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ABSTRACT

ANALOG CMOS IMPLEMENTATION OF CELLULAR
NEURAL NETWORKS

Izzet Adil Baktr
M.S. in Electrical and Electronics Engineering
Supervisor: Assoc. Prof. Dr. Mehmet Ali Tan
July 1991

An analog CMOS circuit realization of cellular neural networks with trauscon-
ductance elements is presented in this thesis. This realization can be easily
adapted to various types of applications in image processing by just choosing
the appropriate transconductance parameters according to the predetermined
coefficients. The noise-reduction and edge detection examples have shown
the effectiveness of the designed networks in real time image processing ap-
plications. For “fix function” cellular neural network circuits the number of
transistors are reduced further by a new multi-input voltage—controlied current

source.

Keywords : Cellular Neural Networks, Analog VLSI, CMOS, transconduc-

tance.
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OZET

_ HUCRESEL SINIR AGLARININ
ESLENIK-METAL-OKSIT-YARIILETKEN DEVRELERLE
GERCEKLENMESI

Izzet Adil Baktir
Elektrik ve Elektronik Miihendisligi Boltimi Yiksek Lisans
Tez Yoneticisi: Dog. Dr. Mehmet Ali Tan
Temmuz 1991

Bu caligmada, yeni bir simif dogrusal olmayan bilgi igleme sistemi olan
Hiicresel Sinir Aglarimin (CNN), Eglenik-Metal-Oksit-Yariiletken (CMOS)
transkondiiktans elemanlarla gerceklenmesi sunulmaktadir. Bu ger¢eklemenin,
goriintil iglemedeki degigik kullamim alanlarina uyarlanmasi, gériintit igleme
tekniklerine ve/veya bilgisayar benzetigimlerine gore onceden bulunan kat-
sayilara uygun transkondiiktans parametrelerinin segimiyle saglanabilir. Giiril-
tii yoketme ve kenar belirleme ornekleri, bu gergeklemenin gercek zamanda
yapilan gorintil igleme amaciyla kullanilabilecegini gostermektedir. “Sabit
fonksiyonlu” hiicresel sinir aglarinin gerceklenmesinde, ¢ok—girigli yeni bir gerilim-

kontrollii akim kaynagiyla transistor sayis: azaltilmigtir.

Anahtar kelimeler : Hiicresel Sinir Aglari, Analog VLSI, CMOS, tran-

skondiktans.
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Chapter 1

Introduction

1.1  Artificial Neural Networks

Neurons are living nerve cells and neural networks are networks of these cells.
The cerebral cortex of the brain is an example of a naturalneural network. The
average human brain consists of 1.5x10%° neurons of various types with each
neuron receiving signals through as many as 104 synapses. With that kind of
complexity, it is no wonder that the human brain is considered to be the most

complex piece of biological machinery on the earth.

Today the term Artificial Neural Network (ANN) has come to mean any
computing architecture that consists of massively parallel interconnections of
simple neural processors. Artificial neural networks try to mimic, at least
partially, the structure and functions of brains and nervous systems. The
motivation comes mainly {rom the fact that humans are much better at pat-
tern recognition than digital computers. In traditional single processor Von
Neumann computers, the speed is limited by the propagation delay of transis-
tors. Artificial neural networks, on the other hand, because of their massively
parallel nature, can perform computations at a much higher rate [1, 2]. Fur-
thermore, because of their robust (fault-tolerance) nature, a few degraded or
non—functional processing elements will not greatly affect the overall operation
of the neural network. The speed and fault-tolerance of ANNs make them at-
tractive for variety of applications, such as pattern recognition, robotic control,

and optimization.

The complexity of a neural system does not stem from the complexity of
its devices but rather from the multitude of ways in which a large collection
of these devices can interact. It is generally assumed that the performance of
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Figure 1.1: Structure of an artificial neuron.

neural systems arises from the collective behavior of many primitive, highly
interconnected processing units. Therefore, artificial neural networks can be
characterized by their degree of connectivity. Hopfield’s networks [3] intercon-
nect fully. A feedback process connects the output of each neuron to the input
of each other neuron. In Rumelhart’s multilayer Perceptrons [4], the output
of each neuron connects to all neurons in the next layer. In locally intercon-
nected networks like Cellular Neural Networks, every neuron is connected to
the nearest neurons in a neighborhood. In each of these three models, the
functionality of neurons (processing elements) and synapses (interconnection
elements) is roughly equal. An artificial neuron performs the weighted summa-

f A fpl ﬁfs

Hard Limiter Piece-wise Linear Sigmoid
(a) (b) ()

Figure 1.2: Nonlinear neuronal functions : hard limiter (a), piecewise linear

(b) and sigmoid (c).

tion of its inputs as shown in Fig.1.1. The result of this summation proceeds
through a threshold function. Fig.1.2 shows three common types of nonlinear
threshold functions; hard limiter, piecewise linear and sigmoid. The function
of a synapse is to perform a simple multiplication between the output value
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of the connected neuron and the weight coeflicient w; which may be a positive

(called excitatory) or a negative (called inhibitory) real number.

One of the most important aspects of neural networks is their learning ca-
pability, whereby synaptic weights between neurons are adaptively changed
according to a learning procedure. Networks trained with supervision such
as Hopfield and Perceptrons are used as associative memories or as classifiers.
These nets provided with side information or labels that specify the correct
class for new input patterns during training. ANNs trained without supervi-
sion, such as the Kohonen’s feature-map forming nets [5] are used as vector
quantizers or to form clusters. No information concerning the correct class is

provided to these nets during training.

1.2  VLSI Circuits For Neural Networks

Simulations performed on classical computers account for most of the actual
research in artificial neural networks in recent years. However speed looses
its importance in simulations because they are much slower intrinsically than
electronic devices. Since effective simulations of neural networks exceed the
limits of conventional machines, researchers have been working on analog and
digital VLSI implementations of neural networks which take the advantage of
the inherent parallelism to yield fast solutions. Moreover the integrated neural
networks are needed for decentralized mobile systems, robotics and automotive

applications in the expanding area of microelectronics.

Neural network models have highly parallel, regular and modular architec-
tures based on matrices that make them attractive for VLSI systems [6, 7, 15].
Due to the placing and routing problems in silicon wires occupy the most
space on an integrated circuit and high-performance interconnections limit
the possible number of integrated processing units. Furthermore, communica-
tion delays degrade the performance, becoming progressively more expensive
in silicon area and propagation time. Therefore, a successful integration of

neural network should exhibit the following architectural properties :

e design simplicity that lead to an architecture based on copies of a few

simple cells and simple chips;

o regularity of the communication structure that reduces wiring problems

and localized communications;
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o expandibility and design scalability that allow many identical units by

packing a number of neurons onto a chip and interconnecting many chips for

a complete system.

In the implementation of neural networks, the weighted summation of input
signals (activation function) incurs the largest computational load. A digital
implementation serially calculates this sum and requires a data bus for each
processing unit. The bus must have the width proportional to the data format
of the weights and inputs. As a consequence, the summation must be syn-
chronous but it gives a high precision and noise immunity. In analog case the
weighted sum of the inputs is performed by summing the analog currents or
charge packets. A conventional operational amplifier (the simplest circuit is an
inverter or an analog comparator) can perform the transfer function. Analog

implementation is fast and requires less silicon area than digital implementa-

tions.

The second critical task is the implementation of connection element. T'he
design of interconnection elements must balance the cell size and the resolution
of the connection weight. The implementation of digital memories are well
mastered techniques and storage in analog memories is difficult. Proposals
for analog synapses include capacitors, charge-coupled devices (CCDs) and
MNOS/CCD (metal nitride oxide silicon) circuits [8].

Learning or self-organization does require incremental adjustment of the
weights in small steps. In general, such a connection element requires consid-
erable circuitry, and hence a large amount of silicon area especially in the case
of digital weights. Therefore analog circuits are most appropriate for learning
algorithms with high fault-tolerance and requiring moderate or low precision,

while digital circuits are used for high-resolution learning algorithms.

Optoelectronics can offer a solution to the adaptation and high data rate

problems in neural networks by integrating light waveguides and photo diodes

into silicon [9, 10].

1.3 Motivation and Approach

A Cellular Neural Network (CNN) as proposed by Chua and Yang, is a spe-
cial type of analog nonlinear processor array. Due to their continuous-time
dynamics and parallel processing features, analog CNN circuits are very ef-
fective in real time image processing applications such as noise removal, edge
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detection and feature extraction [11]. The regularity, the parallelism and the
local connectivity found in CNN circuits architecture make it suitable for VLSI

implemenfations.

This work presents the implementation of cellular neural network structure
using analog CMOS circuits. One of our major goals is design simplicity. To
achieve this, the design is reduced to CMOS transconductance elements. One
can easily adapt this realization to various types of applications by just choosing
the appropriate transconductance parameters according to the predetermined
coupling coeflicients between the neighboring cells. These coeflicients may be
either set according to a computer simulation or chosen based on prominent

kernels for image processing.

Another important reason for using CMOS transconductance elements 1s
the requirement of adaptability. To achieve programmable coupling coeffi-
cient, the transconductance parameters can be adjusted with external voltage

sources.

In the implementation of “fix function” cellular neural networks that per-
forms one or a related set of processing function using fixed coefficients, the

number of transistors is reduced further by a new multi-input voltage-controlled

current source.



Chapter 2

Cellular Neural Networks

A novel class of information processing system called Cellular Neural Network
(CNN), possesses some of the key features of neural networks like asynchronous
parallel processing, continuous-time dynamics and global interaction of net-
work elements. They have important potential applications in such areas as
image processing and pattern recognition [12]. In this chapter we will briefly
review the architecture, stability and applications of CNN proposed by Chua

et.al.

2.1 Architecture of Cellular Neural Network

In a cellular neural network structure, the basic circuit unit called cell, is
interconnected directly to the nearest cells in a neighborhood. The cells which
are not directly connected together may effect each other indirectly because
of the propagation effects of the continuous—time dynamics. An example of
M x N cellular neural network structure is shown in Fig. 2.1. The ith row and
gth column cell is indicated as C'(z,7). The 1r- neighborhood N, of radius r of

cell C(7,7) in a M x N cellular neural network is defined by :
N,(2,7) = {C(k,D)|mac{|k — |, j|} <r, 1<EkE<N (2.1)
where 1 is an positive integer number.

The principle circuit model of cell C(2,7) is shown in Fig. 2.2, where the
suffixes u,x and y denote the input, state and output, respectively. It is con-
structed from linear and nonlinear dependent sources, linear resistors and a

linear capacitor.
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Figure 2.1: M x N Cellular Neural Network Structure.

uij

uij I

ICD "“%>...I"”"<¢>C*:: Ny

Figure 2.2: The principle circuit model of cell C(z, 7).
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The node voltage vy;; is called the input of the cell C(3, ) and is assumed
to be a constant with magnitude less than or equal to 1. The node voltage vy;;
of C(1,7) is defined as the state of the cell whose initial condition is assumed
to be a constant with magnitude less than or equal to 1. Finally, the node

voltage v,;; is defined as the output.

I, and I, are the voltage—controlled current sources which are coupled to
its neighboring cells via the input vy and the output vy of each neighbor cell
C(k,1) with the characteristics

Ixu(l,],ly,l) = B('L,j,/ﬁ, l)vukl (22)

and

Loy(2, 55k, 1) = A(4, 53 &, Dogu (23)
Therefore, the input control and the output feedback of the CNN architecture
depend on the transconductances B(¢, j; &k, 1) and A(4, j; k, [), respectively. The
nonlinear output voltage—controlled current source I, (¢,7) has the character-
1stic

1

R,
where f(-) is either a piece-wise linear or a sigmoid type of function as shown

in Fig. 2.3. I is the biasing current and F;; is the constant input voltage.

1ys(3,7) = 5= f(veis) (2.4)

By applying Kirchhoff’s current and voltage laws, the circuit equations of
acellinan NV x M CNN can be easily derived as follows:
: dvg;(t 1
State equation: C—%Z;—(Z = “Evzij(i‘) +
+ Y AG Gk Dog(t) +
C(i,7)€N- (i)

+ Z B(t, 75k, Do + 1 (2.5)
C(i,5)ENr(4,5)

Input and Qutput equations :  vy;;(t) = Eij 5 vyi(t) = f(vai(t) (2.6)
Constraint conditions: [v26;(0)] <1 |vwij] <1 (2.7)
Parameter assumption: AL, 55k, 1) = A(k, 14, 7) (2.8)

where 1 <7,k < M;1 < 5,1l <N.

In practice, the magnitude of the signals can always be normalized to satisfy
the constraint conditions and the parameter assumption is reasonable because
of the symmetry property of the neighborhood system.
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Figure 2.3: The nonlinear characteristics of f(-).

2.2 Stability

In order to determine the dynamic range of all node voltages in the network,
it is proven that, the state ve;; of each cell in a CNN is bounded for all time

¢t > 0 and the bound . can be computed by the following formula for any

CNN [11] :
Vmaz =1+ RolI|+ Re __max [ > (|AG, 5k D]+ B, 53k, D))

1<i<M, 1<i<N™ .
C(4,4)EN-(1,5)
(2.9)

For any CNN, the parameters R, C, I, A(7,7; k,1) and B(4, j; k, () are finite
constants, therefore the bound on the states of the cells, vmaz, is finite and can

be computed via formula (2.9).

In stability analysis, it can be easily proven that [11], every cell output has
two equilibrium points (£1). Therefore, after the transient has settled down,

a CNN always approaches one of its equilibrium points. In other words,

1tlim vgij(t) = constant; 1<t <M, 1<j<N (2.10)
—+00

or
lim dvsis (1)

= 2.
Jim — 0 (2.11)
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Moreover if the circuits parameters satisfy

1

Al J; k1) > 7 (2.12)
then
tlirgo |vzii| > 1 (2.13)
or equivalently,
lim vy;(t) = £1. (2.14)

t—00

The equation (2.14) is significant for cellular neural networks, because it
implies that the circuit will not oscillate or become chaotic. This equation also
guarantees that CNN converges to a binary value output which is a crucial

property for solving classification problems in image processing applications.

2.3 Application to Image Processing

In order to understand the image transform mechanism in cellular neural net-
works, let us rewrite the state equation (2.5) in its equivalent integral form as

follows:

V25 (t) = v245(0) + é/o [—J%i—vm-j(T) + fi; (7) + gij(7) + I]dr (2.15)

where

fit) = > AGdik Dow(t) (2.16)

C(%,5)EN»(1,5)
and

C(1,7)ENr(1,5)

Equation (2.15) represents the image at time ¢, which depends on the initial
image v,;(0) and the dynamic rules of a cellular neural network. Therefore,
cellular neural networks can be used to obtain a dynamic transform of an initial
image at any time ¢. In special case ¢ — oo, the state variable v;(t) tends to
constant and the output vy;(t) tends to either +1 or —1 as stated in equation

(2.14).

The result of this dynamic transform depends on the choice of the cell equiv-
alent circuit element values, i.e. transconductance of linear current sources
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(A(%,7; k,1) and B(¢,7; k, 1)), the bias current (I), the resistances (R, and Ry),
capacitance C' and the radius of the direct interactions between cells (r). El-
ements mentioned above are called CNN parameters and how to choose these
parameters to achieve a desired transformation is currently still an active re-
search problem [25], [26]. Some application possibilities like noise-reduction
and edge detection are mentioned in Chapter 4, and others can be found in

the references [12],[17]-[20].



Chapter 3

Analog CMOS Implementation of CNN

3.1 CMOS Transconductance Element

The linear CMOS transconductance element (voltage-to—current transducer)
which is shown in Fig. 3.1.(a), resembles in most respects that of the CMOS
inverter but without the matching problems between PMOS and NMOS tran-
sistors and with the additional advantage of tunability [21]. In this section,
DC operation of this CMOS transconductance element is analyzed and some

SPICE simulations are shown to demonstrate the performance.

In DC analysis of the linear region defined in Fig. 3.1.(b), using the stan-
dard square-law model for MOS in their saturation region and assuming a per-
fect matching between the geometrically identical NMOS transistors M1, M2
and between PMOS devices M2, M4, the currents I, and I, defined in Fig.

3.1.(a) are easily derived as

I = kegs(Vor — Vin = Vins — |Virpa)? (3.1)
Iy = kes s (Vos + Vin — Vna — |Vrpl) (3.2)
where o . k, (3 3)
N 4 V) |
1 w
knp = §(ﬂeffcox(‘f))n.p (3.4)

and Vrn; > 0, Vrpj < 0. These parameters have their usual meanings.
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Figure 3.1: The transistor schematic (a) and the input-output characteristic
(b) of CMOS transconductance élement.

Thus with equations 3.1 and 3.2, the output current 1,,; = I, — I, equals
Tou = _ngin + Ioff (35)
where the abbreviations

Gm = 2kess[Vor + Voa — (Vrny + Vins + |Vepa] + [Virpd|))] (3.6)

ogs = L2 (Vs = Vi) + (Vepal = Vrial) + (Ver = Vo)l (3.7)

<

are introduced for the transconductance parameter and the offset current, re-

spectively.

Although the offset current I,ss is not equal to zero due to the body effect,
it can be easily eliminated by an appropriate setting of Vg4 in an n-well process
and Vp; in a p-well process for Vg1 = Vigy = Vg and Vo = V, where V, is a
node voltage as defined in Fig. 3.1.

For linear operation of the transconductance element, all the transistors
must stay in their saturation region, as was assumed in the derivation of (3.5),
i.e. the conditions Vps>Vgs — Vrn for n-channel and Vsp>Vsg — |Viy| for
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Figure 3.2: Simulation results of the transconductance element : (W/L), =
0.38, (W/L), = 0.29 for g1,(W/L). = 0.77, (W/L), = 0.57 for g, and
(W/L), = 1.15, (W/L), = 0.85 for g.

p—channel transistors must be satisfied. This leads the requirements

- |VTp2|S(‘/in - V'out)_g‘zTnS (38)
Vop>Ver — Voni,  Ves< — Vaa + |Vrpdl (3.9)

in addition to
— Veu + Vins + Vepal SVin <Vo1 — Vrni — | Vw2 (3.10)

SPICE simulation results for different values of transconductace parame-
ters, using 1.5—p SPICE model parameters are shown in Fig. 3.2. In these
simulations Vg1 = Vas = Vss,Va1 = Vea = 3.5V and bulk voltage Vg4 is chosen
appropriately to eliminate the offset current defined in equation (3.7).
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Figure 3.3: The cell circuit realization with CMOS transducers.

3.2 Realization of a Cell with CMOS Transconduc-

tances

Because of its simplicity, the CMOS transconductance element is chosen as the
basic building block for the integrated circuit realization of the cell circuit. The
circuit diagram of the integrated circuit realization of one CNN cell with CMOS
transconductance element is shown in Fig. 3.3. It consists of the summation
node, where all the input currents and the bias current are summed, the state
and output resistors, the input and output voltage—controlled current sources

and the sigmoid function.

The main problem in VLSI circuits is the implementation of the resistors
that are not commonly used in standard CMOS technology. They usually
occupy a large chip area which makes it impossible to implement networks
with huge number of resistors. In order to eliminate this problein, we have
implemented the cell circuit resistors R, and R, defined in Fig. 2.2, by sim-
ply connecting the input of the transconductance to its output as shown in
Fig. 3.4.(a). The desired resistance values can be easily achieved by choosing
the appropriate transconductance parameters. SPICE simulation results for

different resistance values are shown in Fig. 3.4.(b).
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Figure 3.4: The circuit diagram (a) and the characteristic (b) of a CMOS
resistor for different resistance values.
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Figure 3.5: Output nonlinearity with CMOS transconductance elements.
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Figure 3.6: Inhibitory coupling coeficients with CMOS transconductance ele-

ments.

The sigmoid type nonlinear transformation, needed at the output of the cell
circuit, is performed with two transconductance element as shown in Fig. 3.5.
The second transconductance element whose input is connected to its output,
acts like the resistor 12, and the output voltage v, drives individual current

sources whose outputs are coupled to the neighbors.

Fig. 3.2 shows the linear behavior of the transconductance parameter for
[Vin] < lvolt. Sinceinput voltages v,; and the output voltages vy,; are bounded
with lvolt, the input control B(%,J; k,l) and the output feedback A(3,j;k,!)
voltage-controlled current sources are obtained by using the transconductance

elements in their linear region.

The desired coupling coeflicient can be easily achieved by simply choosing
the appropriate transconductance parameters. The negative (inhibitory) cou-
pling coefficients can be obtained by inverting the positive (excitatory) input
with a cascaded transconductance element pair as shown in Fig. 3.6.

By the following appropriate definitions it can easily be shown that the
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realization shown in Fig. 3.3 satisfies the same state equation (2.5);

A1, 55k, 1) = g2y (3,53 k, 1) (3.11)
B(t,55k, 1) = gzu(i, 55 %, 1) (3.12)
Reij = 9535 (3.13)
Ryij = 95 (3.14)
I'= ghicsVbias (3.15)
Vgij = —TVpi; (3.16)

In order to perform one or a related set of processing functions using
fixed coefficients, the transconductance parameter variation can be achieved
by choosing the gate-width-to-gate-length ratio (W/L) appropriately after
setting Vor = Vpp =5V and —Vgy = Vs = —5V.

3.3 Programmable Coupling Coefficients

The requirement of adaptability is difficult to achieve in most neural network
VLSI implementations [13],[22]. In the realization of the CNN structure with
CMOS transconductance elements, we can achieve a programmable imple-
mentation by varying the transconductance parameters with external voltage
sources connected to the gate voltages Vg and Vg of each cell defined in
equation (3.6). SPICE simulation results of the transconductance parameter
variation for different gate voltages i1s shown in Fig. 3.7. But one of the ma-
jor problems in VLSI programmable implementations of CNN is the wiring
needed for changing the template coefficients of each cell. Since all the cells
of a cellular neural network have the same coupling coefficients A(i, 5; &, [) and
B(z,7; k,1), the wiring problem can be reduced by controlling the transconduc-

tance parameter variation of all cells with the same set of external voltages as

shown in Fig. 3.8
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Figure 3.7: Simulation results of the transconductance parameter variation.
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Figure 3.8: Programmable 4x4 CNN structure using CMOS transconductance

elements.
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Figure 3.9: M-input voltage—controlled current source.

3.4 Reduced Hardware

In order to decrease the number of transistors in the realization of cellular
neural network structure, we have presented a new type of multi-input voltage-
controlled current source (VCCS) which is shown in Iig. 3.9. This multi~input
VCCS is similar to m transconductance elements with common output, except

upper NMOS and lower PMOS transistors are common.

In DC analysis of this new m-input voltage—controlled current source, as-
suming matching between NMOS transistor M1 and PMOS transistor M2 and
using the standard square-law model for MOS transistors in their saturation

region, the current Io,, can be derived as

]out = [_geff Zwivi + Iofj][l — A] (317)

=1
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where

k
Jejf = §[VDD — Vos — Ve — |Vrpa| — Ziwi(lVTp(2i+1), + Vrn2ise))] (3.18)

ge
Loss = _Zf—f‘[VDD + Vss — Vrny + | Vipe| — Ziwi(“/:rp(zm)l — Vrn(airz))] (3.19)

{2 wiV2 —[3, w;V]?}?
[=Vop + Vrui + 30 w0i(Vi + Ve )2 = Vs — [Vipe + 3 wi(Vi — Vi) ]2
(3.20)

A=

The conditions that should be satisfied in the derivation of equation (3.17)

are
kn 141 k. 24 .
ko= kyy = gy = D DD g9 3 (3.21)
Ww; W;
and
m
dowi=1 and  w >0 (3.22)
=1

where kn; and k,; are the 7** NMOS and j** PMOS transistor parameters which

are defined in equation (3.4), w;’s are the scaling factors and m is the number

of input voltages.

The inhibitory coupling coefficients can be obtained by inverting the posi-
tive (excitatory) input with a cascaded transconductance element pair shown
i Fig. 3.5. It can be easily shown that, the maximum of the A term defined

in equation (3.20) is less then 0.015, that is

max  percentage error < 1.5%. (3.23)
Vil<1,) jwi=1

The derivations of the output current and maximum percentage error are given
in Appendix A.
Since the maximum error is less the 1.5%, this multi-input VCCS can

also be used in the implementation of fixed function CNN structures. SPICE

simulation results for two-input VCCS which defines the plane
]out = geff(wlvl + U)ZVZ) + ]off

is shown in Fig. 3.10.

To obtain a perfect matching between k,; and k,; is a difficult task to
achieve in practice, since the electron and hole mobilities y, and g, depend
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on doping, bias voltages and temperatures. Therefore, to see the effects of
mismatching between k,; and kp; on this new multi-input voltage-controlled
current source, a SPICE simulation for the case k,; = 0.75k,; is performed
and the result, that is shown in Fig. 3.11, again has defined a plane similar to

the previous one (Fig. 3.10) showing that matching between k,; and ks is a

tolerable requirement.

out

4% i
95//%%//’//,’/’
Y

27 1
W s /’/”””;

V & 7 77 /;”””
//51///// //// /7

- ///// /’/

A

77 //?7/”/’///

Figure 3.11: Simulation results for £y = 0.75kps.
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Simulations

One of the important problems in image processing is image segmentation.
In image segmentation, each pixel of the image is classified into two or more
classes. From the mathematical point of view, pixel classification can be con-

sidered as a map F', which maps a continuous vector space into a discrete vector

space as defined below:
F:la, )MV (A, B,C,. JM*N (4.1)

where M x N is the number of pixels in an image and A, B, C,.. stand for
different classes. For cellular neural network applications, we wish to assign
to each pixel in the array one of the two values —1 and 1 based on some

classification rules and the original pixel values. So F' is defined by

Fo[=1, 1MV o {1, 1}MxN (4.2)

In the following sections, some examples of this kind of image transform
performed by our analog CMOS realizations of cellular neural networks is pre-
sented. In the simulations of these networks, the circuit simulator SPICE2g6 is
used. We have developed a preprocessor software called “cnn2spice” to gener-
ate the input circuit files for SPICE2g6 automatically. This program generates
N x M CNN circuit file according to the predefined cell circuit and the input
images are presented to the network as a set of initial conditions to the state
capacitors. We have also developed two postprocessors, called “spice2plot”
and “plot”, which map the standard outputs of SPICE2g6 between 0 and 255
uniformly and then feed them to a color graphics terminal as gray level images.

24
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In our CNN implementations, a large state capacitor value of 10pF is chosen
in order to dominate the dynamics of the cell. Although this may slow the cir-
cuit down somewhat (most of the simulations have settling time about 4usec),
it makes the circuit less sensitive to parasitic capacitances and resistances that

can occur in any fabricated circuit.

In 12x12 noise-removing and 8x8 edge detection CNN circuit simulations,
in order to reduce the memory requirement by computer, the four-transistor
transconductance elements was first simulated using 1.5 SPICE model pa-
rameters and then its characteristics was modeled with 10 order polynomials
by minimizing the sum of squared deviations [23]. Finally, the simulation of the
CNN architecture is performed using these 10" order polynomials as nonlinear

voltage—controlled current sources in the SPICE input file.

4.1 Line Detection

Although line detection is a very simple example image processing problem,
it gives some intuitive ideas on how to design a Cellular Neural Network for

solving a practical image processing problem.

For the “horizontal line detector” circuit, a very simple dynamic rule is

chosen. The circuit element parameters of the cell C(z,j) are as follows :

I

C=10pF, I=0, R,=g;'=180kQ, B(i,j,k,1)
Al 40— 1,5 —1) = AG,5,i — 1,§) = A(4,4,i — 1,j +1) =
A(5, 5,5, — 1) =gz A(,5,4,7) = 292, A(3,5,4,7 +1) = gz,

Ali jyi+ 1,7 1) = AG,Gi +1,5) = AG i+ 1,5 +1) =0, (43)

0,

for a 3 x 3 neighborhood system. The feedback operator A(z, 7, k.1) are space
invariant, that is A(¢,7,k,{) = A(i — k,j — I), therefore as in image processing
filters, we can use a cloning template matrix to describe the feedback operator

of the cell as follows :
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where the center entry of the cloning template correspond to A(7, 7, ¢,5); the
upper left corner entry correspond to A(z, 7,7 — 1,7 — 1) and so forth. Since it
is extremely convenient and clear to characterize the interactions of a cell with
its neighbors by means of a cloning template matrix, we will use the cloning

template matrix expressions in the following sections.

The dynamic equations of the cellular neural network corresponding to the

above parameters are given by:

Ucl;( - ’g@‘[—vm(f) + Vyij-1(2) 4 20455(2) + vyij1(t)] (4.5)

and
Vyii (1) = flvai5(2)) for 1<i<4, 1<5<4 (4.6)

where f(-) is a sigmoid type nonlinear function. The condition
Ald, 53, 0) > 2

defined in Equation (2.12) is satisfied.

From the circuit Equations (4.5) and (4.6), it can be easily seen that the
derivative of the pixel values depends on their left and right neighbors, but not
on the upper and lower neighbors. This particular dynamic rule will therefore

enhance the detection of horizontal lines in the original image.

As mentioned before, every cell in a Cellular Neural Network has the same
connections as its neighbors. Therefore, the circuit equation of each cell is
the same as those of the other cells in the same circuit. (Without loss of
generality, the boundary effects are ignored). Hence, we can understand the
global properties of a cellular neural network by studying the local properties
of a single cell. This approach is extremely useful for analysis and design of

cellular neural networks.

With the circuit parameters defined in Equation (4.3), a 4 x4 cellular neural
network is simulated using 1.5-g model card in SPICE2g6 at the transistor
level. From the first simulation results of this simple example, that is shown
in Fig. 4.1, it can be easily seen that the row 3 stands as a black horizontal
line with value 1.0 and flanked by white background with value —1.0. Hence
the circuit is capable of extracting the horizontal lines in the given image in



CHAPTER 4. SIMULATIONS 27

upper left corner of Fig. 4.1. This simple example have shown that, CNN
circuits can recognize and extract some special patterns from input images, by
choosing the circuit parameters (i.e., the dynamic rule) appropriately.

original image initial condition t=0 t=0.25u sec
t=0.50u sec t=0.75u sec t=1.25u sec
" Sir"
|
t=1.50u sec t=1.75u sec t=2.00u sec

Figure 4.1: Simulation results for horizontal line detection.
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4.2 Noise Reduction

One of the well-known techniques to reduce noise from the image is to use an
averaging operator which corresponds to a lowpass filtering [12], [24]. There-
fore, the averaging operator is chosen as the feedback operator of the noise—
reducing cellular neural network. The circuit parameters of our implementation

for 12 x 12 noise-reducing CNN are chosen as follows:

0 ¢9. O
A=19s 29, g9 |; B=0; I=0; R, =180kQ; C =10pF; (L.7)
0 g O

and the resulting cell circuit equations for the are given by

dvg;;i(t Yz .
—Ji‘—(—) = 5[—%:‘1(75) + vyio1;(t) +
Fyij-1(t) + 20yi5(t) + vyij4a (t) + vyiga; ()]
5vy1~j(t) = f('v_-,_-,'j(t)) for 1_<_i_<_12, 1§]S 12 (-18)

Since the rate of change of the state of cell C(z, j) is approximately propor-
tional to the average of the outputs of the neighborhood Ni(t,7), the steady
state of C(¢,7) depends on the average of those of its neighbor cells.

With the circuit parameters defined in equation (4.7), a 12 x 12 noise-
removing cellular neural network circuit is simulated using the circuit simula-
tor SPICE2g6. Figures 4.2, 4.3 and 4.4 show the three simulation results of
12 x 12 noise-removing cellular neural network circuit. In these figures, the
noisy input images are defined at the upper left part and the rest of the pic-
tures are the outputs at different time steps. This CNN circuit has the same
properties as a two-dimensional low—pass filter. It retains the low-frequency
components while eliminating the high-frequency components. In the spec-
trum of an image, the high frequency components contain information about
the corners of objects. These high—-frequency components are removed along
with the high—frequency noise because of the low—pass filter effect. Therefore,
the pixel classification is not always correct at the corners of the objects as

seen in the Fig. 4.3.
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Figure 4.2: Simulation results of a noise removing cellular neural network.

29
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Figure 4.3: Simulation results of a noise removing cellular neural network.

30
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original image initial condition t=0 t=0.25u sec
t=0.75u sec t=1.25u sec t=1.75u sec
t=2.25u sec t=2.75u sec t=3.25u sec

Figure 4.4: Simulation results of a noise removing cellular neural network.
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To see the dynamic behavior of the circuit in more detail, the output tran-
sient characteristics of cells C(1,7),C(7,2) and C(8,2) are displayed in Fig.
4.5. These transient characteristics which are taken from the simulation results
in Fig. 4.2, shows that the cell outputs reach their appropriate steady state

values depending on both their neighbor cells and initial conditions.

From the simulation results, it can be seen that cellular neural network
circuit defined with the circuit parameters in equation (4.7) is effective for
removing noise in image processing, especially for images with large objects

and few corners as in Fig. 4.4.

1.0 T T 1 T T 1 T
c(1,7)
B C(7.2)

0.5 r—/ i

0.0 \
-0.5 7

-
c(8,2)
—-1.0 L 1 I i 1 | L
0.0 1.0 2.0 3.0 4.0

time ( in micro seconds)

Figure 4.5: The transient response of cells C(1,7),C(7,2) and C(8,2).
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4.3 Edge Detection

In this application, we have used another two-dimensional filter called Lapla-
cian operator as the feedback operator to detect the edges of a square. The

circuit parameters for this 8 x 8 cellular neural network circuit is defined below

0 -9 0
A= —gp 49, —g. |; B=0; I=8uA; E,=180kQ; C=10pF;
0 —¢g. O A
(4.9)
and
dve;; (1 Iz
——d—iu = Flvei(t) = vyioa(t) +
~Vyij—1() + 4vyij (1) = vyije1(t) = vyisr;(8)]
vii(t) = flvai(t))  for  1<i<8, 1<j<8 (4.10)

The result of the circuit simulation is shown in Fig. 4.6. The parameter / in

this example can control the derivatives of the state variables, and thus affects

the dynamics of the circuit.
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t=0 t=0.125u sec t=0.25u sec
t=0.375u sec t=0.5u sec t=0.75u sec
t=1.25u sec t=2.25u sec t=2.5u sec

Figure 4.6: Simulation results of edge detection of a square.
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Conclusion

An’analog CMOS circuit implementation of cellular neural network has been
realized and some applications in image processing are presented. These ap-
plications show that cellular neural network implementation proposed here,
can be used as a two-dimensional filter. Moreover, its parallel processing and
continuous time features make it possible to process large-size images in real

time. The estimated chip area for a 20 x 20-neuron CNN is about 4dmm x 4mm

using 1.54 CMOS technology.

The design of CNN circuits 1s reduced to a transconductance element and
it can be easily adapted to various types of applications by just tuning the ap-
propriate transconductance elements according to the predetermined coupling

coefficients between the neighboring cells as it is performed in noise-removing

and edge detection examples.

The realization of CNN with CMOS transconductance elements can be
either programmable or fix function. In order to reduce the wiring problems in
programmable CNN circuits, the desired coupling coeflicients can be achieved
by changing the transconductance parameters of each cell circuit with the same
set of external voltage sources. In fix function CNN implementations, the

number of transistors are reduced further by introducing a new multi-input

voltage—controlled current source.

This analog CMOS realization of Cellular Neural Network can be integrated
by optoelectronic sensors and/or charge—-coupled devices to feed the input pat-

tern to the neural processors.
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Appendix A

Derivations of Multi—-Input VCCS

For the m-input voltage—controlled current source that shown in Fig. 3.9, let

kn 7 k, i .
b= kg = hyy = 2B L PCHD s 93 . (A.1)
w; W;
and
m
L w;=1 and  w; >0 (A.2)
=1
where ky; and k,; are the 1" NMOS and j** PMOS transistor parameters which

are defined in equation (3.4), w;’s are the scaling factors and m is the number

of input voltages.

In DC analysis, using the standard square-law model for MOS transistors
in their saturation region, the currents I, and /;, defined in Fig. 3.9, are easily

derived as

k 5.,
o= Z(f + Z) (A.3)
and
k )
Iy =~(n+-)* Ad
=50+ ) (A1)
where
= =Vop+ Veu + ) wilVi+ [Vapairy|) (A.5)
n=—Vss — |Vrpm| + Zi=1wi(vi — Vrn(2it2)) (A.6)
and

§ = i wiV? — [i wVi]? (A7)
1=1

=1
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Thus with equations (A.3) and (A.4), the output current /,,, = I, — I equals

k ) )
Iou = "'[€+‘2_77+"2
c= et 2 -+ )
k 1 1 1 1
= ~[f+n+é(z+)E-n+6(z—=
HlEn 6+ Dl =+ 8z - )
“le+alle - it - ] (A8)
= - )€ = 7][1 — _ A8
4 (én)*
which impﬁes
Tow = [=gess D _wiVi+ L]l — A (A.9)
=1
where
k y ,
Jeff = :Z—[VDD — Vss — Va1 — |Vapa| — Zilui(n/Tp(QH—l)l + Vrnite))]
Ly = g;ff Voo + Vss — Vem + |Virpa| — Ziwi(IVTp(QH-l)I — Ven(ziv2))]
52
A = —— A.10
(€n)? (A.10)
The maximum percentage error can be written as
max percentage error = maxA x 100
1512
= maxl o (A.11)

min |£7]?

Since |Vi|<l and Y w; =1

max 6! = max() w - (3w
= 1 . . (A.12)
and assuming Vr =1V, Vpp = —Vss =5V
minfenl? = minl(} w47 — 9P
= 64 a (A.13)

Inserting (A.12) and (A.13) into (A.11), the maximum percentage error is

be obtained as

max percentage error < o x 100

1.5% (A.14)

IN
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