
,G':Ö.R1THÎ S'·' QM é

A : r í t a l a ,

■ёУ'іі'';ѵ1'ГДі"±£'·· THi¿ f 4^r'CO'ÍVi'-’'.-UvI£'K
iví’«-·; .·■ ; -Ef'-iя ■f.*i ·'„ті.f '".!···)■ i;C4...úr-'s ■.

i· J... V .»1«*»̂ : ¿;S»t M ir · ’•«V^ J l i -j l í ' Й *· 5 i «i ‘ЦЙГ? ■ «W il ..w . гЛ-" «i;4

ϊέίω TK-i Jf< íj'nrüT?. 0? íi4íGí;.';£?fii/-ie Ä «ö:,SCilj.
.■■, .■ r e í i'.·: v7jjT.'vjSiira'S4S.}b!T./·

V . * / - ··»,-’ — . ̂ w - . .- . . , X , « j 1. ̂ ■ .y * -- / ^ :
Ίί’̂ · ■r». _ «*· ,r-;i

, ê.*> к«л; .,■ •1 !· t r : , . .1 íf" r :
j m m

• . j v . ^ s V r r ,
j í l; ••^· ·. ■«· .

— v ^ / / ' V , X r ■ L r . , : < · ' ‘. X '
' é ' ' i

- ir ‘'

-.. / f ^ .*; >··\ и ; . г / г .-u, ,J r r .· .
■ · : '·■· ■ ■ · ·■ ; ; , >»ь;.,- ' j

• ?*N.
■χιτ

•

PARALLEL MAZE ROUTING ALGORITHMS ON A
HYPERGUBE MULTICOMPUTER

A THESIS

SUBMITTED TO THE DEPARTMENT OF COMPUTER

ENGINEERING AND INFORMATION SCIENCE

AND THE INSTITUTE OF ENGINEERING AND SCIENCE

OF BILKENT UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF
MASTER OF SCIENCE

By
Tahsin Mertefe Kurg

November 1991
U ; - ...

i> . 3 5 6 5 t

139|

n

I certify that I have read this thesis and that in my opin­

ion it is fully adequate, in scope and in quality, as a thesis
for the degree of Master of Scienc^.

s

Assoc. Prof. Dr. Cevdet Aykanat (Principal Advisor)

I certify that I have read this thesis and that in my opin­

ion it is fully adequate, in scope and in quality, as ajiiesis
for the degree of Master of Science.

r. Kemal Oflazer

I certify that I have read this thesis and that in my opin­

ion it is fully adequate, in scope and in quality, as a thesis

for the degree of Master of Science.

Prof. Dr. Mehmet Baray

Approved by the Institute of Engineering and Science;

Prof. Mehmet Baray, Director of the Institutn^ofEngineering and Science

ABSTRACT

PARALLEL MAZE ROUTING ALGORITHMS ON A
HYPERCUBE MULTICOMPUTER

Talisin Mertefe Kurg
M. S. in Computer Engineering and Information Science

Supervisor: Assoc. Prof. Dr. Cevdet Aykanat
November, 1991

Global routing phase is a time consuming task in VLSI layout. In global

routing phase of the layout problem, the overall objective is to realize all the

net interconnections using shortest paths. Efficient heuristics are used for the

global routing phase. However, clue to the assumptions and constraints they

impose, heuristics may fail to find a path for a net even if one exists. Re-routing

is required for such nets. This re-routing phase requires the exhaustive search

of the wiring area. Lee’s maze routing algorithm and Lee type maze routing

algorithms are exhaustive search algorithms used in re-routing phase.

These algorithms are computationally expensive algorithms and consume

large amounts of computer time for large grid sizes. Hence, these algorithms

are good candidates for parallelization. Also, these algorithms require large

memory space to hold the wiring grid. Therefore, the effective paralleliza­

tion of these algorithms require the partitioning of the computations and the

grid among the processors. Hence, these algorithms can be parallelized on

distributed-memory message passing multiprocessors (multicomputers).

IV

In this work, efficient parallel Lee type maze routing algorithms are devel­

oped for hypercube-connected multi computers. These algorithms are imple­

mented on an Intel’s iPSC/2 hypercube multicomputer.

Keywords: VLSI layout, maze routing, Lee’s maze routing algorithm, Lee

type maze routing algorithms, multicomputer, hypercube topology.

ÖZET

HİPERKUP ÇOK iş l e m c il i BİLGİSAYARINDA PARALEL
LABİRENT YOL BELİRLEME ALGORİTMALARI

Tahsin Mertefe Kıırç
Bilgisayar Mühendisliği ve Enformatik Bilimleri Bölümü

Yüksek Lisans
Tez Yöneticisi: Doçent Dr. Cevdet Aykanat

Kasım, 1991

Tümdevre tasarımında, devre bağlantılarının yapılması zaman alan bir iştir.

Burada amaç bütün devre bağlantılarını en kısa yolları kullanarak yapmaktır.

Eğer, her seferinde bir devre grubunun bağlantısı yapılırsa bunun adına labirent

yol belirleme yöntemi denir.

Bu yöntem için, hüristik algoritmalar vardır. Ancak, bu tip algoritmalar de­

vre bağlantılarına getirdikleri kısıtlamalardan dolayı, bazen var olan bağlantıları

bulamazlar. Bu yüzden, devrelerin bulunduğu alanın, tümden taranması gereke­

bilir. Lee’nin algoritması ve Lee benzeri algoritmalar bu tip algoritmalardır.

Lee’nin algoritması ve Lee benzeri algoritmalar hesaplama bakımından jja-

halı ve devre yüzeyi için çok bilgisa5'̂ ar hafızası gerektiren algoritmalardır. Bu

nedenle bu tip algoritmalar çok işlemcili bilgisayarlarda, paralel olarak çözmek

için uygundur.

Bu çalışmada, Lee benzeri labirent }ml bulma algoritmalarının, hiperküp

çok işlemcili bilgisayarında paralelleştirilmesi anlatılmaktadır.

VI

Anahtar kelimeler: Tûmdevre tasarımı, labirent yol bulma yöntemi, Lee’nin

labirent 3ml bulma algoritması, Lee benzeri labirent algoritmaları, çok işlemcili

bilgisayar, hiperküp topolojisi.

ACKNOWLEDGEMENT

I wish to thank very much my supervisor Assoc. Prof. Dr. Cevdet .Aykanat,

who has guided and encouraged me during the development of this thesis.

I am grateful to Professor Mehmet Baray and Assoc. Prof. Dr. Kemal

Oflazer for their remarks and comments on the thesis.

It is pleasure to express my thanks to all my friends for their valuable

discussions and to my family for providing morale support during this studjL

Vll

Contents

1 INTRODUCTION 1

2 SEQUENTIAL MAZE ROUTING ALGORITHMS 10

2.1 Lee’s Maze Routing Algorithm.. 10

2.2 Lee Type Algorithms For Routing of Multipin N e t s 13

2.2.1 Using Prim’s A lg o rith m ... 17

2.2.2 Using Kruskal’s A lgorithm .. 18

3 PARALLELIZATION OF LEE’S ALGORITHM 23

3.1 Grid Partitioning and M a p p in g ... 24

3.2 Parallel Front Wave Expansion .. 29

3.2.1 Expansion Starting From Source Only 29

3.2.2 Expansion Starting From Source and T a rg e t.................... 35

3.3 Termination D e tec tio n ... 42

3.3.1 Global Synchronization 42

3.3.2 Counter Termination S chem el.. 43

3.3.3 Counter Termination Schem e2.. 43

vni

3.4 Overlapping Communication with C o m p u ta tio n 46

3.5 Asynchronous Scheme 49

3.5.1 Expansion Starting From Source Only 49

3.5.2 Expansion Starting From Source and Target 51

3.6 Parallel Path Recovery and Sweeping.. 55

3.6.1 Non-pipelined scheme.. 57

3.6.2 Pipelined Schem e...................................... 57

3.7 Experimental Results 63

4 PARALLEL ALGORITHMS FOR MULTIPIN NETS 72

4.1 Parallel Akers’ Algorithm for Multipin Nets 72

4.2 Parallel Kruskal’s Steiner Tree Algorithm 74

4.3 Experimental R esu lts.. 77

5 CONCLUSIONS 84

CONTENTS ix

List of Figures

1.1 Grid representation of the wiring surface in gate array layout. 3

1.2 (a) Single bend path (heuristic can find such a path) (b) Two-

bend path (heuristic fails to find such a path)............................... 4

1.3 Routing of nets using heuristic (a) Routing of net (,Si,Ti) (b)

Routing of net (5’2,T2).. 5

1.4 Routing of nets using heuristic (a) Routing of net (SajTa) (b)

Routing of net (34^X4) .. 6

1.5 Heuristic fails to find the path for (S'sjTs), because the path

(dotted lines) violates cell capacities. 7

1.6 8 node hypercube structure 8

2.1 A sample global grid for Lee’s maze routing algorithm................ 11

2.2 Front wave expansion phase of the Lee’s maze routing algorithm 11

2.3 Path recovery phase of the Lee’s maze routing ¿ilgorithm 12

2.4 Sweeping phase of the Lee’s maze routing algorithm 13

2.5 Front wave expansion phase of the Lee’s algorithm (a) Initial

cycles of front wave expansion phase (b) Successful termination

of front wave expansion... 14

x

2.6 Path recovery and sweep phases of Lee’s algorithm after the

front wave expansion phase (a) Path Recovery phase (b) Final

configuration after sweep p h a s e .. 15

2.7 The use of the sweep queue, cells marked as 1,2,3 are added into

the sweep queue at expansion cj^cles 3,3, and 2, respectively. . . 16

2.8 Sequential version of the algorithm for routing multipin nets

using Prim’s a lgorithm ... 18

2.9 Front wave expansion phase of the Akers’ algorithm beginning

from the terminal cell ’a’ (a) initial two cycles (b) Initial cycle

after the first path (a to b) is connected.. 19

2.10 The final configuration after all three pins are connected 20

2.11 Sequential version of the algorithm for routing multipin nets

using Kruskal’s algorithm 21

2.12 Routing of a three pin net using Kruskal’s algorithm (a) Initial

cycles of the algorithm (b) After connecting all p in s 22

3.1 Mesh embedding (a) hypercube of dimension 2 (b) h}q5ercube of

dimension 3 (c) hypercube of dimension 4 25

3.2 Tiled decomposition of a 16x16 grid onto 2x4 mesh embedded

3-dimensional hypercube.. 26

3.3 Scattered decomposition of a 16x16 grid 28

3.4 Decomposition of 16x16 grid into subblocks of (a) h = w = 2

(b) h = 2w = 4 .. 30

3.5 Local data structures for a node processor...................................... 31

3.6 Node program for the Sonly scheme 32

3.7 Encoding the status information.. 33

LIST OF FIGURES xi

3.8 Mapping of local coordinates onto tke repeating mesh template 36

3.9 Expansion starting from source and target scheme (a) Initial

cycles (b) Collision of two front waves.. 38

3.10 Node program for the S-fT scheme.. 39

3.11 Host and node programs for the counter termination scheme 1. . 44

3.12 Host and node programs for the counter termination scheme 2. . 45

3.13 Overlapping communication and co m p u ta tio n 47

3.14 Host and node programs for the asynchronous Sonly scheme. . . 50

3.15 Failure to find the shortest path. If processors Ft, Pm and Pi

are faster than processor P{̂ target T can be reached by a longer

path... 52

3.16 Labeling of an already labeled cell by a shorter path, the shaded

cells have been reached by a shorter path hence the cells expand­

ing form cell c will relabel the shaded c e l ls 53

3.17 Host and node programs for the asynchronous S-fT scheme. 54

3.18 (a) Cell 1 is added into the sweep queue without any extra com­

munication (b) Cell 1 is added into the sweep queue in parallel

algorithm while it is not in sequential a lg o rith m 58

3.19 Host program for the non-pipelined path recovery and sweep phase 59

3.20 Node program for non-pipelined path recovery and sweeping

scheme... 59

3.21 The calculation of r value... 60

3.22 Node program for the pipelined path recover}'' and sweep phase. 62

3.23 Effect of w values on the performance of the parallel algorithm

for N = 1024, P = 4. (a) h = w (b) h = 2w 65

LIST OF FIGURES xii

3.24 Speed-up for various parallel algorithms for front wave expansion

phase 66

3.25 Speed-up vs grid s iz e .. 66

3.26 Efficiency vs grid s iz e .. 67

3.27 Speed-up figures for asynchronous algorithms 67

3.28 Effect of w values on the performance of path recovery (a) h =
w (b) h = 2w 69

3.29 Effect of w values on the performance of path recovery -f sweep

(a) h = w (b) h = 2w ... 70

3.30 Speed-up for parallel algorithms for sweep -f- path recovery phase 71

4.1 Node program for Akers’ a lg o rith m ... 73

4.2 Host program for parallel algorithm for multipin nets using Kruskal’s

a lg o r ith m ... 75

4.3 Node program for the parallel algorithm for multipin nets using

Kruskal’s algorithm ... 76

4.4 Effect of h,w values on the execution of parallel Akers’ algorithm

(a) h = w (b) h = 2w .. 79

4.5 Effect of h,w values on the execution of parallel Kruskal’s Steiner

tree algorithm (a) h = w (b) h = 2w 80

4.6 Speed-up figure for parallel Akers’ algorithm on a 512x512 grid

for 4,7,10 pin n e t s ... 81

4.7 Speed-up figure for parallel Akers’ algorithm on a 1024x1024

grid for 4,7,10 pin n e ts ... 81

4.8 Speed-up figure for parallel Kruskal’s Steiner tree algorithm on

a 512x512 grid for 4,7,10 pin n e ts .. 82

LIST OF FIGURES xiii

LIST OF FIGURES XIV

4.9 Speed-up figure for parallel Kruskal’s Steiner tree algorithm on

a 1024x1024 grid for 4,7,10 pin nets 83

1. INTRODUCTION

With recent advances in VLSI technology, it is now feasible to manufacture

integrated circuits with several hundred thousand, even millions of transistors.

This manufacturing capability together with the economic and performance

benefits of large scale VLSI systems necessitates the automation of the circuit

design process. The circuit design process, the layout of integrated circuits on

chips, is a complex task. The major research issue in the design automation is

the development of efficient and easy-to-use systems for circuit layout.

In the combinatorial sense, the layout problem is a constrained optimization

problem. A layout problem instance is given by a description of the circuit

by a netlist. A netlist describes the switching elements and their connecting

wares. The question is to find an assignment of the geometric coordinates

of the circuit components in the planar layer(s) that minimizes certain cost

criteria while maintaining the fabrication technologt’ constraints. Most of the

optimization problems encountered during the integrated circuit laj'out are

intractable, that is they are NP-hard [1]. Hence, heuristic methods are used to

find solutions in reasonable time. Usually, the layout problem is decomposed

into subproblems which are then solved one after another. These subproblems

are usually NP-hard as well, but they are more suitable for heuristic solutions

than the whole layout problem. A typical layout problem decomposition is

component placement follow êd by the global routing. In the global routing

phase, the approximate course of wires are determined. The global routing

phase is followed by detailed routing phase to determine the exact course of

wires.

There are tw'o major kinds of layout methodologies, full-custom layout and

1

CHAPTER 1. INTRODUCTION

semi-custom layout [1]. In full-custom layout, the design starts on an empty

piece of silicon. The designer has a wide range of h'eedom in compound place­

ment and routing. In semi-custom layout, this freedom is severely restricted.

The design starts on a prefabricated silicon that already contains all switching

elements (e.g. gate arrays) [1, 2] or involves the use of basic circuit components

from geometrically restricted libraries (e.g. standard cells) (Chap. l,pp. 18-

26 in [l]). Semi-custom layout is more suitable for design automation.

In gate array layout, initially the design area is not empty. There are pre­

fabricated switching elements (cells), such as boolean gates or flip-flops, on

the wafer. In the gate array la)''out, the placement problem is actually an as­

signment problem. Each gate in the netlist of the given circuit is assigned a

cell on the Avafer that will implement this gate. These cells, implementing the

gates, are then interconnected using only top metal layer(s) so that the given

netlist description is realized. The fabricatioir in gate arrays is simpler since

the last few steps of the fabrication process have to be custom-tailored. Fur­

thermore gate arrays are less expensive since the number of masks to describe

the given circuit is reduced considerably. The placement and detailed routing

phases of layout problem are out of the scope of this work. More information

on placement and detailed routing can be found in [1].

In global routing phase of the layout problem, the routing area can be rep­

resented as a 2-dimensional grid as shown in Fig. 1.1, when one metal layer is

used for wiring. The grid (also called global grid) is divided into squares called

cells. There are specially designated cells called pins, such as cells Si, Ti, S2,

T2 in Fig. 1.1. A net is defined to be the set of pins to be interconnected.

For example, the net Â i is denoted by two pins Si and T’l. In Fig. 1.1, all

nets have two pins, hence they are called two-pin nets. However, in practice

some of the nets may have more than two pins, such nets are called multipin

nets. The overall aim in global routing is to realize all the net interconnections

using the shortest paths. Here, a path is defined to be the interconnecting wire

between the pins of a net. The paths are realized by passing wires through

the channels in the cells. The vertical and horizontal lines between neighbor

cells rep?'esent the channels. Wires can go from one cell to another adjacent

cell by either crossing a vertical or a horizontal channel. Hence, moves from

CHAPTER 1. INTRODUCTION

S-

I

C 'i

S·

Ti s
X

X

A cell.

Figure 1.1. Grid representation of the wiring surface in gate array layout.

a cell are restricted to four directions (south,north,west,east). However, due

to the technological constraints, the channels are assigned with a channel ca­

pacity representing the number of wires that can cross that channel. As the

interconnections between the pins (net terminals) are constructed some of the

cells are declared to be blocked, that is no more wires can pass through those

cells. In this work, for simplicity, each cell is assumed to have a wiring capacity

of a single wire. If nets are interconnected (routed) one net at a time basis,

the global routing phase reduces to maze routing.

Since there may be thousands of nets to be routed, global routing is a

time consuming task. Hence, heuristics are used for global routing and maze

routing [3, 4, 5, 6, 10]. However, due to the assumptions and constraints they

impose, heuristic algorithms may fail to find a path even if one exists. This

can be illustrated by Figs. 1.3 and 1.4. In these figures, the routing of nets are

done by using a heuristic which allows routing of nets having at most a single

CHAPTER 1. INTRODUCTION

S.

A bend
T

(b)

Figure 1.2. (a) Single bend path (heuristic can find such a path) (b) Two-bend
path (heuristic fails to find such a path).

bend as shown in Fig. 1.2. After routing a net, the cell capacities are updated

and cells on the path are declared as blocked. The routing of net (5s,Ts),

however, can not be done by this heuristic, because heuristic can only find a

single bend path (dotted lines in Fig. 1.5), which violates the cell capacities of

some cells. The re-routing of this net is required. The re-routing of this net

can be achieved by exhaustive search of the wiring area. Lee’s maze routing

algorithm and Lee type algorithms for multipin nets are such type of exhaustive

search algorithms.

These algorithms are computationally expensive algorithms and consume

large amounts of computer time for large grid sizes. Hence, these algorithms

are good candidates for parallelization. Also, these algorithms require large

memory space to hold the wiring grid. Therefore, the effective paralleliza­

tion of these algorithms require the partitioning of the computations cincl the

grid among the processors. Hence, these algorithms can be parallelized on

distributed-memory message passing multiprocessors (multicomputers).

A multicomputer is an ensemble of processors interconnected in a certain

topology. In a multicomputer, each processor has its own local memory and

there is no globally shared memory in the system. Each processor runs indepen­

dently (e.synchronously). The cooperation, synchronization and data exchange

CHAPTER 1. INTRODUCTION

s,

Sr T, s. T4
s? T,

Ti T?

(a)

s .

i l M T. S4 T4
m T,
m
m

^ 5 Blocked Cell

□ Unblocked Cell

(b)

Figure 1.3. Routing of nets using heuristic (a) Routing of net {Si^Ti) (b)
Routing of net {S2 ,T2).

CHAPTER 1. INTRODUCTION

(a)

w î 4 *14

■
Ts

(b)

Figure 1.4. Routing of nets using heuristic (a) Routing of net (SsjTs) (b)
Routing of net {Si,T^).

CHAPTER 1. INTRODUCTION

Figure 1.5. Heuristic fails to find the path for (.S'5 ,Ts), because the path (dotted
lines) violates cell capacities.

between processors are achieved by explicit message-passing between proces­

sors. Therefore, the interconnection topology plays an important role on the

performance of such computers.

Among the many interconnection topologies such as ring, mesh etc., hyper­

cube interconnection topology is the most popular topologjc The popularity

of hypercube topology comes from the fact that many other topologies (such

as ring, mesh, tree) can be embedded onto hvpercube [11]. In addition, there

are commercially available hypercube connected multicomputers such as FPS

T-series NCUBE iPSC/1 iPSC/2 A

In such an architecture, for a d dimensional h3'percube, there are 2*̂ pro­

cessors (nodes). Each node is connected directly to d other nodes. Figure

1.6 represents a 3-dimensional hypercube structure. The binary encoding of a

processor differs in only one bit from the neighbor’s encoding. The processors

*FPS T-series is a registered trade mark of FPS Inc.
^NCUBE is a registered trade mark of NCUBE Inc.
^iPSC/1 is a registered trade mark of Intel Inc.
^iPSC/2 is a registered trade mark of Intel Inc.

, CHAPTER 1. INTRODUCTION

Figure 1.6. 8 node hypercube structure

can directly communicate to d neighbors only. The communication between

processors that are not connected directly is done through other processors by

either software or hardware. Maximum distance between two ¡processors in a

hypercube is cl.

Achieving speed-up through parallelism in such architectures is not straight­

forward. The algorithm must be designed so that data and computations are

distributed evenly among processors to achieve the maximum load balance. In

a parallel machine with high communication latency, the algorithms must be

designed so that the large amounts of computations are done between commu­

nication steps. Another factor effecting the parallel algorithms is the ability of

parallel systems to overlap the computation with communication. A good par­

allel algorithm should exploit these factors and the topology of the architecture

to achieve maximum speed-up.

In this work, the parallel implementation of Lee’s maze routing algorithm

CHAPTER 1. INTRODUCTION

and Lee type multipin net algorithms on a commercially available multicom­

puter implementing the hypercube connection topolog}' is addressed.

The organization of this thesis is as follows, Chapter 2 presents the se­

quential maze routing algorithms. Chapter 3 presents several different parallel

implementations of Lee’s maze routing algorithm and the experimental results.

Chapter 4 presents the parallel implementation of two Lee type algorithms,

Akers’ algorithm and algorithm using Krusked’s spanning-tree algorithm, and

the experimental results. Finally, Chapter 5 presents the conclusions.

2. SEQUENTIAL MAZE ROUTING
ALGORITHMS

This chapter presents sequential maze routing algorithms used in exhaustive

search of the wiring area. First section describes a well known algorithm, called

Lee’s maze routing algorithm [7], for routing two-pin nets. Some nets, however,
as is stated in Chap. 1 may have more than two pins. Routing of such nets is

the direct translation of Steiner Tree proble7n[lo, 16] into the context of routing

in rectangular grids. There are two algorithms that are the variations of Lee’s

maze routing algorithm. These algorithms are presented in section 2.

2.1 Lee’s Maze Routing Algorithm

Lee’s maze routing algorithm is a well known algorithm for routing two-pin

nets. In the two-pin net problem, the routing area is represented as a two-

dimensional grid as shown in Fig. 2.1. Each cell has a status which may

be blocked or unblocked initially. This status information is kept in a two-

dimensional array called status array. There are two special cells, called source

(S) and target (T) (see Fig. 2.1). The aim is to find the shortest path between

source and target cells.

Lee’s maze routing algorithm consists of three phases, namely, front wave

expansion, path recovery, and sweeping [8]. Front wave expansion phase is a

breadth-first search strategy starting from the source cell. The description of

the algorithm for the front wave expansion phase is given in Fig. 2.2.

The labeling operation (at Step 2) of a free and unlabeled adjacent cell

10

CHAPTER 2. SEQUENTIAL MAZE ROUTING ALGORITHMS 11

Blocked cell

[[Unblocked cell

T Target

S Source

Figure 2.1. A sample global grid for Lee’s maze routing algorithm

A queue, called expansion queue, initially contains only the source cell. A
queue, called sweep queue, is initially empty. A two dimensional NxN Status
array holds the status for the cells of an NxN grid. All the free cells are initially
unlabeled.

1. Remove a cell c from the expansion queue.

2. Examine the four adjacent cells of the cell c using the current infor­
mation in the Status array. Discard the blocked and already labeled
adjacent cells. Update the status of the unlabtled free adjacent cells
as labeled in the Status array and add those cells to the expansion
queue. If all adjacent cells of the cell c are either blocked or already
labeled, then add the cell c into the sweep queue.

3. Go to step 1 until either target cell is labeled or expansion queue
becomes empty.

Figure 2.2. Front wave expansion phase of the Lee’s maze routing algorithm

CHAPTER 2. SEQ UENTIAL MAZE RO UTING ALGORITHMS 12

1. Follow the labels starting from the target cell until the source cell
is reached. Label the visited cells as blocked.

Figure 2.3. Path recovery phase of the Lee’s maze routing algorithm

is performed such that, the label points to the cell c being expanded. The

algorithm terminates successfully when the tcirget cell t is labeled during Step 2

of the algorithm. The Lee’s maze routing algorithm is guaranteed to find the

shortest wire path between the source and the target. The algorithm may also

terminate when a remove operation from tin empty queue is attempted. Such

a termination condition indicates the non-existence of a wire-path from the

source to the target. Fig. 2.5(a) illustrates the first two cycles of the front wave

expansion phase of the Lee’s algorithm for the example grid shown in Fig. 2.1.

Labeling process at Step 2 of the algorithm is illustrated by the following four

labels, I, ·<—, f, and —»· in the figure. The front wave expansion phase is followed

by the path recovery sjadi sweeping phases. Fig. 2.5(b) illustrates the successful

termination of the front wave expansion phase.

In the path recovery phase, the labels are followed starting from the target

cell to construct the path between source and target (see Fig. 2.6(a)). The

algorithm is given in Fig. 2.3.

After the path recovery phase is completed, the labeled cells in the front

wave expansion phase have to be unlabeled so that next net can be routed.

This unlabeling operation is carried out in sweeping phase. The sweeping phase

is given in Fig. 2.4.

At the end of front wave expansion phase the expansion queue contains

the cells e.xpanded in the last expansion cycle of the front wave expansion

phase. These terminal cells are already labeled and connected to their parents.

Thus, the cells labeled in the expansion paths starting from the source cell and

terminating at these terminal cells can be unlabeled by following their labels

(step 2 of the sweep algorithm). However, during the front wave expansion

phase, some of the expansion paths initiated from the source cell are blocked

CHAPTER 2. SEQ UENTIAL MAZE RO UTING ALGORITHMS 13

1. Remove a cell c from sweep queue or expansion queue

2. Follow the labels starting from c until a blocked or imlabeled cell is
reached. Unlabel the visited cells in the status arra}''.

3. Repeat steps 1 and 2 until both sweep queue and expansion queues
are empty.

Figui’e 2.4. Sweeping phase of the Lee’s maze routing algorithm

either due to blocked cells or due to the ¿dread}' labeled cells. The terminal

cells of these blocked expansion paths ¿ire ¿idded into the sweep queue at step 2

of the front wave expansion algorithm (see Fig. 2.7). Hence, the cells labeled

in these blocked expansion paths should also be unlabeled during the sweeping

phase. Fig. 2.6(b) illustrates the final configuration after the path recovery &nd

sxoeeping phases.

2.2 Lee Type Algorithms For Routing of M ultipin N ets

The routing of multipin nets is the direct translation of Minimum· Steiner tree

problem [15] into the context of routing. The definition of the Mininum Steiner

tree problem (or Steiner tree problem) for general gi'ciphs [1] is as follows :

Instance : A connected undirected graph G — (F^, with edge cost function
X : E and a subset R C F of required vertices.

configurations : All edge-weighted trees.

Solutions : All Steiner ¿reesfor R in G\ that is, all subtrees of G that connect
aU vertices in R and aU of whose leaves are vertices in R.

minimize : A(T) =

The Steiner tree problem is an NP-hard problem. The existing approxi­

mate algorithms try to find an suboptimril solution in reasonable time. These

represents the vertices of the graph G
represents the edges of graph G

CHAPTER 2. SEQ UENTIAL MAZE RO UTING ALGORITHMS 14

n
1

f i 1
t

■
1 #
w

m m

■

T

•

-

(a)

T T i F T ' P T
1 t t ’ j ir

▼ 1 i i ’\ 1 u 1

y n f
f

i h T

(b)

Figure 2.5. Front wave expansion phase of the Lee’s algorithm (a) Initial
cycles of front wave expansion phase (b) Successful termination of front wave
expansion

CHAPTER 2. SEQ UENTIAL MAZE RO UTING ALGORITHMS 15

(a)

1w
mm

III

(b)

Figure 2.6. Path recovery and sweep phases of Lee’s algorithm after the front
wave expansion phase (a) Path Recovery phase (b) Final configuration after-
sweep phase

CHAPTER 2. SEQUENTIAL MAZE ROUTING ALGORITHMS 16

T

P I *

-►
1̂

s ◄- pX i

f f f

f t iM ii
mMmi
ipiiil

Figure 2.7. The use of the sweep queue, cells marked as 1,2,3 are added into
the sweep queue at expansion cycles 3,3, and 2, respectively.

CHAPTER 2. SEQUENTIAL MAZE ROUTING ALGORITHMS 17

approximate algorithms try to find a good Steiner tree by combining minimum-

spanning-tree and shortest path calculations. The cost of the Steiner tree Tsub,
on grid graphs, found by these algorithms is bounded by

Cosi{Tsub) < -Cost{Topt) (2.1)

as shown in [16], where CosiiTsub) is the cost of the suboptimal tree and

Cost{Topi) is the cost of optimal Steiner tree. In this work, parallelizaiion

of two algorithms that use Prim’s and Kruskal’s algorithms [1] for rninimum-

spanning-tree calculations and Lee’s maze routing algorithm for the shortest

path calculations is addressed. Following two sections present the sequential

versions of these algorithms.

2.2.1 Using Prim ’s Algorithm

Using Prim ’s algorithm [1], Akers[l, 17] has developed an algorithm to route

multipin nets. The algorithm uses Lee’s routing algorithm for the connection of

pins. Prim ’s algorithm is used for solving the minimum spaniiing tree problem.

Akers’ algorithm is a modification of this algorithm into the Steiner tree prob­

lem. The pins in the multipin net are called the terminal cells. The algorithm

is given in Fig. 2.8.

At step 2 of the algorithm, the set of sources consists of all the visited cells

during the previously and currently constructed respective shortest iDaths. The

propagation of the new front waves starts from all of these cells taking them

as new sources. Fig. 2.9 and 2.10 illustrates the steps of the Akers’ algorithm

for connection of a multipin net.

CHAP TER 2. SEQ UENTIAL MAZE RO UTING ALGORITHMS 18

1 . Choose an arbitrary pin of the net and perform Lee’s front wave
expansion phase to propagate a unidirectional search wave starting
from this pin cell until it hits another terminal cell.

2. Perform path recovery to construct the respective shortest path.
Add all the cells visited during the path recoveiy phase into the set
of sources.

3. Perform the sweeping phase to unlabel all labeled cells during step 2
for the next search wave.

4. Propagate unidirectional multi-search waves stcirting from the set
of multi-sources in the expansion queue until an unlabeled terminal
cell is reached.

5. Goto step 2 until all terminal cells of the net are labeled.

Figure 2.8. Sequential version of the algorithm for routing multipin nets usin|
Prim’s algorithm

2.2.2 Using KruskaPs Algorithm

If we base the Steiner tree computations onto Kruskal’s algorithm [1] a faster

algorithm [1] can be derived for the connection of multipin nets. This algo­

rithm basically propagates search waves starting from all required pins (termi­

nal cells). The algorithm using Kruskal’s spanning-tree algorithm (Kruskal’s

Steiner tree algorithm) is given in Fig. 2 .1 1 . At the beginning all pins form

a distinct tree. During the search phase of the algorithm when two search

waves starting from different trees collide these two trees are merged and a

new tree is formed. There are two procedures to perform the above mentioned

task. UNION{ci,Cj) merges two different trees to which c,· and Cj belong.

TREE(Ci) returns the tree that c,· belongs to. Since each cell may belong to

different trees, the status information of a cell in status array indicates both

the label status (labeled, unlabeled, blocked) and a tree information to be used

in procedures TREE{c i) and UNION{c i ,Cj) . Fig. 2.12 shows the routing of a

single three pin net using this algorithm.

CHAPTER 2. SEQ UENTIAL MAZE RO UTING ALGORITHMS 19

T
- > T 1

a C

T n T
n

b

(a)

7 /

Blocked Cell

(b)

Figure 2.9. Front wave expansion phase of the Akers’ algorithm beginning from
the terminal cell ’a’ (a) initial two cycles (b) Initial cycle after the first path
(a to b) is connected.

CHAPTER 2. SEQUENTIAL MAZE ROUTING ALGORITHMS 20

y ////////////A

Figure 2.10. The final configuration after all three pins are connected

CHAPTER 2. SEQ UENTIAL MAZE RO UTING ALGORITHMS 21

1 . Add all the terminal cells into the expansion queue.
2 . Perform Lee’s front wave expansion phase to propagate multi search

waves starring from all terminal cells.
(a) choose-a cell c from queue and examine its adjacent cells

afs for expansion.
(b) If c . is a free cell then add Oc to expansion queue, label

the cell to point to the parent cell c and update the tree
information of Uc in status array so that the cell Uc belongs
to the same tree as its parent.

(c) If is labeled and T REE{uc) is not ec|ual to TREE{c) this
indicates the collision of two different front waves (search
waves), then call UNION{c,ac). Save the pair of colliding
adjacent cells.

(d) If TREE{ac) = TREE{c) or Oc is blocked, ignore the cell
a , .

(e) If all four adjacent cells a fs of cell c are blocked or labeled
such that they belong to the same tree with the cell c then
add the cell c to the sweep queue.

3. Repeat step 2, until all trees are merged.
4 . Perform path recovery starting from the collision points of different

trees to form the interconnections between required pins.

5. Perform the sweeping phase.

Figure 2.11. Seciuential version of the algorithm for routing multipin nets using
Kruskal’s algorithm

CHAPTER 2. SEQ UENTIAL MAZE RO UTING ALGORITHMS 22

n u
n n 1
a c *4-< -T t T t t
n f

u
n 1

-> ->> b ◄--4-

f t t

(a)

Blocked Cell

(b)

Figure 2.12. Routing of a three pin net using Kruskal’s algorithm (a) Initial
cycles of the algorithm (b) After connecting all pins

3. PARALLELIZATION OF LEE’S
ALGORITHM

This chapter presents the principles and ideas used for the parallel imiDlemen-

tation of Lee’s algorithm. Lee’s algorithm is a special case of multipin net

algorithms. The ideas and principles for parallel implementation of Lee’s al­

gorithm will then be adopted for the parallel implementation of multipin net

algorithms.

As indicated in Chapter 2, the Lee’s Maze Routing algorithm consists of

three phases, namely front wave expansion^ path recovery, sweeping phases.

Each phase of the algorithm has been parallelized, and the following sections

present the proposed parallel algorithms for three phases. Each phase is con­

sidered independently.

The secjuential complexity of the Lee’s maze routing is due to the front

wave expansion and sweeping phases. As is discussed in Section 3 .2 , the par­

allel front expansion scheme proposed in this chapter avoids interprocessor

communication during the distributed sweeping phase computations. How­

ever, interprocessor communication can not be avoided during the distributed

front wave expansion phase computations. Furthermore, as is discussed in

Section 3.1, the processor utilization during the distributed front wave expan­

sion computations is very sensitive to the grid partitioning scheme employed.

Hence, the grid partitioning and mapping scheme is chosen by mainly consid­

ering the computational requirements of the front wave expansion phase.

23

CHAPTER 3. PARALLELIZATION OF LEE’S ALGORITHM 24

3,1 Grid Partitioning and Mapping

The effective parallel implementation of the front wave expansion algorithm on

a hypercube multicomputer requires the partitioning and mapping of the expan­

sion computations and the data structures associated with the grid (i.e. status

array). This partitioning and mapping should be performed in a manner that

results in low interprocessor communication overhead and low processor idle

time. Even partitioning of the status array onto the node processors is an easy

task since a fixed size two dimensional grid is to be partitioned and mapped to

the processors of the hypercube. Even partitioning of the exi)ansion computa­

tions, on the other hand, is not easy because expansion computations are not

predictable and depends on the data (blocked cells etc.). However, as will be

explained later, the partitioning of the status array affects the partitioning of

expansion computations, and as a result, affects the processor utilization and

interprocessor communication overhead.

In the front wave expansion phase, the atomic operation can be considered

as the expansion of a single cell in the current front wave. In this atomic pro­

cess, the north, east, south, and west adjacent cells of the cell being expanded

are examined. Hence, the nature of communication required in front wave ex­

pansion phase corresponds to a two dimensional mesh. That is. each processor

needs to communicate only to its north, east, south, and west neighbors. Hence,

onl}' mesh embedded hypercube structure will be considered and partitioning

and mapping of the grid is done considering only a mesh embedded hypercube

structure. It is well known that, a processor mesh can be embed­

ded into a (¿-dimensional hypercube [1 1]. Fig. 3 .1 (a), (b), and (c) represent the

mesh’embedding into hypercubes of dimensions 2, 3, and 4, respectively.

The even partitioning and mapping of the global status array is trivial since

a two dimensional N xN mesh grid is to be partitioned and mapped onto a two

dimensional mesh embedded hypercube. This mapping can be achieved by

applying tiled decomposition in partitioning the grid. Assume that N is a power

of two (i.e. N = 2") and n > [<¿/2]. In the tiled decomposition, the grid is

covered with rectangles of size 2”“ l‘̂ /^Jx2 "'“ f‘̂ /̂ l starting from the top left corner

and then proceeding left to right and top to bottom. Each rectangle cover

CHAPTER 3. PARALLELIZATION OF LEE’S ALGORITHM 25

(a)

—(] ^ —- / i v - / T o

(b)

0100)

1000)

0111

0010

1110

1010

(c)

Figure 3.1. Mesh embedding (a) h}'’percube of dimension 2 (b) hypercube of
dimension 3 (c) hypercube of dimension 4

CHAPTER 3. PARALLELIZATION OF LEE’S ALGORITHM 26

0 0 0 0
D“

0 0 0 0 3
O' Ü" 5 ·

0 0
Ü“

0 3
O' 3 ·
ÜT0 0 0 3 3

3“4 7 6 ^
4 7 6 6 6

3" wb
5 5 7 7 7 6 6

W~E
6

Ü"4 4 4 7 7 7
5 5 7 7 6 6 6 6

4 4 4 4 5 5 7
4 4 4 4 6 6 6 6

Figure 3.2. Tiled decomposition of a 16x16 grid onto 2x4 mesh embedded
3 -dimensional hypercube

defines a partition of the grid. These partitions are then mapped to processors

in such a way that, partitions that are adjacent in the grid are mapped to

adjacent processors of the processor mesh embedded in the h}^percube. In this

mapping, each processor will be responsible for holding and updating the status

information (local status array) for the cells belonging to its local grid partition.

Each processor will be responsible for the expansion computations for the cells

in its local grid partition. Figure 3.2 illustrates the tiled partitioning scheme

for a 16x16 grid for a 2 x4 mesh embedded 3 -diraensioncil hypercube.

In the given mapping scheme, a grid cell is defined to be a boundary cell

if and only if at least one of its neighbor cells (i.e. north,east,south, west) is

in a different partition. It is obvious that only boundary cells have a potential

to cause interprocessor communication. The volume of possible interprocessor

communication can be reduced by decreasing the number of boundary cells.

It is well known that the number of boundary cells in a rectangular partition

CHAPTER 3. PARALLELIZATION OF LEE’S ALGORITHM 27

with fixed number of cells can be minimized by choosing a square partition.

The proposed mapping scheme achieves square partitions for even dimensional

hypercubes (i.e. even d). For odd dimensional hypercubes the partitions are

rectangles with long sides only twice the short sides. .Such rectangle partitions

minimize the number of boundary cells while maintaining the perfect balanced

partitioning of the status array.

The tiled decomposition scheme ensures the mesh communication topology

and even distribution of the data structures (status array] among the proces­
sors of the hypercube. This mapping scheme also minimizes the volume of

interprocessor communication during the front wave expansion phase. How­

ever, in spite of these nice properties, it does not ensure the even distribution

of the front wave expansion computations. Assume that, in Fig. 3 .2 , the .source

cell and the target cell are located at the top left and bottom right corner of

the global grid, respectively. Also, assume that there are no blocked cells in the

grid. During several initial cycles, only processor Pq will perform front wave

expansion computations while remaining processors stay idle. Similarl}'·, during

several final cycles, only Pq will be busy with front wave expansion computa­

tions while the remaining processors stay idle. Hence, the tiled decomposition

scheme yields very low processor utilization.

Processor utilization can be maximized by applying scafrereddecomposition

scheme. Scattered decomposition scheme is achieved by imposing a periodic

processor mesh template over the grid cells starting from the top left corner

and proceeding left to right and top to bottom. Figure 3.3 illustrates the scat­

tered decomposition of a 16x16 grid for a 2x4 mesh embedded 3-dimensional

h3'^percube. In this scheme, adjacent grid cells in the grid are assigned to

adjacent ¡processors of the mesh embedded hypercube, thus ensuring the mesh

communication topology. This scheme also ensures the even distribution of the

status array among the processors of the hypercube. Howê ■er, in the scattered

decomposition, all local cells assigned to individual processors are boundary

cells. In fact, for d > 2, all four neighbors of an individual local cell beloirg to

adjacent processors. Hence, the expansion of any local cell in all four directions

require interprocessor communications. Thus, scattered decomposition scheme

causes large volume of interprocessor communication.

CHAPTER 3. PARALLELIZATION OF LEE’S ALGORITHM 28

IT 1 3^ 1 3^ 3^ f r 1 3“ 3^ 3^ 1 3“ 3“
4 5 7 6 4 5 7 6 4 5 7 6 4 5 7 6
0 1 5 3 0 1 3 3 0 1 3 3 0 1 3 3
4 5 7 6 4 5 7 6 4 5 7 6 4 5 7 6
0 1 5 3 0 1 3 3 0 1 3 3 0 1 3 3
4 5 7 6 4 5 7 6 4 5 7 6 4 5 7 6
0 1 5 3 0 1 3 3 0 1 3 3 0 1 3 3
4 5 7 6 4 5 7 6 4 5 7 6 4 5 7 6
0 1 3 3 0 1 3 3 0 . 1 3 2 0 1 3 3
4 5 7 6 4 5 7 6 4 5 7 6 4 5 7 6
0 1 3 3 0 1 3 3 0 1 3 3 0 1 3 3
4 5 7 6 4 5 7 6 4 5 7 6 4 5 7 6
0 1 3 3 0 1 3 3 0 1 3 3 0 1 3 3
4 5 7 6 4 5 7 6 4 5 7 6 4 5 7 6
0 1 3 3 0 1 3 3 0 1 3 3 0 1 3 3
4 5 7 6 4 5 7 6 4 5 7 6 4 5 7 6

Figure 3.3. Scattered decomposition of 16x16 grid

CHAPTER 3. PARALLELIZATION OF LEER ALGORITHM 29

The analysis of these two decomposition schemes shows that there is a

trade-off between processor utilization and volume of interprocessor communi­

cation. This trade-off is resolved by combining tiled and scattered decomposi­

tion schemes as is also proposed in [8]. In this scheme, NxN grid is transformed

into a coarse grid by applying tiled decomposition assuming much larger P 1 XP2

mesh processor array, where Pi and P2 are powers of two. Pi = P 2 for even d,

P2 = 2Pi for odd d, and P 1XP2 ^ 2̂ ̂ but Pi and P2 < N. Hence, effectively the

NxN grid is covered with hxw rectangle (or square) subblocks where h =

w = ^ and h,w values are power of two where h C N. Then, scattered

decomposition is applied to the generated coarse grid. That is, a periodic

processor mesh template (of size 2 NPJx2 N/N) is imposed over the hxw grid

subblocks starting from the top left corner and proceeding left to right and top

to bottom. Figure 3.4 shows the maiaping of 2x2 and 4x2 grid subblocks over a

16x16 routing grid to the processors of a 2x4 processor mesh embedded in a 3-

dimensional hypercube. In this scheme, h = w for even li3'percube dimensions

and h = 2w for odd hypercube dimensions. The width w of the rectangles con­

stitutes the characteristic of the decomposition. This mapping scheme reduces

to scattered mapping scheme when h — w — I [Pi = P2 = N) and it reduces

to tiled decomposition scheme when h — and w — (A = 2 N/̂ -l and

P2 = The processor idle time will decrease with decreasing w. However,

the volume of interprocessor communication will decrease with increasing w.

Hence, the trade-off between processor utilization and volume of interprocessor

communication can be resolved by selecting an appropriate value for w.

3.2 Parallel Front Wave Expansion

3.2.1 Expansion Starting From Source Only

The expansion starting from source only (Sonly j scheme initiates a breadth first

search starting from the source cell as in the original Lee’s algorithm[7]. The

status array is partitioned and mapped onto the node processors according to

the mapping scheme presented in section 3.1. Hence, each processor stores and

maintains a local status array to keep d3mamic and static status information

CHAPTER 3. PARALLELIZATION OF LEE’S ALGORITHM 30

w

i 0 (T 1 1 3 3 2 '2“ 0 i r 1 1 3 3~ 2 ■2~
u U 1 1 3 3 2 2 0 0 1 1 3 3 2 2
4 4 5 6 7 7 6 6 4 4 5 3 7 7 6 3”
4 4 5 5 7 7 6 6 4 4 3 3 7 7 6
0 U 1 1 3 5 2 2 0 0 1 1 3 3“ 2 2“
0 0 1 1 3 3 2 2 0 0 1 1 3 3 2 2
4 4 5 5 7 7 6 6 4 4 ,5 3“ 7 7 6 3“
4 4 5 5 7 7 6 6 4 4 3 3~ 7 7 6 6
0 0 1 1 3 5 2 2 0 0 1 1 3 2 2“
0. b 1 1 3 8 2 2 0 0 1 1 3 b~ 2 2
4 4 5 6 7 7' 6 6 4 4 3 3 7 7 6 5“
4 4 5 6 7 7 6 6 4 4 5 3~ 7 7 6 6
0 0 1 1 3 3 2 2 0 0“ 1 1 ' 3 3~ 2 2“
0 0 1 1 3 3 2 2 0 0 1 3 3 2 2
4 4 5 'b 7 7 6 s 4 4 3 3 7 7 6 3
4 4 5 13 7 ■7 8 3 4 4 3 3 7 '7 D—

w
(a)

f r 1 1 3 3^ 2 2^ i r i r 1 1 3 3^ 2 2^
0 0 1 1 3 3 2 2 0 0 1 1 3 3 2 2
0 0 1 1 5 3 2 2 0 0 1 1 3 3 2 2
0 0 1 1 3 3 2 2 0 0 1 1 3 3 2 2
4 4 3 3 7 7 6 6 4 4 3 3 7 7 6 6
4 4 5 3 7 7 6 6 4 4 3 3 7 7 6 6
4 4· 3 3 7 7 6 6 4 4 3 3 7 7 3 8
4 4 5 3 7 7 6 6 4 4 3 3 7 7 6 6
0 0 1 1 3 3 2 2 0 0 1 1 3 3 2 2
0 0 1 1 3 3 2 2 0 0 1 1 3 3 2 2
0 0 1 1 3 3 2 2 u u 1 1 3 3 2 2
0 b 1 1 3 3 2 2 u 0 1 1 3 3 2 2
4 4 5 3 1 7 6 6 4 4 3 b 7 7 8 fc)
4 4 5 3 7 7 6 6 4 4 5 5 7 7 3
4 4 3 3 7 7 6 6 4 4 b b 7 7 3 3
4 4 5 3 7 7 6 6 4 4 5 5 7 7 6 3

h

(b)

Figure 3.4. Decomposition of 16x16 grid into subblocks of (a) h
(b) h = 2w = 4

w = 2

CHAPTER 3. PARALLELIZATION OF LEE’S ALGORITHM 31

N orthSend

W
e
s
t
S
e
n
d

W
e
s
t
R
e
c
V

NorthRecv

Ix>cal Expansion Queue

Local Sweep Queue

SouthSend

Local Grid

SouthRecv

Figure 3.5. Local data structures for a node processor.

for its local cells. Each processor maintains a local expansion queue to process

the front wave expansion for its local cells. Each processor also maintains

a local sweep queue to store the blocked expansion paths for the sweeping

phase. As is indicated in Section 3.1, the expansion of each local boundary

cell require communication with at least one neighbor processor. Hence, in

order to accompli.sh that communication, each processor also maintains four

different send queues [north, east, south, and loest send queues) for storing

and transmitting cell coordinate information to its four neighbor processors

in the mesh. Similarly, each processor maintains four receive queues to store

information sent by its four neighbor processors. Fig. 3.5 illustrates the view of

the local data structures for a node processor. The parallel algorithm is given

in Fig. 3.6

The local x and y coordinates of the local cells in the current wave are

stored in the local circular queues. One byte word Status[x,y) is allocated in

CHAPTER 3. PARALLELIZATION OF LEE’S ALGORITHM 32

Imtiallз^, all the local queues are empty. The host processor broadcast the
coordinates of the source cell and target cell to all processors. The processor
which owns the source cell location adds the local coordinates of the source cell
to its local queue. Then each processor executes the following algorithm.

1 . Each processor examines the cells in its local expansion queue for
expansion in four directions. The local adjacent cells of the cells
being expanded are examined for adding them to the local expansion
queue for later expansion. The adjacent cells which are detected to
belong to grid partitions assigned to neighbor processors are added
to the corresponding send queues for later communication.

2. Each processor transmits the information in its f< 'ir send ciueues to
their destination processors.

3. Each processor examines the cells in its four receive queues for
adding them to its local queue for later expansion.

4. Each processor repeats steps 1 , 2 , and 3 until host signals the ter­
mination of the front wave expansion phase.

Figure 3.6. Node program for the Sonly scheme

the two dimensional local status array for the status information of each local

cell. The encoding of the status of a cell is shown in the Figure 3.7. The least

significant three bits (bits 0 ,1 ,2) of Status{x,y) hold the current routing status

of the local cell located at the local x and y coordinates. Six different routing

status information are; blocked, unlabeled, and labeled from north, east, south

and west. The status information is obtained by examining Tie value of these

three bits. The values and the meanings are

000 : Unlabeled

001 : Blocked

010 : Labeled from North (Connected to North)

011 : Labeled from South

100 : Labeled from West

101 : Labeled from East.

CHAPTER 3. PARALLELIZATION OF LEE’S ALGORITHM 33

7 6 0

Target
Mark

f Spaüal Orientation f encoding f
▼ of the cell. T routing sta tu s T

of cell

Figure 3.7. Encoding the status information

As is discussed earlier, the expansion of a boundary cell necessitates inter­

processor communication. Hence, each processor should store spatial orienta­

tion information in its status array for its local cells. Four bits (bits 3,4,5,6) in

the one byte word are reserved for spatial orientation information in the local

grid of the processor. The assertion of a particular bit indicates that the cell

is in the local partition boundary in the corresponding expansion direction.

That is, the adjacent cell in that expansion direction is not a local cell, and it

is assigned to the neighbor processor in that expansion direction. Hence, that

adjacent cell should be added into the particular send queue in that expansion

direction. Note that, a cell may be a boundary cell in more than one expansion

directions. For example , if bit 65 and bit Iq is asserted then the cell is at the

north-west boundary. Also note that, bits 66^5 4̂^3 = 0000 indicates that the

cell is a local interior cell whose four adjacent cells belong to the local grid par­

tition. This bitwise horizontal encoding scheme for spatial orientation is chosen

in order to decrease the complexity of the local expansion computations.

Whenever, the processor which owns the target cell labels the target cell,

(either at Step 1 or Step 3), it signals the host about the successful termination.

The host processor, upon receiving such a message, broadcasts a message to

all processors to terminate the front wave expansion phase and enter into the

path recovery phase. Then, the processor which owns the target cell initiates a

path recovery beginning from the target cell.

CHAPTER 3. PARALLELIZATION OF LEE’S ALGORITHM 34

If a cell is found to belong to the partition assigned to a neighbor processor,

the x,y coordinates of the cell are put into the corresponding send queue and

sent to the neighbor processor. Plowever, due to the partitioning of the global

grid onto processors, each cell in a processor’s local grid has local coordinates.

Hence, when the non-local adjacent cell Oc of a boundary cell c is transferred

to a neighbor processor, the x,y coordinates of the cell have to be converted

to the local coordinates in the receiving processor. This conversion operation

is an overhead associated with the pcirallelization. The expcinsion computa­

tion associated with an individual cell has fine granularity. Hence, an efficient

scheme should be devised for this conversion in order to keep this overhead low.

This conversion can be performed using two schemes. In the first scheiiie, the

local coordinates of the cell is converted to global coordinates and then to the

local coordinates of the receiving processor. Such an operation is computation­

ally exjDensive operation. In the second scheme, the local-to-local conversion

is achieved directly. This efficient scheme is briefly discussed in the following

paragraph.

Note that, the left-top corner of the global grid (and local grids) is chosen as

the origin of the x-y coordinate system. Hence, x-coordinate increases in east

direction and y-coordinate increases in the south direction. In the proposed

mapping, grid cells in a particular row (column) of the global grid are par­

titioned into successive contiguous blocks of size w (h). Then, successive cell

blocks in a row (column) of the global grid are mapped to the successive proces­

sors in a periodical!}'' repeating row (column) of the processor mesh template.

Hence, local x-coordinates (y-coordinates) of a boundary cell between two suc­

cessive processors in an individual mesh template differ by w (h). However, if

a cell is a boundary cell between two boundary processors in a row (column) of

the repeating processor mesh template, then its local coordinates are equal in

these two adjacent processors. Note that, local y-coordinates (x-coordinates) of

all cells in the same row (column) of the global grid are equal in all processors.

Fig. 3.8 illustrates the local indexing of the local status arrays for the mapping

of 16x16 grid to a 4x4 mesh embedded 4-dimensional hypercube. As is seen

in this figure, w should be added/subtracted for the local-to-local conversions

during the east-west communications between the following pairs of adjacent

CHAPTER 3. PARALLELIZATION OF LEE’S ALGORITHM 35

processors (12-13, 13-15, 15-14), since 12-13-15-14 constitute a row of the pro­

cessor mesh template. There is no need for conversion during the east-west

communications between the pair of adjacent processors (14-12), since this pair

of adjacent processors is the boundary processors of the repeating processor

mesh template. Similarly, h should be added/subtracted for the local-to-local

conversion during the north-south communications between the following pairs

of adjacent processors (1-5, 5-13, 13-9), since 1-5-13-9 constitute a column of

the processor mesh template. There is no need for conversion during the north-

south communications between the pair of processors (9-1), since this pair of

adjacent processors is the boundary processors of the repeating processor mesh

template.

In this scheme, each processor statically determines the number to be added

for the local-to-local conversion for each boundary expansion direction by ex­

amining its particular location in the processor mesh template. Hence, the

overhead associated for the local-to-local conversion required during the ex­

pansion of a boundary cell in the boundary direction is only a single addition

operation.

In spite of the given partitioning scheme, the above parallel algorithm may

result in low processor utilization for large h and w values. Some processors

may still stay idle particularly during the initial and final front wave expansion

cycles. This is due to the expansion of a single front wave beginning from the

source cell. Note that, finding a routing path from source to target is equivalent

to finding a path from target to source. Hence, two front waves ̂ one beginning

from the source {source front wave) and the other one beginning from the target

[target front ivave), can be expanded concurrentljc If the source and the target

cells are assigned to different processors, this scheme has a potential to increase

the processor utilization.

3.2.2 Expansion Starting From Source and Target

This scheme initiates breadth first search starting from the target cell as well as

starting from the source cell[14]. Figure 3.9(a) illustrates the initial two cycles

of this scheme for the example grid shown in Figure 2.1. The P'igure 3.9(b)

CHAPTER 3. PARALLELIZATION OF LEE’S ALGORITHM 36

local X coordinates
------- --------- ►
0 1 0 1 0 1 0 1 2 3 2 3 2 3 2 3

local y
Coord. 0

1

0

1

0
1

0
1

2
3

2

3

2

3

2

3

€ ·!·· 3 0I··· ...3 2

■ -5·· J . . . 6 4 J5···· 6

2 13 15 ..14).. 2 13 15 14)

. . .g a 1 1 iO 8 9 •ii···· 1G

() 3 ...2.... 0 1 2 ...

...21 R.. 7A.A7.... GXJ

li2 13 1 14 12 13 15 14

...a 9
:

1 1 10 8 9 1 10

Figure 3.8. Mapping of local coordinates onto the repeating mesh template

CHAPTER 3. PARALLELIZATION OF LEE’S ALGORITHM 37

illustrates the collision of two concurrent front waves initiated from the source

cell s and the target cell t. The parallel algorithm for expansion starting from

source and target scheme (S+T scheme) is given in Fig. 3.10.

In this scheme, three identifying parameters are needed for each cell in the

cpeues; its local x^y coordinates, and a tag to indicate the type of the front wave

it belongs to. The cells that belong to the source front wave are identified with

positive xpj coordinate values, whereas, the cells that belong to the target front

wave are identified with negative x,y coordinate values. This tagging scheme is

chosen in order to keep the local memory requirement due to local queues and

the volume of communication low.

Note that, in the local status array the most significant bit of each status

byte is unused in the encoding scheme shown in Fig. 3.7. Hence, the most

significant bit of each status byte is reserved for tagging purposes. If a local

cell has a blocked ox unlabeled vouting status, this bit conveys no information. If,

however, a local cell has a labeled routing status, the value of this bit indicates

whether the cell is labeled on the target front wave, or labeled on the source

front wave.

During the expansion process at Step 1 , the routing status of four adjacent

cells of a cell being expanded are examined. If the current routing status of an

adjacent cell is unlabeled, the local x,y coordinates of the adjacent cell are tagged

accordingly (depending on the tag of the cell being expanded) and added to

the local queue for later expansion. Then, the adjacent cell is labeled with the

reverse expansion direction and tagged with the tag of the cell being expanded

in the local status array. However, if the current routing status of an adjacent

cell is blocked or labeled with the same tag of the cell being expanded, then the

adjacent cell is discarded and added into the local sweep queue. Otherwise,

if the adjacent cell is already labeled with a different tag compared to the tag

of the cell being expanded, it shows the collision of two different front waves.

The processor which detects the collision at Step 1 , signals the host about the

collision. It also includes the current value of the local cycle count and the

local coordinates of the pair of adjacent cells in the message.

At Step 3 , the local cells stored in the receive buffers are examined in a

CHAPTER 3. PARALLELIZATION OF LEE’S ALGORITHM 38

u
-► c

1ii1
n

-Ill· T ■III·.
A
7 T" T

=
i

(a)

(b)

Figure 3.9. Expansion starting from source and target scheme (a) Initial cycles
(b) Collision of two front waves

CHAPTER 3. PARALLELIZATION OF LEE’S ALGORITHM 39

Initially, all local queues are empty and all local cycle counts are initialized to 1 .
The host processor broadcasts the coordinates of the source cell and the target
cell to all processors. The processor which owns the source cell location adds
the local coordinates of the source cell together with a source front wave tag
to its local cpieue. Similarly, the processor which owns the target cell location
adds the local coordinates of the target cell together with a target front wave
tag to its local queue. Then each processor executes the following algorithm.

1 . The cells in the local queue may belong either to the current source
front wave or to the current target front wave. Each processor ex­
amines these cells accordingly for expansion in four directions. The
local adjacent cells of the cells being expanded are examined for
adding to the local queue for later expansion. The adjacent cells
that are detected to belong to grid partitions assigned to neigh­
bor processors are added to the corresponding send queues for later
communication together with the tag of the cells being exi^anded.

2. Each processor transmits the information in its four send queues to
their destination processors.

3. The adjacent cells in the four receive queues may belong either to
the current source front wave or to the current target front wave.
Each processor examines these cells accordingly for adding them to
its local queue for later expansion.

4. Each processor, after incrementing its local cycle count by 1 , checks
whether it has received a message from the host. It proceeds to
Step 1 if the message has not been received yet or if the message
has been received with an upper bound value greater than or equal
to the current value of the local cycle count. It terminates only if
the local cycle count value is greater than the upper bound value
recei^’ed, and signal the host about its termination.

Figure 3.10. Node program for the S+T scheme.

CHAPTER 3. PARALLELIZATION OF LEE’S ALGORITHM 40

similar way. However, each individual collision at this step will be detected

concurrently by two neighbor processors. This situation corresponds to the

mutual collision of two different type of front waves at two adjacent boundary

cells in two adjacent grid partitions assigned to two neighbor processors. For

example, if a processor detects a collision during the examination of a cell in

its east receive queue, its east neighbor processor will concurrently detect the

same collision during the examination of a cell in its west receive queue. In

this case, those two neighbor processors will inform the host about the same

collision.

The given parallel algorithm does not guarantee that all processors will be

executing the same front wave expansion cycle at any instant of time. If a

snapshot of the parallel system is taken, some of the processors may be found

to be leading some others b}'· a number of expansion cycles. A leading processor

may be the first processor which detects a collision. Hence, if the host processor

terminates the front wave expansion as soon as it receives a collision message,

the path to be recovered may not be the shortest path from source to target.

All lagging processors should be allowed to perform expansion until the cycle

count of the leading processor which has detected the collision the first time.

Those lagging processors have potential to detect collisions on earlier cycles.

This is achieved by the scheme given at Step 4 of the algorithm. The host

processor, after the receiving the first collision message, broadcasts the cycle

count q in this message as an upper bound on the local cycle counts. The

leading processors which have already performed the g-th front wave expansion

cycle terminate and inform the processor about their termination. The lagging

processors which have not yet performed the g-th front wave expansion cycle

continue to execute the given algorithm until the g-th cycle. These processors

also inform the host about their termination after executing the g-th cycle.

Meanwhile, the host processor stores all the subsequent collision messages until

it receives P termination messages. The host processor chooses the collision

message with a minimum cycle count. Then it broadcasts the coordinates of

the chosen pair of adjacent cells to signal the initiation of the path recovery

phase.

As is explained earlier, at step 3, two neighbor processors will inform the

CHAPTER 3. PARALLELIZATION OF LEE’S ALGORITHM 41

host about the same mutual collision. More than one pair of processors may

try to inform the host about many such mutual collisions during the same or

successive few cycles. In order to decrease message traffic for such situations,
the pair of processors detecting the same collision may apply a local precedence

relation for informing the host. For example, in a east-west mutual collision,

only the processor which detects the collision during examining its west receive

queue will inform the host about the collision. The neighbor processor which

detects the same collision while examining its east receive queue will take no

action for such collisions. The north-south mutual collisions are resolved sim­

ilarly. This scheme also relieves the host processor from trying to detect such

mutual collisions.

In the proposed parallel algorithm, the number of expansion cycles to be

performed in the front wave expansion i^hase is reduced by a factor of two

compared to the original parallel algorithm. Hence, the total number of local

communications is reduced by a factor of two, since the number of loccil com­

munications per expansion cycle is fixed to four. The proposed algorithm is

also expected to reduce the total number of expanded cells, on the average,

almost by a factor of two. Assume a large grid with no blockages. If the origi­

nal algorithm requires q expansion cycles to reach the target cell, the proposed

algorithm will require only qj2 expansion cycles to reach the collision of two

front waves. The total number of cells expanded in the original algorithm will

be 1 -f 2q{q -f 1) compared to 2 -t- q{q + 2) in the proposed algorithm[14]. The

total number of exi^anded cells in both algorithms will of course vary when

blockages exist in the grid. Unfortunately, the proposed cilgorithm increases

the amount of computation required for the expansion of an individual cell.

However, the computational overhead per cell expansion will decrease with in­

creasing blockage percentage in the grid. As is discussed above, an unused bit

in a local cell status word and unused bits in the cell coordinate information

words are used for tagging purposes. In this way, the total memory requirement

and communication volume requirement for an individual cell is not increased

compared to the original algorithm. Hence, the proposed algorithm will also

reduce the total volume of communication since the total number of expanded

cells is reduced. Furthermore, the proposed parallel algorithm will increase

the processor utilization, compared to the original algorithm, when source and

CHAPTER 3. PARALLELIZATION OF LEE’S ALGORITHM 42

target cells are assigned to different processors. The relative increase in the

processor utilization will grow with increasing h,w parameters, and with in­

creasing mesh distance between the two processors which own the source and
the target cells.

3.3 Termination Detection

At Step 3 of both parallel algorithms, each processor issues four synchronous

[blocking) receive messages in order to receive information from its four neigh­

bor processors. Hence, processors do not proceed to the next front wave ex­

pansion cycle before receiving messages from all four neighbors. In order to

prevent deadlock, each processor always send messages to its four neighbors

even if its send queues are empty. Hence, the synchronous receive messa.ges at

.Step 3, constitute a local synchronization between neighbor processors. Due to

this local synchronization, both of the above parallel algorithms are guaranteed

to find the shortest path between the source and the target whenever a path

from source to target exists. However, these parallel algorithms Avill not termi­

nate if no path exists between the source and the target. In the parallel front

wave expansion algorithms, the unsuccessful termination condition occurs onl3'·

when the local expansion queues and the local receive queues of all processors

become empty at the same expansion cycle. The schemes to provide global

termination detection for such cases are discussed in this section.

3.3.1 Global Synchronization

In this scheme, host processor is used to perform global synchronization at

the end of each expansion cycle[8]. At the end of each expansion cycle (after

Step 4), each processor sends a message to the host to indicate whether its

local queue is empty or not. Then each processor issues a synchronous receive

to receive an enable message from the host to proceed with the next expan­

sion cycle. Host waits for receiving local queue status information from all

processors by issuing P successive synchronous receives. If host detects that

all local queues are empty, then it broadcasts a signal to all processor of the

CHAPTER 3. PARALLELIZATION OF LEE’S ALGORITHM 43

hypercube to indicate the unsuccessful termination of the front wave expansion

phase. Otherwise, host broadcasts an enable signal to all processors. Hence, no

processor can start the (q+l)-th expansion cycle until all other processors com­

plete the q-th expansion cycle. In this scheme, for each expansion cycle, host

receives P messages serially and broadcasts the enable message in log2 P time.

Thus, this scheme for global termination detection introduces a large amount

communication overhead. Furthermore, it decreases the processor utilization

since each processor has to be globally synchronized with all other processors

(through host) before beginning the next front wave expansion cycle.

3.3.2 Counter Termination Schem el

This scheme is very similar to the scheme proposed in 8]. In this scheme,

host processor holds a counter to count the number of non-empty processors.

This counter is initialized to 1 in Sonly scheme. In S+ T scheme, this counter

is initialized to 1 if source and target cells belong to the same processor or 2

if source and target cells belong to different processors. The host and node

programs for this version of the counter termination scheme for a P processor

hypercube are given in Fig. 3.11.

In this scheme host program has to wait for A seconds after counter becomes

0, since there may be transient messages. This A seconds is a machine specific

parameter. After A seconds, if there is no message then it means that each

processor is empty and there is no transient message. Hence, the host program

can terminate the program.

3.3.3 Counter Termination Scheme2

In order to avoid the use of such a machine specific parameter, another counter

termination scheme is proposed. In this scheme, host maintains a one dimen­

sional array to keep a counter for each front wave expansion cycle. The host

and node programs for this version of the counter termination scheme for a P

processor hypercube are given in Fig. 3.12.

CHAPTER 3. PARALLELIZATION OF LEE’S ALGORITHM 44

Host P rogram

1. Initialize the counter.

2. Enable front wave expansion

3. If a status signal (4-1 / — 1) is received th en
(a) counter = counter 4- received value.
(b) I f counter = 0 then

wait for A second
if no message arrives then terminate the program.

4. Goto step 3.

Node P rogram

1. Wait for enable signal from host.

2. Perform the next front wave expansion steps of the corresponding
algorithm.

3. I f the status of processor changes from non-empty to empty th en
send — 1 to host as status message.

4. If the status of processor changes from empty to non-empty th en
send 4-1 to host processor as status message.

5. Goto step 2 .

Figure 3.11. Host and node programs for the counter termination scheme 1.

CHAPTER 3. PARALLELIZATION OF LEE’S ALGORITHM 45

H ost P rog ram

1 . counter(q) = 0 for all possible q

2. Enable front wave expansion
3. If a signal with label q received then

(a) counter{q) — counter(q) + 1

(b) If counter[q) = P th en terminate

4. Go to Step 3

N ode P ro g ram

1 . q = Q
2 . Wait for an enable signal from the host

3. 5 = ̂+ 1

4. Perform steps 1,2, and 3 of the front wave expansion algorithm

5. If all local queues are empty th e n
(a) signal the host with the cycle count q

6 . Perform step 4 of the front wave expansion algorithm

•7. Go to Step 3

Figure 3.12. Host and node programs for the counter termination scheme 2.

CHAPTER 3. PARALLELIZATION OF LEER ALGORITHM 46

The condition counter(q) = P checked by the host indicates that all local

queues are empty at the q-th expansion cycle. Hence, the given algorithm

ensures the global termination detection when there is no path from source to

target.

3.4 Overlapping Communication with Com putation

In the parallel algorithms given in seciions .3.2.1 and 3.2.2, after sending the

data in four send queues, each processor may wait idle for the arrival of data

from its four neighbor processors. These parallel algorithms can be re arranged

as shown in Fig. 3.13 to reduce the idle time. The overlapped algorithm given

in Fig. 3.13 is similar to the one proposed in [8 , 1 2]. Note that, in the non-

overlapped schemes (Figures 3.6 and 3.10) the non-local adjacent cells (of depth

q -f 1) are transmitted at step 2 after being added to the send queues (at step 1)

of the same expansion cycle. In the overlapped scheme, the transmission of the.

non-local adjacent cells (of depth q + 1) encountered during step 3 of the

expansion cycle are dela}'ed until step 1 of the next expansion cycle. Hence, the

transmission of data in the send queues constructed in the previous expansion

cycle is initiated before the local expansions in the current cycle. Thus, the local

expansion computations (step 3) performed by each processor are overlapped

with the communication time required for the initiation and arrival of the data

from its four neighbor processors.

However, due to the load imbalance, all four messages ma}'· not be received

upon completion of the local expansioi: computations at step 3. In order to

reduce idle time in such cases, each processor performs in place expansion

computations for the cells in already received queues. Each processor checks

the status of the receive queues by polling whenever it completes the in place

expansion of the cells in the already received queues. In this way, the in place

expansion computations performed by a processor on an already received queue

may be overlapped with the transmission time(s) of the message(s) which are

initiated from its other neighbors and which have not arrived yet.

Note that, in the non-overlapped scheme, local boundary cells in the receive

CHAPTER 3. PARALLELIZATION OF LEE’S ALGORITHM 47

1 . Issue four non-blocking receives.

2. Issue four non-blocking sends for front wave cells at depth q to
initiate the transmission of send queues to corresponding processors.

3. Expand the cells (of depth q) in local expansion queue and add the
adjacent cells belonging to the local grid of the neighbor processors
into corresponding send queues.

4. Poll the status of the issued non-blocking receives and expand the
cells !of depth q) in already received queues and add their adjacent
cells into the local queue or send queues. Repeat step 4 until all
four messages are received and processed.

5. Repeat the steps 1,2,3,4 until the target cells is reached (.Sonly) or
a collision occurs (S-l-T scheme).

Figure 3.13. Overlapping communication and computation

queues are examined only for the sake of adding them into the local expansion

queue. That is, the status of these boundary cells are checked and these cells

are labeled and added into the local expansion queue if they are found to

be currently free cells. Hence, the expansion computations for such cells are

performed on the next cycle. However, in the overlapped scheme, the free

boundary cells are labeled and examined for expansion at step 4 of the same

expansion cycle. Hence, a special in place expansion code can be written for

each receive queue. Free boundary cells in a particular receive queue are not

examined for expansion in the direction of that receive queue. For example,

free boundary cells in the West Receive Queue are not exanrined for expansion

in the west direction. In the non-overlapped scheme, the label information

of the cell in the local expansion queue should be accessed from the status

array and checked to avoid the expansion in the labeling direction. Hence,

the in place expansion computations reduces the comiDlexiry of an individual

expansion computation.

The overlap mentioned so far is in fact the overlap of the local compu­

tation in an individual processor with the initiation and transit times of the

messages sent from its four neighbor to that processor. That is, algorithm in

CHAPTER 3. PARALLELIZATION OF LEER ALGORITHM 48

Fig. 3.13 achieves overlap of communication and computation between neigh­

bor processors. The algorithm given in Fig. 3.13 also achieves the overlap of

communication and computation within each individual processor. These local

overlaps can be achieved in both local receive and send operations as discussed

in the following paragraphs.

The node executive (NX/2) of the iPSC/ 2 handles short messages (< 100

bytes] and long messages (> 100 bytes) differemly. Short incoming messages

are always stored first in a buffer inside the NX/2 area regardless of a pending

receive for that message and then copied from ihe N X/2 buffer to the user

buffer. However, long incoming messages are cirectl}' ̂ copied into the user

buffer if a receive is pending for that message. If not, the message is kept in

the NX/2 buffer until a receive is issued for that message. The local messages in

the given algorithms are predicted and observed ro be, in general, of long type

messages. Hence, although the receive queues are to be processed at step 4,

non-blocking receive messages are issued as early as possible at step 1 of each

cycle. This scheme is chosen to ensure that receives are already pending for

the incoming long messages so that they can be directly copied into the receive

queues instead of being copied into the N X /2 area and then transferred into

the indicated receive queues due to the late issued receives.

Ai step 2, the send operations for the send queues constructed at steps 3 and

4 of the previous cycle are initiated. Then, each processor continues execution

by expanding the front wave cells in its local queue as indicated at step 3.

Hence, the set-up time and the transit time for the four send operations at

step 2 are overlapped with the computations a: step 3 and even at step 4

of the given algorithm. The set-up and the local transit times for the send

operations are overlapped on the cycle-stealing basis and the interprocessor

network transit time of the messages are overlapped completel)'.

The non-blocking send messages issued at step 2 returns control back to

the node program just after informing N X /2 about the send requests. The ex­

pansion computations at steps 3 and 4 may contaminate the buffers allocated

for the send queues by inserting new cells (to be transmitted on the following

cycle). A switching buffer is used for each send queue in order to ensure the

CHAPTER 3. PARALLELIZATION OF LEE’S ALGORITHM 49

transmission of the correct data. A buffer of size 2M (BufFer[2M]) is allocated

as a send queue, where M is the maximum number of front wave cells that can

be transmitted between any two neighbor processors at any depth. The first

half of the buffer (Bulfer[O...M-l]) is transmitted, while expansion computa­

tions at steps 3 and 4 use the second half of the buffer (Buffer[M...2M-l]) in

even expansion cycles and vice versa in odd expansion cycles. In this scheme, a

buffer area is used for transmitting data on alternate expansion cycles. Hence,

synchronization on c.n asynchronous send message issued at step 2 of an ex­

pansion c3 ĉle can be delayed until step 3 of the next expansion cycle, thus

providing the maximum overlaj:) between communication and computation.

3.5 Asynchronous Scheme

The local synchronization steps in the given algorithms require that at the

end of each front wave expansion cycle, each processor communicates to its

four neighbor processors even if there is no data in send queues. In that case,

each processor may send and receive null data. This can be avoided by sending

messages to neighbors only when there is data in the send queues. The neighbor

processors do not wait for the messages to arrive from neighbor processors and

continue to the expansion of cells in the expansion queue. As a result of this

modification, it is possible that the fist time target cell is reached it is not

the shortest path (see Fig. 3.15). In order to ensure termination onlj'̂ when a

shortest path is found, it is necessary to associate cells with path depths from

the source. The asynchronous parallel algorithms for both Sonhj and S+ T

schemes are given in the following subsections. In both algorithms, since the

cycle notion of the previous algorithms are lost, the the counter termination

scheme2 can not be used. Therefore, the counter termination schemel has

been used.

3.5.1 Expansion Starting From Source Only

This scheme initiates a breadth first search starting from source cell. The

CHAPTER 3. PARALLELIZATION OF LEE'S ALGORITHM 50

H ost P rogram

1. last-path = empty, spath = oo
2. Enable node processes
3. Wait message from nodes.
4. If new-depth < spath then

last-path = new-path.
spath = new-depth.

iii. send spath to nodes.
5. If all processors empty then

terminate the program.

1.
11.

Node Program

1. path-depth = oo
2. Remove a cell from local queue

If (cell’s depth < (path-depth - 1)) th en Expand the cell.
3. Send non-empty send queues to neighbor processors.
4. I f a queue is received then

put the cells into the local queue.
5. If a message is received from host then

path-depth = message value.
6. Inform the host about status (path found etc.)
7. Goto step 2.

Figure 3.14. Host and node programs for the asynchronous Sonly scheme.

CHAPTER 3. PARALLELIZATION OF LEE’S ALGORITHM 51

algorithms for host and node programs are given in Fig. 3.14. The communica­

tions between the host and the node processors are performed at step 3 and 4

of the host algorithm and steps 5 and 6 of the node algorithm. In this scheme,

additional information is used by a two-byte word for each cell in the send and

receive queues to indicate its distance from source cell. Similarly, an additional

two byte word is associated with each status word of the local status array. If

a local cell has a hibeled routing status on the source front wave then this word

indicates the depth of the cell from the source cell.

The expansion of a cell at step 2 of the node algorithm needs more expla­

nation. First, if the depth dc of the cell c being expanded is larger than or

equal to path-depth (i.e. dc > path — depth) then that cell c is not expanded.

This is done because a new path will not have a depth less thtin the previous

path. If, however, the depth of the cell being expanded is less than path-depth

then its adjacent cells are examined for expansion. If the current status of an

adjacent cell Uc is already labeled then its depth dâ is compared with the depth

dc of the cell being expanded. If its depth is less or equal to the depth of the

cell being expanded, (i.e. dâ < [dc + 1)) then the adjacent cell is discarded.

Otherwise, the adjacent cell Uc is added to the front of the local queue (instead

of adding it to the rear of the local queue) with its depth being one more than

the depth of the cell being expanded (i.e. dâ = dc -|-1) (see Fig. 3.16j. Hence,

the local queue behaves as a LIFO instead of FIFO for such collisions. The

LIFO scheme implemented for such collisions implicitly prevents the further

expansion of the cells in the local queue which are expanded originating from

the indicated adjacent cell. This scheme is expected to increase the overall

performance since the expansion of such cells in local queue with their current

depth information have no chance to find a shorter path between the source

and the target.

3.5.2 Expansion Starting From Source and Target

The host and node algorithms for the asynchronous S-hT scheme are shown

in Fig. 3.17. The communications between the host and the node processors

are performed at step 3 of the host algorithm and step 5 and 6 of the node

CHAPTER 3. PARALLELIZATION OF LEE’S ALGORITHM 52

m

Figure 3.15. Failure to find the shortest path. If processors Pk, Pm and P; are
faster than processor P;, target T can be reached by a longer path.

CHAPTER 3. PARALLELIZATION OF LEER ALGORITHM 53

m

Figure 3.16. Labeling of an already labeled cell by a shorter path, the shaded
cells have been reached by a shorter path hence the cells expanding form cell
c will relabel the shaded cells

CHAPTER 3. PARALLELIZATION OF LEE’S ALGORITHM 54

H ost P rog ram

1. last-path = empt}',spath = oo
2. Enable node processes
3. Wait message from nodes.
4. If new-depth < spath th en

i. last-path = new-path.
ii. spath = new-depth.
iii. send spath to nodes.

5. If all processors empty th en
terminate the program.

N ode P rog ram

1. path-depth = oo , source-depth=0,target-depth=0.
2. If (cell = = target’s child) th en

If (c-depth + source-depth < path-depth) th en
expand the cell.

else
If (c-depth + target-depth < path-depth) th en

expand the cell.
3. send non-empty send queues to neighbors
4. If (a queue is received) th en

put the cells into local queue.
5. If (message from host) th en

If (first time receive)then
Exchange Minimum
path-depth = message value.

6. Inform the host about status.
I. Goto 2.

Figure 3.17. Host and node programs for the asynchronous S-fT scheme.

CHAPTER 3. PARALLELIZATION OF LEE’S ALGORITHM 55

algorithm. In this scheme, additional information is used by a two-byte word

for each cell in the send and receive queues to indicate its depth either from

source cell or from target cell. This information is represented by c-depth

for a cell in the above algorithm. Similarly, an additional two byte word is

associated with each status word of the local status array. If a local cell has a

labeled routing status on the source front wave or target front wave then this

word indicates the depth of the cell from the source cell and the target cell

respective!}’.

The expansion of a cell c at step 2 of the node algorithm needs more ex­

planation. If the current status of an adjacent cell ac is labeled with the same

tag of the cell c being expanded, then its depth dâ is compared with the depth

dc of the cell being expanded. If its depth is less than or eqiud to the dej^th

of the cell being expanded (i.e. dâ < dc), then the adjacent cell is discarded.

Otherwise, the adjacent cell is added to the front of the local queue (instead of

adding it to the rear of the local queue) with its depth being one more than the

depth of the cell being expanded. Hence, the local queue behaves as a LIFO

instead of FIFO for such collisions as is discussed in Section 3.5.1.

In node programs, two counters for counting the source cell depths (source-

depth) and target cell depths (target-depth) are held. This is necessary because

the path is found by the collision of two front Avaves. In addition, unlike

synchronous S+ T scheme, at step 5 of the node programs there is an exchange

of the minimum source-depth and target-depth of the all processors. If the path

found signal is received from the host processor, each node processor searches

the its internal queue for minimum source-depth and target-depth, then these

local minimums are exchanged in log(P) time for global minimums.

As is stated in [8], due to the need for keeping depth information, asyn­

chronous scheme may be impractical for large grid dimensions.

3.6 Parallel Path Recovery and Sweeping

As is presented in section 3.7, it has been experimentally observed that S+T
scheme outperforms the Sonly scheme and overlapped scheme gives better

CHAPTER 3. PARALLELIZATION OF LEE’S ALGORITHM 56

performance results compared to the non-overlapped scheme. Hence, paral­

lel path recovery and sweeping phases are derived assuming that overlapped

S-f-T scheme is used for front wave expansion phase.

At the end of the front wave expansion phase, the host program broadcasts

the global locations of the colliding adjacent cells. As is discussed earlier these

two adjacent cells may belong to the same processor or to two different adjacent

processors. Then, the processor(s) which own(s) these two adjacent cells Ci cxnd

C2 starts the distributed path recovery phase. The distributed path recoverj'^

phase is terminated after both the source and the target cells are labeled as

blocked.

In the front wa\ e expansion phase, local cells are examined for expansion

at step 3 and step 4 of the overlapped S-f-T scheme (Fig. 3.13). The local

cells examined at step 3 may be either boundary cells or interior cells. The

local cells examined at step 4 are boundary cells. A cell c being examined for

expansion should be added into the local sweep queue if all of its four adjacent

cells are either blocked or already labeled with the same tag of the cell c. At

this step, the decision for adding a local interior cell c, into the local sweep

queue can easil}'· be taken locally by an individual processor since the dynamic

status information for all four adjacent cells of a interior cell c,· is maintained

by the same individual processor. However, the decision for adding a local

boundary cell ct, into the local sweep queue may not be taken by an individual

processor. The situation may be such that the cell ci can only be expanded

into non-local adjacent cell(s) that may be blocked or labeled with the same

tag of the cell ci. However, the updated status information about this/these

non-local ccll(s) is/are maintained by the neighbor processor(s). The decision

for adding such local boundary cells into the local sweep queue may recpiire

extra communications to exchange updated status information about the rel­

evant boundary cells. In fact, only these cells will introduce interprocessor

communication during the sweeping phase. If Cb can be expanded into an at

least one local adjacent cell then there is no need to add Cb into the sweep queue

even if a non-local adjacent cell of cell Cb is found to be free by a neighbor pro­

cessor. Because, the parent cells on the paths from Cb back to the target or

source cell will be unlabeled starting from a grandchild cell (of Cb) in the local

CHAPTER 3. PARALLELIZATION OF LEE’S ALGORITHM •57

expansion or sweep queue. Hence, in order to avoid interprocessor communica­

tion during the sweeping phase and the extra communication during the front

wave expansion phase, local boundary cells which can only be expanded to

non-local adjacent cells at step 3 of the overlapped S-fT front wave expansion

algorithm are added into the sweep queue (see Fig. 3.18). The proposed scheme

increases the total number of cells in the sweep c^ueues hence increasing the

total amount of sweeping computations compared to the sequential algorithm.

However, this increase will decrease with increasing h,w values and increasing

blockage factors.

The first algorithm for the parallel implementation of the path recovery and

sweeping phases is given in the following subsection. This algorithm starts

sweeping phase after the completion of path recovery phase.

3.6.1 Non-pipelined scheme

In this scheme [13], the sweeping phase starts after the completion of path

recovery phase. The host and node programs for the non-pipelined scheme are

given in Figures 3.19 and 3.20.

Since the path recovery phase is highly sequential by nature, most of the

processors wait idle during the path recovery phase. In order to reduce this

idle time, an efficient algorithm is proposed in the next subsection. In this

scheme path recovery and sweep phases are pipelined in a way that processors

which do not perform path recovery, can initiate the sweeping of some of the

cells in its expansion and sweep queues [13].

3.6.2 Pipelined Scheme

Assume that the path from source to target is found in p cycles during the front

wave expansion phase (assuming Sonly scheme is used for front wave expansion

phase). Also assume that the cell Q is reached after q cycles of path recovery

phase as is illustrated in Fig. 3.21.

CHAPTER 3. PARALLELIZATION OF LEE’S ALGORITHM 58

Xi X̂
J

1 p"
*

iilillli
l i i l i

-4-
1 < \'x ■'·' \ ■■'·'\<$ s ;·..

f ■sis«sii4i:

(a)

P 1
P

J

-4-
1

t

(b)

Figure 3.18. (a) Cell 1 is added into the sweep queue without any extra com­
munication (b) Cell 1 is added into the sweep queue in parallel algorithm while
it is not in sequential algorithm

CHAPTER 3. PARALLELIZATION OF LEE’S ALGORITHM 59

1. Start path recovery phase by sending Ci and C2 to the processor(s)
which own(s) these cells.

2. Wait for source and target reached signal from nodes.
3. Broadcast start sweep signal to nodes.

4. Wait for P sweep terminated signals from nodes.

5. Terminate the distributed sweep phase.

Figure 3.19. Host program for the non-pipelined path recovery and sweep phase

1. Wait for a path recovery cell C.
2. Follow the labels starting from cell C until source, or target, or a

non-local boundary cell is reached, and label visited cells as blocked.
Inform the host if source or target cell is reached. If a non-local
boundary cell is reached, send this cell to the neighbor processor
which owns it.

3. Repeat steps 1 and 2 until a start sweep phase signal is received
from host.

4. Remove a cell c from the local e.xpansion or sweep queue.

5. Follow the labels starting from c until a blocked, or an unlabeled,
or a non-local boundary cell is reached. Unlabel visited cells.

6. Repeat steps 4 and 5 until both sweep and expansion queues be­
come empty. Then inform the host about the termination of local
sweeping phase.

Figure 3.20. Node program for non-pipelined path recovery and sweeping
scheme.

CHAPTER 3. PARALLELIZATION OF LEE’S ALGORITHM 60

C

Figure 3.21. The calculation of r value.

Let cell (7 be a cell with depth do (from source) in the local expansion queue

or in the sweep ciueue constructed during the front wave expansion phase, in

the worst case the expansion path from C to source joins the shortest path from

target to source at a cell X as is illustrated in Fig. 3.21. Then, the depth of

the path from X to source, dx, is

dx = do - dcx = dn — dj (3.1)

where dcx and dxq are the depths of the paths from C and Q to X respectively.

And dg = p — q is the depth of Q to source. Hence,

dcx = {dc - P + q) + dxQ (3.2)

However,

CHAPTER 3. PARALLELIZATION OF LEE’S ALGORITHM 61

dcx + dxQ > McQ (3.3)

where M cq is the manhattan distance between C and Q.

Inserting (3.2) into (3.3) we have ,

{do — p + q) + dxQ -\- dxQ > Mcq (3.4)

dxQ > ^{McQ P p - q - do) (3.5)

Inserting (3.5) into (3.2)

dcx > d c - p p q p \{McQ P p - q - d c) (3.6)

dcx ^ -jj^^dcQ P dc — p P q) (3.7)

Hence,

r = -^{McQ P d c - p P q) (3.8)

sweeping cycles can be performed for a cell C in the expansion or sweep queue

at that instance of path recovery phase. After r cycles of sweeping is done, the

new cell is added into the sweep queue with its new depth to source.

In the pipelined scheme, local sweep and expansion queues of each processor
should have depth information. This depth information is used to show the

CHAPTER 3. PARALLELIZATION OF LEE’S ALGORITHM 62

1. If a cell is received for path recovery, perform path recovery until
source or target or boundary is reached.

2. If boundary is reached during path recovery then send the boundary
cell to corresponding neighbor processor. If boundary cell is tagged
from target, set Qt = boundary cell, otherwise set Qg — boundary
cell. Broadcast Qg or Qt.

3. If source or target is reached during path recovery inform host.
4. If not performing path recovery then remove a cell C from local

expansion queue or local sweep queue if the local expansion queue
is empty.

(a) Calculate the r value for the cell C .
(b l If r < 0 then put the cell back into the sv.-eep ciueue.
(c) If r > 0 then perform sweeping until r becomes 0 or a blocked

cell or an unlabeled cell or a boundary cell is reached.
(d) If r = 0 is reached, add the new cell into sweep queue with

the new depth information.

5. If new Qg or Qt received replace the old ones.

6. If end of path recovery signal is received from host then goto step 7
else goto step 1.

7. Perform the non-pipelined sweep algorithm.

Figure 3.22. Node program for the pipelined path recovery and sweep phase.

distance of a cell from source or target, according to its tag if S+T scheme

is used in front wave expansion phase. This depth information is required to

calculate r, the number of sweeping cycles that can be performed for a cell. If

S+ T scheme is used in front wave expansion phase, then there are two front

waves. Hence, the path recovery is performed in two directions, one towards

source and other towards target. Therefore, there are two Q cells, Qg and

Qt, reached after qg and qt cycles of path recovery phase towards source and

target, respectiA'ely. For each cell, r sweeping cycles is calculated using the

corresponding Q cell in Eq. (3.8). The host program for the pipelined scheme

is the same as the host program given for the non-pipelined scheme. The node

program for the pipelined scheme is given in Fig. 3.22

CHAPTER 3. PARALLELIZATION OF LEE’S ALGORITHM 63

3.7 Experimental Results

The proposed parallel algorithms has been coded in C and run on an iPSC/2

hypercube multicomputer with 8 nodes. Intel’s iPSC/2 has one host processor,

to perform the user interface tasks, down-loading and off-loading. Host pro­

cessor in iPSC/2 contains 80386/80337, GAKbyte cache, and 8 Mbytes of main

memoiy. Each node processor contains 80386/80387, QAKByte cache, and 4
Mbytes of main memory.

The performance of the proposed algorithms have been experimented with

randomly generated partial grids. These partial grids were generated by intro­

ducing blockages to represent existing interconnections. The blockages repre­

sented 40-45 % of the grid. All grids used for experimentation are N x N square

grids of sizes 256x256, 512x512, and 1024x1024. The nets that were used for

routing were also chosen randomly with the approximate length of N. The ex­

ecution times represented in the figures represent the average execution time

to route 4 different nets for each grid.

The abbreviations in the figures stand for the following :

S -p T Expansion starting from source and target
s : Expansion starting from source only

M Communication with host after manhattan distance

o Overlapping the communication and computation
NO Non-overlapped scheme
AS Asynchronous scheme
N O N PIP Non-pipelined sweep

PIP Pipelined sweep

First, the performance of the parallel front wave expansion algorithms are

experimentally measured and compared.

Fig.3.23 was obtained by running synchronous algorithms for 1024x1024

grid on 4 processors. The effect of the h,w values on the performance of the

algorithms was tested by varying h,w values. As is seen in Fig. 3.23, the com­

putation time decreases at the beginning due to the decrease in the volume of

CHAPTER 3. PARALLELIZATION OF LEEH ALGORITHM 64

communication with increasing w values. After a minimum point, the compu­

tation time starts to increase. This is due to the increase in the processor idle

time and deterioration in the load balance.

Fig. 3.24 represents the speed-up curves for different parallel schemes ob­

tained on 1024x1024 grids by running the parallel algorithm with optimum h,w

values. As is seen in the figure, S-|-T scheme outperforms the Sonly scheme,

due to the increase in the processor utilization in the S-|-T scheme. The over­

lapped scheme performs better compared to non-overlapped scheme due to the

reasons discussed in Section 3.4.

Figures 3.25 and 3.26 were obtained by running the overlapped S-|-T scheme

with optimum w values on 256x256, 512x512 and 1024x1024 grids. As is seen

in Fig. 3.25, speed-up increases with increasing grid size and increasing number

of processors. Note that, in Fig. 3.26 efficiency remains almost constant when

both the grid dimension and number of processors are doubled. Hence, it can

be concluded that the S+ T scheme scales onto the hypercube.

The performance of the as3mchronous scheme is very low compared to the

s}mchronous schemes as illustrated in Fig. 3.27. This is due to the computa­

tional overhead introduced in the expansion of an individual cell and the need

to examine all the cells in the local expansion queue before terminating the

front wave expansion phase.

After measuring the performance of the parallel algorithms for front wave

expansion phase, the path recovery and sweep algorithms were applied to the

grids used in front wave expansion phase. For this purpose, the overlapped

S+ T algorithm was run on the grids, then parallel path recovery and sweep

algorithms were employed to construct the path between two terminal pins

and sweep the grid surface. The timing results are the average of the time to

perform path recovery and sweep for 4 two-pin nets.

Fig. 3.28 represents the effects of h,w values on the performance of the path

recoveiy phase. The timings were obtained by running pipelined and non-

pipelined algorithms for 256x256 grid on 8 processors. As is seen in Fig. 3.28,

the computation time of the path recovery phase decreases with increasing w

CHAPTER 3. PARALLELIZATION OF LEE’S ALGORITHM 65

(a)

-CJ- M ,S,0
- · - M,S+T,NO
H3- M ,S+T,0
-o- M,S,NO

(b)

Figure 3.23. Effect of w values on the performance of the parallel algorithm
for N = 1024, P = 4. (a) h = w (b) h = 2w

CHAPTER 3. PARALLELIZATION OE LEE’S ALGORITHM 66

-Q- s,0
S+T,NO

-*»- S,NO
S+T,0
Ideal

Pigure 3.24. Speed-up for various parallel algorithms for front wave expansion
phase

N = 256
N = 512

HO- N = 1024
-0- ideal

Figure 3.25. Speed-up vs grid size

CHAPTER 3. PARALLELIZATION OF LEE’S ALGORITHM 67

-Q- P = 2
P = 4

-D- P = 8
-0- ideal

Figure 3.26. Efficiency vs grid size

AS , S only
H A S , S + T

Ideal

Figure 3.27. Speed-up. ligures for asynchronous algorithms

CHAPTER 3. PARALLELIZATION OF LEE’S ALGORITHM 68

values due to the decrease in the number of interprocessor communications.

Since the S+ T scheme was used in front wave expansion phase, the path re­

covery starts at the collision points and proceeds towards source and target.

Fig. 3.29, obtained by stunming the execution times of path recovery and

sweep phases, illustrates the effect of the h,w values on the performance of the

path recovery -l· siveep phase. The timings were obtained by running algorithms

for 256x256 grid on 8 processors. Execution times of both algorithms decrea.se

with increasing w at the beginning due to following two reasons. First, in the
path recovery phase, the number of interprocessor communications decreases

with increasing w values. Second, in the sweeping phase, the size of the local

expansion ciueues decrease with increasing w values due to the decrease in

the number of lioundary cells. However, enicienc}^ begins to decrease after

a turn over value for w in each scheme due to the deterioration in the load

balance during the front wave expansion pha.se. Note that, deterioration in the

locid bahmee during the front wa\'e expansion phase causes deterioration in the

load balance during the sweep phase. That is, different processors may have

very different number of grid cells to unlabel during the sweep phase. As is

also seen in Fig. 3.29, the pipelined scheme degrades the performance slightly

due to the computational overhead involved in the calculation of r values.

The percent processor idle time in the non-pipelined scheme will increase with

increasing number of processors in the hypercube. How'ever, the computatioiud

overhead introduced by the pipelined scheme is fixed for each cell in the local

queues. Hence, the pipelined scheme is expected to increase the performance

on hypercubes wdth larger number of processors.

Speed-up curves in Fig. 3.30 are obtained by running the paradlel (pipelined

and non-pipelined) path recovery -f sweeping algorithms using the optimal h, w

value for 512.x512 and 1024x1024 grids. As is seen in this figure, almost linear

speed up is obtained for large grid sizes. This is because of the fact that the

proposed parallel algorithm a.voids interprocessor communication. Deviation

from the ideal speed-up curve is due to the communication overhead in path

recovery and load imbalance introduced in the front w'ave expansion phase.

CHAPTER 3. PARALLELIZATION OF LEE’S ALGORITHM 69

-<3t- PIP
-·- NON-PIP

(a)

Log(w)

(b)

Figure 3.28. Effect of w values on the performance of path recovery (a) h = w
(b) h = 2w

CHAPTER 3. PARALLELIZATION OF LEE’S ALGORITHM 70

(a)

log(w)

(b)

Figure 3.29. Effect of w values on the performance of path recovery + sweep
(a) h = w (b) h = 2w

CHAPTER 3. PARALLELIZATION OF LEE’S ALGORITHM 71

2 3 4 5 6
NUMBER OF PROCESSORS

-Q- PIP, 512
NONPiP, 512

HOh NONPIP , 1024
-0- PIP , 1024

ideal

Figure 3.30. Speed-up for parallel algorithms for sweep -H path recovery phase

4. PARALLEL ALGORITHMS FOR
MULTIPIN NETS

In this chapter, the parallelization of two Lee t}qDe multipin net algorithms is

discussed. The grid partitioning and mapping schemes proposed in Section 3.1

are used for the parallelization of these two algorithms. The local data struc­

tures used in these algorithms are exactly similar to the local data structure

design discussed in Section 3.2.1 and illustrated in Fig. 3.5. That is, each

processor holds a local status array, four send and four receive queues, a local

expansion queue and a local sweep queue. The termination detection issues

discussed in Section 3.3 also holds for the parallel algorithms in this chap­

ter. Hence, these details are excluded in the presentation of the two parallel

algorithms given in this chapter.

4.1 Parallel Akers’ Algorithm for Multipin Nets

In this algorithm, a pin is arbitrarily chosen as a starting pin (starting source

cell), for a unidirectional front wave expansion. The host program distributes

the pins to the corresponding node processors. An arbitrary pin is chosen to

be source, other pins are labeled as targets. The node that has the source

starts to propagate a single ended front wave. The host program plays the

role of managing the termination detection and synchronization between node

processors during front wave expansion phase, path recovery phase and sweep

phase as is discussed in Chap. 3. The parallel algorithm for node program is

given in Fig. 4.1.

72

CHAPTER 4. PARALLEL ALGORITHMS FOR MULTIPIN NETS 73

1. Each processor examines the cells in its local expansion queue for
expansion in four directions. The local adjacent cells of the cells
being expanded are examined for adding them to the local expansion
queue for later expansion. The adjacent cells which are detected to
belong to grid partitions assigned to neighbor processors are added
to the corresponding send queues for later communication.

2. Each processor transmits the information in its four send queues to
their destination processors.

3. Each processor examines the cells in its four receive queues for
adding them to its local queue for later expansion.

4. If one of the terminal cells is labeled then inform the host and other
processors to start the parallel path recovery and sweep phases.

5. Each processor adds the local visited cells during the path recovery
phase into its local expansion queue as a new set of sources.

6. Repeat steps 1,2,3,4,5 until all the terminal cells are labeled.

Figure 4.1. Node program for Akers’ algorithm

At step 4 of the algorithm, if one unlabeled terminal cell is reached, the pro­

cessor that detects the situation informs the host and other processors. Then,

processors start path recovery. In path recovery phase, the visited cells are

saved as the set of new local sources of each processor. At the end of sweep­

ing phase, each processor adds these local sources into local expansion queue

to start new search waves from these sources. Note that, all local expansion

queues are flushed at the end of the sweep phase.

Note that, the first step (finding the first interconnection) of the Akers’

algorithm is very similar to the Sonly \'ersion of the piirallel Lee’s algorithm

discussed in Section 3.2. However, in the following steps Akers’ algorithm

initiates multi unidirectional search waves starting from the cells on the last

connection path constructed. It is very likely that new set of sources will be

distributed among a number of processors. Hence, a number of processors will

be busy with the computations associated with the expansions of these multi­

search waves even during the initial expansion cycles. These multi-search waves

will reach the local grids of the idle processors very quickly thus increasing the

overall processor utilization. Hence, parallel Akers’ algorithm is expected to

CHAPTER 4. PARALLEL ALGORITHMS FOR MULTIPIN NETS 74

yield better performance results compared to parallel two-pin net algorithms.

4.2 Parallel KruskaPs Steiner Tree Algorithm

In these scheme, each entry in the local status array is a two byte word to

keep cell information. First byte is used to encode the labeling and spatial

information of a cell, as is discussed in Chap. 3. The second byte is used to

keep the tag of the terminal cell from which that grid cell is reached bĵ front

wave originating from that terminal cell. The tagging of the terminal cells is

performed by numbering the cells starting from 0 to T — 1, if T terminal cells

exist. For example, if the number in the byte is equal to 5, that means that

grid cell is labeled by front wave originating from terminal cell tagged as 5.

In a single byte, one can encode up to 256 cell tags, which is a reasonable

number for gate array routing. This byte in the two-byte status word is also

used for detecting the collision of two front waves belonging to different trees

and for detecting to which tree the labeled cell belongs. This is done in the

following way. Each node and host processor hold a one dimensional array of

size T (TreeArray[O...T — 1]). Each element of this array, which is accessed by

indexing using the tag of the terminal cell, holds the tag of the tree (a number

which is unique for each tree) to which the terminal cell belongs. This means

that the front wave propagated from this terminal cell and grid cells labeled

by this front wave also belongs to the same tree. For example, TreeArray[5]

holds the tag of the tree that the terminal cell 5 belongs to. Initially, since

each terminal cell forms a distinct tree, each location in the tree array has a

distinct number. When two trees are merged, this array is updated so that

all terminal cells belonging to the same tree has the same number, which is

unic[ue for that tree, in the corresponding locations of the TreeArray. Assume

that the tag byte of a local grid cell c is 5. It means that the cell c has been

labeled originally by the front wave originated from terminal cell 5. However,

it also means that the cell c belongs to tree tagged as TreeArrayfSj.

At the beginning, host processor distributes the pins to corresponding pro­

cessors. The processors, that receive these pin(s), put them into their local

expansion queues. Then processors which have non-empty local expansion

CHAPTER 4. PARALLEL ALGORITHMS FOR MULTIPIN NETS 75

1. Send the pins to corresponding nodes.
2. Send enable signal.
3. Wait for message from nodes.

I f path found signal received then
Begin

Receive Ci and C2
If Cl and C2 are from different trees th en

Begin
Record Cl and C2 to be used in path recovery.
Join two Trees and update Tree information.
Send updated tree information to nodes.

E nd.
E nd.

5. I f all pins are connected th en
Begin

Broadcast start path recovery signal and pairs of collision
cells to nodes.
Wait end of path recover}̂ · signals from nodes.
Broadcast start sweep signal.
Wait end of sweep signals from nodes
Terminate the program.

E nd.
6. Goto step 3.

Figure 4.2. Host program for parallel algorithm for multipin nets
Kruskal’s algorithm

using

queues, start a breadth first search expanding from these pins. The host and

node algorithms are given in Figures 4.2 and 4.3.

The host and node processors hold the information about the currently

constructed trees. The host program is assigned as a manager to keep track

of the currently constructed tree, since more than one processor may detect

intersection of different or the same trees at the same expansion cycle. The

host processor is chosen as a master in order to prevent different processors

constructing different local tree structures depending on their local decision.

If one processor detects intersection of two trees, it informs the host processor

and continues the execution. The host processor compares the new intersection

with the tree information. If the intersection belongs to two different trees then

it updates the tree array (TreeArray) and broadcasts the TreeArray to node

processors. This avoids the further intersection of the same trees. However,

CHAPTER 4. PARALLEL ALGORITHMS FOR MULTIPIN NETS 76

1. Each processor examines each cell in its local queue for expansion in
four directions. The local adjacent cells of the cell being expanded
are examined for adding into the local queue for later expansion.
The unlabeled cells are labeled to point to the parent cell and the
tree information of the cell in the status array is updated so that the
adjacent cell Uc belongs to the same tree as its parent cell. If adjacent
cell Uc is labeled and belongs to the same tree as its parent, then
adjacent cell is ignored. If Uc is labeled and belongs to a different
tree, that indicates the collision of two trees, the colliding cells are
sent to the host processor along with the tree information of each
cell. The adjacent cells belonging to the grid partitions assigned to
the neighbor processors are put into the corresponding send queues
along with the tree information of each cell.

2. Each processor sends the four send queues to neighbor processors.

3. Each processor examines the cells in its receive queues and add them
into the local queue for later expansion.

4. If new tree information is received then update the old tree infor­
mation.

5. Repeat steps 1,2,3,4 until start path recovery signal is received.

6. Receive pairs of collision cells to start path recoveiy.

7. Send end of path recovery signal to host.

8. Perform sweep phase.

9. Send end of sweep signal to host.

Figure 4.3. Node program for the parallel algorithm for multipin nets using
KruskaPs algorithm

CHAPTER 4. PARALLEL ALGORITHMS FOR MULTIPIN NETS 77

since node processors run in an asynchronous manner, the intersection of the

same trees may be detected by more than one processor. The host program,

in that case, only takes the first received intersection as valid and discards the

others. The node processor detects the intersection of trees using the latest

structure. Note that, the tree information has to be associated with the cells

sent to the neighbor processors. Hence, each entry in the send and receive

queues has an e.x'tra b}Te to be used in the same way as the second byte of the

status word.

.•\fter all trees are merged, the host program sends the start of path recover

signal and the pairs collision cells (collision points) to corresponding nodes.

The nodes that receive those cells start path recovery phase. When all edges

of the tree is constructed, the nodes start the distributed sweep phase.

The sequential Kruskal’s Steiner tree algorithm requires that all search

waves propagate at the same speed. Hence, the queues of different search

waves are merged. However, as explained in Section 3.2.2. some processors

may be lagging some others may be leading. This requires that the first time

a processor detects an intersection, that intersection may not be the shortest

path between two trees. Hence, a synchronization like the one pro^iosed in

Section 3.2.2 should be used. However, such a synchronization will obviously

decrease the performance of the algorithm. On the other hand, the Kruskal’s

Steiner tree algorithm does not guarantee to find the optimal solution. That

is, the cost of the solution found by this algorithm is bounded by some error

(See Eq. (2.1)). In the parallel algorithms implemented in this work, the first

tree intersection received by the host processor is assumed to be the shortest

path between these two different trees. That is, the protocol in Section 3.2.2 is

not implemented to wait for a couple of more expansion cycle to find a slightly

better tree intersection.

4.3 Experimental Results

The algorithms were coded in C language and run on iPSC/2 hypercube mul­
ticomputer with 8 processors. The algorithms were tested on square grids of

CHAPTER 4. PARALLEL ALGORITHMS FOR MULTIPIN NETS 78

sizes 512x512 and 1024x1024. Randomly generated blockages were introduced

to represent the previously routed nets. The blockages constituted the 40-45%

of the grid area. The algorithms were tested to route 4,6, 7,10 pin nets. For

this purpose, four 10 pin nets were generated randomly for each grid size. The

length of the nets are chosen to be proportional to the grid size. The 4,6,7

pin nets were constructed by randomly choosing 4,6,7 pins out of the pins in

the 10-pill net. The timing results obtained are the average execution times

(frontwave expansion -f path recovery + sweep) for routing four different nets

for each grid size and for each number of pins.

Fig. 4,4 represents the variation of the execution time of the parallel Akers’

algorithm ivith h,w values. This figure is obtained by running Akers’ algorithm

for a 512x512 grid on 4 processors for 10 and 6 pin nets. The time decreases

at the beginning due to the decrease in the communication overhead with

increasing h,w values. After a turnover value it starts to increase due to the

increase in the processor idle time. Note that the curves obtained for 10 pin

net is similar to the one for 6 pin net.

Fig. 4.5 represents the variation of the execution time of the parallel Kruskal’s

Steiner tree algorithm with h,w values. This figure is obtained by running

Kruskal's Steiner tree algorithm for a 512x512 grid on 4 processors for 10 and

6 pin nets. The time decreases at the beginning due to the decrease in the

communication overhead with increasing h.w values. After a turnover value it

starts to increase due to the increase in the processor idle time. Note that the

curves obtained for 10 pin net is similar to the one for 6 pin net.

Figures 4.6 and 4.7 represents the speed-up figures for Akers’ algorithm.

These figures were obtained by running ,A.kers’ algorithm for 512x512 and

1024x1024 grids at optimum h,w values for 4,7,10 pin nets. As is seen in

the figures the speed-up increases with increasing number of pins and increas­

ing number of processors. Also, when the grid size increases, the speed-up also

increases.

Figures 4.8 and 4.9 represents the speed-up figures for Kruskal’s Steiner

tree algorithm. These figures were obtained by running Kruskal’s Steiner tree

algorithm for 512x512 and 1024x1024 grids at optimum h,w values for 4,7,10

CHAPTER 4. PARALLEL ALGORITHMS FOR MULTIPIN NETS 79

log(w)

(a)

(b)

Figure 4.4. Effect of li,w values on the execution of parallel Akers’ algorithm
(a) h = w (b) h = 2w

CHAPTER 4. PARALLEL ALGORITHMS FOR MULTIPIN NETS 80

(a)

O<D(/)
0E

-a- Pin = 1 0
Pin = 6

log(w)

(b)

Figure 4.5. Eifect of h,w values on the execution of parallel KruskaPs Steiner
tree algorithm (a) h = w (b) h = 2w

CHAPTER 4. PARALLEL ALGORITHMS FOR MULTIPIN NETS 81

-EH Pin = 4
Pin = 7

-O - Pin = 10
- 0 - ideal

Figure 4.6. Speed-up figure for parallel Aker.s’ algorithm on a 512x512 grid for
4,7,10 pin nets

-EH Pin = 4
Pin = 7

-O- Pin = 10
-o- ideal

NUMBER OF PROCESSORS

Figure 4.7. Speed-up figure for parallel Akers’ algorithm on a 1024x1024 grid
for 4,7,10 pin nets

CHAPTER 4. PARALLEL ALGORITHMS FOR MULTIPIN NETS 82

Pin = 4
Pin = 7

-o- Pin = 10
-o- ideal

Figure 4.8. Speed-up figure for parallel Kruskal’s Steiner tree algorithm on a
512x512 grid for 4,7,10 pin nets

pin nets. As is seen in the figures the speed-up increases with increasing number

of pins and increasing number of processors. Also, when the grid size increases,

the speed-up also increases.

Note that, as is seen in Figures 4.6, 4.7 , 4.8 and 4.9, parallel KruskaPs

Steiner tree algorithm gives better performance compared to parallel Akers’

algorithm due to the better processor utilization.

CHAPTER 4. PARALLEL ALGORITHMS FOR MULTIPIN NETS S3

H ZH Pin = 4
Pin = 7

- o - Pin = 10
Ideal

Figure 4.9. Speed-up figure for parallel Kruskal’s Steiner tree algorithm on a
1024x1024 grid for 4,7,10 pin nets

5. CONCLUSIONS

In this thesis, parallei algorithms for maze routing process in \'LSI routing

were presented. The algorithms Avere based on Lee’s maze routing algorithm

for two pin nets and Zee type algorithms, such as Akers’ and Kruskal’s Steiner

tree algorithms, for multipin net routing. Experiments were carried out on

an 8 processor hypercube multicomputer, namel}· iPSC/2, for measuring the

performance of the algorithms on various grid sizes.

The following conclusions can be driven from the results obtained for par­

allel versions of Lee’s algorithm.

The front wave expansion phase :

• The number of cells expanded increases with increasing distance between

source and target. This increases granularit}' and processor utilization.

Hence, performance increases with increasing distance between source

and target cells.

• Overlapping the communication and the computation scheme was also

implemented.

• Expansion starting from' source and target scheme gives better perfor­

mance results compared to expansion starting from source only scheme.

This is because the expansion starting from source and target scheme in­

creases processor utilization and decreases the volume of interprocessor

communication.

84

CHAPTER 5. CONCLUSIONS 85

The path recovery and sweep phases :

• Performance increases with increasing distance between source and target

cells, because the granularity and processor utilization increases with

increasing distance.

• The non-pipelined sweep algorithm performs better than pipelined sweep

algorithm due to the overhead invoh'ed in the calculation of r values.

However, this overhead is constant and the pipelined sweep algorithm is
expected to perform better for larger number of processors.

• Better speed-up figures are obtained in sweeping phase than in front

wave expansion phase, since the proposed scheme avoids interprocessor

communication in sweep phase.

In Lee’s maze routing algorithms, expansion computations associated with

an individual cell is a fine grain computation. Parallel versions of Lee’s routing

algorithm are communication bound for synchronization purposes. Further­

more, achieving perfect load balance is almost impossible due to the dynamic

nature of the routing computations. Hence, it is very hard to achieve ideal

speed-up.

For the multipin net algorithms, we can derive the following conclusions

from the experimental results :

• Better performance figures are obtained with increasing length of the

nets and increasing number of the pins due to the increase in processor

utilization and granularity. The multi-source wave expansion increases

the processor utilization compared to two-pin nets.

• Parallel Kruskal’s Steiner tree algorithm performs better than parallel

Akers’ algorithm due to the increase in the processor utilization.

Bibliography

[1] Thomas Lengauer, Combinatorial Algorithms for Integrated Circuit Lay­
out, B.G. Teubner, Stuttgart, John Wiley & Sons 1990.

[2] Ernest E. Hollis, Design of VLSI Gate Array ICs, Prentice-Hall, Inc. En­

glewood Cliffs, NJ. 07632, 1986, Chap. 1, pp. 6 - 12.

[3] Ravi Nair, “A Simple Yet Effective Technicpie for Global Wiring,” IEEE

Trans, on GAD, Vol. CAD-6, March 1987,pp. 165-172.

[4] Carl Sechen, Alberto Sangiovanni-Vincentelli , “The TimberWolf Place­

ment and Routing Package.” IEEE Journal of Solid-State Circuits, \'ol.

SC-20, April 1985, pp. 510-522.

[5] Jeong-Tyng Li, Malgorzata Marek-Sadowska, “Global Routing for Gate

Array,” IEEE Trans, on CAD, Vol. CAD-3, Oct. 1984, pp. 298-307.

[6] Benjamin S. Ting, Bou Nin Tien, “Routing Techniques for Gate Array,”

IEEE Trans, on CAD, Vol. CAD-2, Oct. 1983, pp. 301-312.

[7] C. Y. Lee, “An algorithm for path connections and its applications,” IRE

Trans. Electronic Computers, Vol. EC-10, pp. 346-365, Sept. 1961.

[8] Youngju Won and Sartaj Sahni, “Maze Routing On a Hypercube Multi­

processor Computer,” Proceedings of Intrl. Conf. on Parallel Processing,

St.Charles August 1987, pp. 630-637.

[9] Y. Won, S. Sahni, and Y. El-Ziq, “A hardware accelerator for maze rout­

ing,” in Proc. SJfth Design Automation Conf., June 1987, pp.800-806.

[10] J.S. Rose, “Parallel Global Routing for Standart Cells,” IEEE, CAD,

Vol.9, Oct. 1990, pp.1085-1095.

86

BIBLIOGRAPHY 87

[11] Y. Saad and M. Schultz, ’’Topological properties of h3'^percubes,” Research
Report, YALEU/DCS/RR-389, Computer Science Dept., Yale University,

J u n .1985.

[12] T. M. Kui'9 , C. Aykanat, and F. Ei'5al, ’’Parallelization of Lee’s Rout­

ing Algorithm on a Hypercube Multicomputer”, in the Proceedings of

The Second European Distributed Memory Computing Conference, Mu­

nich, Germany, April 22-24, 1991. pp. 244-253.

[13] C. Aykanat, and Tahsin M. Kurg, “Efficient Para-lel Maze Routing Algo­

rithms on a I'fypercube Multicomputer,” Proc. of ffie 1991 Inter. Conf. on

Parallel Processing, Vol.3, pp. 224-227, .August 12-16,1991.

[14] Frank Rubin, “The Lee path connection algorithm,” IEEE Trans. Corn-

put., vol. c-23, pp.907-914, Sept.1974.

[15] M. Hanan, “On Steiner’s Problem with Rectilinear Distance,” J. SIAM

Appl. Math., Vol. 14, No. 2, pp. 255-265,March 1966.

[16] F.K. Hwang, “On Steiner Minimal Trees with Reciilinear Distance,” SIAM

J. .Appl. Math., Vol. 30, No. 1, pp. 104-114,Jan. 1976.

[17] S.B. Akers, Design Automation of Digital Sy.stems; Theory and

Techniques, M.A. Breuer, Ed. Englewood Cliffs, NJ: Prentice-

Hall,1972,chap. 6.

