
A TOOL-SASED MODELWQ, а МШАТІОМ AND
PAFiALLEL RENDERING SY-STE. ·̂

’ í 't 'A* ,̂ '·v I

SÜSM3TÍSD το TriS Ш-^ШГмтГГ ОЯ СОШРиГЁп 1» (1Э ñ ■ ’!îî л. С' 1 г ·|
'.^ i V - V -..J w U

■' 1 · · · •‘О V -■ Я ч "
if '# 'W J · · - - ' v

rsn ?4, « S * » Í W '«
С * S ^ ? F '* »f’'*'·' ^

' w ' . vİMl·'· ''Ú ¿ m

. ί , - Η - ν ■ ‘ ■'■•“'Г.Т-Т'̂ . г·*''"'’!Г /Г-і·*“ ^ '·'■>; (Ч (
*¥>- V Ч-JÍ’ i ·' ¿ - Μ ■' -W 'μ w i ^ Μ · Ч ^ ' w ({ Ч, ч іт ’ітш '· V Ч V V

Q . . p 'î ■ íí ? ·1
¿ w ί w

Y T Î C Ç p ' Ç " .ι* 7^ ·./
w w іяма я >· -W* '. <«| i l

'i EWT о т THS j':Sf -· Y'O'̂ ÿO’' ”!0
•̂' w »w & M. ¿ 4 ш л іт W ·' '

^ ̂ і т J J W Ч * * < ^ І Ѵ « ^ ‘ '*->' і * « · · \

J T .
Г

3 S S
■лз»
ІЗЭ2.

MARS : A TOOL-BASED MODELING, ANIMATION AND
PARALLEL RENDERING SYSTEM

A THESIS

SUJ3MJTTED 'rO THE DEPARTMENT OF COMPUTER ENGINEERING AND

INFORMATION SCIENCE

AND THE INSTITUTE OF ENGINEERING AND SCIENCE

OF BILKENT UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF SCIENCE

By
Mural Aktihanoglu

December, 1992

I .. - - - - - - - ■ K M U M i e e e i

taraf.nL'a.) L:..,D..ir)i§tii.

^ O Z i S Î

T
5<P

/ 3 9 ı

I certify that I have read tliis thesis and that in my opinion it is fully adequate, in

scope and in quality, as a thesis for the degree of Master of Science.

Prof. Dr. Bülent Özgüç (Principal Advisor)

I certify that I have read this thesis and that in my opinion it is fully adequate, in
scope and in quality, as a thesis for the degree of Master of Science.

Assoc. Proi. Dr. Cevdet Aykanat

I certify that I have read this thesis and that in my opinion it is fully adequate, in

scope and in quality, as a thesis for the degree of Master of Science.

Fatih Ulupmar

Approved for the Institute of Engineering and Science:

Z
Prof. Dr. Melunet Baray

Director of Institute of Engineering ftiTcl .Science

ABSTRACT

MARS : A TOOL-BASED MODELING, ANIMATION AND PARALLEL
RENDERING SYSTEM

Murat Aktihanoglu
M. S. in Gomputer Engineering and Information Science

Supervisor: Prof. Dr. Bülent Özgüç
December, 1992

A b strac t : This thesis describes a system for modeling, animating, previewing
and rendering articulated objects. Tl^ ̂ system has a modeler which models objects,
consisting of joints and segments. The animatoi- interactively positions the articu­
lated object in its stick, control vertex or rectangular prism representation into the
keyframes, interpolates inbetweens and previews the motion in real time. Then the
data representing the motion and the models is sent to a multicomputer {iPSC/2
Ilypercube^). The frames are rendered in parallel by distributed processing tech­
niques, exploiting the coherence between successive frames, thus cutting down the
rendering time significantly. The main aim of this research has been to make a de­
tailed study on rendering of a sequence of 3D scenes. The results show that due to
an inherent correlation between the 3D scenes, a much more efficient rendering than
the conventional sequential one can be done.

Keywords: 3D Modeling, Computer Animation, Rendering, Parallel Processing,
Distributed Rendering, Temporal Coherence.

bPSC/2 is a trade mark of INTEL Corporation

ÖZET

MARS ; BİR MODELLEME, CANLANDIRMA VE PARALEL BOYAMA
SİSTEMİ

Murat Aktıhanoğlu
Bilgisayar Mühendisliği ve Enformatik Bilimleri Bölümü Yüksek Lisans

Tez Yöneticisi: Prof. Dr. Bülent Özgüç
Aralık, 1992

Bu ara.5tınna, bir ınodelleıne, canlandırma ve boyama sistemini tanımlamaktadır.
Sistemin modelleme bölümünde, eklem ve parçalardan oluşan modeller yaratılmakta­
dır. Canlandırma sürecini oluşturan kişi daha sonra, bu nesneleri anahtar çerçevelere
yerleştirip, canlandırma sürecini oluşturmak için ara çerçevelerin ara değerlerini
bulma işlemini başlatır. Boyama işlemi içinse model ve canlandırma bilgileri bir
hiperküpe gönderilir. Tüm çerçeveler burada paralel bir şekilde'dağıtımlı-işleme
yöntemiyle ve çerçevelerin arasındaki benzerlikten faydalanılarak boyanır. Boyama
işlemi bu şekilde önemli ölçüde kısaltılır. Bu araştırmanın ana amacı bir dizi çerçe­
venin boyanması üstüne ayrıntılı bir inceleme yapmaktır. Sonuçlar, bir canlandırma
filminde varolan -çerçeveler arasındaki benzerlikten- yararlanarak geleneksel boya­
madan daha etkili bir boyama yapılabileceğini göstermektedir.

Anahtar kelimeler : Modelleme, Canlandırma, Dağıtımh İşleme, Zamansal Benzeşim,
Anahtar Çerçeve, Hiperküp Topolojisi.

ACKNOWLEDGEMENTS

I wish to extend iny tlianks to my supervisors Prof. Dr. Bülent Özgüç and
Assoc. Prof. Dr. Cevdet Aykanat. who have guided and encouraged me during the
developinent of this thesis.

I am grateful to Prof. Dr. Yılmaz Tokat for his valuable guidance and encour­
agement through this thesis.

I exjiress my gratitude to Asst. Prof. Dr. Fatih Ulupmar, who provided me with
his va.luable suggestions about my research.

My sincere thanks are due to my parents for their moral support.

Finally, I would also like to thank to all of my friends who helped and cooperated
during thesis.

Contents

1 IN T R O D U C T IO N 1

2 M ARS MODELER 5

2.1 Joints 6

2.2 Segments 7

2.3 Modifying a M o d e l ... 8

2.4 Animation-Preview Model Type 9

3 A N IM A TIO N 13

3.1 Display Techniques... 14

3.2 Animation Techniques......................... 15

3.2.1 Algorithmic Animation 16

3.2.2 Goal-directed Animation... 17

3.2.3 Procedural A n im ation .. 19

3.2.4 Keyframe Animation.. 19

3.3 Motion Specification.. 21

3.4 In te rp o la t io n ... 23

vi

CONTENTS Vll

3.5 Previewing 28

3.6 Communication between the Animator and the Renderer 30

4 R E N D E R IN G 32

4.1 Illumination M o d e l.. 32

4.2 Hidden Surface Rem oval.. 33

4.3 Temporal C oherence .. 35

4.4 Parallel Proce.ssing... 36

4.5 The Algorithm 37

4.6 Model Data Distribution.. 40

4.7 Film Data Distribution... 40

4.8 Processing of a Keyframe 42

4.3 Processing of an Inbetween Frame 48

4.10 How Host Interprets the Image D a t a .. 48

4.11 Performance R e s u l t s .. 49

5 CONCLUSIONS 56

List of Figures

1.1 General view of the MARS s y s t e m ... 2

1.2 Process of Generating Computer A nim ation ... 4

2.1 Structure of a Model 6

2.2 A joint rotates with its coordinate axes 7

2.3 The sbb^s of a model and the actual m ode l.. 8

2.4 Transformation matrix kept for each s e g m e n t ‘ 9

2.5 Two different models created from the same segments with different
parameters 10

2.6 Stick, Control vertex, and Rectangular P r i s m .. 11

2.7 Model screen of M ars .. 12

3.1 2D Inbetweening... 14

3.2 A sample sc r ip t .. 20

3.3 Animation screen of M a r s ... 24

3.4 Matrix Interpolation Scheme 25

3.5 Axis and angle of transform ation .. 27

3.6 Interpolation and previewing screen of M a r s .. 29

viii

LIST OF FIGURES IX

3.7 Data formats for com m unication .. 31

4.1 Formation of the Edge Boxes in the Z-buffer Algorithm 34

4.2 High degree of coherence in a film 36

4.3 Screen space subdivision 37

4.4 Object space subdivision (4 processors) 39

4.5 Load Distribution of the Frames (4 processors) 41

4.6 Buffers in a F r a m e ... 43

4.7 Pseudo code of heuristic based mapping schem e................................... 45

4.8 Edge list formation with counter for each l i n e 46

4.9 Prefix and global sums of EBC 47

4.10 Exchange of Edge Box Data Between Processors 47

4.11 How positioning affects processing time 50

4.12 Plot of number of processors vs. number of patches vs t i m e 52

List of Tables

4.1 Results of the rendering algorithm (in ms) for data size = 3900 (3
seg m en ts) ... 53

4.2 Results of the rendering algorithm (in ms) for data size = 10400 (8
seg m en ts) ... 53

4.3 Results of the rendering algorithm (in ms) for different data sizes of
a keyframe 54

4.4 Results of the rendering algorithm (in ms) for same data sizes (27664)
and percent of moving data (2 segments) but different topologies of a
keyframe 55

C h a p ter 1

IN TR O D U C TIO N

During the last fifteen years, three-dimensional computer animation has become
widely accepted as a powerful tool in a variety of appbcations, from entertainment
industry (television, cinema, video) to education and business. Computer anima­
tion, although greatly assisted by the computer, is a very labour intensive job. Even
with very sophisticated equipment and tools, animators work months for a high-
quality computer generated animation. Mostly, the equipment (special architecture
computers, video cards, single frame recorders) and the development tools (model­
ing, animation and rendering softwares) cost so much that only large, professional
communities can afford them.

M A R S (Modeling, Animation and Rendering System) is an ongoing study to
provide a framework or environment for developing high-quality and cost-effective
computer-generated animations. The animator is presented with an interactive,
flexible, powerful and fast system.

There have been several goals while designing Mars. First, the system was not
intended to be designed for a specific application. Usually, animation tools are
designed and implemented such that they only perform some specific tasks. For
example, there are animation tools that animate only human body models, or only
some scientific phenomena. VVe have designed and implemented Mars such that an
animator can create any imaginable character and animate it without limits. Mars

is a multi-purpose animation generator.

Second, Mars tools were designed such that any of the tools can easily be replaced

CHAPTER 1, INTRODUCTION

Figure 1.1. General view of the MARS system

or jiew tools can be added to the system, without disturbing the integrity of the
environment. This property is very important since all techniques and algorithms in
computer graphics are due to a rapid change, in an effort to create realistic looking
pictures. Because of this rapid change, tools often get out of date. For example, an
animation tool that has been written 10 years ago is no longer in use, because many
things in rendering have changed, like ray tracing and radiosity. We have designed
Mars such that any part of it can be easily replaced, in order to update and improve
the system.

Third, Mars was designed such that it makes the most of the current resources in
the development environment (Figure 1.1). Mars is poor man’s high-quality graphics

supercomputer. It employs each architecture in the development environment such
that it exploits the most efficient parts of each architecture and as those efficient
parts are put together, a virtual super graphics computer comes into the picture.

To generate a computer animation, characters of which structured models are
defined in three dimensions, are needed. This structure should be well defined and
flexible to allow the animator to create any imaginable character. Then, the char­
acters should be placed and oriented appropriately for each frame, and then the
characters and the background objects should be painted (rendered) with respect to
the lighting conditions and the camera position.

The process of generating computer animation by Mars can be broken down into
three phases (Figure 1.2) : modeling, animation and rendering. In the modeling

phase, the modeler creates a three-dimensional model of the scene and its compo­
nents.

In tlie animation phase, the animator describes how tlie model will change its
place and orientation over time, thus generates the keyframes and subsequently, us­
ing a simpler model of the object, views the described motion in real time. Those two
l)hases (modeling and animation) are done on Sun Sparc computers, running Xwin-
dows, because the most important notion in these two phases is the user-interface.
The modeling and animation tools should be highly user-interactive to involve the
user further in the animation. If the user cannot easily control what he has created,
the tool would become useless.

CHAPTER!. INTRODUCTION 3

The most important tool of the system is the renderer. In the rendering phase, the
renderer running on the iPSC/2 multicomputer currently with 32 processors, takes
the model and animation data and for each frame in the sequence, generates a two-
dimensional image using the specified shading algorithm and the camera position.

In Mars, an animator can use graphical primitives or B-spline surfaces. The
models can have any number of joints, thus any general object can be modeled using
the modeler. By scaling dilferent segments of the model, many difl'erent versions of
a model can be created.

To create a frame with models in desired positions and orientations., Mars modeler
has a user friendly interface. The animator can switch between models by clicking
on them, and orient the current model by selecting an axis, an angle, and a joint
through a menu [12, 18].

The rendering process which is the most expensive phase of the three phases, is
done by a multicomputer. The patches are rendered on 32 processors concurrently.
One of the most important concepts in rendering is distribution of load among pro­
cessors, i.e. load-balance.

Moreover, the rendering process is done even more efficiently by exploiting the
temporal coherence that exists between the frames of the animation. Thus, rendering
time is quite short, compared to the traditional straight ahead renderers that work
on uniprocessor machines and do not use the principle of coherence.

CHAPTER 1. INTRODUCTION

Figure 1.2. Process of Generating Computer Animation

C h a p ter 2

M ARS M ODELER

For a coiripiiter program to generate correct inbetweens, it has to be given the three-
dimensional definition of the articulated objects that will be animated. Then the
computer manipulates those given points with respect to a methodology, which is
the princi])le of cascaded transformations. Each segment is defined with res])ect
to its parent segment, and it is affected from all transformations that is applied
to its parent segment. That is, if the parent segment is rotated 90 degrees, all its
sibling segments are also rotated 90 degrees with respect to the parent segments
joint position. The structure of the representation of a model is an important issue,
because it is directly related to how easily a model can be manipulated.

The problem of presenting a three-dimensional definition to the computer has

been well researched in the past. There have been many approaches and studies on
modeling in three dimensions: [G, 9, 15, 16, 17. 27].

Most of the time, methods like imitating the real objects are used and according

to the needs of the application, sometimes very simple and irrelevant models are

employed. For example, to model a human body, simple spheres have been used,
since the aim was to investigate the human behavior, as how they walk, sit, etc.
Because of the complexity of the models that further resemble reahty, such models
have been limited to special applications where reality is of more importance than
computation time.

The Mars Modeler treats a model as a composition of a library of predefined or

ready graphical primitives. The model consists of joints and their base segments and

CHAPTER 2, MARS MODELER

Figure 2.1. Structure of a Model

the modeler connects those base segments with each other as specified in the joint
definitions. The connection of segments to each other is of great importance. That
is, for a realistic animation the segments of a model should act meaningfully in any
kind of orientation. If a segment looks unrealistic in some orientation, it means the
joint structure of the model is not planned carefully enough. In fact, each model has
a different nature of segment connection and the problem of modeling the joints in
a realistic way is a topic of importance in computer animation.

The models of the Mars system consist of joints connected to each other and
their base segments defining the shape of the model.

2.1 Joints

The joints form an n-ary tree structure (Figure 2.1), i.e. there is no limit on the
number of child joints of a joint (so, we can define caterpillars!). Each joint has a
parent joint and n children. Two vectors are used to define the X and Y - axis of
the joint. The Z - axis is the vector product of X and Y - axis of that joint.

A joint can be rotated about each of its local Xj Y and Z axes, thus has up to
three degrees of freedom. This is actually the most ideal situation, but most joints

cannot move in each of the three axes. For the sake of ease-of-realism from the
animator’s point of view, an upper and a lower limit are specified for the rotation
of the joints about each axis. Consequently, a joint may be restricted to one or two
degrees of freedom by permitting the joint to rotate about only one or two of the

CHAPTER 2. MARS MODELER

Figure 2.2. A joint rotates with its coordinate axes

axes. Using this method, simple joints, such as fingers (hinge joints), and complex
joints such as shoulders (ball-and-socket joints) can be simulated. Also, each joint
has its own coordinate axis, which is given in the definition of the model. Most of
the time, the Z axis is along the direction of the segment as a convention, but this
can be modified to suit the needs of the animator.

As a joint is rotated along its coordinate axes, the axes are also rotated, so it does
not matter what the orientation of the joint with respect to the world coordinate
axes is. The local coordinate axes are always aligned in the same way with respect
to the segment (Figure 2.2).

2.2 Segm ents

Each joint has a base segment that is defined with respect to its local coordinate
axis. Detailed, realistic looking models are always preferred and desired in computer
animation but the animator does not want to mess with those detailed models while
planning the motion. Detailed models are difficult to manipulate. It takes more time
to orient a complex model than a simpler one. Mars has a multi representation of
the models: one real and others simpler representations. To achieve this, segments
of a Mars model are defined as Bezier surfaces [9, 21, 22, 26] ̂ but instead of directly
giving a set of Bezier control points for each segment, the user first defines the

CHAPTER 2. MARS MODELER

Figure 2.3. The sbEs of a model and the actual model

segment bounding box (sbb) of the segment, which is simply the rectangular prism
that bounds the segment itself, and then a set of Bezier control points which are in
normalized form. The Bezier control points are defined in a unit cube so that all the
points have coordinates with values between 0 and 1.

Eventually this normalized segment definition is scaled with respect to the defined
sbb. If no sbb is defined, a unit cube is assumed (Figure 2.3). As each segment's
sbb is defined, we use this simpler representation in the positioning and previewing
phases. This speeds up the respective processes.

For each frame of a film, a transformation matrix is kept for each segment of
each model (Figure 2.4).

This matrix is generated from the local and the world coordinate axes and the
joint positions. It is updated at every frame should the segment change its place or
orientation [25].

2.3 M odifying a M odel

To create a model, we scale the normalized base segment definitions so that the
segment fits into the segment’s sbb. If one changes the dimensions of an sbb without
changing its Bezier control points, a new model would be created. It then becomes
straight forward to create many models from the same segment definitions. Changing
the dimensions of the sbbs and the directions of the local coordinate axes of the model,
the base segment is sheared, j'esulting in a number of different models created from

CHAPTER 2, MARS MODELER

p Transformation P
world Matrix local

X

World
Coordinate
Axes

Figure 2.4. Transformation matrix kept for each segment

the same normalized segment definitions. This gives us flexibility in creating our
models. Creating just one set of Bezier control points^ representing a speciflc segment
(e.g. human torso), would be enough to create many types of human bodies (Figure
2.5).

2.4 A nim ation-P review M odel Type

Mars uses a simpler representation of the model during the motion planning phase,
so that extensive calculations need not be done to position and orient the models.
The animator can interactively change the position and orientation of the model
and see it instantly. Then, when the keyframes are prepared, he can view the whole
motion in real time. He can frequently switch back and fortli between the positioning
and previewing phases without having to wait for long minutes for the computer to

calculate the inbetween positions of the complex model.

The animator has three choices for the simpler model :

• stick model

• control vertex model

rectangular prism model

CHAPTER 2. MARS MODELER 10

Figure 2.5. Two different models created from the same segments witli different
parameters

CHAPTER 2. MARS MODELER 11

Figure 2.6. Stick, Control vertex, and Rectangular Prism

The stick model is simply a wire man, the control vertex model is composed of the
interconnection of the control vertices of the model data and the rectangular prism
model is a com])osition of rectangular prisms of the .sbbs of each joint (Figure 2.6).
While choosing the models through interactive menus, the animator can view the
model from many directions. The model selection screen of Mars can be seen in
Figure 2.7. The animator can view the model in any of the three rej)resentations.
The representation of the model for the previewing and keyframing should be chosen
according to the needs of the models and the animation scene. If real-time playback
is achieved by using the control-vertex representation, the animator can clearly see
the animation characters and the scene. If flickers occur during playl)ack with the
control vertex model, then a simpler representation should be chosen in order to
view the animation clearly. Timing is very important in an animation because of the
issues like anticipation, staging, slow in and out and etc. The success of an animation
de])ends wholly on the timing arrangements of the animator, so the animator should
have a strict control on timing.

CHAPTER 2. MARS MODELER 12

T) MAns CasUng (Choose the ch aracters) Murat AKTlJtAN O G LU 0

Le-ft vle^f

□TC I T P ID

R ig h t vle^r

1 ” 1

C c T Y ^ it Model : rdoot (Z = 50)

'lo a d (Draw (Clea.»· ") (Remove alT) (Return ^

M O D E L T Y P E ; WIRE CO M TRO L-M ESH RECT

VIEW : SINGLE ALL

Fo cu s P o in t X 2 5 § _ E Q Y 2 30 Z 500

(Load Model : Add to the casO (Remove Model : Remove from ca$.0 (Remove All : Remove all models from the stack)

Figure 2.7. Model screen of Mars

C h a p ter 3

A NIM ATIO N

Animation is to give a series of pictures the feeling of motion by using the persistence
of vision phenomenon of the human eye. The lower limit for the eye to perceive a
series of pictures as continuous is 15 pictures/second. Below this rate, the eye can
detect each picture separately. Above this limit, human eye perceive a sequence of
still pictures as continuous and moving. Those series of pictures can also be thought
of as samples of a real motion taken at regular intervals.

Traditional animators started to use computers first in the painting of drawings.
To do this, all the pencil drawings were being scanned into the memory of the
computer and then the lines were being enhanced and painted by very simple seed-
fill algorithms. Usage of computers has speeded up the preparation of animations
so much that, animators started thinking about employing those perfect partners
more in the process of animation preparation as inbetweeners. Inbetweeners were
those people who drew the inbetweens from the drawings of the chief-animators and
painted them. There were so many faults most of the time, either some paint leaped
over the line or the inbetween did not look realistic.

This led to the development of tools that produced the inbetweens from the
drawings given by the chief-animator. This process is called 2D inbetweening. 2D
inbetweening always caused deformations because the information given to the com­
puter lacked one dimension (Figure 3.1).

The thought of giving the computer the 3D definition of the characters wa5 the

next step. This has been done by means of the algorithms that could produce the

13

CHAPTERS. ANIMATION 14

2D inbetweening will produce defomiations.

Figure 3.1. 2D Inbetweeiiing

2D view of scene by applying some rendering techniques (hidden surface elimination
and shading) to the 3D data. Also, by the use of homogeneous coordinate systems,
fast matrix operations were introduced, to apply rotatiojis and translations to the
3D data of the animation characters. Those developments led to the result that
computers started producing meaningful inbetweens from the given 3D keyframes
(keyframes are those frames prepared by the chief-animator).

However, there were further problems. There were many possibihties and tech­
niques to make a character move on the computer screen, or to display a series of
frames.

3.1 D isp lay Techniques

The frames of an animation can be displayed on the screen of a computer in one of
the three ways:

Read from disk and display

Frames of the animation can be rendered and stored on a storage medium, to be
displayed later on. Another program reads those frames from the storage one by one

and display them on the screen. Very fast-access disk-drives can reach the 25 frames

CHAPTERS, ANIMATION 15

per second speed, which is the default value for the PAL system (30 frames per
second for NTSC system). Storing only the differences between frames may speed
up this process.

Frame Buffer Animation

Frames, which are rendered and stored on a storage medium can be read into the
memory and can be displayed from the memory, which can write to a screen faster
than directly from storage medium. But it is obvious that only short sequences of
frames can be shown this way, as RAM sizes are small compared to the size of a
frame. Using very large random access memories, this technique can be employed.
There are special hardware designed to do frame buffer animations like AbekasGOOÔ

Realtime

The other way is to render the frames and show them instantaneously on the screen.
To use this technique, one should use either very simple shading models and algo­
rithms or very fast graphics-devoted machines. Because of the necessity to render
each frame in less than a 1/25̂ ^̂ of a second, this is most of the time reserved for
applications with very simple shading requirements. Flight simulators are a good ex­
ample for real-time display animations. They use flat shading and very sophisticated
graphics devoted computers.

3.2 A nim ation Techniques

As computer science and computer graphics techniques improved, many animation
techniques other than keyframe animation has been put into use [1, 2, 3, 4, 7, 11,
14, 19, 23, 27]. These techniques are:

Algorithmic Animation

- Kinematic Algorithmic Animation

- Dynamic Algorithmic Animation

U\bekas6000 is a trade mark of Abekas industries.

CHAPTERS. ANIMATION 16

• Goal-directed Animation

- Goal-directed animation by kinematic laws

- Goal-directed animation by dynamic laws

• Procedural Animation

• Keyframe Animation

- Image ba.sed interpolative animation

- Semi goal-directed keyframe animation

- Joint parameters interpolative animation

3.2.1 A lgorith m ic A n im ation

Most phenomena can be successfully animated using abstract motion specification
methods, like keyframing, etc. When an animator wants to animate an elastic ball
hitting a wall and bouncing back, he has to work very hard to make the whole
sequence look realistic. Usually the timing, which is required for a realistic animation,
is very hard to achieve manually.

Algorithmic animation is a method that is developed to achieve the realistic
animation of physical phenomena of which laws are well defined. Motion specification
is done algorithmically, in which physical laws are applied to the parameters of
the animated characters. We can classify algorithmic animation system into two
as applying kinematic physical laws and as applying dynamic physical laws to the
characters. But sometimes the system can admit laws which is apparently specified
by the animator, that is the physical laws of the animator.

Kinematic Algorithmic Animation

The algorithmic animation systems which use kinematic laws are called the kine­
matic algorithmic animation systems. In this type of motion specification strategy,
the animator assigns an initial velocity and an initial acceleration to the animation

character or any segment of it. The laws used are;

CHAPTERS. ANIMATION 17

x = v * i = a*f r

where x is the distance taken by the object, i is the time, v is the velocity and a
is the acceleration of the object.

By using those laws, functions which specify the trajectories of the animation
characters are found and employed in the animation.

The kinematic laws usually produce acceptable but not very realistic motions.
They are used when computation time has to be short and dynamic laws cannot be
employed.

Dynamic Algorithmic Animation

The algorithmic animation systems which use dynamic laws, in addition to the kine­
matic laws are called the dynamic algorithmic animation systems. In this type of
motion specification strategy, the animator assigns an initial force (torque) to the
animation characters or any segment of it. Each segment of each character has a
specified mass and the rules used for animating the characters are as follows:

X = a + / “

F = m ̂a

where x is the distance taken by the object, i is the time, F is the force applied
on the object, m is the mass and a is the acceleration of the object.

This kind of motion specification is very expensive in terms of processing time
and it is only used when strict reahsm is needed. The results are highly remarkable.

The bouncing of an elastic ball can only be successfully animated through the use

of such dynamic rules.

3.2 .2 G oal-d irected A n im ation

Sometimes the motion that the animator wants to create is a very specific motion
that can be specified to the machine by simple English-like commands hke walk, sit,
nod, jump, run.

CHAPTERS, ANIMATION 18

If the animation program is equipped with a strong knowledge-base, it can per­
form those actions by simple English-like commands. The motion planning and
control is done entirely by the machine and the animator only specifies a command.

Usually, a simple command like run is composed of several different actions.
What is done is that motion units are defined like lift left leg and those are composed
into more complex motion units.

This motion specification method eases the job of the animator, but it also puts
strict limits to what the animator can do with the models. If a specific motion is
not defined in the knowledge-base, the animator cannot move the models in that
way. The quality of a goal-directed animation system depends on the amount of
information embedded in the system and how the motion units are implemented.
There are two approaches in the implementation of the motion units:

Goal-directed Animation by kinematic laws

Goal-directed animation systems that use kinematic motion specification rules are
used commonly. Although tliis usually does not give realistic and satisfactory results,
its performance superiority over other methods lets the animator produce acceptable
results. The basic tools of kinematic motion control are position, displacement,
velocity and acceleration of the models.

Goal-directed Animation by dynamic laws

Goal-directed animation systems that use dynamic motion specification rules are
employed in systems that require high realism. The output of dynamic motion
control is highly realistic but it is as much expensive as it is realistic. There is a
trade off between realism and computation times.

In dynamic control, energy, force and torque are employed in addition to position,
displacement and velocity. The analysis of real physical variables produces very
realistic results but the knowledge-base for such a system is huge and the processing
time is very long. Real-time animation systems cannot employ such techniques.

CHAPTERS. ANIMATION 19

3.2.3 P rocedural A n im a tio n

An animation scripting language is used in the specification of motion of the char­
acters. This approach is used in applications where the motion of the models can be
procedurally defined.

Examples of such an scripting language is CINEMIRA [10] and ASAS [26] (Actor
Script Animation System).

In this approacli the animator writes an program to produce a sequence of ani­
mation. The program is either written in a high level language, and the animation
produced through a graphical interface, or it is written in a specially designed ani­
mation scripting system.

The animator cannot see the result until the script is complete, and this is a
major disadvantage. Another disadvantage of this approach is that the effects that
will be created by the language cannot be intuitively guessed by the animator, that
is the language is very abstract and cannot serve as a user-interactive system. For
example the program in Figure 3.2 does not give a good feeling of what will happen
in the film.

What the script does is that it spins two cubes on the screen but it is not in­
tuitive. The use of procedural animation is restricted to specific areas, where the
animators are experienced programmers and the motions required for the animation
are procedurally definable.

3.2.4 K eyfram e A n im ation

Keyframe animation is the oldest technique used to generate computer animations.

It is adopted from traditional animation. The idea, as referred above, is the same
with traditional animation: the animator gives the motion parameters for some
specific frames, which are main breakpoints of the desired motion. Then the com­
puter generates the motion parameters for other inbetioeeii It dimes as it has the three
dimensional definitions of the models. There are different techniques in keyframe
animation with respect to motion specification or interpolation methodologies to

obtain the inbetweens.

CHAPTERS. ANIMATION 20

(script myprogram
(local: (runtime 96)

(midpoint(half(runtime)))
(animate (cue (at 0)

(start(spin-cube-actor green)))
(cue (at midpoint)
(start(spin-cube-actor blue)))
(cue (at runtime)

(cut))))

Figure 3.2. A sample script

Im age based in terpolative an im ation

Input to the computer is given as two dimensional pictures and the computer per­
forms two dimensional inbetweening (Figure 3.1). This technique except for some
special conditions produces results that are incorrect. Shear effect is observed in the
inbet ween frames and models seem distorted. User intervention is needed to achieve
a sequence of frames without distortions.

Jo in t p a ram ete rs in terpolative an im ation

In this approach, the animator specifies the joint parameters of models for some
specific frames, which are called keyframes. Then the computer interpolates those
joint parameter values and generates the inbetween frames. This approach is very
efficient and widely used in computer animation.

CHAPTERS. ANIMATION 21

Semi-goal directed keyframe animation

This approach is the same with joint parameters interpolative animation except
that the animator specifies the keyframes in a more user-interactive fashion. Бог
each keyframe, the animator positions the models by using some simple, English-like
commands. This technique is suggested by Ozgiif and Mahmud [IG] and the system
developed by this method efficiently melts many approaches in one pot and gives
flexibility to the animator in choosing a way to specify the keyframes.

The Mars Animator animates the 3D articulated rigid models using the para­
metric keyframe interpolation method among the many methods in literature.

3.3 Motion Specification

Motion control has always been a problem in computer animation, as the data to
be manipulated is 3D and our tools (mice, digitizers, lightpens, cursors) are 2D. Il
is very hard for an animator to visualize a 3D object on a 2D screen, and it is even
harder for him to manipulate that object by using 2D manipulators.

From aU these points, we conclude that an interactive manipulation of our 3D
animation characters is very hard to achieve, but we want to position and orient our
characters any way. We have to give keyframes to the computer, so that it produces
an animation.

First, it would be better to examine the criteria of control, that an animator
would like to have over the 3D data of the animation characters. The animator
should be able to apply

• translations to the characters

• rotations (about any of the 3 fundamental axes) to the characters

• rotations (about any of the 3 fundamental axes) to the segments of the char­
acters

There are many possibilities for achieving those criteria. The computer may be
loaded with a knowledge base (as with goal-directed approach) and the animation

CHAPTERS. ANIMATION 22

may be abstracted from the low-level details of the transformation, or the anima­
tor may be required to go into the depths of the motion specification and do the
transformation at a very low level.

Indeed, there is a trade-off between high and low-level motion specification
schemes. As the motion specification level gets higher, computer does more job,
the animator’s job gets easier, but the animator’s control over the characters is re­
duced. As the motion specification level gets lower, the computer does less job, the
animator works more, but his control over the characters increases.

In Mars, we chose a way in between: Joint parameters manipulation. The trans­
lations and rotations are performed as follows:

Translation :

To translate an object, a new coordinate:

^ new '> V̂llGW '>

is needed. and can be obtained by the mouse, and we obtain Pzy,̂ ̂ by
using a slider. As those parameters are chosen by mouse and slider, the object is
moved to its new position.

Rotation :

To rotate a segment of an model or the model itself (which is the main segment of
the model), a quadruple of the form:

R = (^modelname^segmentname^ axis^Q)

is needed. Modelname is the name of the model, segmentname is the name of the
segment of the model, axis is either of the three fundamental axes x^y^z and 0 is
the rotation angle about this specified axis.

Modelname is selected interactively from the screen. 0 is selected by using a
slider. Axis is selected by an exclusive toggle menu. The rotation is applied to

CHAPTERS. ANIMATION 23

the model with the given modeliiame, axis and 0 as the segment is selected from a
pop-up menu. The instance of choosing a segment from the segments pop-up menu
can be seen in Figure 3.3. This way. many segments can be rotated with the same
parameters consecutively.

Full control of the motion of the models is given to the animator. Each segment
can rotate along any of the three axes and by this method, all joints can access any
point in 3D space. The animator can create any alignment position of the models
by selecting each joint one by one and rotating them.

3.4 Interpolation

When all keyframes are ready, the computer interpolates the parameters of the joints
of each model and creates the frames between the keyframes. This is done by an in­
terpolation scheme that depends mainly on the matrix operations. This interpolation
is performed as shown in Figure 3.4.

In fact, what is done is tliat, we find the matrix that transforms the first position
to the final position. Then from this transformation matrix, a rotation axis and a
rotation angle are found. After this angle is divided into the number of inbetween
frames, a new transformation matrix is formed from these axes and the rotation

angle step. The details of this process is as follows:

An animation tool should find the inbetween positions and orientations of a
moving segment fast and correct. In our implementation of Afars, we have used
a mathematically-based approach to find the transformation matrices for the inbe­
tween positions.

In Mars, every segment has a transformation matrix that transforms the local
defined segment points to the world coordinates for each keyframe. Each segment
is defined in a local coordinate axis to ease the manipulation of the shape of the
models. Also, a defined segment can be used in many orientations and sizes in many
models.

Let the local defined points be Piocal their projections onto the screen with re­
spect to the world coordinates be Pworid· The transformation matrix that transforms

f l̂ocal ^world is Mlocalt oxuorld' So

CHAPTER 3. ANIMATION 24

Figure 3.3. Animation screen of Mars

CHAPTERS. ANIMATION 25

CHAPTER 3. ANIMATION 26

Pxuorld — localtoHuorId * Plocal

for any frame. Note that Piocal does not change throughout the film (if some
morpli is not employed in tlie film!).

We want to find the inbetween positions for two points with a known step size
N . We have all the transformation matrices of all segments of all models for each
keyframe. Let us consider a specific interval that is to be interpolated. Let the
starting keyframe have the label s and the final keyframe / .

The starting position is given by ^̂ d̂ the final position is given by
/local/world· From those two matrices, we can find the transformation matrix that

transforms starting position to the final one. It is given by

^ local/local '^'^ / world/local ^ ^ local ^ world

We know M,̂ local^world , and as those transformation matrices are orthogonal,

/world/local /local/world / uocal J world

Using this 4x4 homogeneous coordinates transformation matrix -̂ ^̂5,000///oca/>
can find the axis and the angle of this transformation which can be seen in Figure 3.5.

The angle 0 of the transformation is given by:

0 — cos {{i'l'CLCcî Adiĵ ans/ormaiion̂ ~~ 1)/^)

This angle obviously can take infinitely many values but we chose the smallest
positive value as a convention.

Then the arbitrary axis around which the rotation is done is found first by finding

the 4x4 vector matrix K:

R — { M t r a n s / o n n a t i o n ^ '^Jrans /orm aiion) I

CHAPTERS. ANIMATION 27

CHAPTERS. ANIMATION 28

Then the column matrix k is found from K and finally the column vector n (the
axis of rotation) is found by:

n = k / s i n{Q)

After finding the arbitrary axis and the rotation angle, we divide the rota­
tion angle by frame number of first keyframe minus the frame number of the next

keyframe, to find the step rotation angle Qstep- The step transformation matrix

MiransJormalion,tep foUlld by:

^^trans Jorviation,tcp = COs(Q t̂ap) * / + (1 - COs(Qstep)) * 71 * 71̂ + Sİ7l{Qstep) * N

All the transformation matrices in that interval are updated using this step trans­
formation matrix.

3.5 Previewing

When the transformation matrices for all the segments of all models for all frames are
found, the sequence of animated frames becomes ready to be viewed by the animator.
The interpolation and previewing screen of Mars can be seen in Figure 3.6.

Tlie player draws each frame on the screen consecutively one by öne. For this
process, it makes many matrix multiplications of the form:

^world ~ ^'^iransformation * Plocal

for each point of the model. If these multiphcations are done for a complex model
with many points, the animation on the screen would be very slow and does not give

the feeling of moving models.

Instead Mars uses one of the three skeleton views according to the needs of the
animator. This way, real-time playback can be achieved. The modes of the preview
model type has been explained in the Modeling chapter.

CHAPTER 3. ANIMATION 29

0 MAH3 3tage HehearsW (K a y Xî · 3cn p t) Mural A KTIH A H O G LU a

Tco view

R iç t it vievf

P e rs p e c tIv e v l

C u rre n t Model : r i p c i k t l (Z » 240)

(C l e a r c a n v a i) (I n t e r p e l a n) (S e e f i l m ~ ~)

Save Iilm ^ F ile n a m e : ; mr _f un ^R etu rn ^

(R e c o r d M o d e l s ')

M O D E L T Y P E : I W I R E | C O N T R O L - H E S H | R E C T |

VIEW : SINGLE ALL

Fo cu s P o In t X 25§ ^ Q 3 Y 236 Z 500 I ^ F I

Figure 3.6. Interpolation and previewing screen of Mars

CHAPTERS. ANIMATION 30

The benefit of choosing a multi representation becomes clear at this stage. The
animator can view the created motion in real time, so editing is easier and faster.
By means of this preview phase, the animator can see the created motion and make
changes, before the long process of rendering begins.

Up to the previewing phase, the model is treated with its stick, control points
or sbb representations. At this stage, the Mars animator creates the Bezier surfaces
from the control points or directly reads the patch definitions of segments from file.

After editing, when the desired motion sequence is achieved. Mars sends the
model’s data and the motion data to the multicomputer for rendering of the scene.

3.6 Communication between the Animator and the Ren-
derer

After all the previewing is done and the desired motion sequence is achieved, the
scenes get ready to be rendered. This expensive process is done on a multicomputer,
to cut down the total film-making process. This means that the data representing
the models and the animation should be transmitted to the multicomputer in an
appropriate form.

After previewing, we have the model data and the motion sequence data. The
important point in this stage is the way this model and motion data is communicated
between the Animator and the Renderer. There are a number of ways to.do this. The
criterion of optimized communication is that this data should be well compressed
and it should have no redundancy as well as containing all the necessary information
about the models used and the specifications of the motion.

The format of this data is very significant. There is a trade off between the data
size and the data interpretation time. If the animator sends the data to the renderer
in a very compact form, it takes more time for the renderer to achieve the data. For
example, the data for the inbetween frames which the animator ha^ might be omitted
from the communication packet because the renderer can find those values by itself
if it is given the necessary database. This obviously increases the processing time of
the renderer and since the animator already has this data, it would take less time
for the renderer to read it from file than compute itself. So, we have to be careful

CHAPTERS. ANIMATION 31

M odel data M otion data

M odel nam e Fram e N o
N o o f Segm ents M odel n am e

Segm ent nam e Segm en t nam e, T -M atrix
Segm ent type •
List o f patches •

Segm ent nam e M odel nam e
Segm ent type Segm en t nam e, T -M atrix
L ist o f patches Fram e N o

. M odel nam e
. Segm en t nam e, T -M atrix

M odel nam e •

N o o f Segm ents •

Segm ent nam e (O nly those that
Segm ent type have c h a n g e d)
List o f patches

Segm ent nam e M odel nam e
Segm ent type Segm en t nam e, T -M atrix

! List o f patches •

Figure 3.7. Data formats for communication

about what to insert into and what to omit from this data. The communication
format of Mars is shown in Figure 3.7. The model data communication is straight
forward. Each model has some segments, and each segment has its own definition.
But for motion data, the transformation matrices for each segment of each model is
communicated only for the first frame of the film. Then, a transformation matrix of
a segment is transmitted to the multicomputer if the segment has changed its place
or orientation since the previous frame. This provides a significant compression of
data since only the necessary matrices are transmitted. This is also exploited in the

processing of data, as will be seen in the next section.

C h a p ter 4

R EN D ER IN G

Rendering is the process of producing realistic images or pictures. Visual perception
involves mainly physics and positioning of the surfaces and objects observed. In the
rendering process of a three-dimensional scene that is composed of three-dimensional
objects and surfaces, two issues are considered: how the surfaces reflect the incident
bght, that is the illumination model of the objects and which surfaces and objects
are seen and which are hidden.

4.1 Illumination Model

When light energy falls on a surface, it can be absorbed, reflected or transmitted. It
is the reflected or the transmitted light that makes a surface visible. What makes us
see an object colored is that some wavelengths of the incident light may be absorbed
more than other wavelengths. When a white light falls on a surface and red and green

components of the light is absorbed by the surface, the surface is visually percepted
as blue. To give this effect computationally in computer generated pictures, there
are mainly two illumination models used by the computer scientists: P hong [5] and
C ook-T orrance [20] illumination models.

Phong model is an illumination model that deals with only a few illumination
parameters, but yet stiU gives acceptable results. Another model, the Cook and

T orrance illumination model is a more realistic model. It deals with a lot of pa­
rameters bke the Fresnel term, attenuation factor, surface distribution function and

32

CHAPTER 4. RENDERING 33

the non-uniform reflectance hemisphere of the surface. As the Cook and Torrance
model is a more physically-based model than the Phong model, which is roughly an
approximation of the former, it requires more computations than the Phong model.
The more complex the illumination model is, the more expensive the computations
but the more realistic our pictures are. More realistic pictures are always justified
in computer graphics but after all, Phong shading model is used almost all the time
instead of Cook and Torrance model which is very expensive. Phong model provides
realism enough to avoid all those parameters. In our implementation of rendering a
sequence of animated film frames, we have used Phong’s algorithm.

4.2 Hidden Surface Removal

For rendering a scene, first the liidden surfaces should be removed, and the projection
of the scene onto the two dimensional screen must be performed. This process also
includes the rasterization on the projected surfaces.

A comparison of hidden surface removal algorithms may be found in [24]. In this
survey, hidden surface removal algorithms are classified as operating on object-space
or the image-space, and the degree of cohei'cnce they employ. Here coherence means
the processing of geometrical units, such as areas or scan line segments, instead of
single pixels.

There are currently two popular approaches to hidden surface removal: Z-bufFer
based systems and scan line based systems. Other approaches like area subdivision
or depth-list schemes are not extensively used and they are only reserved for special-
purpose applications like flight simulators.

The Z-buffer algorithm developed by Catmull [8], combined with the Phong re­
flection model represents the most popular rendering scheme. This algorithm, using
Sutherland’s classification scheme, works on image-space or screen-space.

Pixels in the interior of a polygon are shaded by an incremental shading technique
and their depths are evaluated by interpolation from the z values of the polygon
vertices. For each pixel the nearest visible point is buffered and compared to the
next coming point, which is projected onto the same pixel (Figure 4.1).

CHAPTER 4, RENDERING 34

There is a variation of the Z-bufFer algorithm for use with scan line based sys­
tems, whicli is called scan line Z-buffer. The rendering method, Mars uses is scan
lijie Z-buffer hidden surface removal algorithm [26]. This algorithm consists of two
phases. In the first phase, the algorithm goes through all the polygons in the scene
to find and store the intersection points of each polygon with the scanlines of the
image. Hence, the first phase effectively constructs a one-dimensional array of point­
ers scanlines scanlines(i) Y>omis to the linked list that contains the edgeboxes
on the î ^̂ scanline (Figure 4.8). In the second phase, scanlines are processed one
after another. In each scanline, the segments indicated by the edgeboxes in the cor­
responding linked list are rendered. All the pixels between two intersection points
are shaded with Phong shading model and with an incremental shading technique.
There are two approaches to calculate the intensities of the pixels, that lay between
the two edgebox pixels. The first one, which is called Gouraud interpolation, is to
calculate the intensities at the edges and then bnearly interpolating those intensities
for the inbetween pixels. The second approach, which is called Phong interpola­
tion, is to interpolate the normals linearly for each inbetween pixel and calculate
the intensity value afterwards. The second approach is apparently more expensive
than the first one, but generally, more expensive methods generate realistic looking

CHAPTER 4. RENDERING 35

pictures. Phong interpolation generates highlights that look more realistic, while
Gouraud interpolation results are narrower. Mars uses Phong interpolation, because
realistic looking pictures form realistic animations after all.

We have preferred this algorithm mainly due to its very special nature that
perfectly suits our tools of optimizing the rendering process. It first runs on the
object-space and then the image space. Moreover it requires much less memory than
conventional Z-buffer algorithms that holds all the screen space for the rendering.
Scan line Z-buffer hidden surface removal algorithm is easy to implement, but as
each pixel of each patch is visited, it is compu-tationally expensive. The speed of this
algorithm is the bottleneck of all the film-making process.

Of the three phases, rendering has attracted the most attention and research.
More efficient techniques were needed to be developed to make the images look more
realistic and to finish the overall process in a shorter amount of time.

If we think of rendering a picture as reducing a 3D scene to a 2D image, then
the rendering of an ani!n?J:ed film, i.e. a sequence of fram.es, is reducing a 4D scene
(including time as the fourth dimension) to a 3D image (a series of frames, including
time as the third dimension). Thus, rendering an animated sequence of frames must
be thought differently than the rendering of a static scene. Hence, rendering a scene
and a film are considerably different processes.

If we do the rendering of a sequence of animated frames separately, i.e. render
each frame as totally irrelevant to each other, the result would be acceptable, but
there are surely better ways to do this, as long as the sequence of frames has a very
important characteristic that must be thought of. In terms of efficiency of processing,
what makes a sequence of animated film frames different from a sequence of totally
irrelevant frames is the concept of temporal coherence [26].

4.3 Temporal Coherence

Any object or joint in an animated film has a great degree of coherence between
successive frames. That is to say, in consecutive frames, an object or a joint makes
a relative translation or a rotation to its previous position and orientation [13].

Rendering each frame separately is of no sense. The optimal rendering algorithm

CHAPTER 4. REhWERING 36

c = ^ l

Figure 4.2. High degree of coherence in a film

should fully exploit the tem})oral coherence between successive frames in order to
reduce the rendering job. It should avoid rendering the parts of the picture that
do not change after the])revious frame. Such an algorithm should have a buffering
mechanism tliat buffers the parts of the])icture that 4n not change and parts of
the picture that will change in the next frame. After rendering a frame totally,
creating the next frame can be done by simply rendering only those parts of data
that have changed their place and orientatioîi since the i)revious frame. The basis
of such an algorithm is the coherence between successive frames of an animated film
(for an example see Figure 4.2). Temporal coherence is one phenomena exploited
fully to render animated film sequences more efficiently. As long as efficiency is our
main academic goal, we must think also of oi)timizing our conventional sequential
rendering algorithm. As will be seen in the Algorithm section, it is optimized to its
best in terms of sequential])rocessing but there is still something more we can do :
parallel processing.

4.4 Parallel Processing

In literature, there are several works done on parallel rendering of a scene [2(S]. Most
of the studies have a great dependency on the nature of the parallel architecture
employed. The architecture we have implemented our algorithm on is Intel’s iPSC/2
hypercube. iPSC/2 is a distributed memory and message-passing multicomputer.
The iPSC/2 we are currently using ha.s 32 processors. We have tried to improve an
algorithm that would give good results on other parallel machines as well.

CHAPTER 4. RENDERING 37

Figure 4.3. Screen space subdivision

4.5 The Algorithm

The algorithm to render the sequence of animated frames mainly depends on the
temporal coherence and parallelism concepts and it is based on a modification of the
conventional scan line Z-biiffer hidden surface removal algorithm.

If we modify the Z-buffer algorithm such that, first all the patches are processed
to form the edgeboxes, and then this heap of edgeboxes is processed to generate the
intensity values, it becomes an algorithm that runs first in object space and then in
the image (screen) space. This is the most important part of the parallel algorithm.
The subdivision problem will be solved with the addressed concept.

Load balance is one of the main goals in parallel algorithm design process, but
to achieve load balance in the rendering process of a scene, composed of 3D objects,
the distribution of the objects that consist of patches to the processors is a critical
job. Most of the time some assumptions and approximations are made.

There are mainly two approaches to the load distribution problem. One of them
is screen (image) space subdivision and the other is object space subdivision.

Screen space subdivision : In this distribution scheme, objects are distributed

CHAPTER 4. RENDERING 38

to the processors with respect to their locations in the projected view of the scene
onto the screen (Figure 4.3). That is, a slice of the image is devoted to a single
processor. This works fine with the second phase of the algorithm where edge-boxes
are processed but to divide the screen such that equal loads of patches are distributed
to the processors is very diificult. Usually, some preprocessing is done to make sure
that equal number of patches exist in each of the slices, but this is also a difficult job,
and still does not give satisfactory results, since shared patches may exist. Shared
patches problem slows down the distribution phase.

Algorithms with image space subdivision are inefficient in achieving the load
balance, but they are efficient in the second phase of the process where edge boxes
are rendered and in the last part of the process where the contributions from each
processor is merged to construct the final image. This merging is simply a concate­
nation.

O bject space subdivision In this scheme, objects are treated as a list of
patches, and they are mapped to the processors by using either tiled or scattered
decomposition (Figure 4.4).

That is, to achieve the load balance, processors are given- equal number of patches
in any of the two division schemes. In the tiled division, patches are divided to the
M processors such that processor i receives patches from i*(N/M) to (i-l· 1)'^(N/M) -
1. The list is divided in a tiled way. In the scattered division, processor i gets
every (N /M)th patch starting from the ¿th patch. Scattered division is more likely
to achieve better load balance, but this heavily depends on the nature of tlie data.

Algorithms with object space subdivision work with a perfect load balance in
the first phase, where edge-boxes are formed, but in the second phase and the last
reconstruction phase, they have some deficiencies. The deficiency is that merging
of the contributions from each processor to construct the final image is not straight
forward. The objects devoted to different processors may occupy the same area, and
a final Z-buffer checking has to be done in the merging phase. That is, sequential
overheads are introduced in the last phase. Some algorithms try to overcome this
overhead by also distributing the merging process, but still a big chunk of CPU time
is wasted in this process.

CHAPTER 4. RENDERING 39

/ (

i \ i\ K K N

3 / 0 / 0 / 0 / 0 1 \ ı \ ı \ ı \ ^
/ 0 / 0 / 0 0 0 1 1

0 0 0 0 0 1 1 1 1 1

\ 2 2 2 2 2 3 3 ^ h hi
\ 2 \ 2 \ 2 \ 2 2 3 3 / 3 / 3 / 3 /

^ 2 \ 2 \ 2 \ 2 \ 2 3 / 3 / 3 / 3 / 5 /

w yyy
Tiled subdivision

Scattered subdivision

Figure 4.4. Object space subdivision (4 processors)

CHAPTER 4. RENDERING 40

4.6 Model Data Distribution

After observing that algorithms with object space subdivision work more efficiently
in the first part, and algorithms with image space subdivision work more efficiently
in the second part of the rendering process, the problem would become to find an
algorithm which works in the object space in the first part and in the image space
in the second part.

After setting our goals, we have seen that to modify the conventional Z-buffer
algorithm such that, at first all patches are processed to form the edge-boxes and
then all the edge-boxes are processed to give the pixels, appropriate illumination
values would work fine.

The data distribution scheme employed is such that the model data is uniformly
divided to the processors in a scattered manner for the first part. Then, the edge-box
data is divided to the processors with respect to their locations in the image space.
Thus, in the first part object space subdivision, and in the second part image space
subdivision is applied.

4.7 Film Data Distribution

As addressed above, our problem to be parallelized is a 4D problem. To achieve
the data that will be used in the rendering process, model data and film data are
needed. The model data which consists of 3D points in the space is multiplied with
the transformation matrices of the film data for each frame.

We also have to distribute the film data to the processors. First, it is better to
have a look at the nature of this data (Figure 4.5).

Our primary goal is to minimize the processor idle time by achieving load-
balanced computations. The rendering of the keyframes is performed in parallel
and this will be described in the next section. For the sake of simplicity, we assume
that the number of inbetween frames between two keyframes are always multiples of
the number of processors P. Hence, each processor can easily be assigned the render­
ing equal number of inbetween frames in scattered fashion. The scattered mapping
of inbetween frames enables the realtime animation process.

CHAPTER 4. RENDERING 41

CHAPTER 4, RENDERING 42

The dedication of inbetween frames to individual processors is because of the
unpredictable computational load involved in the rendering of inbetween frames. If
the granularity of rendering an inbetween frame is too small, parallel processing of
that frame by P processors would even get longer than simple sequential rendering.
Moreover, this way data is processed as if it is compressed between the keyframes. At
the keyframes, we cannot compress the data because of the nature of the temporal
coherence exploition mechanism that will be explained later.

4.8 Processing of a Keyframe

In the rendering phase, a keyframe is rendered by all processors concurrently because
maximum load occurs in a keyframe. In a keyframe, all patches are to be re-rendered
because stationary parts and moving parts may change completely or partially.

What is done in keyframe rendering is that, a constant frame buffer (C F B),
a moving frame buffer (M FB), a constant Z-buffer (CZB) and a moving Z-buffer
(M ZB) are created (Figure 4.6).

The CFB keeps the image of the stationary parts that do not change in an
interval (note that we use interval to refer to the frames between two consecutive
keyframes). The CFB is constant throughout the interval and it is updated at every
keyframe.

The M FB keeps the image of the moving parts that are actually moving in an
interval and it is updated at every frame. The load of generating M FB depends on
the number of joints or models that move in that interval.

The CZB keeps the z-values of the constant parts. Those values are used
throughout the interval to determine visibility of each pixel. It is updated at ev­
ery keyframe like the M FB.

The M ZB keeps the z-values of the moving parts. This buffer is updated at every
frame. Each calculated z-value is compared with both the CZB and the M ZB to
determine if the moving part is visible or not.

Recall that image space decomposition scheme is to be utilized for mapping ren­
dering computations to the processors. Also recall that a scanline based Z-buffer

CHAPTER 4. RENDERING 43

MZB

I Keyframe

C Z B

I . 1 I 1 I I U i I M I 1 1 I I U 11 I I U I I u .

m

MZB

Inbetween
__J

Figure 4.6. Buffers in a Frame

CHAPTER 4, RENDERING 44

algorithm is selected for rendering. Hence the image space should be divided by
scanlines. That is, a scanline is chosen as an atomic process to be performed sequen­
tially by an individual processor. Otherwise, further division of individual scanlines
may necessitate unacceptable computational overhead in order to maintain the spa­
tial coherence. It is apparent that the amount of computations to be performed for
each scanline is proportional to the number of edgeboxes on that scanline. Hence,
a load-balanced mapping problem for the parallel rendering of keyframes can be
modeled as follows:

Input Instance : Given n scanlines {si^S2 ̂ with the corresponding compu­
tational weights Here, W{ is an integer which denotes the number of
edgeboxes on the scanline and W is the sum of all u;, ’s.

Problem : Assignment of these n scanlines to P processors such that the sum
of the weights of the scanlines mapped to each processor is close to optimal load
M̂ averai7e = 1^/P mucli as possible.

This problem is in fact the number partitioning problem which is NP-hard. Here,
we propose a simple yet effective heuristic for the solution of this load-balanced
mapping problem.

The steps for the rendering of the parallel rendering of the keyframes is given
below :

Step 1: As discussed earlier, each processor is assigned almost equal number
(either fN /P] or [N /P J) of patches using the scattered mapping scheme, where N
denotes the total number of patches in the overall scene. Each processor performs
the first phase of the scanline based Z-buffer algorithm for its local patches. That
is, each processor constructs the edgelist for its local patches. At the same time,
each processor also forms a local edgebox counter (EB C). EEC in each processor is
a one-dimensional array such that EBC(i) holds the number of local edges in the î ^̂
scanline.

Step 2: Each processor performs a prefix sum on its local EBC array so that
EBC(i) holds the total number of local patches on the first i scanlines. Then, a
duplicated global vector sum operation is performed on the local EBC vectors. At
the end of this global operation, each processor holds a local copy of the EBC array
where EBC(i) contains the total number of global patches on the first i scanlines.

CHAPTER 4. RENDERING 45

Step = End = EBC(NO_LINES)/allnodes
i = 0
for node=0 to (allnodes-2) {

while EBC(i)< End
i = i + 1

if (EBC(i)-End > End-EBC(i-l))
end(node)= i-1

else
end(node)= i

End = End + Step

end(allnodes-l) = NO_LINES

Figure 4.7. Pseudo code of heuristic based mapping scheme

Step 3: Each processor runs the mapping-heuristic whose pseudo code is given in
Figure 4.7.

Note that the proposed heuristic achieves the tiled decomposition of the scan­
lines. Hence, each processor determines the mapping information for all scanlines in
the image. Then, each processor sends the edgeboxes of the non-local scanlines to
their home processors according to the mapping information. Thus, each processor
merges (by simple pointer operations) the received edgelist with its local edgelist
(Figure 4.9).

Step 4: Each processor performs the rendering of its local scanlines in parallel.

First of all, each processor processes the stationary patches, and writes the re­
sulting z-values to the CZB and the resulting pixel values to the CFB. This process
is straight forward as it is the same as sequential processing.

Then, the moving parts are rendered. During this process, each edge-box is
processed and the resulting z-values are compared to both the CZB and the M ZB,
and written to the MZB and generated pixel values are written to the M FB . The

CHAPTER 4. RENDERING 46

si9 j^M z:K -a
EBC Edgelist

Figure 4.8. Edge list formation with counter for each line

CHAFTEB, 4. RENDERING 47

2
2
4
4
4
6
6
8 After

2
4
8
12
16
22
28
36

After

10
14
22
34
52
64
82
100

<

2 38 112
4 prefix- 42 global 124
4 sum 46 sum 140
2 48 164
4 52 188
10 62 204
10 72 234
10 82 258
8 EEC 90 EEC 280

po

pi

p2

p3
EEC

280
4

Each
processor
will have
70 edgeboxes
to I'ender.

I'^gure 1̂.9. Prefix and global sums of EEC

Figure 4.10. Exchange of Edge Box Data Between Processors

CHAPTER 4. RENDERING 48

important thing about this process is that the z-values of the stationary parts are not
lost and they will be used in the processing of the inbetweens of the next interval.

At the end of this process, the CFB and the M FB are sent to the host and the
C Z B ’s of the processors are. inter-communicated because of the need to determine
the visil)ility of the inbetween frames. Tlie formation of the resulting frame buffer
will be. explained later.

4.9 Processing of an Inbetween Frame

After a keyframe is processed, each])rocessor holds a CZB, which will be used in
the creation of the inbet ween frames. During I he generation of the inbetween frame,
recently coniputed z-values of the inoving parts are compared to the MZB for local
and the CZB for global visibility])roblems.

With tiie exception of this comparison to CZB, the j)roce.ssing of an in between
frame is the same as si-ninential])rocessing of the frame. iVIorPover, there are no
communications between the processors except for the coiiununication of the CZB
at the. end of keyframes.

4.10 How Host Interprets the Image Data

At each keyframe, the host receives a CFB. It writes this buffer on the screen. Then,
it receives consecutive MFBs. To write a M FB on the screen, the host first has to
co])y the pixels that will be occupied by the. M FB pixels. The background is saved
because the host will write it back before writing the moving parts of the next frame.

Due to the nature of the])roblem, we need a background saving mechanism for
the M FB writing.

The solution to this problem works very efficient. We hold the received CFB
after writing it on the screen as a background buffer. We also hold a 2D binary array,
where each bit denotes whether a block of pixels is overwritten or not. That is, as
we write any pixel of the M FB on the screen, we set the corresponding bit to 1.
Then, before writing a new M.FB, the blocks of pixels with set flags are written on

CHAPTER 4. RENDERING 49

the screen.

As long as there is spatial coherence in the incoming data, the use of blocks
instead of single pixels for flagging is efficient. The only issue in this mechanism is
how large the blocks should be. If they are too large, unnecessary time will be spent
in writing the background buffer back to the screen, if they are too small, overheads
in comparison will l)e introduced.

4.11 Performance Results

To test the efficiency of the Mars algorithms, we made a number of processing time
measurements.

To make the measurements, we first set the variables of the rendering process.
The factors tliat affect the processing time of a scene is as follows :

• # of])rocessors

• # of patches (data size)

• of patches of moving data

• (very important) positioning of the patches.

• whether the frame is a keyframe or an inl)etween

The number of processors is obviously one of the factors, since the load is dis­
tributed among the])rocessors. As the number of processors increase, their individual
loads decrease and a speedup is expected but later on we saw that in fact this is not
the case because of granularity problems. When the number of patches is too small,
increasing the number of processors beyond a certain value increases the])roccssirig
time.

The number of patches factor is aJso obvious. When there are more patches to
process, it takes longer to process!

When processing a keyframe or an inbetween, the percent of the data that is
moving in the inbetween frames also directly affects the processing time. If this

CHAPTER 4. RENDERING 50

Figure 4.11. IIow positiojiing afrecls processing time

percent is close to zero, tliere is very little job to do in the inbetween frames and the
keyframe is also easier to])rocess. If this perranit is dose to hundred, things would
not change much for the keyframe, but the inlu'tween frame processing time would
be very large, bi fact, tliere is an expected tlireshold value for this percent, at which
tin· r)verall time is minimized, but another factor disturbs this intuitive expectation.
IL is the])ositioning of the patches.

The])ositioning of the])atches of a frame, dominantly aflects the j)rocessing time.
This effect can be investigated in Figure d.Tl. Objects 1 and 2 are identical, that
is they have exactly the same sliape and ihe number of their patches is the same.
Tlie only difference between tliem is tlieir alignment. Object 1 is vertically placed,
while, the other is horizontally aligned. The first object is processed in a longer
time than the second one because of the different number of scanlines they intersect.
This directly affects the number of iterations of the algorithm, and the first object

is processed in a longer time.

The fifth factor that affects the processijig lime is also obvious. We have two
distinct algorithms for])rocessing a keyframe emd an ijibetween. While])rocessing a
keyframe, the load of a single keyframe is distributed among the processing nodes.
The nodes work concurrently and there is also communication between the. nodes.
At the last stage of the process, each processor sends the host its contribution of
the image, and the host writes the final image on the screen. On the other hand, an
inbetween frame is dedicated to a single processor with respect to its index number.

CHAPTER 4. RENDERING 51

The processor does all the rendering of the inbetween and sends the resultant image
to the host. So the issue of processing a keyframe or an inbetween frame obviously
affects the processing time.

The important issues in the performance of the overall algorithm is as follows :

• There is a linear speedup in the. inbetween frame processing. (2n processors
])rocess 2n inbetween frames in half time n processors process 2n inbetween
frames). This is obvious since each processor processes a single inbetween
f]‘ame indepenilenlly of each other. So if nuniber of processors is doubled, the
number of frames that is processed in the same time is also doubled.

• For a keyframe, the percent of the moving dat a affects the processing time but
not to agréai extend (Tables 4.1 and 4.2). So we can simplify our discussion
by dropping this factor from further inspection for keyframes.

• For ail inbetween frame, the percent of the moving data is the main concept
because the data to be processed is tins moving data. As it increases, the
processing time also increases.

• Idle positioning of the data to be])rocessed is very important (discussed above).
To obtain some results, we somehow tested the performance for some specific
positioning. l"o show how])ositioning affects the jirocessing time, we tested
many films with same models. The models perform the same motion (that
is the films have same number of patches and same percent of moving data).
VVe tested only the keyframes as our aim is to show how j)ositioning affects
processing time. Each model is differently aligned in each of the films. The
results show that])ositioning strongly affects the processing time (Table 4.4).

• Granularity])roblem becomes important for the processing of keyframes. For
small data sizes, the maximum speedu]) is achieved with four processors (Table
4.1). For small data sizes, increasing the number of jirocessing nodes does not
decrease the processing time. This is called tlie granularity problem. As data
size increases, this becomes eight (Table 4.2) and then it becomes sixteen (Table
4.3). Memory was not sufficient to test the algorithm for larger data sizes. This
may be tested in future if memory becomes available.

We also plotted a 3D graph showing of processors versus ^ of data versus
processing time (Figure 4.12).

CHAPTER 4. RENDERING 52

time (sec)

#i:>atches
processors

Figure 4.12. Plot of luiiijber of processors vs. number of patches vs time

CHAPTER 4. RENDERING 53

Moving Part Keyframe
^ of processors

Inbet ween
5̂̂ of processors

2 4 8 16 32 2 4 8 16 32

1300 2449 2306 24. 6̂ 2917 3711 403 269 164 101 58

2600 2450 2309 2476 2918 3739 492 317 186 113 64

3900 2455 2331 2468 2926 3721 583 353 207 123 68
!

Table 4.J. Results of the rendering algorithm (in ms) for data size = 3900 (3 seg­
ments)

Movijig Part Keyframe
of processors

Inbetween
of processors

2 4 8 16 32 2 4 8 16 32

1.300 4320 3337 3503 4211 806 442 227 126 82

2600 4314 3321 3452 4195 1188 634 323; 172 122

3900 4315 3446 3523 4184 1484 783 394 209 124

5200 4312 3335 3470 4203 2109 1101 563 290 163

6500 4323 3334 3168 4208 22.98 1178 598 307 173

7800 4320 3212 3168 3625 2551 1293 662 339 188

9100 4290 3220 3157 3643 2691 1393 706 355 201

10400 4312 3218 3190 3615 3215 1693 850 432 236

Table 4.2. Results of the rendering algorithm (in ms) for data size = 10400 (8
segments)

CHAPTER 4. RENDERING 54

Data size Keyframe
of processors

2 4 8 16

5200 2308 1888 1917 1970

10392 2248 2031 2013

15568 2168 1866 1856

17296 2427 1961 1814

22488 2836 2279 1991

27664 2265 1851 1869

328.56 4159 2946 2029

43224 2441 2066

55320 3562 2888 1910

65704 5041 3657 2527

70880 3007 2202

82976 4304 3026 2146

98536 3374 2325

110632 4984 3372 2673

138288 4121 2686

165944 3831 2821

Table 4.3. Results of the rendering algorithm (in ms) for different data sizes of a
keyframe

CHAPTER 4. REhWERING 55

Film Keyframe
of proco' ŝsors

2 4 8 16 32

1 4817 3536 2950 3099 3922

2 5250 4018 3012 2891 1 3385
i

3 4949 3597 2841 2801 1 3266
i

4 3733 2860 2581 2669 3197

5 5134 3673 2810 2850 3329

Table -'1.4. Results of the rendering algoritlun (in ms) for same data sizes (2/664)
and percent of moving data (2 segments) but different topologies of a keyframe

C h a p ter 5

CONCLUSIONS

Mars is a testbed to implement some new thoughts and algorithms in modeling,
ajiimation and distributed rendering.

To ¡iiiplement our])arallel animation rendering algorithm, we have imjilemented
an animatio]! system that would give ap])ropriate animation data as input to our
parallel I'enderer. lint, as our system is tool based, any of the tools can replaced
with a jiiore improved version in the future, and the integrity of the system can be
kept.

Mars is still under develoj)inent. In spite of the fact that the modeler and the
animator a.re developed to make research on rendering of a film, they constitute a
fairly complete system. It Inangs along some efliciencies, like multijile representation
and aiiima.tion and model creation flexibilities. Mars can create quite complex and
real-looking scenes for animations.

Tlie jiotions that exist in Mars are :

• Th('. structure of the model can be of any n-ary tree structure, thus allowing
all kiJKİs of models with no closed chains.

• The segments of the model can be of any complexity. The animator can specify
each segment of a model as a collection of very complex Bezier surface patches,
so photo-reality in terms of modeling can be achieved.

• The keyframer uses a simpler (say skeleton) model while positioning the object,

56

CHAPTER 5. CONCLUSIONS 57

so motion spexiiicatioii is performed easily and quickly.

• The previewing of the object can be done in real time no matter how com.])lex
the object is, as siinj)ler re})reseni;ations are used. This leads to a quicker
development of the. keyframes and the animation.

• A matrix method is introduced in the interpolation part of the aniinator.

• The animation scene can be viewed in many directions in the motion specifi­
cation part, to ease the job of the animator.

• Reiidering of the frames is the lojigest and most expensive part of the computer
anijuation generation])rocess. To cut down the generation time, Mars uses
distributed processing techniques on a multicomputer.

• The scenes and the models of an animation should have complex structures for
a good feeling of reality. yVdmirable results cojne out only with exi)ensive shad­
ing tec.hiiicpies (such as Phong). All those constraints imply that the processing
time foj· leudeiTig the frames will be quite long. In addition to distributed pro-
c(\ssiiig, iViars ex])loits the coherence that exist between the successive frames
of a fi!-m. To exploit this coherence, Mars adopted the Miiltiplajies approach
¡1-1] used in traditiojuil animation.

• Mars methods of distributed rendei’ing oi)timizes the communication issues,
d liis is very important because usually most of the distributed processing time
is spent in communications betwcxui tlie processing nodes.

• Alars interacts with the user in a user-friendly environment (Sun Sparc work­
stations running XVVindows) and gives output to a non-interactive but high-
quality graphics engine (Intel])ersoiial super computer 2 with Targa gra])liics

board).

Bibliography

[1] Norman I. J3a.(ll(n\ Animating human figures: Perspectives and directions. In
Crnjjliicş Interface 'SO & Vision Interface^ pages 115-20, 1986.

[2] Norman I. Badler and Kamran H. Manoochehri. Aiulti-dimensional ini)ut tech-
iiiijues and articulated figure])ositioning l)v multi])le constraints. In J9S0 Woj'k-
¡>liop on Interactive Computer Graphics, pages 151-69, 1986.

[:j] Noi-inan I. Badlei· and Kamran H. Manooclieliri. Articulated figure])ositioning
l)y iiiultij)le constraints. IEEE Computer Graphics & Applications, 7(7):28-38,
19S7.

[1] Phong Bni-Tuong. Illumination for com])uter generated i)ictiires. Communica­
tions of ACM, .18:311-317, 1975.

[5] Da.niiy G. Cacliola and Gunther F. .Schrack. Modeling and animating thiee-
dimensional articulate figures. In Graphics Interface 1986 & Vision Interface,
pages 152-57, 1986.

[6] R.L. Cook and K.F. Torrance. A reflectance model for computer graphics.
Computers Graphics, 15:307-316, 1982.

[7] Fdwin Gatmull. Computer display of curved surfaces. In Eroccedings IEEE
Conference on Computer Graphics, Pattern Recognition and Data Structures,

pages 309-15, 1975.

[8] Gera.ll'i Ferin. Curves and Surfaces for Computer Aided Geometric Design.
Acadi'mic Press Inc., 1990.

[9] D.A. Field. Mathematical])roblems in solid modeling. In Geometric Modeling :
AlgoriSrms and New Trends, pages 91-108, 1987.

58

BIBLIOGRAPHY 59

[10] s. Hewitt, G. Ridscale and T.W. Calvert. The interactive specification of human
animation. In Graphics Interface 'S6 & Vision Interface 8̂6̂ pages 121-30,
1986.

[11] IMiillip Getto and David Breen. An object-oriented architecture for a computer
animation system. The Visual Computer^ 6:79-92, 1990.

[12] Don Heller. XView Programming Manual. O’Reilly & Associates, Inc., 2 edi­
tion.

[13] R.F. Si)roull, I.E. Sutherland and R.A. Schumacker. A characterization of ten
hidden surface removal algorithms. ACM Computing Surveys. 6:1-55, 1974.

[M] Aklen VV. Jackson and Joel M. Morris. Enhancement of diglib: Computer
gra})hics software for animated computer-generated video movies. Computers
& Graphics^ 12:271-283, 1988.

[15] John Lasseter. Princi])les of traditional animation applied to 3d computer ani­
mation. CompiLter 6'7т/;;Лгс5, 21:35-44, July 1987.

[16] Nadia Magnenat-Thalmann and Daniel Thalmann. Computer Animation, The­
ory and Practice. Springer-Verlag Tokyo, Berlin, Heidelberg,Newyork, 1985.

[17] S. İGunraıı Mahmud and Bülent Özgüç. Human body animation. In Proceedings
of the Fifth International Symposium on Computer and Information Science.
pages 885-894, 1990.

[18] S. Kamran Mahmud and Bülent Özgüç. Sejid goal-directed animation : J\ new
abstraction of motion specification in parametric kf-y-frame animation of human
motion. In Proceedings of the Second ¡Airographics Workshop on A nimation and
Simulation Vienna, pages 75 -87, 199k

[19] Bi’ian VVyvill, Michael Chmilar and Chuck Herr. A software architecture Inr
integrating modeling with kinematic and dynamic animation. The Visual Com­

puter, 7:122-137, 1991.

[20] i\4aic R. Grosso, Norman I. Badler and Richard D. Quach. Anthropometry for
comj)uter graphics human figures. Technical report. University of Pennsylva,nia,
1989,

[21] Bülent Özgüç. Thoughts on user interface design for multi window environ­
ments. In Proceedings of the Second International Symposium on Computer

and Information Science Istanbul, pages 477-488, 1988.

BIBLIOGRAPHY 60

[22] David F. Rogers. Malliemaiical ElemenU for Computer Graphics. McGraw
Hill, 1989.

[2.3] David F. Rogers. Procedural Elements for Computer Graphics. McGraw Hill,
1990.

[24] Ken Slioemake. Animating rotation with quaternion curves. In Proceedings of
the SlG G RAPIf pages 24.6-2.54, 1985.

[25] Yılmaz Tokad. Analy.sis of Engineering Systems. Bilkent University, 1990.

[26] Alan Watt. Fundrwienials of Three-dimensional Computer Graphics. Addison-
Wesley, 1989.

[27] Ebon F. Ostby, William T. Reeves and Samiie] J. Leflier. The menv modeling
and animation environment. The Journal of Visualization & Computer Anima­
tion.]:33-40, 1990.

[28] W.H. Franklin and M.S. Kankanhalli Parallel object-space hidden surface re­
moval algorithm. Cornputer Graphics^ 24, 1990.

