level. When a certain percentage of the lower level subsystems have enough
peak points, then a similar autogenesis process is started in the upper level
system. It 1s assumed that, only those components in the upper level, whose

corresponding fields satisfy the criterion stated above are active.

As expected, the results indicate (for 2 levels) that certain peaks occur, the
landscape in the lower fields present steep and high peaks whereas moderate
and smooth peaks develop in the upper level which is not independent of the

lower fields.

3.2.1 Description of the Process of the Multi-Level
Model

Now the idea of a single level operation, in this new model is exactly the samne;
the formation of functions between the components and material flow, with

respect to this formation. However instead ol a arid space, there are randomly
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distributed components in a 2-D continuous space, and functional relationship

between any two components is possible.

The effect of running the procedure for a single level model is the forma-
tion of several peak points, depending on the overall field mass size and the
values of the redistribution parameters. To state in other words the observed
phenomenon is the concentration of the majority of the mass in several com-
ponents, if there is significant amount of redistribution and if the field mass is
not comparatively, very small. Before studying the reasons of this behavior,

one should look at the effects of the functional figure.

The model space, in this case, is less denser when compared o the grid space
environment and the functional relationship is somewhat inversely proportional
to the physical distance between the two components (in our model). The effect,
of this is the possible formation ol dense arcs (in which flow intensity is high)

between nearby components.

The possible local events that may be encountered are:

e Sink formation: Accumulation occurs at a certain point, a single compo-
nent. Heaping of a huge amount of mass occurs at the point as steady
state is reached.

o Iormation of transient points: The components where the entering flow

to a certain set of components is balanced by the emanating arcs, in the
long run. The mass of the ccmponents remains roughly the same, it is
neither too large nor too small.
There is also the possibility of a set of components (being in a transient
state) for which the total inputing flow is not balanced by the outgoing
flow. TFor this casc, either desertation or sink formation occurs, when
steady state is reached.

e Loop formation (Closed organization): A closed loop is formed, also sup-
plied by ingoing flows [or a sufficient amount of time, similar to the case

in 2-D grid model.
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Figure 3.7: Sink formation
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IFigure 3.8: Transient points



[Figure 3.9: Loop formation

FFor the sake of formation of sell organized structure, interest is focused on the
formation of closed loops, in this model. It will be discussed in the follow-
ing section and the formation of loops, hence self-organized structures will be

illustrated with examples.

Now in the multi-level model, we have considered a 2-level problem, with
one main level, which is tied to some lower level systems. The description of the
process can be stated in the following way. Independent single level autogenesis
runs are started in the Jower levels. At each iteration, one iteration of the single
level model is implemented, in cach of the lower levels. Additionally, a slight
amount of material flow is allowed hetween these independent spaces. The net
effect of this process is a rescaling process of the entire space. (If the space

gains or loses some amount of material, each component increases or decreases

in the same proportion.)

To enable & certain level space of compenent space to start it’s self-organiza-
tion the sublevels of the space should have soma certain amount of organization.
As will be stated later, the development of an organization is enabled by some

amount of peak formation at several points, in a certain level. After some
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sufficient amount of organization occurs in those lower level structures (at
least hall of the sublevels); a similar run is started in the main level, 1t has to
be recalled that each component in this level represents a certain predefined
lower level, at any time the sublevels that does not satisfly the above condition
indicate the corresponding component in the upper level is inactive. 1f a certain
percentage of the sublevels are inactive, then the iteration of the main level is

not performed at that time. Independently of the upper level operations, some

amount of mass exchange between the sublevels are also possible (so that the
total mass of a certain Jevel is conserved), and the mass changes are reflected

to the corresponding upper field components as well.

Procedure parameters are as defined in the Pascal program are (the letter
symbols represent the predefined program variables):

e n: the problem size, the number of subfields, the number of components

in each subfield and the main field as well.

o cnlup: the total number of iterations.

e ken: the amount of functional redistribution.

e kem: the amount of random redistribution.

e mass: mean value of randomly assigned initial mass, for each component

in a subfield.

o pl: the probability of a flow occurring between any pair of components

in subfields or in the main field.

e ¢ x sc: the amount of possible flow between two pairs of components

within one unit of distance (or less).
e {: condition parameter for the mass of a certain component.
e con: condition parameter for the sum of certain components.

o b: the least fraction of active subfields uecessary, to operate the main

field.
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\ : : : :
The exact algorithm of the program may be given in the following way.

Step 0. INTTTATIZI: (Lhe program parameters have to he st in advance)
each subfield 1s assigned to n components and each of these are randomly
distributed to a 2-D field space.! Initial mass is uniformly distributed with a
mean value parameter mass. Main field components are also placed randomly;
their mass is set equal to their corresponding subfield mass. The functional
structure is initialized for all ficlds independently. The component pairs are
picked up randomly and a flow is placed with a probability of p/, with a
value equal to e x sc/dist* where dist represents the distance between the

components.
After initialization the following steps are iterated for entup iterations;

Step 1. AUTOGENESIS; for each subfield the following single iteration of
autogenesis takes place. A certain amount of material (ken+kem) is removed
randomly from the field. ken is redistributed functionally by selecting pairs of
components ([¢, j]) randomly and if there is a flow between them ({rom 7 to j),
then a flow value of the product of the mass of the first component and the
flow intensity (f[¢, 7] * x[i].qty) is added to the mass of the second component.

kem 1s redistributed randomly, disregarding the functional structure.

Step 2. FIELDEXCIHANGI; an amount of ken is collected and randomly

redistributed, within the subficlds.

Step 3. CHECKCONDITION; for each subfield the following condition is
checked. For all components which have the sum of their present and previous
mass greater than 2 x ¢, if the present sum of such fields is greater than con;
then the field is denoted as active.

Step 4. MAINFIELD; If 1000 percent ol the fields are active, then the auto-
genesis iteration is carried out for the main field. The redistribution parameters

arc adjusted as, nken and nkem.

4t has to be recalled that the distribution is assumed to be uniform in the contimuous X-
Y space. Due to roundofls, two or more components may be assigned the same coordinates.
This means that these components are very near, but they have to be distinguished.
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The process is similar to the single level operation, however the exchanged
masses in this upper level are reflected to the lower level immediately, (where
the independent runs are still continued), and vice versa, but the effect of the
previous operation is more dominant; since the mass exchanges in the upper
level have drastic effect on the related subfields. The process in the upper field

stops when the stated condition is violated.

3.2.2 The Interpretation of the Results

As stated our multi-level structure carries some sort of symmetry: so that in
cach field (no matter it is a subfield or a higher level field) a certain predefined
number of components exist. We denote the number of components in a field
as the size of the problem. Each component i1 a subfield is characterized by a
subfield which is of secondary level to the related field (and of course the mass
of the component is identical with the total mass of its corresponding subficld);
so the changes in the values ol either of them is directly reflected to the other;

throughout the process.

ur analysis results have been confined to two level structured model ex-
O 1alysis results 1 been confined to two level structured model

amples, with sizes of 20 and 100; mainly. The program code was written in
Turbo Pascal, implemented on PC (for size 20) and also simulation runs were

made with Sun Pascal (for sizes up to 150) as well.

There is one fact common to all implemented models, with varying sizes
and levels; and that is the formation ol peak components, in which the total
mass increases abnormally. The formation of these peak points is caused by

the initial configuration of the functions and random effects.

Although peaks are visualized depending relatively on their surrounding
components, some generalizations are possible.  Upon the first observation
of the component quantity data, the peak points are apparent. However an
operational definition of a peak may also be given, before tabulating the results.

Regardless ol the fact that it is a subfield or a main field, after a thorough
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analysis of the field landscapes, the following criteria can be given for whether
a component can be considered as a peak or not. It has to be stated that this
sort of classification is valid only for fields which have an overall mass above a
critical value (for n = 20 above 40 or 50, and for n = 100 above 100), and the
criteria should not be interpreted in a strict sense. For field masses below 1000
units, the criterion should be above 2.5 or 3 times the field mass/size ratio. For
fields around a mass of 2000-3000 the components above the stated ratio are
sufficient. For fields 10,000 or larger, again components with masses greater

than 2 times of this ratio can be depicted as peaks.

The stated degrees in the above paragraph is a theoretical way of general-
izing the peak definition. Tor the practical purpose of identifying the peaks,
the following critical values were used. For subficlds of size 20 the value was
set to 10, for size 100 this was about 30. For main fields of size 20, components

with values above 100 were considered, and of size 100 components above 1000

were spotted as peaks.

The significance of the peaks is related to the fact that, peak formation
leads the development of an organization, if the functional picture is favorable
and if the field size is not too low (10 or less). The accumulation of mass at
a certain region enables loop formation and thus a closed organization, and
this process may be triggered by the initial appearance of relatively higher
components, namely the peaks. As the process continues the peaks which have
a large influx of material can grow up and redistribute some portion of the
mass they own to their surrounding components which they supply by intense

or semi-intense flows.

When the problem size is relatively small (that means less crowded fields of
components) the formation of sharper peaks is favored in the upper field and
also in the subfields where a significant amount of mass is present. In larger
problems (such as size 100); there are still formations of peaks, yet not as sharp
as those observed in problem size 20; and there are more peaks (many instead
of one very high peak). The structure is similar in the subfields (many peaks)

where significant amount of mass exist; however the peaks are sharper than
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Prob. | Total | Stab. | Number | Peak masses Peak
size | mass | iter. | of peaks | (individual) percentage
20 1992 5 1 1496 75%

20 1998 5 3 1039, 322, 130 5%

20 1999 6 6 498, 381, 258, 175, 78%
159, 103

100 | 50067 33 10 10367, 8106, 3892, 3297, 7%

9867, 2768, 2613, 1900
1462, 1052

100 | 49964 | 34 10 | 17390, 4538, 4088, 3062, 76%
3055, 3031, 2452, 1187,
1082, 1077

150 | 112412 | 48 I 15702, 11285, 13418, 4348, 78%
4975, 11290, 2911, 8815,
7136, 5800, 2701

Table 3.1: Main field analysis. For problem size of 20, the components above
100 are considered to be peak points, and for size 100 the components above
1000 are selected. These points amount to about 75 % of the overall mass of

the subfield.

those of the main level in the subfields. Typical simulation results, and the
formation of the peak points for the main ficld and the subfields are summarized
in Tables 3.1 and 3.2 respectively. Independently, for 12 runs of size 20 the
frequency of the number of peaks that are encountered in the subficld analysis
is listed in Table 3.3. Typical patterns of subficld landscapes are illustrated in
figure 3.10.  So there are two important factors in the formation of a given
field landscape: the first is the (unctional picture which underlies the entire
flow process, and the second is the total mass jocated in that field, if the field
doesn’t contain sufficient amount of material, then random effects dominate
the process since the random redistribution has an absolute effect regardless
to the subfield mass. (Actually, even for ficlds with a small mass, despite the
effect of random distribution the functional picture also favors some of the
components to be relatively higher than the others and which are more or less
stable, but these are not interpreted as peaks since their sizes are not very high.
In general for such fields the presence of these relatively higher components do
not enable the emergence of self-organization.) If the amount contained in the

field is very high then formation of sharp peaks and deserted points requires
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Prob. | Total | Subfield | Subfield Type of
size mass mass | peaks distribution
20 1986 1459 168, 145, 177, 125 etc. | rough
20 1998 70 60 one peak
71 29, 20 several peaks
318 128, 24, 19, 47, 13, 14 | rough peaked
1083 | 442, 139 rough peaked
145 116, 11 several peaks
100 50067 807 24, 133, 29, 187, 90, 62 | rough peaked
34, 87
190 150 one peak
14 — complete desertation
10367 | 524, 350, 318, 291 etc. | rough
277 128, 91 several peaks

865 23, 106, 31, 38, 111, 86 | rough peaked
247, 9

141 39, 16, 35 several peaks
3297 | 146, 320, 110 ctc. rough
354 51, 97, 61, 53, 32 several peaks
150 | 112412 | 4975 | — rough
425 68, 87, 77, 12, 25, 45 several peaks
15702 | — rough
111 52 one peak
68 31 one peak

2911 227, 196, 612, 142, 128 | rough peaked
1007 68, 132, 95, 92, 98, 80 | several peaks
32 — complete desertation

Table 3.2: Subfield analysis. For size 20, components above 10, and for size
100, components above 100 are taken as peaks. The table provides sampled
information of several subfields, not the entire system. See figure 10 to get an
idea about the possible subfield landscapes.
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FFigure 3.10: Subfield landscapes. These are the typical landscapes encountered
in the subfields. In general, as the total mass of the subfield increases, the
pattern of the landscape changes from total desertation to one peak, then to
several peaks, then to rough peaked and finally to the rough landscape.
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# of D2 304576789010 1H[12] 13T 141516 |
peaks
obser. |69 | 12|13 5 11511 | ~-[1[2]-[1]-]2]
quant.

Table 3.3: Subfield peak behavior. or 12 runs of problem size 20, the [requency
of number of peaks observed in the subficlds are tabulated. Tt is seen that in
more than half of the subficlds single peaks are observed. The observation
of several pecaks is more rare (in general 2 to 9 peaks). The rough peaked
structures (about 10 to 15) and the rough landscapes (a dense landscape with
no apparent peaky structure at all) are even much more rare. The rest of the
subfields (not listed) which are nearly the one-fourth of the examined ones,
experienced an almost desertation. See also the typical subfield landscapes, in
figure 10.

much more amount of time than that of the simulation time, so the landscape
remains more uniform. Of course the problem size has direct effect on both
the functional picture and the spavsity of the field; and the total amount of
mass per field. To illustrate a typical functional structure an example model
space for the main field after stabilization has occurred is given in figure 3.11
and table 3.4. Thus the highest Jevel of the exemplary models are somewhat
independent from it’s subfields; because the total mass does not change and
the simulation time s shorter, since stabilization occurs after some time. As
a matter of fact, as one gets into higher levels the continuity of the process
is dependent on the subfields (for the requived condition to be fulfilled) so in
general, fewer number of iterations occur in the higher levels. So in a sense the
higher levels are more conservative and slowly progressing, than their subfields
due to the stated fact that the process is stopped in those fields when the

percentage of active subfields is below the critical value.

The above fact is observed in the simulation results. The subfields are
subject to drastic changes of landscape, by the imposed mass changes occurring
on the higher level fields. The effect of these changes is a rescaling effect on the
subficld; however if the field mass is reduced or increased considerably, then as

discussed above, the field structure changes.

The development of the organizational progress can be summarized in the
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Indice | Col | Row | Iter | Qnew | Qold
L] 32 10 H 1 3053 | 30.53
2] 78 19 51 16.83 | 16.83
31 46 16 51 29.56 | 27.56
4| 41 6 51 3548 | 35.48
Hi 62 6 51 15.03 14.03
G| 5l ) H) 188.49 | 187.49
71 25 19 B [7.16 1710
81 35 16 51 57.16 | 57.16
9 36 -17 5| 588.77 | 589.77

10| 53 9 51 217.72 | 218.72
11| 46 L7 51 291.56 | 293.56
121 45 14 5| 240.77 | 240.77
131 47 18 Sio29.87 1 29.87
14 7 8 51 34.19 ] 35.19
15| 42 9 51 1094 | 40.94
16 | 52 7 h| 66.65 | 64.65
171 14 20 hi 27.68 | 27.68
18 3 l 51 19.64 | 20.641
19 5 5 51 2743 | 27.43
20| 15 1 5] 1643 | 16.43

Table 3.4: The state of the main field, alter stabilization has occurred. The
values ol the malerial that is exisling al cach component is tabulated versus
its X-Y coordinates. The parameter values for this typical run were set as
the following (also see the algorithm of the program): pl = 0.2, e = 0.25,
sc= 40.0, n = 20, ken= 16.0, kem= 8.0, b = 0.5, mas= 4.0, vari= 2.0,
con= 24.0, entup= 50. The functional picture can be seen in Figure 3.11.
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Figure 3.11: Sell-organization of the main field. The peaks components (large
circles) are placed around the functions with intense flows (dark arrows). A
major part of the material of the system is settled around these self-organized
regions. The isolated points which are connected by weak flows have quite low
quantities of material.(Component number 2 is not illustrated since it does not

fit into the page.)
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following way for the two-level system. At the initial iterations some formation
of slight peaks become apparent which satisfies the condition stated, and as
enough fields have become aclive, the iterations for the upper field is started.
As discussed there are also field exchanges in small quantities between the sub-
fields, however they have only negligible effect on the upper field operations.
As the autogenesis process takes place in the upper field, peak formation and
desertation occur at some components, which immediately effect the subfields.
The desertation ol an upper ficld component destructs the functional organi-
zation of the corresponding subfield, and the peak formation in a component
results with a new structure of the concerned subficld.  As a result the ap-
propriate condition defined for the sublield level is violated after some time,
thus the process lor the upper level is stopped, and there are only several
components which are active. Thus the implementation of the upper field op-
erations, after enough organization has taken place in the sublevel fields have
emerged, destructs this organization through the slowly progressing organiza-
tion of the upper level, which stops completely after the original condition is
violated. This stabilization occurs around 7 iterations for problem size of 20,
and around 34 for size 100. After then, m the upper level slight changes are
occurring, those resulting from the material exchanges between the lower level

fields. The generalization of this process is discussed in the following section.

3.2.3 Formation of Higher Level Structures

Though the analysis was confined to two leve]l problems by using the several
resulls of the process; the possibility of emergence of higher level structures

were also investigated.

The simulation data indicates that the lormation of new structures is quite
possible, as sufficient number of peaks are occurring at the main level almost
unexceptionally. Therefore, the condition would be satisfied by the most, at

least hall (which is the critical value) of the tested models even at the initial

iterations of the process.
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The discussion made at the end of the previous section can be extended
to the multi-level autogenesis models (3 or more levels). It was told that
the structure formation at the second level destructed the structure already
formed at the drst level, and the new structure at the second level was sufficient
enough to satisfy the similar condition (with adjusted parameters) of starting
the iterations of a further higher level. The implementation of this fact would,
similarly, result with a structural formation of a higher level organization but
on the other hand the structure of the second level fields would be altered and
soon the process in this third level would be stopped, with no further evolution.
Thus the whole autogenesis process continues in this manner for the formation
of bigher level fields, until a point is reached so that no further descent to a

higher field organization is possible.

3.3 Possible Characterizations of Autogene-

sis Models

The importance of an autogenesis model is that, it represents the development
of an organizational structure; beginning from simple primitive structures, and
the emergence ol more complicated structures progressively. The [unctional
picture (in a single field) itself is a set of stored information representing a self-
organizing (living) structure. This functional information is slightly altered
through an imperfect copying process. The similarities with biological devel-
opment, are evident. The genetic information i the chromosomes of a living
cell is stored in double helix chains (1 dimensional set of information) subject to
changes through mutations, variations, genetic drvift, ete. The gradual growth
of complexity can be interpreted as the building up of any biological species;
the smallest unit being the cell, then a group of cells forming up the tissues,
and the tissues forming up the organs, finally reaching as a chain formation to
the entire living body. Since the genetic structure is unique; at each level the
structural infermation is somewhat similar. Of course the autogenesis model

discussed in this research are quite simple.
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Though the primary model of concern is as described above, the autogene-
sis models can be used to simulate some other phenomena as well. There are
alternative ways of interpreting these. T'wo alternative approachs of interpret-
ing the model will be stated here. The first approach is to view a demographic
map, where the landscape represents the distribution of a population (a cer-
tain species or human beings) in a geographical environment and the functional
picture indicates the underlying flow (migration for example) relationships be-
tween them. The second is to characterize a phenotype space; in which each
point represents a slightly modified entity, a biological phenotype characteristic
visualized on a 2-D space (continuous or discrete). It has to be stated that the
2-D assumption in this case is only arbitrarily made; there is no necessity of
the space being two dimensional. This type of illustrations (again in 2-D) are
also used in two of the previously discussed references, [Feistel and Ebeling,
1989] and [Allen and Mc Glade, 1988]. In the first approach however, the 2-D

space makes a better and understandable ccosystem, where living structures

have been somehow distributed.

3.4 Foundations of the LP Model

An LP model for the problem of evolution has been developed, and in this

section it will be described briefly. Also some aspects of the model will be

discussed.

The dynamic structure of a certain ecosystem is governed by the Lotka-
Volterra differential equations. As may be recalled, these equations represent

the mutual interactions of all populations in which mutations and appearances

of new species are ignored.

The ecological system is similar to that of the Volterra’s equations, the
coelficient matrix representing the inter-species relations is similar. However,
instead of locating the cquilibrium points, we are concerned with solving con-

sccutive LP problems and the equilibrium being reached in this way. Thus the
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process continues by jumping from one equilibrium to another with respect to

changes in the environmental conditions or internal structure of the ccosystem.

One of the basic assumptions of an LP model is that, it assumes static envi-
ronment, unchanging conditions. However the evolution problem is dynamic in
nature, and this is the main difficulty when considering LP modeling approach.
Even if we can formulate certain objectives and constraints , the parameters
are continuously changing in real life. So one of our assumptions is to cut
certain slices of time, where optimization takes place. To prolong the model
in time, we introduce consecutive runs ol L1, so that it becomes an ongoing

process.

As it was noted previously, the logic under the optimization type approach
to evolution is debatable. It is questionable; whether nature is concerned with
optimization or not. ISven if it is so, still it is quite dubious that the whole

ecosystem is running towards a global (or Jocal) optimal value, gradually.

The idea of optimization however has its justifiable grounds when the mini-
mum energy principle of thermodynamics is considered. A further question can
be put on the meaning of optimization in a certain ecological system, whether
optimization in a system of mutual conflicts makes sense or not. The adopted
view is the survivor of the fittest or luckiest principle, so the optimization of

the Darwinian system of the overall system will be of concern.

Obviously each species tries to survive and reproduce, thus it is natural
to think that they are all competing, trying to follow the optimal paths, for
their populations. Though the individual bebavior of a species is quite different
than that of the whole population. The tendency of the populations whether

towards egoism or altruism is a debatable issue.

The game theoretic approach of Maynard-Smith and Price is based on the
idea of finding local optimal (stable) values of the available strategies. We
will not be considering individual objectives, but an objective covering all the

species populations existing, to formulate the problem in the LP fashion.



CHAPTER 3. MODELS OF MOLECULAR EVOLUTION 50

Let us consider a fixed point in time, and assume that all parameters are
available. Now all species are interacting, in the Lotka-Volterra sense, having

prey-predator, parasitical, symbiotical or some other form of behavior.

Consider two species and let us index them as ¢ and ;. These two may have
prey-predator type of relationship or symbiosis. Or they may not be aflecting
each other, at all. Let us assign a numerical vaiue of the effect of the existence
of one unit of j in the ecosystem to species 7. If the existence of j is favorable

to ¢, then we have a positive impact, else a negative one.

This idea leads to two ways of viewing the mutual interactions between the
species. The first is to consider the consumption rate of a certain species by an-
other species, and vice versa. The sccond way is to consider the benefit gained
by a species population, through the existence of another species population.
The model that will be considered in this section will be the first approach,
but modeling in the other sense will also be discussed later. Though they are
two opposing ways of regarding the problem, an exact opposite correspondence
between the related parameters is not necessarily the case however a sort of
negative correlation exists between two different models of the same problem.

This discussion will be made clearer in the next chapter.

To provide a limited structure cf resources, we choose an index as that of
the average consumption rate of species ¢ by species 7. (However it can be
secen from the above discussions that, this is not the only way to formalize
the relationship between the species.) Let us call it a;; thus forming a mutual
consumption matrix A. Asseen the parameters are nearly the same with those
of the Volterra equations indicating the grawth and decay parameters with
respect to mutual relations. Now let b; ¢ = 1,...,n denote the limitations on

the resources by that time. So;
Az <) (1)
will give the set of feasible points, within the ccosystem.

Up to now we have discussed the mutual relations of populations and it

is our general assumption that only these are of interest when the LP model
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is concerned. It is true however that there are mutual relations inside the
populations which can affect the overall population dynamics, so it’s worth

mentioning about, at this instance.

Cannibalisim for example, is a feeding pattern in which the predating species
may also consume individuals of its own. This phenomenon is possible espe-
cially under tragical situations such as food scarcity or extreme crowding within

certain living groups and has been a topic of interest [Stenseth, 1985].

The evolution of reciprocity is possible in small groups where mutual coop-
crations are {requent, however it is very difllicult for larger populations. Some
simulation studies have been made in this issue, repeated plays of prisoner’s
dilemma game (which is a noncooperative game) indicate that mutual cooper-
ation evolves through time, however for n-person version of that game (with n

much larger) this is not the case [Boyd and Richerson, 1988].

The model assumes that the species act also as resources to the ecosystem,
and malrix A defines the mutual resource relationship between the species.
However there are also other resources, either inorganic (such as water, oxygen)
or some organisms which are beyond ol our interest in the ecosystem (maybe
some bacteria) and they may also have some usage limitations. Thus in the
model an extended matrix will be adopted to account for these constraints as
well, an m X n matrix where n represents the total number of species and m
the total number of resources (of course the species being contained as a subset
in the resource set,). The size of the RIES vector is also adjusted appropriately.

So we redefine the constraints on resources as;
Al LV (2)

where, A’ is m x n and m > n. Here, of course (1) is a subset of (2). Now to
generalize an objective, we consider that of maximizing overall fitness of the
universe. Let ¢; represent the average fitness contained by one unit of species

7. So with respect to the above constraints the objective may be stated as;

max .
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It has to be noted that in biological systems where evolution is taking place;
the species which will originate in the system can not be known in advance.
Only the principle of evolution by means of mutation and sclection is known
to us. Most of the mathematical models in literature assume a fixed number
of species (known to the modeler a priori) possible such as the Volterra models

or other molecular evolution models.

This is an aspect thal can be criticized, especially for ecological models
including evolution, because it doesn’t provide sufficient examples of evolution

of unpredictable living structures.

The basic aspects of our LP model, have been summarized in a research
report [Vizvéri, 1991]; stressing the fact that unpredictable, unwanted types of

species can occur by means of selection.

3.5 Generalizing a Simulation Procedure for

the LP Model

As stated before, the problem of cvolution is quite dynamic, whereas the LP
model assumes a static problem and an unchanging environment. Therefore
we consider time instants and construct a particular LP model (either the one
described in the previous section or another suitable model) assuming that

the existing species and environmental conditions at that time are known in

advance.

The LP optimization is assumed to determine the state of the universe at
the next equilibrium position. Thus optimal x; values which become zero by
the optimization process are expected Lo be extinet within a certain period of
time.

To account for the variations and appearances of new species (mutations)

the model will also allow for slight modifications of the existing parameters.

Thus throughout the process, favorable mutations will have a chance to survive,
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others will die out in a short period.

Before describing the process, some assumptions of the ecosystem which is
modelized will be stated. The system is, in general assuined to be in equilib-
rium, but there are certain unusual, external events (catastrophes) which alter
this equilibrium. At these moments struggle {or life hecomes important. The
Lotka-Volterra interrelationships are significant in determining which of them
survive the catastrophe and which of them hecome extinet. This is determined
by the LP-optimization at a time interval, which selects the species with suf-
ficient amount of Darwinian fitness. This time interval is very small, much
smaller than the unit time taken as a hasis of mutual consumption relation-

ships, in the LP-problem.

The model adopts the ‘neutralist’ opinion of evolution in this sense. As
may be recalled the neutralists claim that the significant amount of variations
occur during very short intervals of time, where the population sizes have
been reduced and altered significantly (due to some catastrophic cvent, in
our example model), so that the cffect of random drift becomes important.

Otherwise the ecological equilibrium is mostly stable and evolution does not

take place.

After the catastrophic event (LP-optimization) some of the populations be-
come extinct. Iere we define the concept of a ‘subspecies’. When a population
becomes extinct, the column of thal population is not deleted from the LP
problem. Instead, a subspecies is formed in its place (which might be visual-
ized as a very crude, primitive form of a mutant descending from the extinct
species) and its parameters are randomly generated with a mean value of 0. So
they have minimal effect on the mutual Lotka-Volterra relationships; but they
are not considered as resources of a similar type to that of their ancestors. If
one of these subspecies, alter a future catastrophe are viable and thus selected

to be fit enough, then this newly formed species replaces that resource.

The populations which survive experience some variations in this short,
bottlenecking period. The new equilibrium is restored at the end of this period

and remains fairly constant until another catastrophic event is observed.
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5o a possible way of iterating the evolving system is given as follows:

o Step 0. Initial configuration, and a feasible basis. Let z = (z,,...7,)
represent the quantity vector of specics at a certain time instant. Let the
matrix A" and vectors 0" and ¢ are as those stated previously, and assume

that they are initialized appropriately.
o Step 1. Catastrophic event; solve the optimization problem;
max ¢’z
st Ale <0, a2 >0

o Step 2. z; values — 0 are expected to be extinct within a certain time.
Allow for certain variations of the original populations and thus the ap-
pearance of new species. Subspecies are formed in place of the extinct
populatious, but they are nol recognized as resources yet. Some amount
of variation on the original parameters are made randomly. TFor sub-

species the parameters are regencrated with mean zero.

o Step 3. Equilibrium is restored. Adjust the A, V', ¢/ matrices, regarding
the newly formed species. Reconstruct the LP model. The equilibrium

remains unchanged until the next catastrophe.

e Step 4. Solve the LP (just as in Step !) and continue the procedure

similarly.

The process can be illustrated as that of in figure 12. The foundation of the
model is based on a process; where at a certain instant with fixed parame-
ters (Lotka-Volterra relations) an optimization is taking place to project the
solution to the next future equilibrium position.  This represents a certain
catastrophic event, in which the population sizes are changed drastically, some
species becoming extinct. During the following bottlenecking period a signifi-
cant amount of variations will occur and new species which may have chances

to survive will be possibly produced.
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0 1 3 1

Figure 3.12: The dynamic structure of the ecology. 0 is the initial state of the
populations. At point | a calastrophic event occurs (LP optimization takes
place) and within the bottlenecking period 2 an important amount of varia-
tions occur. The new equilibrium is reached at point 3 with newly formed
species as well. After this, at point 4 another catastrophic event happens (sec-
ond optimization), where most of the species become extinct, and the process
continues on, in a similar fashion.

The model is advantageous in some respects, vhen compared to the previous
models discussed. The most important is that, it represents many phenomena
that are related to the evolution of the univerce; genesis (step 0), mutations
and variations of species (step 2), catastrophic events, where a certain amount
of existing species die out (step 1), followed by bottlenecking periods (steps 2
and 3), in which the effect of mutations become most important—-in a smaller
population variations of inheritable traits are more likely to survive—and then

the immediate appearances of new species.

The final word will be about setting the b vector. It is debatable whether
this should be set exactly to the previous optimal 2 vector (noting that b
is a subvector of ' corresponding to resources which are also species in the
system) or something completely unrelated to this result. Qur belief is that,
even the exact setting might not be appropriate, b should be somehow related
to the previous z*, therefore either we have b = a* or at least b = f(z™).
In concordance with the model assumptions, such an f(2*) may be defined
as z* + X' for z* > 0 and 0, otherwise. This means that within the period
following the restored equilibrium, the population sizes may grow or deteriorate

somehow, independent of the catastrophic events.
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We have already assumed that, after the equilibrium is restored (the op-
timal solution is determined); the population sizes remain constant, but it is
actually debatable to have done so. Nevertheless for a realistic model, the
catastrophic incidents may be represented by the LP optimization and the
population dynamics of the periods in-between (where new variations do not

occur) can be characterized by the Lotka-Volterra differential equations.

3.6 An Example Model

A typical LP model has been designed and implemented for small ecosystems of
molecular structures, possibly some artificially constructed systems [or certain
bacteria types for laboratory purposes. The linear optimization, as stated, is
confined to certain points in time. The motivation of this type of modeling
comes from the Lotka-Volierra models (some set of differential equations), and

the foundations are summarized in [Vizvéri, 1991].

The simulation routine starts with an initial ecosystem of n species, which
are also the resources to this system; thereflore at a certain time there is a
limited supply of them. In this model, these nspecies are still the fundamental
living entities, but variations can occur through mutations; these variations
occur in a random (previously unknown) fashion. There are also some natural
resources which are not considered as species, possibly some inputing material

fed from outside to the system.

The initial model is optimized and the solution is stored. Tor each fun-
damental being (the n species), a new cohunn is generated (by perturbation)
with regard to the original parameters of it. New species are also formed, one
from each of the n population. The model is reoptimized again; and the new
solution indicates, whether new variations of the original species have chances
to survive. After this step the original parameters are readjusted by taking the
weighted average of the like species (the original one and its descendants), and

new variations are made by perturbing these new ‘average’ columns.
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The process continues in this way. Al cach iteration n new specics are gen-
erated from the original families of zach population of the initial configuration.
The = values which are set to 0; are considered to be extinct but they are not
deleted from the problem; since they are not accounted for when the weighted
averages are taken. ALl their places the so-called subspecies originate which
have slight effect on the ecosystem, but they are not depicted as resources,
until they obtain nonzero values in the following optimization processes. A

sample run of the program is given in the appendix.

3.7 The Significance of an Unbounded Solu-

tion

An interesting fact after obtaining several simulation results, is that some runs
have unbounded solutions. It is important to understand the meaning of an

unbounded solution, at a certain iteration of these types of models.

It has to be recalled that, the ecosystem which is of concern doesn’t have to
satisfly the mass conservation laws; it is seldomly a closed self-sufficient system;
furthermore, mostly it represents only a partial system of a larger ecosystem,
which is of real interest to the modeler. (A person may be interested only in a
certain number of species populations.) Thus the subsystem is most probably

a system which is fed from outside.

In light of these explanations, an unbounded solution can be interpreted as
follows. At that instant of time, there is not a certain fixed equilibrium point,
which nature favors; but at least some of the species of concern can survive with

respect to certain feasibility requirements, but in indefinitely large amounts.

In the above simulated model, we considered n species (which serve also as
resources), in which the mnfual relationship matrix was generated randomly
by the simulation program itself. [n a small ccosystem, the food chains can be

represented in a simpler way, (in a sparser matrix); this is the fact in nature
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-as well, the food chains are relatively short. On the other hand, there is an
immense number of resources and most of them can not be considered as a
living thing (or may not be of interest as a sort of species to the biological
modeler). In the next chapter, examples of this type will be given; where a

detailed analysis of the ecological relationships is made.



Chapter 4

More On LP Models of

Evolution

In this chapter different approaches to the LP optimization problem faced pre-
viously will be of main concern. A preliminary discussion on this topic has
already been made in the previous chapter. It has to be reminded that lin-
ear optimization is confined to a very small interval of time, in the model
constructed previously and alternative approaches to only this portion of the
model are discussed. Otherwise, the procedure described in the previous chap-

ter remains the same.

[Further interest has been put on the issue for the following two reasons.
The first is the simple fact that different approaches represent the different
aspects of the original problem. The second reason is that the similarities of
the different ways of constructing the LI might lead to some results that may
be quite interesting in modeling “heory, il generalized to a broader class of

problems.

The notation used in the previous chapter will also be adopted here. The

mutual interaction matrix of the species is A, x, but the whole matrix of con-
. . ! 1y N AT . . - e 5 5

sumption may be recalled to be as A, ... The remaining submatrix other than

A will be denoted as B so that A" = [%J Similarly 0" is the extended RHS
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vector b. In the transposed problem the former decision vector z will be re-
placed by 2/, which represents not only the quantity of the species but of the
resources as well. The 2’ values which represent only natural resources will be

denoted as zo, so that =’ = [%] The dual variable will be represented as 1.

The first approach was discussed in the previous chapter. Here it will
be restated briefly. Then the dual of this model and its significance will be
illustrated. After these, a different approach and a new model will be presented.
Following this section, the dual of this problem will be given as well. Later
the models will be compared and contrasted, and some possible improvement

1deas will be discussed.

4.1 The Primal Problem of Evolution

In this section the model discussed in the laiest chapter will be revisited. The
idea can be recalled as maximizing the total fitness of the ccosystem that is

modeled subject to the constraints of limited :esources in nature.

As stated previously food chains are shorter in reality (thus the A matrix is
mostly sparse) and there is a huge amount of resources when compared to the
number of species being of concern to the ecological modeler. Some resources
are found in abundant quantities and need not be accounted as limited, though.
For example there is an abundant supply of sunshine in most places (which
is essential for producing vitamin D in the body), however in some northern
countries there is not enough sunshine for this purpose and living beings should

purchase vitamin D from other resources as well.

Recalling the definition of the problem given in the previous chapter, the

ecological optimization problem is stated as follows:
max cu
s.t. Al <

and x>0
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where;

/ . i3 . . ’ . .

a;; © average consumption of resource i by one unit of species j.
/ . . .

b; available quantity of resource i.

;o fitness of one unit of species j.

T the amount of species j.
] ! J

The stated problem is the species problem of maximizing the overall Dar-
winian fitness values of its constituting species. The constraints are the limited
supplies of resources—including the species themselves. Here the optimal deci-
sion is made according to the survival abilitics of the species, and the population
sizes of the species (that will be calculated for a future equilibrium point in
time) are the decision variables. Here the evoiu.onary mechanisms, mutations
and selection are assumed to be external forces to the populations living in
the ecosystem. In the following subsection, the dual of the problem and its

significance of the dual variables will be given.

4.1.1 The Dual Problem

The main importance of the dual models will be clear in the {ollowing sections
where a different LP formulation of the same problem is to be discussed. The
initial idea originated, is to view some similarities with these models; where
some theoretical results can be inferred and these may be generalized to serve

as new concepts in modeling theory.

As was stated, with the dual model we mean the dual of the LP problem,
which is considered for an instant ol time, not the entire process discussed in
the previous chapter. So the only difference is with the instantaneous linear

optimization. Instead of the primal problem, its dual can be considered,;
min bty
st ATy > 1

and y >0
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where;
p : : o, .
a;;+ average consumption of resource i by one unit ol species j.
, : : . :
b; : available quantity ol resource i.
¢t fitness of one unit of species j.
Yi fitness contribution, per unit of resource i.

y: may be considered as the marginal contribution to the cumulative fitness
of the system by increasing resource ¢ by one unit, provided that the optimal
basis doesn’t change. A possible interpretation of the dual problem can also
be given in the following manner. The primal problem was concerned with
maximizing, the cumulative fitness of the entire populations with respect to
certain resource constraints. That is the problem represents the view of the
species which constitute the ecosystem. The dual problem on the other hand,
is the problem faced by Nature—thus the whole process can be regarded as a
game between nature and the entire species populations-—, and the objective
is to determine appropriate (minimal) fitness per resource values in such a way

that each species should be kept content with their donated fitness values.

4.2 The Transposed Problem

The dual problem in the previous section represented a different view of the
problem but smce ils variables have the shadow price meaning, quantifying
the values of the original variables can he made in an indirect way. In this
section, another LP problem which has a similar objective and constraints to
the dual of the former problem will be stated but the decision variables will be

the quantities of species and the natural resources, instead.

Actually this problem is a different approach to the evolution problem that
has been dealt formerly. Again the difference (as in the dual of the evolution
problem) is confined to the instantancous optimization part, otherwise the

defined procedure is still valid.
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The name transposed might falsely indicate that the constraint matrix is
the transposed equivalent of the original problam, however here the meaning of
the constraints is a bit different. The reason why it was called the transposed
problem is that because there is a corrclation between the submatrices of this
problem with that of the original (dual) problem in a vague way. The insight
that has led us to this approach was the apparent similarities with the original
problem, thal might indicate some interesting results hetween the two entirely
different LP problems, as well as some advantageous points of the new model

(when compared to the original one).
Now, the LP model can be defined in the tollowing way;

min dx

s.t. I’ > f

and a2’ >0
where;

ei; + benefit gained by species i through the existence of unit resource j.

fi: accumulated benefit (fitness) required for species i.
d; . energy dissipated (consumed) by one unit of resource j.
J . ! . ) .

”c; : the quantity of resource j.

Similar to the dual of the original model, this is Nature’s problem, which tries to
minimize the total energy dissipation in the universe, subject to minimal vital
constraints of each specics. However, here the decision variable @’ represent
the quantity vector ol the resources; so it is a clearer formulation, than that of

the dual problem that has been stated.

4.2.1 The Dual of the Transposzd Problem

As a final LP model the dual of the transposed problem and it’s significance will

be stated. The problem, in opposition to the transposed problem represents
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the view of the species populations, just like the original problem.

max Ty
s.t. BTy < 7

and ¥y’ >0
where;

y; @ energy payable by nature per fitness level of unit species s.

The meaning of the dual varianle v/, may look peculiar, however this is not
confusing when the following facl is recalled. Each species obtains a certain
level of fitness by the exploitation of certain resources, and this has some cost to
nature. The argument can be validated by carrying out the dimension analysis.

IFor the transposed problem the parameters are:

fi+ (fitness/spec.i)
dj:  (energy/res.j)

2l (res.j)

Thus the dimersion of variable y 's:

. energy
Yi - [ﬁtness]
spec.i

The objective in this case is to adjust the acceptable limits of energy con-
sumable per fitness level of unit species of ¢ (in a maximal way), so that the
cumulative consumed energy of unit species per resource wouldn’t exceed the
restraints of energy dissipation for each resonrca. A careful observation of the
problem will indicate the similarities of this LP to the primal problem of the

first approach.
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4.3 Comparison of the Two Approaches

Before starting the discussions on the two approaches, as a chronological con-
vention we denote model I as the primal problem and model 111 as the transposed
problem. We denote models IT and IV as the duals of the former problems, re-

spectively.

The main concern in comparing these 4 models is the apparent interrela-
tionship between each problem. Models I and [I are dual pairs; the relationship
is obvious. So are the models [II and 1V. Models T and IV represent the same
type of constrained optimization, though with entirely different variables; the
same relation is true for models LI and HI. The most striking relation is that
of models I and III (so also with II and [V), because they hoth represent the

same problem in two different ways.

The two opposing problems remind the concept of duality (actually the
stmilarity between models 11 and 1V also are clear). The more interesting
fact is that, these two problems (I and [II) have the same decision variables;
or at least the variable vector of model [ is a subset of that of model IIL
This peculiarity arises from the fa:t that, the decision variables (quantities of
the constituting species population) are also a subset of the resources of the

problem.

In problem [, the relation A'c < 0" is a way of illustrating the food chains;
actually the entities of the A’ matrix are the consumption rates of resources by
species. However, il a resource is consumed (without being caten or utilized
somehow) then this sort of behavior is not distinguished in this model. For
example, if an animal kills another one without any apparent reason, this is
considered as consumption as well. So the relation only maintains the avail-
ability of the resources and the average fitness values are assumed to be known

and are dealt with the objective function.

Finally if the existence of species is favorable to any resources, i.e. has

positive impact on the quantity of the resource, then this may be illustrated
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by negative consumption values.

In the other approach, (problem IIT); the mutual favorings and disfavorings
in the ccosystem (without regarding consumption) are illustrated very clearly.
This approach represents competition and struggle for life between the species

i a bhetter way.

The A" matrix in the first approach is sparser than the one in the next
approach; actually the second model represents the mutual relationships in a
detailed way. In the second approach however, there is not a mention about
Lhe Jimitations on resources in a divect way. On the other hand, the dual of the
transposed problem provides a picture of limited universe with its constraints,

where the energy dissipation of resources is limited, somehow.

Another difference between the two models is related to the algorithm given
in the previous chapter. The result of the point optimization in the first model
gives a targeting value ol the population size vector and this result might be
related to the amount of supplies of the species which act as resources, thus the
RHS for the next equilibrium can be updated in this way. However we don’t
have any feedback of this sort for the natural resources. In the transposed
model on the other hand, the optimal values determined can be used to update

the whole RHS for the next equilibrium point.

So there is some parallelism with the two approaches when the dual models
are taken into consideration as well. The similarities will he made clearer by
a simple example. Of course this example is far from describing the complex
structure of a real ecosystem, but it is suflicient for illustrating the structure

of Lotka-Volterra type systems.

Fzample. Consider a simple ecosystem with the following resources.

. lion.
2. woll.

3. impala.
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4. rabbit.

5. grass.

6. carrot.

7. lettuce.

Here the first 4 resources are species as well, the remaining ones are not

considered as living entities of the ccosystem, but only inputing resources to

the system.

Now according to the modeling approaches discussed, the problem may be

formulated in the following ways.
L. (Primal Problem)

max 10z, + dzy  +0x3 + 24

s.t.
0.1z <3
0.2z, < 10
€ —0owy <15
0.1aq, + 22 < 48

4z, +10x3 + x4 < 1000
Jxy <300
5.‘1}3 + /l-.‘l,',l < 400

e Time to time a lion may be killed by some impalas. (Constraint 1)

e Lions may kill the wolves time to time. (Constraint 2)

¢ Lions cat impalas, rabbits are beneficial to impalas. (Constraint 3)

e Rabbits are consumed by wolves mostly, and slightly by lions (Constraint 4)
o Grass is consumed by wolves, impalas and rabbits. (Constraint 5)

¢ Carrots are consumed by rabbits. (Constraint 6)
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¢ Lettuce is consumed by rabbits and impalas. (Constraint 7)

III. (Transposed Problem)

min 20z, + 10z, + 1025 + 2z 0.tzs + 0.1xg + 0. 125

s.t.
Ty + 2wy > 20
—0.4z; 4 1024 + 5zs > 30
-2z, -+ 24 + 20z + 10z, > 10
—0.521 - 5z, + x5 4 3zg + 47 > 20
z; >0

e Lions are favored by the existence of impalas and rabbits. (Constraint 1)

e Wolves are favored by the existence of rabbits and grass and disfavore

(Constraint 2)

68

d by lions.

* Impalais favored by grass and lettuce and also by rabbits and disfavored by lions.
(Constraint 3)
* Rabbit is favored by grass and lettuce, disfavored by lions and wolves. (Constraint 1)

The parameters are similar to those stated previously. They were gener-

ated in a rough way, bearing in mind some simple food chains, and sy

mbiotical

behavior. There are food chains like, lion-impala-lettuce or wolf-rabbit-carrot,

There is competition between the two carnivores, the lion and the wol

[. Symbi-

otical relations are clearer in the second model, for example impalas are favored

by the existence of rabbits (though there is not a food chain incluc

species).

ling both

From the benefit-consumption relationships of the species and resources,

the similarities between the two models hecome apparent. In matrix

we can rewrite the problems as:

notation
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t >0
(111)
min d[Z]
st [ABYT)[£] = ¢
x>0

69

To make clear the symbols in the second model, the [ollowing list of expla-

nations is given:

e ¢ — ¢': There is positive correlation between the entities.
e B— D7

o A — A: The correlations are as follows; the positive (negative) A entity

has a negative (positive) impact on the corresponding A entity. F'urther-
1

more, the positive consumption entities in A have a positive impact on

the corresponding A7 entity. (Because of this additional feature, the A

matrix is more illustrative than the A matrix which is sparser.)

These correlations are not difficult to observe, the relation between ¢ and ¢
seem to be clear. Since the resources consumed by the species are assumed
to be beneficial to the species, there is an obvious correlation between the

submatrices, B and B’. (This relationship is rather one sided, there is a transfer

/

of benefit in one direction, {rom resources to species.) The bizarre relation

between the mutual interaction matrices of the species arises from the following

facts:
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i) Two species may have prey-predator type of relationship. (One is con-

sumed by the other, and provides a certain amount of benefit in this way.)

i1) Two species may be competitors, and therefore they may be consuming

cach other without obtaining dircet hencefits.

iii) Two species may be interacting in such a way that none of them con-

sumes Lthe other, but only one of them benefits from this.

iv) There may be symbiotical relation, none of them is consumed and both

benefit.

As may be seen the mutual relations may be either antisymmetric (prey-
predator), symmetric (symbiotical) or nonsymmetric at all.  Consumption
doesn’t always mean benefits gained, so the correlation of the submatrices

A and A is a bit complicaled.

So this peculiar sort of resemblance of these twin models (problems I and
II1) arouses further interest on the issue. The correlations between the two
problem parameters make us ask the following question; is it possible to gener-
alize this type of similarity to a certain class of optimization problems, and is it

possible to find some simultaneous optimalily conditions for the two problems?

The answer doesn’t seem quite trivial. There 1s an obvious similarity be-
tween the two types ol problems, but even if some relation holds it is not clear
that this can be located easily. Nevertheless, some inferences are likely to be
deduced {rom these problems, and this will possibly be a further topic of in-
terest. The results might be useful for the general LP modeling theory and

duality.



Chapter 5

Conclusion

In this research our basic motivation was to analyze certain mathematical mod-
els of evolution, and to generate some results by computer simulation, taking
these mathematical models as the background. It was stated that there is a
vast literature related to evolution studies and it is not claimed that a summary
of the whole literature has heen made in the second chapter. BEvolution is a
topic which has aroused so much attention that, scientists from nearly all dis-
ciplines have been concerned with it, and this is probably the reason, why such
an immense literature has been accumulated which still doesn’t have settled
standards, axioms and [undamentals agreed upon. Despite certain develop-
ments in the evolutionary models, the topic matter is still in infancial state
and nterdisciplinary consensus hasn’t yet {ormed [Feistel and Ebeling, 1989],
[Brooks et al. 1984]. So it is quite possible thal some of the models, approaches
and views have not been mentioned. A practical problem is the fact that most
publications before the 80’s are alimost unobtainable, and T think that it would
have been much better if certain articles and books were available during my
thesis research. Ispecially it would be mostly invaluable if historical docu-
ments of interest had been at hand. Nevertheless T think that a briel summary
of the work (at lcast a major portion of) that has been done until now, is
given; and some views and opinions of certain scientists and philosophers are

also discussed on certain issues of cvolhition.
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The models that have been of interest were in two classes. The first class
was that of a so-called autogenesis phenomenon, in which self-organization of
certain (biological) molecules through a process of imperfect replication pro-
cedure was being analyzed. The model was adopted from a former rescarch
work on the issue autogenesis [Csanyi and Kampis, 1985], [Kampis and Csényi,
1987]. In the context of this research, simulation analyses had been done for a
single biosystem of molecules, and it’s self-organization had been investigated
independently. Apart from this, the main interest was to extend the single
system model to a hierarchical multi-level system model, where each system is
still concerned with its sell-organization, however cach are intervelated to each

other by this hierarchical multi-level structure.

The results of our simulation runs indicate a similar formation of organiza-
tion throughout time. The simultaneous appearances of these organizations in
independent systems result with a supersystem (of higher level) which starts
to self-organize itself; and at the same time the self-organization process con-
tinues on the independent systems. Iinally a state is reached, where a suf-
ficient amount of self-organization has been formed in the upper system (i.e.
when similar supersystems have been scll-organized as well, even higher level
structure formations are possible) but the self-organization process has been
stopped, since the sell-organization of the upper level has destructed the ex-
isting organizations of the lower level systems. In this way most of the Jower
level systems have become dead and an upper level system (a more compli-
cated organization) has formed on top of these. Thus the level of complexity

of self-organizing systems can increase by this process.

The importance of an autogenesis process is that it represents the forma-
tion of self-organization of biological molecules (such as DNA and RNA chains)
which is directly related to emergence ol first living structures on earth (the
single level model); and also the formadtion of more complex structures through-
out the process of self-organizing of a larger system constituting of interactive

self-organizing systems (the multi-level model).

The sccond class of the models that have bheen designed and experimented
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was the LP-type models or the optimization models. The essence of such
models is that they represent the ecological population dynamics which exhibit
evolutionary mechanisms, mutations, sclection, and optimal search towards an

equilibrium position.

Tn these population models, variations occur (dominantly) after a bottle-
necking period, where population sizes are comparatively small, after a catas-
trophic event (here, optimization) has taken place and most of the species
populations have become extinct. New species descending from the former
ones have appeared and the ones that are viable will have chances to survive
the next catastrophic event (another optimization). The dynamics is governed
in this way; as a consecutive runs of LP optimization, where each denotes a

catastrophic event in which the populations are aflected drastically.

A subissue related to the LP model was situated in the final chapter. The
former LP modeling has been done, based on the resource < consumption
balance of the populations. A different way of formulating the problem is
suggested in this chapter for the same ecosystem, but with a different logic.
Iere the minimal survival limit ¢+ accumulated benefit balance has been of
concern. The idea emerged from the duality concept; the second approach
objective and constraints are very similar to the objective and constraints of

the dual problem of the first approach.
The objectives and the constraints for each problem can be given as:
I. Primal Problem.

Maximize camulative fitness of the entire populations with respect to the limited resource

constraints.
I1. The Dual Problem.

Minimize total fitness (economize on the depletion of resources) with respect to the

minimal benefit requirements of populations existing just before the time of the catastrophic

incident.

IHL. The Transposed Problem.
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Minimize total energy consumption subject to minimal accumulated benefit requirements

for all populations.

IV. The Dual of the Transposed Problem.

Maximize total energy gain out of nature subject to maximal energy dissipation con-

straints of the resources.

A detailed analysis of these four problems will probably be of further in-
terest to deal with. The striking similarity between the two approaches can
be generalized to other models as well. The most important aspect of the
evolution models is the fact that the objective variables are also defined as

constrained resources of the problem.

Similar Lwin models may he constructed for other problems with the same
aspect. Examples are not difficult to find, An autocatalytic chemical process,
(in which there are some constraints) where several products are also inputing
raw materials of the process, is one example. Another class of models is the
inter-industry models (Leontief type), where each industry represents both a

constraint and an objective variable.

Apart from the construction of these mmodels and their implementations,
three other areas of interest have heen of major concern in this thesis rescarch.
The first one is that some discussions on the related topics of evolution have
been dealt with, and the criticisms that have been placed, and some counter
evolutionary theories were also of interest as well. The sccond one is that,
although not directly related, some mathematical models and approaches of
interest have been studied briefly. Finally, a relation between evolution and
optimization is tried to be elaborated. The relationship between evolution and
optimization is nothing new, and m fact Darwinian evolution and optimization
has been resembled to a heuristic, an ascent algorithm in the phenotype space

[Simon, 1981]. Both are myopic and couverge to local optima (if possible).

The rescarch study will not possibly terminate at this point, though. New

optimization problems can be formulated from the mathematical models; and
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the graph theoretical models of phylogenesis are possibly topics of future re-
search. Modified autogenesis models can be constructed, probably those mod-
els that can be more casily 1dentified with the structural self-organization of
DNA and RNA molecules. Simulation programs of Lotka-Volterra type ecosys-
tems can also be written to model larger and more realistic ecosystems. And
most important of all, the discussions in the latest chapler will be possibly

extended, to account for some other economical or chemical models as well.



Appendix A

An Example Run of the LP
Model

The dynamic structure ol an ecosystem of primitive structures (such as certain
bacteria) is illustrated through consecutive runs of LP optimization. 4 pop-
ulations constitute the initial ccology, which are depicted as the core species.
These core species also represent the first four resources in the problem. There
are five more natural resources other than these. After cach optimization step,
new mutants appear from this basic core species. The descendants of the 15
population arve the 13 and 5%, similarly for the 2" population the descendants
are the 2° and 6™ at the second run. If at any iteration, all of the descendants
of a core population are extinct, then the corresponding resource is set to 0
and all the columns for the next iteration (those representing the species of
the core population) with mean 0. Otherwise a weighted average column is
calculated, for all mutants, and the columns for the next iteration are gener-
ated by perturbing this cohunn randomly. To illustrate this process, after first
iteration, the 3™ species remain alive so the 7% column for the second iteration
is generated from the 34 column. After second iteration, 3™ species become
extinet whereas the 7% remain alive. So for the third iteration, columns 3,
7 and 11 are gencrated from the 7% colummn. It has been assumed that if a

certain population has become extinet, then the descendants of this population
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is something quite different from the original species. Since the second pop-
~ulation has been extinct by the end of the first optimization, the parameters
of the 2" and 6" columns are regenerated in the second simplex tablean with

mean 0.

The optimal amounts ol the population sizes are used to update the initial
4 RHS values in the next run. The procedure continues on by adding 4 new
species descending from the original core populations, by random modification.
The descendants of the same core are considered as similar resources, so the
optimal values of all species of the same origin are summed up and the resulting
value is set to the corresponding RIS value. For example, after the second
iteration, the first RIS value (for the next iteration) is updated by adding
ay and xp. So al the end of cach optimization, the optimal values arc added
to modify the RHS of the first 4 constraints as described. The RHS values
of the remaining constraints (natural resource constraints) are also modified

randomly.

The output for 7 iterations is presented in the following pages. The problem
formulations are written in LINDO format. As just stated, the problem at
the first iteration has 4 variables and 9 constraints. At each iteration 4 new
variables are added to the problem as described. The optimal solutions are also
listed in LINDO format, just after the problem formulation of ecach iteration.
The values are in the first columns of the output file. It has to be reminded

that only these columns are of concern, and the rest (reduced cost columns)

can be ignored.



MAX 3.7 X1 + 3.2 X2+ 5.7 X3 + 1.7 X4

SUBJECT TO
2) -2.0 X1 + 3.0 X2 + 2.0 X3 + 8.0 X4 <= 13.7
3) 3.0 X1 - 4.0 X2-4.03X%X3 + 7.0 X4 <= 6.1
4) 0.0 X1 + 7.0 X2 + 7.0 X3 + 7.0 X4 <= 6.0
5) -2.0 X1 - 1.0 X2 - 2.0 X3 + 8.0 X4 < 12.3
6) 9.0 X1 + 6.0 X2 + 4.0 X3 - 1.0 X4 <= 12.1
7) 7.0 X1 - 1.0 %2 + 3.0 X3 + 10.0 X4 <= 6.0
8) -3.0 X1 + 0.0 X2 + 4.0 X3 - 3.0 X4 <= 13.8
9) 6.0 X1 + 0.0 X2 + 0.0 X3 + 0.0 X4 <= 10.3
10) -2.0X1 +7.0X2+ 9.0 X3 -1.0 X4 <= 10.8

END
6.6979590 1.0000000 F  .10000000E+31

X1 .48979590 .00000000 C .10000000E+31

X2 .00Cuf000 .38571410 C .10000000E+31

X3 .85714290 .00000000 C .10CO0000CE+31

X4 .00000000 7.7000000 C .10000000E+31
MAX 3.1 X1 -0.7 X2+5.2X3-0.0X4+3.3X5 -20.9X6 + 5.9 X7
+ 0.4 X8
SUBJECT TO

2) -2.1X1 +0.2 X2+ 2.4%X3+0.2%X~-1.2X5+0.87%6 + 2.2 X7
+ 0.3 X8 <= 0.5
3) 2.3X1 +0.5X%X2-3.1X%X3-20.8X4+2.6X5-0.2X6 - 3.2 X7
+ 0.8 X8 <= 0.0
4) 0.8 X1 + 0.8 X2 + 6.3 X3 - 0.6 X4 - 0.9 X5+ 0.2 X6 + 6.6 X7
- 0.1 X8 <= 0.9
E) -2.2 X1 +0.6X2-1.7T%3 + 0.6 X4 ~3.0X5+0.1%X6-1.9 X7
+ 0.2 X8 <= 0.0
8) 9.6 X1 - 0.0 X2+ 3.7 X3 -0.3X4+8.3X%X5-0.7 X6+ 3.7 X7
- 0.0 X8 <= 12.3
7) 6.4 X1 + 0.1 X2+ 3.3X3-0.8X%X4+7.9X%X5-0.61X6+ 2.7 X7
+ 0.4 X8 <= 14.0
8) -3.1 X1+ 0.7 X2+ 4.6%3+0.5%X4-4.0X5-0.2%X6+4.11X7
+ 0.6 X8 <= 14.0
9) 6.0X1 -0.9X2-0.4%¥3-0.6X%X4+6.1X%X5+0.5X6+0.9X7
+ 0.8 X8 <= 12.9
10) -2.8 X1 - 0.5 X2 + 9.6 X3 + 0.7 X4 - 2.7 X5 - 0.9 X6 + 9.6 X7
- 0.6 X8 <= 10.9
END
8.1543050 1.0000000 F .10000000E+31
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X1
X2
X3
X5
X6
X7
X8
X4
MAX 3.
- 0.6 X8
SUBJECT TO
2)
X8
3)
X8
4)
X8
5)
X8
6)
X8
7)
X8
8)
X8
9)
X8
10)
.5 X8
END

X1
X2
X3
X4
X5
X6
X7
X8
X9

1

.2407510

.00000000
.00000000
.76318620E-02
.00000000
.49492010

3.
5.

4

+

+

2

4069080
0191900

.00000000
1.0779140
.93041930
.00000000
1.5632160
.00000000
.00000000
.00000000

aQ a O o a a a

.10000000E+31
.10000000E+31
.10000000E+31
.10000000E+31
.10000000E+31
.10000000E+31
.10000000E+31
.10000000E+31
X1 -0.4 X2+ 6.2 X3 +0.6X4+3.3X%X5-1.31X6+5.11X%7
3.7 X9 - 0.0 X10 + 6.0 Xii + 0.3 Xi2

-2.7 X1 + 1.3 X2+ 1.5 %3 -0.2X4-2.0X5+ 0.3 X6 + 1.5 X7

X9
X1
X9
X1
X9

O W M
[ O S N A ]

-1.3 X1 + 0.9 X2
2.7 X9 + 0.9 X10
10.4 X1 - 0.5 X2

+

+

<+

+

1.3 X10 + 2.1 X1t
0.4 X2 - 4.0 X3 +

0.2 X10 - 2.9 X11
1.0 X2 + 6.3 X3 -
0.7 X10 + 6.8 Xi1

+

1.

+
0.
+

0

5
i
5
0

1.4 X3 + 1.3 X4 - 2.0 X5

.3 X12 <= 1.2
X4 + 2.6 X6 + 0.1 X6 - 3.0 X7

.4 X12 <= 0.0
X4 + 1.6 X5 + 0.8 X6 + 6.7 X7

.3 X12 <= 0.5
- 0.1 X6 - 1.6 X7

8.4

1.3 X11 + 1.2 X12 <=
3.5 %3 -0.83X4 + 9.4 X5
12.3

9.8 X9 - 0.7 X10 + 4.5 X11 - 0.4 X12 <=
6.0 X1 - 1.5 X2+ 3.0X3-0.8X4+ 6.7 X5+ 0.2 X6 + 3.2 X7
6.6 X9 - 1.6 X10 + 3.5 X11 + 0.7 X12 <=
-3.56 X1 - 0.3 X2+ 3.3X3+0.6X4-2.1X%X5-0.71X6+ 4.6 X7
0.5 X10 + 4.9 X11 + 0.9 X12 <=
X2 + 1.3 X3+ 1.5X4+ 6.9 X5+ 0.5X6+ 0.2 X7

4.0 X9
6.4 X1
5.8 X9
-3.5 X
2.3 X9

. 5423220

.58298000
.00000000
.29541930
.00000000
.00000000
.00000000
.00000000

2

.1190160
00000000

+

1

0

.3
0.4
0.
6

X10 + 1.1 X11 + 1.5 X12 <=
1 X2 +10.4 X3 - 1.1 X4 - 3.1 X6 -0.1X6+ 10.0 X7

X10 + 10.5 X11 - 1.1 X12 <=

1.0000000
.00000000
5.2793500
.00000000
1.8927310
4.9848100
3.7929580
4.6480900
.00000000
3.6124390

a o o o o o o o T

.10000000E+31
.10000000E+31
.10000000E+31
.1000C000E+31
.10000000E+31
.10000000E+31
.10000000E+31
.10000000E+31
.10000000E+31
.10000000E+31

14.0

14.0

12.9

0.7 X6 + 3.3 X7

10.9
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MAX

80

Xi1 .00000000 4.9244730 C .10000000E+31
X12 .00000000 3.7123050 C .10000000E+31
X10 .00000000 2.6085200 C .10000000E+31

2.5 X1 +0.3 X2+6.1X3-0.9% +2.5%X5-10.81X6+ 5.2 X7

- 0.7 X8 + 4.0 X9 + 0.1 X10+ 7.0 X11 - 1.0 X12 + 4.3 X13 - 0.9 X14
+ 6.5 X156 + 0.3 X16
SUBJECT TO

2) -3.6 X1 - 0.1 X2+ 2.1 X3+ 0.5 X4~ 3.6X5~-0.7 X6 + 0.5 X7
X8 - 2.9 X9 + 0.6 X10 + 2.0 X11 - 0.4 X12 - 1.8 X13 + 0.2 Xi4

X15 + 1.6 X16 <= 0.6

3) 1.3 X1 +0.2X2-3.6X3+1.5X4+0.6X5+ 0.6 X6 - 4.51X7
X8 + 1.9 X9 + 0.7 X10 - 3.9 X11 + 0.9 X12 + 1.2 X13 - 0.6 X14

8 X15 + 0.0 X16 <= 0.0

4) 1.6 X1 + 0.5 X2 + 5.6 X3 - 1.0 X4 + 2.2 X5 + 0.8 X6 + 7.2 X7
X8 + 2.2 X9 + 0.7 X10 + 7.0 X11 1.4 X12 + 1.9 X13 0.4 X14

X15 + 0.1 X16 <= 0.3

5) -2.1 X1 -0.7 X2 -1.7 X3+ 0.8%X4 - 0.7 X5+ 0.0 X6 - 1.8 X7
X8 - 0.5 X9 + 0.3 X10 - 1.2 X11 + 1.9 X12 - 0.8 X13 + 0.1 X14

X15 + 0.5 X16 <= 2.1

8) 10.7 X1 - 0.8 X2 + 3.5 X3 - 0.9 X4 + 11.2 X5 - 0.4 X6 + 3.8 X7
X8 + 9.7 X9 - 0.5 X10 + 3.4 X11 + 0.1 X12 + 9.8 X13 - 0.5 X14

X15 - 0.9 Xi6 <= 12.3

7) 5.7 X1 + 0.5 X2+ 2.1X3+0.3X4+6.9X5-0.7X6+ 2.6 X7

3 X8 + 5.7 X9 - 0.3 X10 + 3.2 X11 + 0.9 X12 + 6.0 Xi3 + 0.8 X14

Xi5 + 1.3 X16 <= 14.0

8) -2.56 X1 +0.1 X2+ 2.9X3-0.0X4-4.1X%X5+ 0.7 X6 +4.0X7
X8 - 2.7 X9 - 1.0 X10 + 3.9 X11 + 1.1 X12 - 3.7 X13 + 0.7 X14

Xi5 + 0.3 X16 <= 14.0

9) 6.5 X1 + 0.6 X2+ 0.7X3+0.6X4+5.9X5-0.1X6+ 0.4 X7

6 X8 + 6.0 X9 -~ 0.8 X10 + 1.7 X11 + 0.2 X12 + 5.8 X13 + 0.6 Xi4

X15 + 1.4 X16 <= i2.9
10) ~3.2 X1 - 0.6 X2+ 10.7T X3 - 1.0 X4 - 4.1 X5~ 1.0 X6 + 9.5 X7

0.8 X8 - 2.7 X9 + 1.0 X10 + 10.9 X11 - 1.5 X12 - 3.4 X13 - 0.3 X14

+ 10.4 X15 - 0.6 X16 <= 10.9

END

2.7526190 1.0000000 F  .10000000E+31
X1 .00000000 .97585840 C .10000000E+31
X2 .00000000 .26434620 C .10000000E+31
X3 .00000000 .58368270 C .10C00000E+31
X4 .00000000 .30748170 C .10000000E+31
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X
X
X
X
X
X
X
MAX

X5 .00000000
X6 .00000000
X7 .00000000
X8 .00000000
X9 .00000000
10 .00000000
11 .00000000
12 1.4674500
13 1.3868540
14 3.6330640
165 .21186620
16 .49740500

2.1586620
2.2825650
3.5334260
.36221680
1.2031920
1.3899640
1.9214530
.00000000
.00000000
.00000000
.00000000
.00000000
3.4 X1 -1.9%X¥2+6.5X3-1.2%4+ 5.3 X5 -

+ 0.1 X8 + 3.9 X9 - 0.6 X10 +
+ 6.5 X15 -~ 0.5 X16 + 3.8 X17

SUBJEC

T TO
2)

3) 0.5 X1 +
+ 1.0 X8 + 1.3 X9 -
- 3.9 X15 + 0.4 X186
4) 1.1 X1 +
- 3 X8+ 2.1 X9 +
+ 5.3 X15 - 0.4 X16
5) 0.2 X1 +
+ 2.7 X8 - 0.8 X9 +
- 0 X15 + 1.0 Xi6
6) 9.4 X1 -~
- 0.9 X8 + 9.2 X9 -
+ 3,4 X15 - 0.1 X16

7)

-1.0 X1 - 0.4 X2 +
3 X8 -2.0X%9 +
4 X15 + 0.4 X16

0.2 X10 +
- 1.8 X17
0.
0.
+
0.
0
+
1.
0.

0.
1.1

X8 + 6.7 X9 + 1.6 X10 +
X15 + 0.9 X16 + 5.7 X17
8) -3.7 X1 + 1.3 X2 +
X8 - 2.8 X9 - 0.2 Xi0 +
X156 + 1.7 X16 ~ 4.2 X17
9) 5.5 X1 +

X8 + 5.1 X9 +

8 X15 + 0.4 X1i6

0.8 X2 + 2.2 X3 + 1.

QO O O O o a o o o o o a

.10000000E+31
.100060000E+31
.10000000E+31
.10000000E+31
.10000000E+31
.10000000E+31
.10000000E+31
.10000000E+31
.10000000E+31
.10000000E+31
.10000000E+31
.10000000E+31

6.7 Xi11 - 0.5 X12 + 4.9

- 0.0 X18 + 7.4 X19 -

3
1

+

X10 - 1.3
.5 X1i7 + 0.2 X1i8
X2 + 4.0 X3 - 0.
X10 + 4.6 X11 +
+ 10.2 X17 - 0.1 X18 + 4.5 X19 + 1.0 X20 <=

.0 X3 - 0.9 X4 - 2.7

.8 X11 -
0.5 X18

2

1

1 X2 -3.9 X3+ 0.
6 X10 - 3.2 X11 +
1.4 X17 - 0.9 X18
1 X2 + 4.8 X3 - 0.
.6 X10 + 6.0 X11 -
0.9 X17 + 0.4 X18
0 X2 -0.7 X3 + 2.
4
1
3

X11 +

0.1 Xi12 - 1.1
+ 1.9 X19 + 0
2 X4 + 1.0 X5
0.5 X12 + 1.9
- 4.0 X19 + 0
3 X4 + 0.9 X5
2.0 X12 + 1.8

+ 5.0 X19 - 0.

5 X4 - 0.9 X5
2.6 X12 - 0.2

- 0.4 Xi9 + 2.

7 X4 + 8.9 X5

0.

1.

4 X6 + 6.6 X7
X13 - 0.0 Xi4
4 X20

Xi3 + 0.1 X14

0.2 X12 + 10.3 X13 - 1.3 X14

4 X20 <= 1.4
- 0.6 X6 - 4.3
X13 - 0.6 X14
2 X20 <= 3.6
- 1.1 X6 + 6.2
X13 - 1.0 X14
4 X20 <= 0.2
+ 0.2 X6 - 1.7
X13 + 0.3 X14
2 X20 <= 2.0
- 0.4X6 + 4.2
12.

2.9 Xi1 + 0.8 X12 + 6.4 X13 + 0.4 X14

+ 0.1 X18 + 4.2 X19 + 1.2 X20 <=

14.

X6 - 0.4 X6 + 2.0 X7

X7

X7

X7

X7

3

6.0 X1 + 0.4 X2 + 3.0X%X3 +0.9X4+6.1X5+0.1X6+ 4.3 X7

0

2.4 X3 +0.0X4-3.4X5+1.4X6+ 2.5X7

3

+

.0 X11 +
1.5 X18

1.1 X10 + 2.0 X11 +
+ 6.0 X17 + 0.7 X1i8

0.3 X12 - 4.7

+ 3.3 X19 + 1.

X1i3 + 0.5 X14
9 X20 <= 14.

0

2 X4+ 6.1 X5+ 0.5 X6+ 1.3 X7

0.4 X12 + 5.9

+ 2.2 X19 + 0.

X13 + 0.9 X14
1 X20 <= 12.

9
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10)

-3.2 X1 -0.6 X2 +9.4X3-1.0X4-4.4X%X5-0.4X6+ 9.4 X7

- 1.3 X8 - 3.3 X9 - 0.8 X10 + 10.2 X11 - 1.1 X12 - 3.9 X13 - 0.8 Xi4

+ 9.8 X156 - 1.4 X16 - 4.1 X17 + 0.7 X18 + 10.2 X19 - 1.3 X20 <=

END

X1
X2
X3
X4
X5
X6
X7
X8
X9
X10
X11
X12
X13
X15
X16
Xi7
Xi9
X20
Xi4
Xi8
MAX

14.742650
.00000000
.00000000
.00000000
.00Gu0000
.62201630
5.5275220
.00000000
.49685880
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
1.8388220
.00000000
2.8277340
.00000000

3.2 X1 -1.4X2+7.0X3+
+ 0.5 X8 + 4.2 X9 - 0.8 X10 + 7.6
+ 7.0 X156 - 0.0 X16 + 3.5 X17 - 1.

1.0000000
2.2279050
3.4941830
.38393180
3.4883310
.00000000
.00000000
.33902490
.00000000
1.9118740
2.4124890
.96781940
.41254510
1.4276510
1.0512390
1.2665060
.93883200
.00000000
2.8703590
.00000000
1.3581660

- 0.3 X22 + 8.2 X23 + 0.4 X24

-2.9 X1 - 0.4 X2+ 2.2

SUBJECT TO
2)
- 0.6 X8 - 1.7 X9 + 0.
+ 1.6 X15 - 0.4 X186 -
+ 0.6 X22 + 1.5 X23 -
3) 0.4 X1 + 0.
+ 1.4 X8+ 1.2 X9 - 0.
- 3.7 X15 + 0.1 Xi6 +
- 0.7 X22 - 3.2 X23 +
4) 0.1 X1 - 0.
- 1.6 X8 + 1.0 X9 - 0.

6
1
0
3
8
0
1
4
9

X10 + 1.8
.1 X17 + 0.
.5 X24 <=

X2 - 3.8 X3 + 0.

X10 - 3.6 X
.7 X17 - 1.5
.2 X24 <=

X2 + 4.9 X3 - 1.

X10 + 4.2 X

OOOOOOOOOOOOOOOOOOOOﬁ

0.6 X4 + 4.4 X5 -
Xii + 0.6 X12 + 4.
4 X18 + 6.5 X19

X3 + 0.6 X4 - 2.
X11 + 0.6 X12 - 1.
1 X18 + 1.9 X19

0.6

11 +

X1i8

8.4

i1 -

10.9
.10000000E+31

.10000000E+31

.10000000E+31

.10000000E+31

.10000000E+31

.10G00000E+31

.10000000E+31

.10000000E+31

.10000000E+31

.10000000E+31

.10000000E+31

.10000000E+31

.10000000E+31

.10600000E+31

.10000000E+31

.10000000E+31

.10000000E+31

.10000000E+31

.10000000E+31

.10000000E+31

.10000000E+31

1.2 X6 + 8.3 X7
5 X13 - 1.2 X14
0.4 X20 + 5.1 X21

X6 + 0.5 X6 + 2.2 X7
4 X13 - 0.7 X14
0.1 X20 - 2.5 X21

9X4 +1.2X5 -1.3X6 - 3.3 X7
0.4 X12 + 1.3 X13 - 0.2 X14
4.6 X19 + 0.3 X20 + 0.3 X21

0 X4 + 1.7 X5 - 1.2 X6 + 4.1 X7
1.3 X12 + 1.3 X13 - 1.0 X14

82
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+

END

2.

0.7 X22 + 10.7 X23 - 1.6 X24 <=

6 X17 + 2.4 X18 + 3.9 X19 + 0.9 X20 - 4.1 X21

0 X24 <= 9.8

X2 + 2.6 X3 - 0.6 X4 + 5.3 X5 ~0.4 X6 + 1.4 X7
Xi0 + 2.4 X11 - 1.1 X12 + 5.7 X13 + 1.1 X14
.8 X17 + 1.2 X18 + 2.6 X19 - 0.6 X20 + 6.5 X21
.5 X24 <= 8.4
.8 X2 +9.8X3~-~0.9X4-4.1X5-10.3X6+ 9.9 X7
X10 + 10.2 X141 - 1.7 Xi2 - 4.5 X13 + 0.2 X14

11.0 Xi15 - 1.7 X16 - 4.4 X17 - 0.8 X18 + 11.0 X19 - 0.9 X20 - 3.4 X21
12.9

1.0000000 F  .10000000E+31

.78368420 C .10000000E+31

1.8877320 C .10000000E+31

1.7671250 C .10000000E+31

.33010500 C .10000000E+31

.63413750 C .10000000E+31

.99766980E~-01C .10000000E+31

.00000000 C .10000000E+31

.31725800 C .10000000E+31

.59255930 C .10000000E+31

.00000000 C .10000000E+31

.73146430E-01C .10000000E+31

.35693160 C .10000000E+31

X156 - 1.7 X16 + 0.3 X17
2 X22 + 4.9 X23 - 2.1 X24
5) -1.7 X1 + 0.2 X2 -
X8 - 0.8 X9 + 0.1 X10 +
X15 + 3.2 X16 - 1.6 X17
X22 - 0.5 X23 + 3.4 X24 <=
6) 16.0 X1 - 0.6 X2 + 4.9 X3 - 0.6 X4 + 9.7

X8 + 9.9 X9 -
Xi6 - 0.0 X18
X22 + 5.4 X23
7) 6.4 Xi +
X8 + 5.6 X9 +

5 X15 + 0.5 X16

X22 + 5.0 X23

Xg - 5.0
Xi5 + 1.9 X16
X22 + 4.0 X23
9) 6.0 X1 +

4 X8 + 5.2 X9 +
4 X165 - 0.5 X16
5 X22 + 1.8 X23

2

X
X
X

10) -4.7 X1

X8 - 4.3 X9 -

7.1395990
X1 .00000000
X2 .00000000
X3 .00000000
X4 .00000000
X5 .00000000
X6 .00000000
X7 1.3243560
X8 .00000000
X9 .00000000
10 .24114270
i1 .00000000
12 .00000000

- 0.9 X18 + 2.1 X20 + 1.5 X21
1.8

0.2 X3 + 2.6 X4-1.3X5+ 1.1 X6 - 0.2 X7
0.3 X11 + 2.4 X12 -~ 2.3 X13 + 0.3 X14

+ 0.8 X18 - 0.8 X19 + 3.2 X20 - 0.8 X21

0.5

5.1 X19

<=

X5 - 0.6 X6 + 4.0 X7

1.2 X10 + 3.6 X11 - 1.5 X12 + 9.3 X13 - 1.0 X14
10.3 X17 - 0.4 X18 + 3.7 X19 - 1.9 X20 + 9.5 X21

+

1

0.

+

+

1.

+ O O +

s O O O w N

1.
.0

1

5.
1.
8) -4.9 X1 + 0.5 X2 + 3.2
X9 + 0.7 Xi0 + 4.3
3.
2.

6 X24 <= 6.0

X2 + 4,5 X3+ 0.5X4+ 5.4X%X5~-0.7 X6 + 4.9 X7
X10 + 3.6 X11 + 1.1 X12 + 6.0 X13 - 0.5 X14

7 X17 - 0.5 X18 + 3.6 X19 + 2.1 X20 + 5.6 X21

8 X24 <= 5.6

X3 + 0.9 X4 -3.9X%X5+ 0.7 X6 + 3.7 X7
Xi1 + 2.6 X12 - 4.8 X13 + 1.1 Xi4

o0
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2 X3 + 0.7 X4 - 2.

X3 - 0.2 X4 + 0.1

X13 .14821610 .00000000 C
X14 3.6055130 .00000000 c
X156 .00000000 .58383410 C
X17 .00020000 .19542650 C
X18 .00000000 .55388560 o
X19 .00000000 1.4394840 C
X20 .00000000 1.8811380 c
X21 .00000000 . 22778350 Cc
X22 .00000000 .51058280 C
X23 .00000000 . 82742810 C
X24 .00000000 .92974390 C
X16 .00000000 .56158270 C
MAX 3.7 X1 - 1.9 X2 + 7.8 X3
- 0.6 X8 + 4.1 X9 ~ 1.0 X10 + 7.6 X11 + 0
+ 9.0 X15 + 0.5 Xi6 + 5.2 X17 - 1.2 Xi8 +
- 0.5 X22 + 8.1 X23 + 0.8 X24 + 4.9 X25 -
- 1.2 X28
SUBJECT TO
2) -0.3 X1 - 0.2 X2+ 1.t
- 0.1 X8 ~0.9 X9 + 0.1 X10 + 1.4 X11 + 0O
+ 1.2 X15 + 0.6 X16 ~ 1.8 X17 - 1.4 X18 +
- 0.9 X22 +# 1.7 X23 + 0.1 X24 - 1.6 X25 -
+ 0.8 X28 <= 0.1
3) 0.7 %1 -1.2X2-3.1%3-20.4
+ 0.8 X8 + 0.1 X9 - 0.2 X10 -~ 3.0 X11 + 1
- 3.1 X156 + 0.2 X16 + 1.1 X17 + 0.4 X18 -
- 0.2 X22 - 3.4 X23 + 1.2 X24 - 0.0 X25 +
+ 1.4 X28 <= 3.8
4) 1.0 X1 -1.5%X2+ 3.,56X3 - 1.1
+ 1.4 X8 + 0.8 X9 - 1.2 X10 + 3.9 X11 - 0
+ 4.3 X15 - 0.2 X16 + 0.7 X17 - i.8 X18 +
- 0.1 X22 + 4.0 X23 + 1.2 X24 + 0.9 X25 -
- 1.0 X28 <= 1.3
5) -1.9 X1 + 0.5 X2 + 0.
- 1.1 X8 - 3.3 X9 - 0.3 X10 + 0.7 X11 - 0
- 0.4 X15 + 0.4 X16 - 1.5 X17 - 0.1 X18 +
+ 0.9 X22 - 0.6 X23 + 0.9 X24 - 3.0 X25 +
- 1.0 X28 <= 0.0
8)

.10000000E+31
.10000000E+31
.10000000E+31
.10000000E+31
.10000000E+31
.10000000E+31
.10000000E+31
.10000000E+31
.10000000E+31
.10000000E+31
.10000000E+31
.10000000E+31
~ 0.2 X4 + 3.1 X5 -

0.
.4 X12 + 3.5
8.9 Xi9 0.
2.1 X26 + 7.

+

.2 X12 + 0.
2.8 X19
0.7 X286

0
0.
1.

+

X4 - 0.4 X5
.3 X12 + 1.5
3.9 X19 + 0.
0.6 X26 - 3.

X4 + 0.4 X5
.7 X12 + 0.7
3.5 X19 1.
1.1 X26 + 4

t

.6 X12 - 1
0.8 Xi9
1.3 X26

.6
0.
0.

+

+

3 X6 + 7.5 X7
X13 - 2.0 X14

0 X20 + 4.7 X21
9 X27

X6 - 0.8 X6 + 1.8 X7

X13 - 0.9 X14
2 X20 - 0.7 X21
5 X27

+ 0.6 X6 - 3.7 X7
X13 - 0.6 X14

5 X20 + 2.3 X21

6 X27

- 2.0 X6 + 3.8 X7
X13 - 1.7 X14
0 X20 + 2.1 X214

.4 X27

7 X5 + 0.5 X6 ~ 0.7 X7

Xi3 + 0.2 X114
8 X20 - 0.8 X21
5 X27

9.1 X1 - 1.7 X2+ 2.9 X3 - 1.2 X4 + 10.5 X6 - 1.8 X6 + 3.1 X7

X8 + 10.1 X8 - 0.6 X10 + 4.4 X11 - 0.9 X12 + 8.7 X13 - 1.7 X14
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END

[y

= O B O
g N

O N w o

S » w0
N O N O

= = O O

2 X15 - 1.2 X16
4 X22 + 3.5 X23

4 X28 <= 10.8
7) 5.7 Xt -
X8 + 6.8 X9 -
X15 - 0.9 X186
X22 + 3.4 X23
X28 <= 5.4

8)

8 X8 - 6.5 X9 +
9 X15 + 0.1 X16
0 X22 + 4.9 X23
6 X28 <= i4.6
9) 4.2 X1 +
X8 + 3.9 X9 +
X15 + 1.3 X186
X22 + 2.7 X23
X28 <= 6.2
10) -5.5 X1

8 X8 - 4.2 X9 -
1 X185 + 1.7 Xi6
1 X22 + 9.3 X23
1 X28 <= 8.2
10.866990

X1 .00000000
X2 .00000000
X3 .00000000
X4 .00000000
X5 .00000000
X6 1.3960290
X7 .00000000
X8 .00000000
X9 .00000000
X10 .00000000
Xi1 .00000000
X12 .00000000
X13 .00C0N000
Xi4 .00000000
X15 1.1175050

o

o

+

+

LaatN @ SRR G s BRI N

o & o ©

-5.6 X1 + 0.9 X2 + 4.
1.

.8 X17 +
.4 X24 -

X2 + 4.6
Xi0 + 5.

.2 X177 +
.3 X24 +

X10 + 3

X2+ 1.9 X3 - 1.

Xi0 + 2.

.6 X17 +
.9 X24 +

a = = O

2

1

4

6

.9 X17 - 0.4 X18
.9 X24 + 9.8 X25

3 + 1.

Xi1 +
.0 X18
.6 X25

X3 + 0.6 X4 - 4.3

X11 +
.4 X18
.5 X25

Xi1 -
.8 X18
.2 X25

+ 4.1 X19 - 1.3 X20 + 8.8 X21

1.0 X26 + 4.

1 X27

1 X4 +7.3X5-0.6X6+ 4.0 X7

1.2 X12 + 4.8
+ 4.9 X19 + 0.
+ 0.2 X26 + 3.

0.7 X12 -
+ 4.4 X19
+ 2.1 X26

4.6
0.
4.

2 X4 + 4,9 X5
0.5 X12 + 6.6
+ 1.7 X19 - 0.
+ 1.9 X26 + 1.

X13 + 0.1
9 X20 + 5.
8 X27

X6 + 0.2 X6

X13 + 1.0
0 X20 - 4.
0 X27

X14
4 X21

+ 3.3 X7
X14
0 X21

+ 2.0 X6 + 1.3 X7

X13 + 1.4
7 X20 + 6.
1 X27

Xi4
9 X21

Xi0 + 10.8 X11 - 0.9 X12 - 3.1 X13 + 0.9 X1i4

1.0000000
2.0210970
.66486670
1.9438510
.35063070
4.4988230
.00000000
2.0846520
.65653850
2.4139890
.69058050
3.3905760
.2914174¢C
3.4013670
2.0282250
.00000000

aQ O o o O o0 a o o o aa o o o o ‘b

.10000000E+31
.10000000E+31
.10000000E+31
.10000000E+31
.10000000E+31
.10000000E+31
.10000000E+31
.10000000E+31
.10000000E+31
.10000000E+31
.10000000E+31
.10000000E+31
.10000000E+31
.10000000E+31
.10000000E+31
.10000000E+31

.3 X17 - 0.8 X18 + 10.8 X19 - 0.7 X20 - 2.8 X21
.3 X24 - 3.1 X25 + 1.1 X26 + 10.2 X27

.3 X2 +9.9X3+0.0X4~-6.2X5+ 1.0X6 + 10.2 X7
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X16
X17
X1i8
Xi9
X21
X22
X23
X24
X25
X26
X271
X28
X20

.00000000
.43537760
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.86309250
.15488430

.20770720
.00000000
.39262150
2.6693820
2.6776340
1.3737110
1.2502720
.69141220
3.2531140
2.7782940
1.2562800
.00000000
.00000000

QO O a aa o o a0 o o a a o a

.10000000E+31
.100C0000E+31
.10000000E+31
.10000000E+31
.100CO000E+31
.10000000E+31
.10000000E+31
. 10000000E+31
.10000000E+31
.10000000E+31
.10000000E+31
.10000000E+31
.10000000E+31



Appendix B

Glossary of Some Biological

Terms

adaptation, an inherited, favorable variation, that improves the chance of sur-

vival of the individual.
allele, a certain gene form, which occurs on a certain gene locus.

chromosomes, the bunch of biological structures in a living cell which carry

the genetic code, the genotypic configuration of the cell.
diploid, the case of having chromosomes in pairs.

DNA, deoxyribonucleic acid; a stable molecule in which the genetic information

of an organism is stored.

genotlype, one of the possible genetic codes, which characterizes the living struc-

ture.
haploid, the case of having single chromosomes.

Hardy- Weinberg cquilibrivm, the hypothetical state where the allele frequencies
of a certain population reach an equilibrium, and remain stable. This is the
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end state in which no further evolution occurs. A population reachs the Mardy-

Weinberg equilibrium when the following conditions hold:

No further mutations are taking place.

Population size is infinitely large.

Population is isolated.

No sclection, cqual viability.

Random maling.

isolalion, the separation of two or more populations of the same origin dne
to natural conditions, so thal mating in-between is not possible. This phe-
nomenon is the source of vast variability of many species which have descended

from a certain archaical species.

locus, a position on the chromosome where a certain genetical characteristic is

identified.

mutalion, an unusual change, which causes the external distortion of the chro-

mosomes which aflects the genotype drastically.

phenotype, a set of genotypes that are not distinguishable by nature and selec-

bionary mechanisms.

phylogeny, a hypothetical tree which itlustrates the descendance relations be-

tween families of species.

RNA, ribonucleic acid; a molecule which is used in translating the genetic

message of DNA into actual protein structure.

selection, the process of elimination of individuals, populations or alleles which

arc not viable, throughout time.

vartation, formation of different phenotypes through mutations, fertilizations,

cross-overs and other abnormal phenomena.
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