
PARALLEL MAPPING AND CIRCUIT
PARTITIONING HEURISTICS BASED ON MEAN

FIELD ANNEALING

A TEBSIS

''^O «■'¡‘•■I’’'"' r> ·̂

·" ’ '¡T »"I r V t ■*'?· i ·'■■! #· '‘■ ■ I T ' 'C l i /•yi·-* C» ,'~ < r ·.·'.■ X i

A N D T H E m 'U·'·.'·”·«; G·̂ ' P .K L p rG V ip T ; '.a,'Mr·' «rjv;-7'>.7,r‘i::··

Nŵ ' W, w* ii· ^ -¿il̂ » ·' W' A -t Ji. V M»' 1 '*4· «J J. A

T>vV p^: >:ri^r>nT>

T7r',nv ·.“-' rv:-,r;;''/’,̂ .'K·. i'’"iv
•*.v ii f V̂ -jTV ̂ .i- w iL U ‘»w»' 4-

* j *vvy·'·̂ W,,'· "l '-.' '.r*

Ĵ*' -WCr A' M»' -4

PARALLEL MAPPING AND CIRCUIT
PARTITIONING HEURISTICS BASED ON MEAN

FIELD ANNEALING

A THESIS

SUBMITTED TO THE DEPARTMENT OF COMPUTER,

ENGINEERING AND INFORMATION SCIENCE

AND THE INSTITUTE OF ENGINEERING AND SCIENCE

OF BILKENT UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF SCIENCE

By
Teviik Bultan
Januar}^ 1992

T < ei/|lL S u l i x i o
tarafiodao ba|i§lannu$tir.

(і0 2 ~ Т

Ь. ІІІІ.23

I certify that I have read this thesis and that in my o])in-
ion it is fully adequate, iu scope and in quality, as a thesis
for the degree of Master of Science.

Assoc. Prof. Cev;d€i^Aykanat(Principal Advisor)

I certify that I have read this thesis and tha..t in my opin­
ion it is fully adequate, in scope and in quality, as a thesis
for the degree of Master of Science.

Assoc. Prof. Kemal Oflazer

I certify that 1 have read this thesis and that in my opin­
ion it is fully adequate, in scope and in quality, as a thesis
for the degree of Master of Science.

i/_

Asst. Prof. Ihsan. Sabuncuoglu

Approved by the Institute of Engineering and Science:

Prof. Mehmet Baray, Director of the Institute m Engineering and Science

ABSTRACT

PARALLEL MAPPING AND CIRCUIT PARTITIONING
HEURISTICS BASED ON MEAN FIELD ANNEALING

Tevfik Bultan
M. S. ill Computer Eiigiiieeriiig and Information

Supervisor: Assoc. Prof. Cevdet Aykanat
January 1992

nence

Moan Field Annealinp; (MFA) aJgoritlim, receñí,ly proposc'd for solving com

binatorial optimization problems, combines the characteristics of nenral net­

works and simulated annealing. In this thesis, MFA is formulated for tlie

mapping i)roblcm and the circuit partitioning problem. EHicient implemen­

tation schemes, which decrease the complexity of the proposed algorithms by

asymptotical factors, are also given. Perlormances of the proposed MFA algo­

rithms are evaluated in comparison with two well-known heuristics: simulated

annealing and Kernighan-Lin. Results of the experiments indicate that MFA

can be used as an alternative heuristic for the mapping problem and the cir­

cuit partitioning problem. Inherent parallelism of the MFA is exploited by

designing efficient parallel algorithms for the proposed MFA heuristics. Paral­

lel MFA algorithms proposed for solving the circuit partitioning problem are

implemented on an iPS(J/2’ hypercube multicompute.r. Experimental results

show that the proposed heuristics can be efficiently parallelized, which is crucial

for algorithms that solve such computationally hard problems.

bPSCJ/2 i.s a registered trademark of Intel Corporation

IV

Keywords; Mtuui I'̂ ield Annealing, Neural Networks, Simulated Annealing,

Combinatorial Optimization, Mapping Problem, Circuit Partitioning Problem,

Parallel Processing, Multicomputers.

ÖZET

ORTAK ALAN TAVLAMASINA DAYANAN PARALEL
EŞLEME VE DEVRE PARÇALAMA ALGORİTMALARI

Teviik Sultan
Bilgisayar Mühendisliği ve Enforınatik Bilimleri Bölümü

Yüksek Lisans
Tez Yöneticisi: Assoc. Prof. Cevdet Aykanat

Ocak 1992

Birle.'jimsel eniyileme problemlerini çözmek için önerilen Ortak Alan

Tavlama (OAT) algoritması, .sinir ağlan ve tavlama benzetimi yöntemlerinin
özelliklerini ta.şır. Bu çalışmada, OAT algoritma.sı, eşleme ve devre parçalama

problemlerine uyarlanmıştır. Önerilen algoritmaların karmaşıklığını asimtotik

olarak azaltan verimli gerçekleme yöntemleri de geliştirilmiştir. Önerilen al­

goritmaların başarımları tavlama benzetimi ve Kernig'.ıan-Lin algoritmaları ile

kıyashyarak değerlendirilmiştir. Elde edilen .sonuçlar OAT’nin eşleme ve de­

vre parçalama problemlerini çözmek için alternatif bir algoritma olarak kul­
lanılabileceğini göstermektedir. Önerilen OAT algoritmaları verimli bir şekilde

paralelleştirilmiştir. Devre parçalama problemi için önerilen paralel OAT algo­

ritmaları iPSC/2 hiperküp çok işlemcili bilgisayarında gerçeklenmişti!·. Deney­

sel sonuçlar öiK'rilen algoritmaların verimli bir şekilde paralelleştirilebildiklc'i ini

göstermektedir.

VI

Anahtar kc'liınelnr : Ortak Alan Tavlaması, Sinir Ağhırı, la.vlama. Hcnı-

ze.tiîTîi, Birlei^inısel Eniyileme, Fy.̂ leiTie Pı-oblemi, Devre Parçalama Prohh'mi,

Paralel İşleme, Çok İşlemcili Bilgisayarlar.

ACKNOWLEDGEMENT

I am very grateful to my supervisor Assoc. Prof. Cevdet Aykanat as he

tauglit me what research is, and always provided a motivating support during

this study.

I would also like to express my gratitude to Assoc. Prof. Kemal Oflazer

and Asst. Prof. Ihsan Sabuncuoglu for their remarks and comments on this

thesis.

Finally, 1 wish to thank all my friends, and my family for their morale

support.

vn

C ontents

1 INTRODUCTION 1

2 THEORY 6

2.1 Hopfield Neural Networl\.s 6

2.1.1 Combinatorial Optimization U.sing Hopfield Neural Net­
works' ... 7

2.1.2 Problems of Hopfield Neural Networks 8

2.2 Simulated A nnealing .. 9

2.3 Mean Field Annealing 11

3 MFA FOR THE MAPPING PROBLEM 14

3.1 The Mapping P ro b le m 14

.3.2 Modeling tlie Ma|)ping P r o b l e m .. 17

3.3 Solving the Mapping Problem Using MFA 21

3.3.1 Form ulation.. 23

3.3.2 An Efficient Implementation S c h e m e 28

3.4 Performance of Mean Field Annealing Algorithm 30

3.4.1 MFA Implementation... 31

viii

CONTENTS ix

3.4.2 Keruighau-Lin Implementation 31

3.4.3 Simulated Annealing Im plem entation................................. 32

3.4.4 Experimental R esults......................■.................................... 33

3.5 Parallelization of Mean Field Annealing Algorithm 37

4 MFA FOR THE CIRCUIT PARTITIONING PROBLEM 45

4.1 The Circuit Partitioning P ro b le m ... 45

4.2 Modeling the Circuit Partitioning P rob lem 46

4.3 Solving the Circuit Partitioning Problem Using M F A 49

4.3.1 Graph Model 49

4.3.2 Network M o d e l... 51

4.4 Parallelization of Mean Field Annealing Algorithm 56

4.4.1 Graph Model 57

4.4.2 Network M o d e l... 59

5 CONCLUSIONS 63

List of Figures

2.1 Simulated annealing algorithm.

2.2 Mean field annealing algorithm. 12

10

.'1.1 A mapping prol)lem in.stance, with (a) TIC, (b) РОС (which

represents a 2-dimensional hypercube) and (c) PCG. 22

3.2 MFA algorithm for the mapping problem. 27

3.3 Node, program for one iteration of the parallel MFA algorithm

for the mapping problem. 43

4.1 Modeling of a given circuit ptirtitioning problem instcince with

(a) graph and (b) network models. Dashed lines indicate an

example partition. 48

4.2 Two possible solutions for the given circuit partitioning problem

instance. 54

4.3 Node program for one iteration of the parallel MFA algorithm

for the graph partitioning problem... 58

4.4 Speed-up (a) and efficiency (b) curves for the graph partitioning

problem... 60

4.5 Node program for one iteration of the parallel MFA algorithm

for the network partitioning problem. 61

LIST Ol·' ¡''ICWilCS XI

Ί.() Ь’і)(хі(,1-п|) (а) a.iul ('íliciciicy (Ь) curves Γυΐ' I,he net,work parl.il.iuii·

iiig problem. 62

List of Tables

3.1 Averages of the total communication costs of the solutions found

by KL-RB, KL-PM, SA and MFA heuristics, for randomly gen­

erated map|)ing problem instances. 34

3.2 Avcra.g<'s of tlu' c.oinputa.tiuna.l loads of the minimum and ma.x-

imum loaded processors for the solutions found by KL-RB, KL-
PM, SA, MFA heuristics, for randomly generated mapping prob­

lem instances... 35

3.3 Average execution times (in seconds) of KL-RB, KL-PM, SA

and MFA heuristics, for randomly generated mapping jjroblem

instances. 36

4.1 Mean cut sizes of the solutions found by MFA, KL, and SA

heuristics for randomly generated network partitioning problem

mstanc(^s. 56

xn

1. INTRODUCTION

Some cognitive tasks as pattern recognition, associative recall, guiding of a me­

chanical hand are easily handled by biological neural networks whereas they

remain as time consuming tasks for digital computers. This fact motivated
scientists and opened a research area called Artificial Neural Networks (ANN).

Scope of ANN includes understanding and modeling of biological neural net­

works, and designing artificial devices that have similar propertiiis. liesearch

on this area started with the early works of McCulloch and Pitts (19T‘l), and

has continued with varying levels of popularity until today. From the 1980s

onwards, neural network models became the center of extensive study, and

have seen an extraordinary growth of interest in their properties. Reasons for

this increase in popularity are: better understanding gained on information

processing in nature; increasing computer power which enables scientists to

make better simulations and analysis of the models; growing int<;rest in paral­

lel computation and analog VLSI.

Research on ANN can be divided into two streams: first one deals with

understanding and modeling of the biological neural networks, and second one

exploits the information gained on biological neural networks for designing arti­

ficial devices or algorithms to perform tasks which are difficult lor conventional

computers. Until last lew years, works on the second area were concentratiKl

on learning and classification capability, and associative memory operation of

the neural networks. Recent works by Hopfield and Tank [11, 12, 13, 31] show

that solving NP-hard combinatorial optimization problems is another promis­

ing area for ANN. Hopfield and Tank proposed that, Hopfield type coniinuoxLs

and dc/.(:'rniin7.s'/v'c ANN model can be used for solving combinatorial optimiza­

tion problems [11]. However, simulations of this model reveal the fact that it

CHAPTER 1. INTRODUCTION

is lia.rd 1,0 ol)(.a.iii feasible solutions for la.r,t!,<' |)roI)l('in si'/rs. Many variants of

the Hopfield Neural Network (HNN) have been designed [d, 30, 34] in order to

improve the model for obtaining feasible, and </ood solutions.

Combinatorial optimization problems constitute a large class, which is en­

countered in various disciplines. Optimization problems, in general, are char­
acterized l>y searching for the hesi values of given varia.l:)les to achic've a. goal.

In technical words, the objective is the minimization or maximization of a

function, subject to some other constraint functions. A typical example is the

general nonlinear programming problem, stated as: find x 6 which

minimizes

subject to

./■(x)

(yf,(x) > 0-
/ij(x) = 0

1 ,m
1 , p

(1 . 1)

where / , <y,·, hj are general functions which map 3?“ The function / is
called the cost function, and functions gi and hj are called constraint func­

tions. Problems, for which the variables of the cost and constraint functions

are discrete, are called combinatorial optimization problems. Some [iroblems

in this class can not be solved in polynomial time with the known methods. As

the problem size increases, computing time needed to solve this kind of prob­

lems increases exponentially, resulting with intractable instances. This class of

problems, ca.lled Nl*-hard optimization problems, are solved using heuristics.

Heuristics are generally problem specific, computationally efficient algorithms.

Tho’y do not guarantee to find optimal solution, but require much less com­

puting time. The drawback of heuristics is that they usually get stuck in local

minima.

In the last decade a])owerful method, called Simulated Auiu'aling (SA),

has been developed for solving combinatorial optimization problems [18]. This

method is the application of a successful statistical method, which is used to

estimate the results of annealing process in statistical mechanics, to combina­

torial optimization problems. SA is a general method (i.e. it is not problem

specific) which guarantees to find the optimum solution if time is not limited.

Time needed for simulated annealing is also too much and exact solutions of

NP-hard problems still stay intractable. Nice property of simulated cuinealing

CHAPTER 1. INTRODUCTION

is that, it can be used as a heuristic to obtain near optimal solutions in lim­

ited time, and as the time limit is incrccised, quality of the obtained solutions

also increase. SA has the capability of escaping from local minima if sufficient

time is given. This method has been successfully applied to various NP-hard

optimization problems [18, 20, 23].

The subject of this thesis is a recently proposed algorithm, called Mean

Field Annealing (MFA) [22, 33, 34, 35]. MFA was originally proposed for solv­

ing the traveling salesperson problem [33, 34]. It combines the collective com­

putation property of HNN with the annealing notion of SA. MFA is a general

strategy and can be applied to various problems with suitable formulations.

Work on MFA [4, 5, 21, 22, 34, 35] showed that, it can be successfully applied

to combinatorial optimization problems. In this thesis, MFA is formulated for

two well-known, NP-hard, combinatorial optimization problems: the mapping
])roblem and the circuit partitioning problem.

The mapping prol^lem arises while developing parallel programs for

distributed-memory, message-passing parallel computers (multicomputers). In

order to develop a parallel ¡program for a multicomputer, first the problem is

decomposed into a set of interacting sequential sub-problems (or tasks) that

can be executed in parallel. Then, each one of these tasks is mapped to a

processor of the parallel architecture, in such a way that the total execution

time is minimized. This mapping phase is called the map|)ing problem [2],uind

is known to be NP-hard. In this thesis, MFA is formulated for solving the

mapping problem, and its performance is compared with the performances of

other well-known heuristics.

Partitioning of VLSI circuits are needed in various phases of VLSI design.

Partitioning means to divide the components of a circuit into two or more

evenly weighted partitions, sucli that the number of signal nets interconnecting

them is minimized. This problem, called the circuit partitioning problem, is

also an NP-hard combinatorial optimization problem. In this work, MFA is also

formulated for solving the circuit partitioning problem, and the performance of

the proposed algorithm is compared with the performances of other well-known

heuristics.

C I IA I ’TEU I. IN m O IJ U d ' IO N

Heviristics used for solving NP-hard combinatorial optimization prol^lc'ms as

the mapping problem and the circuit partitioning problem are time consuming

processes and parallelization of them is crucial. I'here is a la.rg<i volume of

research on the parallelization of such algorithms. One of the motivations in

this work is to exploit the inherent parallelism in neural networks in order

to obtain efficient parallel algorithms. MFA is a good candidate lor edicient

parallelization as it uses the collective computation property of HNN.

In order to develop a parallelization scheme, first the parallel computer

that will be used must be classified. Classification of jrarallel architectures can

be done according to their memory organization, the number of instruction

streams supported, and the interconnection topology. Memory organization in

parallel architectures can be divided into two main groups, shared-memory and

distributed-memory architectures. In shared-memory architectures, which are
named as multiprocessors, a common memory or a common addr<\ss space is

used by all processors. On the other hand, in distributed-memory architectures,

processors can not access to a common memory space. Each processor has a

local, isolated memory. Synchronization, coordination among])rocessors and

data, exclumge are achievetl by message |)assing among procoissors. lii this tyi)e

of architectures, each processor may be viewed as ¿in individual com])uter,

henc(; tluiy are ca.lled multicomiuiters.

Classification according to the interconnection topology determines how to

handle communications among processors. Most commonly used topologies are

mesh, hyiiercube and ring.

According to the number of instruction streams supported, parallel archi­

tectures can be divided into two groups. SIMD (Single Instruction stream

Multiple Data stream) and MIMD (Multiple Instruction stream and Multiple

Data stream) architectures. In a SIMD architecture, a centra.l control luoces-

sor broadcasts the instruction that will be executed to all processors. Each

processor executes the same instruction using the data in its local memory. In

MIMD architectures, each processor is able to fetch, decode and execute an

instruction by itself, which can be different from, the instructions executed by

other processors.

CHAPTER 1. INTRODUCTION

In this work, MFA is parallelized for distributed-memory M1K4D multicom­

puters, and implemented on a 3-dimensioual iPSC/2 hypercube multicomputer.

A d-dimensional hypercube consists of P = 2‘̂ processors with each processor

being directly connected to d other (neighbor) proces.sors [28]. The proces­

sors of the hypercube are labeled with d-bit binary numbers, and the binary

label of each])rocessor differs from that of its neighbor in exactly one bit.

The parallelization schemes proposed in this work can also be used for SIMD

multicomputers and other interconnection topologies with slight modifications.

In Chapter 2, HNN and -SA are reviewed and a general formulation of MFA

is given. Chapter 3 presents the proposed formulation of MFA for the niiipping

problem. Efficient implementation and parallelization of the proposed MFA

algorithm is al.so cvddressed in this cliapter. In Chapter 4, MFA is formulated

for solving the circuit partitioning problem. Chapter 4 also presents efficient
implementation and parallelization of the proposed algorithm. In Chapter 3

and 4, performances of the proposed MFA algorithms are evaluated in compar­

ison with two well-known heuristics: simulated annealing and Kernighaii-Lin.

In Chapter 5, conclusions are stated.

2. THEORY

Tills cliaptor reviews previous works on ITo])field Neural Networks (IINN) and

Simulated Annealing (SA) to give a better understanding of Mean Field An­

nealing (MFA). In Section 2.1 neural network models proposed by Hopfield

are briefly discussed, and application of HNN to combinatorial o|)timix;ation
]>i’ol)l(ims is dcsci‘il)ed. A summary of the later works on IINN is also i)r(iseut<id

at the end of Section 2.1. Section 2.2 gives the general properties of simulated

annealing and describes its application to combinatorial optimization prob­

lems. In Section 2.3, MFA algorithm is described, denoting the similarities

with previously mentioned two methods.

2.1 H opfield N eural N etw orks

One of the main reasons for the growing interest on neural networks in the

last decade, is the Artificial Neural Network (ANN) model proposed by Hop-

field [9]. Many ideas used in this model have precursors spread over the fifty

years of research on neural networks. The importance of the work by Ho|)-

field is that it brings them all together, using a])hysical analogy and a clear

mathematical analysis, and gives a good view of the possible capabilities of

the proposed model. Later, Hopfield proposed another model [10] that has

the same properties of the original model, and looks very promising for VLSI

implementations.

The original model [9] is a discrete, stochastic model, which uses two-state

neurons with a stochastic updating algorithm. The continuous and deternrinis-

tic model, which is proposed later [10], u-ses neurons with graded response, and

6

time evolution of the state of the system (change in the states of the neurons) is
described by a differential equation. In these two models, an energy function,

which always decreases as the system iterates, is defined. In his two consecu­

tive papers [9, 10], Hopfield presented his ANN models as Content Addres.sable

Memor}' (CAM) in order to explain their properties. In CAM model, minima

of the energy function correspond to the stored words. Starting from a given

initial state, the system is expected to reach one of these minima, which means

to output one of the stored words in the CAM. CAM model of Hopiield can

be regarded as an optimizing network: given an in])ut, find one of tlx· stoix'd

items which is the clo-seftt item to the given input. In his later works with

Tank [11, 31] it is shown that well-known combinatorial oj)timization problems

as the traveling salesperson prol)lem, can also be solved by IINN.

2.1.1 C om binatorial O ptim ization U sing H opfield N eu ­

ral N etw orks

Hopfield and Tank showed that, continuous iind deUTininistic HNN has collec­

tive computational properties [11, 12, 13]. In collective computation, decisions

taken to solve the problem is not determined by a single unit, but instead re­
sponsibility is distributed over a large number of simple, massively connected

units. The nature of collective computation suggests that it might be par­

ticularly effective for problems that involve global interaction among different

parts of the problem. NP-hard optimization problems are such])roblems. HNN

can be used for solving a combinatorial optimization problem by choosing a

representation scheme in which the output states of neurons can be decoded

as a solution to the target problem. Then, HNN is constructed accordingly by

choosing an energy function whose global minimum value corresponds to the

best solution of the problemjto be solved [11]. Hence, the constructed HNN is

expected to compute the best solution to the target problem starting from a

randomly chosen initial state by minimizing its energy function. General form

of such an energy function (also called Hamiltonian of the system) is

CHAPTER 2. THEORY 7

7/ = cost -j- global constraint (2.1)

Неге, cost term re)>resents tlie cost function of the oi^timization to

be solved and global constraint term represents the constraint functions intro­

duced to obtain feasible solutions. Exact solution of the problem corresponds

to the global minimum of this energy function.

Motivation behind the works of Hopfield and Tank is to use hardware im­

plementations of HNN to solve large optimization problems. It is a general

method to simulate a model on computers before implementing it on hardware

in order to observe and solve possible problems. In order to simulate HNN on

a Computer, first the' equations of motion for the neural network are written

from the state equations of the neurons. Then, these equations are solved for
each neuron iteratively using a numerical metliod (usually I'hiler’s method is

used to compute the resulting diiferential equations). .State of each neuron is

computed in discrete time intervals until a stable state is found.

2.1.2 P roblem s o f H opfield N eural N etw orks

СПЛРТЕП.2. TIIFA)RY s

HNN have been applied to various optimization problems and reasonable rc'-

sults have been obtained for small size problems. However, simulations of this

network reveals the fact that, it is hard to obtain feasible solutions for large

proldem sizes. Wilson and Pawley reports that, most of the simulation results

give infeasible tours even for a 10-city traveling salesperson problem [36]. In

fact, it is possible to obtain feasible tours by adjusting the parameters of the

energy function (i.e., increasing the weights of the terms regarding feasibil­

ity), but, quality of the solutions deteriorate with such attempts. As is cilso

iudicateil in [14], the problem of (inding a balance among pcirameters ol the

energy function, in order to obtain feasible cuid solutions, becomes harder

as the problem size increa.ses. Hence, the algorithm does not have a good

scaling property, which is a very important performance criterion for heuristic

optimization algorithms. Many attempts have been done to improve the per­

formance of Hopfield neural network for obtaining feasible and good solutions.

In one of them [3], number of terms in the energy function is decreased to in­

crease the scalability of the algorithm. But also for that model, increase in the

size of the problem causes the costs of the solutions to increase siguificiuitly.

Works by Szu [30] and Toomariau [32] are also modifications to HNN in which

dilTerent energy functions are proposed. Recently, MFA is proposed as a suc­

cessful alternative to HNN [22, 33, 34]. MFA algorithm combines the collective

computation property of HNN and annealing notion of SA.

2.2 Sim ulated A nnealing

CIIAPrFJl2. THFX)RY i)

SA is a powerful method which is used for .solving hard optimization prol)lems.

In SA, an energy function that corresponds to the cost function of the])roblem

to be solved is defined, similar to energy function defined for HNN. SA is a

probabilistic hill-climbing method, which accepts uphill moves with a proba­

bility in order to escape from local minima. SA is derived using analogy to a

successful statistical model of thermodynamic processes for growing crystals.

Configuration of a solid state material at a global energy minimum is a

perfectly homogeneous crystal lattice. It is determined by experience that such

configurations can be achieved using the process of annealing [20]. The solid-

state material is heated to a high temperature until it reaches an amorphous

liquid state. Then it is cooled slowly, according to a specific annealing schedule.

If the initial temperature is sufficiently high to ensure a random state, and if

the cooling schedule is sufficiently slow to guarantee that the ec|uilil)rium is

rearhcd at each temirerature, final configuration of the material will Ixi clo.se

to the perfect crystal with global energy minimum [20]. In thermodynamics, it

is stated that, when thermal equilibrium at temperature T is reached, a state

with energy E is attained with the Boltzmann probability

1
Z {r)

e (2 .2)

where Z(T) is a normalization factor and ks is the Boltzmann constant [20].

There is a fine theoretical model which explains this physical phenomenon.

During the annealing process the states of the atoms are perturbed by small

random changes. If the change in state lowers the energy of the system, it is

always accepted. If not, the change in configuration is accepted with a prob­

ability Tiiie probability of accepting perturbations causing increase

CHAPTER 2. THEORY 10

1. Get an initial configuration C

2. Get initial temperature, and set T = To

3. While not yet frozen DO

3.1 While eciuilibrium at T is note yet reached DO

3.1.1 Generate a. rajulom neighbor C' of C

3.1.2 Let A E E{C') - E{C)

3.1.3 If A E < 0 (downhill move), set C = C

3.1.4 if AE > 0 (u])hill move), set C = O' with

probability e ~ ^

3.2 Update T according to the cooling schedule

Figure 2.1. Simulated annealing algorithm.

in energy decreases with the decreasing temperature, and minor modifications

occur at lower temperatures. Experiments show that this model gives simihir

results as physical annealing process [20].

Kirkpatrick a,])])lied this model to ojitimization problems and called the

resulting method SA. In transforming the physical model to com])utational

model, energy function is replaced with the cost function of the optimization

problem to be solved (note the similarity with HNN), and states of the matter

are replaced with the legal configurations of the])roblem instancxi. Annealing

schedule is controlled with a simulated temperature. Figure 2.1 illustrates the

SA algorithm.

Although SA is a])owerful method it has some problems. It requires a large

amount of computing power because of the need for generating a large number

of configurations, and very slow cooling in order to reach eciuilibrium at each

temperature. Performance of the algorithm is closely related to the generation

of neighboring configurations. It is an iidierently sequential algorithm which

CHAPTER 2. THEORY 11

does not give good peifonnance on parallel computers. It is hard to obtain
good cooling schedules that, results with good solutions in small amount of

computer time.

2.3 M ean F ield A nnealing

MFA merges collective computation and annealing properties of the two meth­

ods described above, to obtain a general algorithm for solving combinatorial

optimization problems. Mapping problems to MFA is identical to HNN. A

neuron matrix is formed such that when neurons take their final values they

represent a configuration in the solution space of the problem.

Mathematical analysis of MFA is done by analogy to Ising spin model, which
is used to estimate the state of a system of particles or spins in thermal equi­

librium. Spins in MFA algorithm are analogous to the neurons of HNN. This

method was first proposed for .solving the traveling-sa.lc-'S])er.son])roI)lem [33],

and then it is applied to the graph partitioning problem [4, 5, 21, 35]. Here,

general formulation of MFA algorithm [35] is given for the sake of complete­

ness. In the Ising spin model, the energy of a system with S spins has the

following form:
s s

= 5 E E trusts, + E '‘«--Si (2-3)
^ k = l k = \

Here, ftki indicates the level of interaction between spins k, /, and G {0, I} is

the value of spin k. It is assumed that ftu = fttk and f k̂k = 0 for 1 < k, /, < S.

At thermal equilibrium, spin average {sk) of spin k can be calculated using

Boltzmann distribution as follows

1
(■s.) = (2.4)1 q. e-<l‘k/r

Here, (pk represents the mean field effecting on spin A:, which can be computed

using
d{H{s))d>k = -

where the energy average {H{s)) of the system is

{«(s)) = E E & M + E M - '‘i·)
A-=l A.-1

(2.5)

(2.6)

CHAPTER 2. THEORY 12

1. Get initial temperature, and set 7’ ■ 7o

2. Initialize the spin averages (s) = [{'Si)) · · ·, (•i'A.·), · · ■, (•¡’.s)]

3. While temperature 7’ is in the cooling range DO

3.1 While system is not stabilized for current temperature DO

3.1.1 Select a spin k at random.

3.1.2 Compute using

4>k = - fhii'Si) - hk

3.1.3 Update {$k) using

(s,) = {l + e-'^'</^}-i

3.2 Update T according to the cooling schedule

Figure 2.2. Mean field annealing algorithm.

The complexity of com])uting using Eq. (2.5) and E(|. (2.(3) is ex|)onen-

tial [35]. However, for large number of spins, the mean field approximation can
be used to compute the energy average as

(2.7)
1

№)) = T E E + E
“ t- l l:jik k=-i

Since (7/(s)) is linear in (¿¡t), mean field <j)k can be computed using the following

equation
rll I-l (__

(2.8)* = - ^ ^ = - (E f c W + M

Thus, the complexity of computing (/>/.. reduces to 0 (5).

At each temperature, starting with initial spin averages, the mean field

eifecting· on a randomly selectcid s|)in is found using Rf|. (2.<S). 'ГЬеп, spin

a.vcrage is updated using F/(|. (2.4). d'liis |)roc('ss is r(‘pe;>.ted for ;i. random

sequence of spins until the system is stabilized for the current temperature.

The general form of the Mean Field Annealing algorithm derived from this

iterative relaxation scheme is shown in Figure (2.2). MFA algorithm tries to

CHAFTER 2. THEORY i;{

find eciuilibrium poinl, of a system of S spins using annealing ¡n'oress simila.r

to SA.

The state equations used in MFA are isomorphic, to the state equcvtious of

the neurons in the HNN. A synchronous version of MFA, different from the

algorithm given in Figure 2.2, can be derived by solving N difference equations

for N spin values simultaneously. This technique is identical to the simulations

of HNN done using numerical methods. Thus, evolution of a solution in a

HNN is equivalent to the relaxation toward an equilibrium state affected by

the MFA algorithm at a fixed temperature [35]. Hence MFA can be viewed as

an annealed neural network derived from HNN.

HNN and SA methods have a major difference: SA is an algorithm im­
plemented in software, whereas HNN is derived with a possible hardware im­

plementation in mind. MFA is somewhere in between, it is an algorithm im­

plemented in software, having potential for htirdware realization [34, 35]. In

this work, Mi*'A is treated as a software algorithm as SA. Results obtained are

comparable to other software algorithms, conforming this point of view.

3. MFA FOR THE MAPPING PROBLEM

III tins clia]M.cr, Mean I'̂ iekl Amicaliiig (M1''A), is (omuilaled for Uic ma|)|)iiig

problem. In Section 3.1, the mapping problem is described and previous ap­

proaches used for solving the mapping problem are summarized. Section 3.2

presents a formal definition of the mapping problem by modeling the par­

allel program design process. Section 3.3 presents the proposed formulation
of the MFA algorithm for the mapping problem. An efiicient impleiiUMitation

scheme for the proposed algorithm is also described in Section 3.3.2. Section 3.4

presents the performance evaluation of the MFA algorithm for the mapping

problem in comparison with two well-known mapping heuristics: simulated

annealing and Kernighan-Lin. Finally, efficient parallelization of the Mh'A al­

gorithm for the mapping problem is proposed in Section 3.5.

3.1 T he M apping Problem

Today, with the aid of VLSI technology, parallel computers not only exist in

research laboratories, but are also available on the market as powerful, gen­

eral purpose computers. Use of])arallel computers in various applications,

makes the problem of mapping parallel programs to parallel computers more

crucial. The mapping problem arises while developing parallel programs for

distributed-memory, message-pa,ssing parallel computers (multicom])uters). In

multicomputers, processors neither have shared memory nor have shared ad­

dress space. Each processor can only cvccess its local memory. Synchronization

and coordination among processors are achieved through explicit message pass­

ing. Processors of a multicom])uter are usually connected by utilizing one of

FI

CH AFTER :j. MFA FOR THE MAPPING PROBLEM 15

the well-known direct interconnection network topologies such as ring, mesh,

hypercube, etc. These architectures have the nice scalability feature due to the

lack of shared resources and the increasing bandwidth with increasing number

of processors.

However, designing efficient parallel algorithms for such architectures is not

straightforward. An efficient])arallel algorithm should exploit the full potential

power of the architecture. Processor idle time and the interprocessor commu­

nication overhead may lead to poor utilization of the architecture and hence
poor overall system performance. Processor idle time arises due to the uneven
load balance in the distribution of the computational load among processors

of the multicomputer. Parallel algorithm design for multicomputers can be

divided into two phases: first phase is the decomposition of the problem into a

set of interacting sequential sub-problems (or tasks) which can be executed in
parallel. Second phase is mapping each one of these tasks to a processor of the

parallel architecture in such a way that the total execution time is minimized.I
This mapping phase, named as the mapping problem [2], is very crucial in

designing efficient parallel programs.

For a class of regular problems with regular interaction patterns, the map­

ping problem can be efficiently resolved by the judicious choice of the de­

composition scheme, in such problems, chosen decomposition scheme yields

an interaction topology that can be directly embedded to the interconnection

network topology of the multicomputer. Such approaches can be referred as in­

tuitive approaches. However, intuitive mapping approciches yield good results

only for a restricted class of problems, under simplifying assumptions. The

mapping problem is known to be NP-hard [15, 16]. Hence, heuristics giving

sub-optimal solutions are used to solve the problem [1, 2, 6, 15, 16, 26]. Two

distinct approaches have been considered in the context of map))ing heuristics,

one phase approaches and two phase approaches [6]. One pliase approaches,

referred to as many-to-one mapping, try to map tasks of the pcirallel program

directly onto the processors of the multicomputer. In two phase approaches,

clustering phase is followed by a one-to-one mapping phase. In the clustering

phase, tasks of the parallel program is])artitioned into a's many equal weighted

clusters as the number of])rocessors of the multicomputer, while minimizing

CliAPTFJl :i MFA FOR 11 IF MAPPING PROBLFM l(i

the total weight of the inter-cluster interactions [26]. In the one-to-one mapping

phase, ca.cli cluster is assigiuul to an iiKlividua.] |)roc(‘ssur of tlu' miilticom|Hit<u·

such that total inter-processor communication is minimized [26].

In two phase approaches, the problem solved in the clustering phiise is

identical to the multi-way graph partitioning problem. Graph partitioning is

the balanced partitioning of the vertices of a graph into a number of bins, such

that the total cost of the edges in the edge cut set is minimized. Kernigiian-

Lin (KL) heuristic [7, 17] is an efficient heuristic, originally propo.scid for the

graph bipartitioning problem, which can also be used for clustering [6, 26].

KL heuristic is a non-greedy, iterative improvement technique that can escape

from local minima by testing the gains of a sequence of moves in the search
space before performing them. A variant of the KL heuristic can be used for

solving one-to-one mapping problem encountered in the second phase [6].

Simulated Annealing (SA) can also be used cis a one phase heuristic for

solving many-to-one mapping problem [23, 29]. Successful applications of SA to

the mapping problem is achieved in various works [23, 29]. It has been observed

that the quality of the .solutions obtained using SA are superior compared with

the results of the other heuristics.

Heuristics proposed to solve the mapping problem are compute intensive

algorithms. Solving the map])ing])roblem can be thought as a i)re])roce.ssing

done before the execution of the parallel program on the parallel computer.

If the mapping heuristic is executed sequentially, the execution time of this

preprocessing can be included in the serial portion of the parallel program,

which limits the efficiency that can be attained. In some cases, the sequential

overhead caused by this preprocessing is not acceptable, cuid the need for the

parallelization of the preproce.ssing arises. Efficient parallel mapping heuristics

are needed in such cases. KL and SA heuristics are inherently sequential, hence

hard to parallelize. Efficient parallelization of these algorithms remain as an

important issue in parallel processing re.search.

In this chapter, Mean Field Annealing (MFA), is formulated for the many-

to-one mapping problem. MFA has the inherent parallelism that exists in most

of the neural network algorithms, which makes this algorithm a good candidate

CHAPTER 3. MFA FOR THE MAPPING PROBLEM

for parallel mapping heuristics.

3.2 M odeling th e M apping Problem

Parallel program design phases are elaborated in this section in order to present

a formal definition of the mapping problem. In the first phase of jiarallel

algorithm design, problem is decomposed into a set of atomic tasks, such that

the overall problem is modeled as a set of interacting tasks. Each atomic task

is a sequential process to be executed by an individual processor of the parallel
architecture. .Selection of the decomposition scheme depends on the i)ioblem,

algorithm to be used for the solution, and the architectural features of the

targ(it m u 11 i com p u t(u·.

In various classes of problems, interaction pattern among the tasks is static.

Hence, the deconqmsition of the algorithm can be represented l)y a static task

graph. Vertices of this graph represent the atomic tasks and the edge set

represent the interaction i)a.tt(irn among the tasks. Relative c.om|)uta.tional

costs of atomic tasks can be known or estimated priori to the execution of the

parallel program. Hence, weights can be associated with the vertices to denote

the computational costs of the corresponding tasks.

There are two different models used for modeling static inter-task communi­

cation patterns. These two models are referred as the Task Precedence Graph

(TPG) model and Task Interaction Graph (TIG) mcdel [16, 25]. TPG is a

directed graph where directed edges represent execution dependencies. In this

model, a pair of tasks connected by an edge can not be executed independently.

Each edge denotes a pair of tasks: source task and destination task, ddic' des-

tiiicition task can only be executed after the completion of the execution of the

source task. Hence, in general, only the subsets of tarsks which are unreachable

from each other in the TPG can be executed independently.

In TIG, the set of interaction patterns are represented by undirected edges

among vertices. In this model, each atomic task can be executed simultaneously

and independently. Each edge denotes the need for the bidirectional interaction

between corresponding pair of tasks at the completion of the execution of

CHAPTER 3. MFA FOR THE MAPPING PROBLEM

these tasks. Edges may be associated with weights which denote the amount

o(l)idirectional inlormation exchange involved between pairs of tasks. 'I’lC

usually represents the repeated execution of the tasks with intervening inter-

ta.sk interactions denoted by the edges.

The TIG model may seem to be unrealistic for general applications since it

does not consider the temporal interaction dependencies among the tasks [25].

However, there are various classes of problems which can be successfully mod­

eled with the TIG model. For example, iterative solution of systems of equa­
tions, and problems arising in image])rocessing and computer graphics a.|)pli-

cations can be represented l.)y TIG. In this work, mapping of ju-oblems which

can be represented by TIG model is addressed.

Second phase of the parallel algorithm design is the assignment of the indi­

vidual tasks to the processors of the parallel architecture, so that the execution

time of the parallel program is minimized. This problem is referred as tlie

mapping problem. In order to solve the mapping problem, parallel architec­

ture must also be modeled in a way that represents its architectural features.

Parallel architectures can easily be represented by a Processor Organization

Graph (POG), where nodes represent the processors and edges represent the

communication links. In fact, POG is a graphical representation of the in-
tcrcoMn('ci.ii)U topology ul.ili'/cd lor the org<uiiz;i.tion ol tlie processors ol tlie

parallel architecture. In general, nodes and edges of a POG are not associated

with weights, since most of the commercially available multicom|)uter archi­

tectures are homogeneous with identical processors and communication links.

In a multicomputer architecture, each adjacent pair of processors commu­

nicate with each other over the communication link connecting them. Such

communications are referred as single-hop communications. However, eiich

non-adjacent pair of processors can also communicate with each other via soft­

ware or hardware routing. Such communications are referred as multi-hop com­

munications. Multi-hop communications are usually routed in a .static manner

over the shortest path of links between the communicating pairs of processors.

Communications between non-adjacent pairs of processors can be associated

with relative unit communication costs. Unit commu;'; ication cost is defined

as the cominunication cost per unit of information. Unit communication cost
between a pair of processors will be a function of the shortest path between

these processors and the routing scheme used for multi-hop communications.

For example, intermediate processors in the communication path are inter­

rupted in software routing so that each multi-hop communication is realized as

a sequence of single-hop messages. Hence, in software routing, the unit commu­

nication cost is linearly proportional to the shortest path distance between the

pair of communicating processors. Note that, in this communication model,

unit communication costs between adjacent pairs of processors are taken to be

unity.

Hence, the communication topology of the multicomputer can be modeled
by an undirected complete graph, referred here as the Processor Communi­

cation Graph (PCG). The nodes of the PCG represent the proces.sors and
the weights associated with the edges represent the unit communication costs

between pairs of processors. As is mentioned earlier, PCG can easily be con­

structed using the topological properties of the POG and the routiiuj scheme

utilized for inter-processor communication. In the PCG, edges betwec'.n i>airs

of nodes representing the adjacent pairs of processors denote physical links

whereas edges between])airs of nodes representing non-adjacent pairs of i)ro-

cessors denote virtual communication links (i.e. communication paths) estab­

lished for routing multi-hop communications.

The objective in mapping TIG to PCG is the minimization of the exiMictcul

execution time of the parallel program on the target architecture represented by

the TIG and the PGG respectively. Thus, the mapping problem can be modeled

as an optimization problem by associating the following quality measures with

a good mapping : •

CHAPTER 3. MFA FOR THE MAPPING PROBLEM 1!)

• Interprocessor communication overhead should be minimized. Tasks

which have high interaction, i.e., large amount of data exchange, should

be in the same])roce.ssor or nearby processors.

• Gomputational load should be uniformly distributed among processors.

Gomputational load assigned to each processor should be equal as much

as possible in order to minimize processor idle time.

CllAPTEll 3. MFA FOR TIIF MAPPING PROBLEM 20

The parallel execution time is expected to decrease as these criteria are satis­

fied.

A mapping problem instance can be formally defined as follows. An in­

stance of the: ma.p|)ing probhnn iiic.ludcs two undirect<4l gra.plis, 'Га..чк lnt<n-

action Graph (TIG) and Processor Communication Graph (PCG). The TIG
Gt {V,E), has |y | = N vertices labeled as (1 , 2 , . . . , г, , Л̂). Vertices of

the TIG represent the atomic tasks of the parallel program. Vertex W('ight »;,■

diuiotcs the computational cost associated with ta.sk i for 1 < i < N. lodge
weight e,j denotes the volume of interaction between tasks i and j connected by

edge {i,j) G E. The PCG Gp{P,D), is a complete graph with |P(= К nodes

and |D| = (^) edges. Nodes of the PCG, labeled as (1 , 2 , . . . ,p, . . . , K),

represent the processors of the target multicomputer. Edge weights dpq, for

1 < P) <7 ^ V Ф Ч1 denote the unit communication cost between proces­

sors p and q.

Given an instance of the mapping problem with TIG, Gt {V·, E)., and PCG,

Gp{P,D), question is to find a many-to-one mapping function M : V P,

which assigns each vertex of the graph Gp to a unique node of graph Gp\ and

minimizes the total interprocessor communication cost {GO)

CC = ^ dijdM{i)M(j) (3.1)

computational load of proces-

1 < P < К (3.2)

while having the computational load {CLp

sors p)

CL, = ^ wi,
i e v , M { i) = p

of each processor balanced. Here, M{i) = p denotes the label (p) of the]>ro-

cessor that task i is mapped to. In Eq. (3.1), each edge {i,j) of the TIG con­

tributes to the communication cost (CC), only if vertices i and j are mapped

to two different nodes of the PGG, i.e., M{i) 7 ̂ M{j). The amount of contri­

bution is equal to the product of the volume of interaction between these

two tasks and the unit communication cost dp,, between])rocessors p and q

where p = M{i) and q = M{j). The computational load of a processor is the

summation of the weights of the tasks assigned to that processor. Perfect load

balance is achieved if CLp = 1 ^ P ^ · Balancing of the

(JHAFTER 3. MFA FOR THE MAPPING PROBLEM 21

computational loads of the. processors can be explicitly included in the cost

function using a. term which is ininimized when the loa.ds of tln ̂ |)ioc('ssors ai('

equal. Another scheme is to include balancing criteria implicitly in the algo­

rithm. Figure 3.1 illustrates a sample mapping problem instance with /V = 8

tasks to be mapped onto /v = 4 processors. Figure 3 .1 (a) shows the TIG with
N = H t.asks. Fignn^ 3 .1 (b) shows Uk' РОС for a. 2-dimensiona.l hypercub<‘,

and Figure 3.1(c) shows the corresponding PCG. In Figure 3.1, numbers inside
the circles denote the vertex labels, and numbers within the parenthesis denote
the vertex or edge weights. Binary labeling of the 2-dimensional hypercube is

also given in Figure 3.1(b). Note thcit unit communication cost assignment to

edges is performed assuming software routing protocol for multi-hop commu­

nications. A solution to the mapping problem instance shown in Figure 3.1

is

i 1 2 3 4 5 6 7 8

M{i) 1 1 4 3 2 4 2 3

Communication cost of this solution can be calculated as
8

CC — Y2 = 8

Computation loads of the])rocessors are CL·,, = 3 lor 1 < p < 4. Hence, perfect

load balance is achieved since, (^f=j t0i)/4 = 3.

3.3 Solving th e M apping Problem U sing M FA

In this section, a formulation of the Mean Field Annealing (MFA) algorithm

for the mapping problem is proposed. The TIG and PCG models described

in Section 3.2 are used to rei^resent the map])ing problem. Tin* formulation

is first])resented for problems modeled by dense TIGs. The modification in

the formulation for map])ing problems that can be re|)resented l>y sparse' TIGs

is pro'seuitiid later. In this section, an efficieuit implementation scheme fur the

proposed formulation is also pro'sented.

CHAPTER 3. MFA FOR THE MAPPING PROBLEM ‘>9

(2) (1)

(0 0) (0 1)

(c)

Figure 3 .1 . A mapping problem instance, with (a) TIG, (b) POG (whicli
represents a 2-dimensional hypercube) and (c) PCG.

CHAPTER. :l MFA FOR T il F M APPING PRO BLEM

3.3.1 Form ulation

A spin matrix, which consists of N task-rows and K processor-columns, is

used as the representation scheme. Hence, N x K spins are used to encode

the solution. The output s,·,, of a spin (i,p) denotes the probability of mapping

task i to processor p. Here, .s,,̂ is a continuous variable in the range 0 < .s·,,; < 1 .

When MFA algorithm reaches to a solution, s])in values converge to 1 or 0

indicating the result. If .s,·,; is 1 , this means that task i is mapped to processor p.

For example, a solution to the mapping instance given in Figure 3.1 can be

represented by the following N x K spin matrix.

K Processors
1 2 3 4

N Tasks <

1
2

3
4
5
6
7
8

1 0 0. 0
1 0 0 0
0 0 0 1

0 0 1 0

0 1 0 0
0 0 0 1

0 1 0 0

0 0 1 0

Note that, this solution is identical to the solution given at the end of Sec­

tion 3 .2 .

Following energy (i.e., cost) function is proposed for the mapping])ioblem

fi(s) — ^ ^2 X] îjSipSjqdpq -b '22 22 (3-4)
“ t = l j j i i p= l q:fip ^ t = l v = \

Here, Cij denotes the edge weight between the pair of tasks i and j , and Wi

denotes the weight of task i in TIG. Weight of the edge between processors p

and q in the PCG is represented by dpq.

Under the mean field approximation, the expression {H{s)) for the expected

value of objective function given in Eq. (3.4) will be similar to the expression

given for //(s) in Eq. (3.4). However, in this case, .s,,,, s,·,, and .Sjp sliould be

replaced with (.sip), (.s,·,,) and (.Sj,,) respectively. For the sake of simplicity, .s,·,.

CHAPTER 3. MEA FOR THE MAPPING PROBLEM 24

is used to denote the expected value of spin (f,p) (i-e·, si>in average' (-Sip)) in
the following discussions.

In Eq. (,3.4), the terni .s·,·,, x-Sj,, denotes the probability that task i and ta.sk j

are mapped to two different processors p and q, respectively, under the mean

field cipproximation. Heneé, the term e¿j x s,p x Sj,, x dp, represents the weighted

interprocessor communication overhead introduced due to the mapping of the

tasks i and j to different processors. Note that, in Eq. (3.4), the first quadru­

ple summation term covers all processor pairs in the PCG for each edge pair

in the TIG. Hence, the first quadruple summation term denotes the total in­
terprocessor communication cost for a mapping represented by an instance of

the spin matrix. Then, minimization of the first quadruple summation term
corres])onds to th(i minimization of tlie interproc(is.sor ('.ommnnica.ti(ni ovím IuvuI

for the given mapping problem instance.

Second triple summation term in Eq. (3.4) computes the summation oí the

inner products of the weights of the tasks mapped to individual processors
for a mapping. Global minimum of the second triple summation term occurs

when equal amount of task weights are mapped to each processor. If there is

an imbalance in the mapping, second triple summation term increases with the

square of the weight of the imbalance, penalizing imbalanced mappings. The

parameter r in Eq. (3.4) is introduced to maintain a balance between the two

optimization objectives of the mapping problem.

Using the mean field approximation described in Eq. (2.8), the expre.ssion

for the mean field </;,·„ experienced by spin (?',p) can be found to be

N i< N

i‘3̂ pn ̂ Sjp'WjWj
.if-' 'ifv .if'

(3.5)

In a feasible mapping, each task should be mapped exclusively to a single

processor. However, there exists no penalty term in Eq. (3.4) to handle this

feasibility constraint. This feasibility constraint is explicitly handled while

updating the spin values. Note that, from Eq. (2.4), individual spin average

Sip is proportional to i.e. Sip a Then, S{p is normalized as

Z L c*··./·'·
(Xfi)

CHAPTER. :i MFA FOR THE MAPPING PROBLEM ■)r·,

This normalization enforces the summation of each row of the spin matrix to

be equal to unity. Hence, it is guaranteed that all rows of the s])in matrix will

have only one spin with output value 1 when the system is stal)ilized.

Eq. (3.5) can be interpreted in the context of the mapping problem as

follows. First double summation represents the rate of increase expected in

the total interprocessor communication cost by mapping task i to processor p.

Sc'cond siimimdion niprescmts the rate of iiicrea.se in tlie computational loa.d

balance cost associated with processors p by mapping task i to processor p.
Hence, —<i>ip may be interpreted as the expected rate of decrease in the overall
quality of the map]>ing by mapping task i to proces.sor p. Then, in Eq. (3.6),

Sip is updated such that the probability of task i being mapped to processor p

increases with increasing mean field experienced by spin {i,p). Hence, the
MFA heuristic can be considered as a gra,dient-d(iscent typ(̂ algorithm in this

context. However, it is also a stochastic algorithm similar to SA due to the

random spin update scheme and the annealing process.

In the general MFA algorithm given in Figure 2.2, a randomly chosen spin

is updated at a time. However, in the proposed formulation of the MFA for

the mapping problem, K spins of a randomly chosen row of the spin matrix

;i.re updated at a time. 'I'liis update operation is |)erfonn('<t a.s follows. Meaii

fields (/)ip, {I < p < K) experienced by the spins cit the i-th row of the spin

matrix are computed by using Eq. (3.5) for p = 1 , 2 , . . . ,A '. Then, the spin

averages $ip, I < p < K are updated using Eq. (3.6) for p = 1 ,2 , . . . , /1'. Each

row update of the spin matrix is referred as a single iteration of the algorithm.

The system is observed after each spin-row update in order to detect the

convergence to an equilibrium state for a given temperature [34]. If energy

function 11 is not decreasing after a certain number of consecutive spin-row

updates, this means that the system is stabilized for that temperature [34].

Then, T is decreased according to the cooling schedule, and iteration j^rocess

is re-initiated. Note that, the computation of the energy difference AH, ne­

cessitates the computation of H (Eq. (3.4)) at each iteration. The complexity

of computing H is 0{N'^ x K^), which drastically increases the complexity of

one iteration of MFA. Here, we propose an efficient scheme which reduces the

CIIArri'Hi. :i. MI'A FOR. Till·: hdAIRRNC IRiOliLFM i(;

coniplexity of energy difFerence computa.tion by an a.sym|)l,o(,ical r;i.c(.or.

The incremental energy change SHip because of the increnienial change' S.̂ ip

in the value of an individual spin (f,p) is

8H = SHip = <j)ipSs,p (3.7)

due to Eq. (2.5). Since, H{s) is linear in Sip (see Eq. (3.4)), above equation is

valid for ciny amount of change A.s,·,, in the value of s|;.n that is

A/-/ = A Hip — (j)ipAstp (3.8)

At each iteration of the MFA algorithm, K spin vedues are updated in a .syn­

chronous manner. Hence, Eq. (3.8) is valid for all spin updates performed in

a particular iteration (i.e. for 1 < p < K). Thus, energy difFerence due to the

spin-row update operation in a particular iteration can be computed as

i<
AH = A/-/,· = ^ (l îpAs

7i=l
ip (3.9)

where As,p = .5 ·̂ ’" — The complexity of computing Eq. (3.9) is only 0{K)

since mean field (^,p) values are already computed for the spin updates.

The formulation of the MFA algorithm for the mapping problem instances

with sparse TIGs is done as follows. The expression given for <pip (Eq. (3.5))
can l)e modified for sparse TIGs as

i< N

~ y~! SjpWjWj
jeAdj(i) q^p i+i

(3.10)

Here, Adj{i) denotes the set of tasks connected to task i in the given TIG. Note

that, sparsity of the TIG can only be exploited in mean field computations since

spin update operations given in Eq. (3.6) are dense operations which are not

effected by the sparsity of the TIG.

The steps of the MFA algorithm for solving the mapping problem is given in

Figure 3.2. Complexity of computing first double summation terms in Eq. (3.5)

and Eq. (3.10) are 0 { N x K) and 0{davg x H) for dense and sparse TIGs

res])ectively. Here, d„,„, denotes the average degree of the vertices of tlu' sparse

d'lG. .Second summation opi'rations in Fi]. (3.5) and Eq. (.3.10) are both 0{N)

for dense and sparse TIGs. Then, complexity of a single mean field com])utation

СНАРПШ 3. MFA FOR THE MAPPING PROBLEM 27

1 . Get initial temperature, and set T — Tq

2 . Initialize the spin averages s = [.Sj i, . . . , Si,,,. . . , .syv/\·]

3. While temperature T is'in the cooling range DO

3.1 While H is decreasing DO

3.1.1 .Select a task i at random.

3 . 1 .2 Compute mean fields of the spins at the г-th row

Ф1р — ■“ ^iJ^jq^pq ~ ■̂jp'<̂i'<̂j

3.1.3 Compute the summation

3.1.4 Compute new spin values at the г-th row

^ ^ф,„/т foj. 1 < p < к

3.1.5 Compute the change in energy due to these s|)in iii)dat('s

АЯ = Ei=, - Si,)

3 .1.6 update the spin values at the г-th row

Sip — ¿'¿p for I < p < К

3.2 Т = с у х Т

Figure 3 .2 . MFA algorithm for the mapping problem.

CHAPTER 3. MFA FOR THE MAPPING PROBLEM 2S

is 0 { N X K) and 0{davg x N + N) for dense (Eq. (3.5)) and sj)ars(i (Eq. (3.10))

TIGs respectively. Hence, complexity of mean field computations for a spin row

is 0 { N X K^) for dense TIGs, and 0{davg x ■{■ N x K) for spar.se TIGs (step

3 . 1 .2 in Figure 3 .2). Spin update computations (steps 3.1.3, 3.1.4 and 3.1.6) and

energy difference computation (step 3.1.5) are both 0{I() operations. Hence,

the overall complexity of a single MFA iteration is 0 { N x IĈ) for dense TIGs,

and 0 {dnvg X X A') for s])arse TIGs.

3.3.2 A n Efficient Im plem entation Schem e

As is mentioned earlier, the MFA algorithm proposed for the mapping problem

is an iterative process. The complexity of a single MFA iteration is mainly due
(.o the iiHiJU) fic'ld (•.om|)uta.tions. In tliis siu'.tiuii, we |>ropos(i ;ui eilieieiit imph;-

mentation scheme which reduces the complexity of the mean field computations

and hence the complexity of the MFA iteration by asymptotical factors.

Assume that, ¿-th spin-row is selected at random for update in a particular

iteration. The expression given for 4>ip (Eq. (3.5)) can be rewritten by changing

the order of summations of the first double summation term as
l< N N-

<f>ip = ~ dpq ~ 1' i

I<
(3.11)

where

q̂ p

N
îq

j^i
N

(3.12)

'̂ ¡Hp (3.13)

Here, Xiq represents the rate of increase expected in the interprocessor commu­

nication by ma])ping task i to a])rocessor other then q (for the current map])ing

on processor </), assuming uniform unit communication cost between all pairs

of processors in PCG. Similarly, •0.> represents the rate of increase expected in

the computational load balance cost associated with processor p, by mapping

task i to]:)rocessors p (for the current ma])])ing on])rocessor p).

CHAPTER 3. MFA FOR THE MAPPING PROBLEM 29

For an efficient ini])lementation, the overall mean field coinputa,tion involved

in a single iteration can be computed using the following matrix equation

= - D X Ai - 7

= -© i - i 'i'i (3.15)

Here, D is a K x K adjacency matrix representing P(X5 (i.e. and
<l>i, Ai \l̂ i and ©i are column vectors with K elements, where

· ' * ? * ' · ? ['^tl) · · · i · · · ?

= [V’ti, · · ·, Vdp, · · ·, ©i = [̂ ¿1, · · ·, Oip, . . . , 9iK]' ̂ (3.16)

The complexity analysis of the proposed implementation scheme for dense

TICs is as follows. Complexity of computing A,·,/and i/),> 'xAh 0{N).
Complexity of constructing Aj and 'i'i vectors are both 0 { N x K), since both

vectors contain K such entries. Complexity of computing the matrix-vector

product required in Eq. (3.14) is 0{IO). Flence, the overall complexity of
computing the vector (Eq. (3.14)) reduces to 0 {N x l\ -j- K^) — 0 {N x

K)^ since N K in general. The complexity of K spin updates and the

computation of A // are both 0{K). Thus, the proposed scheme reduces the

computational com|')lexity of a single MFA itera.tion to 0 {N x I\) foi' dense'

TICs with N :> K.

The complexity analysis of the proposed implementation for sparse TICs

is as follows. Note that, the sparsity of the TIC can only be exploited in the

computation of A,-,’s since

N

j&Adj[i)

(3.17)

for sparse TICs. Hence, the complexity of computing an individual A„, is

only 0{davg)· Tlius, the complexity of constructing the Aj vector reduces to

0{dava The complexity of computing the ©i vector in Eq. (3.15) reduces

to 0{davg X H + However, the complexity of constructing the vector

required in Eq. (3.15) is 0 { N x /F), dominating the overall comph'xity of tlu'

mean field coni])utations. The c.om])lexity of computing tin* \P̂ i vector can bc'

reduced as follows. The computation of ■(/>,·,, in Eq. (3.13) can be re-formulated

CHAPTER 3. MFA FOR THE MAPPING PROBLEM 30

as
N N N

./·/./■ ,/// ./-I
■̂Gp - Wilp-w'iSip (3.18)

wIk'IC'
N

lp = Y
i=l

■JV (3.19)

Here, 7 j, represents the computational load of])ror.e.s.sor />, for tlu' ciirii'iit ma.|)-

ping on processor j). Note that, computationally, 7 ,, represents weighted sum

of spin values of the ;>th column of the spin matrix. Hence, initial 7 ,, value of

each column p (1 < p < K) c<m be computed by using Eq. (3.19) for the initial

spin values. Then, jp values can be updated at the end of each iteration (i.e.

after spin updates) by using

(.3.20)

for 1 < p < K.

The computation of initial 7 ,, values can be excluded from the complexity

analysis since they are computed only once at the very beginning of the cUgo-

rithm. In this scheme, the computation of an individual '0,p using Eq. (3.18)
is ail 0 (1) ^»pc.ratiou. Hence, the coiistrucLiou of the Vtj vector reciuired in

Eq. (3.14) becomes an 0{K) operation. Thus, the'complexity of computing

the mean field values reduces to 0(f4„y x R + K^). Note that, l.he update

of an individual 7 ,, value (using Eq. (3.20)) at the end of the iteration is an

(9(1) operation. Hence, the oveicdl complexity of 7 p updates is 0{K) since

K weighted column sums should be updated at each iteration. Note that,

complexity of spin updates and energy difference computation are also 0{K)

for sparse TIGs. Hence, the implementation scheme proposed for sparse TIGs

reduces the complexity of a single MFA iteration to 0{davg x R + E'^).

3.4 Perform ance of M ean Field A nnealing A lgorithm

This .section])resents the i)erformance evaluation of the Mean Field Aniu'aliug

(MFA) algorithm for the mapping problem, in comparison with two well-known

CHAPTER 3. A4FA FOR THE MAPPING PROBLEM 31

mapping heuristics: Simulated Annealing (SA) and Kernighan-Lin (KL). Each

algorithm is tested using randomly generated mapping problem instances. In

tlic following sections implementations are describoxl in order to give a better

understanding of the discnssc'd algorithms.

3.4.1 M FA Im plem entation

MFA algorithm described in the previous section (Figure 3 .2) is im])lemented

for testing the performance of thé algorithm. Cooling process is started from an

initial temperature which is found experimentally. For the mapping problem

instances used in the experiments, initicU tempercvture To is found to be varying

between 1 < To < 10. Coefficient r which determines the balance between two

optimization criteria is also found experimentally, varying between 0.1 < r <

1.5. At each temperature, iterations continued until A H < e for L consecutive

iterations. L is set ecpial to N initially. Parameter c is chosen to Ix' Ix'tween

lO"' ̂ < e < 1 0 “C Temperature is decreased using a = 0.9 until T is less than

To/1.5. Tlien, L is set to ¿/3 and cv is set to 0.5 and cooling is contiiuuxl until

T is less then To/5.0. Resulting spin values after this cooling operation are set

to 0 if they are less than 0.5 and set to 1 if they are greater than 0.5. Then
the result is decotled as descrilred in Section 3.3 and the resulting ma].)|)ing is

found.

3.4.2 K ernighan-Lin Im plem entation

Kernighan-Lin heuristic is not directly applicable to the mapping problem since

it was originally proposed for graph bipartitioning. In order to apply KL

heuristic to the mapping problem a two phase approach is used. In the first

phase, task interaction graph Gt {V,E) is partitioned to K clusters, where K

is equal to the number of processors. These K clusters are then mapped to

proces.sor graph (Ii>{P·, D) using a one-to-one mapping heuristic, in tlx' second

phase. One-to-one mapping heuristic used in this work is a variant of KL

heuristic.

For the clustering phase, Kernighan-Lin heuristic is implemented ('lliciently

CHAPTER 3. MFA FOR THE MAPPING PROBLEM 32

as described by Fiduccia and Mattheyses [7]. In order lo apjjly KL to /\-vvay

grapli partitioning two schemes are used. First one, partitioning by recursive

bisection (KL-RB), recursively])artitions the initial graph to two partitions

until K partitions are obtained. Other scheme, partitioning by pairwise inin-

cut (KL-PM), starts with an initial A'-way partitioning and then minimizes the

cutsizes between each pair of partitions until no improvement can I)e done. In

KL heuristic balancing of the work load of processors is done implicitly by the

algorithm. When moving one node from one partition to another, weights of

the partitions are tested and moves causing intolerable imbalance are rejected.

In the beginning of second phase, K clusters formed in the first phase are

mapped to the K processors of the multicomputer randomly. After this initial
mcipping, communication cost is minimized by performing a sequence of cluster

swaps. An individual cluster swap corresponds to interchanging the mapping

of a pair of clusters.

3.4.3 Sim ulated A nnealing Im plem entation

Simulated Annealing algorithm, implemented for solving the mapping problem,

uses the one phase approach to map the TIG onto PCG. In simulated annealing,
starting from a randomly chosen initial configuration, configuration space is

searched for the best solution using a probabilistic hill climbing algorithm. A

configuration of the mapping problem is a mapping between TIG and PCG,

which assigns each task in TIG to a processor in PCG. In order the search the

configuration space, neighborhood of a configuration must be defined. For the

implementation in this work, neighborhood of a configuration consists of all

configurations which results with moving one vertex (task) of the TIG from

the maximum loaded node (processor) of the PCG to another node of PCG. At

each iteration of the simulated annealing algorithm, one of the possible moves is

chosen randomly as a candidate move. Then the resulting decrease in the total

communication cost after performing the candidate move is calculated without

changing the configuration. If the candidate move decreases tlu' cutsize, it

is realized. If candidate move increases the cutsize, then it is realized with a

probability which decrea.ses with the increasing positive diiferem'.e cau.sed in th(>

CUAPTFAl :i MFA FOR TIIF MAPPING PROBLFM ;.{3

total cutsize by that move. Acceptance probcibility of tlie moves that increases

the cost is controlled with a temperature parameter T which is decreased using'

an annealing schedule. Hence, as the annealing proceeds acceptance probability

of uphill moves decreases. Cooling schedule used in the implementation of SA

algorithm is similar to the schedule given in [22].

3.4.4 E xperim ental R esu lts

In this section, performance of the MFA algorithm is discussed in comparison

with SA and KL algorithms. These heuristics are experimented for mapping

randomly generated TIGs onto mesh and hypercube connected multicomput­

ers.

Six test TIGs are generated with N = 200 and 400 vertices. Vertices of

these TIGs are weighted by assigning a randomly chosen integer weight between
1 and 10 to each vertex (1 < iw,· < 10, for 1 < i < N). Interaction patterns

among the vertices of these TIGs are constructed as follows. A maximum vertex

degree, dmax, is selected for each test TIG (dmoa,· = 8,16,32) such that, degree
di of each vertex i is a randomly chosen value between 1 and d„iax (i.e. 1 < d,· <

dm,,.,·, for 1 < i < N). Then, ea.cli vertex i of TIG is connected to </,· randomly

chosen vertices. Resulting edges are weighted rcuidomly with integer values

varying between 1 and 10. These TIGs are mapped to 3-, 4-, 5-dimensional

hypercubes and 4 x 4, 4 x 8 two dimensional mesh hiulticomputers. PGGs

corresponding to these interconnection topologies are constructed assuming

software routing as is described in Section 3 .2 .

Tables 3.1, 3.2 and 3.3 illustrate the performance results of KL-RB, KL-

PM, SA and MFA heuristics for the generated mapping problem instances. In

these tables, N and denote the number of vertices and edges in the test

TIGs respectively, and K denotes the number of processors on the target PCG.

lnt('rcomH'ction topology of the ta,rg(>t POC! is denoted by 'I\ where JI denotes

the hypercube interconnection to])ology and M denotes the mesh interconiH'c-

tion topology. Each algorithm is executed 10 times for each problem instance,

starting from different, randomly chosen initial configurations. Averages of the

results an; illustrated in 'Tables 3.1, 3.2 and 3.3,

CIIAPTim 3. MFA FOR THE MAPPING PROBLEA^ 34

Table 3.1. Average.s of the total communication costs of the solutions found
by KL-RB, KL-PM, SA and MFA heuristics, for randomly generated mapping
problem instances.

PROBLEM SIZE AVERAGE COMMUNICATION COST
N E\ K T KL-RB KL-PM SA MFA

200 544 8 II 1807.4 1846.0 1595.1 1671.4
200 544 16 H 2819.9 2747.1 2180.0 2333.4
200 544 32 H 4098.8 4710.4 2879.0 3181.6
200 1 12 0 8 II 5421.9 5494.7 4947.8 5092.4
200 1 12 0 16 H 7742.4 7816.1 6699.1 6840.3
200 1 12 0 32 II 10377.1 11280.2 8495.7 9200.3
200 2152 8 H 12721.6 12959.0 12018.5 11956.2
200 2152 16 H 17828.9 17859.9 16201.2 16261.2
200 2152 32 II 23127.6 24260.3 20407.0 20586.0
400 1227 8 H 4360.6 4444.5 3772.3 4235.6
400 1227 16 II 6096.0 6073.2 5086.4 5615.9
400 1227 32 II 8420.2 7999.9 6485.0 7184.0
400 2283 8 II 11247.1 11491.5 10152.1 10744.3
400 2283 16 II 15566.7 15896.9 13626.7 14197.5
400 2283 32 II 20543.8 20527.1 17169.8 18209.6
400 4298 8 II 25318.3 25832.1 23507.6 23561.1
400 4298 16 II 34590.6 35395.4 31427.2 32127.6
400 4298 32 H 45053.8 45098.1 39453.0 40133.8

200 544 16 M 3364.2 3318.7 2659.7 2996.0
200 544 32 M 5618.7 6822.5 4260.4 4580.0
200 1 12 0 16 M 9234.2 9318.2 8432.3 8121.7
200 1 12 0 32 M 14659.9 16476.4 13556.0 12456.9
400 1227 16 M 7341.4 7357.0 6293.0 6745.0
400 1227 32 M 12207.4 11758.6 9924.8 10780.0
400 2283 16 M 18670.9 19133.0 17480.1 16631.6
400 2283 32 M 29827.0 30156.3 28319.1 26078.2

CHAPTEli 3. MFA FOR. THF MAPPING PROBLEM 35

Table 3 .2 . Averages of the computational loads of the minimum and maxi­
mum loaded processors for the solutions found by KL-RB, KL-PM, SA, MFA
heuristics, for randomly generated mapping pr'oblem instances.

PROBLEM SIZE AVERAGE MIN-MAX LOAD
N 1^1 K T KL-RB KL-PM SA MFA

2ÜÜ 544 8 H 125.0 153.3 126.8 150.2 1.35.1 142.7 1.32.2 143.6
200 544 16 H 59.0 80.0 63.4 75.0 64.0 74.4 54.9 83.1
200 544 32 H 28.6 41.6 30.8 , 37.0 : 29.2 41.0 28.4 41.6
200 1 1 2 0 8 H 121.4 155.6 125.7 150.6 134.1 142.9 127.0 149.4
200 1 12 0 16 H 59.1 81.3 63.3 74.9 64.0 74.9 61.6 77.8
200 1 12 0 32 H 28.6 42.4 29.4 37.0 28.2 42.8 30.7 39.4
200 2152 8 H 120.2 156.9 124.4 149.8 133.3 143.5 128.9 149.2
200 2152 16 H 57.4 81.8 62.0 74.0 63.1 67.9 60.7 79.4
200 2152 32 H 27.3 42.8 31.0 37.0 27.8 40.4 25.8 44.1
400 1227 8 H 250.9 319.4 259.2 313.0 281.7 290.6 281.6 289.9
400 1227 16 H 124.3 164.6 129.4 156.8 138.1 148.8 135.6 L50.4
400 1227 32 II 60.2 87.0 64.6 78.0 66.0 77.0 .58.7 86.7
400 2283 8 H 241.7 313.0 248.4 300.6 280.1 270.7 266.9 284.4
300 2283 16 II 115.7 I59.S 124.3 149.9 1.32.6 143.2 126.5 149.3
400 2283 32 II 56.4 84.5 62.2 74.0 63.5 74.0 62.4 76.4
400 4298 8 II 253.6 331.0 261.6 318.8 285.4 298.3 273.4 309.7
400 4298 16 H 122.2 169.9 131.2 . 158.5 ,1.38.8 153.0 135.3 1.55.2
400 4298 32 H 59.5 88.9 65.0 79.0 67.3 77.7 .58.2 87.6

200 544 16 M 58.6 79.7 63.2 74.8 63.2 74.4 62.8 76.4
200 544 32 M 28.7 41.4 31.0 37.0 29.1 .39.5 26.0 42.6
200 1 12 0 16 M 58.5 81.0 63.2 75.0 64.0 75.8 61.3 77.8
200 1 12 0 32 M 28.7 42.1 30.5 37.0 28.6 42.9 26.1 42.3
400 1227 16 M 12 1 .0 167.0 129.2 156.6 138.1 147.6 136.4 151.4
400 1227 32 M 59.5 86.2 64.1 78.0 64.6 81.8 63.3 80.4
400 2283 16 M 117.4 161.5 124.1 149.9 131.3 146.0 127.3 149.6
400 2283 32 M 56.3 83.9 62.1 74.0 63.0 76.9 .59.6 78.0

CHAPTER 3. MFA FOR THE MAPPING PROBLEM ;U)

'Table .‘j..·]. Average e.xeculion limes (in seconds) of KL-RB, KL-PM, S'A and
MFA heuristics, for randomly generated mapping problem instances.

PROBLEM SIZE AVERACxE EXECUTION TIMES
N E I< T KL-RB KL-PM SA MFA

200 544 8 H 1.07 5.74 80.72 19..57
200 544 16 IT 1.53 13.70 127.17 46.17
200 544 32 H 3.29 29.60 245.10 101.84
200 1 12 0 8 H 1.63 7.61 64.10 14.39
200 1 12 0 16 H 2.2 14.56 144.04 -58.11
200 1 12 0 32 H 5.11 40.54 282.65 200.53
200 2152 8 H 2.52. 10.93 64.22 26.07
200 2152 16 H 3.46 23.66 156.65 61.94
200 2152 32 H 7.60 45.38 373.85 294.94
400 1227 8 H 2.17 10.05 168.86 25.14
400 1227 16 H 2.98 29.74 310.68 164.17
400 1227 32 H 6.41 68.04 681.10 360.40
400 2283 8 H 3.25 16.02 . 167.07 26.67
400 2283 16 II 4.36 39.79 383.20 88.61
400 2283 32 H 8.61 88.85 6.32.80 221.60
400 4298 8 II 5.42 25.49 L55.25 90.42
400 4298 16 H 7.05 64.88 402.95 171.26
400 4298 32 H 12.59 125.14 553.00 437.62

200 544 16 M 1.5 1.4 165.7 24.8
200 544 32 M 3.3 29.6 2.58.7 82.6
200 1 12 0 16 M 2.3 14.8 124.2 36.2
200 1 12 0 32 M 5.6 38.4 293.1 122.0
400 1227 16 M 3.1 26.7 280.5 108.0
400 1227 32 M 6.7 60.4 565.1 375.2
400 2283 16 M 4.4 41.7 363.8 130.9
400 2283 32 M 8.7 82.8 573.5 540.8

(:ııArτl·:ı{. .i m i 'a I'ou. 'nil·: m a i>i >in c i >u o b u :m M

'Fahlcs İ5.1 and d.2 ¡llusl.i î.l,c the c|uality of tlie sulution.s ul)t¿ .̂iπed !>>' Kl -̂

H.n, KL-PM, SA a,nd Mh'A İKMiristics. Averag<i tuta.1 (U)nuımMİ<a,titnı costs t)l

the solutions are displayed in Table 3.1, and average computational loads of

the maximum and minimum loaded processors are displayed in Table 3.2. As

is seen in Tables 3.1 and 3.2, the quality of the solutions obtained by MFA and

SA heuristics are superior to KL heuristic. Solutions found by SA are slightly
bett.er compared with the solutions found by MFA, in general. However, in

some cases MFA performs better. The total communication costs found by

KL-RB is less than the total communication costs found by KL-PM, however

load balance of the solutions found by KL-PM is better than KL-RB.

Table 3.3 displays the average execution times of KL-RB, KL-PM, SA and
MFA heuristics, for the generated mapping problem instances. As is expected,

KL heuristic, is faster compared witli Mĥ A and SA heuristics. Observe that,

MFA is always faster than SA. Execution time of MFA is comparable to KL-
PM whereas, KL-RB is significantly faster compared with MFA and KL-PM.

However, MFA is expected to perform better if an efficient cooling schedule

can be devised by analyzing the algorithm in detail, which still remains as an

open research issue. Furthermore, the execution times displayed in Table 3.3

for MFA are not obtained by running the most efficient implementation pro-

])osed in Section 3.3.2. The time complexity of the imi)lemented scheme is

0 {dnyy X K ^) whereas the. complexity of the most efficient scheme propo.scd in

Section 3.3.2 is 0{davg y- K + K^)· Hence, the execution time of the algorithm

is expected to decreiise significantly for large d̂ vg and K.

3.5 Parallelization of M ean Field A nnealing A lgorithm

As is mentioned earlier, heuristic algorithm used for solving the mapping prob­

lem is a preprocessing overhead introduced for the efficient implementation of

a given parallel program on the target multicomputer. If the mapping heuristic

is implemented sequentially, this])reprocessing can be considered as the serial

portion of the parallel program which limits the maximum efficiency of the

parallel program on the target machine. For a fixed parallel program instance.

C l ! A r u m :{. Ml'A ¡''OR TlUi MAPPING PROPLPM ;{8

(.iic cxi'ciil.ioii l.imcol I hr pa.ra.llrl prugra,in is rxprcU'd l.o drcrrasr wil.li iiicrras-

ing number of])roc('ssors in l.lie target multicomputer. Iluwevei', as is seen in

d'a.bh' lor a. fixcsl 'I'KI, tlû execution timeol a.ll ma.|)ping lieuristics inc.iaxise

with increasing number of processors in the target multicomputer. Hence, the

serial fraction of the parallel program will increase with increasing numlrer of

processors. Thus, this preprocessing will begin to constitute a drastic limit

on the. maximum efficiency of the ovcirall paralleliza.tion due to Amda.lil’s Law.

Hence, parallelization of these mapping heuristics on the target multicomputer

is a crucial issue for efficient parallel implementations.

Unfortunately, parallelization of the mapping heuristics introtluc.es another

mapping problem. The computations of the mapping heuristics should be
mapped to the processors of the same target architecture. However, in this

case, the parallel algorithm for the mapping heuristic should be such thiit
its mapping can be achieved iii.l.uiLnHdy. Furthermore, the in'tuitive mapping
shoultl lead to an eilicient jrarallel implementation of the mapping heuristic. For

these reasons, the target mapping heuristic to be parallelized should involve

regular and inherently parallel computations. MFA algorithm proposed in

Section 3.3 for the general mapping problem has these properties for efficient

parallelization. Following paragraphs discuss the efficient parallelization of the

proposed mapping heuristic for multicomputers.

Assume that, MFA heuristic is to be used to map a given parallel program

represented with a TIG' having N vertices on a target multicomputer with K

processors. The MFA heuristic will use an N x I(spin matrix for the mapping

operation. The question is to map the computations of the MFA heuristic

to the same target computer (with the same number of K i)rocessors). As is

mentioned earlier, MFA heuristic is an iterative algorithm. Hence, the mapping

scheme can be devised by analyzing the computations involved in a particular

iteration of the algorithm. Atomic task can be considered as the computations

required for updating an individual spin. Note that, K spin averages at a

])articular row of the s])in matrix are updated at each iteration. Hence, these

K spin updates can be computed in parallel by mapping each spin in a row

of the spin matrix to a distinct processor of the target architecture. Thus,

the N X K spin matrix is partitioned column-wise such that each processor

CHAPTER 3. MFA FOR THE MAPPING PROBLEM 39

is assigned an individual column of the s])in matrix. That is, column p of

the spin matrix is mapped to i>rocessor p of the target architecture. Each

processor is held responsible for maintaining and updating the spin values in

its local column. Assume that, task-i is selected at random in a particular

iteration. Then, each processor is responsible for updating the probability of

task i being mapped to itself.

A single iteration of the MFA algorithm can be considered as a three phase

process, namely, mean field computation phase, spin update phase, and energy

difference computation phase. Each processor p should compute its mean field

^ip (Eq. (3.5) or Eq. (3.10)) in the first phase, in order to update its local spin .s,·,,
(Eq. (3.(i)) l:>y using this mcii.n li(;ld vah.u.! in the second |)ha.se. As is mentioiuid

earlier, mean field computation phase is the most time consuming phase of the

MFA algorithm. Fortunately, mean held com])utations are iiduu'iuitly pa.ra.lhil

since there is no interactions between mean field computations involved in a

particular iteration. However, a close look to Eq. (3.5) and Eq. (3.10) reveals

that each processor needs most recently updated values of all spins except the

ones in the ¿-th row in order to compute its local mean field value. Recall

that, each processor maintains only a single column of updated spin values

due to the proposed mapping scheme. Hence, this computational interaction

necessitcites global interprocessor communication just priori to the distributed

mean field computation at each iteration. The volume of global interprocessor

communication is proportional to 0{N x K), since each processor p needs all

updated spin values except the ones in the f-th row, in order to compute its

local (̂ ip. The volume of global interprocessor communication can be reduced

to 0{K) by considering the parallelization of the matrix equation given in
Eq. (3.14).

Eq. (3.14) involves the following operations : construction of the Aj and

SPj vectors, dense matrix vector product ©i = D x Aj and vector addition

= —©j — Note that, each processor p only needs to compute the pAh

entry 9ip of the ©j vector, and the ;>th entry ißip of the vector in order to

compute its local mean field value <j)ip in parallel. The matrix vector product

can be performed in parallel by employing the scalar accuinalalion (.SA-MVP)

scheme. In this scheme, each processor needs only the p-th row dp of the dense

CHAPTER. 3. M FA FOR THF h'lAPPlNC PROBLEM 'lU

D matrix and the whole column vector Aj.

Each processor p can concurrently compute the />th entry A,p of the Ai

vector by using Eq. (3 .1 2). Note that, q in Eq. (3 . 1 2) should be replaced by

p in these computations. Then, a global collect (GCOL) operation is requii'ed

for each processor to obtain a local copy of the A] vector. The GCOL opera­

tion is essentially appending K local scalars, in order, into a vector of si^e K

and then duplicating this vector in the local memory of each i)roc('ssor. The

GCOL operation requires global interprocessor communication. Note that,

only K local spin values should be collected globally thus reducing the volume
of,communication during the GC'OL operation by an asymptotic factor of N.

After the GCOL operation, each processor has a local copy of the global

Aj vector. Hence, each processor p can concurrently compute its local Oip by
pcrfoi'iniiig tli<‘ iiiiH'i'-product -- dp x Aj. Then, cacli i)iuces.sui' p shoidd

compute the p-th entry of the ’ÿj vector. Note that, each processor p already

maintains the value. Hence, each processor can concurrently compute i/’ip

using Eq. (3.18). Then, each processor p can concurrently compute its local

mean field value (¡>ip by performing the local computation (¡>ip = —Oip — nl>ip.

Note that, these computations are completely local computations and involves

no interjjrocessor communication.

The second phase of an individual iteration of the MFA algorithm is highly

sequejitial since global interaction exists between spin u|)dates due to tlu' nor­

malization process indicated l̂ y Eq. (3.6). Fortunately, the strong interaction

can be relieved by noting the independent exponentiation o])erations involved

in the numerator of Eq. (3.6). Hence, each processor p can concurrently com­

pute its local e'M'N' values. Then, a global sum (GSUM) operation is required

for each processor to olHain a local copy of the global sum of the local exponen­

tiation results. The GSUM operation requires global interprocessor communi­

cation. After the GSUM operation each processor p can concurrently update

its local spin value by computing Eq. (3.6). After computing .sj·“'*'', each pro­

cessor p should concurrently update its local 7 p values by using Eq. (3.18) for

the use in the next iteration.

In the third phase, each processor should compute the same local copy of

CHAn'I^Ii :i. MFA Foil THE MAPPING PR.OBLFM

the global energy difference A//,· for global termination detection. Each pro-

ces.sor p can concurrently compute its local energy difference A//,·,; = <j)ipAsip —

“ •‘' i'jjO loca.1 s|)iii iii)da.te. d'heu, a (.¡SUM o|Hn'a.tion, which

requires global interprocessor communication, is recpiired for each ¡processor to

compute a local copy of the global sum A//,· = X2p=i AHip.

Hence, the proposed parallel MFA algorithm necessitates three global com­

munication operations due to the CCIOL operation involved during the first

phase and two C5SUM operations involved in the second and third phases. In

fine grain multicomputers, the volume of interprocessor communication is the

important factor in predicting the complexity of the inter|)rocessor commu­

nication overhead. However, in medium grain multicomputers the number of

communications is also important since high set-up time overhead is associated

with each communication step. For example, set-up time is the dominating fac­

tor for short messages in such architectures. Note that, only a single floating
variable reproisenting the running sum, is communicated during the GSUM

operations involved in the last two phases of the parallel MFA algorithm.

Hence, reducing the number of GSUM operations required in the MFA

algorithm will be a valuable asset in achieving efficient implementations on

medium grain multicomputers. As seen in Eq. (3.9), there is an execution

dependency between the computation of the energy difference A//, and spin-

row updates. This execution dependency between the second and the third

phase computations can be relieved by rewriting the expression for A//,· as

follows
i<

All: ■

o l d

(3.21)

where //,■ = J2p-i <j)ip-Sip is the partial energy contribution to the total energy

H due to the spin values at the i-th row (i.e. H = ^«)· 'T'he ex|)rcssion

for the partial energy Hi can be expanded as

E I { n r u i
- . s " ' ' ')

i p /

p = l

E S ’ -Y x p ^ t p

p = I

T j n c w __ T j o l d

K I<

7;=1 1 1

CHAVrm. 3. MFA FOR TIIF MAPPING PROBLEM 42

i<

I /1 ,
(3.22)

where A-i = Ei=i = Zp=i Bi = e JLi = E?=i ·

Hence, after each processor p computes its local a,p = e' '̂vN and bip —

values, two global sunima.tions A{ — Ep=i “i> <'■'“ * B̂ — Ep=i
can be accumulated in a sincjlc GSUM operation. After this single GSUM

operation, each processor p can concurrently updcite its local spin value and

com])ute its new partial energy value as Sip = UipfAi and /·/?“■’" = BifAi. If

each processor keeps the partial energy associated with each row then
each processor ma,}' concurrently compute tlie same local copy of the glol)al

total energy difference A H = A/·/; = — Hf'L Note tliat, tliis scheme

reduces the number of GSUM operation from two to one. However, the volume

of interprocessor communication remains the same since two floating point

variables, representing the running sums A,· and B,·, are communicated during

the communication steps involved in the GSUM operation.

The node program for a single iteration of the parallel MFA algorithm

proposed for .solving the mapping problem is given in Figure 3.3. Note that,

variables with “fp” and “p” subscripts denote the local variables. Variables with

subscripts denote the global variables which are constructed and duplicated
at the local memory of each processor after performing the indicated global

operations. The proposed parallel algorithm can easily be im])lemented on any

multicomputer having the GGOb and GSUM facilities.

As is seen in Figure 3.3, the propo.sed parallel MFA algorithm achieves

perfect load balance. The parallel computational complexity of a single MFA

iteration can be obtaiiuxl as follows. Uuring the parallel computation of A,p’s

(step 2) each processor performs — 1 {(k — 1) multiplication/addition oper­

ations for den.se (sparse) TIGs. Here, d,· denotes the degree of vertex i in the

TIG. During the parallel SA-MVP computation (step 3) each processor per­

forms K multiplication/addition operations for both dense and sparse TIGs

since the D matrix is a dense matrix. Each processor performs the same con­

stant amount of arithmetic, operations in the remaining steps (ste|)s h-? and

CHAPrER :i MFA FOR rUE MAPPINC PROBU'A'I ■i;{

1 . Select a task i at random.

2 . Compute Ajp YLj&Adj(i)

3. Perform GCOL operations to obtain a local copy of

Aj [A;I, . . . , Xip, · · ·) At7\]

4. Compute the inner product 0,p = dp^ x A;

5. Compute i/’.-p = t/;,(7p — w.s.p)

6. Compute the local mean field value 4>ip = dip + rtf̂ ip

7. Compute a,p = and hip = (j)ipt' "̂·^̂

8 . Perform GSUM to compute the local copies of

= Ei=i a«p and Bi = Ep==i K

9. Compute .s-jf"' = (lipfAi and tlien A.s,p = - Sijf

10. Compute = 5,7/1,· and then A7/,· = /7“''“' — /■/,·

1 1 . Uixlate 7p = jp + 'WiA.s'.p

12. Update ¿¡ip — .sip'" and Hi =

Figure 3.3. Node program for one iteration of the parallel MFA algoritlim for
the mapping problem.

C IIAP TE I l :i MFA FOR T I IF MAPFINC PR.OBUCM

steps 7- 1 2). Hence, the parallel computational com])lexity of the pro|)osed al-

gm ithni is (J[N -|- A) ami (){<lii„n + A) for dense ami sparse 'i'l(!s lespeclively.

Hence, linear speed-up can ecisily be achieved if communication overhead re­
mains ncgligil)le. Th(‘ communication complc.xity due to the (JCX)L (step .‘5)

and GSUM (step 8) operations are discussed in general in the following para­

graph.

The interconnection schemes used in the processor organization of the mul­

ticomputers are usually symmetric in nature (i.e. POG is symmetric). GSUM

and GCOL type of operations in such architectures is performed in two phase.

In the first phase, a sequence of concurrent single-hop communications are per-

foriTied to accumulate or collect the result in a root processor. In the second

phase, the final result is broadcast from this root])rocessor again using a se­

quence of concurrent single-hop communications. The number of concurrent

single-hop communications in each phase will be proportional to diameter of

the POG. For example, diameters of hypercube and mesh POGs are log-2 K and

respectively. The overall concurrent volume of communications will be

proportional to diameter and number of processors (K) in both phases of the

GSUM and GCOL operations, respectively. If a full-duplex pair of communi­

cation links are used between each pair of directly connected processors (e.g.

Intel’s iPSC/2) then, such global operations are performed in single plia.se by a

sequence of concurrent single-hop exchange communications. In such an archi­

tecture, the number of concurrent single-hop communications and the overall

volume of concurrent communication in GSUM and GGOL operations can be

reduced by a factor of two.

4. MFA FOR THE CIRCUIT
PARTITIONING PROBLEM

This chapter presents formulation of Mean Field Annealing (MFA) for solving

the circuit partitioning problem. Section 4.1 describes the circuit partition­

ing problem, and summarizes the previous works on the circuit partitioning
problem. In Section 4.2 the circuit partitioning problem is modeled as the

graph partitioning problem and the network partitioning problem. Section 4..3

presents the formulation of MFA for the graph partitioning problem and the

network partitioning problem. MFA algorithms proposed for solving the graph

partitioning problem and the network partitioning problem are parallelized as

is describoxl in Section 4.4.

4.1 T he C ircuit P artition ing Problem

Partitioning of a VLSI circuit, which is delined with its components and sig­

nal nets, is an extensively studied problem. Partitioning means to divide tlu'

components of a circuit into two or more evenly weighted partitions, such that

the number of signal nets interconnecting them is minimized. This probhun,

called the circuit partitioning problem, arises while dividing a circuit into parts

that will be implemented separately. In some layout problems like, placement

and floor-planning, divide-and-conquer algorithms, which necessitate dividing

up the circuits hierarchically into parts with different minimization criteria,

are used. Circuit partitioning is also needed within these algorithms [20]. The

circuit partitioning problem first appeared because of the need for partitioning

components of electronic circuits to circuit boards, minimizing the connections

45

CHAPTER 4. MFA FOR THE CIRCUFr PARTmONINC PROBI.FM 4()

l)H.W('<Mi l>o;u(|s. Л iH'urisl.ic for solvin,t!; I.bis prolilcm is L';iv<‘ii in l.lic scmiii;i.l

])a])er by Keniiglian and Lin [17]. In this work, tlio circuit,s a.rc: rc^prcscnitiHl as

graphs and the problem is treated as the graph partitioning problem. In a later

work by Schweikert and Kernighan [27, 37], deficiencies of using graph model

are illustrated, and a new model called net-cut circuit model is proposed. The

problem of partitioning circuits using this representation is called the network

partitioning problem.

As both of the mentioned problems (the graph partitioning problem and the

network partitioning problem) are proved to be NP-hard [8], finding efficient

heuristics for them is an important issue. Various heuristics, e.g., Kernighan-

Lin like algorithms [7], Simulated Annealing (SA) etc., are proposed and im­
plemented for solving tluise problems [20]. In this chapter. Mean Field Anneal­

ing (MFA) algorithm, is formulated for the circuit partitioning problem.

Algorithms used for solving the circuit partitioning problem are time con­
suming processes, and parallelizcition ol them is crucial. In this chapter, par­

allelization of MFA algorithms for solving the circuit partitioning problem on

distributed-memory, message-passing multicomputers is also addressed.

4.2 M odeling th e C ircuit P artition ing Problem

An instance of the circuit partitioning problem constitutes of a set of weighted

components and a list of nets which defines the connection relationshii)s among

the.se components. Nets can also be weighted; but, as this does not change the

nature of the problem, we assume the weights of the nets to be unity. An
(ixamj)le instance of tlui circuit partitioning problem is given ludow.

com ponents weights

a 1

1) 1

c 2

d 1

net-lis t

net 1 : a-b-c-d

net 2 : d-e

Tlie])rol)lem is i.o divide; (,lK;giv(;n circuil, into M {M > 2) (;(|ua.lly vv(>iL>;ld.('d

partitions, while minimizing the nunrber of external connections among par­

titions. In Schweikert and Kernighan algorithm [27, -37], external lines are
reduced based on the following criteria

1) When all components of the same net are in the same block,

moving any one of the components to another block will create an

additional external line.

2) If a net has all its components in a block except one component,

moving that component to the same block will remove the net from
the rut.

3) If components of a net are in more than one block, number of

external connections does not change by moving components of the

net within blocks, if the number of blocks that the net is distributed

does not change.

CHAPTER 4. MFA FOR THE CIRCUIT PARTITIONING PROBLEM 47

. 'JIn order to transform the given circuit partitioning probhun instanc(‘ to a.

graph partitioning problem instance, each net is represented by a clique of its

terminals. Resulting graph instance is shown in Figure 4.1(a). Observe that

this representation changes the structure of the connections in the given circuit.
Re]>rc;sentation of the given instance as a network is given in Figure 4.1 (b). A

network consists of a set of components called cells and a set of signa.1 ix'ts (or

only nets). A net is a subset of the set of cells. This representation exactly

simulates the connection relationships among components.

In order to show the deficiency of the graph model, the partitions indicatoxi

with dashed lines in Figure 4.1 will be examined. Observe that, in Figure 4 . 1 (a),

cut size is equal to 5. In Figure 4.1(b), it is 2, which is the actual cut size. The

cost contribution of a unit cost net across a cut of a bipartition is I. The cost

contribution of a clique, that is evenly split across a cut, rises quadratically

with the size of the clique. This quadratic growth does not adequately reilect

the costs arising in practice [20]. Although there can be some attempts to

solve this dilemma, there is no good way of mapping a circuit instanc(' into a

gra])h [‘.

(niAPTEH. 4 . Mb'A I'Oil Till·: CIIICUIT PAIITITIONINC riiOBLPM US

/

/

(b)

Figure 4.1. Modeling of a given circuit partitioning problem instance with (a)
graph and (b) network models. Dashed lines indicate an example partition.

4.3 Solving th e C ircuit P artition ing Problem U sing

MFA

In this section, formulation of MFA for the circuit partitioning problem, using

two different models is given. Graph and network models are described in the

following two sections respectively.

4.3.1 Graph M odel

CHAPTER 4. MFA FOR THE CIRCUIT PARTITION INC PROBLEM 49

If the graph model is used for the representation of the circuit partitioning

problem, the problem can be treated as the graph partitioning problem. A

formal definition of the graph partitioning problem is as follows: A graph

G = (V, E) with |F | = vertices (1 , 2 , . . . , ¿, j , . . . , N), vertex weights

{wi,W2 , . . . , Wi, Wj, . . . , w n), and edges E between vertices with weights e,j is

given. The question is to divide the graph into M partitions of nearly equal

weights such that the cut size is minimized.

Similar formulations of MFA for partitioning fully connected graphs are

given in [4, 21, 35]. However, gra])hs arising in circuit partitioning are nsnally

sparse. In order to avoid redundant computation, the algorithm is modified
to work for sparse graphs. As in the previous works [4, 2 1 , 35], a s]un (i.e.

neuron) matrix which consists of N vertex-rows and M partition-columns is

used as a representation scheme. The output S{p of a spin {i,p) denotes the

probability of finding vertex i in i)artition p (1 < p < M).

We propose the following energy function for s])arse graphs, where Adj{i)

denotes the set of vertices connected to vertex i.
N M .. M Nj yv JVJ JVI J\

(s) = 9 H E £ + 9 E E E (4.
jeAdj(i)V=̂ ^ ?>=I »=1

1)

Here, (1 — Sjp) denotes the probability of vertex j being in a partition other

than partition p. Hence, .s,·,, x (I — Sjp) denotes the probability of vertex i

being in partition p and vertex j in a different partition. Then, term e.,j x

Sip X (1 — Sjp) denotes the cost contribution of edge (f,j) to the cut size by

mapping vertices i and j to different])artitions. As the first summation term in

CH AFTER 4. MFA FOR THE Cl ROUTT FARTmONING FR0BLEA4 50

Eq. (4.1) covens all vertice.s and all partitions, it repre.sents the total cut size of

a partitioning r(ipre.sented l)y the values of tlie spins in tlui spin matrix. Ihuice,
this summation term is used for minimizing the weighted sum of edges on the
cut. Second triple summation term in Eq. (4.1) computes the summation of
the inner products of the weights of the vertices in each]>artition. This term

will have the global minimum value only when the summations of the weights
of the vertices in each])artition are equal. The j)arameter r in E(|. (4.1) is

introduced to maintain a bahuice between the two optimiza.tion objectives of

the original graph partitioning problem.

Using the mean field approximation given in Eq. (2.8), meaii field of a spin

(i,p) for the energy function defined in (4.1) can be computed as

N

^ j p) S j p W j W j
i&Adj(i)

(4.2)

In this equation, first summation term shows the rate of increase in the cut

size by placing vertex i in partition p. Second summation term shows the rate
of increase in the cost term, introduced for balancing the partitions, by |)lacing

vertex i in partition p.

'Plx' probability l,ha.t vertex i is in pa.rtitioii ¡> is Ukmi U(»rma.lize<l as follows;

(4.3)

Note that, this normalization guarantees that each vertex is included in only

one partition.

MFA algorithm for the graph partitioning problem is similar to MFA algo­

rithm for the mapping problem, which is described in the Cha])ter 3, except

mean field computations. Mean fields of spins are computed using Eq. (4.2) in

MFA algorithm for the graph partitioning problem. Note that, second term in

Eq. (4 .2) is same as the second term in the mean field equation of the MFA

algorithm for the mapping proldem (Eq. (3.5)). Hence, this term can be com­

puted in constant time (0 (1)), for each mean field computation, as described

in Section 3.3.2 by defining 7 p as

N

Ip = E ’ 'b'Ai
J=1

JV US)

CHAPTER. 4. MEA EOR THE CIRCUIT PARTITION INC PROBLEM 51

Then, Eq. (4.2) can be rewritten as

^ ^jp) ■'̂ ip
j^A(lj{i)

(4.5)

Note that, 7 ,, repre.sents weighted sum of spin values of the p-th column of the
spin matrix. Hence, initial jp value of each column p (1 < p < M) can be

computed by using Eq. (4.4) for the initial spin values. Then, jp values can be

updated at the end of each iteration (i.e. after spin updates) by using

^neu, ^ ^OKI _ ^
tp (4.6)

for 1 < p < M.

Computation of the first term in Eq; (4 .2) is 0(d„„y) where, denotes

the average degree of the vertices of the graph CI{V,E). Then, complexity of

mean field computations for a spin row is 0{M X {dauy + 0) ~ 0{M x </„,„,).

Complexity of spin update computations and energy difference computation
performed at each iteration of the MFA algorithm are both 0{M). Hence, the
overall complexity of a single MEA iteration for the graph partitioning problem

is 0{M X davg)·

Performance of the MFA algorithm for solving the graph partitioning prob­

lem in comparison with SA and Kernighan-Lin lieuristics is extensively studied

in [2 1 , 35]. Results obtained using MFA are very encouraging, comparable to

results obtained by SA and Kernighan-Lin heuristics.

4.3.2 N etw ork M odel

In this section, a suitable mapping of MFA to the network partitioning |)rob-

lem is proposed. With this mapping, disadvantages of using graph model to

represent a circuit partitioning])roblem instance are avoided. Following is a

formal definition of the network partitioning problem. A network with N cells

(1 ,2 ,. . . , . . . , N), cell weights {xoi, W2 , · ·., to,·, v>j,. . . , u;/v), and a list of /?.c/..s

(7),!,?).2, ...) , with weights {v>nti ‘■'’n-i, ■ ■ ■) E given. The question is to partition

the network into M partitions of nearly equal weights such that the cui size is

minimized.

CHAFTEli 4. MFA FOR THE CIRCUIT PARTITIOISINC FROBLEM ry>

Following energy function is proposed for the network partitioning problem

I N M

= 9 E E E E }■'
1=1 ;;=1 (¡:ji:pnSl̂ i

M N N

 ̂ 7̂=1 1=1

•S ¿y) w ̂

(4.7)

whei'e N{ denotes the set of nets connected to cell and 7nax{S) denotes the
maximum value in set .S'. In Eq. (4.7), indicates the set of spin values

which denote the probabilities of finding the cells j G n- (cells belonging to

the net n), in partition q. Hence, ?na.T{sj,(,g,q} denotes the maximum spin

value among the indicated set of spin values. Then, term x

Sip X Wn shows the cost contribution of net n to the cut size by putting cell i in

partition p and at least one of the cells in net n to another partition. With these

observations it can be seen that first summation term in Eq. (4.7) represents

the total cut size cau.sed by the nets whose cells are in more than one partitions.

Second summation term in Eq. (4.7) is same as the second summation term in

Eq. (4.1), and maintains the weight balance among partitions.

As described in Chapter 2 mean field of a spin is calculated by taking the

partial derivative of the energy function with res])ect to the expected value of
that spin. Energy function defined by Eq. (4.7) is not diii'erentiable because of

the max{) function. If the mean field of a spin is interpreted intuitively as the

effect of the values of the other spins to the value of that spin, then mean field

of a spin (vi,p) due to Eq. (4.7) can l)e written as

M N

<t>iv = - I I { •S j7 (ie n)) iyu - v Y ^ S j p t O i W j
q:̂ p nSN,

(4.8)

Note that, in this equation first term shows the rate of increase in the cut size

by placing vertex i in partition p. Second summation term is similar to the

term in Eq. (4.2) and has the same meaning as described above.

The normalizcition operation (i.e. normalization of the spin values) nmiains

same as in the formulation of the graph partitioning problem.

Three MFA algorithms given for the mapping problem, the graph parti­

tioning problem and the network partitioning pi'oblem are same excejjt the

mean field coiiiputations, which constitute the problem specific part of the

MFA algorithms. Mean field computations in the MFA algorithm For the net­
work partitioning problem are performed using Eq. (4.8). Second term in

E<|. (4.8) is computed eilic.i(uitly in constant Lime for each mean held compu­

tation as described in the previous section for the graph partitioning prob­

lem. Observe that complexity of computing the first term in Eq. (4.8) is

0{M X c X (,s — 1)) = 0{M X c X s) for each mean field computation, where
M is the number of partitions, c is the average number of nets that a cell

is connected, and .s is the average size of a net (size of a net is the Aumber

of cells in a net). Note that, c x (.s — 1) corresponds to average ch;gree of a

vertex in the graph model (i.e., c x (.s — 1) = day,,). At each iteration of the

MFA algorithm M si)ins are u])dated, hence, M mean field computations are

performed. Then, complexity of mean field computations in a single iteration
of the MFA algorithm is 0{M x (M x c x s + 1)) = 0{M'^ x c x s). However,

this complexity can be reduced using the following observation. R(|. (4.8) ca.n

be rewritten as
M

= ('y) y] r7).u;r } ie,i y) (.Sjjqyg,,)})
9=1 neNi nÇNi

N
- r SjpWiWj

N

= ~ ^ 'Y ^ SjpWiXUj (4.9)

where
M

■0.· = IT JZ (4.10)
7=1 nG Âj

*0//» ~ (./Çn)} (‘hi 1)
uGA/,

Values i/’t and ■i/’ip given in Eq. (4.10) and Eq. (4.11) can lie com|)uted together
in 0{M x c x s) at the beginning of each iteration of the MFA algorithm. Hence,

complexity of mean field computations for a spin row is 0{M x c x .s + M) =

0{M X c X s). Complexity of spin update computations and energy dill'erence

computation performed at each iteration of the MFA algorithm are both 0{M).

Then the complexity of one iteration of the MFA algorithm for the network

partitioning problem is 0{M x c x s) .

CHAPTER 4. UFA FOR THE CIRCUIT PARTITION INC PROBLEM 53

In order to demonstrate the effectiveness of the network model, the behavior

of the energy function defined in MFA will be examined. Two possible solutions

CliAVTm. ■'/. MFA I'Oli Till·] ailiCUIT rAU'nriONINC riWBLFM f)·!

/

\d

/

Solution I Solution II

A
a 1
b 1
c 0
d 0
e 1

B
0
0

A
a 1
b 1
c 0
d 1
e 0

B
0
0
1
0
1

Figure 4.2. Two po.s.sil)le soluLion.s for the given circuit partitioning problem
instance.

CHAPTER 4. MFA FOR THE CIRCUIT PARTITIONINC PROBl.FA4 o5

to the instanco given in .Section 4.2 are illustrated in Figure' 4.2 as A = {a, h, c},

B = {c, d} and A = {a,h,d}, B = {c, e}, where A and B denote the two

partitions. Neuron matrix representation of these solutions are also given in
Figure 4.2 using a 5 x 2 spin matrix.

The energxj values of the two states of the spin matrix defined by Solution 1

and 2 are computed for the graph model (using Eq. (4.1)) as //j = /1 x 5 -|- 5

and H-i = /1 x 4 + 5 respectively. The energy values computed for the network

model (using Eq. (4.7)) are //| = //^ = /1 x .3 + 5. In graph model, second

solution is favored more than the first solution; but, it can be seen that the

actual cut sizes are eciual in both solutions. So, in graph model, some solutions

are favored to other ones although they have the same quality, meaning that

some features of the circuit partitioning problem is not represented correctly.

However, in network model energies oi the two solutions are the same H\ = / /2,
which gives the desired result. Hence, it can be concluded that network model
is a better scheme for mapping the circuit partitioniirg problem to MFA.

The performance of the proposed MFA algorithm for solving the network

partitioning problem is demonstrated in Table 4.1 for three different problem

sizes. MFA is compared with SA and Kernighan-Lin (KL) heuristics. An ef­

ficient variation of Kernighan-Lin heuristic [7] which is proposed for network
partitioning is implemented. These heuristics are. tested for randomly gener­

ated networks with various number of cells (Â) and nets (L), and maximum

net sizes (.9). In the.se networks, weights of the cells and nets are taken to

be unity. Networks are partitioned into two bins, and balance criteria of the

heuristics are set such that diiferences between the weights of the resulting

bins were less than % 5 of the total weights of the cells. As seen in the table,

performance of MFA is close to SA, and better than KL in some instances.

Execution time of SA is maximum, 120 times that of KL on the average. MFA

is, 60-70 times slower than KL and 2 times faster than SA. Time complexity

of the MFA algorithm used in these experiments was 0{M'^ x c x $ + N x M).

In [35], using the notion of critical temperature, better timings of MFA are ob­

tained. Probably, by determining the critical temperature, MFA will run much

faster for these instances. KL heuristic is faster compared with the general

CHAPTER 4. МЕЛ EOR THE CIRCUIT PARTITIONINC PROBLEM 56

Table 4.1. Mean cul sizes of the solutions found by MFA, KL, and SA heuristics
for raixlomly generated network partitioning]rroblein instances.

PROBLEM SIZE MEAN CUT SIZE
N L s MFA SA KL

128 205 4 75.3 74.8 77.6
128 102 8 52.0 49.2 52.4
128 69 16 44.4 41.5 44.3
256 543 4 217.9 2 1 1 .0 217.9
256 240 8 126.8 124.7 126.2
256 200 16 139.5 131.4 134.2
512 784 4 272.0 258.0 273.0
512 809 8 477.6 471.0 481.4
512 336 16 215.4 213.6 219.8

^A and SA since it is an efficient, prol.)lei
tic, having almost linear time complexity. However, KL heuristic can only be
used for partitioning networks having nets with bounded weights. Linear time
complexity of KL heuristic, can not be pre.served for other ty|)cs of networks.

Furthermore, as is described .in the following section, MFA algorithm is more

suitable for parallelization compared with SA and KL heuristics. Hence, these

results demonstrate that the proposed mapping of the MFA to the network par­

titioning problem is a promising idternative heuristic for solving the network

partitioning problem.

4.4 Parallelization of M ean Field A nnealing A lgorithm

Efficient parallelization of heuristics used for .solving the circuit partitioning-

problem is crucial since the circuits arising in practice are quite large in gen-

(!ral. Parallelization schemes for MFA algorithms used (or solving the grai)h

partitioning problem and the network partitioning problem are described in

the following sections.

CHAFTER 4. MFA FOR. THE CIRCUIT PARTITIONIEC PROBLEM 57

4.4.1 Graph M odel

For])cU'allelization of the cilgoritlun, columns of the spin matrix are partitioned

among])rocessors such that each processor has M /K columns of the s])in ma­

trix. Here, K denotes the number of processors in the target multicomputer.
Hence, each processor is assigned the data and the comi^utations as.sociated

with all N vertices for only M /K partitions. That is, each proces.sor is as­

signed N X M /K spins. This decomposition yields i)erfect load balance if M

is a multiple of K or M K. Each processor stores its local column slice of

the global spin matrix in row-wise order for the sake of efficient access to the

spin values. Host processor initializes the spin matrix and sends to the node

processors their portions. At each iteration, spin values corresponding to the

selected vertex are updated by computing the mean field value of each spin,

and difference between new energy and old energy is calculated. If energy dif­

ference is less than a predefined constant for a number of subsecjuent iterations,

temperature is decreased, and iteration is started again. Two phases of a MFA
iteration (i.e., mean field computations and energy difference calculation) are

interleaved as described for the mapping problem in Chapter 3. The parallel
algorithm for the node |)rogram for a single iteration of MFA algorithm is given

in Figure 4.3.

In the parallel MFA algorithm for.solving the graph partitioning problem,

each processor selects a vertex i at random, where the random sequence in each

processor is the same. Hence, no global communication is necessary for broad­

casting the selected vertex. Then, each processor computes the mean fields

of the randomly selected vertex only for its local partitions. After computing

mean fields of the local spins two partial summation terms are computed at
steps 3 and 4. Then, a global sum (GSUM) operation is performed at step 5 to

accumulate the overall summcitions in each processor. Each processor u])dates

its local spin values at step 6 and computes AH{ at step 7. At step 8 , 7 ̂ values

are updated. Details of the parallel MFA program for solving the graph par­

titioning problem is given in [4]. Note that, only one global communication is

needed at each iteration of the algorithm. As is mentioned in Section 3.5, global

communication is performed as a .sequence of single-hop exchange communica­

tions. Volume of rommimic.atioiis ;i.t ('.acli excliang(‘ st(i|) is fixed to 2 lloa.tiiig

CHAPTER 4. MFA FOR THE CIRCUIT PARTITIONING PROBLEM 58

1 . Select a. vertex i at random.

2. For each local partition p 1 to M /K compute mean field values

^ i p — ^ j ^ A d j (i) 1 ' ^ i i O p ' ^ i ' ^ i p)

3. For each local partition p := 1 to M /K compute

o-ip = and 6,p =

4. Compute partial .summation.s

/ 1. = EJIV' 0-ip and B, = e JIV' l̂ p

5. Perform GSUM to compute the local copies of

Ai = Ep=i (lip and Bi = E iU bi,t p

6. For each local partition p := 1 to M /K compute = aip/Ai and

then Asip = - s f

1. Compute = Bi/Ai and then A//,· = — /■/,■

8 . For each local partition p := 1 to M /K update 7 ,, = 7 ̂+ wiAsip

9. For each local partition p := 1 to M /K update s 'P ~ •‘̂ip and

Hi = H?

Figure 4.3. Node program for one iteration of tlie parallel MFA algorithm lor
the graph partitioning problem.

CHAPTER 4. MFA FOR THE CIRCUIT PARTITIONINC PR0BLEA4 59

point words, and does not change with increasing problem size. The nupiber
()l rxcIwuiL’V ('()mn)imi< a.ti()ii .steps in tlie gluba.1 .siimma.(,ioii upera.I.ion increases

with the diameter of the multicomputer. Diameter of a multicomputer im­

plementing hypercube topology is hence, the given parallel algorithm

is expected to scale on the hypercube architecture. Figure 4.4 illustrates the
speed-up and efficiency curves for the parallel MFA algorithm for solving the
graph partitioning problem on a ii-dimensional iPSC/2 hypercube multicom­

puter for three different problem sizes. As is seen in Figure 4.4, si^eed-up and
eificiency incre<ises with increasing problem size cuid almost linear speed-up is

obtained for large problem sizes.

4.4.2 N etw ork M odel

Columns of the global spin matrix for the network partitioning problem are
partitioned similarly among'the processors of the multicomputer, such that

each processor is assigned M /K columns of the global spin matrix. As in

the graph partitioning problem, host processor initializes the spin matrix and

sends to the node processors their portions. Each processor is I'esponsible for

the computation of the spin values in its partition. The algorithm for the node

program for a single iteration is given in Figure 4.5.

Observe that, there is one more global communication (at step 4) in this al­

gorithm because of the first term in (4.8). The rest of the algorithm is similar to

tlu' |)ar;dl('l MFA a.lgoritlim for the gi'a.|)li parlitiuiiiiig |)roblem. Altluuigh this

parallel algorithm requires one more global communication, it is also expected

to scale on the hypercube due to its fixed communication requirement (both

in number and volume). The speed-up and efficiency curves for the parallel

MFA a,lgorithm for tlie gra.ph partitioning |)ioblem on a .'{-dinu‘nsiona.l ilhSCy^

hypercube multicomputer is given in Figure 4.6. As is seen in Figure 4.6,

speed-up and efliciency increases as the problem size increases. Almost linear

speed-up is obtained for large problem sizes.

CHAPTER 4. MFA FOR THE CIRCUIT PARTITION INC PROBLFA'I 60

Number of Processors

(a)

(b)

P îgure 4.4. Speed-up (a) and efficiency (b) curves for tlie graph parlitioning
problem. ,

CHAPTER 4. MFA FOR THE CIRCUIT PARTITIONING PROBLEM 61

1. Select a cell i at I'cindom.

2. For each local partition p := 1 to M f K compute

mClX

3. Compute partial summation

4. Perform GSUM to compute the local copies of

* = E " .

5.

6 .

7.

For each local partition p := 1 to M jK compute mean field values

<kp = -('/'i- - <A.>) - - WiHiy)

For each local partition p := 1 to M /K compute

a,p = and bip = <f>ipe'̂ 'HT

Compute partial summations

M = TH !dC iv and =

8. Perionn CvSUM to compute the local copies of

- Ep=l ‘̂'ip fincl Ei = Ei=l l̂ ip

9. For each local partition p := 1 to M jK compute 5·^^ = UipfAi and

then As.p =

10. Compute = Bi/Ai and then A//,· = 7/“*'" — /7,

1 1 . For each local i)artition 7 ; := 1 to M /A ’ update 7 ̂ — 7 ̂ + tn.A.s,,,

12. For each local partition p := 1 to M /K update .s,p = .s""" and

/·/,· =

Figure 4 .5 . Node program for one iteration of the parallel MFA algorithm for
the network partitioning problem.

CHAPTER 4. MFA FOR THE CIRCIHT PARTITIONiNC PROPLEM

Number of Processors

(a)

(b)

Figure 4.6. Speed-up (a) and efficiency (b) curves for the network partitioning
problem.

5. CONCLUSIONS

Mean Field Annealing (MFA) algorithm, recently proposed for solving combi­

natorial optimization problems, combines the characteristics of neural networks

and simulated annealing. Previous works on MFA resulted with succoissful ap­

plication of the algorithm to some classic optimization problems such as the

traveling salesperson problem and the graph partitioning jDroblem. In this

work, MFA is formulated for the mapping problem and the circuit partitioning
problem. Performances of the proposed heuristics are investigated by comjiar-

ing them with other well-known heuristics, and efficient parallel versions of the

])roposed algorithms are develo])ed.

In chapter 2, MFA algorithm is formulated for the mapping problem. An
efficient implementation scheme, which decreases the complexity of the pro­

posed algorithm by asymptotical factors, is also given. The performance of

the proposed MFA algorithm is evaluated in comparison with two well-known

heuristics: simulated annealing and Kernighan-Lin. Algorithms are experi­

mented for a number of randomly generated mapping problem instances. So­

lution qualities of MFA and simulated annealing heuristics are found to be

superior to the efficient Kernighan-Lin heuristic. The solution quality of sim­

ulated annealing is slightly better in compaiTson with MFA wheroias, Mk'A is

faster. As is expected, Kernighan-Lin heuristic is faster in comparison with

MFA and simulated annealing heuristics. Kernighan-Lin heuristic is faster in

comparison with general heuristics as MFA and simulated annealing, since it

is an efficient, problem specific heuristic, having linear time complexity, llow-

ever, linear time comi)lexity of Kcrnighan-Lin heuristic can not be· preserved,

if the weights of the edges of the graph to be partitioned are not bounded.

63

CHAPTER Г). CONCLUSIONS ()4

Furthermore, MFA algorithm is more suitable for parallelization in compari­

son with simulated annealing and Kernighan-Lin heuristics. Hence, obtained

results demonstrate that the proposed formulation of the MFA for the mapping

problem is a promising alternative heuristic for solving the mapping problem.

Inherent parcdlelism of the MFA is exploited by designing an efficient i)ar-

allel algorithm for the proposed MFA heuristic for the mapping problem. Pro­

posed parallel MFA algorithm achieves perfect load balance, and has fixed

communication requirement which does not increase with the size of the prob­
lem instance.

MFA algorithm is formulated for solving CPP using two alternative models

in Chapter 3. It is shown that network model is a better scheme for mapping
MFA to the circuit partitioning problem in comparison with the graph model.

Performance of the MFA is compared with the performances of Kerniglian-Lin

and simulated annealing heuristics, using randomly generated circuit partition­

ing problem instances. Performance of MFA is close to simulated ann'ealing,

and better than Kernighaii-Lin heuristic in some instances. Execution time of

MFA is less than simulated annealing, but more than Kernighan-Lin luMiristic.
Obtained results indicate that MFA can be used as an alternative heuristic for

solving the circuit partitioning problem. MFA algoritlims proposc'd for .solv­
ing the circuit partitioning problem are parallelized and implemeiiled on an

iPSC/2 hypercube multicomputer. Experimental results show that the pro­

posed heuristics can be efficiently parallelized on hypercube multicomputers,

which is crucial for algorithms that solve such computationally hard i)roblems.

Results obtained in this work indicates that MFA which is originally pro­

posed for solving the traveling salesperson problem also works for tlie circuit

partitioning problem and the mapping problem, and can be used as a general

tool for solving combinatorial optimization problems. Scalability of the algo­

rithm is quite good, rea.sonable results are obtained for large i)roblem sizes.

Performance of the proposed MFA algorithms may be improved by fiiui tuning

of the temperature schedule of the algorithm, which still remains as a research

issue.

Inherent parallelism of Mk'A is ex|)loited in this work by (h'signing ('flici(Mit

CHAPTER ix CONCLUSIONS 65

parallel MFA algorithms. Parallelization of heuristics, proposed for solving

NP-hard combinatorial optimization problems, is important since the combina­

torial optimization problems are computationally hard problems. Development
of parallel computers increases the need for heuristics that can be eificiently

parallelized. Results obtained in this work show that MFA is a good candidate

for developing efficient parallel heuristics. Proposed parallel MFA algorithms
are expected to scale on parallel architectures, due to their lixed coininmiica-

tion requirements.

Bibliography

[1] Arora, R. K., and Rana, S. P., “Heuristic algorithms for process assign­
ment in distributed com|)uting systems,” information Processing Letters,
vol. 11, no. 4-5, pp. 199-203, 1980.

[2] Bokhari, S. H. “On the mapping problem,” IEEE Trans. Comput., vol. 30,
no. 3, pp. 207-214, 1981.

[3] Brandt, R. D., Wang, Y., Laub, A. .J., Mitra, S. K. “Alternative Net­

works for Solving the TSP and the List-Matching Problem,” IEEE hit.

Conference on Neural Nets, Vol.II, pp. 333-340, July 1988.

[4] Bultan, T., and Aykanat, C. “Parallel mean field algorithms for the so­

lution of combinatorial optimization problems,” Proc. ICANN-91, vol. 1,

pp. 591-596 , 1991.

[5] Bultan, T., and Aykanat, C. “Circuit Partitioning Using Parallel Mean

Field Annealing Algorithms,” Proc. 3rd IEEE Symposium on Parallel Pro­

cessing, to be published.

[6] Erçal, F., Ramanujam, J., and Sadayappan, P. “Task allocation onto a hy-
IXMT.ubĉ I.)y ı■(̂ ('UI■siV(i miiir.iit l)ip;u titioning,” ./. Parallel Dislrih. ('ompul.

vol. 10, pp. 35-44, 1990.

[7j Fiduccia, C. M., and Mattheyses, R. M. “A linear heuristic for improving

network partitions,” in Proc. Design Automat. Conf, pp. 175-181, 1982.

[8] Garey, M. R., and Johnson, D. S. Computers and Intractability. San Fran­

cisco, CA; Freeman, |)p. 209-210, 1979.

[9] Hopfield, J. J. “Neural Networks and Physical Systems with Fmergxnit Col­

lective Computational Abilities,” Proc. Natl. Acad. Sci. U.S.A., vol. 79,

66

BIBIJOGRAPHY 67

pp. 2554-2558, 1982.

[JO] Hopfielcl, .1. .J. “Neurons with Graded Response Have Collective'(iompn-

tational Properties Like Those of Two-State Neurons,” Proc. Natl. Acad.
Sci. U.S.A., vol. 81, pp. 3088-;i092, 1984.

[11] Hopfield, .J. .J., and Tank, D. W. “ ‘Neural’ Computation of*Decisions in

Optimization Problems,” Biolog. Cybern., vol. 52, pp. 141-152, 1985.

[12] Hopfield, .J. .J., and Tank, D. W. “Computing with neural circuits; a

model,” Science, Vol. 233, pp. 625-633, August 1986.

[13] Hopfield, J. and Tank, D. W. “Collective computation in neuronlike
circuits,” Scientific American, 257(6):104-114, 1987.

[14] Hegde, S. U., Sweet, .J. L., and Levy, W. B. “Determination of Parameters
in H()|)fi<'ld/T;ud< Com|)ut;\.(,ioiia,j Network,” ll'll'll'l Ini. ('onj. N cti.ra l

Networks, vol. 2, pp. 291-298, 1988.

[15] Indurkhya, B., Stone H. S., and Xi-Cheng, L. “Optimal partitioning of

randomly generated distributed programs,” IEEE Trans. Software Engrg.,

vol. 12, no. 3, pp. 483-495, 1986.

[16] Kasahara, H., and Narita, S. “Practical multiprocessor scheduling algo­
rithms for efficient parallel processing,” IEEE Trans. Coinput., vol. 33,

no. 11, pp. 1023-1029, 1984.

[17] Kernighan, B. W., and Lin, S. “An efficient heuristic procedure for i)arti-

tioning graphs,” Bell Syst. Tech. J., vol. 49, pp. 291-307, 1970.

[18] Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. “Optimization by simu­

lated annealing,” Science, vol. 220, pp. 671-680, ,983.

[19] Krishnamurthy, B. “An improved min-cut algorithm for partitioning VLSI

networks,” IEEE Trans. Cornput., vol. C-33, pp. 438-446, 1984.

[20] Lengauer, T. Combinatorial Algorithms for Integrated Circuit Layout. Wi­

ley, pp. 251-258, 1990.

BIBLIOGRAPHY (vS

[21] Peterson, C., and Anderson, .]. R. “Neural networks and NP-complete

optimization problems; a performance study on the gra])h bisection i)rob-

lem,” Complex Syst. vol. 2, pp. 59-89, 1988.

[22] Peterson, C., and Soderberg, B. “A new method for mapping optimization

problems onto neural networks,” Ini. J. Neural Syst.., vol. 1, no. .8, 1989.

[23] Ramauujam, J., Erfal, F., and Sadayappan, P. “Task allocation by sim­
ulated annealing,” Proc. International Conference on Sxipercomputing.

Boston, MA, May 1988, vol. Ill, Hardware & Software, pp. 475-497.

[24] H.aimuiujam, .1., <uul ,Sa.d;i.ya.pp<ui, 15 “Optimization l)y Neiiial Nel,works,”

IEEE Int. Conference on Neural Nets, Vol.II, pp. 325-332, .July 1988.

[25] Sadayappan, P., and Er^al, F. “Nearest-neighbour mapping of linite ele­

ment graphs onto processor meshes,” IEEE Trans. Comput. vol. 36, no. 12,
pp. 1408-1424, 1987.

[26] Sadayappan, P.,Ergal, F., and Ramanujam, .J. “Cluster partitioning ap­

proaches to mapping parallel programs onto a hypercube,” Parallel Com­

puting. vol. 13, pp. 1-16, 1990.

[27] Schweikert, D. G., and Kernighan, B. W. “A proper model for the par­
titioning of electrical circuits,” in Proc. 9th Design Automat. Workshop,
pp. 57-62, 1979.

[28] Seitz, C. L. “The Cosmic Cube,” Com. of the / CM, vol. 28, ¡)p. 22-23,

1985.

[29] Shield, .J. “Partitioning concurrent VLSI simulation programs onto a mul­

tiprocessor by simulated annealing,” IEEE Proc. Part G, vol. 134, no. 1,

pp. 24-28, 1987.

[30] Szu, H. “Fast TSP Algorithm Based On Binary Neuron Output and Ana­

log Neuron Input Using The Zero-Diagonal Interconnect Matrix And Nec-

e.ssary And Sufficient Constraints Of The Permutation Matrix,” IEEE Int.

Conference on Neural Nets, Vol.II,))p. 259-266, .July 1988.

BIBLIOGRAPHY 69

[31] Tank, D. W., and Hopiield, J. J. “Simple ‘Neural’ optimization networks:

An A/D converter, signal decision circuit, and a linear programming cir­

cuit,” IEEE Tra7is. Circ. Syst., Vol.cas-33, no,5, May 1986.

[32] Toomarian, N. “A Concurrent Neural Network Algorithm for the Traveling

Salesman Problem,” Third Conference on Hypercube Concurrent Comptit-

ers and Applications, Pasadena.

[33] Van den Bout, D. E., and Miller, T. K. “A Traveling Salesman Objective
Function That Works,” IEEE Int. Conf. Nexu'al Nets, vol. 2, pp. 299-303,

1988.

[34] Van den Bout, D. E. and Miller, T. K. “Improving the performance of

the Hopfield-Tank neural network through normalization and annealing,”

Biolog. Cyhern., vol. 62, pp. 129-139, 1989.

[35] Van den Bout, D. E., and Miller, T. K. “Graph partitioning using annealed

neural networks,” IEEE Trans. Neural Networks, vol. 1, no. 2, pp. 192-203,

1990.

[36] Wilson, G. V., and Pawley, G. S. “On the StaJ^ility of the Traveling Sales­

man Problem Algorithm of Hopfield and Tank,” Biolog. Cybern., vol. 58,

pp. 63-70, 1988.

[37] Yih, J. S., and Mazumder, P. “A neural network de.sign for circuit par­

titioning,” IEEE Trans. Computer-Aided Design, vol. 9, p|). 1265-1271,

1990.

