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ABSTRACT

PARALLEL MAPPING AND CIRCUIT PARTITIONING 
HEURISTICS BASED ON MEAN FIELD ANNEALING

Tevfik Bultan
M. S. ill Computer Eiigiiieeriiig and Information 

Supervisor: Assoc. Prof. Cevdet Aykanat 
January 1992

nence

Moan Field Annealinp; (MFA) aJgoritlim, receñí,ly proposc'd for solving com 

binatorial optimization problems, combines the characteristics of nenral net­

works and simulated annealing. In this thesis, MFA is formulated for tlie 

mapping i)roblcm and the circuit partitioning problem. EHicient implemen­

tation schemes, which decrease the complexity of the proposed algorithms by 

asymptotical factors, are also given. Perlormances of the proposed MFA algo­

rithms are evaluated in comparison with two well-known heuristics: simulated 

annealing and Kernighan-Lin. Results of the experiments indicate that MFA 

can be used as an alternative heuristic for the mapping problem and the cir­

cuit partitioning problem. Inherent parallelism of the MFA is exploited by 

designing efficient parallel algorithms for the proposed MFA heuristics. Paral­

lel MFA algorithms proposed for solving the circuit partitioning problem are 

implemented on an iPS(J/2’ hypercube multicompute.r. Experimental results 

show that the proposed heuristics can be efficiently parallelized, which is crucial 

for algorithms that solve such computationally hard problems.

bPSCJ/2 i.s a registered trademark of Intel Corporation
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ÖZET

ORTAK ALAN TAVLAMASINA DAYANAN PARALEL 
EŞLEME VE DEVRE PARÇALAMA ALGORİTMALARI

Teviik Sultan
Bilgisayar Mühendisliği ve Enforınatik Bilimleri Bölümü

Yüksek Lisans
Tez Yöneticisi: Assoc. Prof. Cevdet Aykanat

Ocak 1992

Birle.'jimsel eniyileme problemlerini çözmek için önerilen Ortak Alan 

Tavlama (OAT) algoritması, .sinir ağlan ve tavlama benzetimi yöntemlerinin 
özelliklerini ta.şır. Bu çalışmada, OAT algoritma.sı, eşleme ve devre parçalama 

problemlerine uyarlanmıştır. Önerilen algoritmaların karmaşıklığını asimtotik 

olarak azaltan verimli gerçekleme yöntemleri de geliştirilmiştir. Önerilen al­

goritmaların başarımları tavlama benzetimi ve Kernig'.ıan-Lin algoritmaları ile 

kıyashyarak değerlendirilmiştir. Elde edilen .sonuçlar OAT’nin eşleme ve de­

vre parçalama problemlerini çözmek için alternatif bir algoritma olarak kul­
lanılabileceğini göstermektedir. Önerilen OAT algoritmaları verimli bir şekilde 

paralelleştirilmiştir. Devre parçalama problemi için önerilen paralel OAT algo­

ritmaları iPSC/2 hiperküp çok işlemcili bilgisayarında gerçeklenmişti!·. Deney­

sel sonuçlar öiK'rilen algoritmaların verimli bir şekilde paralelleştirilebildiklc'i ini 

göstermektedir.
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1. INTRODUCTION

Some cognitive tasks as pattern recognition, associative recall, guiding of a me­

chanical hand are easily handled by biological neural networks whereas they 

remain as time consuming tasks for digital computers. This fact motivated 
scientists and opened a research area called Artificial Neural Networks (ANN). 

Scope of ANN includes understanding and modeling of biological neural net­

works, and designing artificial devices that have similar propertiiis. liesearch 

on this area started with the early works of McCulloch and Pitts (19T‘l), and 

has continued with varying levels of popularity until today. From the 1980s 

onwards, neural network models became the center of extensive study, and 

have seen an extraordinary growth of interest in their properties. Reasons for 

this increase in popularity are: better understanding gained on information 

processing in nature; increasing computer power which enables scientists to 

make better simulations and analysis of the models; growing int<;rest in paral­

lel computation and analog VLSI.

Research on ANN can be divided into two streams: first one deals with 

understanding and modeling of the biological neural networks, and second one 

exploits the information gained on biological neural networks for designing arti­

ficial devices or algorithms to perform tasks which are difficult lor conventional 

computers. Until last lew years, works on the second area were concentratiKl 

on learning and classification capability, and associative memory operation of 

the neural networks. Recent works by Hopfield and Tank [11, 12, 13, 31] show 

that solving NP-hard combinatorial optimization problems is another promis­

ing area for ANN. Hopfield and Tank proposed that, Hopfield type coniinuoxLs 

and dc/.(:'rniin7.s'/v'c ANN model can be used for solving combinatorial optimiza­

tion problems [11]. However, simulations of this model reveal the fact that it
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is lia.rd 1,0 ol)(.a.iii feasible solutions for la.r,t!,<' |)roI)l('in si'/rs. Many variants of 

the Hopfield Neural Network (HNN) have been designed [d, 30, 34] in order to 

improve the model for obtaining feasible, and </ood solutions.

Combinatorial optimization problems constitute a large class, which is en­

countered in various disciplines. Optimization problems, in general, are char­
acterized l>y searching for the hesi values of given varia.l:)les to achic've a. goal. 

In technical words, the objective is the minimization or maximization of a 

function, subject to some other constraint functions. A typical example is the 

general nonlinear programming problem, stated as: find x 6 which

minimizes

subject to

./■(x)

(yf,(x) > 0-
/ij(x) =  0

1 . .  .. ,m
1 . .  . . , p

( 1 . 1 )

where / ,  <y,·, hj are general functions which map 3?“ The function /  is
called the cost function, and functions gi and hj are called constraint func­

tions. Problems, for which the variables of the cost and constraint functions 

are discrete, are called combinatorial optimization problems. Some [iroblems 

in this class can not be solved in polynomial time with the known methods. As 

the problem size increases, computing time needed to solve this kind of prob­

lems increases exponentially, resulting with intractable instances. This class of 

problems, ca.lled Nl*-hard optimization problems, are solved using heuristics. 

Heuristics are generally problem specific, computationally efficient algorithms. 

Tho’y do not guarantee to find optimal solution, but require much less com­

puting time. The drawback of heuristics is that they usually get stuck in local 

minima.

In the last decade a ])owerful method, called Simulated Auiu'aling (SA), 

has been developed for solving combinatorial optimization problems [18]. This 

method is the application of a successful statistical method, which is used to 

estimate the results of annealing process in statistical mechanics, to combina­

torial optimization problems. SA is a general method (i.e. it is not problem 

specific) which guarantees to find the optimum solution if time is not limited. 

Time needed for simulated annealing is also too much and exact solutions of 

NP-hard problems still stay intractable. Nice property of simulated cuinealing
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is that, it can be used as a heuristic to obtain near optimal solutions in lim­

ited time, and as the time limit is incrccised, quality of the obtained solutions 

also increase. SA has the capability of escaping from local minima if sufficient 

time is given. This method has been successfully applied to various NP-hard 

optimization problems [18, 20, 23].

The subject of this thesis is a recently proposed algorithm, called Mean 

Field Annealing (MFA) [22, 33, 34, 35]. MFA was originally proposed for solv­

ing the traveling salesperson problem [33, 34]. It combines the collective com­

putation property of HNN with the annealing notion of SA. MFA is a general 

strategy and can be applied to various problems with suitable formulations. 

Work on MFA [4, 5, 21, 22, 34, 35] showed that, it can be successfully applied 

to combinatorial optimization problems. In this thesis, MFA is formulated for 

two well-known, NP-hard, combinatorial optimization problems: the mapping 
])roblem and the circuit partitioning problem.

The mapping prol^lem arises while developing parallel programs for 

distributed-memory, message-passing parallel computers (multicomputers). In 

order to develop a parallel ¡program for a multicomputer, first the problem is 

decomposed into a set of interacting sequential sub-problems (or tasks) that 

can be executed in parallel. Then, each one of these tasks is mapped to a 

processor of the parallel architecture, in such a way that the total execution 

time is minimized. This mapping phase is called the map|)ing problem [2],uind 

is known to be NP-hard. In this thesis, MFA is formulated for solving the 

mapping problem, and its performance is compared with the performances of 

other well-known heuristics.

Partitioning of VLSI circuits are needed in various phases of VLSI design. 

Partitioning means to divide the components of a circuit into two or more 

evenly weighted partitions, sucli that the number of signal nets interconnecting 

them is minimized. This problem, called the circuit partitioning problem, is 

also an NP-hard combinatorial optimization problem. In this work, MFA is also 

formulated for solving the circuit partitioning problem, and the performance of 

the proposed algorithm is compared with the performances of other well-known 

heuristics.



C I IA I ’TEU I. IN m O IJ U d ' IO N

Heviristics used for solving NP-hard combinatorial optimization prol^lc'ms as 

the mapping problem and the circuit partitioning problem are time consuming 

processes and parallelization of them is crucial. I'here is a la.rg<i volume of 

research on the parallelization of such algorithms. One of the motivations in 

this work is to exploit the inherent parallelism in neural networks in order 

to obtain efficient parallel algorithms. MFA is a good candidate lor edicient 

parallelization as it uses the collective computation property of HNN.

In order to develop a parallelization scheme, first the parallel computer 

that will be used must be classified. Classification of jrarallel architectures can 

be done according to their memory organization, the number of instruction 

streams supported, and the interconnection topology. Memory organization in 

parallel architectures can be divided into two main groups, shared-memory and 

distributed-memory architectures. In shared-memory architectures, which are 
named as multiprocessors, a common memory or a common addr<\ss space is 

used by all processors. On the other hand, in distributed-memory architectures, 

processors can not access to a common memory space. Each processor has a 

local, isolated memory. Synchronization, coordination among ])rocessors and 

data, exclumge are achievetl by message |)assing among procoissors. lii this tyi)e 

of architectures, each processor may be viewed as ¿in individual com])uter, 

henc(; tluiy are ca.lled multicomiuiters.

Classification according to the interconnection topology determines how to 

handle communications among processors. Most commonly used topologies are 

mesh, hyiiercube and ring.

According to the number of instruction streams supported, parallel archi­

tectures can be divided into two groups. SIMD (Single Instruction stream 

Multiple Data stream) and MIMD (Multiple Instruction stream and Multiple 

Data stream) architectures. In a SIMD architecture, a centra.l control luoces- 

sor broadcasts the instruction that will be executed to all processors. Each 

processor executes the same instruction using the data in its local memory. In 

MIMD architectures, each processor is able to fetch, decode and execute an 

instruction by itself, which can be different from, the instructions executed by 

other processors.
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In this work, MFA is parallelized for distributed-memory M1K4D multicom­

puters, and implemented on a 3-dimensioual iPSC/2 hypercube multicomputer. 

A d-dimensional hypercube consists of P =  2‘̂ processors with each processor 

being directly connected to d other (neighbor) proces.sors [28]. The proces­

sors of the hypercube are labeled with d-bit binary numbers, and the binary 

label of each ])rocessor differs from that of its neighbor in exactly one bit. 

The parallelization schemes proposed in this work can also be used for SIMD 

multicomputers and other interconnection topologies with slight modifications.

In Chapter 2, HNN and -SA are reviewed and a general formulation of MFA 

is given. Chapter 3 presents the proposed formulation of MFA for the niiipping 

problem. Efficient implementation and parallelization of the proposed MFA 

algorithm is al.so cvddressed in this cliapter. In Chapter 4, MFA is formulated 

for solving the circuit partitioning problem. Chapter 4 also presents efficient 
implementation and parallelization of the proposed algorithm. In Chapter 3 

and 4, performances of the proposed MFA algorithms are evaluated in compar­

ison with two well-known heuristics: simulated annealing and Kernighaii-Lin. 

In Chapter 5, conclusions are stated.



2. THEORY

Tills cliaptor reviews previous works on ITo])field Neural Networks (IINN) and 

Simulated Annealing (SA) to give a better understanding of Mean Field An­

nealing (MFA). In Section 2.1 neural network models proposed by Hopfield 

are briefly discussed, and application of HNN to combinatorial o|)timix;ation 
]>i’ol)l(ims is dcsci‘il)ed. A summary of the later works on IINN is also i)r(iseut<id 

at the end of Section 2.1. Section 2.2 gives the general properties of simulated 

annealing and describes its application to combinatorial optimization prob­

lems. In Section 2.3, MFA algorithm is described, denoting the similarities 

with previously mentioned two methods.

2.1 H opfield N eural N etw orks

One of the main reasons for the growing interest on neural networks in the 

last decade, is the Artificial Neural Network (ANN) model proposed by Hop- 

field [9]. Many ideas used in this model have precursors spread over the fifty 

years of research on neural networks. The importance of the work by Ho|)- 

field is that it brings them all together, using a ])hysical analogy and a clear 

mathematical analysis, and gives a good view of the possible capabilities of 

the proposed model. Later, Hopfield proposed another model [10] that has 

the same properties of the original model, and looks very promising for VLSI 

implementations.

The original model [9] is a discrete, stochastic model, which uses two-state 

neurons with a stochastic updating algorithm. The continuous and deternrinis- 

tic model, which is proposed later [10], u-ses neurons with graded response, and

6



time evolution of the state of the system (change in the states of the neurons) is 
described by a differential equation. In these two models, an energy function, 

which always decreases as the system iterates, is defined. In his two consecu­

tive papers [9, 10], Hopfield presented his ANN models as Content Addres.sable 

Memor}' (CAM) in order to explain their properties. In CAM model, minima 

of the energy function correspond to the stored words. Starting from a given 

initial state, the system is expected to reach one of these minima, which means 

to output one of the stored words in the CAM. CAM model of Hopiield can 

be regarded as an optimizing network: given an in])ut, find one of tlx· stoix'd 

items which is the clo-seftt item to the given input. In his later works with 

Tank [11, 31] it is shown that well-known combinatorial oj)timization problems 

as the traveling salesperson prol)lem, can also be solved by IINN.

2.1.1 C om binatorial O ptim ization  U sing H opfield N eu ­

ral N etw orks

Hopfield and Tank showed that, continuous iind deUTininistic HNN has collec­

tive computational properties [11, 12, 13]. In collective computation, decisions 

taken to solve the problem is not determined by a single unit, but instead re­
sponsibility is distributed over a large number of simple, massively connected 

units. The nature of collective computation suggests that it might be par­

ticularly effective for problems that involve global interaction among different 

parts of the problem. NP-hard optimization problems are such ])roblems. HNN 

can be used for solving a combinatorial optimization problem by choosing a 

representation scheme in which the output states of neurons can be decoded 

as a solution to the target problem. Then, HNN is constructed accordingly by 

choosing an energy function whose global minimum value corresponds to the 

best solution of the problemjto be solved [11]. Hence, the constructed HNN is 

expected to compute the best solution to the target problem starting from a 

randomly chosen initial state by minimizing its energy function. General form 

of such an energy function (also called Hamiltonian of the system) is

CHAPTER 2. THEORY 7

7/ = cost -j- global constraint (2.1)



Неге, cost term re)>resents tlie cost function of the oi^timization to

be solved and global constraint term represents the constraint functions intro­

duced to obtain feasible solutions. Exact solution of the problem corresponds 

to the global minimum of this energy function.

Motivation behind the works of Hopfield and Tank is to use hardware im­

plementations of HNN to solve large optimization problems. It is a general 

method to simulate a model on computers before implementing it on hardware 

in order to observe and solve possible problems. In order to simulate HNN on 

a Computer, first the' equations of motion for the neural network are written 

from the state equations of the neurons. Then, these equations are solved for 
each neuron iteratively using a numerical metliod (usually I'hiler’s method is 

used to compute the resulting diiferential equations). .State of each neuron is 

computed in discrete time intervals until a stable state is found.

2.1.2 P roblem s o f H opfield N eural N etw orks

СПЛРТЕП.2. TIIFA)RY s

HNN have been applied to various optimization problems and reasonable rc'- 

sults have been obtained for small size problems. However, simulations of this 

network reveals the fact that, it is hard to obtain feasible solutions for large 

proldem sizes. Wilson and Pawley reports that, most of the simulation results 

give infeasible tours even for a 10-city traveling salesperson problem [36]. In 

fact, it is possible to obtain feasible tours by adjusting the parameters of the 

energy function (i.e., increasing the weights of the terms regarding feasibil­

ity), but, quality of the solutions deteriorate with such attempts. As is cilso 

iudicateil in [14], the problem of (inding a balance among pcirameters ol the 

energy function, in order to obtain feasible cuid solutions, becomes harder 

as the problem size increa.ses. Hence, the algorithm does not have a good 

scaling property, which is a very important performance criterion for heuristic 

optimization algorithms. Many attempts have been done to improve the per­

formance of Hopfield neural network for obtaining feasible and good solutions. 

In one of them [3], number of terms in the energy function is decreased to in­

crease the scalability of the algorithm. But also for that model, increase in the 

size of the problem causes the costs of the solutions to increase siguificiuitly.



Works by Szu [30] and Toomariau [32] are also modifications to HNN in which 

dilTerent energy functions are proposed. Recently, MFA is proposed as a suc­

cessful alternative to HNN [22, 33, 34]. MFA algorithm combines the collective 

computation property of HNN and annealing notion of SA.

2.2 Sim ulated  A nnealing

CIIAPrFJl2. THFX)RY i)

SA is a powerful method which is used for .solving hard optimization prol)lems. 

In SA, an energy function that corresponds to the cost function of the ])roblem 

to be solved is defined, similar to energy function defined for HNN. SA is a 

probabilistic hill-climbing method, which accepts uphill moves with a proba­

bility in order to escape from local minima. SA is derived using analogy to a 

successful statistical model of thermodynamic processes for growing crystals.

Configuration of a solid state material at a global energy minimum is a 

perfectly homogeneous crystal lattice. It is determined by experience that such 

configurations can be achieved using the process of annealing [20]. The solid- 

state material is heated to a high temperature until it reaches an amorphous 

liquid state. Then it is cooled slowly, according to a specific annealing schedule. 

If the initial temperature is sufficiently high to ensure a random state, and if 

the cooling schedule is sufficiently slow to guarantee that the ec|uilil)rium is 

rearhcd at each temirerature, final configuration of the material will Ixi clo.se 

to the perfect crystal with global energy minimum [20]. In thermodynamics, it 

is stated that, when thermal equilibrium at temperature T  is reached, a state 

with energy E is attained with the Boltzmann probability

1
Z {r)

e (2 .2)

where Z(T) is a normalization factor and ks is the Boltzmann constant [20].

There is a fine theoretical model which explains this physical phenomenon. 

During the annealing process the states of the atoms are perturbed by small 

random changes. If the change in state lowers the energy of the system, it is 

always accepted. If not, the change in configuration is accepted with a prob­

ability Tiiie probability of accepting perturbations causing increase
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1. Get an initial configuration C

2. Get initial temperature, and set T  = To

3. While not yet frozen DO

3.1 While eciuilibrium at T  is note yet reached DO

3.1.1 Generate a. rajulom neighbor C' of C

3.1.2 Let A E  E{C') -  E{C)

3.1.3 If A E  < 0 (downhill move), set C = C

3.1.4 if AE > 0 (u])hill move), set C = O' with 

probability e ~ ^

3.2 Update T  according to the cooling schedule

Figure 2.1. Simulated annealing algorithm.

in energy decreases with the decreasing temperature, and minor modifications 

occur at lower temperatures. Experiments show that this model gives simihir 

results as physical annealing process [20].

Kirkpatrick a,])])lied this model to ojitimization problems and called the 

resulting method SA. In transforming the physical model to com])utational 

model, energy function is replaced with the cost function of the optimization 

problem to be solved (note the similarity with HNN), and states of the matter 

are replaced with the legal configurations of the ])roblem instancxi. Annealing 

schedule is controlled with a simulated temperature. Figure 2.1 illustrates the 

SA algorithm.

Although SA is a ])owerful method it has some problems. It requires a large 

amount of computing power because of the need for generating a large number 

of configurations, and very slow cooling in order to reach eciuilibrium at each 

temperature. Performance of the algorithm is closely related to the generation 

of neighboring configurations. It is an iidierently sequential algorithm which
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does not give good peifonnance on parallel computers. It is hard to obtain 
good cooling schedules that, results with good solutions in small amount of 

computer time.

2.3 M ean F ield  A nnealing

MFA merges collective computation and annealing properties of the two meth­

ods described above, to obtain a general algorithm for solving combinatorial 

optimization problems. Mapping problems to MFA is identical to HNN. A 

neuron matrix is formed such that when neurons take their final values they 

represent a configuration in the solution space of the problem.

Mathematical analysis of MFA is done by analogy to Ising spin model, which 
is used to estimate the state of a system of particles or spins in thermal equi­

librium. Spins in MFA algorithm are analogous to the neurons of HNN. This 

method was first proposed for .solving the traveling-sa.lc-'S])er.son ])roI)lem [33], 

and then it is applied to the graph partitioning problem [4, 5, 21, 35]. Here, 

general formulation of MFA algorithm [35] is given for the sake of complete­

ness. In the Ising spin model, the energy of a system with S spins has the 

following form:
s s

= 5 E  E  trusts, + E  '‘«--Si (2-3)
^ k = l k = \

Here, ftki indicates the level of interaction between spins k, /, and G {0, I} is 

the value of spin k. It is assumed that ftu =  fttk and f k̂k = 0 for 1 < k, /, < S.  

At thermal equilibrium, spin average {sk) of spin k can be calculated using 

Boltzmann distribution as follows

1
(■s.) = (2.4)1 q. e-<l‘k/r

Here, (pk represents the mean field effecting on spin A:, which can be computed 

using
d{H{s))d>k = -

where the energy average {H{s)) of the system is

{«(s)) =  E E & M  + E M - '‘i·)
A-=l A.-1

(2.5)

(2.6)
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1. Get initial temperature, and set 7’ ■ 7o

2. Initialize the spin averages (s) = [{'Si)) · · ·, (•i'A.·), · · ■, (•¡’.s)]

3. While temperature 7’ is in the cooling range DO

3.1 While system is not stabilized for current temperature DO

3.1.1 Select a spin k at random.

3.1.2 Compute using

4>k = -  fhii'Si) -  hk

3.1.3 Update {$k) using

(s,) = {l + e-'^'</^}-i

3.2 Update T  according to the cooling schedule

Figure 2.2. Mean field annealing algorithm.

The complexity of com])uting using Eq. (2.5) and E(|. (2.(3) is ex|)onen- 

tial [35]. However, for large number of spins, the mean field approximation can 
be used to compute the energy average as

(2.7)
1

№ )) = T E  E  + E
“ t- l  l:jik k=-i

Since (7/(s)) is linear in (¿¡t), mean field <j)k can be computed using the following 

equation
rll I-l ( __

(2.8)*  =  - ^ ^  =  - ( E f c W  + M

Thus, the complexity of computing (/>/.. reduces to 0 (5 ).

At each temperature, starting with initial spin averages, the mean field 

eifecting· on a randomly selectcid s|)in is found using Rf|. (2.<S). 'ГЬеп, spin 

a.vcrage is updated using F/(|. (2.4). d'liis |)roc('ss is r(‘pe;>.ted for ;i. random 

sequence of spins until the system is stabilized for the current temperature. 

The general form of the Mean Field Annealing algorithm derived from this 

iterative relaxation scheme is shown in Figure (2.2). MFA algorithm tries to
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find eciuilibrium poinl, of a system of S spins using annealing ¡n'oress simila.r 

to SA.

The state equations used in MFA are isomorphic, to the state equcvtious of 

the neurons in the HNN. A synchronous version of MFA, different from the 

algorithm given in Figure 2.2, can be derived by solving N  difference equations 

for N  spin values simultaneously. This technique is identical to the simulations 

of HNN done using numerical methods. Thus, evolution of a solution in a 

HNN is equivalent to the relaxation toward an equilibrium state affected by 

the MFA algorithm at a fixed temperature [35]. Hence MFA can be viewed as 

an annealed neural network derived from HNN.

HNN and SA methods have a major difference: SA is an algorithm im­
plemented in software, whereas HNN is derived with a possible hardware im­

plementation in mind. MFA is somewhere in between, it is an algorithm im­

plemented in software, having potential for htirdware realization [34, 35]. In 

this work, Mi*'A is treated as a software algorithm as SA. Results obtained are 

comparable to other software algorithms, conforming this point of view.
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III tins clia]M.cr, Mean I'̂ iekl Amicaliiig (M1''A), is (omuilaled for Uic ma|)|)iiig 

problem. In Section 3.1, the mapping problem is described and previous ap­

proaches used for solving the mapping problem are summarized. Section 3.2 

presents a formal definition of the mapping problem by modeling the par­

allel program design process. Section 3.3 presents the proposed formulation 
of the MFA algorithm for the mapping problem. An efiicient impleiiUMitation 

scheme for the proposed algorithm is also described in Section 3.3.2. Section 3.4 

presents the performance evaluation of the MFA algorithm for the mapping 

problem in comparison with two well-known mapping heuristics: simulated 

annealing and Kernighan-Lin. Finally, efficient parallelization of the Mh'A al­

gorithm for the mapping problem is proposed in Section 3.5.

3.1 T he M apping Problem

Today, with the aid of VLSI technology, parallel computers not only exist in 

research laboratories, but are also available on the market as powerful, gen­

eral purpose computers. Use of ])arallel computers in various applications, 

makes the problem of mapping parallel programs to parallel computers more 

crucial. The mapping problem arises while developing parallel programs for 

distributed-memory, message-pa,ssing parallel computers (multicom])uters). In 

multicomputers, processors neither have shared memory nor have shared ad­

dress space. Each processor can only cvccess its local memory. Synchronization 

and coordination among processors are achieved through explicit message pass­

ing. Processors of a multicom])uter are usually connected by utilizing one of

FI
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the well-known direct interconnection network topologies such as ring, mesh, 

hypercube, etc. These architectures have the nice scalability feature due to the 

lack of shared resources and the increasing bandwidth with increasing number 

of processors.

However, designing efficient parallel algorithms for such architectures is not 

straightforward. An efficient ])arallel algorithm should exploit the full potential 

power of the architecture. Processor idle time and the interprocessor commu­

nication overhead may lead to poor utilization of the architecture and hence 
poor overall system performance. Processor idle time arises due to the uneven 
load balance in the distribution of the computational load among processors 

of the multicomputer. Parallel algorithm design for multicomputers can be 

divided into two phases: first phase is the decomposition of the problem into a 

set of interacting sequential sub-problems (or tasks) which can be executed in 
parallel. Second phase is mapping each one of these tasks to a processor of the 

parallel architecture in such a way that the total execution time is minimized.I
This mapping phase, named as the mapping problem [2], is very crucial in 

designing efficient parallel programs.

For a class of regular problems with regular interaction patterns, the map­

ping problem can be efficiently resolved by the judicious choice of the de­

composition scheme, in such problems, chosen decomposition scheme yields 

an interaction topology that can be directly embedded to the interconnection 

network topology of the multicomputer. Such approaches can be referred as in­

tuitive approaches. However, intuitive mapping approciches yield good results 

only for a restricted class of problems, under simplifying assumptions. The 

mapping problem is known to be NP-hard [15, 16]. Hence, heuristics giving 

sub-optimal solutions are used to solve the problem [1, 2, 6, 15, 16, 26]. Two 

distinct approaches have been considered in the context of map))ing heuristics, 

one phase approaches and two phase approaches [6]. One pliase approaches, 

referred to as many-to-one mapping, try to map tasks of the pcirallel program 

directly onto the processors of the multicomputer. In two phase approaches, 

clustering phase is followed by a one-to-one mapping phase. In the clustering 

phase, tasks of the parallel program is ])artitioned into a's many equal weighted 

clusters as the number of ])rocessors of the multicomputer, while minimizing
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the total weight of the inter-cluster interactions [26]. In the one-to-one mapping 

phase, ca.cli cluster is assigiuul to an iiKlividua.] |)roc(‘ssur of tlu' miilticom|Hit<u· 

such that total inter-processor communication is minimized [26].

In two phase approaches, the problem solved in the clustering phiise is 

identical to the multi-way graph partitioning problem. Graph partitioning is 

the balanced partitioning of the vertices of a graph into a number of bins, such 

that the total cost of the edges in the edge cut set is minimized. Kernigiian- 

Lin (KL) heuristic [7, 17] is an efficient heuristic, originally propo.scid for the 

graph bipartitioning problem, which can also be used for clustering [6, 26]. 

KL heuristic is a non-greedy, iterative improvement technique that can escape 

from local minima by testing the gains of a sequence of moves in the search 
space before performing them. A variant of the KL heuristic can be used for 

solving one-to-one mapping problem encountered in the second phase [6].

Simulated Annealing (SA) can also be used cis a one phase heuristic for 

solving many-to-one mapping problem [23, 29]. Successful applications of SA to 

the mapping problem is achieved in various works [23, 29]. It has been observed 

that the quality of the .solutions obtained using SA are superior compared with 

the results of the other heuristics.

Heuristics proposed to solve the mapping problem are compute intensive 

algorithms. Solving the map])ing ])roblem can be thought as a i)re])roce.ssing 

done before the execution of the parallel program on the parallel computer. 

If the mapping heuristic is executed sequentially, the execution time of this 

preprocessing can be included in the serial portion of the parallel program, 

which limits the efficiency that can be attained. In some cases, the sequential 

overhead caused by this preprocessing is not acceptable, cuid the need for the 

parallelization of the preproce.ssing arises. Efficient parallel mapping heuristics 

are needed in such cases. KL and SA heuristics are inherently sequential, hence 

hard to parallelize. Efficient parallelization of these algorithms remain as an 

important issue in parallel processing re.search.

In this chapter, Mean Field Annealing (MFA), is formulated for the many- 

to-one mapping problem. MFA has the inherent parallelism that exists in most 

of the neural network algorithms, which makes this algorithm a good candidate
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for parallel mapping heuristics.

3.2 M odeling th e M apping Problem

Parallel program design phases are elaborated in this section in order to present 

a formal definition of the mapping problem. In the first phase of jiarallel 

algorithm design, problem is decomposed into a set of atomic tasks, such that 

the overall problem is modeled as a set of interacting tasks. Each atomic task 

is a sequential process to be executed by an individual processor of the parallel 
architecture. .Selection of the decomposition scheme depends on the i)ioblem, 

algorithm to be used for the solution, and the architectural features of the 

targ(it m u 11 i com p u t(u·.

In various classes of problems, interaction pattern among the tasks is static. 

Hence, the deconqmsition of the algorithm can be represented l)y a static task 

graph. Vertices of this graph represent the atomic tasks and the edge set 

represent the interaction i)a.tt(irn among the tasks. Relative c.om|)uta.tional 

costs of atomic tasks can be known or estimated priori to the execution of the 

parallel program. Hence, weights can be associated with the vertices to denote 

the computational costs of the corresponding tasks.

There are two different models used for modeling static inter-task communi­

cation patterns. These two models are referred as the Task Precedence Graph 

(TPG) model and Task Interaction Graph (TIG) mcdel [16, 25]. TPG is a 

directed graph where directed edges represent execution dependencies. In this 

model, a pair of tasks connected by an edge can not be executed independently. 

Each edge denotes a pair of tasks: source task and destination task, ddic' des- 

tiiicition task can only be executed after the completion of the execution of the 

source task. Hence, in general, only the subsets of tarsks which are unreachable 

from each other in the TPG can be executed independently.

In TIG, the set of interaction patterns are represented by undirected edges 

among vertices. In this model, each atomic task can be executed simultaneously 

and independently. Each edge denotes the need for the bidirectional interaction 

between corresponding pair of tasks at the completion of the execution of
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these tasks. Edges may be associated with weights which denote the amount 

o( l)idirectional inlormation exchange involved between pairs of tasks. 'I’lC 

usually represents the repeated execution of the tasks with intervening inter- 

ta.sk interactions denoted by the edges.

The TIG model may seem to be unrealistic for general applications since it 

does not consider the temporal interaction dependencies among the tasks [25]. 

However, there are various classes of problems which can be successfully mod­

eled with the TIG model. For example, iterative solution of systems of equa­
tions, and problems arising in image ])rocessing and computer graphics a.|)pli- 

cations can be represented l.)y TIG. In this work, mapping of ju-oblems which 

can be represented by TIG model is addressed.

Second phase of the parallel algorithm design is the assignment of the indi­

vidual tasks to the processors of the parallel architecture, so that the execution 

time of the parallel program is minimized. This problem is referred as tlie 

mapping problem. In order to solve the mapping problem, parallel architec­

ture must also be modeled in a way that represents its architectural features. 

Parallel architectures can easily be represented by a Processor Organization 

Graph (POG), where nodes represent the processors and edges represent the 

communication links. In fact, POG is a graphical representation of the in-
tcrcoMn('ci.ii)U topology ul.ili'/cd lor the org<uiiz;i.tion ol tlie processors ol tlie

parallel architecture. In general, nodes and edges of a POG are not associated 

with weights, since most of the commercially available multicom|)uter archi­

tectures are homogeneous with identical processors and communication links.

In a multicomputer architecture, each adjacent pair of processors commu­

nicate with each other over the communication link connecting them. Such 

communications are referred as single-hop communications. However, eiich 

non-adjacent pair of processors can also communicate with each other via soft­

ware or hardware routing. Such communications are referred as multi-hop com­

munications. Multi-hop communications are usually routed in a .static manner 

over the shortest path of links between the communicating pairs of processors. 

Communications between non-adjacent pairs of processors can be associated 

with relative unit communication costs. Unit commu;'; ication cost is defined



as the cominunication cost per unit of information. Unit communication cost 
between a pair of processors will be a function of the shortest path between 

these processors and the routing scheme used for multi-hop communications. 

For example, intermediate processors in the communication path are inter­

rupted in software routing so that each multi-hop communication is realized as 

a sequence of single-hop messages. Hence, in software routing, the unit commu­

nication cost is linearly proportional to the shortest path distance between the 

pair of communicating processors. Note that, in this communication model, 

unit communication costs between adjacent pairs of processors are taken to be 

unity.

Hence, the communication topology of the multicomputer can be modeled 
by an undirected complete graph, referred here as the Processor Communi­

cation Graph (PCG). The nodes of the PCG represent the proces.sors and 
the weights associated with the edges represent the unit communication costs 

between pairs of processors. As is mentioned earlier, PCG can easily be con­

structed using the topological properties of the POG and the routiiuj scheme 

utilized for inter-processor communication. In the PCG, edges betwec'.n i>airs 

of nodes representing the adjacent pairs of processors denote physical links 

whereas edges between ])airs of nodes representing non-adjacent pairs of i)ro- 

cessors denote virtual communication links (i.e. communication paths) estab­

lished for routing multi-hop communications.

The objective in mapping TIG to PCG is the minimization of the exiMictcul 

execution time of the parallel program on the target architecture represented by 

the TIG and the PGG respectively. Thus, the mapping problem can be modeled 

as an optimization problem by associating the following quality measures with 

a good mapping : •
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• Interprocessor communication overhead should be minimized. Tasks 

which have high interaction, i.e., large amount of data exchange, should 

be in the same ])roce.ssor or nearby processors.

• Gomputational load should be uniformly distributed among processors. 

Gomputational load assigned to each processor should be equal as much 

as possible in order to minimize processor idle time.
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The parallel execution time is expected to decrease as these criteria are satis­

fied.

A mapping problem instance can be formally defined as follows. An in­

stance of the: ma.p|)ing probhnn iiic.ludcs two undirect<4l gra.plis, 'Га..чк lnt<n- 

action Graph (TIG) and Processor Communication Graph (PCG). The TIG 
Gt {V,E), has |y | = N  vertices labeled as (1 , 2 , . . . ,  г, , Л̂ ). Vertices of 

the TIG represent the atomic tasks of the parallel program. Vertex W('ight »;,■ 

diuiotcs the computational cost associated with ta.sk i for 1 < i < N. lodge 
weight e,j denotes the volume of interaction between tasks i and j  connected by 

edge {i,j) G E. The PCG Gp{P,D), is a complete graph with |P( = К  nodes

and |D| = ( ^  ) edges. Nodes of the PCG, labeled as (1 , 2 , . . .  ,p, . . . ,  K),

represent the processors of the target multicomputer. Edge weights dpq, for

1 < P) <7 ^  V Ф Ч1 denote the unit communication cost between proces­

sors p and q.

Given an instance of the mapping problem with TIG, Gt {V·, E)., and PCG, 

Gp{P,D), question is to find a many-to-one mapping function M : V P,

which assigns each vertex of the graph Gp to a unique node of graph Gp\ and

minimizes the total interprocessor communication cost {GO)

CC = ^  dijdM{i)M(j) (3.1)

computational load of proces- 

1 < P < К  (3.2)

while having the computational load {CLp 

sors p)

CL,  =  ^  wi,
i e v , M { i ) = p

of each processor balanced. Here, M{i) = p denotes the label (p) of the ]>ro- 

cessor that task i is mapped to. In Eq. (3.1), each edge {i,j) of the TIG con­

tributes to the communication cost (CC), only if vertices i and j  are mapped 

to two different nodes of the PGG, i.e., M{i) 7  ̂ M{j). The amount of contri­

bution is equal to the product of the volume of interaction between these 

two tasks and the unit communication cost dp,, between ])rocessors p and q 

where p = M{i) and q = M{j). The computational load of a processor is the 

summation of the weights of the tasks assigned to that processor. Perfect load 

balance is achieved if CLp = 1 ^  P ^  · Balancing of the
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computational loads of the. processors can be explicitly included in the cost 

function using a. term which is ininimized when the loa.ds of tln  ̂ |)ioc('ssors ai(' 

equal. Another scheme is to include balancing criteria implicitly in the algo­

rithm. Figure 3.1 illustrates a sample mapping problem instance with /V = 8 

tasks to be mapped onto /v = 4 processors. Figure 3 .1 (a) shows the TIG with 
N = H t.asks. Fignn^ 3 .1 (b) shows Uk' РОС for a. 2-dimensiona.l hypercub<‘, 

and Figure 3.1(c) shows the corresponding PCG. In Figure 3.1, numbers inside 
the circles denote the vertex labels, and numbers within the parenthesis denote 
the vertex or edge weights. Binary labeling of the 2-dimensional hypercube is 

also given in Figure 3.1(b). Note thcit unit communication cost assignment to 

edges is performed assuming software routing protocol for multi-hop commu­

nications. A solution to the mapping problem instance shown in Figure 3.1 

is

i 1 2 3 4 5 6 7 8

M{i) 1 1 4 3 2 4 2 3

Communication cost of this solution can be calculated as
8

CC — Y2 = 8

Computation loads of the ])rocessors are CL·,, = 3 lor 1 < p < 4. Hence, perfect 

load balance is achieved since, (^f=j t0i)/4 = 3.

3.3 Solving th e M apping Problem  U sing M FA

In this section, a formulation of the Mean Field Annealing (MFA) algorithm 

for the mapping problem is proposed. The TIG and PCG models described 

in Section 3.2 are used to rei^resent the map])ing problem. Tin* formulation 

is first ])resented for problems modeled by dense TIGs. The modification in 

the formulation for map])ing problems that can be re|)resented l>y sparse' TIGs 

is pro'seuitiid later. In this section, an efficieuit implementation scheme fur the 

proposed formulation is also pro'sented.
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(2) ( 1)

(0 0 ) (0 1 )

(c)

Figure 3 .1 . A mapping problem instance, with (a) TIG, (b) POG (whicli 
represents a 2-dimensional hypercube) and (c) PCG.



CHAPTER. :l MFA FOR T il F M APPING PRO BLEM

3.3.1 Form ulation

A spin matrix, which consists of N  task-rows and K  processor-columns, is 

used as the representation scheme. Hence, N  x K  spins are used to encode 

the solution. The output s,·,, of a spin (i,p) denotes the probability of mapping 

task i to processor p. Here, .s,,̂  is a continuous variable in the range 0 < .s·,,; < 1 . 

When MFA algorithm reaches to a solution, s])in values converge to 1 or 0 

indicating the result. If .s,·,; is 1 , this means that task i is mapped to processor p. 

For example, a solution to the mapping instance given in Figure 3.1 can be 

represented by the following N  x K  spin matrix.

K Processors 
1 2  3 4

N Tasks <

1
2

3
4
5
6
7
8

1 0 0. 0 
1 0  0 0 
0 0 0 1 

0 0 1 0  

0 1 0  0 
0 0 0 1 

0 1 0  0 

0 0 1 0

Note that, this solution is identical to the solution given at the end of Sec­

tion 3 .2 .

Following energy (i.e., cost) function is proposed for the mapping ])ioblem

fi(s) — ^  ^2  X] îjSipSjqdpq -b '22 22 (3-4)
“  t =  l j j i i  p= l  q:fip ^  t = l  v = \

Here, Cij denotes the edge weight between the pair of tasks i and j ,  and Wi 

denotes the weight of task i in TIG. Weight of the edge between processors p 

and q in the PCG is represented by dpq.

Under the mean field approximation, the expression {H{s)) for the expected 

value of objective function given in Eq. (3.4) will be similar to the expression 

given for //(s) in Eq. (3.4). However, in this case, .s,,,, s,·,, and .Sjp sliould be 

replaced with (.sip), (.s,·,,) and (.Sj,,) respectively. For the sake of simplicity, .s,·,.
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is used to denote the expected value of spin (f,p) (i-e·, si>in average' (-Sip)) in 
the following discussions.

In Eq. (,3.4), the terni .s·,·,, x-Sj,, denotes the probability that task i and ta.sk j  

are mapped to two different processors p and q, respectively, under the mean 

field cipproximation. Heneé, the term e¿j x s,p x Sj,, x dp, represents the weighted 

interprocessor communication overhead introduced due to the mapping of the 

tasks i and j  to different processors. Note that, in Eq. (3.4), the first quadru­

ple summation term covers all processor pairs in the PCG for each edge pair 

in the TIG. Hence, the first quadruple summation term denotes the total in­
terprocessor communication cost for a mapping represented by an instance of 

the spin matrix. Then, minimization of the first quadruple summation term 
corres])onds to th(i minimization of tlie interproc(is.sor ('.ommnnica.ti(ni ovím IuvuI 

for the given mapping problem instance.

Second triple summation term in Eq. (3.4) computes the summation oí the 

inner products of the weights of the tasks mapped to individual processors 
for a mapping. Global minimum of the second triple summation term occurs 

when equal amount of task weights are mapped to each processor. If there is 

an imbalance in the mapping, second triple summation term increases with the 

square of the weight of the imbalance, penalizing imbalanced mappings. The 

parameter r in Eq. (3.4) is introduced to maintain a balance between the two 

optimization objectives of the mapping problem.

Using the mean field approximation described in Eq. (2.8), the expre.ssion 

for the mean field </;,·„ experienced by spin (?',p) can be found to be

N i< N

i‘3̂ pn  ̂ Sjp'WjWj
.if-' 'ifv .if'

(3.5)

In a feasible mapping, each task should be mapped exclusively to a single 

processor. However, there exists no penalty term in Eq. (3.4) to handle this 

feasibility constraint. This feasibility constraint is explicitly handled while 

updating the spin values. Note that, from Eq. (2.4), individual spin average 

Sip is proportional to i.e. Sip a Then, S{p is normalized as

Z L  c*··./·'·
(Xfi)
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This normalization enforces the summation of each row of the spin matrix to 

be equal to unity. Hence, it is guaranteed that all rows of the s])in matrix will 

have only one spin with output value 1 when the system is stal)ilized.

Eq. (3.5) can be interpreted in the context of the mapping problem as 

follows. First double summation represents the rate of increase expected in 

the total interprocessor communication cost by mapping task i to processor p. 

Sc'cond siimimdion niprescmts the rate of iiicrea.se in tlie computational loa.d 

balance cost associated with processors p by mapping task i to processor p. 
Hence, —<i>ip may be interpreted as the expected rate of decrease in the overall 
quality of the map]>ing by mapping task i to proces.sor p. Then, in Eq. (3.6), 

Sip is updated such that the probability of task i being mapped to processor p 

increases with increasing mean field experienced by spin {i,p). Hence, the 
MFA heuristic can be considered as a gra,dient-d(iscent typ(  ̂ algorithm in this 

context. However, it is also a stochastic algorithm similar to SA due to the 

random spin update scheme and the annealing process.

In the general MFA algorithm given in Figure 2.2, a randomly chosen spin 

is updated at a time. However, in the proposed formulation of the MFA for 

the mapping problem, K  spins of a randomly chosen row of the spin matrix 

;i.re updated at a time. 'I'liis update operation is |)erfonn('<t a.s follows. Meaii 

fields (/)ip, {I < p < K)  experienced by the spins cit the i-th row of the spin 

matrix are computed by using Eq. (3.5) for p = 1 , 2 , . . . ,A '. Then, the spin 

averages $ip, I < p < K  are updated using Eq. (3.6) for p = 1 ,2 , . . . ,  /1'. Each 

row update of the spin matrix is referred as a single iteration of the algorithm.

The system is observed after each spin-row update in order to detect the 

convergence to an equilibrium state for a given temperature [34]. If energy 

function 11 is not decreasing after a certain number of consecutive spin-row 

updates, this means that the system is stabilized for that temperature [34]. 

Then, T  is decreased according to the cooling schedule, and iteration j^rocess 

is re-initiated. Note that, the computation of the energy difference AH, ne­

cessitates the computation of H (Eq. (3.4)) at each iteration. The complexity 

of computing H is 0{N'^ x K^), which drastically increases the complexity of 

one iteration of MFA. Here, we propose an efficient scheme which reduces the
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coniplexity of energy difFerence computa.tion by an a.sym|)l,o(,ical r;i.c(.or.

The incremental energy change SHip because of the increnienial change' S.̂ ip 

in the value of an individual spin (f,p) is

8H = SHip = <j)ipSs,p (3.7)

due to Eq. (2.5). Since, H{s) is linear in Sip (see Eq. ( 3.4)), above equation is 

valid for ciny amount of change A.s,·,, in the value of s|;.n that is

A/-/ = A Hip — (j)ipAstp (3.8)

At each iteration of the MFA algorithm, K  spin vedues are updated in a .syn­

chronous manner. Hence, Eq. (3.8) is valid for all spin updates performed in 

a particular iteration (i.e. for 1 < p < K). Thus, energy difFerence due to the 

spin-row update operation in a particular iteration can be computed as

i<
AH  = A/-/,· = ^  (l îpAs

7i=l
ip (3.9)

where As,p =  .5 ·̂ ’" — The complexity of computing Eq. (3.9) is only 0{K)  

since mean field (^,p) values are already computed for the spin updates.

The formulation of the MFA algorithm for the mapping problem instances 

with sparse TIGs is done as follows. The expression given for <pip (Eq. (3.5)) 
can l)e modified for sparse TIGs as

i< N

~  y~! SjpWjWj
jeAdj( i )  q^p i+i

(3.10)

Here, Adj{i) denotes the set of tasks connected to task i in the given TIG. Note 

that, sparsity of the TIG can only be exploited in mean field computations since 

spin update operations given in Eq. (3.6) are dense operations which are not 

effected by the sparsity of the TIG.

The steps of the MFA algorithm for solving the mapping problem is given in 

Figure 3.2. Complexity of computing first double summation terms in Eq. (3.5) 

and Eq. (3.10) are 0 { N  x K)  and 0{davg x H) for dense and sparse TIGs 

res])ectively. Here, d„,„, denotes the average degree of the vertices of tlu' sparse 

d'lG. .Second summation opi'rations in Fi]. (3.5) and Eq. (.3.10) are both 0{N)  

for dense and sparse TIGs. Then, complexity of a single mean field com])utation
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1 . Get initial temperature, and set T — Tq

2 . Initialize the spin averages s = [.Sj i, . . . ,  Si,,,. . . ,  .syv/\·]

3. While temperature T  is'in the cooling range DO

3.1  While H is decreasing DO

3.1.1 .Select a task i at random.

3 . 1 .2  Compute mean fields of the spins at the г-th row

Ф1р — ■“ ^iJ^jq^pq ~ ■̂jp'<̂i'<̂j

3.1.3 Compute the summation

3.1.4 Compute new spin values at the г-th row

^  ^ф,„/т foj. 1 < p < к

3.1.5 Compute the change in energy due to these s|)in iii)dat('s

АЯ = Ei=, -  Si,)

3 .1.6 update the spin values at the г-th row

Sip — ¿'¿p for I < p < К

3.2 Т = с у х Т

Figure 3 .2 . MFA algorithm for the mapping problem.
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is 0 { N  X K )  and 0{davg x  N + N) for dense (Eq. (3.5)) and sj)ars(i (Eq. (3.10)) 

TIGs respectively. Hence, complexity of mean field computations for a spin row 

is 0 { N  X K^) for dense TIGs, and 0{davg x ■{■ N x K)  for spar.se TIGs (step

3 . 1 .2 in Figure 3 .2 ). Spin update computations (steps 3.1.3, 3.1.4 and 3.1.6) and

energy difference computation (step 3.1.5) are both 0{I()  operations. Hence, 

the overall complexity of a single MFA iteration is 0 { N  x IĈ ) for dense TIGs, 

and 0 {dnvg X  X A') for s])arse TIGs.

3.3.2 A n Efficient Im plem entation  Schem e

As is mentioned earlier, the MFA algorithm proposed for the mapping problem 

is an iterative process. The complexity of a single MFA iteration is mainly due 
(.o the iiHiJU) fic'ld (•.om|)uta.tions. In tliis siu'.tiuii, we |>ropos(i ;ui eilieieiit imph;- 

mentation scheme which reduces the complexity of the mean field computations 

and hence the complexity of the MFA iteration by asymptotical factors.

Assume that, ¿-th spin-row is selected at random for update in a particular 

iteration. The expression given for 4>ip (Eq. (3.5)) can be rewritten by changing 

the order of summations of the first double summation term as
l< N N-

<f>ip =  ~  dpq ~  1' i

I<
(3.11)

where

q̂ p

N
îq

j^i
N

(3.12)

'̂ ¡Hp (3.13)

Here, Xiq represents the rate of increase expected in the interprocessor commu­

nication by ma])ping task i to a ])rocessor other then q (for the current map])ing 

on processor </), assuming uniform unit communication cost between all pairs 

of processors in PCG. Similarly, •0.> represents the rate of increase expected in 

the computational load balance cost associated with processor p, by mapping 

task i to ]:)rocessors p (for the current ma])])ing on ])rocessor p).
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For an efficient ini])lementation, the overall mean field coinputa,tion involved 

in a single iteration can be computed using the following matrix equation

= - D  X Ai -  7

= -© i -  i 'i'i (3.15)

Here, D is a K  x K  adjacency matrix representing P(X5 (i.e. and
<l>i, Ai \l̂ i and ©i are column vectors with K elements, where

· ' * ? * ' · ? ['^tl) · · · i · · · ?

=  [V’ti, · · ·, Vdp, · · ·, ©i = [̂ ¿1, · · ·, Oip, . . . ,  9iK]'  ̂ (3.16)

The complexity analysis of the proposed implementation scheme for dense 

TICs is as follows. Complexity of computing A,·,/and i/),> 'xAh 0{N).  
Complexity of constructing Aj and 'i'i vectors are both 0 { N  x K), since both 

vectors contain K  such entries. Complexity of computing the matrix-vector 

product required in Eq. (3.14) is 0{IO). Flence, the overall complexity of 
computing the vector (Eq. (3.14)) reduces to 0 {N  x l\ -j- K^) — 0 {N  x 

K)^ since N K  in general. The complexity of K  spin updates and the 

computation of A // are both 0{K).  Thus, the proposed scheme reduces the 

computational com|')lexity of a single MFA itera.tion to 0 {N  x I\) foi' dense' 

TICs with N :> K.

The complexity analysis of the proposed implementation for sparse TICs 

is as follows. Note that, the sparsity of the TIC can only be exploited in the 

computation of A,-,’s since

N

j&Adj[i)

(3.17)

for sparse TICs. Hence, the complexity of computing an individual A„, is 

only 0{davg)· Tlius, the complexity of constructing the Aj vector reduces to 

0{dava The complexity of computing the ©i vector in Eq. (3.15) reduces

to 0{davg X H + However, the complexity of constructing the vector 

required in Eq. (3.15) is 0 { N  x /F), dominating the overall comph'xity of tlu' 

mean field coni])utations. The c.om])lexity of computing tin* \P̂ i vector can bc' 

reduced as follows. The computation of ■(/>,·,, in Eq. (3.13) can be re-formulated
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as
N N  N

./·/./■ ,/// ./-I
■̂Gp -  Wilp-w'iSip (3.18)

wIk'IC'
N

lp = Y
i=l

■JV (3.19)

Here, 7 j, represents the computational load of ])ror.e.s.sor />, for tlu' ciirii'iit ma.|)- 

ping on processor j). Note that, computationally, 7 ,, represents weighted sum 

of spin values of the ;>th column of the spin matrix. Hence, initial 7 ,, value of 

each column p (1 < p < K)  c<m be computed by using Eq. (3.19) for the initial 

spin values. Then, jp values can be updated at the end of each iteration (i.e. 

after spin updates) by using

(.3.20)

for 1 < p < K.

The computation of initial 7 ,, values can be excluded from the complexity 

analysis since they are computed only once at the very beginning of the cUgo- 

rithm. In this scheme, the computation of an individual '0,p using Eq. (3.18) 
is ail 0 ( 1) ^»pc.ratiou. Hence, the coiistrucLiou of the Vtj vector reciuired in 

Eq. (3.14) becomes an 0{K)  operation. Thus, the'complexity of computing 

the mean field values reduces to 0(f4„y x R  + K^). Note that, l.he update 

of an individual 7 ,, value (using Eq. (3.20)) at the end of the iteration is an 

(9(1) operation. Hence, the oveicdl complexity of 7 p updates is 0{K)  since 

K  weighted column sums should be updated at each iteration. Note that, 

complexity of spin updates and energy difference computation are also 0{K)  

for sparse TIGs. Hence, the implementation scheme proposed for sparse TIGs 

reduces the complexity of a single MFA iteration to 0{davg x R  + E'^).

3.4 Perform ance of M ean Field  A nnealing A lgorithm

This .section ])resents the i)erformance evaluation of the Mean Field Aniu'aliug 

(MFA) algorithm for the mapping problem, in comparison with two well-known
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mapping heuristics: Simulated Annealing (SA) and Kernighan-Lin (KL). Each 

algorithm is tested using randomly generated mapping problem instances. In 

tlic following sections implementations are describoxl in order to give a better 

understanding of the discnssc'd algorithms.

3.4.1 M FA Im plem entation

MFA algorithm described in the previous section (Figure 3 .2 ) is im])lemented 

for testing the performance of thé algorithm. Cooling process is started from an 

initial temperature which is found experimentally. For the mapping problem 

instances used in the experiments, initicU tempercvture To is found to be varying 

between 1 < To < 10. Coefficient r which determines the balance between two 

optimization criteria is also found experimentally, varying between 0.1 < r < 

1.5. At each temperature, iterations continued until A H  < e for L consecutive 

iterations. L is set ecpial to N  initially. Parameter c is chosen to Ix' Ix'tween 

lO"'  ̂ < e < 1 0 “C Temperature is decreased using a = 0.9 until T  is less than 

To/1.5. Tlien, L is set to ¿/3 and cv is set to 0.5 and cooling is contiiuuxl until 

T  is less then To/5.0. Resulting spin values after this cooling operation are set 

to 0 if they are less than 0.5 and set to 1 if they are greater than 0.5. Then 
the result is decotled as descrilred in Section 3.3 and the resulting ma].)|)ing is 

found.

3.4.2 K ernighan-Lin Im plem entation

Kernighan-Lin heuristic is not directly applicable to the mapping problem since 

it was originally proposed for graph bipartitioning. In order to apply KL 

heuristic to the mapping problem a two phase approach is used. In the first 

phase, task interaction graph Gt {V,E) is partitioned to K  clusters, where K  

is equal to the number of processors. These K  clusters are then mapped to 

proces.sor graph (Ii>{P·, D) using a one-to-one mapping heuristic, in tlx' second 

phase. One-to-one mapping heuristic used in this work is a variant of KL 

heuristic.

For the clustering phase, Kernighan-Lin heuristic is implemented ('lliciently
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as described by Fiduccia and Mattheyses [7]. In order lo apjjly KL to /\-vvay 

grapli partitioning two schemes are used. First one, partitioning by recursive 

bisection (KL-RB), recursively ])artitions the initial graph to two partitions 

until K  partitions are obtained. Other scheme, partitioning by pairwise inin- 

cut (KL-PM), starts with an initial A'-way partitioning and then minimizes the 

cutsizes between each pair of partitions until no improvement can I)e done. In 

KL heuristic balancing of the work load of processors is done implicitly by the 

algorithm. When moving one node from one partition to another, weights of 

the partitions are tested and moves causing intolerable imbalance are rejected.

In the beginning of second phase, K  clusters formed in the first phase are 

mapped to the K  processors of the multicomputer randomly. After this initial 
mcipping, communication cost is minimized by performing a sequence of cluster 

swaps. An individual cluster swap corresponds to interchanging the mapping 

of a pair of clusters.

3.4.3 Sim ulated  A nnealing Im plem entation

Simulated Annealing algorithm, implemented for solving the mapping problem, 

uses the one phase approach to map the TIG onto PCG. In simulated annealing, 
starting from a randomly chosen initial configuration, configuration space is 

searched for the best solution using a probabilistic hill climbing algorithm. A 

configuration of the mapping problem is a mapping between TIG and PCG, 

which assigns each task in TIG to a processor in PCG. In order the search the 

configuration space, neighborhood of a configuration must be defined. For the 

implementation in this work, neighborhood of a configuration consists of all 

configurations which results with moving one vertex (task) of the TIG from 

the maximum loaded node (processor) of the PCG to another node of PCG. At 

each iteration of the simulated annealing algorithm, one of the possible moves is 

chosen randomly as a candidate move. Then the resulting decrease in the total 

communication cost after performing the candidate move is calculated without 

changing the configuration. If the candidate move decreases tlu' cutsize, it 

is realized. If candidate move increases the cutsize, then it is realized with a 

probability which decrea.ses with the increasing positive diiferem'.e cau.sed in th(>
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total cutsize by that move. Acceptance probcibility of tlie moves that increases 

the cost is controlled with a temperature parameter T  which is decreased using' 

an annealing schedule. Hence, as the annealing proceeds acceptance probability 

of uphill moves decreases. Cooling schedule used in the implementation of SA 

algorithm is similar to the schedule given in [22].

3.4.4 E xperim ental R esu lts

In this section, performance of the MFA algorithm is discussed in comparison 

with SA and KL algorithms. These heuristics are experimented for mapping 

randomly generated TIGs onto mesh and hypercube connected multicomput­

ers.

Six test TIGs are generated with N  = 200 and 400 vertices. Vertices of 

these TIGs are weighted by assigning a randomly chosen integer weight between 
1 and 10 to each vertex (1 < iw,· < 10, for 1 < i < N). Interaction patterns 

among the vertices of these TIGs are constructed as follows. A maximum vertex 

degree, dmax, is selected for each test TIG (dmoa,· = 8,16,32) such that, degree 
di of each vertex i is a randomly chosen value between 1 and d„iax (i.e. 1 < d,· < 

dm,,.,·, for 1 < i < N). Then, ea.cli vertex i of TIG is connected to </,· randomly 

chosen vertices. Resulting edges are weighted rcuidomly with integer values 

varying between 1 and 10. These TIGs are mapped to 3-, 4-, 5-dimensional 

hypercubes and 4 x 4, 4 x 8  two dimensional mesh hiulticomputers. PGGs 

corresponding to these interconnection topologies are constructed assuming 

software routing as is described in Section 3 .2 .

Tables 3.1, 3.2 and 3.3 illustrate the performance results of KL-RB, KL- 

PM, SA and MFA heuristics for the generated mapping problem instances. In 

these tables, N  and denote the number of vertices and edges in the test 

TIGs respectively, and K  denotes the number of processors on the target PCG. 

lnt('rcomH'ction topology of the ta,rg(>t POC! is denoted by 'I\ where JI denotes 

the hypercube interconnection to])ology and M denotes the mesh interconiH'c- 

tion topology. Each algorithm is executed 10 times for each problem instance, 

starting from different, randomly chosen initial configurations. Averages of the 

results an; illustrated in 'Tables 3.1, 3.2 and 3.3,
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Table 3.1. Average.s of the total communication costs of the solutions found 
by KL-RB, KL-PM, SA and MFA heuristics, for randomly generated mapping 
problem instances.

PROBLEM SIZE AVERAGE COMMUNICATION COST
N E\ K T KL-RB KL-PM SA MFA

200 544 8 II 1807.4 1846.0 1595.1 1671.4
200 544 16 H 2819.9 2747.1 2180.0 2333.4
200 544 32 H 4098.8 4710.4 2879.0 3181.6
200 1 12 0 8 II 5421.9 5494.7 4947.8 5092.4
200 1 12 0 16 H 7742.4 7816.1 6699.1 6840.3
200 1 12 0 32 II 10377.1 11280.2 8495.7 9200.3
200 2152 8 H 12721.6 12959.0 12018.5 11956.2
200 2152 16 H 17828.9 17859.9 16201.2 16261.2
200 2152 32 II 23127.6 24260.3 20407.0 20586.0
400 1227 8 H 4360.6 4444.5 3772.3 4235.6
400 1227 16 II 6096.0 6073.2 5086.4 5615.9
400 1227 32 II 8420.2 7999.9 6485.0 7184.0
400 2283 8 II 11247.1 11491.5 10152.1 10744.3
400 2283 16 II 15566.7 15896.9 13626.7 14197.5
400 2283 32 II 20543.8 20527.1 17169.8 18209.6
400 4298 8 II 25318.3 25832.1 23507.6 23561.1
400 4298 16 II 34590.6 35395.4 31427.2 32127.6
400 4298 32 H 45053.8 45098.1 39453.0 40133.8

200 544 16 M 3364.2 3318.7 2659.7 2996.0
200 544 32 M 5618.7 6822.5 4260.4 4580.0
200 1 12 0 16 M 9234.2 9318.2 8432.3 8121.7
200 1 12 0 32 M 14659.9 16476.4 13556.0 12456.9
400 1227 16 M 7341.4 7357.0 6293.0 6745.0
400 1227 32 M 12207.4 11758.6 9924.8 10780.0
400 2283 16 M 18670.9 19133.0 17480.1 16631.6
400 2283 32 M 29827.0 30156.3 28319.1 26078.2
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Table 3 .2 . Averages of the computational loads of the minimum and maxi­
mum loaded processors for the solutions found by KL-RB, KL-PM, SA, MFA 
heuristics, for randomly generated mapping pr'oblem instances.

PROBLEM SIZE AVERAGE MIN-MAX LOAD
N 1^1 K T KL-RB KL-PM SA MFA

2ÜÜ 544 8 H 125.0 153.3 126.8 150.2 1.35.1 142.7 1.32.2 143.6
200 544 16 H 59.0 80.0 63.4 75.0 64.0 74.4 54.9 83.1
200 544 32 H 28.6 41.6 30.8 , 37.0 : 29.2 41.0 28.4 41.6
200 1 1 2 0 8 H 121.4 155.6 125.7 150.6 134.1 142.9 127.0 149.4
200 1 12 0 16 H 59.1 81.3 63.3 74.9 64.0 74.9 61.6 77.8
200 1 12 0 32 H 28.6 42.4 29.4 37.0 28.2 42.8 30.7 39.4
200 2152 8 H 120.2 156.9 124.4 149.8 133.3 143.5 128.9 149.2
200 2152 16 H 57.4 81.8 62.0 74.0 63.1 67.9 60.7 79.4
200 2152 32 H 27.3 42.8 31.0 37.0 27.8 40.4 25.8 44.1
400 1227 8 H 250.9 319.4 259.2 313.0 281.7 290.6 281.6 289.9
400 1227 16 H 124.3 164.6 129.4 156.8 138.1 148.8 135.6 L50.4
400 1227 32 II 60.2 87.0 64.6 78.0 66.0 77.0 .58.7 86.7
400 2283 8 H 241.7 313.0 248.4 300.6 280.1 270.7 266.9 284.4
300 2283 16 II 115.7 I59.S 124.3 149.9 1.32.6 143.2 126.5 149.3
400 2283 32 II 56.4 84.5 62.2 74.0 63.5 74.0 62.4 76.4
400 4298 8 II 253.6 331.0 261.6 318.8 285.4 298.3 273.4 309.7
400 4298 16 H 122.2 169.9 131.2 . 158.5 ,1.38.8 153.0 135.3 1.55.2
400 4298 32 H 59.5 88.9 65.0 79.0 67.3 77.7 .58.2 87.6

200 544 16 M 58.6 79.7 63.2 74.8 63.2 74.4 62.8 76.4
200 544 32 M 28.7 41.4 31.0 37.0 29.1 .39.5 26.0 42.6
200 1 12 0 16 M 58.5 81.0 63.2 75.0 64.0 75.8 61.3 77.8
200 1 12 0 32 M 28.7 42.1 30.5 37.0 28.6 42.9 26.1 42.3
400 1227 16 M 12 1 .0 167.0 129.2 156.6 138.1 147.6 136.4 151.4
400 1227 32 M 59.5 86.2 64.1 78.0 64.6 81.8 63.3 80.4
400 2283 16 M 117.4 161.5 124.1 149.9 131.3 146.0 127.3 149.6
400 2283 32 M 56.3 83.9 62.1 74.0 63.0 76.9 .59.6 78.0
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'Table .‘j..·]. Average e.xeculion limes (in seconds) of KL-RB, KL-PM, S'A and 
MFA heuristics, for randomly generated mapping problem instances.

PROBLEM SIZE AVERACxE EXECUTION TIMES
N E I< T KL-RB KL-PM SA MFA

200 544 8 H 1.07 5.74 80.72 19..57
200 544 16 IT 1.53 13.70 127.17 46.17
200 544 32 H 3.29 29.60 245.10 101.84
200 1 12 0 8 H 1.63 7.61 64.10 14.39
200 1 12 0 16 H 2.2 14.56 144.04 -58.11
200 1 12 0 32 H 5.11 40.54 282.65 200.53
200 2152 8 H 2.52. 10.93 64.22 26.07
200 2152 16 H 3.46 23.66 156.65 61.94
200 2152 32 H 7.60 45.38 373.85 294.94
400 1227 8 H 2.17 10.05 168.86 25.14
400 1227 16 H 2.98 29.74 310.68 164.17
400 1227 32 H 6.41 68.04 681.10 360.40
400 2283 8 H 3.25 16.02 . 167.07 26.67
400 2283 16 II 4.36 39.79 383.20 88.61
400 2283 32 H 8.61 88.85 6.32.80 221.60
400 4298 8 II 5.42 25.49 L55.25 90.42
400 4298 16 H 7.05 64.88 402.95 171.26
400 4298 32 H 12.59 125.14 553.00 437.62

200 544 16 M 1.5 1.4 165.7 24.8
200 544 32 M 3.3 29.6 2.58.7 82.6
200 1 12 0 16 M 2.3 14.8 124.2 36.2
200 1 12 0 32 M 5.6 38.4 293.1 122.0
400 1227 16 M 3.1 26.7 280.5 108.0
400 1227 32 M 6.7 60.4 565.1 375.2
400 2283 16 M 4.4 41.7 363.8 130.9
400 2283 32 M 8.7 82.8 573.5 540.8
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'Fahlcs İ5.1 and d.2 ¡llusl.i î.l,c the c|uality of tlie sulution.s ul)t¿ .̂iπed !>>' Kl -̂ 

H.n, KL-PM, SA a,nd Mh'A İKMiristics. Averag<i tuta.1 (U)nuımMİ<a,titnı costs t)l 

the solutions are displayed in Table 3.1, and average computational loads of 

the maximum and minimum loaded processors are displayed in Table 3.2. As 

is seen in Tables 3.1 and 3.2, the quality of the solutions obtained by MFA and 

SA heuristics are superior to KL heuristic. Solutions found by SA are slightly 
bett.er compared with the solutions found by MFA, in general. However, in 

some cases MFA performs better. The total communication costs found by 

KL-RB is less than the total communication costs found by KL-PM, however 

load balance of the solutions found by KL-PM is better than KL-RB.

Table 3.3 displays the average execution times of KL-RB, KL-PM, SA and 
MFA heuristics, for the generated mapping problem instances. As is expected, 

KL heuristic, is faster compared witli Mĥ A and SA heuristics. Observe that, 

MFA is always faster than SA. Execution time of MFA is comparable to KL- 
PM whereas, KL-RB is significantly faster compared with MFA and KL-PM. 

However, MFA is expected to perform better if an efficient cooling schedule 

can be devised by analyzing the algorithm in detail, which still remains as an 

open research issue. Furthermore, the execution times displayed in Table 3.3 

for MFA are not obtained by running the most efficient implementation pro- 

])osed in Section 3.3.2. The time complexity of the imi)lemented scheme is 

0 {dnyy X K ^ )  whereas the. complexity of the most efficient scheme propo.scd in 

Section 3.3.2 is 0{davg y- K  + K^)· Hence, the execution time of the algorithm 

is expected to decreiise significantly for large d̂ vg and K.

3.5 Parallelization  of M ean Field  A nnealing A lgorithm

As is mentioned earlier, heuristic algorithm used for solving the mapping prob­

lem is a preprocessing overhead introduced for the efficient implementation of 

a given parallel program on the target multicomputer. If the mapping heuristic 

is implemented sequentially, this ])reprocessing can be considered as the serial 

portion of the parallel program which limits the maximum efficiency of the 

parallel program on the target machine. For a fixed parallel program instance.
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(.iic cxi'ciil.ioii l.imcol I hr pa.ra.llrl prugra,in is rxprcU'd l.o drcrrasr wil.li iiicrras- 

ing number of ])roc('ssors in l.lie target multicomputer. Iluwevei', as is seen in 

d'a.bh' lor a. fixcsl 'I'KI, tlû  execution timeol a.ll ma.|)ping lieuristics inc.iaxise 

with increasing number of processors in the target multicomputer. Hence, the 

serial fraction of the parallel program will increase with increasing numlrer of 

processors. Thus, this preprocessing will begin to constitute a drastic limit 

on the. maximum efficiency of the ovcirall paralleliza.tion due to Amda.lil’s Law. 

Hence, parallelization of these mapping heuristics on the target multicomputer 

is a crucial issue for efficient parallel implementations.

Unfortunately, parallelization of the mapping heuristics introtluc.es another 

mapping problem. The computations of the mapping heuristics should be 
mapped to the processors of the same target architecture. However, in this 

case, the parallel algorithm for the mapping heuristic should be such thiit 
its mapping can be achieved iii.l.uiLnHdy. Furthermore, the in'tuitive mapping 
shoultl lead to an eilicient jrarallel implementation of the mapping heuristic. For 

these reasons, the target mapping heuristic to be parallelized should involve 

regular and inherently parallel computations. MFA algorithm proposed in 

Section 3.3 for the general mapping problem has these properties for efficient 

parallelization. Following paragraphs discuss the efficient parallelization of the 

proposed mapping heuristic for multicomputers.

Assume that, MFA heuristic is to be used to map a given parallel program 

represented with a TIG' having N vertices on a target multicomputer with K 

processors. The MFA heuristic will use an N x I( spin matrix for the mapping 

operation. The question is to map the computations of the MFA heuristic 

to the same target computer (with the same number of K i)rocessors). As is 

mentioned earlier, MFA heuristic is an iterative algorithm. Hence, the mapping 

scheme can be devised by analyzing the computations involved in a particular 

iteration of the algorithm. Atomic task can be considered as the computations 

required for updating an individual spin. Note that, K spin averages at a 

])articular row of the s])in matrix are updated at each iteration. Hence, these 

K  spin updates can be computed in parallel by mapping each spin in a row 

of the spin matrix to a distinct processor of the target architecture. Thus, 

the N  X K  spin matrix is partitioned column-wise such that each processor
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is assigned an individual column of the s])in matrix. That is, column p of 

the spin matrix is mapped to i>rocessor p of the target architecture. Each 

processor is held responsible for maintaining and updating the spin values in 

its local column. Assume that, task-i is selected at random in a particular 

iteration. Then, each processor is responsible for updating the probability of 

task i being mapped to itself.

A single iteration of the MFA algorithm can be considered as a three phase 

process, namely, mean field computation phase, spin update phase, and energy 

difference computation phase. Each processor p should compute its mean field 

^ip (Eq. (3.5) or Eq. (3.10)) in the first phase, in order to update its local spin .s,·,, 
(Eq. (3.(i)) l:>y using this mcii.n li(;ld vah.u.! in the second |)ha.se. As is mentioiuid 

earlier, mean field computation phase is the most time consuming phase of the 

MFA algorithm. Fortunately, mean held com])utations are iiduu'iuitly pa.ra.lhil 

since there is no interactions between mean field computations involved in a 

particular iteration. However, a close look to Eq. (3.5) and Eq. (3.10) reveals 

that each processor needs most recently updated values of all spins except the 

ones in the ¿-th row in order to compute its local mean field value. Recall 

that, each processor maintains only a single column of updated spin values 

due to the proposed mapping scheme. Hence, this computational interaction 

necessitcites global interprocessor communication just priori to the distributed 

mean field computation at each iteration. The volume of global interprocessor 

communication is proportional to 0{N  x K), since each processor p needs all 

updated spin values except the ones in the f-th row, in order to compute its 

local (̂ ip. The volume of global interprocessor communication can be reduced 

to 0{K)  by considering the parallelization of the matrix equation given in 
Eq. (3.14).

Eq. (3.14) involves the following operations : construction of the Aj and 

SPj vectors, dense matrix vector product ©i = D x Aj and vector addition

= —©j — Note that, each processor p only needs to compute the pAh 

entry 9ip of the ©j vector, and the ;>th entry ißip of the vector in order to 

compute its local mean field value <j)ip in parallel. The matrix vector product 

can be performed in parallel by employing the scalar accuinalalion (.SA-MVP) 

scheme. In this scheme, each processor needs only the p-th row dp of the dense
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D matrix and the whole column vector Aj.

Each processor p can concurrently compute the />th entry A,p of the Ai 

vector by using Eq. (3 .1 2 ). Note that, q in Eq. (3 . 1 2 ) should be replaced by 

p in these computations. Then, a global collect (GCOL) operation is requii'ed 

for each processor to obtain a local copy of the A] vector. The GCOL opera­

tion is essentially appending K local scalars, in order, into a vector of si^e K 

and then duplicating this vector in the local memory of each i)roc('ssor. The 

GCOL operation requires global interprocessor communication. Note that, 

only K  local spin values should be collected globally thus reducing the volume 
of,communication during the GC'OL operation by an asymptotic factor of N.

After the GCOL operation, each processor has a local copy of the global 

Aj vector. Hence, each processor p can concurrently compute its local Oip by 
pcrfoi'iniiig tli<‘ iiiiH'i'-product -- dp x Aj. Then, cacli i)iuces.sui' p shoidd 

compute the p-th entry of the ’ÿj vector. Note that, each processor p already 

maintains the value. Hence, each processor can concurrently compute i/’ip 

using Eq. (3.18). Then, each processor p can concurrently compute its local 

mean field value (¡>ip by performing the local computation (¡>ip = —Oip — nl>ip. 

Note that, these computations are completely local computations and involves 

no interjjrocessor communication.

The second phase of an individual iteration of the MFA algorithm is highly 

sequejitial since global interaction exists between spin u|)dates due to tlu' nor­

malization process indicated l̂ y Eq. (3.6). Fortunately, the strong interaction 

can be relieved by noting the independent exponentiation o])erations involved 

in the numerator of Eq. (3.6). Hence, each processor p can concurrently com­

pute its local e'M'N' values. Then, a global sum (GSUM) operation is required 

for each processor to olHain a local copy of the global sum of the local exponen­

tiation results. The GSUM operation requires global interprocessor communi­

cation. After the GSUM operation each processor p can concurrently update 

its local spin value by computing Eq. (3.6). After computing .sj·“'*'', each pro­

cessor p should concurrently update its local 7 p values by using Eq. (3.18) for 

the use in the next iteration.

In the third phase, each processor should compute the same local copy of
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the global energy difference A//,· for global termination detection. Each pro- 

ces.sor p can concurrently compute its local energy difference A//,·,; = <j)ipAsip — 

“  •‘' i'jjO loca.1 s|)iii iii)da.te. d'heu, a (.¡SUM o|Hn'a.tion, which

requires global interprocessor communication, is recpiired for each ¡processor to 

compute a local copy of the global sum A//,· = X2p=i AHip.

Hence, the proposed parallel MFA algorithm necessitates three global com­

munication operations due to the CCIOL operation involved during the first 

phase and two C5SUM operations involved in the second and third phases. In 

fine grain multicomputers, the volume of interprocessor communication is the 

important factor in predicting the complexity of the inter|)rocessor commu­

nication overhead. However, in medium grain multicomputers the number of 

communications is also important since high set-up time overhead is associated 

with each communication step. For example, set-up time is the dominating fac­

tor for short messages in such architectures. Note that, only a single floating 
variable reproisenting the running sum, is communicated during the GSUM 

operations involved in the last two phases of the parallel MFA algorithm.

Hence, reducing the number of GSUM operations required in the MFA 

algorithm will be a valuable asset in achieving efficient implementations on 

medium grain multicomputers. As seen in Eq. (3.9), there is an execution 

dependency between the computation of the energy difference A//, and spin- 

row updates. This execution dependency between the second and the third 

phase computations can be relieved by rewriting the expression for A//,· as 

follows
i<

All: ■

o l d

(3.21)

where //,■ =  J2p-i <j)ip-Sip is the partial energy contribution to the total energy 

H due to the spin values at the i-th row (i.e. H = ^«)· 'T'he ex|)rcssion

for the partial energy Hi can be expanded as

E I  {  n r u i
-  . s " ' ' ' )

i p  /

p = l

E S ’ -Y x p ^ t p

p = I

T j n c w  __  T j o l d

K I<

7;=1 1 1
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i<

I /1 ,
(3.22)

where A-i = Ei=i = Zp=i Bi = e JLi = E?=i ·

Hence, after each processor p computes its local a,p = e' '̂vN and bip — 

values, two global sunima.tions A{ — Ep=i “i> <'■'“ * B̂  — Ep=i 
can be accumulated in a sincjlc GSUM operation. After this single GSUM 

operation, each processor p can concurrently updcite its local spin value and 

com])ute its new partial energy value as Sip = UipfAi and /·/?“■’" = BifAi. If 

each processor keeps the partial energy associated with each row then
each processor ma,}' concurrently compute tlie same local copy of the glol)al 

total energy difference A H  = A/·/; = — Hf'L Note tliat, tliis scheme

reduces the number of GSUM operation from two to one. However, the volume 

of interprocessor communication remains the same since two floating point 

variables, representing the running sums A,· and B,·, are communicated during 

the communication steps involved in the GSUM operation.

The node program for a single iteration of the parallel MFA algorithm 

proposed for .solving the mapping problem is given in Figure 3.3. Note that, 

variables with “fp” and “p” subscripts denote the local variables. Variables with 

subscripts denote the global variables which are constructed and duplicated 
at the local memory of each processor after performing the indicated global 

operations. The proposed parallel algorithm can easily be im])lemented on any 

multicomputer having the GGOb and GSUM facilities.

As is seen in Figure 3.3, the propo.sed parallel MFA algorithm achieves 

perfect load balance. The parallel computational complexity of a single MFA 

iteration can be obtaiiuxl as follows. Uuring the parallel computation of A,p’s 

(step 2 ) each processor performs — 1 {(k — 1 ) multiplication/addition oper­

ations for den.se (sparse) TIGs. Here, d,· denotes the degree of vertex i in the 

TIG. During the parallel SA-MVP computation (step 3) each processor per­

forms K  multiplication/addition operations for both dense and sparse TIGs 

since the D matrix is a dense matrix. Each processor performs the same con­

stant amount of arithmetic, operations in the remaining steps (ste|)s h-? and
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1 . Select a task i at random.

2 . Compute Ajp YLj&Adj(i)

3. Perform GCOL operations to obtain a local copy of

Aj [A;I, . . . , Xip, · · · ) At7\]

4. Compute the inner product 0,p = dp^ x A;

5. Compute i/’.-p = t/;,(7p — w.s.p)

6. Compute the local mean field value 4>ip = dip + rtf̂ ip

7. Compute a,p = and hip = (j)ipt' "̂·^̂

8 . Perform GSUM to compute the local copies of

= Ei=i a«p and Bi = Ep==i K

9. Compute .s-jf"' =  (lipfAi and tlien A.s,p = -  Sijf

10. Compute = 5,7/1,· and then A7/,· = /7“''“' — /■/,·

1 1 . Uixlate 7p = jp + 'WiA.s'.p

12. Update ¿¡ip — .sip'" and Hi =

Figure 3.3. Node program for one iteration of the parallel MFA algoritlim for 
the mapping problem.
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steps 7- 1 2 ). Hence, the parallel computational com])lexity of the pro|)osed al- 

gm ithni is (J[N -|- A ) ami (){<lii„n + A ) for dense ami sparse 'i'l(!s lespeclively. 

Hence, linear speed-up can ecisily be achieved if communication overhead re­
mains ncgligil)le. Th(‘ communication complc.xity due to the (JCX)L (step .‘5) 

and GSUM (step 8) operations are discussed in general in the following para­

graph.

The interconnection schemes used in the processor organization of the mul­

ticomputers are usually symmetric in nature (i.e. POG is symmetric). GSUM 

and GCOL type of operations in such architectures is performed in two phase. 

In the first phase, a sequence of concurrent single-hop communications are per- 

foriTied to accumulate or collect the result in a root processor. In the second 

phase, the final result is broadcast from this root ])rocessor again using a se­

quence of concurrent single-hop communications. The number of concurrent 

single-hop communications in each phase will be proportional to diameter of 

the POG. For example, diameters of hypercube and mesh POGs are log-2 K and 

respectively. The overall concurrent volume of communications will be 

proportional to diameter and number of processors (K) in both phases of the 

GSUM and GCOL operations, respectively. If a full-duplex pair of communi­

cation links are used between each pair of directly connected processors (e.g. 

Intel’s iPSC/2 ) then, such global operations are performed in single plia.se by a 

sequence of concurrent single-hop exchange communications. In such an archi­

tecture, the number of concurrent single-hop communications and the overall 

volume of concurrent communication in GSUM and GGOL operations can be 

reduced by a factor of two.



4. MFA FOR THE CIRCUIT 
PARTITIONING PROBLEM

This chapter presents formulation of Mean Field Annealing (MFA) for solving 

the circuit partitioning problem. Section 4.1 describes the circuit partition­

ing problem, and summarizes the previous works on the circuit partitioning 
problem. In Section 4.2 the circuit partitioning problem is modeled as the 

graph partitioning problem and the network partitioning problem. Section 4..3 

presents the formulation of MFA for the graph partitioning problem and the 

network partitioning problem. MFA algorithms proposed for solving the graph 

partitioning problem and the network partitioning problem are parallelized as 

is describoxl in Section 4.4.

4.1 T he C ircuit P artition ing Problem

Partitioning of a VLSI circuit, which is delined with its components and sig­

nal nets, is an extensively studied problem. Partitioning means to divide tlu' 

components of a circuit into two or more evenly weighted partitions, such that 

the number of signal nets interconnecting them is minimized. This probhun, 

called the circuit partitioning problem, arises while dividing a circuit into parts 

that will be implemented separately. In some layout problems like, placement 

and floor-planning, divide-and-conquer algorithms, which necessitate dividing 

up the circuits hierarchically into parts with different minimization criteria, 

are used. Circuit partitioning is also needed within these algorithms [20]. The 

circuit partitioning problem first appeared because of the need for partitioning 

components of electronic circuits to circuit boards, minimizing the connections

45
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l)H.W('<Mi l>o;u(|s. Л iH'urisl.ic for solvin,t!; I.bis prolilcm is L';iv<‘ii in l.lic scmiii;i.l 

])a])er by Keniiglian and Lin [17]. In this work, tlio circuit,s a.rc: rc^prcscnitiHl as 

graphs and the problem is treated as the graph partitioning problem. In a later 

work by Schweikert and Kernighan [27, 37], deficiencies of using graph model 

are illustrated, and a new model called net-cut circuit model is proposed. The 

problem of partitioning circuits using this representation is called the network 

partitioning problem.

As both of the mentioned problems (the graph partitioning problem and the 

network partitioning problem) are proved to be NP-hard [8], finding efficient 

heuristics for them is an important issue. Various heuristics, e.g., Kernighan- 

Lin like algorithms [7], Simulated Annealing (SA) etc., are proposed and im­
plemented for solving tluise problems [20]. In this chapter. Mean Field Anneal­

ing (MFA) algorithm, is formulated for the circuit partitioning problem.

Algorithms used for solving the circuit partitioning problem are time con­
suming processes, and parallelizcition ol them is crucial. In this chapter, par­

allelization of MFA algorithms for solving the circuit partitioning problem on 

distributed-memory, message-passing multicomputers is also addressed.

4.2 M odeling th e  C ircuit P artition ing Problem

An instance of the circuit partitioning problem constitutes of a set of weighted 

components and a list of nets which defines the connection relationshii)s among 

the.se components. Nets can also be weighted; but, as this does not change the 

nature of the problem, we assume the weights of the nets to be unity. An 
(ixamj)le instance of tlui circuit partitioning problem is given ludow.

com ponents weights 

a 1

1) 1

c 2

d 1

net-lis t 

net 1 : a-b-c-d 

net 2 : d-e



Tlie ])rol)lem is i.o divide; (,lK;giv(;n circuil, into M {M > 2) (;(|ua.lly vv(>iL>;ld.('d 

partitions, while minimizing the nunrber of external connections among par­

titions. In Schweikert and Kernighan algorithm [27, -37], external lines are 
reduced based on the following criteria

1 ) When all components of the same net are in the same block, 

moving any one of the components to another block will create an 

additional external line.

2) If a net has all its components in a block except one component, 

moving that component to the same block will remove the net from 
the rut.

3) If components of a net are in more than one block, number of 

external connections does not change by moving components of the 

net within blocks, if the number of blocks that the net is distributed 

does not change.
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. 'JIn order to transform the given circuit partitioning probhun instanc(‘ to a. 

graph partitioning problem instance, each net is represented by a clique of its 

terminals. Resulting graph instance is shown in Figure 4.1(a). Observe that 

this representation changes the structure of the connections in the given circuit. 
Re]>rc;sentation of the given instance as a network is given in Figure 4.1 (b). A 

network consists of a set of components called cells and a set of signa.1 ix'ts (or 

only nets). A net is a subset of the set of cells. This representation exactly 

simulates the connection relationships among components.

In order to show the deficiency of the graph model, the partitions indicatoxi 

with dashed lines in Figure 4.1 will be examined. Observe that, in Figure 4 . 1 (a), 

cut size is equal to 5. In Figure 4.1(b), it is 2, which is the actual cut size. The 

cost contribution of a unit cost net across a cut of a bipartition is I. The cost 

contribution of a clique, that is evenly split across a cut, rises quadratically 

with the size of the clique. This quadratic growth does not adequately reilect 

the costs arising in practice [20]. Although there can be some attempts to 

solve this dilemma, there is no good way of mapping a circuit instanc(' into a 

gra])h [‘.
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/

/

(b)

Figure 4.1. Modeling of a given circuit partitioning problem instance with (a) 
graph and (b) network models. Dashed lines indicate an example partition.



4.3 Solving th e C ircuit P artition ing Problem  U sing  

MFA

In this section, formulation of MFA for the circuit partitioning problem, using 

two different models is given. Graph and network models are described in the 

following two sections respectively.

4.3.1 Graph M odel
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If the graph model is used for the representation of the circuit partitioning 

problem, the problem can be treated as the graph partitioning problem. A 

formal definition of the graph partitioning problem is as follows: A graph 

G = (V, E) with |F | = vertices ( 1 , 2 , . . . ,  ¿, j , . . . ,  N), vertex weights 

{wi,W2 , . . . ,  Wi, Wj, . . . ,  w n ), and edges E between vertices with weights e,j is 

given. The question is to divide the graph into M  partitions of nearly equal 

weights such that the cut size is minimized.

Similar formulations of MFA for partitioning fully connected graphs are 

given in [4, 21, 35]. However, gra])hs arising in circuit partitioning are nsnally 

sparse. In order to avoid redundant computation, the algorithm is modified 
to work for sparse graphs. As in the previous works [4, 2 1 , 35], a s]un (i.e. 

neuron) matrix which consists of N  vertex-rows and M  partition-columns is 

used as a representation scheme. The output S{p of a spin {i,p) denotes the 

probability of finding vertex i in i)artition p (1 < p < M).

We propose the following energy function for s])arse graphs, where Adj{i) 

denotes the set of vertices connected to vertex i.
N  M .. M Nj yv JVJ JVI J\

(s) = 9 H  E  £  + 9 E  E  E  (4.
jeAdj(i)V=̂  ^ ?>=I »=1

1)

Here, (1 — Sjp) denotes the probability of vertex j  being in a partition other 

than partition p. Hence, .s,·,, x (I — Sjp) denotes the probability of vertex i 

being in partition p and vertex j  in a different partition. Then, term e.,j x 

Sip X (1 — Sjp) denotes the cost contribution of edge (f,j) to the cut size by 

mapping vertices i and j  to different ])artitions. As the first summation term in
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Eq. (4.1) covens all vertice.s and all partitions, it repre.sents the total cut size of 

a partitioning r(ipre.sented l)y the values of tlie spins in tlui spin matrix. Ihuice, 
this summation term is used for minimizing the weighted sum of edges on the 
cut. Second triple summation term in Eq. (4.1) computes the summation of 
the inner products of the weights of the vertices in each ]>artition. This term 

will have the global minimum value only when the summations of the weights 
of the vertices in each ])artition are equal. The j)arameter r in E(|. (4.1) is 

introduced to maintain a bahuice between the two optimiza.tion objectives of 

the original graph partitioning problem.

Using the mean field approximation given in Eq. (2.8), meaii field of a spin 

(i,p) for the energy function defined in (4.1) can be computed as

N

^ j p )  S j p W j W j
i&Adj(i)

(4.2)

In this equation, first summation term shows the rate of increase in the cut 

size by placing vertex i in partition p. Second summation term shows the rate 
of increase in the cost term, introduced for balancing the partitions, by |)lacing 

vertex i in partition p.

'Plx' probability l,ha.t vertex i is in pa.rtitioii ¡> is Ukmi U(»rma.lize<l as follows;

(4.3)

Note that, this normalization guarantees that each vertex is included in only 

one partition.

MFA algorithm for the graph partitioning problem is similar to MFA algo­

rithm for the mapping problem, which is described in the Cha])ter 3, except 

mean field computations. Mean fields of spins are computed using Eq. (4.2) in 

MFA algorithm for the graph partitioning problem. Note that, second term in 

Eq. (4 .2 ) is same as the second term in the mean field equation of the MFA 

algorithm for the mapping proldem (Eq. (3.5)). Hence, this term can be com­

puted in constant time (0 ( 1 )), for each mean field computation, as described 

in Section 3.3.2 by defining 7 p as

N

Ip  =  E  ’ 'b'Ai 
J=1

JV US)
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Then, Eq. (4.2) can be rewritten as

^ ^jp) ■'̂ ip
j^A(lj{i)

(4.5)

Note that, 7 ,, repre.sents weighted sum of spin values of the p-th column of the 
spin matrix. Hence, initial jp value of each column p (1 < p < M) can be 

computed by using Eq. (4.4) for the initial spin values. Then, jp values can be 

updated at the end of each iteration (i.e. after spin updates) by using

^neu, ^  ^OKI _  ^
tp (4.6)

for 1 < p < M.

Computation of the first term in Eq; (4 .2 ) is 0(d„„y) where, denotes 

the average degree of the vertices of the graph CI{V,E). Then, complexity of 

mean field computations for a spin row is 0{M  X {dauy + 0) ~ 0{M  x </„,„,). 

Complexity of spin update computations and energy difference computation 
performed at each iteration of the MFA algorithm are both 0{M). Hence, the 
overall complexity of a single MEA iteration for the graph partitioning problem 

is 0{M  X davg)·

Performance of the MFA algorithm for solving the graph partitioning prob­

lem in comparison with SA and Kernighan-Lin lieuristics is extensively studied 

in [2 1 , 35]. Results obtained using MFA are very encouraging, comparable to 

results obtained by SA and Kernighan-Lin heuristics.

4.3.2 N etw ork M odel

In this section, a suitable mapping of MFA to the network partitioning |)rob- 

lem is proposed. With this mapping, disadvantages of using graph model to 

represent a circuit partitioning ])roblem instance are avoided. Following is a 

formal definition of the network partitioning problem. A network with N  cells 

(1 ,2 ,. . . ,  . . . ,  N), cell weights {xoi, W2 , · ·., to,·, v>j,. . . ,  u;/v), and a list of /?.c/..s

(7),!,?).2, ...) , with weights {v>nti ‘■'’n-i, ■ ■ ■) E given. The question is to partition 

the network into M partitions of nearly equal weights such that the cui size is 

minimized.
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Following energy function is proposed for the network partitioning problem

I N M

= 9 E  E  E  E  }■'
1=1 ;;=1 (¡:ji:pnSl̂ i 

M N N

 ̂ 7̂=1 1=1

•S ¿y) w  ̂

(4.7)

whei'e N{ denotes the set of nets connected to cell and 7nax{S) denotes the 
maximum value in set .S'. In Eq. (4.7), indicates the set of spin values

which denote the probabilities of finding the cells j  G n- (cells belonging to 

the net n), in partition q. Hence, ?na.T{sj,(,g,q} denotes the maximum spin 

value among the indicated set of spin values. Then, term x

Sip X Wn shows the cost contribution of net n to the cut size by putting cell i in 

partition p and at least one of the cells in net n to another partition. With these 

observations it can be seen that first summation term in Eq. (4.7) represents 

the total cut size cau.sed by the nets whose cells are in more than one partitions. 

Second summation term in Eq. (4.7) is same as the second summation term in 

Eq. (4.1), and maintains the weight balance among partitions.

As described in Chapter 2 mean field of a spin is calculated by taking the 

partial derivative of the energy function with res])ect to the expected value of 
that spin. Energy function defined by Eq. (4.7) is not diii'erentiable because of 

the max{) function. If the mean field of a spin is interpreted intuitively as the 

effect of the values of the other spins to the value of that spin, then mean field 

of a spin (vi,p) due to Eq. (4.7) can l)e written as

M N

<t>iv =  -  I I  { •S j7 ( ie n ))  iyu -  v Y ^ S j p t O i W j
q:̂ p nSN,

(4.8)

Note that, in this equation first term shows the rate of increase in the cut size 

by placing vertex i in partition p. Second summation term is similar to the 

term in Eq. (4.2) and has the same meaning as described above.

The normalizcition operation (i.e. normalization of the spin values) nmiains 

same as in the formulation of the graph partitioning problem.

Three MFA algorithms given for the mapping problem, the graph parti­

tioning problem and the network partitioning pi'oblem are same excejjt the 

mean field coiiiputations, which constitute the problem specific part of the



MFA algorithms. Mean field computations in the MFA algorithm For the net­
work partitioning problem are performed using Eq. (4.8). Second term in 

E<|. (4.8) is computed eilic.i(uitly in constant Lime for each mean held compu­

tation as described in the previous section for the graph partitioning prob­

lem. Observe that complexity of computing the first term in Eq. (4.8) is 

0{M  X  c X (,s — 1)) =  0{M  X c X s)  for each mean field computation, where 
M  is the number of partitions, c is the average number of nets that a cell 

is connected, and .s is the average size of a net (size of a net is the Aumber 

of cells in a net). Note that, c x (.s — 1 ) corresponds to average ch;gree of a 

vertex in the graph model (i.e., c x (.s — 1 ) = day,,). At each iteration of the 

MFA algorithm M  si)ins are u])dated, hence, M mean field computations are 

performed. Then, complexity of mean field computations in a single iteration 
of the MFA algorithm is 0{M  x (M x c x s + 1 )) = 0{M'^ x c x s). However, 

this complexity can be reduced using the following observation. R(|. (4.8) ca.n 

be rewritten as
M

= ( 'y ) y ] r7).u;r } ie,i y ) (.Sjjqyg,,)} )
9=1 neNi nÇNi

N
- r  SjpWiWj

N

= ~ ^ 'Y ^  SjpWiXUj (4.9)

where
M

■0.· = IT  JZ (4.10)
7=1 nG Âj

*0//» ~ (./Çn)} (‘hi  1)
uGA/,

Values i/’t and ■i/’ip given in Eq. (4.10) and Eq. (4.11) can lie com|)uted together 
in 0{M  x c x s )  at the beginning of each iteration of the MFA algorithm. Hence, 

complexity of mean field computations for a spin row is 0{M  x c x .s + M) = 

0{M  X c X s). Complexity of spin update computations and energy dill'erence 

computation performed at each iteration of the MFA algorithm are both 0{M). 

Then the complexity of one iteration of the MFA algorithm for the network 

partitioning problem is 0{M  x c x s ) .
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In order to demonstrate the effectiveness of the network model, the behavior 

of the energy function defined in MFA will be examined. Two possible solutions
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/

\d

/

Solution I Solution II

A
a 1 
b 1 
c 0 
d 0 
e 1

B
0
0

A
a 1 
b 1 
c 0 
d 1 
e 0

B
0
0
1
0
1

Figure 4.2. Two po.s.sil)le soluLion.s for the given circuit partitioning problem 
instance.
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to the instanco given in .Section 4.2 are illustrated in Figure' 4.2 as A = {a, h, c}, 

B = {c, d} and A = {a,h,d}, B  = {c, e}, where A and B  denote the two 

partitions. Neuron matrix representation of these solutions are also given in 
Figure 4.2 using a 5 x 2 spin matrix.

The energxj values of the two states of the spin matrix defined by Solution 1 

and 2 are computed for the graph model (using Eq. (4.1)) as //j = /1 x 5 -|- 5 

and H-i = /1 x 4  + 5 respectively. The energy values computed for the network 

model (using Eq. (4.7)) are //| = //^ = /1 x .3 + 5. In graph model, second 

solution is favored more than the first solution; but, it can be seen that the 

actual cut sizes are eciual in both solutions. So, in graph model, some solutions 

are favored to other ones although they have the same quality, meaning that 

some features of the circuit partitioning problem is not represented correctly. 

However, in network model energies oi the two solutions are the same H\ = / /2, 
which gives the desired result. Hence, it can be concluded that network model 
is a better scheme for mapping the circuit partitioniirg problem to MFA.

The performance of the proposed MFA algorithm for solving the network 

partitioning problem is demonstrated in Table 4.1 for three different problem 

sizes. MFA is compared with SA and Kernighan-Lin (KL) heuristics. An ef­

ficient variation of Kernighan-Lin heuristic [7] which is proposed for network 
partitioning is implemented. These heuristics are. tested for randomly gener­

ated networks with various number of cells (Â ) and nets (L), and maximum 

net sizes (.9 ). In the.se networks, weights of the cells and nets are taken to 

be unity. Networks are partitioned into two bins, and balance criteria of the 

heuristics are set such that diiferences between the weights of the resulting 

bins were less than % 5 of the total weights of the cells. As seen in the table, 

performance of MFA is close to SA, and better than KL in some instances. 

Execution time of SA is maximum, 120 times that of KL on the average. MFA 

is, 60-70 times slower than KL and 2 times faster than SA. Time complexity 

of the MFA algorithm used in these experiments was 0{M'^ x c x  $ + N x M). 

In [35], using the notion of critical temperature, better timings of MFA are ob­

tained. Probably, by determining the critical temperature, MFA will run much 

faster for these instances. KL heuristic is faster compared with the general
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Table 4.1. Mean cul sizes of the solutions found by MFA, KL, and SA heuristics 
for raixlomly generated network partitioning ]rroblein instances.

PROBLEM SIZE MEAN CUT SIZE
N L s MFA SA KL

128 205 4 75.3 74.8 77.6
128 102 8 52.0 49.2 52.4
128 69 16 44.4 41.5 44.3
256 543 4 217.9 2 1 1 .0 217.9
256 240 8 126.8 124.7 126.2
256 200 16 139.5 131.4 134.2
512 784 4 272.0 258.0 273.0
512 809 8 477.6 471.0 481.4
512 336 16 215.4 213.6 219.8

^A and SA since it is an efficient, prol.)lei
tic, having almost linear time complexity. However, KL heuristic can only be 
used for partitioning networks having nets with bounded weights. Linear time 
complexity of KL heuristic, can not be pre.served for other ty|)cs of networks. 

Furthermore, as is described .in the following section, MFA algorithm is more 

suitable for parallelization compared with SA and KL heuristics. Hence, these 

results demonstrate that the proposed mapping of the MFA to the network par­

titioning problem is a promising idternative heuristic for solving the network 

partitioning problem.

4.4 Parallelization  of M ean Field A nnealing A lgorithm

Efficient parallelization of heuristics used for .solving the circuit partitioning- 

problem is crucial since the circuits arising in practice are quite large in gen- 

(!ral. Parallelization schemes for MFA algorithms used (or solving the grai)h 

partitioning problem and the network partitioning problem are described in 

the following sections.
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4.4.1 Graph M odel

For ])cU'allelization of the cilgoritlun, columns of the spin matrix are partitioned 

among ])rocessors such that each processor has M /K  columns of the s])in ma­

trix. Here, K  denotes the number of processors in the target multicomputer. 
Hence, each processor is assigned the data and the comi^utations as.sociated 

with all N vertices for only M /K  partitions. That is, each proces.sor is as­

signed N  X M /K  spins. This decomposition yields i)erfect load balance if M 

is a multiple of K  or M K. Each processor stores its local column slice of 

the global spin matrix in row-wise order for the sake of efficient access to the 

spin values. Host processor initializes the spin matrix and sends to the node 

processors their portions. At each iteration, spin values corresponding to the 

selected vertex are updated by computing the mean field value of each spin, 

and difference between new energy and old energy is calculated. If energy dif­

ference is less than a predefined constant for a number of subsecjuent iterations, 

temperature is decreased, and iteration is started again. Two phases of a MFA 
iteration (i.e., mean field computations and energy difference calculation) are 

interleaved as described for the mapping problem in Chapter 3. The parallel 
algorithm for the node |)rogram for a single iteration of MFA algorithm is given 

in Figure 4.3.

In the parallel MFA algorithm for.solving the graph partitioning problem, 

each processor selects a vertex i at random, where the random sequence in each 

processor is the same. Hence, no global communication is necessary for broad­

casting the selected vertex. Then, each processor computes the mean fields 

of the randomly selected vertex only for its local partitions. After computing 

mean fields of the local spins two partial summation terms are computed at 
steps 3 and 4. Then, a global sum (GSUM) operation is performed at step 5 to 

accumulate the overall summcitions in each processor. Each processor u])dates 

its local spin values at step 6 and computes AH{ at step 7. At step 8 , 7  ̂ values 

are updated. Details of the parallel MFA program for solving the graph par­

titioning problem is given in [4]. Note that, only one global communication is 

needed at each iteration of the algorithm. As is mentioned in Section 3.5, global 

communication is performed as a .sequence of single-hop exchange communica­

tions. Volume of rommimic.atioiis ;i.t ('.acli excliang(‘ st(i|) is fixed to 2 lloa.tiiig
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1 . Select a. vertex i at random.

2. For each local partition p 1 to M /K  compute mean field values

^ i p  — ^ j ^ A d j ( i )  1 ' ^ i i O p  ' ^ i ' ^ i p )

3. For each local partition p := 1 to M /K  compute

o-ip = and 6,p =

4. Compute partial .summation.s

/ 1. = EJIV' 0-ip and B, = e JIV' l̂ p

5. Perform GSUM to compute the local copies of

Ai = Ep=i (lip and Bi = E iU  bi,t p

6. For each local partition p := 1 to M /K  compute = aip/Ai and 

then Asip = -  s f

1. Compute = Bi/Ai and then A//,· = — /■/,■

8 . For each local partition p := 1 to M /K  update 7 ,, = 7  ̂+ wiAsip

9. For each local partition p := 1 to M /K  update s 'P ~ •‘̂ip and

Hi = H?

Figure 4.3. Node program for one iteration of tlie parallel MFA algorithm lor 
the graph partitioning problem.
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point words, and does not change with increasing problem size. The nupiber 
()l rxcIwuiL’V ('()mn)imi< a.ti()ii .steps in tlie gluba.1 .siimma.(,ioii upera.I.ion increases

with the diameter of the multicomputer. Diameter of a multicomputer im­

plementing hypercube topology is hence, the given parallel algorithm

is expected to scale on the hypercube architecture. Figure 4.4 illustrates the 
speed-up and efficiency curves for the parallel MFA algorithm for solving the 
graph partitioning problem on a ii-dimensional iPSC/2 hypercube multicom­

puter for three different problem sizes. As is seen in Figure 4.4, si^eed-up and 
eificiency incre<ises with increasing problem size cuid almost linear speed-up is 

obtained for large problem sizes.

4.4.2 N etw ork M odel

Columns of the global spin matrix for the network partitioning problem are 
partitioned similarly among'the processors of the multicomputer, such that 

each processor is assigned M /K  columns of the global spin matrix. As in 

the graph partitioning problem, host processor initializes the spin matrix and 

sends to the node processors their portions. Each processor is I'esponsible for 

the computation of the spin values in its partition. The algorithm for the node 

program for a single iteration is given in Figure 4.5.

Observe that, there is one more global communication (at step 4) in this al­

gorithm because of the first term in (4.8). The rest of the algorithm is similar to 

tlu' |)ar;dl('l MFA a.lgoritlim for the gi'a.|)li parlitiuiiiiig |)roblem. Altluuigh this 

parallel algorithm requires one more global communication, it is also expected 

to scale on the hypercube due to its fixed communication requirement (both 

in number and volume). The speed-up and efficiency curves for the parallel 

MFA a,lgorithm for tlie gra.ph partitioning |)ioblem on a .'{-dinu‘nsiona.l ilhSCy^ 

hypercube multicomputer is given in Figure 4.6. As is seen in Figure 4.6, 

speed-up and efliciency increases as the problem size increases. Almost linear 

speed-up is obtained for large problem sizes.
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Number of Processors

(a)

(b )

P îgure 4.4. Speed-up (a) and efficiency (b) curves for tlie graph parlitioning 
problem. ,
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1. Select a cell i at I'cindom.

2. For each local partition p := 1 to M f K  compute

mClX

3. Compute partial summation

4. Perform GSUM to compute the local copies of

*  =  E " .

5.

6 .

7.

For each local partition p := 1 to M jK  compute mean field values

<kp =  -('/'i- -  <A.>) -  -  WiHiy)

For each local partition p := 1 to M /K  compute 

a,p = and bip = <f>ipe'̂ 'HT

Compute partial summations

M = TH !dC iv and =

8. Perionn CvSUM to compute the local copies of

-  Ep=l ‘̂'ip fincl Ei = Ei=l l̂ ip

9. For each local partition p := 1 to M jK  compute 5·^^ = UipfAi and 

then As.p =

10. Compute = Bi/Ai and then A//,· = 7/“*'" — /7,

1 1 . For each local i)artition 7 ; := 1 to M /A ’ update 7  ̂ — 7  ̂ + tn.A.s,,,

12. For each local partition p := 1 to M /K  update .s,p = .s""" and

/·/,· =

Figure 4 .5 . Node program for one iteration of the parallel MFA algorithm for 
the network partitioning problem.
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Number of Processors

(a)

(b )

Figure 4.6. Speed-up (a) and efficiency (b) curves for the network partitioning 
problem.



5. CONCLUSIONS

Mean Field Annealing (MFA) algorithm, recently proposed for solving combi­

natorial optimization problems, combines the characteristics of neural networks 

and simulated annealing. Previous works on MFA resulted with succoissful ap­

plication of the algorithm to some classic optimization problems such as the 

traveling salesperson problem and the graph partitioning jDroblem. In this 

work, MFA is formulated for the mapping problem and the circuit partitioning 
problem. Performances of the proposed heuristics are investigated by comjiar- 

ing them with other well-known heuristics, and efficient parallel versions of the 

])roposed algorithms are develo])ed.

In chapter 2, MFA algorithm is formulated for the mapping problem. An 
efficient implementation scheme, which decreases the complexity of the pro­

posed algorithm by asymptotical factors, is also given. The performance of 

the proposed MFA algorithm is evaluated in comparison with two well-known 

heuristics: simulated annealing and Kernighan-Lin. Algorithms are experi­

mented for a number of randomly generated mapping problem instances. So­

lution qualities of MFA and simulated annealing heuristics are found to be 

superior to the efficient Kernighan-Lin heuristic. The solution quality of sim­

ulated annealing is slightly better in compaiTson with MFA wheroias, Mk'A is 

faster. As is expected, Kernighan-Lin heuristic is faster in comparison with 

MFA and simulated annealing heuristics. Kernighan-Lin heuristic is faster in 

comparison with general heuristics as MFA and simulated annealing, since it 

is an efficient, problem specific heuristic, having linear time complexity, llow- 

ever, linear time comi)lexity of Kcrnighan-Lin heuristic can not be· preserved, 

if the weights of the edges of the graph to be partitioned are not bounded.

63
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Furthermore, MFA algorithm is more suitable for parallelization in compari­

son with simulated annealing and Kernighan-Lin heuristics. Hence, obtained 

results demonstrate that the proposed formulation of the MFA for the mapping 

problem is a promising alternative heuristic for solving the mapping problem.

Inherent parcdlelism of the MFA is exploited by designing an efficient i)ar- 

allel algorithm for the proposed MFA heuristic for the mapping problem. Pro­

posed parallel MFA algorithm achieves perfect load balance, and has fixed 

communication requirement which does not increase with the size of the prob­
lem instance.

MFA algorithm is formulated for solving CPP using two alternative models 

in Chapter 3. It is shown that network model is a better scheme for mapping 
MFA to the circuit partitioning problem in comparison with the graph model. 

Performance of the MFA is compared with the performances of Kerniglian-Lin 

and simulated annealing heuristics, using randomly generated circuit partition­

ing problem instances. Performance of MFA is close to simulated ann'ealing, 

and better than Kernighaii-Lin heuristic in some instances. Execution time of 

MFA is less than simulated annealing, but more than Kernighan-Lin luMiristic. 
Obtained results indicate that MFA can be used as an alternative heuristic for 

solving the circuit partitioning problem. MFA algoritlims proposc'd for .solv­
ing the circuit partitioning problem are parallelized and implemeiiled on an 

iPSC/2 hypercube multicomputer. Experimental results show that the pro­

posed heuristics can be efficiently parallelized on hypercube multicomputers, 

which is crucial for algorithms that solve such computationally hard i)roblems.

Results obtained in this work indicates that MFA which is originally pro­

posed for solving the traveling salesperson problem also works for tlie circuit 

partitioning problem and the mapping problem, and can be used as a general 

tool for solving combinatorial optimization problems. Scalability of the algo­

rithm is quite good, rea.sonable results are obtained for large i)roblem sizes. 

Performance of the proposed MFA algorithms may be improved by fiiui tuning 

of the temperature schedule of the algorithm, which still remains as a research 

issue.

Inherent parallelism of Mk'A is ex|)loited in this work by (h'signing ('flici(Mit



CHAPTER ix CONCLUSIONS 65

parallel MFA algorithms. Parallelization of heuristics, proposed for solving 

NP-hard combinatorial optimization problems, is important since the combina­

torial optimization problems are computationally hard problems. Development 
of parallel computers increases the need for heuristics that can be eificiently 

parallelized. Results obtained in this work show that MFA is a good candidate 

for developing efficient parallel heuristics. Proposed parallel MFA algorithms 
are expected to scale on parallel architectures, due to their lixed coininmiica- 

tion requirements.
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