PARALLEL MAPPING AND CIRCUIT
PARTITIONING HEURISTICS BASED ON MEAN
FIELD ANNEALING

A TEBSIS
""O i >N
ST MV t w0 H mmITe cli Joyi-* C» ~<r - mX i
AND THE m U GN P.KLprGVipT;.aMr' «jv,-7>7rT-
NVW  w*ii A il ! W A+tJi. v My1 %5« ] A
BV pt >rif>nT>
T v R AVEN S A A W\

Vi~ Fwil W

*j R WD W



PARALLEL MAPPING AND CIRCUIT
PARTITIONING HEURISTICS BASED ON MEAN
FIELD ANNEALING

A THESIS
SUBMITTED TO THE DEPARTMENT OF COMPUTER
ENGINEERING AND INFORMATION SCIENCE
AND THE INSTITUTE OF ENGINEERING AND SCIENCE
OF BILKENT UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF
MASTER OF SCIENCE

By
Teviik Bultan

January 1992 Tey-plk fﬁlﬁun
tarafindan bagiglanmstir,



SA
(02 -5
"RgS

1442

B 10523



[ certify that I have read this thesis and that in my opin-
ion it is [ully adequate, in scope and in quality, as a thesis

for the degree of Master of Science.

Assoc. Prof. Ceydéy/Aykanat(Principal Advisor)

[ certify that I have read this thesis and that in my opin-
ion it is fully adequate, in scope and in quality, as a thesis

for the degree of Master of Science.

/\ I,'
Assoc. Prof.\‘I\emal Oflazer

I certify that I have read this thesis and that in my opin-
ion it is fully adequate, in scope and in quality, as a thesis

for the degree of Master of Science.

Asst. Prof. Thsan Sabuncuoglu

Approved by the Institute of Engineering and Science:

% % tepg2lf

Prof. Mehmet Baray, Director of the Institute é/ Engineering and Science




ABSTRACT

PARALLEL MAPPING AND CIRCUIT PARTITIONING
HEURISTICS BASED ON MEAN FIELD ANNEALING

Tevfik Bultan
M. S. in Computer Engineering and Information Science
Supervisor: Assoc. Prof. Cevdet Aykanat
January 1992

Mecan Field Annealing (MTA) algorithm, recently proposed for solving com-
binatorial optimization problems, combines the characteristics of neural net-
works and simulated annealing. In this thesis, MFA is formulated for the
mapping problem and the circuit partitioning problem. Efficient implemen-
tation schemes, which decrease the complexity of the proposed algorithms by
asymptotical factors, are also given. Performances of the proposed MIA algo-
rithms are evaluated in comparison with two well-known heuristics: simulated
annealing and Kernighan-Lin. Results of the experiments indicate that MFA
can be used as an alternative heuristic for the mapping problem and the cir-
cuit partitioning problem. Inherent parallelism of the MFA is exploited by
designing efficient parallel algorithms for the proposed MFA heuristics. Paral-
lel MIFA algorithms proposed for solving the circuit partitioning problem are
implemented on an iPSC/2! hypercube multicomputer. Experimental results
show that the proposed heuristics can be efficiently parallelized, which is crucial

for algorithms thal solve such computationally hard problems.

HPSC/2 is a registered trademark of Intel Corporation



Keywords: Mean [Yield Aunealing, Neural Networks, Simulated Annealing,
Combinatorial Optimization, Mapping Problem, Circuit Partitioning Problem,

Parallel Processing, Multicomputers.



OZET

ORTAK ALAN TAVLAMASINA DAYANAN PARALEL
ESLEME VE DEVRE PARCALAMA ALGORITMALARI

Tevfik Bultan
Bilgisayar Miihendisligi ve Enformatik Bilimleri Boliimii
Yiksek Lisans
Tez Yoneticisi: Assoc. Prof. Cevdet Aykanat
Ocak 1992

Birlesimsel eniyileme  problemlerini ¢dzmek igin  onerilen Ortak Alan
Tavlama (OAT) algoritmasi, sinir aglart ve tavlama benzetimi youtemlerinin
ozelliklerini tagir. Bu ¢ahgmada, OAT algoritmasi. egleme ve devre parcalama
problemlerine uyarlannugtir. Onerilen algoritmalarin karmagikhgm asimtotik
olarak azaltan verimli gercekleme yontemleri de gelistirilmistir. Onerilen al-
goritmalarin bagarimlari tavlama benzetimi ve Kernigian-Lin algoritmalar ile
kiyashyarak degerlendirilmigtir. Elde edilen sonuglar OAT nin egleme ve de-
vre pargalama problemlerini ¢ozmek icin alternatif bir algoritma olarak kul-
lanilabilecegini gostermektedir. Onerilen OAT algoritmalari verimli bir sekilde
paralellestirilmigtir. Devre parcalama problemi i¢in dnerilen paralel OAT algo-
ritmalar1 1IPSC/2 hiperkiip ¢ok iglemecili bilgisayarmnda gerceklenmistir. Deney-
sel sonuglar dnerilen algoritmalarim verimh bir sekilde paralellegtivilebildiklering

gostermektedir.



vi

Anahtar kelimeler @ Ortak Alan Tavlamasi, Siniv Aglar, Taviama Ben-
zetimi, Birlesimsel Eniyileme, Egleme Problemi, Devre Parcalama Problemi,

Paralel Isleme, Cok Islemcili Bilgisayarlar.



ACKNOWLEDGEMENT

[ am very grateful to my supervisor Assoc. Prol. Cevdet Aykanat as he
taught me what research is, and always provided a motivating support during

this study.

I would also like to express my gratitude to Assoc. Prof. Kemal Oflazer
and Asst. Prof. Thsan Sabuncuoglu for their remarks and comments on this

thesis.

Finally, I wish to thank all my f{riends, and my family for their morale

support.

vil



Contents

1 INTRODUCTION

2 THEORY
2.1 Hopfield Neural Networks

2.1.1 Combinatorial Optimization Using Hopfield Neural Net-

works . ... ... e e e e e e e
2.1.2  Problems of Hopfield Neural Networks
2.2 Simulated Annealing . . . ... ... L L

2.3 Mean Field Annealing

3 MFA FOR THE MAPPING PROBLEM
3.1 The Mapping Problem . . . .. .. O
3.2 Modeling the Mapping Problem . . .. ... ... ... ...
3.3 Solving the Mapping Problem Using MFA
3.3.1 Formulation . . .. ... ... ... ... .. . ...
3.3.2  An Efficient Implementation Scheme . . . . . ... ...
3.4 Performance of Mean ['ield Annealing Algorithm

3.4.1 MFA Implemeuntation . . . . ... ... .. .. .

Vil

14

14

21

23

28

30



CONTENTS

3.4.2 Kernighan-Lin Implementation
3.4.3  Simulated Annealing Implementation . . . . . . ... ..
3.4.4  Dxperimental Results . . . . .. .. e e e

3.5 Parallelization of Mean [Field Annealing Algorithm

4 MFA FOR THE CIRCU&T PARTITIONING PROBLEM
4.1 The Circuit Partitioning Problem . . . . . .. ... .. ... ..
4.2 Modeling the Circuit Partitioning Problem . . . . . .. . . . ..
4.3 Solving the Circuit Partitioning Problem Using MFA . . . . ..

4.3.1  Graph Model

4.3.2 Network Model . . . .. .. ... oo oL
4.4 Parallelization of Mean I'ield Annealing Algorithm

4.4.1 Graph Model

4.4.2 Network Model . . . . . . . . . . .. ... ... ...

5 CONCLUSIONS

33

37

63



List of Figures

3.1

3.2

3.3

4.1

4.3

4.4

Simulated annealing algorithm.

Mean field annealing algorithm.

A mapping problem instance, with (a) TIG, (b) POG (which
represents a 2-dimensional ll)/])é‘.lﬁlb@) and (c) PCG.

MFA algorithm for the mapping problem.

Node program for one iteration of the parallel MFA algorithm

for the mapping problem.

Modeling of a given circuit partitioning problem instance with
(a) graph and (b) network models. Dashed lines indicate an

example partition.

T'wo possible solutions for the given circuit partitioning problem
imstance.

Node program for one iteration of the parallel MIFA algorithm

for the graph partitioning problem. . . . . ... ... .. .. ..

Speed-up (a) and efficiency (b) curves for the graph partitioning

problem. . .. o

Node program for one iteration of the parallel MIFA algorithm

for the network partitioning problem.

10

43

60

6!



LIST OF PIGURIES

1.6 Speed-up (a) and efliciency (b) curves for the network partition-

g problem.

X1



List of Tables

3.1

3.3

4.1

Averages of the total communication costs of the solutions found
by KL-RB, KL-PM, SA and MFA heuristics, for randomly gen-

erated mapping problem instances.

Averages of the computational loads of the minimum and max-
imum loaded processors for the solutions found by KL-RB, KL-
PM, SA, MIFA heuristics, for randomly generated mapping prob-

lem INstances. . . . . . . e e e e e e

Average execution times (in seconds) of KL-RB, KL-PM, SA
and MFA heuristics, for randomly generated mapping problem

instances.
Mean cut sizes of the solutions found by MFA, KL, and SA

heuristics for randomly generated network partitioning problem

instances.

X1

34

36

B



1. INTRODUCTION

Some cognitive tasks as pattern recognition, associative recall, guiding of a me-
chanical hand are easily handled by biological neural networks whereas they
remain as time consuming tasks for digital computers. This fact motivated
scientists and opened a research area called Artificial Neural Networks (ANN).
Scope of ANN includes understanding and modeling of biological neural net-
works, and designing artificial devices that have similar properties. Rescarch
on this area started with the early works of McCulloch and Pitts (1943), and
has continued with varying levels of popularity until today. From the 1980s
onwards, neural network models became the center ol extensive study, and
have seen an extraordinary growth of interest in their properties. Reasons for
this increase in popularity are: better understanding gained on information
processing in nature; increasing computer power which enables scientists to
make better simulations and analysis of the models; growing interest in paral-

lel computation and analog VLSI.

Research on ANN can be divided into two streams: first one deals with
understanding and modeling of the biological neural networks, and second one
exploits the information gained on biological neural networks for designing arti-
ficial devices or algorithms to perform tasks which are difficult for conventional
computers. Until last few years, works on the second arca were concentrated
on learning and classification capability, and associative memory operation of
the neural networks. Recent works by Hopfield and Tank [11, 12, 13, 31] show
that solving NP-hard combinatorial optimization problems is another promis-
ing area for ANN. Hopfield and Tank proposed that, Hopfield type continuous
and delerministic ANN model can be used for solving combinatorial optimiza-

tion problems [11]. However, simulations of this model reveal the fact that it

|



N

CHAPTER I. INTRODUCTION

is hard to obtain feasible solutions for large problem sizes. Many variants of
the Hopfield Neural Network (HNN) have been designed [3, 30, 34] in order to

improve the mode] for obtaining feasible and good solutions.

Combinatorial optimization problems constitute a large class, which is en-
countered in various disciplines. Optimization problems, in general, are char-
acterized by searching for the best values of given variables to achicve a goal.
In technical words, the objective is the minimization or maximization of a
function, subject to some other constraint functions. A typical example is the

general nonlinear programming problem, stated as: find x € ®" which

minimizes J(x)

subject to gi(x) 2 0 i=1,...,m (1)
hi(x) =0 J=1,...,p

where f, g;, h; are general functions which map R* — R. The {’l.linction fis
called the cost function, and functions g¢; and A; are called constraint func-
tions. Problems, for which the variables of the cost and constraint functions
arc discrcle, are called combinatorial optimization problems. Some problems
in this class can not be solved in polynomial time with the known methods. As
the problem size increases, computing time needed to solve this kind of prob-
lems increases exponentially, resulting with intractable instances. This class of
problems, called NP-hard optimization problems, are solved usiung heuristics.
Heuristics are generally problem specific, computationally eflicient algorithms.
They do not guarantee to find optimal solution, bul require mnch less com-
puting time. The drawback of heuristics is that they usually get stuck in local

minima.

In the last decade a powerlul method, called Simulated Anncaling (SA),
has been developed for solving combinatorial optimization problems [18]. This
method is the application of a successful statistical method, which is used to
estimate the results of annealing process in statistical mechanics, to combina-
torial optimization problems. SA is a general method (i.e. it is not problem
specific) which guarantees to [ind the optimum solution if time is not limited.
Time needed for simulated annealing is also too much and exact solutions of

NP-hard problems still stay intractable. Nice property of simulated annealing



CHAPTER 1. INTRODUCTION 3

is that, it can be used as a heuristic to obtain near optimal solutions in lim-
ited time, and as the time limit is increased, quality of the obtained solutions
also increase. SA has the capability of escaping from local minima if sufficient
time is given. This method has been successfully applied to various NP-hard

optimization problems [18, 20, 23].

The subject of this thesis is a recently proposed algorithm, called Mean
Field Annealing (MIFFA) [22, 33, 34, 35]. MFFA was originally proposed for solv-
ing the traveling salesperson problem [33, 34]. It combines the collective com-
putation property of HNN with the annealing notion of SA. MFA is a general
strategy and can be applied to various problems with suitable formulations.
Work on MIFA [4, 5, 21, 22, 34, 35] showed that, it can be successfully applied
to combinatorial optimization problems. In this thesis, MFA is formulated for
two well-known, NP-hard, combinatorial optimization problems: the mapping

problem and the circuit partitioning problem.

The mapping problem  arises while developing parallel programs for
distributed-memory, message-passing parallel computers (multicomputers). In
order to develop a parallel program for a multicomputer, first the problem is
decomposed into a set of interacting sequential sub-problems (or tasks) that
can be executed in parallel. Then, each one of these tasks is mapped to a
processor of the parallel architecture, in such a way that the total execution
time is minimized. This mapping plase is called the mapping problem [2],and
is known to be NP-hard. In this thesis, MIFA is formulated for solving the

mapping problem, and its performance is compared with the performances of

other well-known heuristics.

Partitioning of VLSI circuits are needed in varions phases of VLSI design.
Partitioﬁing means to divide the components of a circuit into two or more
evenly weighted partitions, such that the number of signal nets interconnecting
them is minimized. This problem, called the circuit partitioning problem, is
also an NP-hard combinatorial optimization problem. In this work, MI'A is also
formulated for solving the circuit partitioning problem, and the performance of
the proposed algorithm is compared with the performances of other well-known

heuristics.



CHAPTER 1. INTRODUCTION |

Heuristics used for solving NP-hard combinatorial optimization problems as
the mapping problem and the circuit partitioning problem are time consuming
processes and parallelization of them is crucial. There is a large volume of
research on the parallelization of such algorithims. One of the motivations in
this work is to exploit the inherent parallelism in neural networks in order
to obtain efficient parallel algorithms. MFA is a good candidate for efficient

parallelization as it uses the collective computation property of HNN.

In order to develop a parallelization scheme, first the parallel computer
that will be used must be classified. Classification of parallel architectures can
be done according to their memory organization, the number of instruction
streams supported, and the interconnection topology. Memory organization in
parallel architectures can be divided into two main groups, shared-memory and
distributed-memory architectures. In shared-memory architectures, which are
named as multiprocessors, a common memory or a common address space is
used by all processors. On the other hand, in distributed-memory architectures,
processors can not access to a common memory space. Each processor has a
local, isolated memory. Synchronization, coordination among processors and
data exchange are achicved by message passing among processors. In this type
of architectures, each processor may be viewed as an individual computer,

hence they are called multicomputers.

Classification according to the interconnection topology determines how to
handle communications among processors. Most commonly used topologies are

mesh, hypercube and ring.

According to the number of instruction streams supported, parallel archi-
tectures can be divided into two groups. SIMD (Single Instruction stream
Multiple Data stream) and MIMD (Multiple Instruction stream and Multiple
Data stream) architectures. Tn a SIMD architecture, a central control proces-
sor broadcasts the instruction that will be executed to all processors. Each
processor executes the same instruction using the data in its local memory. In
MIMD architectures, each processor is able to fetch, decode and execute an
instruction by itself, which can be different from. the instructions executed by

other processors.



fin ]

CHAPTER 1. INTRODUCTION

In this work, MI'A 1s parallelized for distributed-memory MIMD multicom-
puters, and implemented on a 3-dimensional iPSC/2 hypercube multicomputer.
A d-dimensional hypercube consists of P = 2¢ processors with each processor
being directly connected to d other (neighbor) processors [28]. The proces-
sors of the hypercube are labeled with d-bit binary numbers, and the binary
label of each processor differs from that of its neighbor in exactly one bit.
The parallelization schemes proposed in this work can also be used for SIMD

multicomputers and other interconnection topologies with slight modifications.

In Chapter 2, HNN and SA are reviewed and a general formulation of MFA
is given. Chapter 3 presents the proposed formulation of MIFA for the mapping
problem. Efficient implementation and parallelization of the proposed MFA
algorithm is also addressed in this chapter. In Chapter 4, MFA is formulated
for solving the circuit partitioning problem. Chapter 4 also presents efficient
implementation and parallelization of the proposed algorithm. In Chapter 3
and 4, performances of the proposed MFA algorithms are evaluated in compar-
ison with two well-known heuristics: simulated annealing and Kernighan-Lin.

In Chapter 5, conclusions are stated.



2. THEORY

This chapter reviews previous works on Hopfield Neural Networks (IINN) and
Simulated Annealing (SA) to give a better understanding of Mean Field An-
nealing (MFA). In Section 2.1 neural network models proposed by Hopfield
are briefly clisc.,nssed, and application of HNN to combinatorial optimization
problems is described. A summary of the later works on IINN is also presented
at the end of Section 2.1. Section 2.2 gives the general properties of simulated
annealing and describes its application to combinatorial optimization prob-
lems. In Section 2.3, MFA algorithm is described, denoting the similarities

with previously mentioned two methods.

2.1 Hopfield Neural Networks

One of the main reasons for the growing interest on neural networks in the
last decade, is the Artificial Neural Network (ANN) model proposed by Hop-
field [9]. Many ideas used in this model have precursors spread over the fifty
years of research on neural networks. The importance of the work by Hop-
field is that it brings them all together, using a physical analogy and a clear
mathematical analysis, and gives a good view of the possible capabilities of
the proposed model. Later, Hopfield proposed another model [10] that has
the same properties of the original model, and looks very promising for VLSI

implementations.
The original model [9] is a discrete, stochastic model, which uses two-state

neurons with a stochastic updating algorithm. The continuous and determinis-

tic model, which is proposed later [10], uses neurons with graded response, and

6



CHAPTER 2. THEORY 7

time evolution of the state of the system (change in the states of the neurons) is
described by a differential equation. In these two models, an energy function,
which always decreases as the system iterates, is defined. In his two consecu-
tive papers [9, 10], Hoplield presented his ANN models as Content Addressable
Memory (CAM) in order to explain their properties. In CAM model, minima
of the energy function correspond to the stored words. Starting from a given
initial state, the system is expected to reach one of these minima, which means
to output one of the stored words in the CAM. CAM model of Hopfield can
be regarded as an optimizing network: given an input, find one of the stored
items which is the closest item to the given input. In his later works with
Tank [11, 31] it is shown that well-known combinatorial optimization problems

as the traveling salesperson problem, can also be solved by TINN.

2.1.1 Combinatorial Optimization Using Hopfield Neu-

ral Networks

Hopfield and Tank showed that, continwous and deterministic HNN has collec-
tive computational properties [11, 12, 13]. In collective computation, decisions
taken to solve the problem is not determined by a single unit, but instead re-
sponsibility is distributed over a large number of simple, massively connected
units. The nature of collective computation suggests that it might be par-
ticularly effective for problems that involve global interaction among different
parts of the problem. NP-hard optimization problems are such problems. HNN
can be used for solving a combinatorial optimization problem by choosing a
representation scheme in which the output states of neurons can be decoded
as a solution to the target problem. Then, HNN is constructed accordingly by
choosing an energy function whose global minimum value corresponds to the
best solulion of the problemito be solved [11]. Hence, the constructed HNN is
expected to compute the best solution to the target problem starting from a
randomly chosen nitial state by minimizing its energy function. General form

of such an energy function (also called Hamiltonian of the system) is

H = cost + global constraint (2.1)



CHAPTER 2. THIEORY N

Here, cost term represents the cost function of the optimization problem to
be solved and global constraint term represents the constraint functions intro-
duced to obtain feasible solutions. Exact solution of the problem corresponds

to the global minimum of this energy function.

Motivation behind the works of Hopfield and Tank is to use hardware im-
plementations of HNN to solve large optimization problems. It is a general
method to simulate a model on computers before implementing it on hardware
in order to observe and solve possible problems. In order to simulate HNN on
a computer, first the equations of motion for the neural network are written
from the state equations of the neurons. Then, these equations are solved for
cach neuron iteratively using a numerical method (-.u.s'l,m.lly Fuler’s method is
used to compute the resulting differential equations). State of each neuron is

computed in discrete time intervals until a stable state 1s found.

2.1.2 Problems of Hopfield Neural Networks

HNN have been applied to various optimization problems and reasonable re-
sults have been obtained for small size problems. However, simulations of this
network reveals the fact that, it is hard to obtain feasible solutions for large
problem sizes. Wilson and Pawley reports that, most of the simulation results
give infeasible Lours even for a 10-city traveling salesperson problem [36]. In
fact, it is possible to obtain feasible tours by adjusting the parameters of the
energy function (i.e., increasing the weights of the terms regarding feasibil-
ity), but, quality of the solutions deteriorate with such attempts. As is also
indicated in [14], the problem of finding a balance among parameters of the
energy function, in order to obtain feasible and good solutions, hecomes harder
as the problem size increases. Hence, the algorithm does not have a good
scaling property, which is a very important performance criterion for heuristic
optimization algorithms. Many attempts have been done to improve the per-
formance of Hopfield neural network for obtaining feasible and good solutions.
In one of them [3], number of terms in the energy function is decreased to in-
crease the scalability of the algorithm. But also for that model, increase in the

size of the problem causes the costs of the solutions to increase sigunificantly.



CHAPTER 2. THEORY 9

Works by Szu [30] and Toomarian [32] are also modifications to HNN in which
different energy functions are proposed. Recently, MFFA is proposed as a suc-
cessful alternative to HNN [22, 33, 34]. MT'A algorithm combines the collective

computation property of HNN and annealing notion of SA.

2.2 Simulated Annealing

SA is a powerful method which is used for solving hard optimization problems.
In SA, an energy function that corresponds to the cost function of the problem
to be solved is defined, similar to energy function defined for HNN. SA is a
probabilistic hill-climbing method, which accepts uphill moves with a proba-
bility in order to escape from local minima. SA is derived using analogy to a

successful statistical model of thermodynamic processes for growing crystals.

Configuration of a solid state material at a global energy minimum is a
perfectly homogeneous crystal lattice. It is determined by experience that such
configurations can be achieved using the process of annealing [20]. The solid-
state material is heated to a high temperature until it reaches an amorphous
liquid state. Then it is cooled slowly, according to a specific annealing schedule.
If the initial temperature is sufficiently high to ensure a random state, and if
the cooling schedule is sufficiently slow to guarantee that the equilibrium is
recached at each temperature, final configuration of the material will be close
to the perfect crystal with global energy minimum [20]. In thermodynamics, it

is stated that, when thermal equilibrium at temperature T is reached, a state

with energy E is attained with the Boltzmann probability

l T 2.9
» kp 2.2

where Z(T') is a normalization factor and kp is the Boltzmann constant [20].

There is a fine theoretical model which explains this physical phenomenon.
During the anncaling process the states of the atoms are perturbed by small
random changes. If the change in state lowers the energy of the system, it is
always accepted. Il not, the change in configuration is accepted with a prob-

ability e=2E/¥8T_ The probability of accepting perturbations causing increase



CHAPTER 2. THEORY 10

1. Get an initial configuration

o

Get initial temperature, and set T' = Tg

3. While not yet frozen DO

3.1 Wihile equilibrium at T is note yet reached DO
3.1.1  Generate a random neighbor ¢ of
3.1.2 Let AE = F(C') - E(C)
3.1.3 If AE <0 (downhill move), set C = C’
3.4 if AE > 0 (uphill move), set C' = ¢ with

probability e~

3.2 Update 7' according to the cooling schedule

Iligure 2.1, Simulated annealing algorithm.

in energy decreases with the decreasing temperature, and minor modifications
occur at lower temperatures. Experiments show that this model gives similar

results as physical annealing process [20].

Kirkpatrick applied this model to optimization problems and called the
resulting method SA. In transforming the physical model to computational
model, energy function is replaced with the cost function of the optimization
problem to be solved (note the similarity with HNN), and states of the matter
are replaced with the legal configurations of the problem instance. Anncaling
schedule is controlled with a simulated temperature. Figure 2.1 illustrates the

SA algorithm.

Although SA is a powerful method it has some problems. It requires a large
amount of computing power because of the need for generating a large number
of configurations, and very slow cooling in order to reach equilibrium at cach
temperature. Performance of the algorithm is closely related to the generation

of neighboring configurations. It is an inherently sequential algorithm which



CHAPTER 2. THEORY 11

does not give good performance on parallel computers. It 1s hard to obtain
good cooling schedules that results with good solutions in small amount of

computer time.

2.3 Mean Field Annealing

MFA merges collective computation and annealing properties of the two meth-
ods described above, to obtain a general algorithm for solving combinatorial
optimization problems. Mapping problems to MFA is identical to HNN. A
neuron matrix is formed such that when neurons take their final values they

represent a configuration in the solution space of the problem.

Mathematical analysis of MFA is done by analogy to Ising spin model, which
is used to estimate the state of a system of particles or spins in thermal equi-
librium. Spins in MIFFA algorithm are analogous to the neurons of HNN. This
method was first proposed for solving the traveling-salesperson problem [33],
and then it is applied to the graph partitioning problem [4, 5, 21, 35]. Here,
general formulation of MIFA algorithm [35] is given for the sake of complete-
ness. In the Ising spin model, the energy of a system with S spins has the
following form:

1 S 5
H(s) = 5 Z Zﬁk,sks; + Z NSk (2.3)
k=1 Ik k=1
Here, B indicates the level of interaction between spins k, {, and s, € {0, 1} is
the value of spin k. It is assumed that Sy = i and fi, = 0 for | < &, [, <S.
At thermal equilibrium, spin average (sx) of spin & can be caleulated using
Boltzmann distribution as follows

|
14 e—¢x/T

(2.4)

(8) =

Here, ¢ represents the mean field effecting on spin k, which can be computed

using

O(H(s))
d("'k)

where the energy average (H(s)) of the system is

br = —

(H(s)) = Z > Bia(sesi) + g ha(sk) (2.6)

k=1 l#k



CHAPTER 2. THEORY 12

1. Get initial temperature, and set 7' = Ty
2. Initialize the spin averages (s) = [(s1),..., (sk),. .., (s3)]
3. While temperature 7" is in the cooling rzmg“e DO
3.1  While system is not stabilized for current temperature DO
3.1.1 Select a spin & at random.
3.1.2  Compute ¢, using'
P = — }:1;¢k /3L-1<-91) — Dy
3.1.3 Update (si) using
(s) = {1 + e~ ®/T}~1

3.2 Updale T" according to the cooling schedule

Figure 2.2. Mean field annealing algorithm.

The complexity of computing ¢, using Eq. (2.5) and Eq. (2.6) is exponen-
tial [35]. However, for large number of spins, the mean field approzimation can

be used to compute the energy average as
1 hy S
(H(s)) =52 > Bulse)(st) + D hufsw) (2.7)
~ k=1 l;ék k=1
Since (H(s)) is linear in (sx), mean field ¢ can be computed using the following

equation

1)
oo
~

b= SO _ 5 ps) + b @

0(si) ik

Thus, the complexity of computing ¢ reduces to O(.5).

At each temperature, starting with initial spin averages, the mean field
effecting on a randomly selected spin is found using Fe. (2.8). Then, spin
average is updated using q. (2.4). This process is repeated for o random
sequence of spins until the system is stabilized for the current temperature.
The general form of the Mean I'ield Annealing algorithm derived from this

iterative relaxation scheme is shown in Figure (2.2). MFA algorithm tries to



CHAPTER 2. THEORY 13

find equilibrinum point of a system of .S spins using anncaling process similar

to SA.

The state equations used in MFA are isomorphic to the state equations of
the neurons in the HNN. A synchronous version of MFA, different from the
algorithm given in Figure 2.2, can be derived by solv..ing N difference equations
for N spin values simultaneously. This technique is identical to the simulations
of HNN done using numerical methods. Thus, evolution of a solution in a
HNN is equivalent to the relaxation toward an equilibrium state affected by
the MFA algorithm at a fixed temperature [35). Hence MIFA can be viewed as

an annealed neural network derived from HNN.

HNN and SA methods have a major difference: SA is an algorithm im-
plemented in software, whereas HNN is dérived with a possible hardware im-
plementation in mind. MFA is somewhere in between, it is an algorithm im-
plemented in software, ha,vi;)g potential for hardware realization [34, 35]. In
this work, MFA is treated as a software algorithm as SA. Results obtained are

comparable to other software algorithms, conforming this point of view.



3. MFA FOR THE MAPPING PROBLEM

In this chapter, Mean IField Auncaling (MIFA), is lormulated for the mapping
problem. In Section 3.1, the mapping problem is described and previous ap-
proaches used for solving the mapping problem are summarized. Section 3.2
presents a formal definition of the mapping problem by modeling the par-
alle]l program design process. Section 3.3 presents the proposed formulation
of the MFA algorithim for the mapping problem. An cflictent implementation
scheme for the proposed algorithm is also described in Section 3.3.2. Section 3.4
presents the performance evaluation of the MFFA algorithm for the mapping
problem in comparison with two well-known mapping heuristics: simulated
anncaling and Kernighan-Lin. Finally, efficient parallelization of the MI'A al-

gorithm for the mapping problem is proposed in Section 3.5.

3.1 The Mapping Problem

Today, with the aid of VLSI technology, parallel computers not only exist in
research laboratories, but are also available on the market as powerful, gen-
eral purpose computers. Use of parallel computers in various applications,
makes the problem of mapping parallel programs to parallel computers more
crucial. The mapping problem arises while developing parallel programs for
distributed-memory, message-passing parallel computers (multicomputers). In
multicomputers, processors neither have shared memory nor have shared ad-
dress space. Each processor can only access its local memory. Synchronization
and coordination among processors are achieved through explicit message pass-

ing. Processors of a multicomputer are usually connected by utilizing one of

11



CHAPTER 3. MFA FOR THE MAPPING PROBLEM 15

the well-known direct interconnection network topologies such as ring, mesh,
hypercube, etc. These architectures have the nice scalability feature due to the
lack of shared resources and the increasing bandwidth with increasing number

of processors.

However, designing efficient parallel algorithms for such architectures is not
straightforward. An efficient parallel algorithm should exploit the full potential
power of the architecture. Processor idle time and the interprocessor commu-
nication overhead may lead to poor utilization of the architecture and hence
poor overall system performance. Processor idle time arises due to the uneven
load balance in the distribution of the computational load among processors
of the multicomputer. Parallel algorithm design for multicomputers caun be
divided into two phases: first phase is the decomposition of the problem into a
set of interacting sequential sub-problems (or tasks) which can be executed in
parallel. Second phase is mapping each one of these tasks to a processor of the
parallel architecture in such a way that the total execution time is minimized.

.
This mapping phase, named as the mapping problem [2], is very crucial in

designing efficient parallel programs.

FFor a class of regular problems with regular interaction patterns, the map-
ping problem can be efficiently resolved by the judicious choice of the de-
composition scheme. In such problems, chosen decoraposition scheme yields
an interaction topology that can be directly embedded to the interconnection
network topology of the multicomputer. Such approaches can be referred as in-
tuitive approaches. However, intuitive mapping approaches yield good results
only for a restricted class of problems, under simplifying assumptions. The
mapping problem is known to be NP-hard [15, 16]. Hence, heuristics giving
sub-optimal solutions are used to solve the problem [1, 2, 6, 15, 16, 26]. Two
distinct approaches have been considered in the context of mapping heuristics,
one phase approaches and two phase approaches [6]. One phase approaches,
referred to as many-to-one mapping, try to map tasks of the parallel program
directly onto the processors of the multicomputer. In two phase approaches,
clustering phase is followed by a onc-to-one mapping phase. In the clustering
phase, tasks of the parallel program is partitioned into as many equal weighted

clusters as the number of processors of the multicoinputer, while minimizing



CHAPTER 3. MEFA FOR THIE MAPPING PROBLISM to

the total weight of the inter-cluster interactions [26]. In the one-to-one mapping
phase, cach cluster is assigned to an individual processor of the multicomputer

such that total inter-processor communication is minimized [26].

In two phase approaches, the problem solved in the clustering phase is
identical to the multi-way graph partitioning problem. Graph partitioning is
the balanced partitioning of the vertices of a graph into a number of bins, such
that the total cost of the edges in the edge cut set is minimized. Kernighan-
Lin (KL) heuristic [7, 17] is an efficient heuristic, originally proposed for the
graph bipartitioning problem, which can also be used for clustering [6, 26].
IKL heuristic 1s a non-greedy, iterative improvement technique that can escape
from local minima by testing the gains of a sequence of moves in the search
space before performing them. A variant of the KL heuristic can be used for

solving one-to-one mapping problem encountered in the second phase [6].

Simulated Annealing (SA) can also be used as a one phase heuristic for
solving many-to-one mapping problem [23, 29]. Successful applications of SA to
the mapping problem is achieved in various works [23, 29]. 1t has been observed
that the quality of the solutions obtained using SA are superior compared with

the results of the other heuristics.

Heuristics proposed to solve the mapping problem are compute intensive
algorithms. Solving the n'mpping problem can be thought as a preprocessing
done before the execution of the parallel program on the parallel computer.
If the mapping heuristic is executed sequentially, the execution time of this
preprocessing can be included in the serial portion of the parallel program,
which limits the efficiency that can be attained. In some cases, the sequential
overhead caused by this preprocessing is not acceptable, and the need for the
parallelization of the preprocessing arises. Blficient parallel mapping heuristics
are needed in such cases. KL and SA beuristics are inherently sequential, hence
hard to parallelize. Efficient parallelization of these algorithms remain as an

important issue in parallel processing research.

In this chapter, Mean Field Annealing (MFA), is formulated for the many-
to-one mapping problem. MFA has the inherent parallelism that exists in most

of the neural network algorithms, which makes this algorithm a good candidate



CHAPTER 3. MFA FOR THE MAPPING PROBLEM 17

for parallel mapping heuristics.

3.2 Modeling the Mapping Problem

Parallel program design phases are elaborated in this section in order to present
a formal definition of the mapping problem. In the first phase of parallel
algorithm design, problem is decomposed into a set of atomic tasks, such that
the overall problem is modeled as a set of interacting tasks. Each atomic task
is a sequential process to be executed by an individual processor of the parallel
architecture. Selection of the decomposition scheme depends on the problem,
algorithm to be used for the solution, and the architectural features of the

target multicomputer.

In various classes of problems, interaction pattern among the tasks is static.
Hence, the decomposition of the algorithm can be represented by a static task
graph. Vertices of this graph represent the atomic tasks and the edge set
represent the interaction pattern among the tasks. Relative computational
costs of atomic tasks can be known or estimated priori to the execution of the
parallel program. Hence, weights can be associated with the vertices to denote

the computational costs of the corresponding tasks.-

There are two different models used for modeling static inter-task communi-
cation patterns. These two models are referred -as the Task Precedence Graph
(TPG) model and Task Interaction Graph (TIG) mcdel {16, 25]. TPG is a
directed graph where directed edges represent execution dependencies. In this
model, a pair of tasks connected by an edge can not be executed independently.
Each edge denotes a pair of tasks: source task and destination task. The des-
tination task can only be executed after the completion of the execution of the
source task. Hence, in general, only the subsets of tasks which are unreachable

from each other in the TPG can be executed independently.

In TIG, the set of interaction patterns are represented by undirected edges
among vertices. In this model, each atomic task can be executed simultancously
and independently. Fach edge denotes the need lor the bidirectional interaction

between corresponding pair of tasks at the completion of the execution of



CHAPTER 3. MFA FOR THE MAPPING PROBLEM I8

these tasks. Edges may be associated with weights which denote the amount
of bidirectional mformation exchange involved between pairs of tasks. TI1G
usually represents the repeated execution of the tasks with intervening inter-

task interactions denoted by the edges.

The TIG model may seem to be unrealistic for general applications since it
does not consider the temporal interaction dependencies among the tasks [25].
However, there are various classes of problems which can be successfully mod-
eled with the TIG model. For example, iterative solution of systems of equa-
tions, and problems arising in image processing and computer graphics appli-
cations can be represented by TIG. In this work, mapping ol problems which

can be represented by TIG model is addressed.

Second phase of the parallel algorithm design is the assignment of the indi-
vidual tasks to the processors of the parallel architecture, so that the execution
time of the parallel program is minimized. This problem is referred as the
mapping problem. In order to solve the mapping problem, parallel architec-
ture must also be modeled in a way that represents its architectural features.
Parallel architectures can easily be represented by a Processor Organization
Graph (POG), where nodes represent the processors and edges represent the
communication links. In fact, POG is a graphical representation of the in-
Lerconnection topology utilized for the organization ol the processors of the
parallel architecture. In general, nodes and edges of a POG are not associated
with weights, since most of the commercially available multicomputer archi-

tectures are homogeneous with identical processors and communication links.

In a multicomputer architecture, each adjacent pair of processors commu-
nicate with each other over the communication link connecting them. Such
communications are referred as single-hop communications. However, each
non-adjacent pair of processors can also communicate with each other via soft-
warc or hardware routing. Such communications are referred as mulli-hop com-
munications. Multi-hop communications are usually routed in a static manner
over the shortest path of links between the communicating pairs of'processors.
Comimunications between non-adjacent pairs of processors can be associated

with relative unit communication costs. Unit commurication cost is defined



CHAPTER 3. MFA FOR THE MAPPING PROBLEM 19

as the communication cost per unit of information. Unit communication cost
between a pair of processors will be a function of the shortest path between
these processors and the routing scheme used for multi-hop communications.
For example, intermediate processors in the communication path are inter-
rupted in software routing so that each multi-hop communication is realized as
a sequence of single-hop messages. Hence, in software routing, the unit commu-
nication cost is linearly proportional to the shortest path distance between the
pair of communicating processors. Note that, in this communication model,
unit communication costs between adjacent pairs of processors are taken to be

unity.

Hence, the communication topology of the multicomputer can be modeled
by an undirected complete graph, referred here as the Processor Communi-
cation Graph (PCG). The nodes of the PCG represent the processors and
the weights associated with the edges represent the unit communication costs
between pairs of processors. As is mentioned earlier, PCG can easily be con-
structed using the topological properties of the POG and the routing scheme
utilized for inter-processor communication. In the PCG, edges beltween pairs
of nodes representing the adjacent pairs of processors denote physical liuks
whereas edges between pairs of nodes representing non-adjacent pairs of pro-
cessors denote virtual communication links (i.e. communication paths) estab-

lished for routing multi-hop communications.

The objective in mapping T1G to PCG is the minimization of the expected
execution time of the parallel program on the target architecture represented by
the TIG and the PCG respectively. Thus, the mapping problem can be modeled
as an optimization problem by associating the following quality measures with

a good mapping :

o Interprocessor communication overhead should be minimized. Tasks
which have high interaction, i.e., large amount of data exchange, should

be in the same processor or nearby processors.

¢ Computational load should be uniformly distributed among precessors.
Computational load assigned to each processor should be equal as much

as possible in order to minimize processor idle time.



CHAPTER 3. MFA FOR THIE MAPPING PROBLISM 20

[he parallel execution time is expected to decrease as these criteria are satis-

fied.

A mapping problem instance can be formally defined as follows. An in-
stance of the mapping problen includes two undirecled graphs, Task Tnter-
action Graph (TIG) and Processor Communication Graph (PCG). The TIG
Gr(V,E), has |V| = N vertices labeled as (1,2,...,7,4,...,N). Vertices of
the TIG represent the atomic tasks of the parallel program. Vertex weight w;
denotes the computational cost associated with task ¢ for | < ¢ < N. Iidge
weight e;; denotes the volume of interaction between tasks ¢ and 5 connected by

edge (¢,7) € E. The PCG Gp(P, D), is a complete graph with |P| = K nodes

and |D| = ( 12\ ) edges. Nodes of the PCG, labeled as (1,2,...,p,q,..., K),

represent the processors of the target multicomputer. Edge weights d,,, for
1 <p,qg <N and p # q, denote the unit communication cost between proces-

sors p and q.

Given an instance of the mapping problem with TIG, Gr(V, E), and PCG,
Gp(P, D), question is to find a many-to-one mapping function M : V — P,
which assigns each vertex of the graph Gr to a unique node of graph Gp; and
minimizes the total interprocessor communication cost (C'(7)

CC = Z Clij(lM(i)M(j) (Jl)
(L)€l

while having the computational load (CL, : computational load of proces-

sors p)

Cly= )Y, w, 1<p<K (3.2)
ieV,M(i)=p

of each processor balanced. Here, M (i) = p denotes the label (p) of the pro-
cessor that task ¢ is mapped to. In Eq. (3.1), each edge (¢, ) of the TIG con-
tributes to the communication cost (C'C'), only if vertices < and j are mapped
to two different nodes of the PCG, i.e., M(2) # M(y). The amount.of contri-
bution is equal to the product of the volume ol interaction ¢;; between these
two tasks and the unit communication cost d,, between processors p and ¢
where p = M (i) and ¢ = M(j). The computational load of a processor is the
summation of the weights of the tasks assigned to that processor.” Perfect load

balance is achieved if CL, = (DX, w;)/K for | < p < K. Balancing of the



CHAPTER 3. MIA I'OR THE MAPPING PROBLEM 21

computational loads of the processors can be explicitly included in the cost
function using a term which is minimized when the loads of the processors are
equal. Another scheme is to include balancing criteria implicitly in the algo-
rithm. IFigure 3.1 illustrates a sample mapping problem instance with N = 8
tasks to be mapped onto K = 4 processors. Figure 3.1(a) shows the TIG with
N = 8 tasks. TFigure 3.1(h) shows the POG for a 2-dimensional hypercube,
and Figure 3.1(c) shows the corresponding PCG. In Figure 3.1, numbers inside
the circles denote the vertex labels, and numbers within the parenthesis denote
the vertex or edge weights. Binary labeling of the 2-dimensional hypercube is
also given in Figure 3.1(b). Note that unit communication cost assignment to
edges is performed assuming software routing protocol for multi-hop commu-
nications. A solution to the mapping problem instance shown in Figure 3.1

18

N | On
=~ o
o |~
Ay

Communication cost of this solution can be calculated as

8
CcC = Z e,-j(lM(,-)M(j) =8 (3.3)
(Li)EE

Computation loads of the processors are UL, = 3 for | < p < 4. Hence, perfect

load balance is achieved since, (35, 10;)/4 = 3.

3.3 Solving the Mapping Problem Using MFA

In this section, a formulation of the Mean Field Annealing (MFA) algorithm
for the mapping problem is proposed. The TIG and PCG models described
in Section 3.2 are used to represent the mapping problem. The {ormulation
is first presented for problems modeled by dense TIGs. The modification in
the formulation for mapping problems that can be represented by sparse TIGs
is presented later, In this section, an eflicient implementation scheme for the

proposed formulation is also presented.



S
[O

CHAPTER 3. MIFA FOR THIE MAPPING PROBLEM

(2)
O
€))
2)
3 3
D) {
)
(1)
(a)
(00) (01)

(10) (11)

(b) ()

Figure 3.1. A mapping problem instance, with (a) TIG, (b) POG (which
represents a 2-dimensional hypercube) and (c) PCG.



CHAPTER 3. MFA FFOR THIS MAPPING PROBLIEM 23

3.3.1 Formulation

A spin matrix, which consists of N task-rows and K processor-columns, is
used as the representation scheme. Hence, N x K spins are used to encode
the solution. The output s;, ol a spin (7, p) denotes the probability of mapping
task ¢ to processor p. Here, s;, is a continuous variable in the range 0 < s;, < 1.
When MFA algorithm reaches to a solution, spin values converge to 1 or 0
indicating the result. If s, is I, this means that task ¢ is mapped to processor p.
For example, a solution to the mapping instance given in Figure 3.1 can be

represented by the following N x /K spin matrix.

K Processors

e N
1 2 3 4
1 1 0 0
2 1 0 0 0
3 0 0 0 1
4 0 0 1 0O
N Tasks
5 01 0 0
6 0 0 0 1
7 0 1 0 O
8 0 0 1 0

Note that, this solution is identical to the solution given at the end of Sec-

tion 3.2.

Following energy (i.e., cost) function is proposed for the mapping problem

1 N K » N K
H(S) = ; Z Z Z Z e,'js,'ijqdpq + -2- Z Z Z SipSipWiW,; (3.4)

“ =1 j#i p=1q#p =1 j#i p=1
Here, ¢;; denotes the edge weight between the pair of tasks < and j, and w;
denotes the weight of task z in TIG. Weight of the edge between processors p

and ¢ in the PCG is represented by d,,.

Under the mean field approximation, the expression (H(s)) for the expected
value of objective function given in Eq. (3.4) will be similar to the expression
given for M (s) in Eq. (3.4). However, in this case, s;, $i; and sj, should be

replaced with (si), (si,) and (s5,) respectively. For the sake of simplicity, sy,



CHAPTER 3. MFA FOR THE MAPPING PROBLEM 24

is used to denote the expected value of spin (z,p) (i.e., spin average (s;,)) in

the following discussions.

In Eq. (3.4), the term s;, x 55, denotes the probability that task 7 and task j
are mapped to two different processors p and ¢, respectively, under the mean
field approximation. Hence, the term e;; X sip X 55 X dyq represents the weighted
mterprocessor communication overhead introduced due to the mapping of the
tasks ¢ and j to different processors. Note that, in Eq. (3.4), the first quadru-
ple summation term covers all processor pairs in the PCG for each edge pair
in the TIG. Hence, the first quadruple summation term denotes the total in-
terprocessor communication cost for a mapping represented by an instance of
the spin matrix. Then, minimization of the first quadruple summation term
corresponds to the minimizalion of the interprocessor communication overhead

for the given mapping problem instance.

Second triple summation term in Bq. (3.4) computes the summation of the
inner products of the weights of the tasks mapped to individual processors
for a mapping. Global minimum of the second triple summation term occurs
when equal amount of task weights are mapped to each processor. If there is
an imbalance in the mapping, second triple summation term increases with the
square of the weight of the imbalance, penalizing imbalanced mappings. The
parameter 7 in I£q. (3.4) is introduced to maintain a balance between the two

optimization objectives of the mapping problem.

Using the mean field approximation described in Eq. (2.8), the expression

for the mean field ¢;, experienced by spin (z,p) can be found to be

N K N
hip = — D3 CiiSjglyg — 7 > 8ipwiw; (3.5)

Ji it

In a feasible mapping, each task should be mapped exclusively to a single
processor. However, there exists no penalty term in Eq. (3.4) to handle this
feasibility constraint. This feasibility constraint is explicitly handled while
updating the spin values. Note that, from Eq. (2.4), individual spin average
sip is proportional to e?#/T ie. s, o e?»/T. Then, s;, is normalized as

C'I'lp/T

'i=1 ¢l

Sip =



-t

CHAPTER 3. MFA IFOR THIE MAPPING PROBLEM 2!

This normalization enforces the summation of each row of the spin matrix to
be equal to unity. Hence, it is guaranteed that all rows of the spin matrix will

have only one spin with output value 1 when the system is stabilized.

Eq. (3.5) can be interpreted in the context of the mapping problem as
[ollows. TIirst double summation represents the rate ol increase expected in
the total interprocessor communication cost by mapping task z to processor p.
Sccond summation represents the rale of increase in the computational load
balance cost assoclated with processors p by mapping task ¢ to processor p.
Hence, —¢;, may be interpreted as the expected rate of decrease in the overall
quality of the mapping by mapping task ¢ to processor p. Then, i q. (3.6),
sip 1s updated such that the probability of task  being mapped to processor p
increases with increasing mean field ¢;, experienced by spin (z,p). Hence, the
MFA heuristic can he considered as a gradient-descent type algorithm in this
context. However, it is also a stochastic algorithm similar to SA due to the

random spin update scheme and the annealing process.

In the general MIFA algorithm given in Figure 2.2, a randomly chosen spin
is updated at a time. However, in the proposed formulation of the MFA for
the mapping problem, K spins of a randomly chosen row of the spin matrix
are updated al a time. This update operation is performed as follows. Mean
fields ¢ip, (I £ p £ K) experienced by the spius at the i-th row of the spin
matrix are computed by using Eq. (3.5) for p = 1,.‘2, ..., [{. Then, the spin
averages Sip, 1 < p < K are updated using Eq. (3.6) for p =1,2,..., K. Each

row update of the spin matrix is referred as a single iteration of the algorithm.

Lhe system is observed after each spin-row update in order to detect the
convergence to an equilibrium state for a given temperature [34]. If energy
function I/ is not decreasing after a certain number of consecutive spin-row
updates, this means that the system is stabilized for that temperature [34).
Then, T is decreased according to the cooling schedule, and iteration process
is re-initiated. Note that, the computation of the energy difference AH, ne-
cessitates the computation of H (Eq. (3.4)) at each iteration. The complexity
of computing H is O(N? x K?), which drastically increases the complexity of

one iteration of MIFA. Here, we propose an efficient scheme which reduces the



CHAPTER 3. MIEA IPOR THIES MAPPING PROBLIIM 26

complexity of energy difference computation by an asymptotical lactor.

The ineremental energy change § H;, because of the incremental change &y,

in the value of an individual spin (¢,p) is
SH = 6H;p, = ¢ipbsip (3.7)

due to Eq. (2.5). Since, H(s) is linear in s;, (see Eq. (3.4)), above equation is

valid for any amount of change As;, in the value of spin (v, p), that is
AH = AH,‘P = d),'pAS,'p (38)

At each iteration of the MFA algorithm, K spin values are updated in a syn-
chronous manner. Hence, Eq. (3.8) is valid for all spin updates performed in
a particular iteration (i.e. for | < p < K). Thus, energy difference due to the

spin-row update operation in a particular iteration can be computed as

K
AH =AH; =S sy (3.9)
- op=1
where Asy, = 53 — 52, The complexity of computing Eq. (3.9) is only O(K)

since mean field (¢;,) values are already computed for the spin updates.

The formulation of the MFA algorithm for the mapping problem instances
with sparse TIGs is done as follows. The expression given for ¢, ('Eq. (3.5))

can be modified for sparse T1Gs as

K N
(/)i]) = = Z Z 6i,j-3jqdpq -7 Z SipWi Wy (510)

FEAd](i) a#p i
Here, Adj(z) denotes the set of tasks connected to task z in the given TIG. Note
that, sparsity of the TIG can only be exploited in mean field computations since
spin update operations given in I3q. (3.6) are dense operations which are not

effected by the sparsity of the TIG.

The steps of the MFA algorithm for solving the mapping problem is given in
Figure 3.2. Complexity of computing first double summation termsin Eq. (3.5)
and Eq. (3.10) are O(N x K) and O(dqyy x ) for dense and sparse TIGs
respectively. Here, d,, denotes the average degree of the vertices of the sparse
TIG. Second summation operations in 1. (3.5) and Eq. (3.10) are both O(N)

for dense and sparse TI1Gs. Then, complexity of a single mean field computation



CHAPTER 3. MFA FOR THE MAPPING PROBLEM

1. Get initial tempera.tm‘e,' and set T = Ty
2. I‘nitia.lize the spin averages s = [sy1,...,8ip,. .., SNK]
3. While temperature 7" is'in the cooling range DO
3.1 While H is decreasing DO
3.1.1 Select a task ¢ at random.
3.1.2 Compute mean fields of the spins at the ¢-th row
bip = — Z%&i ?;ep €,jSjqlpg — T ZJ]\;&: SjpWil;
3.1.3  Compute the summation ZII)"':] il T
3.1.4 Compute new spin values at the i-th row
S = etinlT [ E;‘;l etw/T  for 1 <p< K
3.1.5  Compute the change in energy due to these spin updates
AH = ;‘;1 ¢i7)('5:';)ew — Sip)
3.1.6 Update the spin va.lues at the ¢-th row
sp=siyY  for 1 <p< K

32 T=axT

Figure 3.2. MFA algorithm for the mapping problem.



CHAPTER 3. MFA FOR THE MAPPING PROBLIM 28

is O(N x K) and O(dgyy x I + N) for dense (Eq. (3.5)) and sparse (Eq. (3.10))
TIGs respectively. Hence, complexity of mean field computations for a spin row
1s O(N x K?) for dense TIGs, and O(dqyy x K2+ N x K) for sparse T1Gs (step
3.1.2 in Figure 3.2). Spin update computations (steps 3.1.3, 3.1.4 and 3.1.6) and
energy difference computation (step 3.1.5) are both O(K) operations. Hence,
the overall complexity of a single MFA iteration is O(N x K?) for dense TIGs,
and O(duyy X I{? + N x K) for sparse TIGs.

3.3.2 An Efficient Implementation Scheme

As is mentioned earlier, the MFA algorithm proposed for the mapping problem
is an iterative process. The complexity of a single MFA iteration is mainly due
to the mean field computations. Tn this section, we propose an efficient imple-
mentation scheme which reduces the complexity of the mean field computations

and hence the complexity of the MFA iteration by asymptotical factors.

Assume that, i-th spin-row is selected at random for update in a particular
iteration. The expression given for ¢,, (Eq. (3.5)) can be rewritten by changing

the order of summations of the first double summation term as

K N N
i = — Z dpq Z €i,;Sjq — T Zsj,,w,-wj :

A i
K
= —Z(l,,,,/\;q — 1ip \ (3.11)
9#p
where

N :

Mg = ) €iSig (3.12)
i
N

VYip = Z.sj,,w,-wj (3.13)
J#t

Here, A;, represents the rate of increase expected in the interprocessor commu-
nication by mapping task ¢ ta a processor other then ¢ (for the current mapping
on processor ¢), assuming uniform unit communication cost between all pairs
of processors in PCG. Similarly, 1;, represents the rate of increase expected in
the computational load balance cost associated with processor p, by mapping

task ¢ to processors p (for the current mapping on processor p).



CHAPTER 3. MFA FOR THE MAPPING PROBLEM 29

For an efficient implementation, the overall mean field computation involved

in a single iteration can be computed using the following matrix equation

P, = —-DxA;—rP (3.14)
= —0O;—-1r¥; (3.15)

Here, D is a I x [ adjacency matrix representing PCG (i.e. D, = d,,), and

®i, Aj ¥ and ©; are column vectors with A elements, where

B = [biy- s bipre o Gir]T A =[Ny Ay Nik)T
Ui = [y Vipe- i)’ Oy = [0y, 0ip, ..., 0i]T  (3.16)

The complexity analysis of the px‘opoéed implementation scheme for dense
TIGs is as follows. Complexity of computing A, and g, are both O(N).
Complexity of constructing A; and ¥; vectors are both O(N x [), since both
vectors contain K such entries. Complexity of computing the matrix-vector
product required in Eq. (3.14) is O(K?). Hence, the overall complexity of
computing the ®; vector (Eq. (3.14)) reduces to O(N x K + K?) = O(N x
), since N > K in general. The complexity of K spin updates and the
computation of AH are both O(K). Thus, the proposed scheme reduces the
computational complexity of a single MFA iteration to O(N x K1) for dense

TIGs with N > K.

The complexity analysis of the proposed implementation for sparse TIGs
is as follows. Note that, the sparsity of the TIG can only be exploited in the
computation of Aj,’s since

N
g = ) €ijSig (3.17)
FEAL()
for sparse TIGs. Hence, the complexity of computing an individnal A;, is
only O(daug). Thus, the complexity of constructing the A; vector reduces to
O(dqyg x I). The complexity of computing the @; vector in Eq. (3.15) reduces
to O(dayy X K + K?). However, the complexity of constructing the ¥; vector
required in Eq. (3.15) is O(N x K), dominating the overall complexity of the
mean field computations. The complexity of computing the ¥; vector can be

reduced as follows. The computation of 1;, in Eq. (3.13) can be re-formulated



CHAPTER 3. MFA IFOR THE MAPPING PROBLEM 30

as
N N N
Yip = D Spwiw; = Wiy wisiy = wi Y wisjy — wisy,)
Kl ' i =
_ . 2 .
Yip = Wiy, — W sy (3.18)
where

N
T = Z Wjsip (3.19)
J=1

Here, v, represents the computational load of processor p, for the current map-
ping on processor p. Note that, computationally, v, represents weighted sum
of spin values of the p-th column of the spin matrix. Hence, initial -y, value of
each column p (1 < p < K) can be computed by using Eq. (3.19) for the initial
spin values. Then, v, values can be updated at the end of each iteration (i.e.

after spin updates) by using

new __ old old 0. QTEW Q¢
Yy =yt = wish,” + wisy) (3.20)

for 1 <p <K.

The computation of initial -y, values can be excluded from the complexity
analysis since they are computed only once at the very beginning of the algo-
rithm. In this scheme, the computation of an individual v;, using Eq. (3.18)
is an O(1) operation.  Ience, the construction of the Wi vector required in
Eq. (3.14) becomes an O(K) operation. Thus, the complexity of computing
the mean field values reduces to O(duuy x K 4+ K?%). Note that, the update
of an individual v, value (using Eq. (3.20)) at the end of the iteration is an
O(1) operation. Hence, the overall complexity of v, updates is O(K) since
K weighted column sums should be updated at each iteration. Note that,
complexity of spin updates and energy difference computation are also O(J{)
for sparse TIGs. Hence, the implementation scheme proposed for sparse TIGs

reduces the complexity of a single MIFA iteration to O(dawy x K + K?).

3.4 Performance of Mean Field Annealing Algorithm

This section presents the performance evaluation of the Mcan Field Anncaling

(MFA) algorithm for the mapping problem, in comparison with two well-known



CHAPTER 3. MFA FOR THE MAPPING PROBLEM 31

mapping heuristics: Simulated Annealing (SA) and Kernighan-Lin (KL). Each
algorithm is tested using randomly generated mapping problem instances. In
the following sections implementations are described in order to give a better

understanding ol the discussed algorithms.

3.4.1 MFA Implementation

MFA algorithm described in the previous section (Figure 3.2) is implemented
for testing the performance of the algorithm. Cooling process is started from an
initial temperature which is found experimentally. For the mapping problem
instances used in the experiments, initial temperature 7 is found to be varying
between 1 < Ty < 10. Coefficient » which determines the balance between two
optimization criteria is also found experimentally, varying between 0.1 < » <
1.5. At each temperature, iterations continued until AH < ¢ for L consecutive
iterations. L is set equal to N initially. Parameter ¢ is chosen to be between
10=3 < € € 107!, Temperature is decreased using o = 0.9 until T is less than
To/1.5. Then, L is set to L/4 and o is set to 0.5 and cooling is continued until
T is less then Tp/5.0. Resulting spin values after this cooling operation are set
to 0 if they are less than 0.5 and set to 1 if they are greater than 0.5. Then
the result is decoded as described in Section 3.3 and the resulting mapping is

found.

3.4.2 Kernighan-Lin Implementation

Kernighan-Lin heuristic is not directly applicable to the mapping problem since
it was originally proposed for graph bipartitioning. In order to apply KL
heuristic to the mapping problem a two phase approach i1s used. In the first
phase, task interaction graph Gr(V, E) is partitioned to K clusters, where I
is equal to the number of processors. These K clusters are then mapped to
processor graph Gp (P, D) using a one-to-one mapping heuristic in the second
phase. One-to-one mapping heuristic used in this work is a variant of KL

heuristic.

For the clustering phase, Kernighan-Lin heuristic is implemented efficiently



CHAPTER 3. MFA FOR THE MAPPING PROBLEM 32

as described by Fiduccia and Mattheyses [7). In order to apply KL to K-way
graph partitioning two schemes are used. [irst one, partitioning by recursive
bisection (KL-RB), recursively partitions the initial graph to two partitions
until A partitions are obtained. Other scheme, partitioning by pairwise min-
cut (KL-PM), starts with an initial -way partitioning and then minimizes the
cutsizes between each pair of partitions until no improvement can be done. In
KL heuristic balancing of the work load of processors is done implicitly by the
algorithm. When moving one node from one partition to another, weights of

the partitions are tested and moves causing intolerable imbalance are rejected.

In the beginning of second phase, /{ clusters formed in the first phase are
mapped to the K processors of the multicomputer randomly. After this initial
mapﬁing, communication cost is minimized by performing a sequence of cluster
swaps. An individual cluster swap corresponds to interchanging the mapping

of a pair of clusters.

o~

3.4.3 Simulated Annealing Implementation

Simulated Annealing algorithim, implemented for solving the mapping problen,
uses the one phase approach to map the TIG onto PCG. In simulated annealing,
starting from a randomly chosen initial configuration, configuration space is
searched for the best solution using a probabilistic hill climbing algorithm. A
configuration of the mapping problem is a mapping between TIG and PCG,
which assigns each task in TIG to a processor in PCG. In order the search the
configuration space, neighborhood of a configuration must be defined. For the
implementation in this work, neighborhood of a configuration consists of all
configurations which results with moving one vertex (task) of the TIG from
the maximum loaded node (processor) of the PCG to another node of PCG. At
each iteration of the simulated annealing algorithin, one of the possible moves is
chosen randomly as a candidate move. Then the resulting decrease in the total
communication cost after performing the candidate move is calculated without
changing the configuration. If the candidate move decreases the cutsize, it
is realized. If candidate move increases the cutsize, then it is realized with a

probability which decreases with the increasing positive difference caused in the



CHAPTER 3. MFA FOR THIEE MAPPING PROBLIEM 33

total cutsize by that move. Acceptance probability of the moves that increases
the cost is controlled with a temperature parameter T' which is decreased using
an annealing schedule. Hence, as the annealing proceeds acceptance probability
of uphill moves decreases. Cooling schedule used 11: the implementation of SA

algorithm is similar to the schedule given in [22].

3.4.4 Experimental Results

In this section, performance of the MFA algorithm is discussed in comparison
with SA and KL algorithms. These heuristics are experimented for mapping
randomly generated TIGs onto mesh and hypercube connected multicomput-

ers.

Six test TIGs are generated with N = 200 and 400 vertices. Vertices of
these TIGs are weighted by assigning a randomly chosen integer weight between
1 and 10 to each vertex (1 < w; < 10, for 1 <7 < N). Interaction patterns
among the vertices of these TIGs are coustructed as follows. A maximum vertex
degree, dpaq, 1s selected for each test TIG (dyqae = 8,16,32) such that, degree
d; of each vertex 7 is a randomly chosen value between 1 and d,,4, (1.e. 1 <d; <
Aoy Tor 1 <0 < N). Then, cach vertex @ of TG is connected to o; randomly
chosen vertices. Resulting edges are weighted randomly with integer values
varying between 1 and 10. These TIGs are mapped to 3-, 4-, 5-dimensional
hypercubes and 4 x 4, 4 x 8 two dimensional mesh multicomputers. PCGs
corresponding to these interconnection topobgies are constructed assuming

software routing as is described in Section 3.2.

Tables 3.1, 3.2 and 3.3 illustrate the performance results of KL-RB, KL-
PM, SA and MFA heuristics for the generated mapping problem instances. In
these tables, N and |£| denote the number of vertices and edges in the test
TIGs respectively, and K denotes the number of processors on the target PCG.
Interconnection topology of the target POG is denoted by 1') where /1 denotes
the hypercube interconnection topology and M denotes the mesh int‘fvrmnnoc-
Lion topology. Lach algorithun is executed 10 times {or each problem instance,
starting from different, randomly chosen initial configurations. Averages of the

results are tllustrated in Tables 3.1, 3.2 and 3.3,



CHAPTER 3. MI'A I'OR T'HIE MAPPING PROBLSM 34

Table 3.1. Averages of the total communication costs of the solutions found
by KL-RB, KL-PM, SA and MFA heuristics, for randomly generated mapping
problem instances.

| PROBLEM SIZE || AVERAGE COMMUNICATION COST |

N]IE|TK|T|KLRB|KL-PM| SA MTFA
200 | 544 | 8 | M || 1807.4 | 1846.0 || 1595.1 || 1671.4
500 | 544 | 16 | H || 2819.0 | 2747.1 || 2180.0 || 23334
200 | 544 | 32 | H || 4098.8 | 4710.4 || 2879.0 || 3181.6
500 | 1120 | 8 | H || 5421.0 | 5494.7 || 4947.8 || 5092.4
900 | 1120 | 16 | H || 7742.4 | 7816.1 || 6699.1 || 6840.3
900 | 1120 | 32 | H || 10377.1 || 11280.2 || 8495.7 || 9200.3
200 | 2152 | 8 | H | 12721.6 | 12959.0 || 12018.5 || 11956.2
200 | 2152 | 16 | H || 17828.9 || 17859.0 || 16201.2 || 16261.2
200 | 2152 | 32 | H || 23127.6 || 24260.3 || 20407.0 || 20536.0
400 | 1227 | 8 | H || 4360.6 || 4444.5 || 3772.3 | 4235.6
400 | 1227 | 16 | H || 6096.0 || 6073.2 || 5086.4 || 5615.9
400 | 1227 | 32 | H || 8420.2 || 7999.9 || 6485.0 || 7184.0
400 | 2283 | 8 | H || 112471 || 11491.5 || 10152.1 || 10744.3
400 | 2283 | 16 | I || 15566.7 || 15896.9 || 13626.7 || 14197.5
400 | 2283 | 32 | I || 20543.8 || 20527.1 || 17169.8 || 18209.6
400 | 4298 | 8 | H | 25318.3 || 25832.1 || 23507.6 || 23561.1
200 | 4298 | 16 | H || 34590.6 || 35395.4 [ 31427.2 || 32127.6
200 | 4298 | 32 | H | 45053.5 || 45098.1 || 39453.0 || 40133.8
200 | 544 | 16 | M || 3364.2 | 3318.7 || 2659.7 || 2996.0
200 | 544 | 32 | M || 5618.7 || 6822.5 || 42604 | 4580.0
200 | 1120 | 16 | M || 9234.2 || 9318.2 || 8432.3 || 8I2L.7
200 | 1120 | 32 | M | 14659.9 || 16476.4 || 13556.0 || 12456.9
400 | 1227 | 16 | M || 7341.4 || 7357.0 || 6293.0 | 6745.0
400 | 1227 | 32 | M || 12207.4 || 11758.6 || 9924.8 || 10780.0
400 | 2283 [ 16 | M || 18670.9 || 19133.0 || 17480.1 || 16631.6
400 | 2283 | 32 | M || 29827.0 || 30156.3 | 28319.1 || 26078.2




CHAPTER 3. MIA FOR THE MAPPING PROBLISM . 35

Table 3.2. Averages of the computational loads of the minimum and maxi-
mum loaded processors for the solutions found by KL-RB, KL-PM, SA, MFA
heuristics, for randomly generated mapping problem instances.

[ PROBLEM SIZE || AVERAGE MIN-MAX LOAD l
N]|JE||K]T] KLRB KL-PM SA MFA

200 | 544 | 8 | H || 125.0 | 153.3 || 126.8 | 150.2 || 135.1 | 142.7 || 132.2 | 143.6

200 | 544 |16 | H || 59.0 | 80.0 || 63.4 | 75.0 || 64.0 | 74.4 || 54.9 | 83.1

200 | 544 [ 32| H || 28.6 | 41.6 || 30.8 [ 37.0 || 29.2 | 41.0 || 28.4 | 41.6

200 {1120 | 8 { H || 121.4 | 155.6 || 125.7 | 150.6 || 134.1 | 142.9°] 127.0 | 149.4

200 { 1120 | 16 | H {| 59.1 | 81.3 || 63.3 | 74.9 || 64.0 | 749 || 61.6 | 77.8

200 | 1120 | 32 28.6 | 424 || 294 | 37.0 || 28.2 | 428 || 30.7 | 394

200 | 2152 | 8 120.2 | 156.9 || 124.4 | 149.8 || 133.3 | 143.5 || 128.9 | 149.2

200 | 2152 | 16 57.4 | 81.8 || 62.0 | 74.0 || 63.1 | 67.9 || 60.7 | 79.4

200 | 2152 | 32 27.3 | 428 || 31.0 | 37.0 || 27.8 | 40.4 || 25.8 | 44.1

400 | 1227 | 8 250.9 | 319.4 || 259.2 | 313.0 || 281.7 | 290.6 || 281.6 | 289.9

400 | 1227 | 16 124.3 | 164.6 || 129.4 | 156.8 || 138.1 | 148.8 || 135.6 | 150.4

400 | 1227 | 32 60.2 | 87.0 || 64.6 | 78.0 |{ 66.0 | 77.0 || 58.7 | 86.7

T T | | |

400 | 2283 | 8 241.7 | 313.0 || 248.4 | 300.6 |f 280.1 | 270.7 || 266.9 | 284.4

400 1 2283 { 16 | [T || LIS | 1598 || 124.3 | 149.9 || 132.6 | [43.2 | 126.5 | 149.3

400 | 2283 [ 32 | H || 56.4 | 84.5 || 62.2 | T4.0 }| 63.5 | 74.0 || 62.4 | 76.4

400 | 4298 | 8 | H || 253.6 | 331.0 || 261.6 | 318.8 || 285.4 | 298.3 || 273.4 | 309.7
400 | 4298 [ 16 | H || 122.2 | 169.9 |[ 131.2 | 158.5 || 138.8 | 153.0 || 135.3 | 155.2
400 | 4298 [ 32 | H || 59.5 | 88.9 | 65.0 | 79.0 || 67.3 | 77.7 || 58.2 | 87.6
200 | 544 |16 | M || 58.6 | 79.7 || 63.2 | 7T4.8 | 63.2 | 744 || 62.8 | 76.4
200 | 544 |32 | M || 28.7 | 414 | 31.0 | 37.0 || 29.1 | 39.5 || 26.0 | 42.6
200 [ 1120 | 16 | M || 58.5 | 8L.0 || 63.2 | 75.0 || 64.0 | 75.8 || 61.3 | 77.8
200 1120 { 32 | M || 28.7 | 42.1 || 30.5 | 37.0 || 28.6 | 42.9 | 206.1 | 42.3
400 | 1227 | 16 | M |1 121.0 | 167.0 || 129.2 | 156.6 || 138.1 | 147.6 || 136.4 | 151.4
400 | 1227 [ 32 | M || 59.5 | 86.2 | 64.1 | 78.0 || 64.6 | 81.8 || 63.3 | 80.4
400 [ 2283 | 16 | M || 117.4 | 161.5 || 124.1 | 149.9 || 131.3 | 146.0 || 127.3 | 149.6
400 | 2283 |32 | M || 56.3 | 83.9 || 62.1 | 74.0 || 63.0 | 76.9 || 59.6 | 78.0




CHAPTER 3.

MFA FOR THE MAPPING PROBLEM

36

Table 3.3. Average execution times (in secounds) of KL-RB, KL-PM, SA aud

MFA heuristics, for randomly generated mapping problem instances.

| PROBLEM SIZE | AVERAGE EXECUTION TIMES

N | |E| |K] T | KLRB | KL-PM| SA | MFA
200 | 544 | 8 | B | 1.07 5.74 || 8072 || 19.57
2001 544 | 16 | H 1.53 13.70 127.17 || 46.17
500 | 544 |32 | H || 3.29 || 29.60 || 245.10 || 101.84
9200 | 1120 | 8 | H || 1.63 761 | 64.10 | 14.39
200 | 1120 | 16 | H | 2.2 14.56 || 144.04 || 58.11
200 [ 1120 |32 ] 77 | 501 | 40.51 || 282.65 || 200.53
200 | 2152 | 8 | H | 252 || 10.93 | 64.22 | 26.07
200 | 2152 | 16 | H || 3.46 || 23.66 | 156.65 || 61.94
200 | 2152 |32 | A || 7.60 | 4538 | 373.85 || 204.94
400 | 1227 | 8 | # | 2.07 | 10.05 || 165.86 || 25.14
400 | 1227 | 16 | H | 2.98 || 29.74 || 310.68 || 164.17
400 | 1227 | 32 | H | 641 | 68.04 | 681.10 || 360.40
400 | 2283 | 8 | H || 3.25 | 16.02 | 167.07 | 26.67.
400 | 2283 | 16 | H | 4.36 | 39.79 | 383.20 || 85.61
100 | 2283 | 32 | 7T | 8.6 | 88.85 | 632.80 || 221.60
400 [ 4298 | 8 | H | 5.42 || 2549 || 155.25 || 90.42
400 | 4298 | 16 | H | 7.05 | 64.88 | 402.95 || 171.26
400 | 4298 | 32 | H || 12.50 || 125.14 || 553.00 || 437.62
200 | 544 | 16 | M || 1.5 1.4 || 165.7 || 24.8
200 | 544 |32 | M || 3.3 206 || 258.7 || 82.0
300 | 1120 [ 16 | M || 2.3 148 | 1242 || 362
200 | 1120 |32 | M || 5.6 384 || 203.1 || 122.0
A00 | 1227 [16 [ M || 3.1 26.7 || 280.5 || 108.0
400 | 1227 |32 | M || 6.7 60.4 | 565.1 || 375.2
400 | 2283 | 16 | M | 4.4 417 || 363.8 || 130.9
400 | 2283 | 32 | M || 8.7 828 || 573.5 || 540.8




CHADPTEIR 30 MEA TOR THIS MAPPING PROBLISM 37

Tables 3.1 and 3.2 illustrate the quality of the solutions obtained by KL-
RB, KL-PM, SA and MIFA heuristics. Average total communication costs of
the solutions are displayed in Table 3.1, and average computational loads of
the maximum and minimum loaded processors are displayed in Table 3.2. As
is secn in Tables 3.1 and 3.2, the quality of the solutions obtained by MFA and
SA heuristics are superior to KL heuristic. Solutions found by SA are slightly
better compared with the solutions found by MIFA, in general. However, in
some cases MFA performs better. The total communication costs found by
KL-RB is less than the total communication costs found by KL-PM, however

load balance of the solutions found by KL-PM is better than KL-RB.

Table 3.3 displays the average execution times of KL-RB, KL-PM, SA and
MI'A heuristics, for the generated mapping problem instances. As is expected,
KL heuristic is faster compared with MIFA and SA heuristics. Observe that,
MFA 1s always faster than SA. Execution time of MFA 1s comparable to KL-
PM whereas, KL-RB is significantly faster compared with MIFFA and KL-PM.
However, MFA is expected to perform better if an efficient cooling schedule
can be devised by analyzing the algorithm in detail, which still remains as an
open research issue. Furthermore, the execution times displayed in Table 3.3
for MTFA are not obtained by running the most eflicient implementation pro-
posed in Section 3.3.2. The time complexity of the implemented scheme is
O(dyuy % K?%) whereas the complexity of the most eflicient scheme proposed in
Section 3.3.2 is O(dayy %X K + I{*). Hence, the execution time of the algorithm

is expected to decrease significantly for large dgy, and K.

3.5 Parallelization of Mean Field Annealing Algorithm

As is mentioned earlier, heuristic algorithm used for solving the mapping prob-
lem is a preprocessing overhead introduced for the eflicient implementation of
a given parallel program on the target multicomputer. If the mapping heuristic
is implemented sequentially, this preprocessing can be considered as the serial
portion of the parallel program which limits the maximum efficiency of the

paralle]l program on the target machine. For a fixed parallel program instance,



CHAPTER 3. MIA I'OR THIS MAPPING PROBLIEM 38

Lhe execution time of the parallel program is expected Lo decrease with mercas-
ing number of processors in the target multicomputer. However, as is seen in
Table 3.3, for a fixed TIG, the exceution thne of all mapping heuristies increase
with increasing number of processors in the target multicomputer. Hence, the
serial fraction of the parallel program will increase with increasing number of
processors. Thus, this preprocessing will begin to constitute a drastic limit
on the maximum efficiency of the overall parallelization due to Amdahl’s Law.
Hence, parallelization of these mapping heuristics on the target multicomputer

is a crucial issue for efficient parallel implementations.

Unfortunately, parallelization of the mapping heuristics introduces another
mapping problem. The computations of the mapping heuristics should be
mapped to the processors of the samme target architecture. However, in this
case, the parallel algorithm for the mapping heuristic should be such that
its mapping can be achieved inluilively. Furthermore, the intuitive mapping
should lead to an cllicient parallel implementation of the mapping heuristic. For
these reasons, the target mapping hewristic to be parallelized should involve
regular and inherently parallel computations. MIA algorithm proposedv in
Section 3.3 for the general mapping problem has these properties for efficient
parallelization. Following paragraphs discuss the efficient parallelization of the

proposed mapping heuristic for multicomputers.

Assume that, MI'A heuristic is to be used to map a given parallel program
represented with a TIG having NV vertices on a target multicomputer with K
processors. The MFA heuristic will use an IV x K spin matrix for the mapping
operation. The question is to map the computations of the MFA heuristic
to the same target computer (with the same number of K processors). As is
mentioned carlier, MIPA heuristic is an iterative algorithm. Hence, the mapping
scheme can be devised by analyzing the computations involved in a particular
iteration of the algorithm. Atomic task can be considered as the computations
required for updating an individual spin. Note that, A spin averages at a
particular row of the spin matrix are updated at each iteration. Hence, these
K spin updates can be computed in parallel by mapping each spin in a row
of the spin matrix to a distinct processor of the target architecture. Thus,

the N x K spin matrix is partitioned column-wise such that each processor



CHAPTER 3. MFA FOR THE MAPPING PROBLEM 39

is assigned an individual column of the spin matrix. That is, colimn p of
the spin matrix is mapped to processor p of the target architecture. Each
processor is held responsible for maintaining and updating the spin values in
its local column. Assume that, task-i is selected at random in a particular
iteration. Then, each processor is responsible for updating the probability of

task + being mapped to itself.

A single iteration of the MFA algorithm can be considered as a three phase
process, namely, mean field computation phase, spin update phase, and energy
difference computation phase. Each processor p should compute its mean field
bip (Eq. (3.5) or Eq. (3.10)) in the first phase, in order to update its local spin sy,
(F¢p. (3.6)) by using this mean ficld valuein the sccond phase. As is mentioned
earlier, mean field computation phase is the most time consuming phase of the
MFA algorithm. Fortunately, mean field computations arc inherently parallel
since there is no interactions between mean field computations involved in a
particular iteration. However, a close look to Eq. (3.5) and Eq. (3.10) reveals
that each processor needs most recently updated values of all spins except the
ones in the i-th row in order to compute its local mean field value. Recall
that, each processor maintains only a single column of updated spin values
due to the proposed mapping scheme. Hence, this'computational interaction
necessitates global interprocessor communication just priori to the distributed
mean field computation at each iteration. The volume of global interprocessor
communication is proportional to O(N x K), since each processor p needs all
updated spin values except the ones in the «-th row, in order to compute its
local ¢;,. The volume of global interprocessor communication can be reduced
to O(K) by considering the parallelization of the matrix equation given in

Bq. (3.14).

Eq. (3.14) involves the following operations : construction of the A; and
¥; vectors, dense matrix vector product ®; = D x A; and vector addition
$; = —0; — r¥;. Note that, each processor p only needs to compute the p-th
entry 6, of the ®; vector, and the p-th entry 1y, of the W; vector in order to
compute its local mean field value ¢;, in parallel. The matrix vector product
can be performed in parallel by employing the L's‘calm‘ accumulation (SA-MVP)

scheme. In this scheme, each processor needs only the p-th row dy, of the dense



CHAPTER 3. MIA FOR THIE MAPPING PROBLISM 40

D matrix and the whole column vector Aj.

Fach processor p can concurrently compute the p-th entry A, of the A;
vector by using Eq. (3.12). Note that, ¢ in Eq. (3.12) should be replaced by
p in these computations. Then, a global collect (GCOL) operation is required
for each processor to obtain a local copy of the A; vector. The GCOL opera-
tion is essentially appending K local scalars, in order, into a vector of size K
and then duplicating this vector in the local memory of each processor. The
GCOL operation requires global interprocessor communication. Note that,
only K local spin values should be collected globally thus reducing the volume

of communication during the GCOL operation by an asymptotic factor of N.

After the GCOL operation, each processor has a local copy of the global
A; vector. Hence, each processor p can concurrently compute its local ¢, by
performing the inner-product 05, <= dp x Aj. Then, cach processor p should
compute the p-th entry 1;, of the ¥; vector. Note that, each processor p already
maintains the 'y;[‘i value. Hence, each processor can concurrently compute 1y,
using Eq. (3.18). Then, each processor p can concurrently compute its local
mean field value ¢, by performing the local computation ¢;, = —0;, — r1h;y,.

Note that, these computations are completely local computations and involves

no interprocessor communication.

The second phase of an individual iteration of the MFA algorithm is highly
sequential since global interaction exists between spin updates due to the nor-
malization process indicated by I5q. (3.6). Fortunately, the strong interaction
can be relieved by noting the independent exponentiation operations involved
in the numerator of Eq. (3.6). Hence, each processor p can concurrently coms-
pute its local e®»/T values. Then, a global sum (GSUM) operation is required
for each processor to obtain a local copy ol the global sum of the local exponen-
tiation results. The GSUM operation requires global interprocessor communi-
cation. After the GSUM operation each processor p can concurrently update
its local spin value by computing Eq. (3.6). After computing si™, each pro-
cessor p should concurrently update its local v, values by using Eq. (3.18) for

the use in the next iteration.

In the third phase, each processor should compute the same local copy of



CHAPTER 3. MIFA FOR THEE MAPPING PROBLIEM 41

the global energy difference AH; for global termination detection. Each pro-
cessor p can concurrently compute its local energy difference AH;, = ¢,,As;, =
hip( sy — .‘4;’,[)‘[) due to its local spin update. Then, a GSUM operation, which

requires global interprocessor communication, is requirecl for each processor to

compute a local copy of the global sum AH; = )_1 AH;,.

Hence, the proposed parallel MFFA algorithm necessitates three global com-
munication operations due to the GCOL operation involved during the first
phase and two GSUM operations involved in the second and third phases. In
fine grain multicomputers, the volume of interprocessor communication is the
important factor in predicting the complexity of the interprocessor commun-
nication overhead. However, in medium grain multicomputers the number of
communications is also important since high set-up time overhead is associated
with each comimmunication step. For example, set-up time is the dominating fac-
tor for short messages in such architectures. Note that, only a single floating
variable representing the running sum, is communicated during the GSUM

operations involved in the last two phases of the paraliel MFA algorithm.

Hence, reducing the number of GSUM operations required in the MFA
algorithm will be a valuable asset in achieving efficient implementations on
medium grain multicomputers. As seen in Eq. ('3.9), there is an execution
dependency between the computation of the energy difference A/l and spin-
row updates. This execution dependency between the second and the third

phase computations can be relieved by rewriting the expression for AH; as

follows
K
AII‘ ord Z (/)lp( :lpr wo_ H;‘Ill,({)
p=l
= Z qsmsnew - Z ¢zp f,l,d
p=1
B H‘w - H (3.21)
where Hy = 3, K | dipsip is the partial energy contribution to the total energy

H due to the spin values at the i-th row (i.e. H = 1N, H;). The expression
for the partial energy H; can be expanded as

ebin/T

fo’:p»m quw 1\ ebial T

p=1 p=1



CHAPTEIR 3. MIFA FOR THE MAPPING PROBLIEM 42

(" B;
= =3 et = (3.22)
A' p=1 ‘A’
. I ¥ ¢ bin/T _ K L . — TR pwlT — K
where A; = p=1 € /T = op=1 @iy and By = 300, pipetr/T = =i bip -
Hence, after each processor p computes its local a;, = e®»/T and b, =
athin/T . e . , , . RN _ K . " — N
bipc 2T values, two global summations A; = St iy and Boo= 300 by,

can be accumulated in a single GSUM operation. After this single GSUM
operation, each processor p can concurrently update its local spin value and
compute its new partial energy value as s;, = /At and H! = B;/A;,. U
each processor keeps the partial euergy H?'* associated with each row then
each processor may concurrently compute the same local copy of the global
total energy difference AH = AH; = H!Y — H{'. Note that, this scheme
reduces the number of GSUM operation from two to one. However, the volume
of interprocessor communication remains the same since two floating point
variables, representing the running sums A; and B;, are communicated during

the communication steps involved in the GSUM operation.

The node program for a single iteration of the parallel MI'A algorithm
proposed [or solving the mapping problem is given in Figure 3.3. Note that,
variables with “ep” and “p” subscripts denote the local variables. Variables with
“” subscripts denote the global variables which are constructed and duplicated
al the local memory of each processor after performing the indicated global
operations. The proposed parallel algorithm can easily be implemented on any

multicomputer having the GCOL and GSUM facilitics.

As is seen in Figure 3.3, the proposed parallel MFA algorithm achieves
perfect load balance. The parallel computational complexity of a single MFA
iteration can be obtained as follows. During the parallel computation of Ay’s
(step 2) each processor performs N — 1 (d; — 1) multiplication/addition oper-
ations for dense (sparse) TIGs. Here, d; denotes the degree of vertex ¢ in the
TIG. During the parallel SA-MVP computation (step 3) each processor per-
forms K multiplication/addition operations for both dense and sparse TI1Gs
since the D matrix is a dense matrix. Iach processor performs the same con-

stant amount of arithmetic operations in the remaining steps (steps 5-7 and



CHAPTER 3. MFA FOR THE MAPPINCG PROBLEM 13

1. Select a task ¢ at random.

2. Compute \ip = Fjcaqjjs) €ijSip

3. Performi GCOL operations to obtain a local copy of
Y V=N D F N Y

4. Compute the inner product 8;, = de X A

5. Compute sy, = wi(y, — wisiy)

6. Compute the local mean field value ¢i, = 0y, + 11,

7. Compute a;, = e®»/T and by, = ¢t/
I i r ’

8. Perform GSUM to compute the local copies of
K .
Ai= Zp\:l Qip and B; = Z;ﬁ\:l bip
1 W . L. 1y . — enew Jold
9. Compute s} = @;p/A; and then Asy = sh™ — 52

10. Compute HPY = B;/A; and then AH; = H" — H;
11. Update v, = v, + wiAsy,

12. Update sip = si™ and Hy = H

Figure 3.3. Node program for one iteration of the parallel MI'A algorithm for
the mapping problem.



CHAPTER 3. MFA FFOR THE MAPPING PROBILIEM 1

steps 7-12). Hence, the parallel computational complexity of the proposed al-
gorithm is O(N A+ L) and O(d,., + K') for dense and sparse T'1Gs respectively.
Hence, linear speed-up can easily be achieved if communication overhead re-
mains negligible. The communication complexity due to the GCOL (step 3)
and GSUM (step 8) operations are discussed in general in the following para-

graph.

The interconnection schemes used in the processor organization of the mul-
ticomputers are usually symmetric in nature (i.e. POG is symmetric). GSUM
and GCOL type of operations in such architectures is performed in two phase.
In the first phase, a sequence of concurrent single-hop communications are per-
formed to accumulate or collect the result in a root processor. In the second
phase, the final result is broadcast from this root processor again using a se-
quence of concurrent single-hop communications. The number of concurrent
single-hop communications in each phase will be proportional to diameter of
the POG. For example, diameters of hypercube and mesh POGs are log, X' and
K2, respectively. The overall concurrent volume of communications will be
proportional to diameter and number of processors (K') in both phases of the

iSUM and GCOL operations, respectively. If a full-duplex pair of communi-
cation links are used between each pair of directly connected processors (e.g.
Intel’s iPSC/2) then, such global operations are performed in single phase by a
sequence of concurrent single-hop exchange communications. In such an archi-
tecture, the number of concurrent single-hop communications and the overall

volume of concurrent communication in GSUM and GCOL operations can be

reduced by a factor of two.



4. MFA FOR THE CIRCUIT
PARTITIONING PROBLEM

This chapter presents formulation of Mean Field Annealing (MFA) for solving
the circuit partitioning problem. Section 4.1 describes the circuit partition-
ing problem, and summarizes the previous works on the circuit partitioning
problem. In Scction 4.2 the circuil partitioning problem is modeled as the
graph partitioning problem and the network partitioning problem. Section 4.3
presents the formulation of MFA for the graph partitioning problem and the
network partitioning problem. MFA algorithms proposed for solving the graph
partitioning problem and the network partitioning problem are parallelized as

is described in Section 4.4.

4.1 The Circuit Partitioning Problem

Partitioning ol a VLSI circuit, which is deflined with its compounents and sig-
nal nets, is an extensively studied problem. Partitioning means to divide the
components of a circuit into two or more evenly weighted partitions, such that
the number of signal nets interconnecting them is minimized. This problem,
called the circuit partitioning problem, arises while dividing a circuit into parts
that will be implemented separately. In some layout problems like, placement
and floor-planning, divide-and-conquer algorithms, which necessitate dividing
up the circuits hierarchically into parts with different minimization criteria,
are used. Circuit partitioning is also needed within these algorithms [20]. The
circuit partitioning problem first appeared because of the need for partitioning

components of electronic circuits to circuit boards, minimizing the connections

45



CHAPTER 4. MFA FOR THE CIRCUIT PARTITIONING PROBLEM 16

between hoards. A heuristic for solving this problem is given in the seminal
paper by Kernighan and Lin [17]. In this work, the circuits are represented as
graphs and the problem is treated as the graph partitioning problem. In a later
work by Schweikert and Kernighan [27, 37], deficiencies of using graph model
are illustrated, and a new model called net-cut circuit model is proposed. The
problem of partitioning circuits using this representation is called the network

partitioning problem.

As both of the mentioned problems (the graph partitioning problem and the
network partitioning problem) are proved to be NP-hard [8], finding efficient
heuristics for them is an important issue. Various heuristics, e.g., Kernighan-
Lin like algorithms [7], Simulated Annealing (SA) etc., are proposed and im-
plemented for solving these problems [20]. In this chapter, Mean IField Anneal-

ing (MFA) algorithm, is formulated for the circuit partitioning problem.

Algorithms used for solving the circuit partitioning problem are time con-
suming processes, and parallelization of them is crucial. In this chapter, par-
allelization of MFA algorithms for solving the circuit partitioning problem on

distributed-memory, message-passing multicomputers is also addressed.

4.2 Modeling the Circuit Partitioning Problem

An instance of the circuit partitioning problem constitutes ol a set of weighted
components and a list of nets which defines the connection relationships among
these components. Nets can also be weighted; but, as this does not change the
nature of the problem, we assume the weights of the nets to be unity. An

example instance of the circuit partitioning problem is given below,

components weights net-list
a 1 net 1 : a-b-c-d
b l net 2 : d-e
c 2
d 1



CHAPTER 4. MFA FOR THE CIRCUIT PARTITIONING PROBLEM 47

The problem is to divide the given civeuit into M (M > 2) equally weighted
partitions, while minimizing the number of ezlernal connections among par-
titions. In Schweikert and Kernighan algorithm [27, 37], external lines are

reduced based on the following criteria

1) When all components of the same net are in the same block,
moving any one of the components to another block will create an
additional external line.

2) If a net has all its components in a block except one component,
moving that component to the same block will remove the net from
the cut.

3) If components of a net are in more than one block, number of
external connections does not change by moving components of the

net within blocks, if the number of blocks that the net is distributed

does not change.

!
]

In order to transform the given cirenit partitioning problem instadice o a
graph partitioning problem instance, each net is represented by a clique of its
terminals. Resulting graph instance is shown in Figure 4.1(a). Observe that
this representation changes the structure of the connections in the given circuit.
Representation of the given instance as a network is given in Figure 4.1(b). A
network consists of a set of components called cells and a set of signal nets (or
only nets). A net is a subset of the set of cells. This representation exactly

simulates the connection relationships among components.

In order to show the deficiency of the graph model, the partitions indicated
with dashed lines in Figure 4.1 will be examined. Observe that, in Figure 4.1(a),
cut size is equal to 5. In Figure 4.1()), it is 2, which is the actual cut size. The
cost, contribution of a unit cost uet across a cut of a bipartition is1. The cost
contribution of a clique, that is evenly split across a cut, rises quadratically
with the size of the clique. This quadratic growth does not adequately reflect
the costs arising in practice [20]. Although there can be some atlempts to
solve this dilemma, there is no good way of mapping a circuil instance into a

graph [20].



CHAPTIR A0 MEA FFORTHIEE CIRCUIT PARTITIONING PROBLISM A8

net ! /
e @ 7 ® .

net 2

(b)

Figure 4.1. Modeling of a given circuit partitioning problem instance with (a)
graph and (b) network models. Dashed lines indicate zn example partition.



CHAPTER 4. MFA FOR THE CIRCUIT PARTITIONING PROBLIEM 49

4.3 Solving the Circuit Partitioning Problem Using
MFA

In this section, formulation of MFA for the circuit partitioning problem, using
two different models is given. Graph and network models are described in the

following two sections respectively.

4.3.1 Graph Model

If the graph model is used for the representation of the circuit partitioning
problem, the problem can be treated as the graph partitioning problem. A
formal definition of the graph partitioning problem is as follows: A graph
G = (V, E) with |V| = N vertices (1,2,...,7,7,..., N), vertex weights

(wy,ws,...,w;w;,...,wy), and edges £ between vertices with weights e;; is
given. The question is to divide the graph into M partitions of nearly equal

weights such that the cut size is minimized.

Similar formulations of MIFA for partitioning fully connected graphs are
given in [4, 21, 35]. However, graphs arising in circuit partitioning are usually
sparse. In order to avoid redundant computation, the algorithm is modified
to work for sparse graphs. As in the previous works [4, 21, 35], a spin (i.c.
neuron) matrix which consists of N vertex-rows and M partition-columns is
used as a representation scheme. The output s, of a spin (z,p) denotes the

probability of finding vertex ¢ in partition p (1 <p < M).

We propose the following energy function for sparse graphs, where Adj(7)
denotes the set of vertices connected to vertex <.

| N M
H(s) = 5 Z Z Z eijsip(1 - Sip) + Z E.s,-,,sj,,w,-wj (4.1)

=1 jeAdj(i) p=! p=li=1 51

[SV ]

Here, (1 — s;,) denotes the probability of vertex j being in a partition other
than partition p. Hence, si, x (I — s;,) denotes the probability of vertex 1
being in partition p and vertex j in a different partition. Then, term e;; x
Sip X (1 = .sj,;) denotes the cost contribution of edge (7,7) to the cut size by

mapping vertices ¢ and j to different partitions. As the first summation term in



CHAPTER 4. MFA FOR THE CIRCUIT PARTITIONING PROBLIEM 50

Eq. (4.1) covers all vertices and all partitions, it represents the total cut size of
a partitioning represented by the values of the spins in the spin matrix. Henee,
this summation term is used for minimizing the weighted sum of edges on the
cut. Second triple summation term in Eq. (4.1) computes the summation of
the inner products of the weights of the vertices in each partition. This term
will have the global minimum value only when the summations of the weights
of the vertices in each partition are equal. The parameter r in Eq. (4.1) is
mtroduced to maintain a balance between the two optimization ohjectives of

the original graph partitioning problem.

Using the mean field approximation given in Eq. (2.8), mean field of a spin

(¢,p) for the energy function defined in (4.1) can be computed as

N
bip=— 2 ei(l—sip) =1 spwiw; (4.2)
JEAd (i) i

In this equation, first summation term shows the rate of increase in the cut
size by placing vertex ¢ in partition p. Second summation term shows the rate
of increase in the cost term, introduced for balancing the partitions, by placing

vertex ¢ in partition p.

The probability that vertex 7 s in partition pis Lhen normalized as follows:
eﬁbip/T

PP — 4.3
P Zqu__] e¢iq/T ( )

Note that, this normalization guarantees that each vertex is included in only

one partition.

MFA algorithm for the graph partitioning problem is similar to MIFA algo-
rithm for the mapping problem, which 1s described in the Chapter 3, except
mean field computations. Mean fields of spins are computed using Eq. (4.2) in
MFA algorithm for the graph partitioning problem. Note that, second term in
Eq. (4.2) is same as the second term in the mean field equation of t.]u; MTA
algorithm for the mapping problem (Eq. (3.5)). Hence, this term can be com-

puted in constant time (O(1)), for each mean field computation, as described

in Section 3.3.2 by defining 7, as

N
T = D Wi (1.4)
=1



CHAPTIR 4. MFA IFOR THIE CIRCUIT PARTITIONING PROBLIEM 51

Then, Eq. (4.2) can be rewritten as
Bip=— D ei(l = sjp) —rwiv, — wisip (4.5)
JEAds(3)
Note that, v, represents weighted sum of spin values of the p-th column ol the
spin matrix. Hence, initial v, value of each column p (I < p < M) can be
computed by using Eq. (4.4) for the initial spin values. Then, v, values can be

updated at the end of each iteration (i.e. after spin updates) by using

new __ _old 0. 0ld oW
’Yp - 7p - wt'sip + 'Lu"bip (4'6)

for 1l <p < M.

Computation of the first term in Eq: (4.2) is O(dyy,) where, d,, denotes
the average degree of the vertices of the graph G(V, £). Then, complexity of
mean ficld computations for a spin row is O(M X (duy, + 1)) = O(M X dyuy)-
Complexity of spin update computations and energy difference computation
performed at each iteration of the MFA algorithm are both O(M). Hence, the
overall complexity of a single MI'A iteration for the graph partitioning problem

is O(M X duyg).

Performance of the MFA algorithm for solving the graph partitioning prob-
lem in comparison with SA and Kermighan-Lin heuristics is extensively studied
in {21, 35]. Results obtained using MFA are very encouraging, comparable to

results obtained by SA and Kernighan-Lin heuristics.

4.3.2 Network Model

In this section, a suitable mapping of MTFA to the network partitioning prob-
lem is proposed. With this mapping, disadvantages of using graph model to
represent a circuit partitioning problem instance are avoided. Following is a
formal definition of the network partitioning problem. A network with N cells
(1,2,...,%,7,. .., N), cell weights (wy, w2, ..., w,wj,...,wn), and a list of nels
. , o - L -
(ny,my,...), with weights (w,,,, w,,, ...} is given. The question is to partition
the network imto M partitions ol nearly equal weights such that the cuf sizeis

minimized.



CHAPTER 4. MI'A FOR THE CIRCUIT PARTITIONING PROBLEM 52

Following energy function is proposed for the network partitioning problem

M
Z Z Z maz{s;,ien) } Sipta

1 p=1 g#p neN;

H(s) =

S| —

1

N

.M N N

+7_7§ Z Z Z SipSjpWxWy (4.7)

p=1i=1 jAi
where N; denotes the set of nets connected to cell 7, and maxz(S) denotes the
maximum value in set S. In Eq. (4.7), sj4(jen) indicates the set of spin values
which denote the probabilities of (inding the cells ;7 € n (cells belonging to
the net n), in partition ¢. Hence, 77?,(Lllf{3j(](jen)} denotes the maximum spin
value among the indicated set of spin values. Then, term maz{sjjen)} X
Sip X wy, shows the cost contribution of net n to the cut size by putting cell ¢ in
paftition p and at least one of the cells in net n to another partition. With these
observations it can be seen that first summation term in Eq. (4.7) represents
the total cut size caused by the nets whose cells are in more than one partitions.
Second summation term in Eq. (4.7) is same as the second swummation term in

Eq. (4.1), and maintains the weight balance among partitions.

As described in Chapter 2 mean field of a spin is calculated by taking the
partial derivative of the energy function with respect to the expected value of
that spin. Energy function defined by Eq. (4.7) is not differentiable because of
the maz() function. If the mean field of a spin is interpreted intuitively as the
effect of the values of the other spins to the value of that spin, then mean field

of a spin (z,p) due to g (4.7) can he written as

M N
bip = — Z Z Maz{Sjg(ien) }Wn — T Y 8jpl0i0; (4.8)

q#p neN, J#
Note that, in this equation first term shows the rate of increase in the cut size
by placing vertex ¢ in partition p. Second summation term is similar to the

term in Eq. (4.2) and has the same meaning as described above.

The normalization operation (i.e. normalization of the spin vahies) remains

same as in the formulation of the graph partitioning problem.

Three MFA algorithms given for the mapping problem, the graph parti-
tioning problem and the network partitioning problem are same except the

mean field computations, which counstitute the problem specific part of the



CHAPTER 4. MFA FOR THE CIRCUIT PARTITIONING PROBLEM 53

MFA algorithms. Mean field computations in the MFA algorithm for the net-
work partitioning problem are performed using Eq. (4.8). Second term in
Eq. (4.8) 15 computed elliciently in constant time for cach mean lield compu-
tation as described in the previous section for the graph partitioning prob-
lem. Observe that complexity of computing the first term in [q. (4.8) is
OM xcx(s—1)) = O(M x ¢ x s) for each mean field computation, where
M is the number of partitions, c is the average number of nets that a cell
is connected, and s is the average size of a net (size of a net is the fhumber
of cells in a net). Note that, ¢ x (s — 1) corresponds to average degree of a
vertex in the graph model (i.e., ¢ X (s — 1) = dyyy). At each iteration of the
MTA algorithm M spins are updated, hence, M mean field computations are
performed. Then, complexity of mean field computations in a single iteration
of the MFA algorithm is O(M x (M x ¢ x s+ 1)) = O(M? x ¢ x s). lowever,
this complexity can be reduced using the following obscervation. Feq. (4.8) can

be rewritten as

M
bip = —-(Z z 777.(1,:1:{qu(je,L)}'u)“ — Z ’ITI.(I..’I.'{-S_-,';,'(,'/EvL)}'ll),L)

g=1 neN; nenN;
N
-7 Z SipWiW;5
F#i
N
= —(hi — Yip) = 7Y Sjpwiw; (4.9)
J#i
where
M
—
h; = Z L Maz{$jq(jen) } Wn (4.10)
g=1neN,
i = Z ma{sj, (jew) J10n (4.11)
neN,

Values 1p; and 1;, given in Eq. (4.10) and Eq. (4.11) can be computed together
in O(M x cx s) at the beginning of each iteration of the MFA algorithm. Hence,
complexity of mean field computations for a spin row is O(M x e x s+ M) =
O(M x ¢ x s). Complexity of spin update computations and energy difference
computation performed at each iteration of the MFA algorithm are both O(M).
Then the complexity ol one iteration of the MIFA algorithm for the network

partitioning problem is O(M x ¢ X s).

In order to demonstrate the effectiveness of the network model, the behavior

of the energy function defined in MFA will be examined. Two possible solutions



CHAPTER A MIA FOR THIE CIRCUIT PARTITIONING PROBLISM - 51

/
] t1
. ®- net // o . . ® ne /' .
\ AN
\
b @— d b @— dJ
S~
net 2 / - net 2 /
— -
e e
Solution I Solution II
A B A B
al 0 al 0
b1 0 b1l 0
c 0 1 c 0 1
d 0 | d |l 0
e | 0 e 0 |

Figure 4.2. Two possible solutions for the given circuitl partitioning problem
g

imstance.



CHAPTER 4. MFA FOR THE CIRCUIT PARTITIONING PROBLEM 55

to the instance given in Section 4.2 are ilustrated in Figure 4.2 as A = {«a, b, ¢},
B = {c,d} and A = {a,b,d}, B = {c¢,e}, where A and B denote the two
partitions. Neuron matrix representation of these solutions are also given in

Figure 4.2 using a 5 x 2 spin matrix.

The energy values of the two states of the spin matrix defined by Solution |
and 2 are computed for the graph model (using Eq. (4.1)) as H, = A x5+ 5
and T, = A x 44 5 respectively. The energy values computed for the network
model (using Eq. (1.7)) are Hy = Hy = A x 3+ 5. lu graph model, second
solution 1is favored more than the first solution; but, it can be seen that the
actual cut sizes are equal in both solutions. So, in graph model, some solutions
are favored to other ones although they have the same quality, meaning that
some features of the circuit partitioning problem is not represented correctly.
However, in network model energies of the two solutions are the same H, = Hy,
which gives the desired result. Hence, it can be concluded that network model

is a better scheme for mapping the circuit partitioning problem to MFA.

The performance of the proposed MFA algorithm for solving the network
partitioning problem is demonstrated in Table 4.1 for three different problem
sizes. MIFA is compared with SA and Kernighan-Lin (KL) heuristics. An ef-
ficient variation of Kernighan-Lin heuristic [7] which is proposed for network
partitioning is implemented. These heuristics are tested for randomly gener-
ated networks with various number of cells (V) and nets (L), and maximum
net sizes (.5). lv these networks, weights of the cells and nets are taken to
be unity. Networks are partitioned into two bins, and balance criteria of the
heuristics are set such that differences between the weights of the resulting
bins were less than % 5 of the total weights of the cells. As seen in the table,
performance of MFA is close to SA, and better than KL in some instances.
Execution time of SA is maximum, 120 times that of KL on the average. MFA
is, 60-70 times slower than KL and 2 times faster than SA. Time complexity
of the MFA algorithm used in these experiments was O(M? x ¢ x s+ N x M).
In [35], using the notion of critical temperature, better timings of MIFA are ob-
tained. Probably, by determining the critical temperature, MFA will run much

faster for these instances. KL heuristic is faster compared with the general



CHAPTER 4. MFA FOR THE CIRCUIT PARTITIONING PROBLEM 56

Table 4.1. Mean cut sizes of the solutions found by MFFA, KL, and SA heuristics
for randomly generated network partitioning problem instaunces.

| PROBLEM SIZE | MEAN CUT SIZE |
[NT L] S JMFA] SA | KL}
128 205 ] 4 753 [ 748 [ 776
128 [ 102] 8 52.0 | 49.2 | 524
128 69 | 16 [ 444 [ 415 [ 443
256 [543 ] 4 J217.9]211.0217.9
256 [ 240 | 8 || 126.87[ 124.7 [ 126.2
256 [200 | 16 [/ 139.5 | 131.4 [ 134.2
512 [ 784 [ 4 [ 272.0 [258.0 [ 273.0
512 1809 8 [[477.6 [471.0 | 481.4
512 1336 | 16 |/ 215.4[213.6]219.8

heuristics like MFA and SA since it is an efficient, problem specific heuris-
tic, having almost linear time complexity. However, KL heuristic can only be
used for partitioning networks having nets with bounded weights. Linear time
complexity of KL heuristic can not be preserved for other types of networks.
Furthermore, as is described in the following section, MIFA algorithm is more
suitable for parallelization compared with SA and KL heuristics. Hence, these
results demonstrate that the proposed mapping of the MFA to the network par-
titioning problem is a promising alternative heuristic for solving the network

partitioning problem.

4.4 Parallelization of Mean Field Annealing Algorithm

Efficient parallelization of heuristics used for solving the circuit partitioning
problem is crucial since the circuits arising in practice are quite large in gen-
eral. Parallelization schemes for MFA algorithms used for solving the graph
partitioning problem and the network partitioning problem are described in

the following sections.



CHAPTER 4. MFA FOR THIs CIRCUIT PARTITIONING PROBLEM 57

4.4.1 Graph Model

For parallelization of the algorithm, columnus of the spin matrix are partitioned
among processors such that each processor has M/K columus of the spin ma-
trix. Here, /{ denotes the number of processors in the target multicomputer.
Hence, each processor is assigned the data and the computations associated
with all NV vertices for only M/K partitions. That is, each processor is as-
signed N x M/K spins. This decomposition yields perfect load balance if M
is a multiple of I{ or M > . Each processor stores its local column slice of
the global spin matrix in row-wise order for the sake of efficient access to the
spin values. Host processor initializes the spin matrix and sends to the node
processors their portions. At each iteration, spin values corresponding to the
selected vertex are updated by computing the mean field value of each spin,
and difference between new energy and old energy is calculated. If energy dif-
ference is less than a predefined constant for a number of subsequent iterations,
temperature is decreased, and iteration is started again. Two phases of a MIFA
iteration (i.e., mean field computations and energy difference calculation) are
interleaved as described for the mapping problem in Chapter 3. The parallel
algorithm for the node program for a single iteration of MIPA algorithm is given

in Figure 4.3.

In the parallel MFA algorithm for.solving the graph partitioning problem,
each processor selects a vertex ¢ at random, where the random sequence in each
processor is the same. Hence, no global communication is necessary for broad-
casting the selected vertex. Then, each processor computes the mean fields
of the randomly selected vertex only for its local partitions. After computing
mean fields of the local spins two partial summation terms are computed at
steps 3 and 4. Then, a global sum (GSUM) operation is performed at step 5 to
accumulate the overall summations in-each processor. Each processor updates
its local spin values at step 6 and computes AH; at step 7. At step 8, ~, values
are updated. Details of the parallel MFA program for solving the graph par-
titioning problem is given in [4]. Note that, only one global communication is
needed at cach iteration of the algorithm. Asis mentioned in Section 3.5, global
commuaiication is performed as a sequence of single-hop exchange communica-

tions. Volume of communications al cach exchange step is fixed to 2 floating



CHAPTER 4. MFA FOR THE CIRCUIT PARTITIONING PROBLEM 58

1. Select a vertex ¢ at random.

2. For each local partition p := 1 to M/K compute mean field values
bip = — Lieadi(i) €ii(1 = sjp) — rwi(y, — wisip)

3. For each local partition p:= 1 to M/ compute
ap = e*/Tand by, = ¢yet/T

4. Compute partial summations

M/K - M/K
Ai = /K (Lip &l\(l 131 = sz/l\ bip

p=1

Perform GSUM to compute the local copies of

<

A= E,’,‘;l aip, and By = 27[:’:1 biy
6. For each local partition p:=1 to M/K compute SHEw = ai,/A; and
o ILEW

—-— old
then As;, = si7 — 53

7. Compute H!Y = B;/A; and then AH; = H*" — H;
8. For each local partition p := 1 to M/K update v, = v, + w;As;,

9. For each local partition p := 1 to M/ update s;, = s and

Hi —_ H:Lew

Figure 4.3. Node program for one iteration of the parallel MFA algorithm for
the graph partitioning problem.



CHAPTER 4. MFA I'OR THE CIRCUIT PARTITIONING PROBLEM 59

point words, and does not change with increasing problem size. The number
ol exchange communication steps in the global simmmation operation mercases
with the diameter of the multicomputer. Diameter of a multicomputer im-
plementing hypercube topology is log:/{ hence, the given parallel algorithm
is expected to scale on the hypercube architecture. Figure 4.4 illustrates the
speed-up and efficiency curves for the parallel MFA algorithm for solving the
graph partitioning problem on a 3-dimensional iPSC/2 hypercube multicom-
puter for three different problem sizes. As is seen in Figure 4.4, speed-up and
efliciency increases with increasing problem size and almost linear speed-up is

obtained for large problem sizes.

4.4.2 Network Model

Columns of the global spin matrix for the network partitioning problem are
partitioned similarly among'the processors of the multicomputer, such that
each processor is assigned M/K columns of the global spin matrix. As in
the graph partitioning problem, host processor initializes the spin matrix and
sends to the node processors their portions. Each processor is responsible for
the computation of the spin values in its partition. The algorithm for the node

program for a single iteration is given in Figure 4.5.

Observe that, there is one more global communication (at step 4) in this al-
gorithm because of the first term in (4.8). The rest of the algorithm is similar to
the parallel MEA algorithm for the graph partitioning problem. Although this
parallel algorithm requires one more global communication, it is also expected
to scale on the hypercube due to its fixed communication requirement (both
in number and volume). The speed-up and efficiency curves for the parallel
MFA algorithm for the graph partitioning problem on a 3-dimensional il’SC /2
hypercube multicomputer is given in Figure 4.6. As is seen in Figure 4.0,
speed-up and efliciency increases as the problem size increases. Almost lincar

speed-up is obtained for large problem sizes.



CHAPTER 4. MFA FOR THIS CIRCUIT PARTITIONING PROBLEM 60

g / & N=128, K=16
3 ]
3 4 -t -~ N=256, K=16
-4 ; o N=512, K=16
n -~ LINEAR
2
0 L
0 2 4 6 8
Number of Processors
(a)
100
L 1-]
80
>
% 60
§ 50 - dim=1
= - dim=2
w40 = dim=3 _
30
20
10
0 1
0 128 256 384 512

Number of Vertices

(b)

Figure 4.4. Speed-up (a) and efficiency (b) curves for the graph partitioning

problem. ,

-



CHAPTER 4. MFA FOR THE CIRCUIT PARTITIONING PROBLEM 61

1. Select a cell 7 at random.
2. For each local partition p :=1 to M/ compute

Vip = Lnen, Max{sj,, (jen)}wn
3. Compute partial summation

M/K
1/)1' = q=/l ' “/)il)

4. Perform GSUM to compute the local copies of
hi = ToLy iy

5. For each local partition p :=1 to M/K compute mean field values
bip = —(1hi — thip) — 1wi(y, — wisip)

6. For each local partition p :=1 to M/K compute
Qip = etin/T and bip = qS,-,,e""'P/T

7. Compute partial summations

M/K ) M/K

8. Perform GSUM to compute the local copies of
K " _ K
Ai=Tpoap  and Bi = =t bip

9. For each local partition p := 1 to M/K compute si* = a;,/A; and

—_ old
then Asy = sifY — s7)

10. Compute H** = B;/A; and then AH; = H!Y — H;
I For cach local partition p =1 to M/ update v, = v, + w;Asy,
Sew

12. For each local partition p := 1 to M/K update s;, = si™ and

Hi = Hpev

Figure 4.5. Node program for one iteration of the parallel MFA algorithm for
the network partitioning problem.



CHAPTER 4. MFA FOR THE CIRCUIT PARTITIONING PROBILEM 62

Z/ﬂ 4+ N=128, K=16

g 4 - N=256, K=16
B a & N=512, K=16
§_ -~ LINEAR
n
2 v
0 |
0 2 4 6 8

Number of Processors

100 B )
90 3 S S— —3
0'//' " | o
80
70
60

50 4+ dim =1
- dim=2
40 o dim=3

30

20
10

Efficiency

0 128 256 384 512
Number of Cells

(b)

Figure 4.6. Speed-up (a) and efficiency (b) curves for the network partitioning

problem.



5. CONCLUSIONS

Mean Field Annealing (MFA) algorithm, recently proposed for solving combi-
natorial optimization problems, combines the characteristics of neural networks
and simulated annealing. Previous works on MIPA resulted with successful ap-
plication of the algorithm to some classic optimization problems such as the
traveling salesperson problem and the graph partitioning problem. In this
work, MFA is formulated for the mapping problem and the circuit partitioning
problem. Performances of the proposed heuristics are investigated by compar-
ing them with other well-known heuristics, and efficient parallel versions of the

proposed algorithms are developed.

In chapter 2, MI'A algorithm is lormulated for the mapping problem. An
efficient implementation scheme, which decreases the complexity of the pro-
posed algorithm by asymptotical factors, is also given. The performance of
the proposed MIFA algorithm is evaluated in comparison with two well-known
heuristics: simulated annealing and Kernighan-Lin. Algorithms are experi-
mented for a number of randomly generated mapping problem instances. So-
lution qualities of MFA and simulated annealing heuristics are found to be
superior to the efficient Kernighan-Lin heuristic. The solution quality of sim-
ulated annealing is slightly better in comparison with MIFA whereas, MIA is
faster. As is expected, Kernighan-Lin heuristic is faster in comparison with
MFA and simulated annealing heuristics. Kernighaa-Lin heuristic is faster in
comparison with general heuristics as MIFA and simulated annealing, since it
is an efficient, problem specilic heuristic, having linear time complexity. How-
cver, linear time complexity of Kernighan-Lin heuristic can not be preserved,

if the weights of the edges of the graph to be partitioned are not bounded.

63



CHAPTER 5. CONCLUSIONS 64

Furthermore, MFA algorithm is more suitable for parallelization in compari-
son with simulated annealing and Kernighan-Lin heuristics. Hence, obtained
results demonstrate that the proposed formulation of the MFA for the mapping

problem is a promising alternative heuristic for solving the mapping problem.

Inherel}t parallelism of the MIFA is exploited by designing an efficient, par-
allel algorithm for the proposed MIA heuristic for the mapping problem. Pro-
posed parallel MFA algorithm achieves perfect load balance, and has fixed
communication requirement which does not increase with the size of the prob-

lem instance.

-MFA algorithm is formulated for solving CPP uéing two alternative models
in Chapter 3. It is shown that network model is a better scheme for mapping
MFA to the circuit partitioning problem in comparison with the graph model.
Performance of the MFA is compared with the performances of Kernighan-Lin
and simulated annealing heuristics, using randomly generated circuit partition-
ing problem instances. Performance of MIFA is close Lo simulated annealing,
and better than Kernighan-Lin heuristic in some instances. Execution time of
MFA is less than simulated annealing, but more than Kernighan-Lin heuristic.
Obtained results indicate that MIFA can be used as an alternative heuristic [or
solving the circuit partitioning problem. MPFA algorithms proposed for solv-
ing the circuit partitioning problem are parallelized and implemented on an
iPSC/2 hypercube multicomputer. Experimental results show that the pro-
posed heuristics can be efficiently parallelized on hypercube multicomputers,

which is crucial for algorithms that solve such computationally hard problems.

Results obtained in this work indicates that MI'A which is originally pro-
posed for solving the traveling salesperson problem also works for the circuit
partitioning problem and the mapping problem, and can be used as a general
tool for solving combinatorial optimization problems. Scalability of the algo-
rithm is quite good, reasonable results are obtained for large problem sizes.
Performance of the proposéd MTFA algorithms may be improved by fine tuning
of the temperature schedule of the algorithm, which still remains as a research

1ssue.

Inherent parallelism of MIFA is exploited in this work by designing efficient



CHAPTER 5. CONCLUSIONS 65

parallel MFA algorithms. Parallelization of heuristics, proposed for solving
NP-hard combinatorial optimization problems, is important since the combina-
torial optimization problems are computationally hard problems. Development
of parallel computers increases the need for heuristics that can be efliciently
parallelized. Results obtained in this work show that MFA is a good candidate
for developing efficient parallel heuristics. Proposed parallel MFA algorithms
are expected to scale on parallel architectures, due to their lixed communica-

tion requirements.



Bibliography

[

2]

[3]

[6]

[7]

9]

Arora, R. K., and Rana, S. P.; “Heuristic algorithms for process assign-
ment in distributed computing systems,” Information Processing Letlers,

vol. 11, no. 4-5, pp. 199-203, 1980.

Bokhari, S. H. “On the mapping problem,” IEEE Trans. Comput., vol. 30,
no. 3, pp. 207-214, 1981.

Brandt, R. D., Wang, Y., Laub, A. J., Mitra, S. K. “Alternative Net-
works for Solving the TSP and the List-Matching Problem,” IEEE Int.
Conference on Neural Nets, Vol.Il, pp. 333-340, July 1988.

‘Bultan, T., and Aykanat, C. “Parallel mean field algorithms for the so-

lution of combinatorial optimization problems,” Proc. [CANN-91, vol. |,
pp. H91-596, 1991.

Bultan, T., and Aykanat, C. “Circuit Partitioning Using Parallel Mean
Field Annealing Algorithms,” Proc. 8rd IEEE Symposium on Parallel Pro-
cessing, to be published.

Ergal, F., Ramanujam, J., and Sadayappan, P. “Task allocation onto a hy-
percube by recursive mincut, hipartitioning,” J. Parallel Distrib. Compul.

vol. 10, pp. 35-44, 1990.

Fiduccia, C. M., and Mattheyses, R. M. “A linear heuristic for improving

network partitions,” in Proc. Design Automat. Conf., pp. 175-181, 1982.

Garey, M. R., and Johnson, D. S. Computers and Intractability. San Fran-

cisco, CA: Freeman, pp. 209-210, 1979.

Hopfield, J. J. “Neural Networks and Physical Systems with Emergent Col-

lective Computational Abilities,” Proc. Natl. Acad. Sei. U.S.A., vol. 79,

66



BIBLIOGRAPHY 67

[10]

[11]

[12]

[13]

[14]

[16]

pp. 2554-2558, 1982.

Hopfield, J. J. “Neurons with Graded Response Have Collective Compu-
tational Properties Like Those of Two-State Neurons,” Proc. Natl. Acad.
Sci. U5 AL, vol. 81, pp. 3088-3092, 1984.

Hopfield, J. J., and Tank, D. W. “‘Neural’ Computation of Decisions in
Optimization Problems,” Biolog. Cybern., vol. 52, pp. 141-152, 1985.

Hopfield, J. J., and Tank, D. W. “Computing with neural circuits: a
model,” Science, Vol. 233, pp. 625-633, August 1986.

Hopfield, J. J., and Tank, D. W. “Collective computation in neuronlike

circuits,” Scientific American, 257(6):104-114, 1987.

Hegde, S. U., Sweet, J. L., and Levy, W. B. “Determination of Parameters
in a Hopflield/Tank Computational Network,” 517 Int. Conf. Newral
Networks, vol. 2, pp. 291-298, 1988.

Indurkhya, B., Stone H. S., and Xi-Cheng, L. “Optimal partitioning of
randomly generated distributed programs,” [EEE Trans. Software Engry.,

vol. 12, no. 3, pp. 483-495, 1986.

Kasahara, H., and Narita, S. “Practical multiprocessor scheduling algo-
rithms for efficient parallel processing,” [IEELE Trans. Compul., vol. 33,

no. 11, pp. 1023-1029, 1984.

Kernighan, B. W., and Lin, 5. “An efficient heuristic procedure for parti-

tioning graphs,” Bell Syst. Tech. J., vol. 49, pp. 291-307, 1970.

Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. “Optimization by simu-

lated annealing,” Science, vol. 220, pp. 671-680, 2983.

Krishnamurthy, B. “An improved min-cut algorithm for partitioning VLSI

networks,” JEEE Trans. Comput., vol. C-33, pp. 438-446, 1984.

Lengauer, T. Combinatorial Algorithms for Integrated Circuit Layout. Wi-
ley, pp. 251-258, 1990. |



BIBLIOGRAPHY 6N

[21]

[22]

23]

[26]

[30]

Peterson, C., and Anderson, J. R. “Neural networks and NP-complete
optimization problems; a performance study on the graph bisection prob-

lem,” Complex Syst. vol. 2, pp. 59-89, 1988.

Peterson, C., and Soderberg, B. “A new method for mapping optimization

problems onto neural networks,” Inl. J. Neural Syst., vol. 1, no. 3, 1989.

Ramanujam, J., Ercal, I., and Sadayappan, P. “Task allocation by sim-
ulated annealing,” Proc. International Conference on Supercomputing.

Boston, MA, May 1988, vol. l11, Hardware & Software, pp. 475-497.

Ramanujam, J., and Sadayappan, P. “Optimization by Neural Networks,”

[EEE [nt. Conference on Neural Nets, Vol.Il, pp. 325-332, July 1988.

Sadayappan, P., and Ercal, F. “Nearest-neighbour mapping of finite ele-
ment graphs onto processor meshes,” IEEE Trans. Comput. vol. 36, no. 12,

pp. 1408-1424, 1987.

Sadayappan, P.,Ergal, F., and Ramanujam, J. “Cluster partitioning ap-
proaches to mapping parallel programs onto a hypercube,” Parallel Com-

puting. vol. 13, pp. 1-16, 1990.

Schweikert, D. G., and Kernighan, B. W. “A proper model for the par-
titioning of electrical circuits,” in Proc. 9th Design Automat. Workshop,

pp. 57-62, 1979.

Seitz, C. L. “The Cosmic Cube,” Com. of the £ CM, vol. 28, pp. 22-23,
1985.

Shield, J. “Partitioning concurrent VLSI simulation programs onto a mul-
tiprocessor by simulated annealing,” IEEE Proc. Part G, vol. 134, no. 1,

pp. 24-28, 1987.

Szu, H. “Fast TSP Algorithm Based On Binary Neuron Output and Ana-
log Neuron lnput Using The Zero-Diagonal Interconnect Matrix And Nec-
essary And Sufficient Constraints Of The Permutation Matrix,” /EEE Int.
Conference on Newral Nets, Vol .1, pp. 259-266, July 1988.



BIBLIOGRAPHY 69

31)
32
33)
4]

[35]

[37]

Tank, D. W., and Hopfield, J. J. “Simple ‘Neural’ optimization networks:
An A/D converter, signal decision circuit, and a linear programming cir-

cuit,” IEEE Trans. Circ. Syst., Vol.cas-33, no.5, May 1986.

Toomarian, N. “A Concurrent Neural Network Algorithm for the Traveling
Salesman Problem,” Third Conference on Hypercube Concurrent Comput-

ers and Applications, Pasadena.

Van den Bout, D. ., and Miller, T. K. “A Traveling Salesman Objective
Function That Works,” IEEE Int. Conf. Neural Nets, vol. 2, pp. 299-303,
1988.

Van den Bout, D. E. and Miller, T. K. “Improving the performance of
the Hopfield-Tank neural network through normalization and annealing,”

Biolog. Cybern., vol. 62, pp. 129-139, 1989.

Van den Bout, D. E., and Miller, T. K. “Graph partitioning using annealed
neural networks,” IEEE Trans. Neural Networks, vol. 1, no. 2, pp. 192-203,
1990.

Wilson, G. V., and Pawley, G. S. “On the Stability of the Traveling Sales-
man Problem Algorithm of Hopfield and Tank,” Biolog. Cybern., vol. 58,

pp. 63-70, 1988.

Yih, J. S., and Mazumder, P. “A neural network design for circuit par-
titioning,” IEEE Trans. Computer-Aided Design, vol. 9, pp. 1265-1271,
1990.



