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ABSTRACT

APPLICATION OF GAUSS-SEIDEL METHOD AND 
SINGULAR VALUE DECOMPOSITION TECHNIQUES TO 

RECURSIVE LEAST SQUARES ALGORITHM

Atilla Malaş
M.S. in Electrical and Electronics Engineering 

Supervisor: Assist. Prof. Dr. Ömer Morgül 
September 1991

System identification algorithms are utilized in many practical and theoretical 
applications such as parameter estimation of sj'stems, adaptive control and 
signal processing . Least squares algorithm is one of the most popular algo­
rithms in system identification, but it has some drawbacks such as large time 
consumption and small convergence rates. In this thesis, Gauss-Seidel method 
is implemented on recursive least squares algorithm and convergence behav­
iors of the resultant algorithms are analyzed. .Also in standard recursive least 
squares algorithm the excitation of modes are monitored using data matrices 
and this algorithm is accordingly altered. A parallel scheme is proposed in this 
analysis for efficient computation of the modes. The simulation results are also 
presented.

Keywords: System identification, Recursive least squares, Gauss-Seidel it­
erative method. Singular value decomposition
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ÖZET

GAUSS-SEIDEL METODUNUN VE TEKİL DEĞER 
AYRIŞTIRILMASI TEKNİKLERİNİN ARDIŞIL EN KÜÇÜI 

KARELER ALGORİTMASINA UYGULANMASI

Atilla Malaş
Elektrik ve Elektronik Mühendisliği Bölümü Yüksek Lisans 

Tez Yöneticisi; Yard. Doç. Dr. Ömer Morgül
Eylül 1991

Sistem belirlemesi algorirnaları, parametre tahmini, uyarlamalı denetim ve 
sin5''al işleme gibi pratik ve teorik çevrelerde yararlı olmaktadır. En küçük 
kareler algoritması bu algoritmalar içinde en popüler olanıdır , ancak büyük 
zaman tüketimi ve düşük yakınsama hızı gibi bazı aksaklıkları vardır. Bu tezde 
Gauss-Seidel yöntemi en küçük kareler algoritmasına uygulanmış ve oluşan 
algoritmanın yakınsama özellikleri incelenmiştir. Ayrıca standart ardışıl en 
küçük kareler algoritmasında verilerin U3'’ardığı modlar incelenmiş ve bu algo­
ritma incelenen bu modlara göre değiştirilmiştir. Bu inceleme işleminde kul­
lanılan hesaiDİarnalann para.el gerçekleştirilmesi için bir yöntem önerilmiştir. 
Deney sonuçları, her bölümün sonunda yer almaktadır.

Anahtar sözcükler; Sistem Belirlenmesi, Ardışıl en küçük kareler, Gauss- 
Seidel yineleme metodu. Tekil Değer Ayrıştırılması.
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Chapter 1

Introduction

1.1 Introduction

System identification is a useful essential step in adaptive control, parameter 
estimation and signal processing. Recursive algorithms are derived for param­
eter estimation of linear systems on the basis of the least squares cost function. 
This well-known cost funciion could be used for derivation of recursive esti­
mation algorithms. Auto Regressive Moving Average (ARMA) models cover 
a broad class of systems where system identification algorithms are easily ap­
plicable because of lineariiy . Single input ,single output (SISO) and multi 
input multi output (MIMO) systems could be represented by .A.RMA mod­
els. Recursive identification algorithms are applied by computer systems and 
data are generally samples of continuous time systems. In Recursive Least 
Squares (RLS) algorithm a ounch of computation is needed to be done during 
two samples of a real time process . So, there is a requirement of high speed 
computation, or fast con^·ergence rates to true parameters of the models for 
good parameter tracking and for applicability of identif3dng fast systems. In 
[3], [10], [9] convergence raies are improved in some sense, when the excitation 
is complete. In this thesis we propose an alternative to standard RLS algo­
rithm. The proposed algorithm utilizes Gauss-Seidel type sequential update 
rule. In this rule, the components of the parameter vector are updated sequen­
tially, and at each step of the update, previously updated components of the 
parameter vector are used. Therefore, the proposed algorithm depends on the 
selection of the sequence according to which the parameters are updated. If 
the parameter vector has n components, there are n! different such sequences. 
We note that the convergence rate of proposed algorithm depends on selection 
of this sequence. Hence the convergence rate can be improved by changing this

1



CHAPTER 1. INTRODUCTION

sequence. The Gauss-Seidel iteration method is explained in Chapter 3, for 
details see [1].

The excitation condition is also an important aspect in.RLS convergence 
behaviors. Persistent excitation will lead to a fast convergence, [4], [8], weak 
excitation will lead to convergence rate with order [4] and incomplete exci­
tation will lead to bounded errors, [11]. The excitation could be monitored by 
using the singular value decomposition (SVD) of data matrices. In this thesis, 
this monitoring is used and the standard RLS algorithm is changed accord­
ingly. To find the SVD of the matrices, we propose a parallel architecture. 
This architecture could improve the time consumption of standiird SVD algo­
rithms. In each block of this architecture an iterative root finding operation is 
done using the well-known Newton-Raphson method. VVe also give a sufficient 
condition to guarantee the convergence in the Newton-Raphson method.

The organization of this thesis is as follows: In Chai^ter 2 we give the re­
quired mathematical preliminaries for the developments done in later chapters. 
Some well-known stability theorems are given and matrix perturbation anal­
ysis techniques introduced. In Chapter 3, Gauss-Seidel method is applied to 
SISO, and MIMO S3'̂ stem identification schemes. Gauss-Seidel method is also 
applied in block fashion. The convergence properties of these algorithms are 
also investigated. Some simulation results are given when Gauss-Seidel method 
is applied to standard RLS in block or sequential fashion. In Chapter 4, SVD 
is used in RLS for monitoring the excitation modes and an algorithm is deri '̂ed 
using modal behaviors. .Also a parallelization scheme, which could be used in 
the algorithms, is presented.



Chapter 2

Mathematical Preliminaries

In this chapter we will define the problems we consider, introduce the relevant 
notation and give the basic results that we use in the sequel. The systems that 
we consider are linear, time in’.ariant discrete time systems. These are sys­
tems described by difference equations of aproppriate order and are given the 
conventional name A R M  A  ;(AutoRegressive Moving Avarage models )(see 
below). The notations used in this research is standard; for sj'stem identifica­
tion, see [4], [8], for singular value decomposition, see [14], and for perturbation 
and stability theorems, see [12]. [15].

2.1 Recursive Least Squares Algorithm

The systems that we consider are of the following form:

y[t) = —aiy[t — l) — a‘2y{t — 2)...ary[t — r)-\-biu( t̂—l)-\-b2u(t — 2) . .  ,-f — 1)
( 2 .1)

where y{t) is the output, u[t) is the input of the system ; r, / > 0 are integer 
constants; a,-,f =  l , . . . ,r  and 6..j =  1 ,...,/ are constant coefficients. Here, 
input, output and the coefficiems are assumed to be real numbers. This model 
is known as the ARMA model. If we let:

‘fit)  =  [ -y{ t  -  1 ) -  y{t -  2) . . .  -  y{t -  r)u{t -  1 ) . . .  u(i -

as the regressor vector which is a combination of past inputs and observations 
and defining
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0 =  [fli ; 02 : . . .  : : ¿1 : 62 : · · · : bi]'^ell”·

as the piirameter vector, the output y(t) can be written as

(2.2)

where n — r + 1. Hence, given we can derive y{t) at each time t,
provided that 0 is known.

The identification problem is tentatively defined as follows:

Given system in23ut and outi^ut for a time interval, find a parameter 
vector which minimizes the predifined cost function.

To give a more rigorous problem definition,let us define 9 as the estimated 
parameter vector which has the same dimensions as the real parameter 
vector. Let y{t) =  ‘■p{t)9 be the estimated output at each time f >  1. Then 
the problem is to minimize a suitable function of y{t) — y{t) with respect to 
0. Different functions will lead to different estimation algorithms. The most 
widely used function is error squares cost function which is

j (e ,N) (2.3)

where e(i) =  y{t) — y(t), and N is an arbitrary natural number. The optimum 
6 for minimizing the function J(0,N) is the solution of the following equation:

The matrix and the vector Yr\f are collections of j5ast data and outputs 
respectively, (i.e., : <̂ (2) : . . .  : Y.\· = b ( l )  : J/(2) : . . .  :
y(N)]^)·, see [8]. Of course to find 9 we need p.seudoinverse of to exist. 
However by choosing N large we can achieve this task, see [8].

The above solution for 0 needs off-line computations since a batch of data 
are needed (i.e., collect input and past observations till time N). An alternative 
to this approach is updating the estimated parameters recursively using the new 
coming data (i.e., ?/(i)).Given an optimum estimate at time N, the aim is
to find an optimum estimate at time iV -fl. The result is well-known Recursive



Least S quares (R LS) algorithm, for estimating parameters. The algorithm 
has two update laws: parameter update and data update (covariance update 
). These are.given as follows:

CHAPTER 2. MATHEMATICAL PRELIMINARIES 5

e(t) = e(t - 1 )  +  K{t){y{t) -  y,- (̂t)i(t -1 ) )  

K(i) =  P(t)<p[t]

(2.4)

(2.5)

(2.6)
(2.4) is the parameter update equation,(2.6) is covariance updale equation 
where P{t) is called covariance and (2.5) calculates the gain. To find P(t) 
from (2.6),the following matrix inversion identity is used :

(A +  BCD)-' =  A -' -  A~'D(C + DAB)- 'BA~'

provided that the required matrices are invertible. By using the above identity 
in 2.6, we get the following expression for P[t)

P{t) =  P{t -  1) -  P{t -  l)^{t){I  +  ip^{t)P{t -  Vjip{t))-^i^{t)Pd -  1).

To start the algorithm, initial conditions at i =  0 are needed. The initial 
condition 6{T)eTV̂  is chosen to satisfy ||̂ (0)|| < M < oo where M is a finite 
real number, and P(0) is chosen as a symmetric positive definite matrix, usually 
as P(0) =  kI,keT '̂  ̂ ■

There are also other types of R LS algorithms which are classified by the 
way the covariance matrix is updated. For example ,if (2.6) is in the form

0 < a{t) < 1

then this algorithm is called the weighted least squares with exponeritial reset­
ting, or if the P(t) is set to kil,ki is an arbitrary constant, at some tiir.e instants 
¿1,^2) ·· ·) the algoi’ithm is called least squares with covariance reset ring. For a 
detailed exposition of the above algorithms see [4].

2.1.1 Convergence Properties of RLS

Lem m a(2.1):Let y(t) satisfy (2.2). Then, the RLS algorithm have ilie follow­
ing properties :

i) 11 (̂0 ~  >  0 where k=  condition number of
n-i Xrr̂ cJp-do))



ii) limyv-i-oo ^i=i < oo

iii) linii_̂ cc> 11̂ (0 ~ ~ )̂ll =  finite k.

Proof : See [4]

Lemma(2.1) states that the norm of the parameter error 0 = 0 — 9 stays 
bounded regardless of the input-output behavior, and that the measurement 
error e(t) is also a summable function. In the following theorem, we give a 
sufficient condition for 0{t) converge to the real parameters of the system. 
This could be seen easily if we define a lyapunov like function V{t) as ;

V{t) = 0{t)P-\t)9{t)

where 0{t) =  9{t) — 9, and use the properties of Lemma(2.1).

Theorem(2.1): The estimate 0 given by equation (2.4), converges to 0(the 
true parameter vector) if

CHAPTER 2. MATHEMATICAL PRELIMINARIES 6

lim Xmin{P {̂t)) = oo (2.7)
t-i-OO

where Xmin{2T) is the minimum eigenvalue of the matrix A. The condition (2.7) 
will be called the persistence of excitation condition for RLS algorithm.

Proof ; See [4].

Above theorem states that if the regressor vectors make P~^(t) satisfy (2.7) 
then regardless of the initial conditions, 0{t) asymptotically converges to 0. The 
rate of convergence highly depends on update of covariance and in standard 
RLS it is proportional to (|·) if input is weakly persistently exciting, [4].

Here we need to clarify what we mean by persistent excitation .

Definition: A scalar input signal is said to be weakly persistently
exciting of order n if

N
> lim — 

N- ôo N 
t̂=i

u{t +  n) 

u[t + 1)

u{t + n) u{t +  1) >  P2I (2.8)

where pi > p2 > 0.

The above definition can easily be converted to a condition on the regressors

•[4]



2.2 Singular Value Decomposition(SVD)

SVD is an important tool for analyzing the modes of the covax'iance matrix for 
system identification. Curly brackets cover the complex case.

Theorem(2.2): Let with rank r. Then there exists orthog­
onal {unitary} matrices V such that

A =  UE\r }

CHAPTER 2. MATHEMATICAL PRELIMINARIES 7

E = 5  0 
0 0

S = diag[a\a2 ■. ■ cr,·)

O'! > (72 > . . ■ >  ar > 0

where r =  rank{A).

Proof: See [14].Here we sketch the proof.

The elements of S are positive square roots of eigenvalues of ri^.4, which 
is positive semidefinite. Since A^A is symmetric and positive semidefmite, we 
have cr(A)C[0,oo). Let us denote the eigenvalues of A^A by af, i = I , ... ,n. 
Without loss of generality, we assume that cri > us >  . . .  > <7r > 0 = ar+i = 
. . .  =  (7n . Let Vi = '[ri...Ur] and V2 =  [ur+i.... Un] be matrices formed 
by the eigenvectors of positive and zero eigenvalues, respectively. Then S = 
diag(ai, . . . ,  CTr) and we have

A^AVi = 14,S ', V^A^AV2 =  0

Then let us define U\ as
Ut =  AV^S-1

and let us choose U2 such that U — [Ui U2] is orthogonal. Then finall\· we will 
have :

U'^AV =
S 0 
0 0

where V =  [Vi : V2]. The numbers cr,· are called singular values of A and the 
columns The numbers cr,· are called the singular values of A and the columns 
of U are called the left singular vectors, the columns of V are called the right
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singular vectors of A. If the matrix A is symmetric and positive definite, then 
the calculation of SVD is the same as the eigenvalue-eigenvector calculation of 
A. For, in this case A^A =  A ,̂ hence the eigenvalues of A are the same as the 
singular values of A. The above calculations also show that, in this case U = V 
and the columns of V are the eigenvectors of A.

Thoroughout the simulations in this thesis, SVD is used. Direct computa­
tion of eigenvalues of A^A is inefficient due to machine precision, [5]. The most 
widely used algorithm is a two-phase algorithm proposed by Golub,Reinsch [5]
. In this algorithm, the given matrix is reduced to a bidiagonal form by means 
of Householder transformations, and in the second phase, SVD of this bidiag­
onal matrix which is the SVD of the original matrix, is comi^uted by using QR 
alghorithm, see [5].

2.3 Stability Theorems

Let us consider the equations

y{t + l) = f{t,ty{t)) + R{t,y{t)) (2.9)

y{t + 1) ^ f{t,y{t))  (2.10)

where /  : x R ” 7?.",is such that f{t,  0) =  0 Lipschitz function in
an open subset Ba of RA{i.e.. Ba is a ball of radius a which is on the origin of 
7?."), and i?(i,0 ) =  0 VteAf. VVe shall consider (2.9) as a perturbation of (2.10)
. Before examining the stability of (2.9) let us define some notions of stcibility

Definition (Uniform Asymptotic Stability): The solution y=0 of (2.10 ; with 
initial condition yo is said to be uniformly asymptotically stable if

i) Given £ > 0 there exist a. 6 — S(e) such that for any yo being in the S 
neigbourhood of zero (i.e., B$ =  yo<IRC || ||||yo|||l < <5) the solution y{t)cB,.

ii) There is a d > 0 such that for yo(.Bs one has limt_.oo y (0  =  0. □

DefinitionfTotal Stability): The solution y =  0 of (2.10) is said to be totally 
stable (or stable with respect to permanent perturbations) , if for every e > 
0,there exist two positive numbers =  <5i(e) and ¿2 =  <̂2(£) such that every 
solution y{t) with initial condition yo of (2.10) lies in Be for t > ¿0; provided 
that
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and

ll/IJ < <̂1

ll^(^2/W)ll < <̂2

for y(t)eB^,t > t o D .

We can now state the following usefull result.

Theorem(2.3): Suj^pose that the trivial solution of (2.10) is uniformly 
asymptotically stable and suppose that for some Lr > 0 the following holds :

where y',y"eBr C Ba Then the trivial solution of (2.10) is totally stable. 

Proof: See [15]

And finally we have the following result.

Corollary(2.1): Suppose that the hypothesis of Theorem(2.3) is satisfied and 
that, for y{t)eBa one has ||i?(f,y('i)|| <  5'i||y(̂ )|| with —>· 0 monotonically.
Then, the solution of the perturbed equation, (2.9), is uniformly as3unptotically 
stable.

Proof: See [15].

2.4 Matrix Perturbations

The last tool that we use in this thesis is some matrix perturbation results. A 
typical problem in this area is to investigate how the eigenvalues and eigenvec­
tors of a linear operator T change when T is subjected to a small perturbation. 
For a nice treatment of this and related problems see [12]. In dealing with such 
a problem it is often convenient to consider a family of operators of the form:

T{x) = T + xT̂ '̂>

where a; is a small complex number, T'(O) =  T is called the unperturbed oper­
ator and xT̂ ^̂  is the perturbation.
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Let T, real symmetric matrices and let x be a small complex number.
If A,· are eigenvectors and eigenvalues of T, respectively, then

• OO

A,(x) =  +
n=l

and
ipi{x) =  ifi -  x5T(^V.· + -  AW).ST(^V«' ~  · · ■

are eigenvalues and eigenvectors of

T(x) = T + xT̂ \̂

The coefficients A(” ) are given by :

\{n) ^  ,n > 1,
mn

where m is the multiplicity of A and

p w  =  - ( - 1 ) "  E
t»i +V2 + ..-TVn = n

A'l +̂ ‘2 + ·· T̂‘n+1 =̂ . kj>0.Vj>l

Here =  Pa; =  *5'” , where P\ is a projection mapping whole space Af to 
the eigenspace of arbitrary eigenvalue, (i.e. TPX  =  XPX)  and S is given by ;

R{0  = ( T - ( ) - '

For a detailed information about the above quantities see [12]. Another useful 
result is the bound for the norm ||■/,(x) — <fi\\ which is:

where

for any a.

-  wll < + ,i) |̂|r<'V,|l.Ipsty)i

p =  ||r<“)f>|U =  ||r(l).S1|.i. =  ||5-oi=||

The above theorems and corollaries are the basic tools used in the thesis. 
Occasionally some additional results may be used, in which case they will be 
explained when they are introduced.



Chapter 3

Gauss-Seidel Method Applied to RLS

3.1 Introduction

We have reviewed the recursive least squares algorithm (RLS) in Chapter 1. 
This algorithm is known to be robust against the measurements errors [4]. The 
main drawback is its poor convergence behavior, since as time increases the 
algorithm turns itself off [3], [4]. Another drawback is the time consumption 
of one sweep, where sweep means a single iteration. Since in practice the sys­
tems in which we will use this algorithm is sampled continuous time systems, 
the sampling period is limited by the N}''quist rate. An efficient way of ap­
plying RLS to identification is to share the work of a the single sweep with 
p processors (i.e., p > 1) or to parallelize the algorithm. There exists a large 
number of efficient ¡Darallel implementations of RLS and related algorithms [2], 
[7]. Especially the work of Jover and Kailath is an important contribution on 
this area. They implement the most time consuming part of the algorithm, 
the covariance update, on systolic arrays. The improvement introduced is on 
the modification of well-known Bierman’s LDU (Lower Triangular, Diagonal, 
Upper Triangular) factorization of a matrix. The covariance update is in fact 
an LDU update problem which is solved in [6], and the modification in the 
paper of Jover and Kailath consist of pariillelizing the algorithm. A more 
systematic application schedule of parallel architectures can be found in [2]. 
In [2], systolic arrays are used as blocks for special purposes which are most 
commonly used structures in algorithms (i.e., RLS, Kalman Filtering, etc). 
These blocks perform; back substitution, matrix addition and multiplication, 
orthogonal decomposition and calculation of the schur complement[2].

In this chapter we will first give a simj l̂e way of parameterization of the 
RLS algorithm for a MIMO (Multi Input, Multi Output) system defined by

11
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ARMA model. Then, we will apply a well known iteration method, which is the 
Gauss-Seidel iteration, for identification of SISO (single input, single output) 
(and MIMO.) model and examine the convergence behavior of the resultant 
algorithm.

3.2 Gauss-Seidel Iteration

Assume that we have the following iteration algorithm:

x{k + 1) = f{x{k))  (3.1)

where x[k), f(x{k))eRI'. A straightforward way to parallelize the above iter­
ative algorithm is assigning a processor to a component of x{k), and letting 
them compute x{k) in parallel. For example the processor computes

xi{k +  1) =  Mx{k))  (3.2)

which is the component of a;(/[: -f 1)· This type of iteration is called a Jacobi 
type of iteration. Another method is the Gauss-Seidel method(from now on 
abbreviated as GS). It introduces some kind of sequentalism on the calculation 
of the components of x{k + 1). In this algorithm the recent updates of vector’s 
components are used to update the other components of the vector, as follows:

xi{k -h 1) = fi{{xi{k),x-2{k) , ......... ,x„(A:))^)

X2{k -f 1) =  f 2{{^i{k +  1),X2(^)5......... }^n{k) f )

Xj{k T 1) == fjiixiik +  1),X2(A- +  1) , . . .  ,Xj{k),xAk)y ) (3.3)

For details, see [1]. As seen from the above equations the sequence chosen in 
the GS method seems to be user dependent, however, in many algorithms the 
sequence is predefined and the order is clearly set.

3.3 M IM O Representation for System Identification

In this section, we first give a parameterization of a MIMO system suitable 
for system identification. We will then apply the RLS algorithm for MIMO 
systems of representation
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We considei' the linear, time invariant, MIMO discrete time systems given 
by the following equation:

y(t) +  Aiy{t -  1) +  . . .  +  Ary{t -  r) -  Biu{t -  1) +  ■.. +  B;u{t -  1) (3.4)

where tcK· ,y{t)^u{t)eRP·, A , · , i  =  1 , . . . , r, j  =  1 ,___1.
Our aim is to find A,· , Bj for i =  1 , . . . ,  r, j;' =   ̂/ using observations y{t)
and inputs u{_t). Let

a‘ i «Im ' Ml

. «ml · • · ^mm

, B j  =

. Mnl · ■■ K,m _

, ?· 1 j 1,..., /

and let 0 be defined as

e =  (all : all : ·: a-̂ 2 · 2̂2 2 2 : ail : a11 · ^̂21
(3.5)

(i.e., the columns of Aj·, i =  1 , . . . ,  and then the columns of B j ,  j  =  1 , . . . ,  
are placed one following other respectively)

In order to generalize the RLS algorithm of SISO systems to MIMO systems, 
we need to have a linear relation between the output y{t) and the parameter 
vector 9, see(2.2). For this reason, we choose the regressors ip{t) as

ip{t) =

1)

-yi { t  -  1)
cRm'̂ n'K rr. (3.6)

It is easy to see that by using (3.5) and (3.6), (3.4) can be wriuen as

y{t) =  (3-7)

which is a suitable representation for identification. We will use the well-known 
error squares cost function

. 1 ^
0  ̂^ )  = 2 ~ ~ .(3-3) ̂ ¿=1
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where 9 is the estimate of 9. To get RLS from (3.8), let us determine a 9 which 
minimizes the cost function. Let us define Y = [?/^(l)?/^(2). . .  and

=  [¡ {̂l)ifx{2) . . .  <-p{N)Ŷ  then the error E and the cost function J becomes

E = Y -  ^N0,

1 ^/  =

The estimate 9 that minimizes J is given

(3.9)

provided that the matrix is invertible. To convert (3.9) to RLS algo­
rithm, we assume that we have found a minimum by using — 1 errors in the 
cost function J and then we will find minimum when an additional observation 
comes. Note that

N N

i=l
, ^^Y = т(г)у{г) (3-10)

г= 1

If we let P{k) =  ( Ф ^ we have

N

izzl

(3.11)

Since P~^(k) = Ф^Фа- and also having the definitions (3.10), we can obtain the 
relation

P -\N )  =  P -\ N  -  1) +  c(N)ip^\N) 

We can rewrite (3.11) as

N -l

0(N) = P{N)(Y^ v>(z)y(<) + ;(Л ')!/(Л ')),
г=1

and also we have 

N

(3.12)

(3.13)

Y^<p(i)y(i) = P - \ N - l ) 9 { N - l )  = P-^(N)9iN-l) -i f i (N)<p^(N)9(N-l) .

(3.14)
Now, using (3.14) in (3.13) we get the estimate at time N as

§(JV) = 9(N -  1) +  F(NMN)(i/(N) -  ^^(N)9(N -  1)) (3.15)
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The equations (3.12) and (3.15) yield the RLS algorithm for identification 
of MIMO system. Here the only difference with the SISO case is that the 
matrix P{N)  to be inverted is of a large size(i.e., ?n^n x m?n). Using the 
matrix inversion identity in (3.12), we obtain

p(iV) =  P{N  - 1 )  -  P { N -  1)^{N)[I T </{N)P{N-)^{N)]-\'^{N)P{N - 1 ) .
(3.16)

Here, the tedious computational problem is to determine the inverse of

M{t) = [IPip^{t)P{i-l)<f{t)\ t nmxm

Under some assumptions on the system given by (3.4), a simplified RLS 
algorithm could be found based on the structure of M{t) (i.e., M(t)  cordd 
be a diagonal matrix), see [4]. Here we did not impose a condition on M{t). 
The inversion of M(t)  could be done in systolic array tjqDe processors which 
perform orthogonal decompositions and back substitutions. To clarify, let A 
be the matrix that we want to invert. Then A can be made triangular by 
multiplication of orthogonal matrices

AQ1Q2Q3 ■ ■ - Qn — U

where U is upper triangular and n, the number of transformations, depends on 
A. Then to determine A~^, we invert U by n consecutive back substitutions, 
and then multiply by Q .’s, as follows:

^  =  Q1Q2 ■ ■ ■ QnU -1

This is of course not the most efficient way of performing the inversion 
but one which could easily be performed by systolic arrays. On conventional 
computer s5'’stems, there also exist other efficient algorithms, see[13].

This technique of MIMO identification shows the applicability of systolic 
arrays or parallel processing arrays to idennfication problems. The convergence 
behavior of the MIMO-RLS will not be dealt with since this is quite similar to 
SISO case.

3.4 Application of GS Iteration to RLS Algorithm

The application of GS iteration to RLS algorithm will be given in this section 
and convergence behavior will be analyzed in the next section. For convenience
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let us consider the parameter update equation,

«(() =  §(t -  1) +  K(t){y(t) -  -  1)).

This is an iterative algorithm. We will apply GS method on the elements of 9 
given by the above algorithm. Here the important point is the selection of the 
sequence to which we apply G.S. In some situations, this sequence changes the 
convergence behavior. For a. clear understanding, we choose the sequence,

9i{t) =

d2{t) ^ 9 i { t -  l) + K2{t){y{t) -  '^x{t)9i{t) -  ip2{t)9it-1) - . . .  -  ^n{t)6n{t -  1))

On{t) = Onit -  1) +  Kn{t){y{t) -  <̂ i{t)9i{t) -  (p2{i)92{t) -  . . .  -  (pn{i)0n{i -  1 )),
(3.17)

for updating the elements of 9{t). The subindex shows that it is the associated 
component of the vector.

If Jacobi iteration is used in RLS, we can assign a processor to each com­
ponent of 6 and perform the iterations in parallel without having to wait for 
the result of the other processors. But in (3.17) we can see that each processor 
has to wait for the results of the previous processors to update its own param­
eter, hence the parallelism is lost. But in general, in solving linear ecpiations 
(i.e.A.T = 6), the GS iterations give better convergence rates than Jacobi type 
iterations, [1]. Here, we only prove the convergence of RLS with GS iteration. 
We have been unable to obtain the convergence rares of this algorithm. Hence, 
a theoretical comparison with RLS with Jacobi type iteration is not made.

The GS approach can also be performed in block fashion. We can partition 
9, K  into k [k < n) blocks of the form

9 = { 9 j _ : ^ : . . . : h f

p = ■■■■
R  =  ( ^ : ^ : . . . : ^ : d

then RLS with GS iteration becomes

£i(i) = (0(2/(i) -  y y (^¿1 “  1) “

= k d  -  y  -  yy{t)ii{t) -  ^ { t ) e 2{t -  1 ) -  ... -  -  1)
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lk(t) = èk(t -  1) + -  . . .  -  -  1))

Simulations of the block GS suggest that the convergence rate is affected by 
the choice of these blocks and that the error between the parameters updated 
by Jacobi iteration and block GS can be made small, see Figure(3.2).

3.5 Convergence Behaviors of GS Applied Algorithms

If we collect the parameters with index t to the left hand side of (3.17) we 
obtain the equation

Oi{I) = 6>i(i -  1) + Ki{t){y{t) -  -  1) -  y>2{i)62{i -  1) -  . . .  -  <Pn(t)dn(,t -  1))

K2{t)MiWn(t) + 02(t) = 1̂ (t -  1) + K2it){y{t) -  f 2(,t)d2{t -  1) -  . . .  -  ~ 1))

(3.18)
for GS applied algorithm. In order to write (3.18) in a compact way, we first 

define

E(t) =

1

K2{t)Mt) 1

and let F{t) = I — E\t). Then, (3.18) can be rewritten as

E{t)9(t) =  ^(i -  1) +  K{t){y(t) -  -  1)) +  F{t)0{t -  1)

or
0(t) =  0(t - 1 ) + E -\ t)K {tM t)  -  - 1)). (3.19)

Let E{t) =  /  +  L, where L is a lower triangular matrix with zero elements at 
the diagonal. Since L” = 0, the inverse of E{i) can be obtained by

E - \ t ) ^ I - L P L '^  -  . . . P  { - I f - ^L^- ^ (3.20)
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In (3.19), we need E~^{t}K(t) which is the new gain. Hence, we need the 
powers of L multiplied by K{t) These can be found as follows, where the index 
t is dropped.for convenience:

0

LK  =  K2K^^l +  K2K^if2

0
0

L^K

L -̂^K =

K - i K \ ‘~piK2'{>2

H 4 =  R  S2 P  s i ^  S2

^S2) — {l,2,...,n—l)H si  Hs2 T SI t^S2

0 

0

K n { K \ ^ l K 2 ^ 2  ■ ■ ■ K n - l ^ n - l )

The desired gain which is E{t) ^K{t) =  {—LyK(t)  can be expressed,
using the above results as

AT
A'2(1 -  R\(p-i)

An(l  + ^(iii2---Sj)=(l' ’̂3 n-l)A5] · · -Lŝ ipŝ  . . . — 1 L)

which is ecjual to

m

K, ' 1 0

/12(1 -  Kjift) 1 -  KiPi

Knïip ; { i  -  KiVi) _ 0 n ”; ; ( i  -  K.v.) _

Finally if we express E~  ̂ as /  — Ft then (3.17) becomes

«(() =  Ht - 1 )  +  ( i  -  r,)K(t)(y(t) -  - 1 ))· (3.21)
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In convergence analysis we need to observe the behavior of the parameter 
error, which is defined a.s Ô = Ô — 6. Using this definition on standard RLS we 
have

0{t) =  ( /  -  -  1). (3.22)

If the excitation condition (2.7) is satisfied, the solution of the above error 
equation tends asymptotically to zero. In fact, it is known that the convergence 
is in the order of (1), i.e., ||6'(t)|| ~  0(})  for large t see[4]. To examine the 
convergence behavior of error when GS is applied, let us write the error ec^uation
as

¿(i) = U -  ( / -  -1)·
Rewriting, we have the equation

ê{t) = { I -  -  1) +  -  1). (3.23)

We note that (3.23) is a perturbed equation of (3.22). We will now check 
that whether the hypothesis of Theorem(2.3) is satisfied for the equation (3.22). 
The first thing that we have to verify is the total stability of (3.22). We will 
make the assumption of boundness, which is the regressor vectors produced by 
the system and input is bounded for all i , i.e., for some M  > 0 (t)(p(t) <
M < oo, Vi.If we let =  ( /  — K(t)is^)y, then we have

= i i { / - -»2)11

< ||( /-A ( i) '^ ’')llll»i-»2l!
< (1 + ||Aii)»>’’il)ll»i -  »2 II (3.24)

Since K(t) = P[t)(p{t), using the induced T2 nonii of matrix we
obtain

< ^^LnaAPiO)) (3.25)

where we used the fact that Xmin(P~A0) A ■^mm(P~‘ (̂i — 1))> and hence 
Amai(A(i)) <  ^max(P{t ~ 1)), See (2.7). Using the assumption of bounded­
ness of regressors (3.24),(3.25), we obtain

l|/(A^l) -/(U^2)|| < [ l + M X m o x ( P ( O ) ) m - 0 2 \ \ . (3.26)

The inequality (3.26) gives us a candidate for A,- as 1 -|- MX max  (P (0)) for all 
1̂ , 02eR. Let the regressors satisfy the persistence of excitation condition given
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by(2.7), Then since 0 =  0 is a uniformly asymptotically stable equilibrium of 
(3.22), by (3.26) and Theorem(2.3), it is also totally stable. Now let us inves­
tigate the perturbed equation (3.17). We can put a bound on the perturbation 
as follows:

iS

<
< XSi /'m ar

< A,
(r,)jiAlt)||Mt)||||̂ ||
(r,)A.ax(P(O))||<^(t)in|0||

Let gt = Amax-(ri)^mar(-P(0))||i/7(t)|p. Then, since AmasiLi) is either zero 
or is a multiple of K{, which asymptotically approaches to zero, and since 
regressors are bounded by assumption, we have

gt ^  0 monotonically. Hence, by using the Corollary(2.1), we conclude that 
6· =  0 is also an asymptotically stable equihbrium of (3.23). We now summarize 
the above results.

T heorem (3 .1 ): Consider the system given by (3.23), which results from 
the application of GS to standard RLS for SISO system. Let the persistence of 
excitation condition given by (2.7) be satisfied. Furthermore, assume that the 
regressors are bounded, i.e., there exists M > 0, such that ||</̂ (t)|| <
Under these conditions, 0 =  0 is an asymptotically stable equilibrium of 
(3.23). □

Theorem(3.1) can be extended easily when GS is applied in a block fashion.

When the system to be identified is a MIMO system which is given in the 
previous section of this chapter we can still use the analysis presented above.

First thing to be done is choosing the sequence applied for GS method in 
the parameter update equation for MIMO case. We choose n blocks with 
elements each: For example

0i =  {c11 · %1 1̂2 ' 2̂̂ : ai J
i.e. , each block 0,· is set by A{ or Bj. When GS is applied, the RLS update 
can be done in the way shown below:

9,(t) =  0 i ( i - l ) + /G ( i ) ( i / ( i ) - < / :> f ( t ) 0 i ( i - l ) - ¥ > ^ ( t ) 0 2 ( t - l ) - . .
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0n{t) = e {̂t - 1 )  +  -■■■-  pl{t)0n{t - 1)).
(3.27)

The equations are in same form as the (3.17) but the elements of the matrices 
K  and (p are different. We can easily see that (/?,■ is in the form

and

J/l (̂  0  yni{i

l/i(i -  0

K = Pp=[R,^...K„T

ymit )̂

For the convergence of the algorithm given by (3.15), we can examine the 
behavior of the parameter error 9{t) which is ${t) — $. By simpl}'  ̂ subtracting 
0 from both sides of (3.15) we see that error equation is

m  =  (I  -  m p ( t ) ) ë { t  - 1) (3.28)

which is the same as (3.22). From the above·equation and (3.12) it could be 
easily deduced that a sufficient condition for error to go zero is

— oo.Returning to the equation where GS applied, the 
error equation could be written as

0{t) = { I -  K{t)</{t))0{t -  1) +  TtK{t)'p {̂t)~9{t -  1) (3.29)

where

% =

I  - H i = , . . . n - i { I  -  Ki{t)pf{t))

(3.30)

The convergence analysis is very similar to the .SISO case. First we assume 
that ||||ŝ (OIIII is bounded for all toV. The function, (7 — K{t)p^ {t))  ̂ then will 
satisfy the following

||7-77(07^^(011 < 1 +  ||77(07’^(0II
< 1 + p^t)P{t)p{t)Mt)\\,

< 1 + ||7’(0ll?̂ max(7̂ (0)
< 1 + ||(/?(0||fA„,ai;(P(0))

L r
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where Lr is the required constant of Theorem(2.3). Hence, according to the 
Theorem (2.3) (9 =  0 is a totally stable equilibrium point for MIMO RLS error 
equation, given by (3.28). Now, the perturbation term in(3.29) satisfies

\\%K{t)v>'^è\\ <  ||7 ;||||W i)lP l|r(i) llll« ll

<  M^K.,{Pm\T,\\\V\\ (3.31)

It can easily be seen that the right hand side of (3.31) asymptotically ap­
proaches to zero, hence, by the Corollary (2.1), we conclude that  ̂ =  0 is an 
uniformly as3miptotically stable equilibrium point for (3.29). We summarize 
this result in the following theorem:

T h eorem (3 .2 ): Consider the system given by (3.29), which results from 
the application of GS to standard RLS for a MIMO sj^stem. Let the persistence 
of excitation condition given by (2.7) be satisfied.Furthermore, assume that the 
regressors are bounded, i.e., there exists M > 0 such that ||</?(t)||, VteAf. Under 
these conditions,  ̂ = 0 is an as)anptotically stable equilibrium of (3.29). □

3.6 Simulations

In this section we show the results obtained in the simulations done in SUN 
systems written in C-language In the first one a linear system is identified the 
system is defined b}' the difference equation

xj{t) =  1 .7 y (t-l)-1 .0 1 y (i-2 )-f0 .2 4 7 i/(i-3 )+ 0 .0 2 1 u (t-l)-b 0 .3 u (t-2 )-n (t-3 ).
(3.32)

We can define

0 = (-1 .7·: 1.01 : -.247 : 0.021 : 0.3 : -1 )^

and

T 'W  =  [ -y{t -  1.) : -  2 ) : - y { t  -  3 ) : u{t -  1 ) : u{t -  2 ) : u{t -  3 ) ] ’ ’ .

We take initial estimate as 0(0) =  (.005 : .005 ; .005 : .005 : .005 : .005)̂  ̂ and 
the initial regressor as </?(0) =  (.05 : .05 : .05 : .05 : .05 : .05) '̂ and the initial 
covariance as P (0) = 2000/6x6· The input to the system is

u(i) =  20sm(— ) +  2 0 s z n ( -^ )  +  2 0 s ? n ( - ^ ) .

To identify the system RLS is used and GS method is applied to standard RLS 
using the sequence in (3.17). The asymptotic behavior of a particular element
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0.0  2000 .0 0̂00.0 6000.0 
M o .O f  i.teT-atioTLS

3000.0 10000.0

Figure 3.1: Behavior of of GS,and standard RLS methods

of &{t), 02(0) I'esulting from standard RLS and GS applied RLS are presented 
in Figure (3.1). In the second simulation the block GS method is used. For 
this purpose ${t) is partitioned to two blocks as

We, first take 

and

0(0 = (MO

01 (0  =  (01 ( 0  : ^2(0 ) )̂

02(0 =  ■ U t )  ■ h {t) : èS )Ÿ ·

(3.33)

Then for a second algorithm we take

^VO =  (^i(O).

and

02(0 =  (^2(0 : ^VO : ^4(0 : ^5(0 : 4 (0 ')0

The resultant behavior of 0a(O in both of the two algorithms are given in Figure 
(3.2).

The second example we consider is a s5'̂ stem modelled by the differential 
eciuation

y{t) =  2 .ly{t -  1) -  1.8i/(i -  2) +  0.5t/(i -  3) -f 0.9u(i -  1) -  u{t -  1). (3.34)
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M o . O f  'ttO'rCLirtOTLS

Figure 3.2: Block GS results on 3̂

The regressor and the parameter vectors are defined in the same way as we did 
in first example. The input is

u(i) =  20sen(— ) +  2 0 s г n ( ^ ^ ) .

The initial parameter estimate, regressor and covariance, for the iteratiA'e al­
gorithms, are.

=  iO.8 : 0.8 ; 0.8 : 0.8 ; 0.8]^ ,

(^(0) =  [0.05 : 0.05 : 0.05 : 0.05 ; 0.05]^  ̂ ,

P(0) =  1000/.

Using the same sequencing, in the application of GS, as above we get behavior 
of 2̂(0 Figure (3.3).

Then we appl}  ̂ GS in block fashion. 0(t) is partitioned into two blocks like 
in (3.33), and this is done in two different ways. In the first one

0\{i) = ■ 2̂(1) ■ thetaz{t))'^,

and
$o{t) = {è^{t) : 4 (i))^ .
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z o o o ^ o

Figure 3.3: Second example results,when GS applied to RLS 

In the second one

and

k ( t )  =

«,(() =  (êi(t) : ê4 t) : ê s ( i) f .

We display the behavior of &3(t) in Figure (3.4). The difference between these 
two examples is that at the second example the poles of the system is lying on 
the unit circle. This shows that the system may generate oscillanons. It could 
be seen that the convergence is poor in second example when GS applies to 
RLS, Figure(3.3). This could happen because of this oscillatory behavior.
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Figure 3.4: Second example results, when Block GS applied



Chapter 4

Investigating RLS using SVD computations

4.1 Introduction

In this chapter we will investigate the RLS algorithm and parameter error 
behavior in some detail. Of particular interest is the behavior of the algorithm 
when the excitation is not complete or very weak so that the convergence of 
the estimated parameters is very slow. It can be shown that when excitation is 
not complete, the identification error stays bounded and some part of the error 
goes to zero, [11]. While this might seem to be a serious problem, that the 
identification error stays bounded may be sufficient for some model reference 
adaptive control applications, i.e., the tracking error between the plant and the 
model may still converge to zero, [11]. In [11] defining an unexcitation subspace 
by the regressor vectors, results on parameter and tracking errors are derived. 
Since update of the covariance plays an important role for the convergence of 
the algorithm, this update ecjuation is also modified. In [3], after making some 
modifications in this ecpiation, results show that exponentially fast convergence 
could be obtained, by an efficient usage of data. In [9], [10] some modifications 
of the RLS algorithm which avoid the turning off of the standard RLS algorithm 
are proposed. The turning off of the standard algorithm can be explained as 
follows. Assuming that the excitation condition (2.7) is satisfied, it follows 
that the following holds;

lim A„iar(-P(0) = 0
t-^oo

(4.1)

Since the gain K[t) of the RLS algorithm is proportional to P ( t ) , see
(2.5), it follows that this gain asymptotically approaches to zero, hence the 
convergence of the algorithm also slows down.

27



If we investigate how the modes of increase, we can obtain some in­
tuition on the excitation conditions. In this chapter we propose a modification 
of the algorithm which is based on the excitation of modes at each iteration 
step and the corresponding parameters are updated correspondingly. Also, 
simulations suggest that even if all the ¡parameters in a sweep are not updated, 
asymptotically the parameter error decreases. Main motivations of proposing 
the above algorithms are the large time consumptions and low convergence 
rates of the standard RLS algorithm, (i.e. if unnecessary processing doesnot 
take place, time consumption decreases). If each step, instead of updating all 
parameters, we update the ones that are suitable in some sense at average, 
time consumption can be decreased. For this purpose SVD is used in covari­
ance update equations. Since F(t) is symmetric, and positive definite, SVD 
is equivalent to eigenvalue-eigenvector computation. The main motivation for 
the use of SVD can be explained as follows. Once the singular values of P{t) 
are found, we can compare these values with the previous ones, and find the 
directions along which the rate of change of the singular values are relatively 
small. Therefore we may expect small change in the parameters along these 
directions and do not update the parameters along them. It should be noted 
that the standard eigenvalue calculation algorithms are not efficient and ma­
chine precision dependent. This point should be taken into account when the 
above algorithm is implemented. Also the calculation of singular values can 
be reduced to finding roots of a polynomial, which has some interesting root­
interlacing property, see section 4.2. This property could be exploited further 
and a parallelization of the algorithm can be obtained.
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4.2 Application of SVD to RLS

Since we are interested in the modes of which can be taken as the sin­
gular values of we apply SVD to obtain them. As is symmetric
and positive definite, all singular values are positive (not zero) and decompo­
sition is as follows;

p -\ t) = UtD^^U'f
d\

d'l

(4.2)

where is an orthogonal matrix and d] > > ... > df > 0,tcj\i are
the singular values. Then the covariance update equation (2.6) becomes

(4.3)
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■By rearranging (4.3) we obtain

(4.4)

if we need to find SVD of P~^{t) having SVD of P~~̂ {t -  1) at hand,the above 
equation suggests that we need to find the SVD of + Uj_-^(p{t)(f^{t)Ut-Ui 
this matrix is decomposed as

A - i  +  u lM t) 'p " {m -^  = QtDtQj

then putting (4.5) in (4.4) we obtain

P -\ t) = H.^QtDtQjUl, =  UtDl^Uf

where we set

(4.5)

(4.6)

(4.7)Ut =

The update form introduced by SVD seems easy since a dyad is added to a 
diagonal matrix. Now let us look what changes did SVD bring to parameter 
update equation (2.4). Before going further, let us define

1
(4.8)

(4.9)

<i>t = Ut_j‘p{t), at = Ut_̂ 0{t), -ft = —^

Now the gain could be rewritten as

r , - ( A -  _ . . r r  n  .X

Putting (4.9)in the parameter update equation(2.4) and using the definitions 
(4.8) in (2.4) we obtain

§[t) = §{t -  1) +  -ftUt-iDt--i4>t{y{t) -  -  1))

=  U t - \ { a t - i  ' y t D t - \ 4> t { y { t )  — ( f t l t - i )

Then an update on a-/ will become as

at — UjUt-\{at 4- ■'/tDt-i<pt{y(t) — (j^fjt-i)

(4.10)

and since Ut = Ut-iQi,athecomes:

a, = gf(a,_i +7,A-iA(!<(i) -  4'Iat-i))

(4 ,ir

(4.12)

The vector at is the representation of ${t) with respect to the basis obtained 
by the columns of Ut·

In the sequel, we will show that, under some conditions, limi_„x, ||<5i “ -̂ 11 =  
0. Now assume that this is the case. Now (4.12) implies that, if a certain
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component of 4't is zero, then the corresponding components of at and at-i 
are the same hence the parameters are not updated along this direction. In 
the sequel, we will show that if a certain component of <pt is zero, then the 
corresponding singular value of P(t) does not change. Hence, by monitoring 
the singular values and not updating the parameter equations along certain 
directions along which the singular values do not change very much, one may 
decrease the time consumption of the RLS algorithm.

To summarize, the use of the SVD in RLS results in the algorithm:

Algorithml:
l)Given the SVD of PjLi =  Ut-\Dt-\Uf_i and the regressors ip(t),find the SVD 
of

■\-lnT

2)Update Ut as: 

hence

Ut^Ut-iQt

Pf^ =  UtDr^Uj'

{B)

3) The parameter update equation is given as:

4) go to step 1.

4.3 A  Parallel Implementation of SVD

In this part we will give an update scheme for covariance update (4.5). In view 
of (A), in implementing SVD in RLS algorithm, the crucial step is to find the
SVD of the following matrix::

A  + (413)

where Dt is a diagonal matrix with entries d] > > ... > df > 0 ,and
(/>¿4.1 eP” is a vector. Since the matrix in (4.13) symmetric, positive definite, 
finding the SVD is equivalent to an eigenvalue-eigenvector decomposition.
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To find the singular values of (4.13), we first note the following: 

p(X) det(XI -  A  -  = det({XI -  D ,){I -  {XI -  A)-V<+i<?^f+i))

=  det{XI -  Dt)det{I -  {XI -
(4.14)

But, since

det{I -  {XI -  A)"V«+i<P?+i) =  ~ ~ A ) " V i+ i )

then (4.14) can be written as

(A -d^i) (A - ¿ 2 )  ■·· (A-dp)^^J=i^^

of equivalently

p(A) =  nj^.(A -  4 )  -  -  4 )  (4.15)
1=1

where ĉ t+i =  {w}^^,w^^i,.. . ,  and Dt = d\ag{d],d'̂ , .. . ,d f)

Remark 1: Now, assume that =  0 for some i = l ,2 ,. . . ,n .  We see 
then from (4.15) that p{d\) =  0, hence dl̂ -̂  =  dj, i.e., the î h singular value of 
Dt+i and Dt are the same. □

Since d] > d“{ > ... > d̂  > 0 , we have

p{dl) = -{w Yif{d ] -  d'̂ ){d] -  d?).. . (dj -  df) < 0

p{d¡) = -{wl,)\d^¡-d¡){d¡-d^C■■■{d^t-d?) > 0

(4.16)

,keAr
[ > 0 \i j = 2k

Since p{X) is continuous in A a typical figure for p(A) is as shown in the 
Figure(4.1). Then, it is not hard to see that an interlacing property between 
the new roots and the previous ones, as given below, holds:

4-n > 4 >  4+1 > 4  >■■■> 4+1 > 4 > o (4.17)

Furthermore, if wj 0 for j  =  1 ,2,:, n, and ifd) > d̂  > : >  d" >  0, then the 
inequalities in (4.17) can be replaced by strict inequalities. This suggest that, 
to find the 7*̂  root of p(A), we may choose d̂  as initial condition and apply 
the well-known Newton-Raphson (NR) method. A problem with these initial
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Figure 4.1: A t3'pical p{\) plot

conditions is that two of them may be an initial condition of a same root. 
If we choose d\, i = 1 , . . .  ,n as the initial conditions in NR, to guarantee 
appropriate convergence behaviors, p(A) should satisfy

(4.18)

To put condition on the regressors we will write the explicit form of (4.18), 
using the product rule in differentiation, as

If we examine the behavior of p{\) at the point, d̂ . we obtain

4 4 )  = [1 -  E  (4.20)
i:)ik

if A: =  1 then since p{d]) < 0, we need p'{dl) > 0 or, if A: =  2 then since 
p{d )̂ > 0, we need p {df) < 0 for a general result let us partition p {d'i) as:

where

p ( 4 )  =  4 4 ) n j i i 4 4  -  4 ) (4.21)
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we can easily see that lI"^i((ZJ — d{) > 0, and ~ < 0. Then, from
(4.15) it can easily be concluded that the second term in the right hand side 
of (4.20) and p(d )̂ have opposite signs, for k =  1,2, . . . ,n .  Hence (4.17) is 
equivalent to the following.

<;(4) >  0 k = l , 2 , . . . , n (4.22)

Hence, from the above calculations it can be concluded that if we choose 
dj, i =  1 ,2 ,... ,n, as the initial conditions, then (4.21) gives a sufficient con­
dition for the proper con\'ergence in Newton-Raphson method. Then we can 
propose cl parallel method for calculating roots of p(A). In this method each 
processor calculates roots by NR method given the initial conditions which 
are previously defined, (i.e. d\) We do not only need the eigenvalues but 
also the eigenvectors to find the matrix Qt+i which contains eigenvectors, (i.e. 
(Ji+i =  (lt+\ ■ ■ · ^H-il)· Eigenvectors are given by the following for­
mula

q]+i =  r{d\^J -  Dt) V i+ i i =  1 ,2 , . . . , n (4.23)

Where, r is chosen to make {ql+if’'i'it+i) — E To verify that above is an 
eigenvector of associated with the eigenvalue d\_̂ ·̂ . let us multiply
the matrix with

(H i-f <^t+^^i)r(dy^i7 — A )  Vt-i-i

= tA « , /  -  A)-V.+1 + -  A ) -V m-i (4.24)

Assume that ^ d\ i =  1 ,2 , . . . ,  j  =  1 ,2 , . . . ,  (note that this is the case 
if u’J 7̂  0 i — 1 ,2 , . . . ,  n and d) > d̂  > . . .  > d” >  0). Since p(dj^i) = 0 we 
will have:

l - o f + , ( d ) ^ A - A ) - V H - i = 0  (4.25)

Using (4.25) in (4.24) we get

T -A (d i+ i/- A ) “ Vi-ti + 7A)"Vi+i

= rT>t(d|^i/ -  Dt)~̂ 4>t+i + T^i+i 

= r ( A ( d | + i / - A ) - '  + /)<^m 

= r (A  + (di+A -  A ))(d j+ i/ -  A ) -V i+ i

= d\ĵ .\Tî d\ĵ -yI — Dt)

= dUiq]+i □
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These calculations hold if ^  i ^  i =  1,2,. , n , ;  =  1 ,2 ,. . . ,  n. If
we set P(0) =  diag(dl4  with dj >  dg >  . . . d” > 0 and ii w\ ^ 0 i =
1,2, . . . ,n ,V t  , then (4.16) holds with strict inequalities and (4.22) gives all 
eigenvectors, i.e., the columns of Qt+i- Another set up for calculation of roots 
of p(A) could be given under some conditions which we will give below. These 
results will give us the approximate roots of p(A). If we set

d\̂ i — d) +  A,· (4.26)

then for to be an eigenvalue the following must hold:

P{4+i) = 0

(di + Ai -  d )).. .  Ai(d* 4 Ai -  d i+ i).. .  (d‘ + A.· -  dD 

-(W + i)^ (4  + Ai {d\ + A.· -  d?)

- (^ i+ i ) '(4  + A,· -  d] ) . . .  (dj + A.· -  d r ') (d j + A,· -  d j+ '). . .  (dj + A,· -  d'l)

-  W + i )\ 4  + A,· -  d )) ... A.·. . .  {d\ + A.·. . .  (dj + Ai -  dD = 0 

Dividing both sides b}̂  (dj +  A»· — d]){d\ +  A, — d^) . . .  [d\ +  A,· — d") we obtain

A; -  (W+i )^t:7
A,:

{< + 1?  -  HXlfTTi

{di -  d] + A,·) 

A;

 ̂ (d i -d j - i  + AO

- · · · - « + ı ) ^
A,· = 0. (4.27)

(d; -  dj+1 + AO ■ ■ ■ (di -  d'r + AO
Now, assume that for j  > i p l  and j  < i — 1 , we have the following inequaliti'

| d ;-d i +  A,| > M (4.28)

where M  is a large number. The above assumption holds if the eigen\’alues are. 
well-separated. Simulations show and the above calculations suggest that this 
is the case if regressors are sufficiently rich in all directions(i.e > 0, Vt). If 
(4.28) is satisfied then (4.27) can be approximated as

" r r  -  ^(di -  d’ -̂  + AO (di -  di+̂  + AO
= 0. (4.29)

This equation will give us a polynomial of degree 3 in terms of A,:, which 
has analytical solutions depending on coefficients of polynomial in many books
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Figure 4.2: A Parallel architecture For Algorithm 1 using NR

of algebra. Hence, gives the roots d\, f =  1 ,2 , . . . ,  n , the solutions A,· of (4.28), 
together with (4.26) give us the (approximate) roots of p(A). As before, note 
that if wl 0, then ^ d\.

A parallel architecture proposed using NR method which could be embed­
ded in the Algorithm 1 given in Figure(4.2).

4.4 Asymptotic Behavior of Q t

In this section we studj' the asymptotic behavior of Qt when the regressors are 
persistently exciting. Note that Qt is the resultant of SVD of + 6t<i>J i-e..

A-i + M l  =  Q iD :^Q l (4.30)
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Dividing each sides the maximum diagonal element of ,which is positive,
as P(t) is positive definite 'iteJV, we get

Qt (4.31)

1 ri
T2 1 1 1 ST 2̂

+   ̂ .<Pt<Pt = Qt

rn In

where v ■ — _  i 9 n t · ~ . ) « — I P  riW l i c i  U / I -  \ ) 1 , ^ J . . . , / 6 5 f J r  ( r t - l  \ ’) J  i  . Z J . . . , 77..m̂ax

We can use perturbation theoi\v results stated in section 2.4. If we define

1

T = (4.32)

and assuming ------1  ̂ '̂ = x a small irumber approaching zero, our problemAmax v^t_i)
fits the problem of finding eigenvalues and eigenvectors of T  +  xJ'U)_ It is eas}̂  
to see that the columns of Qt are in fact eigenvectors of T" +  xT̂ Û  so finding 
the columns of Qt with the help of eigenvectors of T, we can guess the behavior 
of Qt{i-e.Qt —*■ 7). To do this, we simply use the bound given in section 2.4. If 
Qt =  Ui ¿2 . . .  ê ] and the eigenvectors of T are as (ei, 62, . . . ,  e„), the standard 
basis, since T is diagonal. We can interpret the bound as

\èi î\\ — I'̂ i
•So

{psq) г(pзU ç^ )^||гV İ+J (4.33)

where to find s.p,q we need P, 5', and they are defined in this example as

P ■. RP ^  span{ei) , S =  ^  ^
Jv

1
i - C

Î-2 -C

rn-C

dC

where F is a closed curve in complex plane containing r,· only. We can choose

■ 0 0 . . . o ’ ■ 0

P = 1 1 1 <— î r̂ow S =
Ti

_ 0 0 ., • 0 . 0 _
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So, the norms \\(f>t+i(f>f+̂ P\\ < Mi and \\<pt+i<i>J+iS\\ < M2 and \\<j)t̂ i(i>Ĵ êi\\ < 
M3 are all bounded for bounded input, bounded output systems. So we have;

k i - e i l l  < M (4.34)

where M  is a combination of Mi, M2, M3, ||5'||. When the persistence of excita­
tion condition is satisfied, we have limi_̂ .oo Amax-(A) =  0, hence (4.34) implies 
that we have lim(_oo HQt — -f|| == 0· Summarizing this result we have.

Theorem(4.10; Consider the RLS algorithm based on SVD as given in 
section 4.1. Assume that the regressors are bounded (i.e. for some M  > 0, 
we have ||!̂ (i)|| < M VteAf). Under these conditions, if the persistence of 
excitation condition(2.7) is satisfied then we have

lim \\Qi — 7|| =  0 □
t-+oo

Remark 2: The estimate (4.34) implies that we have

1
11« .  -  /ii < Amax(Dj_j)

M (4.35)

where M  is a constant. Since, for a stajidard RLS the convergence is normall}'· 
of order ( j ) ,  we expect from (4.35) that \\Qt — /|| is of order 0 ( j ) ,  for large t.

Now consider the parameter update law given by (4.12), by using the The- 
orem(4.1), from (4.12)that if a certain component of <f>t is zero, or small, then 
the difference of the corresponding components of at and Q:_i is zero, or small, 
respectively In this case, in the calculations of section 3.2. the corresponding 
singular values of P~^{t) and P~^[t — 1) cire the same or very close to each 
other. Hence, by monitoring the singular values of P~^{t), which are calculated 
iteratively by the NR algorithm presented in this section, we may decide on 
whether a corresponding component of the parameter vector should be updated 
or not. This results in the following algorithm:

Algorithm2
1)Calculate the SVD of

D:\ + 't>,'i>J = Q ,D r'Q j (/1)

2)Update Ut
U, =  £/,_,(?, (B)
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3)Update the pai-ameters in the following fashion: if the difference between 
d\_■¡̂  and d] i.s small do not update a\_-y in the equation;

4) Update regressors by measurement 
•5)Go to stepl

Using Algorithm 1 observations on the matrix Qt shows the convergence of 
it to J. A simulation using the system and ihe input in Chapter 3 shows this 
behavior. At i =  1 the matrix is

^1 =

0.4082 -0.9129 -0.0000 0.0000 -0.0000 -0.0000
0.4082 0.1826 -0.3456 -0.7420 -0.1448 -0.3301
0.4082 0.1826 0.8415 0.0243 -0.1213 -0.2767
0.4082 0.1826 -0.0425 0.0243 0.8667 0.2156
0.4082 0.1826 -0.0425 0.0243 -0.4285 0.7836
0.4082 0.1826 -0.4108 0.6690 -0.1721 -0.3924

\

at i =  20 it is

/

Q20 =

0.9958 -0.0458 0.0782 -0.0045 0.0105 -0.0009
-0.0430 -0.9984 -0.0369 0.0019 -0.0040 0.0003
-0.0790 -0.0331 0.9943 0.0433 -0.0455 0.0026

0.0079 0.0031 -0.0424 0.9990 0.0083 -0.0004

0.0143 0.0050 -0.0447 0.0063 -0.9989 -0.0014

0.0011 0.0004 -0.0026 0.0003 -0.0013 1.0000

\

/

at f =  1000 it is
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<51000 =

1.0000 -0.0003 0.0000 -0.0001 0.0001 -0.0000
0.0003 1.0000 0.0002 -0.0005 0.0005 -0.0000

-0.0000 -0.0002 1.0000 0.0001 -0.0001 0.0000
-0.0001 -0.0005 0.0001 -1.0000 -0.0008 0.0000
-0.0001 -0.0005 0.0001 -0.0008 1.0000 0.0000

1 0.0000 0.0000 -0.0000 0.0000 -0.0000 1.0000

\

J
You can see that ||(5iooo — /|| is a small quantity which verifies the assertion 

made in Remark 2.
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Conclusion

5.1 Conclusions

In this thesis RLS, which is one of the most popular system identification 
schemes are derived by error least scjuares cost function, is analyzed in some 
aspects. Gauss-Seidel method and singular value decomposition applied to 
RLS.

The main contributions of the thesis is in the Chapter 3 and in the section 
3 and section 4 of Chapter 4.

In Chapter 3, we first give a parametrization of MIMO system, based on 
ARMA model. We then apply Causs-Seidel method to standard RLS algo­
rithm, both for SISO and MIMO systems. The resultant theorems Theo- 
rem(3.1) and Theorem(3.2) give sufficient conditions for the convergence of 
iterative algorithms introduced, in this chapter. In simulations done in Chap­
ter 3 we see that different choices of blocks in Causs-Seidel method will lead 
to different convergence rates. Especially this observation may lead to further 
anal3'̂ sis in this area. For example finding the most convergent algorithm by 
varying the blocks will be a good result.

In Chapter 4 after applying SVD on the covariance matrix Pt we derive an 
algorithm which has also the ability of monitoring the eigenvalues ( singular 
values) of Pt either standard SVD calculators or the parallel method we propose 
in section 4.3 could be used for this purpose. We also give a sufficient condition 
which guarantees the convergence of the parallel algorithm proposed in this 
chapter. The proposed parallel method is based on the well-known Newton- 
Raphson algorithm for finding the roots of a polynomial, whose roots are all

40
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real and satisfy an interesting interlacing property. In section 4.4 asymptotic 
behavior of Qt is investigated. A perturbation theory based analysis gives 
us a bound pn the norm \\Qt — /||. This norm goes to zero if the excitation 
is persistent. This behavior gives us a way to modify Algorithm 1. Again 
monitoring singular values of Pt and updating the most excited modes, a new 
algorithm is derived, .\lgorithm 2. We also present a simulation result showing 
the behavior of

As a concluding remark we believe that RLS is a modifiable material in 
system identification in many ways.
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