A TOOL-SASED MODELWQ, a MLLATIOM AND
PAFIALLEL RENDERING SY-STEA:

TiOtUAR Ny

9 B\VBTIDT0 TnS Ww-Airmrrr G cowpPurén & 6™, 2CL

? c* S A 2F " ufe

rS!’] 4 w Vim0 im
N\ R 1.5

LRV i A MW o owi AM- ooyt | Y vit rw AR

.no YTIC(;p(; 7N /
i <«

I E\NTOT THSJ Sf-- YOyO™’

AW »W &M. ¢4 wniTt W

JT.

- w
=t
N (@p)

- N/

MARS : A TOOL-BASED MODELING., ANIMATION AND
PARALLEL RENDERING SYSTEM

A THESIS
SUBMITTED TO THE DEPARTMENT OF COMPUTER ENGINEERING AND
INFORMATION SCIENCE
AND THE INSTITUTE OF ENGINEERING AND SCIENCE
OF BILKENT UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
MASTER OF SCIENCE

Murat Akhhansgl

By tarafincea Loy Joamisty,

Murat Aktihanoglu
December, 1992

HOZ159

T
205

Soupy

(399

i

I certify that I have read this thesis and that in my opinion it is fully adequate, in

scope and in quality, as a thesis for the degree of Master of Science.

bl OFf—

Prof. Dr. Biilent Ozgiig (P1mc1pal Advisor)

I certify that I have read this thesis and that in my opinion it is fully adequate, in

scope and in quality, as a thesis for the degree of Master of Science.

o

Assoc. Prof. Dr. Cevdet Aykanat

I certify that I have read this thesis and that in my opinion it is fully adequate, in

scope and in quality, as a thesis for the degree of Master of Science.

Asst. Prof. Dr. Fatih Ulupmar

Approved for the Institute of Engineering and Science:

/// /j//f/[é‘/

Prof.’Dr. Mehmet Baray p
Director of Institute of Engineering fffd Science

ABSTRACT

MARS : A TOOL-BASED MODELING, ANIMATION AND PARALLEL
RENDERING SYSTEM

Murat Aktihanoglu
M. S. in Computer Engineering and Information Science
Supervisor: Prof. Dr. Biilent Ozgiig
December, 1992

Abstract: This thesis describes a system for modeling, animating, previewing
and rendering articulated objects. The system has a modeler which models objects,
consisting of joints and segments. The animator interactively positions the articu-
lated object in its stick, control vertex or rectangular prism representation into the
keyframes. interpolates inbetweens and previews the motion in real‘time. Then the
data representing the motion and the models is sent to a multicomputer (iPSC/2
Hypercube'). The frames are rendered in parallel by distributed processing tech-
niques, exploiting the coherence between successive frames, thus cutting down the
rendering time significantly. The main aim of this research has been to make a de-
tailed studyv on rendering of a sequence of 3D scenes. The results show that due to
an inherent correlation between the 3D scenes, a much more efficient rendering than

the conventional sequential one can be done.

Keywords: 3D Modeling, Computer Animation, Rendering, Parallel Processing,

Distributed Rendering, Temporal Coherence.

{PSC/2 is a trade mark of iNTEL Corporation

OZET

MARS : BIR MODELLEME, CANLANDIRMA VE PARALEL BOYAMA
SISTEMI

Murat Aktihanoglu
Bilgisayar Mithendisligi ve Enformatik Bilimleri Boliumi Yiksek Lisans
Tez Yoneticisi: Prof. Dr. Biilent Ozgiic
Aralik, 1992

Bu aragtirma, bir modelleme, canlandirma ve boyama sistemini tammlamaktadir.
Sistemin modelleme bélimiinde, eklem ve pargalardan olusan modeller yaratilmakta-
dir. Canlandirma siirecini olugturan kigi daha sonra bu nesneleri anahtar ¢ercevelere
yerlegtirip, canlancirma siirecini olugturmak igin ara cergevelerin ara degerlerini
bulma iglemini baglatir. Boyama iglemi iginse model ve canlandirma bilgileri bir
hiperkiipe gonderilir. Tiim g¢er¢eveler burada paralel bir gekilde "dagitimh-igleme
yontemiyle ve cergevelerin arasindaki benzerlikten faydalamlarak boyamr. Boyama
islemi bu gekilde dnemli 6lgiide kisaltibr. Bu aragtirmanin ana amaci bir dizi gerge-
venin boyanmasi iistiine ayrimtily bir inceleme yapmaktir. Sonuglar, bir canlandirma
filminde varolan -gergeveler arasindaki benzerlikten- yararlanarak geleneksel boya-

madan daha etkili bir bovama yapilabilecegini géstermektedir.

Anahtar kelimeler : Modelleme, Canlandirma, Dagitimh I§leme, Zamansal Benzesgim,

Anahtar Cergeve, Hiperkiip Topolojisi.

ACKNOWLEDGEMENTS

I wish to extend my thanks to my supervisors Prof. Dr. Biilent Ozgii¢ and
Assoc. Prof. Dr. Cevdet Aykanat, who have guided and encouraged me during the

development of this thesis.

I am grateful to Prof. Dr. Yilmaz Tokat for his valuable guidance and encour-

agement through this thesis.

I express my gratitude to Asst. Prof. Dr. Fatih Ulupinar, who provided me with

his valuable suggestions about my research.
My sincere thanks are due to my parents for their moral support.

Finally, I would also like to thank to all of my friends who helped and cooperated

during thesis.

Contents

1 INTRODUCTION

2 MARS MODELER
2.1 Joints
2.2 Segments
2.3 Modifying a Model

2.4 Animation-Preview Model Type

3 ANIMATION
3.1 Display Techniques
3.2 Animation Techniques
3.2.1 Algorithmic Animation

3.2.2 Goal-directed Animation

3.2.3 Procedural Animation .
3.24 Keyframe Animation . .
3.3 Motion Specification
3.4 Interpolation

.....................

.....................

vi

13

14

15

16

17

19

19

21

CONTENTS

3.5 Previewing

3.6 Communication between the Animator and the Renderer

4 RENDERING
4.1 Illumination Model L oL
4.2 Hidden Surface Removal
4.3 Temporal Coherence,
4.4 Paralle]l Processing oL
4.5 The Algorithm
4.6 Model Data Distribution
4.7 Film Data Distribution oL
4.8 Processing of a Keyframe
4.5 Processing of an Inbetween Irame
4.10 How Host Interprets the Iinage Data

4.11 Performance Results

5 CONCLUSIONS

vii

28

30

32

32

33

36

37

40

40

56

List of Figures

1.1

1.2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

3.1

3.2

3.3

3.4

3.5

3.6

General view of the MARS system

Process of Generating Computer Animation

Structure of a Model

A joint rotates with its coordinate axes

The sbd’s of a model and the actual model
Transformation matrix kept for each segment S

Two different models created from the same segments with different

parameters
Stick, Control vertex, and Rectangular Prism

Model screen of Mars.

2D Inbetweening oL
Asamplescripto
Animation screen of Mars Lo oL
Matrix Interpolation Scheme

Axis and angle of transformation oL

Interpolation and previewing screen of Mars

viii

~I

(=)

10

11

12

14

20

24

27

29

LIST OF FIGURES

4.1

4.2

4.3

4.4

4.9

Data formats for communication

Formation of the Edge Boxes in the Z-buffer Algorithm

High degree of coherence in a film

Screen space subdivision

Ob ject space subdivision (4 processors)

Load Distribution of the Frames (4 processors)

Buffersina Frame
Pseudo code of heuristic based mapping scheme
Edge list formation with counter for each line

Prefix and global sums of EBC

4.10 Exchange of Edge Box Data Between Processors

4.11 How positioning affects processing time

4.12 Plot of number of processors vs. number of patches vs time

ix

31

34

36

37

39

41

List of Tables

4.1

4.2

4.3

4.4

Results of the rendering algorithm (in ms) for data size = 3900 (3

SEEMENtS)

Results of the rendering algorithm (in ms) for data size = 10400 (8

SEZMENTS) & v o v . e e e e e e e

Results of the rendering algorithm (in ms) for different data sizes of

a keyframe

Results of the rendering algorithm (in ms) for same data sizes (27664)
and percent of moving data (2 segments) but different topologies of a

keyframe

53

55

Chapter 1

INTRODUCTION

During the last fifteen years, three-dimensional computer animation has become
widely accepted as a powerful tool in a variety of applications, from entertainment
industry (television, cinema, video) to education and business. Computer anima-
tion, although greatly assisted by the computer, is a very labour intensive job. Even
with very sophisticated equipment and tools, animators work months for a high-
quality computer generated animation. Mostly, the equipment (special architecture
computers, video cards, single frame recorders) and the development tools (model-
ing, animation and rendering softwares) cost so much that only laige, professional

communities can afford them.

MARS (Modeling, Animation and Rendering System) is an ongoing study to
provide a framework or environment for developing high-quality and cost-effective
computer-generated animations. The animator is presented with an interactive,

flexible, powerful and fast system.

There have been several goals while designing Mars. First, the system was not
intended to be designed for a specific application. Usually, animation tools are
designed and implemented such that they only perform some specific tasks. For
example, there are animation tools that animate only human body models, or only
some scientific phenomena. We have designed and implemented Mars such that an
animator can create any imaginable character and animate it without limits. Mars

is & multi-purpose animation generator.

Second, Mars tools were designed such that any of the tools can easily be replaced

CHAPTER 1. INTRODUCTION 2

SUN SPARC 1+|_| iPSC/2 || Graphical
Workstations Hypercube| | Display &
running VCR

Xwindows

Figure 1.1. General view of the MARS system

or new tools can be added to the system, without disturbing the integrity of the
environment. This property is very important since all techniques and algorithms in
computer graphics are due to a rapid change, in an effort to create realistic looking
pictures. Because of this rapid change, tools often get out of date. For example, an
animation tool that has been written 10 years ago is no longer in use, because many
things in rendering have changed, like ray tracing and radiosity. We have designed
Mars such that any part of it can be easily replaced, in order to update and improve

the system.

Third, Mars was designed such that it makes the most of the current resources in
the development environment (Figure 1.1). Mars is poor man’s high-guality graphics
supercomputer. It employs each architecture in the development environment such
that it exploits the most efficient parts of each architecture and as those efficient

parts arc put together, a virtual super graphics computer comes into the picture.

To generate a computer animation, characters of which structured models are
defined in three dimensions, are needed. This structure should be well defined and
flexible to allow the animator to create any imaginable character. Then, the char-
acters should be placed and oriented appropriately for each frame, and then the
characters and the background objects should be painted (rendered) with respect to

the lighting conditions and the camera position.

The process of generating computer animation by Mars can be broken down into

three phases (Figure 1.2) : modeling, animation and rendering. In the modeling

CHAPTER 1. INTRODUCTION 3

phase, the modeler creates a three-dimensional model of the scene and its compo-

nents.

In the animation phase, the animator describes how the model will change its
place and orientation over time, thus generates the keyframes and subsequently, us-
ing a simpler model of the object. views the described motion in real time. Those two
phases (modeling and animation) are done on Sun Sparc computers, running Xwin-
dows, because the most important notion in these two phases is the user-interface.
The modeling and animation tools should he highly user-interactive to involve the
user further in the animation. If the user cannot easily control what he has created,

the tool would become uscless.

The most important tool of the system is the renderer. In the rendering phase, the
renderer running on the iPSC/2 multicomputer currently with 32 processors, takes
the model and animation data and for each frame in the sequence, generates a two-

dimensional image using the specified shading algorithm and the camera position.

In Mars, an animator can use graphical primitives or B-spline surfaces. The
models can have any number of joints, thus any general object can be modeled using
the modeler. By scaling different segments of the mode], many different versions of

a model can be created.

To create a frame with models in desired positions and orientations, Mars modeler
has a user friendly interface. The animator can switch between models by clicking
on them, and orjent the current model by selecting an axis, an angle, and a joint

through a menu [12, 18].

The rendering process which is the most expensive phase of the three phases, is
done by a multicomputer. The patches are rendered on 32 processors concurrently.

One of the most important concepts in rendering is distribution of load among pro-

cessors, i.e. load-balance.

Moreover, the rendering process is done even more efficiently by exploiting the
temporal coherence that exists between the frames of the animation. Thus, rendering
time is quite short, compared to the traditional straight ahead renderers that work

on uniprocessor machines and do not use the principle of coherence.

CHAPTER 1. INTRODUCTION

~N

Modeler

Models

Frames
(All null)

~ =

Key{ramer

Sclected Models

Frames

(Keyframes are defined)

~ =

Animator

Selected Models

Frames

(All frames filled)

Figure 1.2. Process of Generating Computer Animation

Chapter 2

MARS MODELER

For a computer program to generate correct inbetweens, it has to be given the three-
dimensional definition of the articulated objects that will be animated. Then the
computer manipulates those given points with respect to a methodology, which is
the principle of cascaded transformations. Each segment is defined with respect
to its parent segment, and it is affected from all transformations that is applied
to its parent segment. That is, if the parent segment is rotated 90 degrees, all its
sibling segments are also rotated 90 degrees with respect to the parent seginents
joint position. The structure of the representation of a model is an important issue,

because it is directly related to how easily a model can be manipulated.

The problem of presenting a three-dimensional definition to the computer has
been well researched in the past. There have been many approaches and studies on

modeling in three dimensions: [6, 9, 15, 16, 17. 27].

Most of the time, methods like imitating the real objects are used and according
to the needs of the application, sometimes very simple and irrelevant models are
employed. For example, to model a human body, simple spheres have been used,
since the aim was to investigate the human behavior, as how they walk, sit, etc.
Because of the complexity of the models that further resemble reality, such models
have been limited to special applications where reality is of more importance than

computation time.

The Mars Modeler treats a model as a composition of a library of predefined or

ready graphical primitives. The model consists of joints and their base segments and

CHAPTER 2. MARS MODELER 6

body

uppertorso lowertorso

rightarm neck leftarm rightleg leftleg

Figure 2.1. Structure of a Model

the modeler connects those base segments with each other as specified in the joint
definitions. The connection of segments to each other is of great importance. That
is, for a realistic animation the segments of a model should act meaningfully in any
kind of orientation. If a segment looks unrealistic in some orientation, it means the
joint structure of the model is not planned carefully enough. In fact, each model has
a different nature of segment connection and the problem of modeling the joints in

a realistic way is a topic of importance in computer animation.

The models of the Mars system consist of joints connected to each other and

their base segments defining the shape of the model.

2.1 Joints

The joints form an n-ary tree structure (Figure 2.1), i.e. there is no limit on the
number of child joints of a joint (so, we can define caterpillars!). Fach joint has a
parent joint and n children. Two vectors are used to define the X and Y - azis of

the joint. The 7 - azis is the vector product of X and Y - azis of that joint.

A joint can be rotated about each of its local X, Y and Z axes, thus has up to
three degrees of freedom. This is actually the most ideal situation, but most joints
cannot move in each of the three axes. For the sake of ease-of-realism from the
animator’s point of view, an upper and a lower limit are specified for the rotation
of the joints about each axis. Consequently, a joint may be restricted to one or two

degrees of freedom by permitting the joint to rotate about only one or two of the

CHAPTER 2. MARS MODELER 7

W

X

Local coordinate axis of the scgment N/

Figure 2.2. A joint rotates with its coordinate axes

axes. Using this method, simple joints, such as fingers (hinge joints), and complex
joints such as shoulders (ball-and-socket joints) can be simulated. Also, each joint
has its own coordinate axis, which is given in the definition of the model. Most of
the time, the Z axis is along the direction of the segment as a convention, but this

can he modified to suit the needs of the animator.

As a joint is rotated along its coordinate axes, the axes are also rotated, so it does
not matter what the orientation of the joint with respect to the world coordinate
axes is. The local coordinate axes are always aligned in the same way with respect

to the segment (Figure 2.2).

2.2 Segments

Each joint has a base segment that is defined with respect to its local coordinate
axis. Detailed, realistic looking models a.re‘always preferred and desired in computer
animation but the animator does not want to mess with those detailed models while
planning the motion. Detailed models are difficult to manipulate. It takes more time
to orient a complex model than a simpler one. Mars has a multi representation of
the models: one real and others simpler representations. To achieve this, segments
of 2 Mars model are defined as Bezier surfaces [9, 21, 22, 26], but instead of directly

giving a set of Bezier control points for each segment, the user first defines the

CHAPTER 2. MARS MODELER 8

Figure 2.3. The sbb’s of a model and the actual model

segment bounding boz (sbb) of the segment, which is simply the rectangular prism
that bounds the segment itself, and then a set of Bezier control points which are in
normalized form. The Bezier control points are defined in a unit cube so that all the

points have coordinates with values between 0 and 1.

Eventually this normalized segment definition is scaled with respect to the defined
sbb. 1f no sbb is defined, a unit cube is assumed (Figure 2.3). As each segment’s
sbb is defined, we use this simpler representation in the positioning and previewing

phases. This speeds up the respective processes.

For each frame of a film, a transformation matrix is kept for each segment of

each model (Figure 2.4).

This matrix is generated from the local and the world coordinate axes and the
joint positions. It is updated at every frame should the segment change its place or

orientation [25].

2.3 Modifying a Model

To create a model, we scale the normalized hase segment definitions so that the
segment fits into the segment’s sbb. If one changes the dimensions of an sbb without
changing its Bezier control points, a new model would be created. It then becomes
straight forward to create many models from the same segment definitions. Changing
the dimensions of the sbbs and the directions of the local coordinate axes of the model,

the base segment is sheared, resulting in a number of different models created from

CHAPTER 2. MARS MODELER 9

Y Y

Local

Coordinate

Axes

pIocal
X Z
p _ | Transformation|| p

World
Coordinate
Axes

Figure 2.4. Transformation matrix kept for each segment

the same normalized segment definitions. This gives us flexibility in creating our
models. Creating just one set of Bezier control points, representing a specific segment
(e.g. human torso), would be enough to create many types of human bodies (Figure

2.5).

2.4 Animation-Preview Model Type

Mars uses a simpler representation of the model during the motion planning phase,
so that extensive calculations need not be done to position and orient the models.
The animator can interactively change the position and orientation of the model
and see it instantly. Then, when the keyframes are prepared, he can view the whole
motion in real time. He can frequently switch back and forth between the positioning
and previewing phases without having to wait for long minutes for the computer to

calculate the inbetween positions of the complex model.
The animator has three choices for the simpler mode] :
¢ stick model

¢ control vertex model

o rectangular prism model

CHAPTER 2. MARS MODELER

10

Figure 2.5. Two different models created
parameters

from the same segments with different

CHAPTER 2. MARS MODELER 11

Figure 2.6. Stick, Control vertex, and Rectangular Prisin

The stick model is siinply a wire man, the control vertex model is composed of the
interconnection of the control vertices of the model data and the rectangular prism
model is a composition of rectangular prisms of the sbbs of each joint (Figure 2.6).
While choosing the models through interactive menus, the animator can view the
model from many directions. The model selection screen of Mars can be seen in
Iligure 2.7. The aninator can view the model in any of the three representations.
The representation of the model for the previewing and kevframing should be chosen
according to the needs of the models and the animation scene. If real-time playback
is achieved by using the control-vertex representation, the animator can clearly see
the animation characters and the scene. If flickers occur during playback with the
control vertex model, then a simpler representation should be chosen in order to
view the animation clearly. Timing is very important in an animation because of the
issues like anticipation, staging, slow in and out and etc. The success of an animation
depends wholly on the timing arrangements of the animator, so the animator should

hiave a strict control on timing.

CHAPTER 2. MARS MODELER 12

%) MARS Casting (Choose the characters) Nural AXTIHARCGLU T T TR ()
? Cuvent Model | robot (Z = 50)

Laft view Right view

T view Front view

Load o) (braw) (Clear) (Remove all) ((Return)

MODEL TYPE: | WIRE | CONTROL-MESH | RECT |

wiews (S [ai
Focus Polntx 25§ (&9} Vv 236 (&3} z 500 (a[) -

(Load Model: Add to the cas¥ (Remove Model: Remove from cast) (Remove All: Remove all models from the stack

Figure 2.7. Model screen of Mars

Chapter 3

ANIMATION

Animation is to give a series of pictures the feeling of motion by using the persistence
of vision phenomenon of the human eye. The lower limit for the eye to perceive a
series of pictures as continuous is 15 pictures/second. Below this rate, the eye can
detect each picture separately. Above this limit, human eye perceive a sequence of
still pictures as continuous and moving. Those series of pictures can also be thought

of as samples of a real motion taken at regular intervals.

Traditional animators started to use computers first in the painting of drawings.
To do this, all the pencil drawings were being scanned into the memory of the
computer and then the lines were being enhanced and painted by very simple seed-
fill algorithms. Usage of computers has speeded up the preparation of animations
so much that, animators started thinking about employing those perfect partners
more in the process of animation preparation as inbetweeners. Inbetweeners were
those people who drew the inbetweens from the drawings of the chief-animators and
painted them. There were so many faults most of the time, either some paint leaped

over the line or the inbetween did not look realistic.

This led to the development of tools that produced the inbetweens {rom the
drawings given by the chief-animator. This process is called 2D inbetweening. 2D
inbetweening always caused deformations because the information given to the com-

puter lacked one dimension (Figure 3.1).

The thought of giving the computer the 3D definition of the characters was the

next step. This has been done by means of the algorithms that could produce the

13

CHAPTER 3. ANIMATION 14

K

Keyframe 1 Keyframe 2

2D inbetweening will produce deformations.

Figure 3.1. 2D Inbetweening

2D view of scene by applying some rendering techniques (hidden surface elimination
and shading) to the 3D data. Also, by the use of homogeneous coordinate systems,
fast matrix operations were introduced, to apply rotations and trauslations to the
3D data of the animation characters. Those developments led to the result that
computers started producing meaningful inbetweens from the given 3D keyframes

(keyframes are those frames prepared by the chief-animator).

However, there were further problems. There were many possibilities and tech-
niques to make a character move on the computer screen, or to display a series of

frames.

3.1 Display Techniques

The frames of an animation can be displayed on the screen of a computer in one of

the three ways:

Read from disk and display

Frames of the animation can be rendered and stored on a storage medium, to be
displayed later on. Another program reads those frames {rom the storage one by one

and display them on the screen. Very fast-access disk-drives can reach the 25 frames

CHAPTER 3. ANIMATION 15

per second speed, which is the default value for the PAL system (30 frames per
second for NTSC system). Storing only the differences between frames may speed

up this process.

Frame Buffer Animation

Frames, which are rendered and stored on a storage medium can be read into the
memory and can be displayed from the memory, which can write to a screen faster
than directly from storage medium. But it is obvious that only short sequences of
frames can be shown this way, as RAM sizes are small compared to the size of a
frame. Using very large random access memories, this technique can be employed.

There are special hardware designed to do {rame buffer animations like Abekas6000!

Realtime

The other way is to render the frames and show them instantaneously on the screen.
To use this technique, one should use either very simple shading models and algo-
rithms or very fast graphics-devoted machines. Because of the necessity to render
cach frame in less than a 1725 of a second, this is most of the time reserved for
applications with very simple shading requirements. Flight simulators are a good ex-
ample for real-time display animations. They use flat shading and very sophisticated

graphics devoted computers.

3.2 Animation Techniques

As computer science and computer graphics techniques improved, many animation
techniques other than keyframe animation has been put into use [1, 2, 3, 4, 7, 11,

14, 19, 23, 27]. These techniques are:

o Algorithmic Animation

— Kinematic Algorithmic Animation

— Dynamic Algorithmic Animation

! Alekas6000 is a trade mark of Abekas industries.

CHAPTER 3. ANIMATION 16

¢ Goal-directed Animation

~ Goal-directed animation by kinematic laws

— Goal-directed animation by dynamic laws
¢ Procedural Animation

e Keyframe Animation

— Image based interpolative animation
— Semi goal-directed keyframe animation

— Joint parameters interpolative animation

3.2.1 Algorithmic Animation

Most phenomena can be successfully animated using abstract motion specification
methods, like keyframing, etc. When an animator wants to animate an elastic ball
hitting a wall and bouncing back, he has to work very hard to make the whole

sequence look realistic. Usually the timing, which is required for a realistic animation,

is very hard to achieve manually.

Algorithmic animation is a method that is developed to achieve the realistic
animation of physical phenomena of which laws are well defined. Motion specification
is done algorithmically, in which phyvsical laws are applied to the parameters of
the animated characters. We can classify algorithmic animation system into two
as applying kinematic physical laws and as applying dvnamic physical laws to the
characters. But sometimes the system can admit laws which is apparently specified

by the animator, that is the physical laws of the animator.

Kinematic Algorithmic Animation

The algorithmic animation systems which use kinematic laws are called the kine-
matic algorithmic animation systems. In this type of motion specification strategy,

the animator assigns an initial velocity and an initial acceleration to the animation

character or any segment of it. The laws used are:

CHAPTER 3. ANIMATION 17

T=v*l=qa=t2

where z is the distance taken by the object, ¢ is the time, v is the velocity and a

is the acceleration of the object.

By using those laws, functions which specify the trajectories of the animation

characters are found and employed in the animation.

The kinematic laws usually produce acceptable but not very realistic motions.
They are used when computation time has to be short and dynamic laws cannot be

employed.

Dynamic Algorithmic Animation

The algorithmic animation systems which use dynamic laws, in addition to the kine-
matic laws are called the dynamic algorithmic animation systems. In this type of
motion specification strategy, the animator assigns an initial force (torque) to the
animation characters or any segment of it. Each segment of each character has a

specified mass and the rules used for animating the characters are as follows:

T =ax*t?

F=m=x*a

where z is the distance taken by the object, 1 is the time, F is the force applied

on the object, m is the mass and « is the acceleration of the object.

This kind of motion specification is very expensive in terms of processing time
and it is only used when strict realism is needed. The results are highly remarkable.
The bouncing of an clastic ball can only be successfully animated through the use

of such dynamic rules.

3.2.2 Goal-directed Animation

Sometimes the motion that the animator wants to create is a very specific motion
that can be specified to the machine by simple English-like commands like walk, sit,

nod, jump, run.

CHAPTER 3. ANIMATION 18

If the animation program is equipped with a strong knowledge-base, it can per-
form those actions by simple English-like commands. The motion planning and

control is done entirely by the machine and the animator only specifies a command.

Usually, a simple command like run is composed of several different actions.
What is done is that motion units are defined like lift left leg and those are composed

into more complex motion units,

This motion specification method eases the job of the animator, but it also puts
strict limits to what the animator can do with the models. If a specific motion is
not defined in the knowledge-base, the animator cannot move the models in that
way. The quality of a goal-directed animation system depends on the amount of
information embedded in the system and how the motion units are implemented.

There are two approaches in the implementation of the motion units:

Goal-directed Animation by kinematic laws

Goal-directed animation systems that use kinematic motion specification rules are
used commonly. Although this usually does not give realistic and satisfactory results,
its performance superiority over other methods lets the animator produce acceptable

results. The basic tools of kinematic motion control are position, displacement,

velocity and acceleration of the models.

Goal-directed Animation by dynamic laws

Goal-directed animation systems that use dynamic motion specification rules are
employed in systems that require high realism. The output of dyvnamic motion
control is highly realistic but it is as much expensive as it is realistic. There is a

trade off between realism and computation times.

In dynamic control, energy, force and torque are employed in addition to position,
displacement and velocity. The analysis of real physical variables produces very
realistic results but the knowledge-base for such a system is huge and the processing

time is very long. Real-time animation systems cannot employ such techniques.

CHAPTER 3. ANIMATION 19

3.2.3 Procedural Animation

An animation scripting language is used in the specification of motion of the char-

acters. This approach is used in applications where the motion of the models can be

procedurally defined.

Examples of such an scripting language is CINEMIRA [10] and ASAS [26] (Actor

Script Animation System).

In this approach the animator writes an program to produce a sequence of ani-
mation. The program is either written in a high level language, and the animation
produced through a graphical interface, or it is written in a specially designed ani-

mation scripting svstem.

The animator cannot see the result until the script is complete. and this is a
major disadvantage. Another disadvantage of this approach is that the effects that
will be created by the language cannot be intuitively guessed by the animator, that
is the language is very abstract and cannot serve as a user-interactive system. For

example the program in Figure 3.2 does not give a good feeling of what will happen

in the film.

What the script does is that it spins two cubes on the screen but it is not in-
tuitive. The use of procedural animation is restricted to specific areas, where the

animators are experienced programmers and the motions required for the animation

are procedurally definable.

3.2.4 Keyframe Animation

Keyframe animation is the oldest technique used to generate computer animations.
It is adopted from traditional animation. The idea, as referred above, is the same
with traditional animation: the animator gives the motion parameters for some
specific frames, which are main breakpoints of the desired motion. Then the com-
puter gencrates the motion parameters for other inbetween frames as it has the three
dimensional definitions of the models. There are different techniques in keyframe

animation with respect to motion specification or interpolation methodologies to

obtain the inbetweens.

CHAPTER 3. ANIMATION 20

(script myprogram

(local: (runtime 96)
(midpoint (half (runtime)))

(animate (cue (at 0)
(start (spin-cube-actor green)))
(cue (at midpoint)
(start (spin-cube-actor blue)))
(cue (at runtime)

(cut))))

Figure 3.2. A sample script

Image based interpolative animation

Input to the computer is given as two dimensional pictures and the computer per-
forms two dimensional inbetweening (Figure 3.1). This technique except for some
special conditions produces results that are incorrect. Shear effect is observed in tle
inbetween {rames and models seem distorted. User intervention is needed to achieve

a sequence of frames without distortions.

Joint parameters interpolative animation

In this approach, the animator specifies the joint parameters of models for some
specific frames, which are called keyframes. Then the computer interpolates those
joint parameter values and generates the inbetween frames. This approach is very

efficient and widely used in computer animation.

CHAPTER 3. ANIMATION 21

Semi-goal directed keyframe animation

This approach is the same with joint parameters interpolative animation except
that the animator specifies the keyframes in a more user-interactive fashion. For
each kexvframe, the animator positions the models by using some simple, English-like
commands. This technique is suggested by Ozgiic and Mahmud [16] and the system
developed by this method efficiently melts many approaches in one pot and gives

flexibility to the animator in choosing a way to specily the keyframes.

The Mars Animator animates the 3D articulated rigid models using the para-

metric keyframe interpolation method among the many methods in literature.

3.3 Motion Specification

Motion control has always been a problem in computer animation, as the data to
ve manipulated is 3D and our tools (mice, digitizers, lightpens, cursors) are 2D. It
is very hard for an animator to visualize a 3D object on a 2D screen, and it is even

harder for him to manipulate that cbject by using 2D manipulators.

From all these points, we conclude that an interactive manipulation of our 3D
animation characters is very hard to achieve, but we want to position and orient our
characters any way. We have to give keyframes to the computer, so that it produces

an animadtion.

First. it would be better to examine the criteria of control, that an animator

would like to have over the 3D data of the animation characters. The animator

should be able to apply

¢ translations to the characters

¢ rotations (about any of the 3 fundamental axes) to the characters
o rotations (about any of the 3 fundamental axes) to the segments of the char-

acters

There are many possibilities for achieving those criteria. The computer may be

loaded with a knowledge base (as with goal-directed approach) and the animation

CHAPTER 3. ANIMATION 22

may be abstracted from the low-level details of the transformation, or the anima-

tor may be required to go into the depths of the motion specification and do the

transformation at a very low level,

Indeed, there is a trade-off between high and low-level motion specification
schemes. As the motion specification level gets higher, computer does more job,
the animator’s job gets easier, but the animator’s control over the characters is re-
duced. As the motion specification level gets lower, the computer does less job, the

animator works more, but his control over the characters increases.

In Mars, we chose a way in between: Joint parameters manipulation. The trans-

lations and rotations are performed as follows:

Translation :
To translate an object, a new coordinate:
s —_
1 new — (Pl'new'l 'P"Jncw’ Pzn-.w)

is needed. Py, and P, can be obtained by the monse, and we obtain P, by

using a slider. As those parameters are chosen by mouse and slider, the object is

moved to its new position.

Rotation :

To rotate a segment of an model or the model itself (which is the main segment of

the model), a quadruple of the form:

R = (modelname, segmentname, azis, ©)

is needed. Modelname is the name of the model, segmentname is the name of the
segment of the model, axis is either of the three fundamental axes z,y,z and O is

the rotation angle about this specified axis.

Modelname is selected interactively from the screen. O is selected by using a

slider. Axis is selected by an exclusive toggle menu. The rotation is applied to

CHAPTER 3. ANIMATION 23

the model with the given modelname, axis and © as the segment is selected from a
pop-up menu. The instance of choosing a segment from the segments pop-up menu

can be seen in Figure 3.3. This way, many segments can be rotated with the same

parameters consecutively.

Full control of the motion of the models is given to the animator. Each segment
can rotate along any of the three axes and by this method, all joints can access any
point in 3D space. The animator can create any alignment position of the models

by selecting each joint one by one and rotating them.

3.4 Interpolation

When all keyframes are ready, the computer interpolates the parameters of the joints
of each model and creates the frames between the keyframes. This is done by an in-

terpolation scheme that depends mainly on the matrix operations. This interpolation

is performed as shown in Figure 3.4.

In fact, what is done is that, we find the matrix that transforms the first position
to the final position. Then from this transformation matrix, a rotation axis and a
rotation angle are found. After this angle is divided into the number of inbetween

frames, a new transformation matrix is formed from these axes and the rotation

angle step. The details of this process is as follows:

An animation tool should find the inbetween positions and orientations of a
moving segment fast and correct. In our implementation of Mars, we have used

a mathematically-based approach to find the transformation matrices for the inbe-

tween positions.

In Mars, every segment has a transformation matrix that transforms the local
defined segment points to the world coordinates for each keyframe. Each segment
is defined in a local coordinate axis to ease the manipulation of the shape of the

models. Also, a defined segment can be used in many orientations and sizes in many

models.

Let the local defined points be Pj,.q; and their projections onto the screen with re-

spect to the world coordinates be Pyorig- The transformation matrix that transforms

Plocal to Pworld is Allocalwworld- So

CHAPTER 3. ANIMATION 24

(8) MARS Scrpt Wriung (Write the Scenario) Murat AKTIHANOGLU By

& e —cipeii__
i
J LOWERTORSO
FRHIP

FRKNEE
FRANKLE

FLHIP

FLKNEE
FLANKLE

BRHIP

BRKNEE
BRANKLE

BLHIP =

. BLKNEE
BLANKLE
UPPERTORSO

NECK

Left view Rignt view

Too view (Perspectiva) Carera view :
Current Model: zlpciktl (Z = 240)
(Save trame) Save8Goto) frame) o)

(oadtrame)l (E1) Current Frame : 1 (saved) MODEL TYPE: [WIRE | CONTAOL-MESH | RECT |
20160 Axis [x [V]2] view: [SINGLe Jau]

Angle =19 -179 @ 8;
e 1 1) 1) v))] 1]
Z 290 0 D <3 0500 Focus Pointx 100 (&) VY 109 (& 7 s00 (&)
e 1)) L}) L 1))) _— —_—

Lnou:e Buttons: (Left=Select Model) (Middle=Place Model) (Right=Select Joint & Rotate)

Figure 3.3. Animation screen of Mars

CHAPTER 3. ANIMATION

Keﬁlframe Inbetween

4x4

i

|
i A
Uxd |ooeeeeeee e
Transfromation
Matrix

Inbetween

Step Matrix

Keyframe

4x4

Transfromation
Matrix

Figure 3.4. Matrix Interpolation Scheme

25

CHAPTER 3. ANIMATION 26

Pworld = Alflocalgoworld * Plocal

for any frame. Note that Pco; does noi change throughout the film (if some

morph is not employed in the film!).

We want to find the inbetween positions for two points with a known step size
N. We have all the transformation matrices of all segments of all models for each
keyframe. Let us consider a specific interval that is to be interpolated. Let the

starting keyframe have the label s and the final keyframe f.

The starting position is given by M,, . and the final position is given b
(=] =] tocalSworld
My, otfworta- IrOom those two matrices, we can find the transformation matrix that

transforms starting position to the final one. It is given by

M,

tocat J1ocal = ‘I‘/[fworldflocal * ‘Afslocalsworld
We know My, s...040 and as those transformation matrices are orthogonal,

_oar-=1 — MT
Mfworldflocal - ‘Uf ocalJwortd “/fflocalfworld

Using this 4x4 homogeneous coordinates transformation matrix Mg, 0 fiocarr We

can find the axis and the angle of this transformation which can be seen in Figure 3.5.

The angle O of the transformation is given by:

0= COS—I((t’l‘(lce(Jlltransformaiion) - l)/2)

This angle obviously can take infinitely many values but we chose the smallest

positive value as a convention.

Then the arbitrary axis around which the rotation is done is found first by finding

the 4x4 vector matrix K:

— . T
K= (A/[transformatxon - A/]transformation)/?‘

CHAPTER 3. ANIMATION

Rotation
Angle

Iligure 3.5. Axis and angle of transformation

27

CHAPTER 3. ANIMATION 28

Then the column matrix & is found from K and finally the column vector n (the

axis of rotation) is found by:
n = k/sin(0)

After finding the arbitrary axis and the rotation angle, we divide the rota-
tion angle by frame number of first keyframe minus the frame number of the next

keyframe, to find the step rotation angle Og.,. The step transformation matrix

jwtransformation“c,, is found by:
‘A{[transformation_.te,, = COS(@_gtep) « I + (1 - COS(@step)) * Tk 7lT + sin(G)s,ep) * N

All the transformation matrices in that interval are updated using this step trans-

formation matrix.

3.5 Previewing

When the transformation matrices for all the segments of all imodels for all frames are
found, the sequence of animated frames becomes ready to be viewed by the animator.

The interpolation and previewing screen of Mars can be seen in Figure 3.6.

The player draws each frame on the screen consecutively one by one. For this

process, it makes many matrix multiplications of the form:

Porta = A/Itransformation * PIocal

for cach point of the model. If these multiplications are done for a complex model

with many points, the animation on the screen would be very slow and does not give

the feeling of moving models.

Instead Mars uses one of the three skeleton views according to the needs of the
animator. This way, real-time playback can be achieved. The modes of the preview

model type has been explained in the Modeling chapter.

CHAPTER 3. ANIMATION 29

[3) MAKS Htage Hehearsal (May the Ycnpt) Hurat AKTIHAN O GLU R N e S S SRR

Curent Model @ zipelktl (2 = 240)

Lefs view Right view

Top view Perspective vien

((Clear canvas) (Interociae) (Ses film)
Filename : the_cun MODEL Type: [wire | CONTROL-HESH [RECT |

Record Models VIEW: | SINGLE
Focus PointX 25§ ([3) Y 238 (I3 z s00 (=D

Figure 3.6. Interpolation and previewing screen of Mars

CHAPTER 3. ANIMATION 30

The benefit of choosing a mult: representation becomes clear at this stage. The
animator can view the created motion in real time, so editing is easier and faster.
By means of this preview phase, the animator can see the created motion and make

changes, before the long process of rendering begins.

Up to the previewing phase, the model is treated with its stick, control points
or sbb representations. At this stage, the Mars animator creates the Bezier surfaces

from the control points or directly reads the patch definitions of segments from file.

After editing, when the desired motion sequence is achieved, Mars sends the

model’s data and the motion data to the multicomputer for rendering of the scene.

3.6 Communication between the Animator and the Ren-

derer

After all the previewing is done and the desired motion sequence i~ achieved, the
scenes get ready to be rendered. This expensive process is done on a multicomputer,
to cut down the total filin-making process. This means that the data representing

the models and the animation should be transmitted to the multicomputer in an

appropriate form.

After previewing, we have the model data and the motion sequence data. The
important point in this stage is the way this model and motion data is communicated
between the Animator and the Renderer. There are a number of ways to.do this. The
criterion of optimized communication is that this data should be well compressed
and it should have no redundancy as well as containing all the necessary information

about the models used and the specifications of the motion.

The format of this data is very significant. There is a trade off between the data
size and the data interpretation time. If the animator sends the data to the renderer
in a very compact form, it takes more time for the renderer to achieve the data. Ior
example, the data for the inbetween frames which the animator has might be omitted
from the communication packet because the renderer can find those values by itself
if it is given the necessary database. This obviously increases the processing time of
the renderer and since the animator already has this data, it would take less time

for the renderer to read it from file than compute itself. So, we have to be careful

CHAPTER 3. ANIMATION

Model data

Model name
No of Segments

Segment name
Segment type

Segment name
Segment type

Model name
No of Segments
Segment name
Segment type

Segment name
Segment type

Motion data

List of patches

List of patches

List of patches

List of patches

Frame No
Model name
Segment name, T-Matrix

.
.

Model name
Segment name, T-Matrix
Frame No
Model name
Segment name, T-Matrix

(Only those that
have changed)

Model name
Segment name, T-Matrix

Figure 3.7. Data formats for communication

about what to insert into and what to omit from this data.

31

The communication

format of Mars is shown in Figure 3.7. The model data communication is straight

forward. Each model has some segments, and each segment has its own definition.

But for motion data, the transformation matrices for each segment of each model is
communicated only for the first frame of the film. Then, a transformation matrix of

a segment is transmitted to the multicomputer if the segment has changed its place

or orientation since the previous frame. This provides a significant compression of

data since only the necessary matrices are transmitted. This is also exploited in the

processing of data, as will be seen in the next section.

Chapter 4

RENDERING

Rendering is the process of producing realistic images or pictures. Visual perception
involves mainly physics and positioning of the surfaces and objects observed. In the
rendering process of a three-diinensional scene that is composed of three-diinensional
objects and surfaces, two issues are considered: how the surfaces reflect the incident

light, that is the illumination model of the objects and which surfaces and objects

are seen and which are hidden.

4.1 TIllumination Model

When light energy falls on a surface, it can be absorbed, reflected or transmitted. It
is the reflected or the transmitted light that makes a surface visible. What makes us
see an ob ject colored is that some wavelengths of the incident light may be absorbed
more than other wavelengths. When a white light falls on a surface and red and green
components of the light is absorbed by the surface, the surface is visually percepted
as blue. To give this effect computationally in computer generated pictures, there

are mainly two illumination models used by the computer scientists: Phong [5] and

Cook-Torrance [20] illumination models.

Phong model is an illumination model that deals with only a few illumination
parameters, but yet still gives acceptable results. Another model, the Cook and
Torrance illumination model is a more realistic model. It deals with a lot of pa-

rameters like the Fresnel term, attenuation factor, surface distribution function and

32

CHAPTER 4. RENDERING 33

the non-uniform reflectance hemisphere of the surface. As the Cook and Torrance
model is a more physically-based model than the Phong model, which is roughly an
approximation of the former, it requires more computations than the Phong model.
The more complex the illumination model is, the more expensive the cornputations
but the more realistic our pictures are. More realistic pictures are always justified
in computer graphics but after all, Phong shading model is used almost all the time
instead of Cook and Torrance model which is very expensive. Phong model provides
realism enough to avoid all those parameters. In our implementation of rendering a

sequence of animated film frames, we have used Phong’s algorithm.

4.2 Hidden Surface Removal

For rendering a scene, first the hidden surfaces should be removed, and the projection
of the scene onto the two dimensional screen must be performed. This process also

includes the rasterization on the projected surfaces.

A comparison of hidden surface removal algorithms may be found in [24]. In this
survey, hiddeun surface removal algorithms are classified as operating on object-space
or the image-space, and the degree of colerence they employ. Here coherence means

the processing of geometrical units, such as areas or scan line segments, instead of

single pixels.

There are currently two popular approaches to hidden surface removal: Z-buffer
based systems and scan line based systems. Other approaches like area subdivision
or depth-list schemes are not extensively used and they are only reserved for special-

purpose applications like flight simulators.

The Z-buffer algorithm developed by Catmull [8], combined with the Phong re-
flection model represents the most popular rendering scheme. This algorithm, using

Sutherland’s classification scheme, works on image-space or screen-space.

Pixels in the interior of a polvgon are shaded by an incremental shading technique
and their depths are evaluated by interpolation from the z values of the polygon
vertices. For each pixel the nearest visible point is buffered and compared to the

next coming point, which is projected onto the same pixel (Figure 4.1).

CHAPTER 4. RENDERING 34

like this.

X3,Y3,Z3,N3

Scan lines

Figure 4.1. Formation of the Edge Boxes in the Z-buffer Algorithm

There is a variation of the Z-buffer algorithm for use with scan line based sys-
tems, which is called scan line Z-buffer. The rendering method, Mars uses is scan
line Z-buffer hidden surface removal algorithm [26]. This algorithm consists of two
phases. In the first phase, the algorithm goes through all the polygons in the scene
to find and store the intersection points of each polygon with the scanlines of the
image. Hence, the first phase effectively constructs a one-dimensional array of point-
ers scanlines where scanlines(i) points to the linked list that contains the edgeboxes
on the i** scanline (Figure 4.8). In the second phase, scanlines are processed one
after another. In each scanline. the segments indicated by the edgeboxes in the cor-
responding linked list are rendered. All the pixels between two intersection points
are shaded with Phong shading model and with an incremental shading technique.
There are two approaches to calculate the intensities of the pixels, that lay between
the two edgebox pixels. The first one, which is called Gouraud interpolation, is to
calculate the intensities at the edges and then linearly interpolating those intensities
for the inbetween pixels. The second approach, which is called Phong interpola-
tion, is to interpolate the normals linearly for each inbetween pixel and calculate
the intensity value afterwards. The second approach is apparently more expensive

than the first one, but generally, more expensive methods generate realistic looking

CHAPTER 4. RENDERING 35

pictures. Phong interpolation generates highlights that look more realistic, while
Gouraud interpolation results are narrower. Mars uses Phong interpolation, because

realistic looking pictures form realistic animations after all.

We have preferred this algorithm mainly due to its very special nature that
perfectly suits our tools of optimizing the rendering process. It first runs on the
object-space and then the image space. Moreover it requires much less memory than
conventional Z-buffer algorithms that holds all the screen space for the rendering.
Scan line Z-buffer hidden surface removal algorithm is easy to implement, but as

each pixel of each patch is visited, it is computationally expensive. The speed of this

algorithm is the bottleneck of all the film-making process.

Of the three phases, rendering has attracted the most attention and research.
More efficient techniques were needed to be developed to make the immages look more

realistic and to finish the overall process in a shorter amount of time.

If we think of rendering a picture as reducing a 3D scene to a 2D image, then
the rendering of an animated film, i.e. a sequence of frames, is reducing a 4D scene
(including time as the fourth dimension) to a 3D image (a series of frames, including
time as the third dimension). Thus, rendering an animated sequence of frames must

be thought differently than the rendering of a static scene. Hence, rendering a scene

and a film are considerably different processes.

If we do the rendering of a sequence of animated frames separately, i.e. render
each frame as totally irrelevant to each other, the result would be acceptable, but
there are surely better ways to do this, as long as the sequence of frames has a very
important characteristic that must be thought of. In terms of efficiency of processing,
what makes a sequence of animated film frames different from a sequence of totally

irrelevant frames is the concept of temporal coherence [26].

4.3 Temporal Coherence

Any object or joint in an animated film has a great degree of coherence between
successive frames. That is to say, in consecutive frames, an object or a joint makes

a relative translation or a rotation to its previous position and orientation [13].

Rendering each frame separately is of no sense. The optimal rendering algorithm

CHAPTER 4. RENDERING 36

Figure 4.2. High degree of coherence in a film

should fully exploit the temporal coherence between successive frames in order to
reduce the rendering job. It should avoid rendering the parts of the picture that
do not change after the previous frame. Such an algorithm should have a buffering
mechanism that buffers the parts of the picture that Jdo not change and parts of
the picture that will change in the next frame. After rendering a frame totally,
creating the next frame can be done by simply rendering only those parts of data
that have changed their place and orientation since the previous frame. The basis
of such an algorithm is the coherence between successive frames of an animated film
(for an example see Figure 4.2). Temporal coherence is one phenomena exploited
fully to render animated film sequences more efficiently. As long as efficiency is our
main academic goal, we must think also of optimizing our conventional sequential
rendering algorithm. As will be seen in the Algorithm section, it is optimized to its
best in terms of sequential processing but there is still something more we can do :

parallel processing.

4.4 Parallel Processing

In literature, there are several works done on parallel rendering of a scene [28]. Most
of the studies have a great dependency on the nature of the parallel architecture
employed. The architecture we have implemented our algorithm on is Intel’s iPSC/2
hypercube. iPSC/2 is a distributed memory and message-passing multicomputer.
The iPSC/2 we are currently using has 32 processors. We have tried to improve an

algorithm that would give good results on other parallel machines as well.

CHAPTER 4. RENDERING 37

Processor 0

Processor 1

Processor 2

Processor 3

Figure 4.3. Screen space subdivision

4.5 The Algorithm

The algorithm to render the sequence of animated frames mainly depends on the
temporal coherence and parallelism concepts and it is based on a modification of the

conventional scan line Z-buffer hidden surface removal algorithm.

I we modify the Z-buffer algorithm such that, first all the patches are processed
to form the edgeboxes, and then this heap of edgeboxes is processed to generate the
intensity values, it becomes an algorithmn that runs first in object space and then in
the image (screen) space. This is the most important part of the parallel algorithm.

The subdivision problem will be solved with the addressed concept.

Load balance is one of the main goals in parallel algorithm design process, but
to achieve load balance in the rendering process of a scene, composed of 3D objects,
the distribution of the objects that consist of patches to the processors is a critical

job. Most of the time some assumptions and approximations are made.

There are mainly two approaches to the load distribution problem. One of them

is screen (image) space subdivision and the other is object space subdivision.

Screen space subdivision : In this distribution scheme, ob jects are distributed

CHAPTER 4. RENDERING 38

to the processors with respect to their locations in the projected view of the scene
onto the screen (Figure 4.3). That is, a slice of the image is devoted to a single
processor. This works fine with the second phase of the algorithm where edge-boxes
are processed but to divide the screen such that equal loads of patches are distributed
to the processors is very difficult. Usually, some preprocessing is done to make sure
that equal number of patches exist in each of the slices, but this is also a difficult job,
and still does not give satisfactory results, since shared patches may exist. Shared

patches problem slows down the distribution phase.

Algorithms with image space subdivision are inefficient in achieving the load
balance, but they are efficient in the second phase of the process where edge boxes
are rendered and in the last part of the process where the contributions from each

processor is merged to construct the final image. This merging is simply a concate-

nation.

Object space subdivision In this scheme, objects are treated as a list of

patches, and they are mapped to the processors by using either tiled or scattered

decomposition (Figure 4.4).

That is, to achieve the load balance, processors are giverr equal number of patches
in any of the two division schemes. In the tiled division, N patches are divided to the
M processors such that processor ¢ receives patches from i*(N/M) to (i+1)*(N/M) -
{. The list is divided in a tiled way. In the scattered division, processor i gets
every (N/M)th patch starting from the ith patch. Scattered division is more likely

to achieve better load balance, but this heavily depends on the nature of the data.

Algorithms with object space subdivision work with a perfect load balance in
the first phase, where edge-boxes are formed, but in the second phase and the last
reconstruction phase, they have some deficiencies. The deficiency is that merging
of the contributions from each processor to construct the final image is not straight
forward. The objects devoted to different processors may occupy the same area, and
a final Z-buffer checking has to be done in the merging phase. That is, sequential
overheads are introduced in the last phase. Some algorithms try to overcome this

overhead by also distributing the merging process, but still a big chunk of CPU time

is wasted in this process.

CHAPTER 4. RENDERING

Tiled subdivision

\!
\3\2\3 \ 2\

\“ Yy 5y
===

—\V

Scattered subdivision

Figure 4.4. Object space

subdivision (4 processors)

39

CHAPTER 4. RENDERING 40

4.6 Model Data Distribution

After observing that algorithms with object space subdivision work more efficiently
in the first part, and algorithms with image space subdivision work more efficiently
in the second part of the rendering process, the problem would become to find an
algorithm which works in the object space in the first part and in the image space

in the second part.

After setting our goals, we have seen that to modify the conventional Z-buffer
algorithm such that, at first all patches are processed to form the edge-boxes and
then all the edge-boxes are processed to give the pixels, appropriate illumination

values would work fine.

The data distribution scheme employed is such that the model data is uniformly
divided to the processors in a scattered manner for the first part. Then, the edge-box
data is divided to the processors with respect to their locations in the image space.

Thus, in the first part object space subdivision, and in the second part image space

subdivision is applied.

4.7 Film Data Distribution

As addressed above, our problem to be parallelized is a 4D problem. To achieve
the data that will be used in the rendering process, model data and film data are
needed. The model data which consists of 3D points in the space is multiplied with

the transformation matrices of the filin data for each frame.

We also have to distribute the film data to the processors. First, it is better to

have a look at the nature of this data (Figure 4.5).

Our primary goal is to minimize the processor idle time by achieving load-
balanced computations. The rendering of the keyframes is performed in parallel
and this will be described in the next section. For the sake of simplicity, we assume
that the number of inbetween frames between two keyframes are always multiples of
the number of processors P. Hence, each processor can easily be assigned the render-

ing equal number of inbetween frames in scattered fashion. The scattered mapping

of inbetween frames enables the realtime animation process.

CHAPTER 4. RENDERING 41

Load (#‘patches) O = Keyframe

5:78910 11213 1405)617 1819202122
;"Frame#
TIENFIEREFEREN TR
Boie o iaiw e wm e
el el imiel el ow
5w e owe e

Processor

Distribution

Iigure 4.5. Load Distribution of the Frames (4 processors)

CHAPTER 4. RENDERING 42

The dedication of inbetween frames to individual processors is because of the
unpredictable computational load involved in the rendering of inbetween frames. If
the granularity of rendering an inbetween frame is too small, parallel processing of
that frame by P processors would even get longer than simple sequential rendering.
Moreover, this way data is processed as if it is compressed between the keyframes. At
the keyframes, we cannot compress the data because of the nature of the temporal

coherence exploition mechanism that will be explained later.

4.8 Processing of a Keyframe

In the rendering phase, a keyframe is rendered by all processors concurrently because
maximum load occurs in a keyframe. In a keyframe, all patches are to be re-rendered

because stationary parts and moving parts may change completely or partially.

What is done in keyframe rendering is that, a constant {rame buffer (CFB),
a moving frame buffer (MFB), a constant Z-buffer (CZB) and a moving Z-buffer

(MZB) are created (Figure 4.6).

The CFB keeps the image of the stationary parts that do not change in an
interval (note that we use interval to refer to the frames between two consecutive

keyframes). The CFB is constant throughout the interval and it is up&lated at every

keyframe.

The MFB keeps the image of the moving parts that are actually moving in an
interval and it is updated at every frame. The load of generating MFB depends on

the number of joints or models that move in that interval.

The CZB keeps the z-values of the constant parts. Those values are used

throughout the interval to determine visibility of each pixel. It is updated at ev-

ery keyframe like the MFB.

The MZB keeps the z-values of the moving parts. This buffer is updated at every
frame. Each calculated z-value is compared with both the CZB and the MZB to

determine if the moving part is visible or not.

Recall that image space decomposition scheme is to be utilized for mapping ren-

dering computations to the processors. Also recall that a scanline based Z-buffer

43

RENDERING

CHAPTER 4.

Inbetween

MZB

MZB

Keyframe

Yigure 4.6. Buffers in a Frame

CHAPTER 4. RENDERING 44

algorithm is selected for rendering. Hence the image space should be divided by
scanlines. That is, a scanline is chosen as an atomic process to be performed sequen-
tially by an individual processor. Otherwise, further division of individual scanlines
may necessitate unacceptable computational overhead in order to maintain the spa-
tial coherence. It is apparent that the amount of computations to be performed for
cach scanline is proportional to the number of edgeboxes on that scanline. Hence,
a load-balanced mapping problem for the parallel rendering of keyframes can be

modeled as follows:

Input Instance : Given n scanlines (sy, $2, ..., s,) with the corresponding compu-

tational weights (wy, w2, ...,w,). Here, w; is an integer which denotes the number of

edgeboxes on the scanline s; and W is the sum of all w;’s.

Problem : Assignment of these n scanlines to P processors such that the sum
of the weights of the scanlines mapped to each processor is close to optimal load

Waverage = W /P as much as possible.

This problem is in fact the number partitioning problem which is NP-hard. Here,

we propose a simple yet effective heuristic for the solution of this load-balanced

mapping problem.

The steps for the rendering of the parallel rendering of the keyframes is given

below :

Step 1: As discussed earlier, each processor is assigned almost equal number
(either [N/P] or [N/P]) of patches using the scattered mapping scheme, where N
denotes the total number of patches in the overall scene. Each processor performs
the first phase of the scanline based Z-buffer algorithm for its local patches. That
is, each processor constructs the edgelist for its local patches. At the same time,
each processor also forms a local edgebox counter (EBC). EBC in each processor is

a one-dimensional array such that EBC(i) holds the number of local edges in the it"

scanline.

Step 2: Each processor performs a prefix sum on its local EBC array so that
EBC(i) holds the total number of local patches on the first i scanlines. Then, a
duplicated global vector sum operation is performed on the local EBC vectors. At
the end of this global operation, each processor holds a local copy of the EBC array

where EBC(i) contains the total number of global patches on the first i scanlines.

CHAPTER 4. RENDERING 45

Step = End = EBC(NO_LINES)/allnodes
i=0
for node=0 to (allnodes-2) {

while EBC(i)< End
i = i+l

if (EBC(i)-End > End-EBC(i-1))
end(node)= i-1

else

end(node)= i

End = End + Step

end(allnodes-1) = NO_LINES

Figure 4.7. Pseudo code of heuristic based mapping scheme

Step 3: Each processor runs the mapping-heuristic whose pseudo code is given in

Figure 4.7.

Note that the proposed heuristic achieves the tiled decomposition of the scan-
lines. Hence, each processor determines the mapping information for all scanlines in
the image. Then, each processor sends the edgeboxes of the non-local scanlines to
their home processors according to the mapping information. Thus, each processor

merges (by simple pointer operations) the received edgelist with its local edgelist

(Figure 4.9).
Step 4: Each processor performs the rendering of its local scanlines in parallel.

First of all, each processor processes the stationary patches, and writes the re-
sulting z-values to the CZB and the resulting pizel values to the CFB. This process

is straight forward as it is the same as sequential processing.

Then, the moving parts are rendered. During this process, each edge-box is
processed and the resulting z-values are compared to both the CZB and the MZB,
and written to the MZB and generated pizel values are written to the MFB. The

CHAPTER 4. RENDERING

46

[2 Hsik—x—1

(4 Hsok1—1%1T%1

P e e A

(6 Hsak—¥—1T¥T¥ ¥ ¥k
(6 H ssk—Tx——1x{x%1Tx{¥%{
6 H sep—TxT 1%
6 H sk x 1T ¥ x{¥{
(6 H ssk— ¥ ¥k ¥ ¥k
4 Hsok— ¥

_4——310 K X ¥]

6 Hsnk— ¥ ¥ ¥ ¥ ¥
6 Hsiak—— k¥ ¥ ¥ ¥
D e
erm [X | \l/

2 His1s [x|

gl Edge-boxes

2 Hsik—{—¥%—{—7

Z—-sxs (K]

_Z_J—-sw x—{__1

EBC Edgelist Frame Buffer

Figure 4.8. Edge list formation with counter for each line

CHAPTER 4. RENDERING

2 2 107 ™S [))

2 7 14 220 ~70

4 8 22 > 50

4 12 34 P Each

4 16 52 processor

2 gg 64 % will have
After After 82 70 edgeboxes

8 36 - 100 to render

] prefix [gy] global iy [P

7} sum g sum TA0 L .

2 48 164

4 52 138 p2

10 62 204

10 72 234

10) 058 p3

8 | EBC 90 |gBC 280] _“EBC

Figure 4.9. Prefix and global sums of EBC

Edge box buffers

Figure 4.10. Exchange of Edge Box Data Between Processors

CHAPTER 4. RENDERING 48

important thing about this process is that the z-values of the stationary parts are not

lost and they will be used in the processing of the inbetweens of the next interval.

At the end of this process, the CFB and the MFB are sent to the host and the
CZB’s of the processors arc inter-communicated because of the need to determine
the visibility of the inbetween frames. The formation of the resulting frame buffer

will be explained later,

4.9 Processing of an Inbetween Frame

After a keyframe is processed, each processor holds a CZB, which will be used in
the creation of the inbetween frames. During the generation of the inbetween {rame,
recently computed z-values of the moving parts are compared to the MZB for local

and the CZB for global visibility problems.

With the exception of this comparison to CZB, the processing of an inbetween
frame is the same as sequential processing of the [rame. Moreover, there are no
communications between the processors except for the communication of the CZB

atl the end of keyframes.

4.10 How Host Interprets the Image Data

At each keyframe, the host receives a CFB. It writes this buffer on the screen. Then,
it receives consecutive MFBs. To write a MFB on the screen, the host first has to
copy the pixels that will be occupied by the MFB pixels. The background is saved

because the host will write it back before writing the moving parts of the next frame.

Due to the nature of the problem, we need a background saving mechanism for

the MFB writing.

The solution to this problem works very eflicient. We hold the received CFB
after writing it on the screen as a background buffer. We also hold a 2D binary array,
where cach bit denotes whether a block of pixels is overwritten or not. That is, as
we write any pixel of the MFB on the screen, we set the corresponding bit to 1.

Then, before writing a new MFB, the blocks of pixels with set flags are written on

CHAPTER 4. RENDERING 49

the screen.

As long as there is spatial coherence in the incoming data, the use of blocks
instead of single pixels for flagging is efficient. The only issue in this mechanism is
how large the blocks should be. If they are too large, unnecessary time will he spent
in writing the background buffer back to the screen, if they are too small, overheads

in comparison will he introduced.

4.11 Performance Results

To test the efficiency of the Mars algorithmms, we made a number of processing time

measurements.

To make the measurements, we firsi set the variables of the rendering process.

The factors that affect the processing time of a scene is as follows :

o # of processors

of patches (data size)

o # of patches of moving data

o (very importaut) positioning of the patches.

whether the frame is a keyframe or an inbetween

The number of processors is obviously one of the factors, since the load is dis-
tributed among the processors. As the number of processors increase, their individual
loads decrease and a speedup is expected but later on we saw that in fact this is not
the case because of granularity problems. When the mumber of patches is too small,
increasing the number of processors beyond a certain value increases the processing

time.

The number of patches factor is also obvious. When there are more patches to

process, it takes longer to process!

When processing a keyframe or an inbetween, the percent of the data that is

moving in the inbetween frames also directly affects the processing time. If this

CHAPTER 4. RENDERING 50

Scanlines

Objects have same # of patches

Figure 4.11. low positioning aflects processing time

percent is close to zero, there is very little job to do in the inbetween frames and the
keyframe is also easier to process. I this percent is close to hundred, things wonld
not change much for the keyframe, but the inbetween frame processing time would
be very large. In fact, there is an expected threshold value for this percent, at which
the overall time is minimized, but another factor disturbs this intuitive expectation.

It is the positioning of the patches.

The positioning of the patches of a frame, dominantly affects the processing time,
This effect can be investigated in Figure 4.11. Objects 1 and 2 are identical, that
is they have exactly the same shape and the numnber of their patches is the same.
The only dillerence between them is their alignment. Object 1 is vertically placed,
while the other is horizontally aligned. The first object is processed in a longer
time than the second one because of the different number of scanlines they intersect.
This directly affects the number of iterations of the algorithm, and the first object

is processed in a longer time.

The fifth factor that affects the processing time is also obvious. We have two
distinet algorithms for processing a keyframe and an inbetween. While processing a
keyframe, the load of a single keyframe is distributed among the processing nodes.
The nodes work concurrently and there is also communication between the nodes.
At the last stage of the process, each processor sends the host its contribution of
the image, and the host writes the final image on the screen. On the other hand, an

inbetween frame is dedicated to a single processor with respect to its index number.

CHAPTER 4. RENDERING 51

The processor does all the rendering of the inbetween and sends the resultant image
to the host. So the issue of processing a keyframe or an inbetween frame obviously

aflects the processing time.

The important issues in the performance of the overall algorithm is as {ollows :
e There is a lincar speedup in the inbetween frame processing. (2n processors
process 2n inbetween {rames in hall time n processors process 2n inbetween
frames). This is obvious since each processor processes a single inbetween
frame independently of each other. So if number of processors is doubled, the

number of frames that is processed in the same time is also doubled.

¢ [or a keyframe, the percent of the moving data affects the processing time but
not to a great extend (Tables 4.1 and 4.2). So we can simplily our discussion

by dropping this factor from further inspection for keyframes.

e For an inbetween frame, the percent of the moving data is the main concept
because the data to be processed is this moving daia. As it increases, the
processing time also increases.

o The positioning of the data to be processed is very important (discussed above).
To obtain some results, we somechow iested the performance for some specific
positioning. To show how positioning alfects the processing time, we tested
many films with same models. The models perform the same motion (that
is the films have same number of patches and same percent of moving data).
We tested only the keyframes as our aim is to show how positioning allects
processing time. Lach model is differently aligned in each of the films. The

results show that positioning strongly affects the processing time (Table 4.4).

e Granularity problem becomes important for the processing of keyframes. For
small data sizes, the maximum speedup is achieved with four processors (Table
4.1). For small data sizes, increasing the number of processing nodes does not
decrease the processing time. This is called the granularity problem. As data
size increases, this becomes eight (Table 4.2) and then it becomes sixteen (Table
4.3). Memory was not sufficient to test the algorithm for larger data sizes. This

may be tested in future if memory becowmes available.

We also plotted a 3D graph showing # of processors versus # of data versus

processing time (IMigure 4.12).

CHAPTER 4. RENDERING 52

time (sec)

— # processors
yatches
(x1000)

32

I'igure 4.12. Plot of mumber of processors vs. number of patches vs time

CHAPTER 4. RENDERING

Moving Part

Keyframe
of processors

Inbetween
of processors

2 | 4 [s 1632 2]4]8]16]32
1300 2449 | 2306 | 2486 | 2917 [3711 || 403 | 269 | 164 | 101 | 58
2600 2450 | 2309 | 2476 | 2918 | 3739 || 492 [317 | 186 | 113 | 64
3900 2455 | 2331 | 2468 | 2926 | 3721 || 583 [353 | 207 | 123 | 68

Table 4.1. Results of the rendering algorithm (in ms) for data size = 3900 (3 seg-

ments)

Moving Part Keyframe inbetween
of processors # of processors

2] 4 | 8 |16 | 32 2 | 4 [8]16]32

1300 4320 | 3337 | 3503 | 4211 || SO6 | 442 | 227 | 126 | 82
2600 4314 | 3321 | 3452 | 4195 || 1188 | 634 | 323 172 [122
3900 4315 | 3446 | 3523 | 4184 || 1484 | 783 | 394 | 209 | 124
5200 4312 | 3335 | 3470 | 4203 || 2109 | 1101 | 563 | 290 | 163
6500 4323‘. 3334 | 3468 | 4208 || 2298 | 1178 | 598 | 307 | 173
7800 4320 | 3212 [3168 | 3625 || 2551 | 1293 [662 | 339 | 188
9100 4290 | 3220 | 3157 | 3643 || 2691 | 1393 | 706 | 355 | 201
10400 4312 | 3218 [3190 | 3615 || 3215 | 1693 | 850 | 432 | 236

Table 4.2. Results of the rendering algorithn (in ms) for data size = 10400 (8

scgments)

CHAPTER 4. RENDERING 54

Data size Keyframe
of processors
2 | 4] 8] 16
5200 2308 | 1888 | 1917 | 1970
10392 2248 | 2031 | 2013
15568 2168 | 1866 | 1856
17296 2427 | 1961 | 1814
22488 2836 | 2279 | 1991
27664 2265 | 1851 | 1869
32876 4159 | 2946 | 2029
43224 2441 | 2066
55320 13562 | 2888 | 1919
65704 5041 | 3657 | 2527
70880 ‘ 3007 | 2202
82976 4304 | 3026 | 2146
98536 3374 | 2325
110632 4984 | 3372 | 2673
138288 4121 | 2686
165944 3831 | 2821

Table 4.3. Results of the rendering algorithm (in ms) for different data sizes of a

keyfraine

CHAPTER 4. RENDERING

Film Keyframe
of processors
2 [4] 8 | 16 | 32
1 4817 | 3536 | 2950 | 3099 | 3922
2 5250 | 4018 | 3012 | 2891 | 3385
3 4949 | 3597 | 2841 | 2801 | 3266
1 3733 | 2860 | 2581 | 2669 | 3197
5 5134 | 3673 | 2810 | 2850 | 3329

55

Table 4.4. Results of the rendering algorithm (in ms) for same data sizes (27664)

and percent of moving data (2 segments) but diflerent topologies of a key[rame

Chapter 5

CONCLUSIONS

Mars is a testbed to implement some new thoughts and algorithms in modeling,

animation and distributed rendering.

To implement our parallel animation rendering algorithm, we have implemented
an aniimation system that would give appropriate animation data as input to our
parallel renderer. But, as our system is tool based, any of the tools can i replaced
with a more improved version in the future, and the integrity of the system can be
kept.

Mars is still under development. In spite of the fact that the modeler and the
animator are developed to make rescarch on rendering of a film, they constitute a
fairly complete system. It brings along some efficiencies, like multiple representation
and animation and model creation flexibilities. Mars can create quite complex and

real-looking scenes for animations.

The notions that exist in Mars are :

The structure of the model can be of any n-ary tree structure, thus allowing

all kinds of models with no closed chains.
The segments of the model can be of any complexity. The animator can specify

cach segment of a model as a collection of very complex Bezier surface patches,

so photo-reality in terms of modeling can be achieved.
The keyframer uses a simpler (say skeleton) model while positioning the ob ject,

56

CHAPTER 5. CONCLUSIONS 57

so motion specification is performed easily and quickly.

o The previewing of the object can be done in real timne no matter how complex
the object is, as simpler representations are used. This leads to a quicker

development of the keyframes and the animation.
¢ A matrix method is introduced in the interpolation part of the animator.

¢ The animation scene can be viewed in many directions in the motion specifi-

cation part, 1o ease the job of the animator.

¢ Rendering of the frames is the longest and most expensive part of the computer

animation generation process. To cut down the generation time, Mars uses

distributed processing techniques on a multicomputer.

o The scenes and the models of an animation should have complex structures for
a good fecling of reality. Admirable results come out only with expensive shad-
ing techniques (such as Phong). All those constraints hmply that the processing
time for reudering the frames will be quite long. In addition to distributed pio-
cessing, Mars exploits the colierence that exist between the successive [rames
of a fitm. To exploit this coherence, Mars adopted the Multiplanes approach

[14] used in traditional animation.

Mars methods of distributed rendering optimizes the communication issues.
This is very important because usually most of the distributed processing time
is spent in communications between the processing nodes.

Mars interacts with the user in a user-friendly environment (Sun Sparc work-
stations running XWindows) and gives output to a non-interactive but high-
quality graphics engine (Intel personal super computer 2 with Targa graphics

board).

Bibliography

(1]

(2]

,__,
—
—

1]

,_._,
poa s
[y

Norman 1. Badler. Animating human figures: Perspectives and directions. In
Graphics Interface '86 & Vision Interface, pages 115-20, 1986.

Norman I. Badler and Kamran H. Manoochehri. Multi-dimensional input tech-
niques and articulated figure positioning by multiple constraints. In 1986 Work-
shop on Interactive Compuler Graphics, pages 151-69, 1986.

Norman 1. Badler and Kamran H. Manoochehri. Artienlated figure positioning
by multiple constraints. 1EELE Computer Graphics & Applications, 7(7):28-38,
1OK7T.

Phong Bui-Tuong. Nlumination for computer generated pictures. Communica-
lions of ACM, 18:311-317, 1075.

Danny G. Cachola and Guunther . Schrack. Modeling and animating three-
dimensional articulate figures. In Graphics Interface 1986 & Vision Interface,
pages 15257 1986.

R.L. Cook and K.IE. Torrance. A reflectance model for computer graphics.
Computcrs Graphics, 15:307-316, 1982.

Fdwin Catmull. Computer display of curved surfaces. In Proceedings 1EEE
Conference on Compuler Graphics, Pattern Recognition and Data Structures,
pages 309-15, 1975.

Geralld Ferin. Curves and Surfaces for Computer Aided Geometric Design.
Academic Press Inc., 1990.

D.A. Field. Mathematical problems in solid modeling. In Geametric Modeling :

Algoriihms and New Trends, pages 91-108, 1987.

BIBLIOGRAPHY 59

[10]

[11]

(12]

(13]

(16]

[17]

(18]

[19]

[20]

21]

S. Hewitt, G. Ridscale and T.W. Calvert. The interactive specification of human
animation. In Graphics Interfuce 86 & Vision Interface ’86, pages 121-30,
1986.

Phillip Getto and David Breen. An object-oriented architecture for a computer

animation system. The Visual Computer, 6:79-92, 1990.

Don Ileller. XView Programming Manual. O’Reilly & Associates, Inc., 2 edi-
tion.

R.F. Sproall, LLE. Sutherland and R.A. Schumacker. A characterization of ten

hidden surface removal algorithms. ACM Computing Surveys, 6:1-55, 1974.

Alden W. Jackson and Joel M. Morris. Enhancement of diglib: Computer
graphics software for animated computer-generated video movies. Computers
& Graphics, 12:271-283, 1988.

Johu Lasseter. Principles of traditional animation applied to 3d computer ani-

mation. Computer Graphics, 21:35-44, July 1987.

Nadia Magnenat-Thalbmann and Daniel Thalmann. Computer Animation, The-

ory and Practice. Springer-Verlag Tokyo, Berlin, Heidelberg,Newyork, 1985.

S. Ivasrran Mahmud and Bident Ozgii¢. Human body animation. In Procecdings
of the Fifth International Symposium on Computer and Information Scicnce,
pages 885-894, 1990.

S. Kamran Mahmud and Biilent Ozgii¢. Semi goal-directed animation @ A new
abstraction of motion specification in parametric kev-frame animation of human
motion. In Proceedings of the Sccond turographics Workshop on Animnation and
Stmulation Vienna, pages 75-87, 199].

Brian Wyvill, Michael Chmilar and Chuck Herr. A software architecture for
integrating modeling with kinematic and dynamic animation. The Visual Com-
puter, 7:122-137, 1991,

Marc R. Grosso, Norman I. Badler and Richard D). Quach. Anthropometry for
computer graphics human figures. Technical report, University of Pennsylvania,
198O

Biilent Ozgiic. Thoughts on user interface design for multi window environ-
ments. In Proceedings of the Sccond International Symposium on Computer

and Information Science Istanbul, pages 477488, 1988.

BIBLIOGRAPHY 60

(22] David I. Rogers. Mathematical Elements for Computer Graphics. McGraw
Hill, 1989.

(23] David . Rogers. Procedural Elements for Computer Graphics. McGraw Iill,
1990.

(24] Ken Shoemake. Animating rotation with quaternion curves. In Proceedings of

the SIGGRAPH, pages 245-254, 1985.
[25] Yilmaz Tokad. Analysis of Engineering Systems. Bilkent University, 1990.

[26] Alan Watt. Fundamentals of Three-dimensional Computer Graphics. Addison-
Wesley, 1989,

[27] Eben F. Ostby, William 1. Reeves and Samuel J. Lefller. The menv modeling
and animation environment. The Journal of Visualization & Computer Anima-

tion. 1:33-40, 1990.

[28) W.R. Franklin and M.S. Kankanhalli Parallel object-space hidden surface re-

moval algorvithm. Compuler Graphics, 24, 1990.

