
ІІУАТЮ ^ ! Ш M O H O !

íFRiOlVb T

'г ‘•rj */* ̂ h С' 31?/̂ ''é y y -■ 'w "ií/ ̂ ν'·

■· :Sírjin;H ΐδ Ttie-, D sosîîr.snt Of СоіТОТЙ;·

Ennbaermo m d М о т з ь о п Scísn^B
^ w

ï-s.r* Th·^ ΐη«·̂ '̂'Π···ΐ> ''■* ■••'.r í̂AQcHn.n ΡιΓ'"- **Ѵ''*ІОГЬ'Já;J ij'ù ·̂· U» -ij^; _ ̂. ... ■ i -

of 3 ’f e m önivsrsity
'гі Df>ri-í·?,] ^«i!fj!3rpρπΐ Thû P''-лпі''-'^пРГі·’̂ '̂
^ IJ g i SMS i '* ··■ -*-** J ^ M « 1» i ̂ « w --r ; - ̂ ; ii J ^ w

E ,f·. ■,· T b n Π r> f? Í·Ώ Q Гі'̂
¿ V i « ϋ i V 1*·' ч-у V : V V .

г*: In О 32 · Π ̂ P rt’· Я -C
. . L;. ¿ Í. .i> V. ̂Л - · Q J 2 ^ t : :! ^ ^

; (, Ѵ.Л - 7 n? f* 3 O Г: ‘li

8 Э 7 . 7
. Л Г З ^

/ S 3 /

,-r l I/ ■■ ■ ‘ -
Í'; n . /'а·* ̂ J s

w V»* ·' · * . "»i i / · w J

ANIMATION OF HUM AN MOTION:
AN INTERACTIVE TOOL

A THESIS

SUBMITTED TO THE DEPARTMENT OF COMPUTER

ENGINEERING AND INFORMATION SCIENCE

AND THE INSTITUTE OF ENGINEERING AND SCIENCE

OF BILKENT UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF
MASTER OF SCIENCE

By
Syed Kamran Mahmud

January, 1991

Sijpcl

tarafifidaa

« 3 Î .T -

-M ltf

j5âL

I certify that I have read this thesis and that in my opin
ion it is fully adequate, in scope and in quality, as a thesis
for the degree of Master of Science.

Prof. Bülent Özgüç (Principal Advisor)

I certify that I have read this the|is'^d'Tha't-in my opin
ion it is fully adequate, in scop^and in qualit3qyas a thesis
for the degree of Master of . /

P ro / Yılmaz Toka^

I certify that I have read this thesis and that in my opin
ion it is fully adequate, in scope and in quality, as a thesis
for the degree of Master of Science.

Assoc. Prof. Varol Aleman

Approved by the Institute of Engineering and Science:

/ j

Prof. Mehmet Baray, Director of the Institute oTEngineering and Science

11 Dm_». fT-î.

ABSTRACT

ANIMATION OF HUM AN MOTION:
AN INTERACTIVE TOOL

Syed Kamran Mahmud
M.S. in Computer Engineering and Information Science

Supervisor: Prof. Bülent Özgüç
January, 1991

The goal of this work is the implementation of an interactive, general purpose,

human motion animation tool. The tool uses parametric key-frame animation

as the animation technique. DiflPerent abstractions of motion specification in

key-frame generation are explored, and a new notion of semi goal-directed an

imation for generating key-frame orientations of human body is introduced to

resolve the tradeoif between animator and machine burden in choosing a level

of motion specification.

Keywords: Human Animation, Classical Animation, Computer Animation,

Simulation, Motion Specification

ÖZET

İNSAN HAREKETİNİN CANLANDIRILMASI:
ETKİLEŞİMLİ BİR ARAÇ

Syed Kararan Malımııd
Bilgisayar Mühendisliği ve Enformatik Bilimi Bölümü Yüksek

Lisans
Tez Yöneticisi: Prof. Bülent Özgüç

O cak,1991

Bu çalışmada amaç, genel maksatlı, etkileşimli bir insan hareketin modelleme

aracı geliştirmektir. Araç canlandırılma tekniği olarak parametrik anahtar

çerçeve tekniğini kullanmaktadır. Anahtar çerçeveleri oluşturmanın değişik

soyutlamaları araştırılmakta ve insan vücudunun anahtar çerçeve noktalarını

bulmada yeni bir yaklaşım olan “y^rı amaç-yönlendirmeli canlandırılma” tanıtıl

maktadır. Bu yeni yöntemle, hareket tanımlamının derecelendirmesinin yapılma

sında animatörle makine arasındaki yük dağılımı sorunu çözümlenebilecektir.

Anahtar Kelimeler: İnsan Canlandırılma, Geleneksel Canlandırılma, Bil

gisayarlı Canlandırılma, Benzetişim, Hareket Tanımlama

ACKNOWLEDGEMENT

I would like to thank m3' supervisor Professor Bülent Özgüç for his guidance

and encouragement during the development of this thesis.

I am grateful to Professor Yılmaz Tokad for helping me in the proof of the

appendix B, and for his remarks and comments on the thesis.

I am also grateful to Associate Professor Varol Akman for providing me

with important references and for his remarks and comments on the thesis.

I express my gratitude to Associate Professor Kemal Oflazer who provided
me with references that were quite helpful.

My sincere thanks are due to my parents, sisters, and brothers for their

moral support.

Finally, I appreciate my friends Veysi İşler, Ahmet Arslan, M. S. Ali, Nihal

Mutluay, and all others who helped and cooperated during my thesis.

TABLE OF CONTENTS

1 INTRODUCTION 1

2 HUMAN BODY MODEL 4

2.1 HUMAN BODY MODELING TECH N IQ U ES............................ 4

2.2 SEGMENT M O D E L .. 6

2.3 JOINT MODEL.. 8

2.3.1 Joint M otions.. 8

2.3.2 Joint L im its ... 12

3 HUMAN BODY ANIMATION 16

3.1 ANIMATION TECH NIQUES... 16

3.1.1 Goal-Directed Anim ation... 18

3.1.2 Algorithmic A nim ation... 20

I

3.1.3 Procedural A n im a tio n ... 21

3.1.4 Key-Frame A n im atio n ... 21

3.2 PARAMETRIC KEY-FRAME ANIMATION 23

3.2.1 Motion Specifications... 24

vi

3.2.2 Inbetweening 52

3.2.3 Integrating Algorithmic Animation for Realistic Motion . 56

4 AOHM IMPLEMENTATION 60

4.1 DATA STRU C TU R ES... 61

4.1.1 J o in t .. 61

4.1.2 F ra m e ... 63

4.1.3 F i lm .. 63

4.1.4 Menu Command 64

4.1.5 Coordinate Axes 66

4.2 USER INTERFACE 67

5 FUTURE DIRECTIONS 71

6 CONCLUSIONS 73

APPENDICES 79

A ARC-CIRCLE INTERSECTIONS 80

B AOHM USER’S MANUAL 86

vn

LIST OF FIGURES

2.1 Three types of human body m o d e ls ... 5

2.2 Human body model in A O H M .. 6

2.3 Body segment m o d e l .. 7

2.4 Body joints .. 9

2.5 Computational model of a j o i n t 10

2.6 Table of human body joint m o tio n s ... 12

2.7 Joint limit b o u n d a ry .. 14

2.8 Joint limit configurations in sp a ce .. 15

3.1 Human body orientation by joint m odification............................ 27

3.2 State changes in j o i n t s ... 28

3.3 Joint positioning .. 30

3.4 Arm model for positioning w r is t ... 33

3.5 Arm triangle.. 35

3.6 Elbow circle in wrist positioning... 36

3.7 Elbow circle and the joint limit boundary...................................... 38

3.8 Different cases of elbow circle and joint limit b o u n d a ry 39

viii

3.9 Transformed elbow circle and the joint limit boundary 40

3.10 Different cases of the intersections between an arc and a circle,
both on the same sp h e re .. 42

3.11 Intersection of two circles lying on a sphere....................................... 44

3.12 Body orientation by menu-command 50

3.13 Modified menu-command effect 50

3.14 Inbetweening 55

3.15 Actual and interpolated ANKLE p a th s ... 57

3.16 Improved interpolated ANKLE path 58

3.17 Algorithmic ANKLE path 58

4.1 Main window of the AOHM to o l.. 68

4.2 Multi-view environment of the AOHM to o l 69

A. l Arc-circle in tersections... 81

B. l Main window of AOHM 87

B.2 Button panel in the main mode of A O H M 88

B.3 Multi-view environment of AOHM... 89

B.4 Scale pop-up w indow .. 89

B.5 Button panel in the frame m ode.. 90

B..6 Rotation pop-up w indow .. 91
I

B.7 Translation pop-up window 91

B.8 Pop-up window for menu-command m ode...................................... 91

ix

B.9 Menu-command parameter modification 92

B.IO Define-Command pop-up w in d o w .. 93

B .ll Cursor positions in the multi-view environment 94

B.12 Joint positioning mode window 95

B.13 Joint parameter information m ode.. . 96

B.14 Information about the joint param eters.. 96

B. 15 Button panel in film mode of A O H M .. 97

1. INTRODUCTION

Animating articulated bodies like humans and animals has always been a prob

lem for the computer. There are a couple of reasons:

First, humans and animals cannot easily be modeled by mathematical and

geometric techniques used in computer graphics because of their peculiar shape.

Thus, very realistic models are hardly possible. Work has been carried out for

close to realistic models, for instance Fetter’s work on the visual effects of

hemispheric projections mentioned in [38] and models based on data obtained

by anthropometrists, Dooley discussed in [38] and [19], but such models are

very expensive from the point of view of rendering and CPU time, thus cannot

easily be used interactively. Very realistic models have been tried for parts of

the body instead of the whole body, for example a hand has been implemented

for animating the task of grasping some object [18]. Such difficulties dictate

the use of a less realistic model while working interactively. One solution i,s. to

use interactive skeleton technique [8] (i.e., use skeleton model while interacting

and later build the complex model over it).

Second, specification and control of motion in human figure animation have

always been a challenge. It is very difficult for the animator to generate key-

frames by orienting the model as the limb coordination is complex and he has

to control and specify each joint angle. Degree of realism lies in the hands of

the animator. Motion specification problem is explored in different aspects by

many researchers [1, 3, 4, 7, 15, 16, 23, 43, 44].

One suggested solution minimizes the animator’s load in motion specifica

tion, viz. the notion of goal-directed animation. In this technique the animator

generates the whole motion sequence by simple English commands. Here the

1

system does all the motion control and planning. The mechanism of motion

control and planning has to be embedded in the system at least once. For

example in [7] the animator generates the motion of human walk simply by the

command WALK. This is a very good approach from the animator’s viewpoint,

but a little thought reveals two critical problems. First, since the motion is

controlled and planned by the computer, mechanisms or algorithms are to be

found for all types of motion included in the system. This takes us to another

area of research, namely Robotics. Second, no matter how good and efficient

techniques we find, it will hardly be possible for us to incorporate the wide
span of motions depicted by human being.

The focus of our research is on this issue. As a solution to the problem of

level of motion specification, we have suggested a new abstraction level called

semi goal-directed animation, in which the animator generates the key-frames

of a motion sequence by selecting from the pool of system and user-defined com
mands. This level of motion specification simplifies animator’s job to a great

extent. It does not add much burden to the system or machine for planning

and controlling the human body motions. It optimizes the trade-off between

the man and the machine load in selecting a level of motion specification.

A rather old but considerable amount of information on human modeling

and animation can be found in [10]. We have many references from the pro

ceedings of Graphics Interface ’86 Vision Interface ’86", becuase we think

that this single issue is quite comprehensive in the field of our research.

After the above discussion, it is worth mentioning where we need such a gen

eral purpose tool. The main application would be in the areas of ergonomics,

choreography and robotics. It can be useful for ergonomic applications if com

plex reach algorithms are incorporated. Choreographers working with dance

and skating will also find this useful. It may be helpful to computer movie-
I

makers. Finally, movements of a human like robot can be studied with this

tool.

In this thesis we start in Chapter 2 with the issue of modelling human body

in such a way that it is suitable for the animation purpose.

In Chapter 3, we start with the definition of animation and animation tech

niques. The main technique concerning us, parametric key-fram,e animation,

is discussed in depth, with the main focus on different abstractions of motion

specification. We have suggested a taxonomy for motion specification level in

key-frame animation to understand and explore the issue more conveniently.

Chapter 4 discusses the implementation of AOHM (Animation of Human

Motion) focusing on the main data structures.

Chapter 5 includes the future directions followed by our conclusions.

Appendix B is the user manual of AOHM.

2. HUM AN BODY MODEL

For modeling any object the details have to be well-understood, especially if

the object is complex, viz. human body. We have, therefore, tried to explore

the model of human body together with some information of the nature of the

human body itself.

Modeling human body realistically is one of the most challenging problems.

There are two main reasons for this: (i) geometrical and mathematical models

used in computer graphics are not very suitable for the shape of the human

body, (ii) the movement of joints is difficult to model, particularly because of
the peculiar muscle actions.

Ideally, realistic rendering can only be achieved by 3-D ivtoscopy, digitizing

by hand the joint coordinates of all body segments from at least two orthogonal

views recorded on film or video. This approach is tedious. It is imi^ortant in

biomechanics research and work is being done for its automation. Another

problem with rotoscopy is that only those motions can be animated which are
performed at least once by somebody.

2.1 HUM AN BODY MODELING TECHNIQUES

There are three general methods for modeling the human J^ody in 3-D [38] :

Stick Figures: These are like a skeleton and consist of a collection of line

segments attached by joints representing human body joints. Stick figures are
unrealistic (figure 2.1(a)).

Surface Figures: These are basically stick figures surrounded by surfaces

that consist of planar or curved patches (figure 2.1(b)).

Volume Figures : Volume figures are the body models in which the body is

decomposed into several primitive volumes. Usually cylinders, ellipsoids, and

spheres are used as primitive volumes (figure 2.1(c)).

(J------0----------0------0

(a) (b) Cc)

Figure 2.1: (a) Stick model (b) Surface model (c) Volume model

Practically, the level of detail included in a human body model is dictated

by its purpose. The model that we are using is a kind of wire framed surface

model, but without any planar or curved patch (figure 2.2). Actually each

body segment is represented by a set of equidistant rectangles, one on top of

the other, thus giving a surface feature. The choice for such a model is made

because it requires less displaying time compared to most other surface models.

There is always a trade off between realism and the time consumed in

Figure 2.2; Human body model in AOHM

displaying. Stick model consumes the minimum displaying time but realism

is almost totally absent because depths are difficult to evaluate and several

movements like twists are impossible to represent. Thus our choice is almost a

minimally acceptable one in terms of realism and almost optimal in terms of

displaying time.

2.2 SEGMENT MODEL

We have assumed the body segments to be rigid. Our body segment model is

in fact like a rectangular box, consisting of five equidistant rectangles one on

the top of the other. For each modification of the body segment one has to

transform 20 (i.e. 5 x 4) vertices (figure 2.3(a)). Each transformation requires

six multiplications and six additions (three for each x and y). What we are

doing is that we transform 8 (i.e. 2 x 4) vertices (figure 2.3(b)), the vertices

of the top and the bottom rectangles, and while displaying we compute the

vertices of the intermediate rectangles by:

X = x l + u{x2 — a;l)
I

y = y l + u{y2 - y l)

where ‘u’ is a parameter taking values 0.25, 0.50, and 0.75, and (x l.y l) and

(x2,y2) are the corresponding vertices of the bottom and the top rectangles.

6

(x2,y2,z2)

U = 0 . 7 5

U = 0 . 5 0

U = 0 . 2 5

(x1 ,y1 ,z1)

Figure 2.3: (a) Model of the body using five rectangles, i.e. 20 vertices are
transformed, (b) A body segment model in which only 8 vertices are trans
formed. # : Actual vertices that are transformed and 0 : Interpolated.

This parametric computation requires only two floating point additions and

one floating point multiplication. Thus we save more than 500 floating point

multiplications and more than 250 floating point additions in each modification
of the orientation of the body.

In fact the choice of a model is application or purpose dependent. Our

choice is reasonable for the purpose of interactive simulation tool. The body

model typically consists of a tree structure, either body joints as nodes con

nected by body segments or body segments as nodes connected by body joints.

Both schemes have been tried, examples of the first scheme are CAR model

and the original bubbleman model [23]. The second scheme is used by Boe-

man (Boeing Corporation) [23], Bubbleman (University of Pennsylvania) [23],

CAPE (Pacific Missile Test Center) [23], and others.

In the tree structure there is always a joint (or segment) taken as the root.

In our model WAIST (upper torso) is selected as root joint (segment). This

choice is natural as most of the limbs meet here. '

2.3 JOINT MODEL

Modeling a joint means finding a computational model for representing the

different types of motions depicted by them. The first step in modeling a joint

is to decide on the depth of details to be included in the model, i.e., the number

of joints the model will have. The more the number of joints the better the

model is approximated. For all practical purposes, one cannot model to the

depth of all the joints in the human body. In our model we have approximated

with 18 joints (figure 2.4).

Human joints in general are basically comjrlex and idiosyncratic, as the

limits of the degrees of freedom of their depicted motions are not constant. The

limit of a joint parameter representing one degree of freedom may be a non

linear function of the instantaneous values of the joint parameters I'epresenting

other degrees of freedom of the motions of that joint. This interrelated nature

of joint limits causes a real challenge while thej^ are modeled and leads to a

trade-off between accuracy and uniformity [23].

The basic function of a joint is to connect two body segments (or links).

Joints act as a pivot for segments to achieve different orientations while mov

ing. The segment movement is restricted about a joint. During a single joint

movement, one (proximal) segment is stationary and the other (distal) segment

moves with respect to the proximal segment. Proximal means closer to the root

(which only acts as stationary for all joints belonging to human body) in the

hierarchy. In fact a segment can function as both ¡Droximal and distal if it

belongs to two or more joints.

Every joint is assigned a unique identifier for referring them during speci

fication of motions or body orientations. The joint identifiers used in AOHIM

are ordinary names and not anatomical ones.

2.3.1 Joint Motions

In modeling joint motions it is better to reduce the freedom of motions embed

ded in each joint to one or more independent parameters [23]. This eliminates

8

Figure 2.4; Joints included in the model as a tree structure

inconsistencies, especially while interpolating or generating inbetweens from

the key-frames. To achieve this, a small number of motion types can be de

fined and we can let the joints have one or more of these motions.

There are different types of joint motions with variable degrees of freedom

[19]. A joint has up to three degrees of freedom [9]. Three degrees of freedom

can be constructed and motions of lesser degrees of freedom can be achieved by

restricting this model to a subset of degrees of freedom allowed. Thus, simple

joints such as fingers (hinge joints), and complex joints, such as shoulders (ball-

and-socket joints) can be simulated. A joint can move independently of all other

joints except its parent and grandparents in the tree structure; this independent

movement of the joints actually defines the joint’s actual trajectory.

Usual anatomical concepts about joint motions cause ambiguity in model

ing. Thus the mechanical approach of revolute and spherical joints plays an

significant role in describing joint motions of the human body.

Figure 2.5: Computational model of a joint

10-

A spherical joint has three degrees of freedom, and the three parameters

(or variables) used can be defined by numerous means and using a different

coordinate system (figure 2.5).

The proximal segment P is fixed in the coordinate system (spherical in

AOHM) originating at the joint J , and axis A d of distal segment D is a line

through the origin. The position (or orientation) of the distal segment is given

by (j), 9, and 'll), (j) and 9 give the description of the direction of the axis A d ·,

and Ip describes the amount of rotation of distal segment D about Ad - The

type of motion achieved by the variation of first two parameters (^, 9) is called

spherical motion, as it specifies the position of the sibling joint Js of the joint J

at the other end of distal segment D in spherical coordinate system with a fixed

radius or r of spherical coordinates (r, 9, <f>), and the motion by (t/>) is called

twist [23]. The motion depicted by shoulder having three degrees of freedom,

needs to be assigned both of these motion models. For instance, positioning

the elbow (Js) by modifying the state of shoulder J joint is an example of

spherical motion, ip corresponds to the twisting of the upper arm about its

axis, twist motion.

Besides spherical and twist motions, there is another important and com

mon motion type known as flexion motion. Examples of flexion motions are

seen in the knee and elbow flexion. The distinction between flexion and twist
is useful for clarity of visualization [23]. Flexion motions can be modeled via

the spherical motion model by restricting it to only one degree of freedom (9)

as flexion motion has only one degree of freedom. Thus we have the following

three joint motion models:

• Spherical

• Twist

• Flexion

To understand the nature of motions depicted by the joints given in figure

2.4 or about the joints included in the human body model AOHM implemen

tation, table in figure 2.6 is provided:

11

Joints Types of Motion

ankle spherical
clavicle spherical
elbow flexion, twist

hip spherical, twist
knee flexion, twist
neck flexion, twist
shoulder sj^herical, twist
throat spherical
uppertorso spherical, twist
waist spherical, twist
wrist spherical

Figure 2.6: Table of human body joint motions

In AOHM only spherical and flexion are included; we shall incorporate twist
in the near future.

2.3.2 Joint Limits

We need to consider joint limits in order to make the motion of the human bod}'

more realistic. If it had not been there, the animator would have oriented the

human body in any way he would have preferred, treating the human body

like any linked body without any restrictions on joint, and many orientations

would have appeared that are not possible.

Joint limits to be discussed in this section is based on the joint motion

models mentioned in the previous section, namely, flexion, twist, and spherical.

Flexion and twist motions have a single degree of freedom, so joint limits

are just constants (a minimum value and a maximum value). These constant

limit values are based on the assumption that the extreme values (limits) do

not depend on the current value of any other joint variable; this is not true

12

in general. But for many practical purposes, this assumption does not cause

much trouble.

Joint limits for spherical motion is not a trivial one. Actually the distal end

of the distal segment is forced to lie on a sphere about a joint. On imposing joint
limits the distal end is restricted to lie within some patch on the sphere. The

boundary of this patch is called the joint limit curve. When the two variables

are treated independently, curves of figures 2.7(a) and (b) are observed. In

figure 2.7(a) the first parameter [6) is restricted to certain values (maximum

and minimum) and the second parameter {(j)) is allowed to span through the

whole of its domain. In figure 2.7(b) both of the parameters have certain

extreme values (maximum and minimum). These types of limit approaches

are not close approximations to the actual limit boundaries of human joint

limit curves but they, being very cheap to implement, are widely used and

we have also implemented this scheme in AOHM. Figure 2.6(c) shows another

approach which is a closer approximation to the actual case. In this scheme

the joint limit boundary is approximated by a spherical polygon, consisting of

points on the sphere connected by arcs.

For a joint depicting both spherical motion and twist motion (a shoulder

is an example of such a joint), different joint limit boundary approximation

approaches can best be understood by describing the set of allowable values

for the joint variables in the 3-D configuration space defined by the variables (̂ ,

i?, and Ip. In most general case where all the joint limits are dependent on the

current values of other variables (parameter), the configuration is an arbitrary

blob in space (figure 2.8(a)). In figure 2.8(b), the most simple case is shown

when all the three joint limits are constant values, a maximum and a minimum.

In figure 2.8(c) third parameter (ip), i.e., twist motion has constant value limits,

but the limits of spherical motion are not constant but interrelated.

13

Figure 2.7: (a) Independent joint limits, (b) Another independent joint limits,
(c) Joint limit curve approximated by a polygon on the surface of the sphere.

14

Figure 2.8: (a) All joint limits are coupled, (b) All joint limits are independent,
(c) (f) and ̂ limits are coupled but limit is independent.

15

3. H UM AN BODY ANIM ATION

“Above all, animation is the art of movement. The accomplished animator can

bring life to just about anything - a series of drawings or a tin can” [24].

The etymological definition of ‘Animation’ can be stated as ‘giving life to
something’; that something can be a still picture drawn manually on a piece

of paper or by computer on a display device. So for our purpose ‘Animation’

is making the pictures of human body drawn on a still frame appear to move,

making use of the persistence of vision phenomenon of the human eye.

When computer animation is discussed a few questions come to mind: What

will be the animation technique at display level? How one is going to show the

still pictures? What will be the animation technique at the level of creation of

sequence frame (sequence frame is the set of still pictures to be displayed while

animation)? How each of the frame of the sequence is going to be generated

or to put in practical terms? How the motion is going to be specified, so that

the burden could be brought to an acceptable ratio?

3.1 ANIM ATION TECHNIQUES

There is a variety of techniques for animation, among these we shall be dis

cussing those which can be considered for the animation of articulated bodies

like human body. As mentioned above, animation techniques can be and should

be explored both at the display level and at the level of frame sequence creation.

There are basically two animation techniques as far as the display of a 3-D
picture is concerned:

16

• Frame by frame

• Draw and display

In the first technique the whole frame sequence is prepared and put into the

memory and then each frame is displayed one by one. This technique requires

large memory for even short animations. A partial solution is to not save every

frame, but rather save the differences between the consecutive frames. This
slows down the rate of display.

In the second technique, each frame of the sequence is prepared when it

is to be displayed. Hardware plays an important role because the drawing

mechanism needs to be really fast, to achieve smooth and realistic motion. An

important issue to be noted here is that when the frames are to be drawn, and
how much information is ready in the created frame. This preprocessing can be

anything like calculating the color values, or transforming some data points, or

even finding a suitable transformation for the frame. The more manipulation a

frame requires before it is ready to be drawn, the slower the display speed will

be. Fast animations can be achieved by completely preprocessing the frame

information beforehand. For complex figures like human body, to do all the
manipulation beforehand is not quite feasible from the memory point of view,

especially if the sequence is permitted to be modifiable.

As far as the generation of frame sequence is concerned, we propose the

following classification of animation techniques, especially for human figure or
any articulated body in general: •

• Goal-directed animation

• .A.lgorithmic animation

• Procedural animation

• Key-frame animation '

17

3.1.1 Goal-Directed Animation

All frames of the motion sequence for a particular motion is generated by the

machine in response to user’s simple English-like commands, such as ‘walk',

‘run’, ‘jump’, etc. [11]. The motion planning and control is done by the

machine and the animator does nothing except specifying a command. We

know that sa.}»̂, human walk, is not a unique motion; rather there are hundreds of

different kinds of walks depending on the step size, speed, personal dimensions,

etc., so just giving a command like ‘walk’ we cannot achieve different types of

walks. As a solution the concept of parametric goal-directed animation is used.

Here, together with the command ‘walk’ some parameters like step-size, speed

etc. [7] are allowed.

In goal-directed animation, be it parametric or nonparametric, the animator

gets rid of the planning and control of human motion and motion in general.

In this technique the main problem is how the machine is going to plan and

control the motion.

Procedural methods can be used which has a knowledge base for motion

[34], but this is not very realistic for most cases. This is because the quality

of motion depends on the amount of information embedded in the knowledge

base. This issue becomes more critical when one is trying to develop a general-

purpose tool for human motions, as a huge amount of information is needed.

This technique can be implemented as a language base [11], or with parametric

functions.

Kinematic control is another method and is the one mostly used in designing

control mechanisms for human motion planning. Although this also is not

realistic, it still gives acceptable performance. The basic tools of a kinematic

approach is position, displacement, and velocity of the object. Sometimes

acceleration is also used. In kinematic approach forces and torques are not

considered.

Dynamic control is the one that gives the most realistic results but compu

tationally it is expensive. In dynamic control, besides position, displacement,

and velocity, energy, force, and torque which tend to cause the motions are also

IS

considered and the center of mass plays an important role in motion planning.

But calculating the center of mass of human figures is not trivial The main

reason for dynamic approach being computationally so expensive is the typical

structure of human body, the articulated nature of body segments. So mass

analysis is needed to be done for each body segment individually; same is true

for force and torque calculations. Apart from being expensive, there is another

problem with this technique: the animator has to supply the information about

the forces and torques.

To get a flavour of the dynamic approach let us consider the following:

An angle x of a joint is to be modified to y. One can calculate that torque

T applied to a joint by [1]:

T(x) =

The parameters a and ¡5 determine the strength of the torque applied at the
joint and they can be controlled by the animator in parametric goal-directed

animation. In general, one can divide a motion sequence in phases either for

the whole body or for groups of body segments and for each phase one can

derive a system of non-linear equations by using the Lagrange method. The

Lagrange equations for a system with n degrees of freedom can be written as:

_d m \ _ ^ ^
dt \<5gr/ dqr

where r
L
T
V

K9r

= l , . . . , n

= Lagrangian — T — V
= K inetic energy
= Potential energy
= Generalized coordinate
= Generalized force

This is used in [7]; what is done is that the walk motion of the legs are divided

into two phases, viz. stance and swing. Stance means that the leg is touching

the ground and swing means that the leg is in motion, that is, off the ground.

The Lagrangian method is applied to the individual phases of the walk motion,

namely stance and swing. The phase analysis is first done independently at the

19

level of body parts. At the end of this analysis the dependencies are propagated

to other related body parts in terms of forces and torques.

Practically the dynamical control is never used as the sole control mecha

nism, rather kinematic control is used and decorated with dynamics whenever

needed [7, 8, 15, 16, 33, 43, 44].

3.1.2 Algorithmic Animation

Motion is described algorithmically. Actually physical laws are applied to pa

rameters of the human body, e.g., joint angles. Control of these laws may be

provided to the system by procedural methods as in MIRA [14] or by inter
actively as in MIRANIM [14]. In fact one can specify almost any law for the

parameters after building a reasonable input mechanism.

These laws may be based on kinematic approach, i.e., positions, displace

ment, and velocity, or dynamic approach, incorporating force and torque in

addition to the kinematic criteria. As discussed before, dynamic approach is

expensive so here also mostly the laws based on kinematics are applied and

dynamics is incorporated whenever needed. These laws can also be specified

as functions defining the trajectories of a joint in a motion sequence. But

for these a sound understanding of the trajectories of the human body joints

during a particular motion is necessary [3, 27, 28, 29].

Whatever law is used, algorithmic animation is expensive in general because

a computation of the algorithmic function is done for each parameter of every

joint while generating a single frame and same is true for ea.ch frame of a whole

motion sequence.

Algorithmic animation, being computationally expensive, is hardl}^ ever-

used. Instead, in most applications it is integrated with other techniques which

are comparatively cheaper. This is discussed in section 3.2.3.

20

3.1.3 Procedural Animation

This technique includes describing animation by an animation language (e.g.,

CINEMIRA-2 [13]) or by scripts (in script systems). Procedural animation’s

main basis is the knowledge base of motions, and the language, functions, and

scripts all consult and depend on it. There can be different abstractions for

the level of description of motion in procedural animation; the highest level is

the same as goal directed animation.

Procedural animation, being heavily dependent on the knowledge base, can

not be used in tools designed for the wide range of human motions, as it is

difficult to include all the details of the whole span of human motion.

3.1.4 Key-Frame Animation

Key-frame animation is one of the oldest animation techniques still in use

because of its inherent nature that suits interactive environment. In this tech

nique the animator typically orients and positions the human body interac

tively, designating a sequence of configurations, called the key-frame and in

most of the cases also describing the time instances of their occurances. Then

the system automatically generates the intermediate frames, known as inbe-

tweens, based on the sequence of key-frames supplied by the animator.

Interpolating between related key images allows the animation of change

of shape and distortion in general, and change of orientation and position in

the case of human motions. Actually.it permits a direct method for specifying

the motion or action, in contrast to the mathematically defined distortion that

requires trial and error. A desired result is achieved by iterated experiments.

One quality observed in key-frame animation is that it is in a way analogous

to conventional animation, making it easier for a classically trained animator.

21

Image-Based Inbetweening

The inbetweens are obtained by interpolating the key-frame images. This tech

nique is called image based key-frame animation by Steketee and Badler [35]

or shape interpolation by Zeltzer [13]. This is an old technique introduced by

Burtnyk and Wein [13].

Parametric Inbetweening

This is a better way to compute the inbetweens. Instead of the images, the
joint parameters of the human body are interpolated. This is called paramet

ric key-frame animation. It is also known as key-transformation animation.

In a parameter model, the animator creates key-frames by specifying the ap
propriate set of parameter values, and then the parameters are interpolated

and images for the inbetweens are obtained from the interpolated parameters.

Parametric key-frame animation is actually the technique used in AOHM.

There are a few issues needed to be resolved while implementing this tech

nique. First, how will the animator specify the motions? How will the animator

produce key-frames? Will he (and not the machine) modify the joint param

eters to yield an orientation of human body in a key-frame? .Another way

can be that the animator will just give a command and the s3'^stem will do all

the job and prepare all the key-frames for the animation, as in goal-directed

animation.

Second, we have the problem of interpolating the parameters of the body

specified in the key-frame for yielding inbetweens. So one needs to e.xplore

some methods while designing a tool based on key-frame animation.

Third, the animator has almost no control over the inbetweens, the in-
I

terpolation of the key-frames. Quite often unrealistic motion results in the

inbetweens if special care is not taken. Thus this issue cannot be neglected

if one is aiming at designing a tool which should not produce very unrealistic

motions.

22

3.2 PARAM ETRIC KEY-FRAME ANIM ATION

This is the technique used in the implementation of our AOHM. In paramet

ric key-frame animation, the animator interactively orients and positions the

human body for the generation of each frame, called key-frames, i.e., some

important orientations and positions of the human body at selected intervals

during the time span of a desired motion. Orienting and positioning the human

body means specifying the value for body parameters like a particular degree

of freedom variable of some joint, directly or indirectly. Directly means mod

ifying each joint parameter explicitly for generating a key-frame of a motion
sequence. This is a laborious task for the animator and the machine almost

has nothing to do, this is the lowest level of motion specification. Indirectly

means some higher level of motion specification that is finally translated into

the lowest level by the machine, thus parameters are modified implicitly.

Once the animator completes the creation of key-frames for the motion

sequence, the system automatically, based on some interpolating method gen

erates the rest of the frames, called inbetweens, i.e., the frames lying between

the consecutive key-frames.

There is a problem with this technique: The animator does not have total

control over the inbetweens generated by the system. It is almost impossible

for an interpolating method to be intelligent enough to produce the inbetweens

realistically for a wide range of motions such as the span of human motions.

Thus there is a need of some mechanism to upgrade the quality of the inbe

tweens.

Parametric key-frame is chosen for AOIIM because it is inherently very

suitable for interactive motion specification which is one of the main themes

of AOHM. Intelligent motion controlling and planning algorithm is also not

really needed in this technique.

23

3.2.1 Motion Specifications

Motion control is a central problem in computer animation [43]. The spec

ification and control of motion in human figure animation has always been

a challenge [7], and many different approaches are being made to resolve it.

Badler [3] approaches the issue by exploring the criteria to a good or accept

able movement representation. Badler [5] also suggests natural language as an

artificial intelligence application to motion specification. English-commands

[11] and parameterized goals [7] suggest the motion specification in the highest

level. There are other approaches like using functions [43] and body orienta

tions and positioning [9] as lower level specifications.

After analyzing all the above researches and suggestions for motion speci

fication levels one thing is worth noting; as the motion specification level gets

higher, that is to say as the animator’s job is simplified, the computer does

more work and the motion control and planning algorithm gets more intelli

gent and complex. Moreover, the animator’s control over motion generation

becomes less. Thus if in a particular motion that is supported by the sys

tem in a high level of motion specification the animator desires to have some

minor adjustments, then it is almost impossible, especially if in the parameter

ized goal approach the available parameters cannot support that modificcition.

Moreover in high level of motion specifications wide range of motions cannot

be supported. It is also worth noting that if the animator is given all the

control i.e. while generating a key-frame play with any parameter (degree of

freedom variable of joint motion) of the human body and no higher level mo

tion specification is supported, then even for the generation of a single motion

frame the animator would have to do very laborious work and the machine

would almost be idle, but here almost any motion is possible. Thus there is a

trade-off between the level of control and the level of ease the animator should

have in motion specification.

Considering the above trade-off a need for a tool that supports different

abstractions of motion specification is felt and for the implementation of such

a tool there is a need for a taxonomy of motion specification levels. We propose

the following taxonomy:

24

• Joint parameter modification

• Joint positioning

• Semi goal directed approach

• Goal directed approach

As we go down the classification the level increases, the animator’s job gets

simpler, and the computer’s work gets more complicated.

Jo in t P a ram e te r M odification

This is the lowest level of motion specification. Here the computer does not

have to do any translation of the animator’s command, it is in the most prim

itive form. But for specifying motion, rather orientation and position the

animator’s job is burdensome.

T ranslation: This primitive specification is stated as a triplet:

T = (G, ty, G)

where and G displacements. Ax, Ay, and Az in coordinates x, y,

and z of the human body (as a whole articulated object) defined in Cartesian

coordinate system, respectively. It should be noted here that translation cannot

be specified for a joint or segment as they make up the articulated figure.

R o tation : This is the second type of primitive specification of motion and

is the most used one. It can be specified as

R = (joint-name, angle, axis)

where ‘joint-name’ is the joint identifier whose state is desired to be modified,

‘angle’ gives the amount of change in the value of a joint' parameter desired,

and ‘axis’ actually determines which degree of freedom should be modified. In

AOHM axis takes only two values; 1 to specify 9 and 2 to specify <j). A state is

25

a set of values of the parameters (0, (f>) of joint motion. Now to understand the
state and how the state is modified or in other words how primitive specification

‘rotation’ is made, consider figure 3.1((a) and (b)). The joint parameters are

actually spherical coordinate ordinates.

In figure 3.1(a) the joint ‘RSHOULDER’ (right shoulder) has a state S\{0 =

40°, (j) = 65°) and rotation

R = {RSHOULDER, -20°, 1)

changes the state from Si to S^ {0 = 20°, (j) = 65°). Actually the primitive

specification says that change the state of joint ‘RSHOULDER’, decrementing

the value of its first degree of freedom by 20°.

The coordinates of joint or location o-f joint in space given by triplet (x,

y, z) is not included in the state definition. This can be better understood if

figure 3.2((a) and (b)) is studied.

In figure 3.2(a) there are three joints A, B and C with states {Oa, 4>a)·,

{0b, (j>b), and {0c, (f>c), and joint positions { X a , J/a, Za) , {xb, Vb, Zb), and {X c , IJc·, Zc)

respectively. The joints A, B, and C constitute a linked configuration, being a

part of linked figure like human body. The joint B is connected to the joint A

through the body segment AB. A similiar relation exists between the joints B
and C. Now modifying the state of the joint A to {0' ,̂ the coordinates of

the joint B will get modified to {x'b, y[, z^) and that of C to (a;(,, y', z{.). Here

it is worth noting that the relative orientation of the body segment BC with

respect to the body segment AB is unchanged, thus the state of the joint B

is unchanged. Similarly the state of the joint C is unchanged. This isolation

of position (a;, y, z) from the state {0, (j)) is made because when the position

changes with respect to its siblings, it only means that one of its parent or

grand parent joint has changed its state or in other words some comparatively

proximal joint has modified its orientation. Thus any change in the state of a

joint is propagated through its siblings to the end-effectors by position change.

In AOHM joint limits are also implemented but in their simplest form

and we hope to make it closer to realistic joint limit curves in the future. Joint

limits for each of the joint parameters (degree of freedom) is a pair of maximum

26

Figure 3.1: (a) Initial state of the joint with 9 — 40° aqd <f) = 65° (b) Final
state of the joint after the rotation R = (RSHOULDER, —20°, 1) i.e. 0 = 20°
and ^ - 65°.

27

(b)

Figure 3.2: (a) Initial states and coordinates of the joints A, B, and C (b) Final
state of the joint A and different coordinate values of the joints B and C.

28

and minimum. Whenever a primitive motion specification is made the system

checks whether the new value is within the limits. If it is, then the value of

the joint parameter is modified. Otherwise, a message is given to the animator
that the limit is violated and the modification is not allowed.

There is a problem of induced twist in the body segments or joints; when
for a joint having some value its ‘çi»’ value is modified by a reasonably large

value, some amount of unwanted twist is introduced because of the transforma
tion. This should be removed by some corresponding inverse transformation.
Finding this inverse transformation for neutralizing the unwanted twist is easier

if the joint model contains twist motion as one of the degrees of freedom.

It is clear from the above discussion of primitive specification of motion that

even for bringing the human body to a desired simple orientation the animator

has to perform a laborious task. So there is a need for a higher abstraction

of motion specification that would help the animator orient the human body
with less work.

Jo in t Positioning

As a solution to doing less work while orientation and positioning the body

for a key-frame, the system may have the provision for positioning a joint to a

desired or goal position in the world coordinate system.

The goal ‘g’ is defined as a triplet {xg,yg,Zg) and the ‘jo in t iden tifier’.

{xg,yg,Zg) is specified interactively by the mouse. In AOHM the animator can

see the goal position in all the three planes x-y, y-z, and z-x while specifying

it (figure 3.3(a)).

After the goal position is specified and the joint is identified (figure 3.3 (a)),

the system solves for the related joint parameters and if a solution exists it

positions the identified joint to the desired goal position (figure 3.3(b)).

Positioning a joint which is attached to torso or the main body means a
II

translation. Positioning a joint whose parent is attached to torso means that

the goal position should lie on the spherical surface spanned by the identified

29

/=17̂=3̂

ItTit

(a)

s m

(b)

Figure 3.3: Isometric, top, front, and side views, (a) Gbal position and the
body with unpositioned joint (b) Body with joint positioned.

30

joint when its parent joint is treated as the center of the sphere. Moreover, the

goal position should lie within the joint limits. There is yet another positioning

in which the identified joint’s grand parent is attached to torso or it is fixed.

This means that we have more degrees of freedom in positioning the joint.

Examples of such joints are wrists and ankles for our model. This type of

joint positioning is more challenging and requires some dedicated methods,

especially if joint limits are to be considered.

There are many algorithms for positioning a joint or finding the joint pa
rameters of other related joints for positioning an identified joint. Most algo

rithms are explored in industrial robotics and thus do not take into account

the constraints of joint limits which is a important issue in our case.

When joint limits are ignored and a joint is identified to be placed at a goal

(xg, i/g, Zg), tfic valuos of the joint parameters of other concerned joints (joints

whose states need to be modified in order to place the identified joint at the

desired goal position) can be calculated by open chain inverse kinematics. In

open chain inverse kinematics a linked body is presented with one end fixed

and the angle values for all the joints in the linked body is calculated in order

to position the other end to a desired position.

Another step towards simplifying the animator’s job would be providing

a facility of positioning multiple joints to respective multiple goal positions.

Usually not all the identified joints can be put precisely to their respective

goals, because it is difficult for the animator to visualize the modified states of

the joints when one identified joint is positioned to its goal. Thus for multiple

joint positioning a mechanism for approximating the positioning of the joints

should be designed and supported. An approach of weighted goal [2] has been

proposed for this case. The concept of weighted goal says that whatever be

the mechanism of positioning the joints, care should be taken that the joints

having higher goal weights should be approximated with lesser error, i.e. closer

to their respective goal. For a detailed discussion the reader can refer to [2]

where joint limits are not considered.

A method for positioning a single joint with the constraints of joint limits is

implemented in AOHM. We developed this method based on the one discussed

31

in [23].

To understand the algorithm for positioning the joint (end-effector) let us
take the case of positioning the wrist of a 3-D arm (body segment consisting

of wrist, elbow, and shoulder joints) (figure 3.4).

The shoulder is taken as the origin of the coordinate system, and let the

positions of the elbow and wrist be ‘e’ and ‘W’, respectively (figure 3.4).

The arm has four degrees of freedom, two each for the shoulder and elbow
joint, and the goal has three parameters. There is one degree of redundancy.

Thus there is no unique solution rather a set of solutions if there exists any at

all.

In figure 3.5 it can be seen that the problem is actually to find a value for

the elbow angle e and a value for the angle (p, such that the states of shoulder

and elbow joints are within their joint limits. The angle (j) can be defined as
the orientation of the plane formed by 0,e, and W w.r.t. the x-axis when

the z-axis is taken as coincident to the imaginary line joining 0 and W. It is

further assumed that the axes of the coordinate system origined at shoulder

joint have such orientations that when the imaginary line joining 0 and W

i.e. OW is transformed with T~^ to coincide with the z-axis of the coordinate

system of the shoulder joint, the two systems should coincide. Finding the e
and (p angles suffices because shoulder joint 0 is inherently fixed and the wrist

joint is fixed because of the goal constraint.

Basic Algorithm :

• 1. First check if ||OT'F|| < (sum of the upper and lower arm lengths).

• 2. Find elbow E angle e (elbow’s 6 angle) and check it against the joint

limits of the joint elbow.

• 3. Find an expression for CIR(<^), a vector function that gives a circle on

which the elbow is constrained to lie by the shouldqr position 0 and the

goal position W of the wrist.

• 4. Determine the arc ARC1((^) on CIR(^) to which the elbow is restricted

32

w

w

Figuie 3.4. (a) Aim model and the plane of the arm (b) Goal line segment
OW transformed to coincide with the z-axis of shoulder.

33

by the (j> limits of elbow joint. Arc ARCl(^) means a subset of the domain

of (j) which is permissible by cf) joint limits of elbow.

• 5. Determine the arc or set of arcs ARC2(<^) on CIR((?i') to which the

elbow joint E is restricted by the shoulder joint limits.

• 6. Take the intersection of arcs ARCl(^) and ARC2((^). choose some

value of <j> and calculate the state of shoulder and elbow joints.

Now let us discuss each of these steps in detail:

1. Goal d istance : Checking whether the goal position Zg) is

very far or within reach, is very simple. From figure 3.5 one can say that,

\\W\\<lu + h

means within reach, otherwise too far, i.e. no solution possible. VE|| denotes

the magnitude of the vector W from shoulder to the goal as wris: position,

and // are the lengths of the upper and lower arms respective!}'.

2. Elbow 6 angle : Consider figure 3.5, interior elbow angle t, can be

obtained from the law of cosines as

cose' = (/2 + i f - | |W f) / (2 U ,)

Here t denotes the 0 angle of the elbow and can be obtained as

t ■= — (!

The value of e should be checked against the limits of the elbow's 0 angle.

3. Elbow circle: Here an expression for the parametric description CIR((?i')

of the elbow circle (figure 3.6) is required. It is easy to find eri expression

for CIR°{(I>) shown in figure 3.6(a), and then apply a transformation T· ̂ to

CIR°{4>) to yield

CIR{<I>) = T^* CIR°{<t>) (1)

where represents a transformation matrix that maps z-axis in figure 3.6(a)

to the vector W in figure 3.6(b). Thus if we apply this transformation to each

point on the CIR°{(f>) we can obtain the corresponding points P„·· on CIR(<;i').

34

w

(Origin)

W

Figure 3.5: Arm triangle (a) Actual (b) Transformed to z-axis of shoulder

35

Figure 3.6; Elbow circle with wrist vector W on (a) Z-axis (b) Arbitrary orig
inal position

36

To find an expression for CIR°{<f>), a should be determined, a can be

calculated (figure 3.5):

cos<. = (||W'|p + /2 -;?)/(2 ||iv ||y

A sphere of radius around an origin can be represented as:

/ sin 9 cos 6 \

(2)

S{0A) = L sin sin 4>
cos 6

(3)

Putting 9 = a \TL equation 3, we get CIR°{<I)) as:

/

sin cr sin <f)
cos a

sin a cos (f> ''
CIR°{<f>) = lu

Final expression for CIR{<f) can be obtained with equation 1.

(4)
/

4. E lbow jo in t (f) lim its: In this step an arc ARC1{4>) is determined by

restricting the (j) domain of CIR{<f>) with the (j) limits of the elbow joint. The

arc can be obtained simply by considering the upper and lower limit values of

the (j) degree of freedom of the elbow joint, the corresponding '(/>’ values in the

(f) domain of CIR(<f)) is noted and ARCl{(f>) is obtained.

5. Shoulder jo in t lim its: Here a subset of the domain of parameter

of the parametric description of the elbow circle, in terms of a set of arcs,

ARC2{(f>) is to be determined such that each of the 4> belonging to this subrange
satisfy the joint limit constraints for each of the two degrees of freedom 9 and

(f) of the shoulder joint. To understand the issue let us consider the problem

geometrically.

In figure 3.7 CIR{4>) is a circle in 3-D lying on a sphere of radius and

center 0 , the shoulder joint (origin). The joint limits can be represented in

spherical coordinates as

f[= l̂owlimt ^lowlim)

T2 =

rz = (/u) ûplim·) ûplifTi)

U = ûplim·) l̂owlim)

37

It can be seen (figure 3.7) that the four joint limit vectors of shoulder joint

Figure 3.7: Elbow circle and the joint limit boundary.

constitute a spherical polygon Pol-lim (ri,T2,ra,T4,n) on the surface of the

sphere of radius and center 0 . Thus there may exist intersections r,i and ?’,-2

between the circle CIR{(j>) and the spherical polygon Pol-lim, i.e. the existence

of the arc ARC2{(j)). The problem of finding the intersections can be better

understood by considering figure 3.8(a).

What we mean by finding ARC2((f>), is that, determine the subset of the

loci of elbow circle, CIR{(f) which lies inside the shoulder joint limit, spherical

polygon Pol-lim, figure 3.8((a) and (b)). In figure 3.8(b) we see that ARC2{(f))

can be a set of arcs instead of being just a single arc. Figures 3.8 (c) and (cl)

suggest that in case of no intersection found, a test should be made to find

if the whole of the circle is inside the spherical polygon Pol-lim, figure 3.8(d),

or totally outside, figure 3.8(c). This test is a very simple one, all one has to

do is take any point on CIR{(j>) and test it against each of the extreme values

(limits) of each of the shoulder joint’s degrees of freedom.

For each of the intersections, r ,’s we know their magnitudes are and the

$ value is V ’. Thus, the problem reduces to finding a set of <j) pairs <f>max)

38

Figure 3.8: Elbow circle and joint limit boundary (a) Two intersections (b)
Four intersections (c) No intersection (joint limit boundary inside) (d) No in
tersection (joint limit boundary outside)

39

which correspond to the arcs in the set of arcs in ARC2{(f>)^ i.e.:

(j) domain of ARC2{<f>) is m a x) ? ’ ’ * 5 4^km ax)'\

The solution of the problem will be simplified if the circle CIR{(f>) and the

spherical polygon Pol-lim are transformed by where T~^ is the transfor-
—f

mation that maps the vector W to z-axis of the shoulder coordinate system.

Thus we have the situation of figure 3.9. For simplicity of notation we shall

still refer to these transformed loci cis CIR{<f>), ARC2'{(f>), and Pol — lirn' are

the ARC2{(f>) and Pol-lim.

Figure 3.9: Elbow circle and the joint limit boundary, both transformed so
that the circle’s axis of rotation coincides with the Z-axis of the shoulder.

The problem of finding the intersection between the circle CIR{(f>) and the

spherical polygon Pol-lim can be thought of as finding the intersection of the

circle CIR{(j>) with each of the arcs 7^2> respectively. Thus

availability of a method to calculate the intersection of the circle on the sphere

with an arc on the same sphere suffices our purpose, we, therefore, state our

intersection method designed for this purpose.

Before discussing the method for finding the intersection between the circle

CIR{<I>) and the arc n r 2, let us see the different cases of how and when the

40

intersections exist. We have classified the situations as shown in figure 3.10.

For analyzing the different situations in figure 3.10 we need to state a definition:

D efinition: A point r (vector r) on the arc fxf^ is inside circle CIR{(j)) if the

6 angle of r, is less than the constant 6 angle, cr̂ the angle of each point on

the loci of the circle CIR{(f)), otherwise we shall say r is outside the circle.

D ifferent cases:

(i) One edge point, 7’i is inside and one edge point, T2 is outside circle

CIR{(f>) so there exists one intersection point, figure 3.10(a).

(ii) Both edges r-y and V2 of the arc 7^2 a.re either inside or outside

the circle CIR{(j>) so:

(a) 3 no intersection (figure 3.10(b)).

(b) 3 two intersection (figure 3.10 (c)).

(c) 3 two intersection but a tangent point (figure 3.10(d)).

When cases (ii)(a) or (ii)(c) occur we have to do nothing; we simply ignore

that arc and skip to the next one in polygon Pol-lim.

In case (ii), we need a mechanism to differentiate between the respective

situations (a), (b), and (c).

For cases (i) and (ii)(b) we need to solve for the intersections as follows:

M ethod : in tersections betw een an arc and a circle

For cases (i) and (ii)(b) a general method can be found which actually

always finds two intersection points (vectors) of the two circles CIR{(f)) and

ARCCIR{cc), where the circle ARCCIR{a) is obtained by extending the arc

7^2 from both sides on the spherical surface. Then if case (i) exists simply

ignore the unwanted solution (intersection point), otherwise take both the in

tersections for case (ii)(b). Although this algorithm is general, we shall use the

notations in compliance with our purpose.

41

(b)

Figure 3.10: Elbow circle and an arc as one of the sides of the joint limit
spherical polygon (a) One edge of arc inside and one edge outside the circle
and one intersection, (b) Both edges inside or outside and no intersection, (c)
Both edges inside or outside and two intersections, (d) Arc tangent to the circle.

42

We begin with finding a means for differentiation between case (ii)’s (a),

(b), and (c). Consider figure 3.11(a), there is a sphere ‘S’ (i.e. the span of

the elbow joint or upper arm centered at shoulder joint and with radius for
our purpose). There are three circles shown on the sphere ‘S’, one is

the elbow circle. Second is ARCCIR(a), the extension of the arc 7 ^ 2 and the

third circle EQCIR{<f>) is simply the equator of the sphere ‘S’, taken analogous
to the world globe. The third circle can also be thought of as CIR{(f>) with

a = 90°, i.e. the 0 angle of the loci of CIR{(j)) being 90°. The point Po is one of

the intersections of the circle ARCCIR{a) with the equator circle EQCIR{(f)).
If we see the sphere S with a viewing vector coincident with the vector v shown

in figure 3.11 (a), where vector v is radial to the sphere S at Po, we would see

the figure 3.11 (a) as figure 3.11 (b).

In figure 3.11 (b) we see circles CIR{4>), ARCCIR(a) , and EQCIR((f>)

as three lines. The vector n is the normal to the plane defin'ed by the circle

ARCCIR(a) , n is a unit vector in the direction of f\ x Ei and it can be written

as:
n = {nx,ny,n^) where ^ n l + = 1

‘7 ’ is the angle between the z-axis and the normal n. It can be determined as:

cos 'f — riz

^9m' is the angle sustained by z-axis and the line projection of the circle

ARCCIR{cc) when measured counterclockwise from z-axis to the projection

line. Bra can be obtained by:

Bra - 7t/2 - 7

Now looking at the figure 3.11(b) we have some means to differentiate

between cases (ii) (a), (b), and (c):

case (i) or (ii)(b) Bm < cr

case (ii)(a) B^ > cr

case (ii)(c) Bra = <̂

When we know that case (i) exists, we do not have to do the Bm test, rather

we can directly proceed to find the intersections and discard the unwanted

43

Figure 3.11: Sphere S gives the whole span of the elbow in the absence of
shoulder joint limits, elbow circle CIR{(j>)·, ARCCIR(a) circle obtained by
extending the arc and the circle representing the equator of the sphere, (a)
Oblique view (b) Viewed from vector v.

44

one. But when case (ii) exists we should do the 6^ test and find out whether
we have to simply skip the arc 7̂ 2? case (ii)(a) or (c), or proceed to find the

intersections, dm = o', case (ii)(b).

M ethod: We first state the known quantities and then the steps of the

method.

Given:

• CIR{(f)) with every point on its loci having a constant 0 angle value of

cr, and lu vector length.

• An arc r^2 formed by two vectors and r^:

r{{lu,di,(f>i) = (rn,ri2,ri3)^

r2{lu,d2,<f>2) = (r21,r22,r23)^

where r,i = sin 6i cos (j>i
r,i = lu sin 6i sin (j)i
r,-i = ¡u cos 9i

and each of the Oi and (̂ ,’s represent the extreme values of the corre

sponding degree of freedom of the shoulder joint motion.

• Using the given arc f i r 2 a circle ARCCIR{a) is obtained. Let a be mea

sured from the vector rj, i.e. the point ARCCIR{0) corresponds to the

vector rj and let «o be another special value of a such that ARCCIR(ao)

corresponds to the vector r^.

Now let r(/u,A,(^) be any vector which is a function of ‘a ’, i.e., it corre

sponds to a point on ARCCIR(a) with any ‘a;’ value. Thus for different

‘a;’ values it will rotate on the circle ARCCIR(a) such that:

f = f{ for q; = 0
r = f *2 for a = Oc ''
f = ra for a = ai
r = r'i2 for a = Q2

where r7i and r72 are the two intersections to be calculated.

45

Неге we know that when г is equal to r7i or гТг, out of the three components

(r, в,ф) of the vector r, two are known i.e. г = /„ and в = a, since the vector f

lies on the circle С1К{ф). Thus only фц and ф{2 are to be calculated, i.e., the

two Ф values that correspond to ?'7i and гТг-

Steps:

1. Determine oco by:

ao — cos-1 / · ’̂2
П\\\Г2

2. Determine «i and 0:2 by:

и — lu cos о wnere к -
Л = Г13
D — Г9Д -Г1Д cos go

llsinofoll

3. Calculate ф\ and Ф2 :

VrnD + r 2l.Sj

where D
Ei

cosao sin a о
II sinoToll
sin CVt'

||sinoro||

For proofs and derivations see APPENDIX A.

46

Semi Goal-Directed Approach

This is a new notion introduced in this thesis for motion specification in key-
frame animation of articulated bodies like human body. The basic idea is that
of the goal-directed animation at the frame level. All the concepts or properties

of a goal-directed animation are mapped from film to frame, of course with

modifications and simplifications.

In the motion specification hierarchy, semi-goal-directed animation is at a

higher level when compared to the joint modification, and the joint positioning.
It is at a lower level when compared to the goal directed animation, that is

why it is called semi-goal-directed animation.

Semi-goal-directed animation is simply an abstraction of motion specifica
tion for key-frame generation and key-frame animation, in which the animator
generates the key-frames of the motion sequence by English-like commands. In

goal directed approach the whole motion sequence is generated by an English

command [7, 11] whereas here only the key-frame is generated.

In this technique, for each of the English commands there is an ordered set of

motion specifications at assembly level, most primitive ones like R(joint-name,

angle, axis) and T(disp-x, disp-y, disp-z) discussed in section 3.2.1, or at higher

level of joint positioning discussed in section 3.2.2. Thus motion planning

and controlling in goal directed animation maps to the sequencing of primitive

motions. One may argue that the order of primitive motions has no significance

as one can modify the 9 and 4> parameters (degrees of freedom of joint motions)

of the joints in any order and the end result is the same, so no planning is

needed at all. It is right that the order of primitive motion specifications

like translation T and rotation R has no order importance but incorporating

joint positioning P (joint-name, g {gxigy,gz)) as one of the members of the

set of motion specifications changes the whole theory. This is because joint

positioning will yield a different set of joint final states (configurations of joint

parameters or orientations of human body) depending on the corresponding set

of joint initial states. Especially, translation motion can effect it very much.

A solution for avoiding planning or sequencing the primitive motions would

47

be, to keei5 the joint positioning specifications cis a subset consisting of rota

tion specifications only, joint positioning is also finally implemented as a

set of rotation specifications. This is not an acceptable solution, because joint
positioning is broken into rotation specifications dynamically, i.e., depending
on the states of the joint. The different order of the same set of motion speci

fications (primitive + joint positioning) may yield different orientations of the

human body in the key-frame generations. Thus, planning of the sequence of

constituent motion specification of an English command is needed correspond

ing to the motion planning and controlling in goal directed animation. Here
also the planning has to be done at least once like in the case of goal directed
animation. From the previous discussion it is clear that parametric goal di

rected animation is more powerful and versatile than ordinary goal directed

animation. The same idea is mapped to the frame level in the semi-goal ap

proach. Before seeing this mapping let’s consider the parametric approach in

goal directed animation by an example:

• goal directed motion specifications in [7]. The English command is ‘walk’

and the parameters are ‘step-size’,‘step-frequency’, and ‘speed’. The sys

tem has default values for each of these parameters, so if the animator

does not specify any of these parameters, then the system generates a

standard walk (motion sequence frames), where motion planning and

control is embedded in the system. The animator can obtain different

variations of the walk by assigning different values to one or more of these

parameters.

The above concept of parametric goal directed approach is mapped to the

parametric semi-goal-directed approach implemented in AOHM. It has English-

like commands to specify some desired orientation or desired modification in

the state of the human body for the generation of a key-frame. One thing

worth noting here is that through the menu-commands (English-Like com-

mands displayed as menu) one can either achieve a desired orientation or a

desired modification for an orientation. Achieving desired orientation means

the constituent motion specifications are such that whatever be the state of

a joint they bring to a particular desired state by primitive operations of ro

tations, translations, and positioning. Achieving desired modifications means

48

the joint parameters are changed to a new value by some particular value, that

is a desired change is obtained in the state of the joint.

As mentioned, these menu-commands constitute of the following:

Translation

Rotation

Position

T =

R = {joint — name, angle, axis)

P = {joint - name,g{gx,gy,gz))

In translation we have three parameters x ,y , z displacements. For rotation

we have one parameter ‘angle’, it may he a, angle if ‘axis’ is 2, or a 0 angle

if ‘axis’ is 1. Positioning specification has also three parameters x,y, and z

coordinates of the goal position. Thus like in parametric goal directed anima

tion one can change some or all of these parameters present in the definition

of motion orientation menu-command and obtain a large variety of similar re
sults. In AOHM, we have provided this facility to the user to modify any of

the parameters whenever desired.

As an example, let’s take the menu-command ‘STEP-RIGHT’ from the

menu of motion specification in AOHM. STEP-RIGHT consists of the following

motion specifications:

STEP-RIGHT {

Rotation : (RHIP, 70, 1)

Rotation : (RKNEE, -60, 1)
Rotation : (UPPERTORSO, 15, 1)

Rotation : (LSHOULDER, 30, 1)

Rotation : (RSHOULDER, -30, 1)

Rotation : (LELBOW, 35, 1)

Rotation : (RELBOW, 35, 1)

}

We apply this menu-command to the standard initial orientation of the hu

man body in AOHM, figure 3.12 (a) to obtain the orientation of figure 3.12 (b).

It can be seen that how simple is the job now, simply with a single command

the laborious work of orienting the body to the desired orientation in figure

49

3.12 (b) is avoided.

.,<TT

S
3 B * i

(a.) (b)

Figure 3.12; Human body orientation (a) Initially (b) After applying the
menu-command STEP-RIGHT

Now, if we modify few parameters of ‘STEP-RIGHT’, for example the angle

values in the first two primitive motion specifications, say first angle is changed

from ‘70’ to ‘40’ and the second angle is changed from ‘-60’ to ‘-40’, then on

applying the same menu-command ‘STEP-RIGHT’ to the initial orientation of

the human body, figure 3.12 (a) we shall get the orientation as in figure 3.13

instead of the orientation of figure 3.12 (b).

Figure 3.13: Human body orientation after applying the modified
menu-command to the initial orientation.

Thus one can achieve a large variety of similar orientations by parametric

semi goal directed approach of AOHM.

50

Another advantage of this semi-goal-directed approach is that, like goal

directed approach, no dynamic or kinematic control mechanisms are needed

for motion planning and controlling, but semi-goal approach being a modified

version of parametric key-frame animation, leaves all the job of motion planning

and controlling to the animator, especially in terms of time-stamps. This

is a disadvantage of semi-goal approach. Looking to the trade-off between

animators job and machine’s burden, it is not an unacceptable optimization at

all.

To make this notion of motion specifications useful enough, AOHM provides

the animator with the facility of defining his/her own pool of menu-commands.

This refrains the animator from repeating the difficult tasks once performed.

A very good feature of defining own menu-commands in AOHM is that while

defining, the animator has all the possible freedom, i.e. animator can use

any abstraction of motion specification level, starting from joint modification,
assembly level, through joint positioning to including other available menu-

commands. There are facilities for deleting some animator defined commands

if the animator feels that they are not needed any more.

Goal Directed Approach

This is the highest level of abstraction of the motion specification for generating

key-frames in a key-frame animation. In fact, goal directed approach in key-

frame animation is almost the same as goal directed animation except that here

only the key-frames are generated b}' motion planning and controlling mech

anisms and the inbetweens may be computed by any other algorithin, where

as in goal directed animation all the frames are generated by motion planning

and controlling mechanism embedded in the system. All the arguments made

in section 3.1.1 for goal directed animation are equally valid here and we have

included this subsection only for the completeness of our proposed taxonomy

for motion specification levels in parametric key-frame .animation. According

to our information, nobody has so far tried this highest level of abstraction in

key-frame animation.

It is hoped that this notion of semi-goal-directed approach will be explored

51

more and more in the future by us as well as by other researchers.

3.2.2 Inbet weening

Inbetweening is the process of calculating the intermediate frames (in betweens)
between the two animator specified frames (key-frames). In conventional ani

mation this task is performed by an assistant of the animator and in computer

animation, computer or machine acting as an assistant performs this job.

As in key-frame animation the animator has to generate each frame of the

motion sequence by applying different transformations to the human figure or
any figure in general, so it is not practical for the animator to generate all the

frames to be displayed during animation. Therefore, the animator specifies the

critical ones, the key-frames and inbetweening has to be done by the machine.

Inbetweening can be done over the images,i.e. the inbetweens are generated

as images by interpolating the images for the key-frames. This type of inbe

tweening is termed as image or shape interpolation. This interpolation can be

a linear one or may be some complex technique, but whatever be the technique

it can never provide satisfactory solution in the deviations between interpo

lated image [13]. A way of producing better images, especially for articulated

bodies like human body is to interpolate parameters of the 2-D projections

of the model of the object itself. This technique is a widely used one [9]. In

this technique the parameters are the 2-D projections of the degrees of free

dom of joint motions. In this technique, inbetweens or intermediate images

are generated from the interpolated parameters, and it is termed as paramet

ric or key-transformation inbetweening. Here the quality of images are quite

satisfactory with disadvantages like, if the animator modifies a few of the in

terpolated images, he cannot view the motion from some other different angle

unless and until he does corresponding modifications again to that view’s mo

tion sequence frames. Moreover, there arises some discontinuities because of

interpolating the projections and not the 3-D orientation of the human body.

Better idea would be interpolating the parameters of the 3-D orientation

52

of the human body itself, thus no information is lost during interpolation. Be

sides having the advantage of viewing the motion at different angles, it has

many other advantages like modification to the interpolated frames can be
done in the same manner using all the system facilities as the key frames are

generated. Another very important advantage is that path planning during

interpolation can be done more realistically as real 3-D space is available, this

will be discussed in the next section where the integrating of algorithmic ani

mation to the key-frame animation for achieving more realism is discussed. It

is worth mentioning here that this technique as proposed by us, to the best of
our informations is being used by nobody, probably because its cost.

Now we shall discuss the above technique of 3-D interpolation implemented
in AOHM. This technique consists of two stages. In the first stage, a simple
algorithm of linear interpolation over the parameters is applied towards the

generation of the inbetween frames. In the second stage, some adjustments to

the inbetween frames generated in the first stage are done by making use of

some heuristics. At present only one heuristic found by us is implemented in

AOHM and we feel that there is a need of some more heuristics to improve

the quality of images further. There is a trade-off here between the number of

heuristics implemented for quality of inbetween images and the computational

cost. Not only the number of heuristics affect the computational cost; rather

more effective is the complexity of the heuristic itself.

The two-stage interpolation method is as follows:

S tage 1: In this stage, intermediate frames are generated by a linear inter

polation of the joint parameters between the initial and the final joint stages.

For example, if for a joint:

initial state is (̂ ,·, <̂,·) and

final state is (9f,(f>f)

where 6 and (f> denote two degrees of freedom of the spherical joint, then the

53

joint stages for the intermediate frames would be

Fth inbetween state = | ,̂· + k —----<f>i + k —— ^]
V n + 1 n + 1 J

for k = 1, - ■ ■ ,n

(5)

where n is the total number of intermediate frames to be calculated between

the two initial and final key-frames.

Intei'mediate frames are generated as transformations with each of the joints

having the stages calculated by equation 5. This operation is performed be

tween each pair of given key-frames.

Stage 2: The idea of the second stage in this interpolation method is to

decorate the intermediate frames generated in stage 1 with some heuristics so

that they look more realistic.

At present AOHM has one simple heuristic for the second stage found bĵ

us, which was needed.

The heuristic is that if only one of the end-effectors coordinates are un

changed then for each intermediate frame check wether the coordinate values

of that end-effector are the same, if not bring it to that value by translation.

If in the two consecutive key-frames (which are to be interpolated), no end-

effector or more than one end-effectors have same coordinate values, then check

for the coordinate values of the body joint (root joint) in the two key-frames,

i.e., whether there is any displacement of the whole body or not. If they are

the same then do nothing as a heuristic. If not then translate each of the

intermediate frames by :

T = l x , +
n + 1 ’'■■■■ n + 1 n + 1 ;

where (xi,yi^zi) and are the coordinate values of the body joint (in

fact of the whole human figure) in the initial and final key-frames, k is the

intermediate frame number, n the total number of intermediate frames to be

generated.

Figure 3.14((a) through (e)) gives the idea of the interpolation mechanism

supported by AOHM.

54

Z7

(a) (b)

(c)

(d) (e)

Figure 3.14: (a) Initial key-frame, (b) Final key-frame, (c) Two key-frames as
initial and final orientations, (d) Key-frames and the inbetweens drawn without
heuristic, (e) Key-frames and the inbetweens drawn with the heuristic.

55

3.2.3 Integrating Algorithmic Animation for Realistic
Motion

While interpolating key-frames in parametric key-frame animation there is no

dynamic control, neither there is any law of nature incorporated in the system,

we, therefore, cannot expect from this mechanism to perform very realistically.

Thus, when realistic motion is desired or when some motion generated by

parametric key-frame animation is found to be unrealistic, then we need some

mechanism to add realism the motion.

Motion can be made realistic by integrating algorithmic animation into the

parametric key-frame animation [13]. The idea of integration is that during

interpolation almost all the joint angles are calculated by a normal interpolation

method such as the one discussed in the previous section, and few of the critical

joint angles are determined from some law of nature attached to it, while

generating each of the inbetween. That is to say, use the normal method as

long as one gets the acceptable results and if the normal method does not yield

acceptable results then use the algorithmic animation technique for that case.

Algorithmic animation is used rarely because it is expensive and cannot be

used alone practically.

For this kind of integration, a important thing is how can we get the exact

trajectories of different joints during the coarse of different types of human

motions. A solution for this is to study the human motion, especially in terms of

joint trajectories during the course of a particular motion for different motions

depicted by human bodies [27, 28, 29, 41].

As mentioned earlier, algorithmic animation can be applied in different

ways, for instance by specifying some function, or mathematical formulae, or

procedurally by incorporating dynamics or kinematics. In all of these methods,

the desired trajectory is specified. A method for specifying these trajectories

would be specifying the loci at some instants, for example at inbetween frame

points. We can also define some spline that gives the approximation for the

trajectory so that different values of the trajectory loci can be obtained by the

system at different occasions. We feel that spline is not a bad choice, as it is

56

simple and versatile.

To understand how one can integrate algorithmic animation in our approach

let us consider the example of stepping of a foot while simulating a walk. Figure

Ff-âmf 1 Prenne 2 Fran-ie 1 Ff’srrie 2

Figure 3.15: (a) Interpolated path of ANKLE in the absence of algorithmic
animation, (b) Actual path for the ANKLE,

3.15(a) shows two orientations of a leg as frames 1 and 2, i.e. before and after

stepping respectively. The curve shown with an arrow is the path traversed by
the ankle while it is interpolated. In figure 3.15(b) the curve shown with an

arrow is an approximation of the actual path traversed by the ankle during the

stepping of a normal walk. It is obvious from figures 3.15(a) and (b) that .curve

in figure 3.15(a) is a very bad approximation to the actual path of the ankle.

Thus the parametric key frame animation does not seem to work well, as in

this case joint angles are interpolated as parameters. Figure 3.16 can be one

improvement, here only an extra key frame has been introduced, i.e., frame 2.

This is better than the one in figure 3.15(a) but still is not very realistic.

Realism can be improved by increasing the number of key frames but this is

not very practical. What we do in our algorithmic approach is that, we provide

the animator with the choice of approximating such curvilinear trajectories

with cubic splines by specifying a certain number of control points. Together

with the control points the animator also needs to specify the slopes of the

tangents to the curve at the control points with respect to all x, y, and z. The

initial and the final positions of the joint (ankle) is always among the control

57

Franrii 2

Figure 3.16: Improved interpolated path of ANKLE with additional key-frame.

points as the starting and the terminating control points. In figure 3.17 the

animator inserted the control point (a;2, y2, z2) and thus the system needs to

Frarmie Franfi? 2

Figure 3.17: Interpolated path of the ANKLE with algorithmic specification
by cubic splines.

compute the splines 1 and 2, i.e. the cubic spline between (xl, y l, z l) and

(x2, y2, z2), and between (x2, y2, z2) and (a:3, i/3, z3). Here we see that

the ankle path approximation is quite good and the accuracy depends on the

choice of the inserted control point and the specifications of the slope values.

Thus if N control points are inserted by the animator then there will be N + 1

cubic splines, and the x, y, and z coordinates of each of the cubic splines will

58

be of the form:

— di^ ”f" hi ̂ ct

y{t) = at^ -{■ bt ̂+ ct + d

z{t) = at^ + bt ̂+ ct + d

(7)
(8)

(9)

where ‘t ’ is a parameter such that 0 < i < 1. Now, since each of the three

equations are of the same form, it should suffice to discuss only one. Consider

the equation for x coordinate and assume that we are interpolating between
control points (r l , 7/1, z l) and (a;2, 7/2, z2). Here it is obvious that a;(0) = .t1

and a’(l) = x2. Moreover, since the animator also specifies the slopes of the

tangents to the spline at the control points, a;'(0) and .r'(l) are also known.

Thus by simple calculus, the constants a,6, c and d are calculated as follows:

a

b

c

d

2 .r(0)-2 x (l) + a:'(0)-fa:'(l) (10)

-3a;(0) + 3a;(l) + -2x'(0) - r '(l) (11)

x^(0) (12)

.t (0) (13)

After obtaining the equations of the path we calculate the coordinates of the

joint (ankle in figure 3.17) by assigning different values to the parameter ‘t ’.

The number of different values assigned to the parameter ‘t ’ depends on the

number of frames required to be ¡produced. Rest of the joint angles are calcu

lated by inverse kinematics.

59

4. AOHM IMPLEMENTATION

AOHM (Animation of Human Motion) is designed and implemented in C pro

gramming language [22] using SUNVIEW^ [36] on SU№ Workstations running

under UNIX^ operating system.

AOHM is a general purpose tool with which wide range of human motions

can be generated. The facilities supported for an animator are as follows:

• creation of a new sequence of frames

• modification of a sequence of frames

• reading a sequence of frames from a file

• saving a sequence of frames into a file

• interpolating a sequence of frames

• animating a sequence of frames

• adding a key frame to a sequence of frames

• removing a key frame from a sequence of frames

• preparing a key frame orientation of the body by joint parameter modi

fication

preparing a key frame orientation of the body by joint positioning

 ̂SUN VIEW is a software facility for working in the window environment, a registered
trademark of Sun Microsystems, Incorporated.

ŜUN Workstation is a registered trademark of Sun Microsystems, Incorporated.
^UNIX is a registered trademark of AT&T Bell Laboratories.

60

• preparing a key frame orientation of the body by menu commands

• creating own menu command

In the following sections some of the important data structures are discussed

and a brief comment on the user interface of the AOHM implementation is

provided. Those interested in details of the user interface and how to use the

tool should see the User Manual in APPENDIX B.

4.1 DATA STRUCTURES

In this section some of the important data structures used in the design and

implementation of the human motion animation tool (AOHM) are discussed.

4.1.1 Joint

This structure gives the node definition for representing the joint information

in the hierarchical definition of joint tree of the human body.

typedef struct Joint {

char joint-name[NAMESIZE]; /* joint identifier */

POINT joint; /* joint coordinates */

double theeta, /* 0 parameter value */

phi; /* (j) parameter value */

double br-dist; /* absolute distance of 1st child */

int tot-branch; /* total # of siblings */

struct Joint *par-joint, /* pointer to parent joint */

**branch-joint; j* list of sibling pointers */

SEGMENT *base-seg; /* pointer to segment definition */

short lim-th-up,lim-th-low, /* 0 limits */

lim-ph-up,lim-ph-low; j* (f> limits */

} JOINT;

61

typedef struct Point {

double x,y,z /* x, y, and z coordinates */

} POINT;

typedef struct Segment {

char segment-name[NAMESIZE]; /* segment identifier */

SEG-SHAPE *shape; /* pointer to shape info */

struct Joint *base-joint; /* pointer to corresponding joint */

} SEGMENT;

typedef struct Segment-shape {

int shape-info; /* # of SQUARES */

SQUARE **sq /* pointer to shaj^e definition */

} SEG-SHAPE;

typedef struct Square {

POINT pl,p2,p3,p4 /* four vertices of square */

} SQUARE;

Using the joint node defined above a hierarchy of the joints in the human

body representation is obtained (figure 2.4). The tree structure is constructed

dynamically on reading a file of human body joint information starting from

the root node which is supposed to be an identifier to the whole of the figure.

As can be seen from the node definition of the joint, there is no restriction on

the number of sibling joints so any articulated figure can be read in. Thus it

works for any depth of human body definition, that is, regardless of the number

of joints. The values read for the joint coordinate from the file account for the

initial orientation of the human body.

A state change in the joint is done by modifying the theta and/or phi values

in the respective joint. Before doing any change in the joint state, the modified

value to be obtained is checked against the respective joint limits.

62

4.1.2 Frame

Frames are represented as a contiguous list of nodes ‘TRANSMATRIX’, where

each of the nodes keeps the transformation information of a joint in that partic

ular frame. Transformation information means the transformation needed to

bring a joint coordinate specified as a reference, initially defined in the homo

geneous coordinate system; to its designated value required for that particular

frame. The nodes also hold information about the state of the joint in that

frame so that modifications to the frame can be done easily.

typedef struct transmatrix {

int is-identity; /* joint initial position flag */

char j-name[NAMESIZE]; /* joint identifier */

double theeta, /* joint state

phi; in the frame */

MATRIX *mat /* transformation matrix */

} TRANSMATRIX;

typedef struct matrix {
double elem[4][4] /* a 4x4 matrix */

} MATRIX;

TRANSMATRIX **frame; /* definition of the frame */

4.1.3 Film

A film or frame sequence for a motion is represented as a doubly linked list of

nodes ‘FILM-FRAMES’, where every node holds the information about a single

frame of that motion sequence. The information includes a frame number for

the identification of the frame, addresses of the previous and next frame in the

motion sequence, and a list of transformations for each of the joints. There is

also a flag to differentiate between a key-frame and an interpolated frame.

typedef struct film-frames {

63

int frame-no; /* frame number */

int key-frame; key-frame flag */

struct film-frames *next, /* next frame pointer */

previous; / previous frame pointer */

TRANSMATRIX **fr-trans; /* frame transformation info */

} FILM-FRAMES;

4.1.4 Menu Command

This is one of the most important data structures of the AOHM implementa

tion, since it has been used for supporting our new notion of the abstraction

of motion specification in the key-frame generation. It is a contiguous list of

nodes, where each of single node stands for a particular ‘menu command’, a

command that facilitates the animator to achieve complex orientations of the

human body just by an English-like command.

typedef struct Menu-oper {

char com-name[NAMESIZE];
short tot-oper, /* ^ of primitive operations */

sys-flg; I* true indicates tool command and

cannot be deleted by user */

PRIMITIVE-OPER *prim-op; /* list of primitive operations */

} MENU-OPER;

typedef struct Primitive-oper {

char j-name[NAMESIZE];

short oper, /* 1 .-rotate wrt y, 2:rotate wrt z,

3:translate, 4:positioning */

mod-fig, /* parameter modified */

rel-flg; /* operation relative */

union p-op-val {

POINT *pnt; /* pointer to

double *rot-ang; parameters */

} val, *mod-val;

64

} PRIMITIVE-OPER;

A menu command list is defined as:

MENÜ-OPER *m-com-list;

which is effectively an array of menu commands. Each menu command ‘MENU-

OPER’ holds how many primitive operations ‘PRIMITIVE-OPER’ are there

in a single command, a list of them, and a flag ‘sys-fig’ (for each command)

in order to differentiate it from the user defined menu command. This is

needed to stop the user from deleting a system command. Each of the single
primitive operator ‘PRIMITIVE-OPER’ keeps information such as what kind

of operation it is, with ‘oper’ flag. There are two concepts for any primitive

operator, one is relative operation which modifies an angle to a specified value

by adjusting the parameters relative to the parameter of the joint state, and

the second is the absolute one. This is checked by ‘rel-flg’. In AOHM, there

is a facility for the animator to use the menu commands in a more versatile

manner by changing the parameter values associated with each of the primitive

operations of a menu command. We also do not want the user to be able to

change the commands in the absolute sense so whenever a parameter of a

primitive operation is modified, it is stored in another area ‘*mod-val’.

There is also a facility for defining user’s own menu commands, save them as

other menus, and delete them whenever desired. This facility is implemented

in its most flexible form, that is one can define a menu command by using

any and every type and level of motion specification. For instance one can

do joint parameter modification, the lowest abstraction or joint positioning, a

higher level or even other predefined menu commands, the highest abstraction

implemented in AOHM. This is achieved by keeping a global flag set whenever

user is defining a menu command and each of the primitive operation is added

to a temporary list of primitive commands until the user tells that he is done

with it. This temporary list is a linked list:

typedef struct Prim-oper-list {

65

PRIMITIVE-OPER p-oper; /* primitive operation */

struct Prim-oper-list *next; /* next operation */

} PRIM-OPER-LIST;

4.1.5 Coordinate Axes

It is a well known fact from robotics, human body animation or from the study

of any articulated body that each of the joints or segments in a hierarchical

structure has its own coordinate system, but for doing any processing in the
world coordinate system, it is required that the joint or segment definition in
its respective coordinate system be reflected to the world coordinate system.

Another important issue is that whenever any of the parent or any level of
grand parent joint changes its state then the coordinate axes of all the sibling

joints have to be modified if their respective state definition has to remain

unchanged as desired.

In the above discussion we note that there is a need for storing and keeping

a track of the state changes of the coordinate axes of the joints or segments

besides keeping the track of state information of the joints themselves. For

that we have defined the following nodes:

typedef struct axistrans {

char j-name[NAMESIZE];

MATRIX *axis-tr, /* transformation applied to the joint axis */

axis-trinv; / inverse of the axis-tr matrix */

} AXISTRANS;

AXISTRANS **axes-trans; /* list of axes */

Here each node has a joint identifier ‘j-name’, and pointers to two matrices.

‘Axis-tr’ gives the composite transformation applied to the axis of the respec

tive joint, to map the joint from the world origin to the final state in a frame

under operation. ‘Axis-trinv’ gives the transformation just inverse to the one

in ‘axis-tr’.

66

At the beginning of the program or at each initialization of frame, ‘axes-

trans’ initializes its node transformation matrices so that ‘axis-tr’ gives the

transformation for bringing the respective joint axes from the world coordi

nate origin to an initial or standard orientation and position. Later at each

modification of the joint states, these list nodes are updated accordingly.

Now, since we have not associated an ‘axes-trans’ list with each of the

frame definition, whenever a frame is loaded, in order to make the loaded frame

editable, a valid corresponding ‘axes-trans’ list is required. This i^roblem can

be solved in two ways. One is to associate with each of the frame definitions

an axes transformation list. This is unpractical as a lot of memory is wasted

in saving a single frame. Second solution (the one implemented in AOHM) is

whenever a fi’ame is loaded, to initialize the ‘axes-trans’ and then adjust it to

the corresponding state by using the state information of each of the joint in

that frame.

4.2 USER INTERFACE

AOHM’s main window is divided into three sections; the topmost window is for

messages like film name, frame number under consideration and total frames

in the film. The second window is the command window containing the panel

buttons. There are three modes for this window; one is the main mode where

one can scale the overall working space, set single or multiple views (to be

discussed), quit the tool or get to one of the other two modes of frame or film.

In the frame mode, a frame editing is done with all the facilities discussed at the

beginning of this chapter. In the film mode, film related operations like animate

and interpolate are performed. The third window shows the orientations of the

human body model while in the frame mode and the motions of the human

body model while in the film mode (figure 4.1).

Pop up windows to support different causes and warnings emerge and vanish

as the animator proceeds with his motion sequence generations or modifica

tions.

67

Hl^AN MOTION ANIMATION TOOL

FILM : no name
TOTAL FRAMES : 0
FRAME # : 1

[INIT.FRAME][ROTATE)[TRANSLATE]

[MENU.COM][SAVE_FRAME][LOAD_FRAME)

[POSITION H INFO][COPY]

[DELETE](INSERT][RETURN]

Figure 4.1: Main window of the AOHM tool

68

One aspect of this user interface is the mechanism developed for enter

ing a 3-D input by the conventional 2-D device ‘mouse’. This is required for

joint positioning as the animator needs to specify a 3-D desired goal point for

positioning a joint. It is also needed in the Algorithmic animation.

The animator is advised to work in the multiple view environment while

specifying a 3-D goal point input, (figure 4.2), as in the multiple view, the

Figure 4.2: Multi-view environment of the AOHM tool

animator can see the top, front, side, and isometric views simultaneously. Thus

it is possible to see the movement of the cursor in 3-D.

How is the animator going to move the cursor in the 3-D region with the

2-D device ‘mouse’? As a solution, we have defined three modes for the cursor

movement, in each mode restricting the cursor to move in one of the three

69

planes X-Y , Y-Z or Z-X. Following is our interpretation of the mouse button

clicks:

MIDDLE-BUTTON down and drag: change of cursor position in the valid

plane.

RIGHT-BUTTON down and up: change the plane in the cyclic order of

X-Y , Y-Z, Z-X, and X-Y, depending on the the state of the plane.

LEFT-BUTTON down and up: present location of the cursor is selected

as the desired goal position for some joint to be chosen from the joint name

menu. A joint name menu emerges and the animator selects the joint to be

positioned.

For more details of the user interface and AOHM, readers are referred to

APPENDIX B.

70

5. FUTURE DIRECTIONS

This research can be regarded as a stepping stone towards the design of a
complete, general-purpose, highly interactive, and user friendly human motion

animation tool. This is because our approach is modular and we have provided

a platform for the motion specification levels. We anticipate the following issues

to enhance our research:

• Modeling of human body can be supported interactively by benefitting

from the ideas in [9] and [33]. This can also be made menu-driven for

high level specifications. Moreover, we feel that if a facility for modeling

the scenes surrounding the human figure is suppcjrted then its application

will increase very much.

• To achieve realistic motion, there is a need for building a joint model

which has a joint limit boundary curve very close to the one in actual

human body. For this we rely on the research from biomechanics. It is

not possible to build a constant model if we want to be very precise as

this joint limit boundary curve differs from person to person. •

• We feel that for completeness of the work, there is a. need to support

goal-directed animation. This means motion control and planning mech

anisms have to be explored. Building goal directed animation on top of

our present tool is simple because of our object-oriented approach. Tt

will be more beneficial if this feature is designed in the way semi goal

directed approach is implemented in AOHM. Instead of designing and

implementing a complex motion planning and control algorithm, sim

ple algorithms for portions of motion should be implemented, and later

71

means for combining them should be supported. We suggest a modular

approach, in which the simple mechanisms will have all the kinematics

and dynamics incorporated in them. Dynamic controls should be used

only when extremely needed.

• The ability for showing very long animations is possible if less information

is stored for each frame, that is, if we can draw a frame from the very

basic information needed for the frame. This is not the case in AOHM.

Presently, we keep the transformation information for generating each

frame in the motion sequence, as we cannot afford to calculate these

while drawing because of limitations of the architecture. This problem

can only be solved by a fast machine. Parallelism is the only solution

because to obtain the transformation information for each joint, we do

not need any communication between the processors.

We think that an implementation purely on a parallel computer will

not be an optimal solution; rather ideally distributed system concepts

should be used, i.e., the parallel computer should be used as one of the

nodes of the distributed environment of the tool. One reason is that

when dynamic analysis is run in the parallel computer it should not be

disturbed by interactive interruptions. This approach is realized to an

extent in [1] where four workstations are used for dynamic analysis. Using

distributed environment one can make use of the dedicated machines.

The most simple distributed environment would be a workstation and a

parallel computer.

72

6. CONCLUSIONS

A simple, interactive, user-friendly human motion animation tool is discussed.

AOHM provides a sound background for researchers in the field of human

motion animation, as we started from the very basics of human body animation

to some critical issues of this field.

Our proposed taxonomy of the abstractions of motion specification levels in

the generation of key-frames is a guideline for the motion specification studies,

and it can be considered for achieving better motion specification representa

tions.

The choice of the simple model for human body figure reduced the display

and CPU time in the course of animation.

The semi-goal directed approach introduced here simplifies the animator’s

job and at the same time does not add too much load to the system. The

flexibility of being able to define own menu commands restrain the animator

from repeating difficult jobs.

The parametric approach in semi-goal directed animation provides the user

with the facility of using a menu-command present in the system in the most

versatile way.

73

REFERENCES

[1] Armstrong, W. W., Gi'een, M. and Lake, R., “Near-Real-Time Control

of Human Figure Models,” Proc. Graphics Interface ’86 Vision Interface

’86, (1986), pp. 147-151.

[2] Badler, N. I. et al., “Multi-Dimensional Input Techniques and Articu

lated Figure Positioning by Multiple Constraints,” Interactive 3D Graph

ics (1986), pp. 151-169.

[3] Badler, N. I., “Animating Human Figures: Perspectives and Directions,”

Proc. Graphics Interface ’86 Vision Interface ’86 (1986), pp. 115-120.

[4] Badler, N. I., “Design of a Human Movement Representation Incorporat

ing Dynamics,” Notes.

[5] Badler, N. I., “Artificial Intelligence Natural Language and Simulation for

Human Animation,” Notes.

[6] Barzel, R. and Barr, A. H., “A Modelling System Based on Dynamic

Constraints,” Proc. SIGGRAPH ’88 (1988), pp. 179-187.

[7] Bruderlin, A. and Calvert, T., “Coal Directed, Dynamic Animation of

Human Walking,” Proc. SIGGRAPII ’89 (1989), pp. 233-242.

[8] Burtnyk, N. and Wein, M., “Interactive Skeleton Techniques for Enhanc

ing Motion Dynamics in Key Frame Animation,” Gommunications of the

ACM (1976), pp. 516-521.

[9] Cachola, D. C. and Schrack, C. F., “Modelling and Animating Three-

Dimensional Articulated Figures,” Proc. Graphics Interface ’86 Vision

Interface ’86 (1986), pp. 152-157.

74

[10] Computer Graphics and Applications, Institute of Electrical and Electron

ics Engineers, Vol. 2, No. 9 (Nov 1982).

[11] Denber, J. M. and Turner, P. M., “A Differential Compiler for Computer

Animation,” Proc. SIGGRAPH ’86 (1986), pp. 21-27.

[12] Brewery, K. and Tsotsos, J., “Goal Directed Animation using English

Commands,” Proc. Graphics Interface ’86 Vision Interface ’86 (1986),

pp. 131-135.

[13] Field, D. A., “Mathematical Problems in Solid Modeling,” Geometric

Modeling: Algorithms and New Trends, ed. Farin, G. E., SIAM (1987),

pp. 91-108.

[14] Forest, L. et ah, “Integrating Key-Frame Animation and Algorithmic An

imation of Articulated Bodies,” Advanced Computer Graphics, ed. Kunii,

T. L. (1986), pp. 263-274.

[15] Girard, M., “Interactive Design of 3-D Computer- Animated Legged An

imal Motion,” Interactive 3D Gmphics (1986), pp. 131-150.

[16] Girai'd, M. and Maciejewski, A. A., “Computational Modeling for the

Computer Animation of Legged Figures,” Proc. SIGGRAPH ’85 (1985),

pp. 263-269.

[17] Goldman, R. N., “The Role of Surface in Solid Modeling,” Geometric

Modeling: Algorithms and New Trends, ed. Farin, G. E., SIAM (1987),

pp. 69-90.

[18] Gourret, J., “Simulation of Object and Human Skin Deformation in a

Grasping Task,” Proc. SIGGRAPH ’89 (1989), pp. 21-30.

[19] Grosso, M. R. et ah, “Anthropometry for Computer Graphics Human

Figures,” Technical Report, Dept, of Computer and Information Science,

University of Pennsylvania (1988).

[20] Hearn, D. and Baker, M. P., Computer Graphics, Prentice-Hall, Engle

wood Cliffs, NJ (1986).

75

[21] Hodgins, J. K., “Logged Robots on Rough Terrain : Experiments in Ad

justing Step Length,” Ph.D. Dissertation, Dept, of Computer Science,

Carnegie Mellon University (1989).

[22] Kernighan, B. W. and Ritchie, D. M., The C Programming Language^

Prentice Hall, Englewood Clilfs, NJ (1978).

[23] Korien, J. U., “A Geometric Investigation of Reach,” Ph.D. Dissertation,

MIT Press (1984).

[24] Laybourne, K., The Animation Book, Crown Publishers, New York (1979).

[25] Lichten, L. and Samek, M., “Integrating Sculptured Surfaces into a Poly

hedral Solid Modeling System,” Geometric Modeling: Algorithms and New

Trends, ed. Farin, G. E., SIAM (1987), pp. 109-122.

[26] Mahmud, S. K. and Ozgiig, B., “Human Body Animation,” Proceedings

of the Fifth International Symposium on Computer and Information Sci

ences, Cappadocia, Turkey (1990), pp. 885-894.

[27] Martin, D. A. and et ah, “Human Upper Limb Dynamics,” Robotics and

Autonomous Systems (1989), pp. 151-163.

[28] Morasso, P., “Three Dimensional Arm Trajectories,” Biological Cybernet

ics (1983), pp. 187-194.

[29] Morasso, P. and Tagliasco, V., “Analysis of Human Movements: Spatial

Localisation with Multiple Perspective Views,” Medical & Biological En

gineering & Computing (1983), pp. 74-82.

[30] Newman, W. and Sproull, R., Principles of Interactive Computer Graph

ics, McGraw-Hill (1981), second edition.

[31] Ozgiig, B., “Thoughts on User Interface Design for Multi Window Environ

ments,” Proceedings of the Second International Symposium on Computer

and Information Sciences, Istanbul (1987), pp. 477-488.

[32] Patla, A. E. and Eickmeier, W. E., “Comons: A Computer-Based Move

ment and Simulation System,” Human Movement Science (1989), pp. 161-

176.

76

[33] Reeves, William T. et al., “The Menv Modelling and Animation Environ

ment,” Journal of Visualization and Computer Animation, Vol. 1 (1990),

pp. 33-40.

[34] Ridsdale, G. et al., “The Interactive Specification of Human Motion,”

Proc. Graphics Interface ’86 Vision Interface ’86 (1986), pp. 121-130.

[35] Steketee, S. N. and Badler, N. L, “ Parametric Keyframe Interpolation

Incorporating Kinematic Adjustment and Phrasing Control,” Proc. SIG-
GRAPH ' ^ 5 (1 9 8 5) , p p . 2 5 5 - 2 6 2 .

[36] Sun Microsystems, Sun View Programmer’s Guide (1986), Mountain

View, CA.

[37] Sun Microsystems, UNIX Interface Reference Manual, Mountain View,
CA (1986).

[38] Thalmann, M. N. and Thalmann, D., Computer Animation: Theory and

Practice (1986), Springer-Verlag.

[39] Thompson, David E. and et ah, “A Hand Biomechanics Workstation,”

Proc. SIGGRAPH ’88 (1988), pp. 335-343.

[40] Tokad, Y. “Mühendislik Sistemlerinin Analizi (.A.nalysis of Engineering

Systems),” Part III, Bilkent University, Faculty of Engineering and Science

Series No. 1 (1990).

[41] Velay, J. L. et ah, “Elbow Position Sense in Man : Contrasting Results in

Matching and Pointing,” Human Movement Science (1989), pp. 177-193.

[42] Wang, K., “Computer Graphics Simulation System for Robot Manipula

tors,” Simulation (1989), pp. 183-190.

[43] Wihelms, J., “Virya - A Motion Control Editor for Kinematic and Dy

namic Animation,” Proc. Graphics Interface ’86 Vision Interface ’86

(1986), pp. 141-146.

[44] Wilhelms, J. P. and Barsky, B. A., ’’Using Dynamic Analysis to Animate

Articulated Bodies such as Humans and Robots”, Computer-Generated

Images, ed. Thalmann, N. M. and Thalmann, D., Springer-Verlag (1985),

p p . 2 0 9 - 2 2 9 .

77

[45] Zeltzer, D., “Towards Integrated View of 3-D Computer Animation,”

Computer-Generated Images^ ed. Thalmann, N. M. and Thalmann, D.,

Springer-Verlag (1985), pp. 230-248.

78

APPENDICES

79

A. ARC-CIRCLE INTERSECTIONS

This appendix gives the derivations of the equations (used in Chapter 3) for

finding the intersections between a circle and an arc.

We shall basically use the matrix notations for vector operations, namely
scalar p roduct and vector p roduct.

Scalar P ro d u c t:

ri-T2 --- > r f r2 = [rn ri2 Tig]
>'21
?’22
T23

V ector P ro d u c t:

f{ X T2 --- ̂ R-ir2 =
»’21
»’22

. 2̂3 _

0 -ri3 r i2
»'13 0 - r n

- » ’12 »’l l 0

R i is a 3 X 3 skew-symetric matrix and r i is a column matrix, both corre

sponding to the vector f{. For the proof of the equivalence of the above marix

notation to the corresponding vector product see [40].

Ti'ansformation Matrix r(n ,o ;) : It is 3 x 3 transformation matrix

that when pre-multiplies column matrix v corresponding to the vector u, v is

rotated counterclockwise by o; in the plane to which n is a unit normal. This

unit normal actually gives the axis of the rotation of the vector or any object

in general. The expression for this transformation matrix is given as [40]:

r (n , a) = cos a l + (1 — cos o;)nn' ̂+ sin cvN (1)

T (n , 0) = I

80

In te rsec tio n P ro b lem : Now let us define the problem notationally:

Given :

Figure A.l: Arc-circle intersections

A circle CIR{(f>) with its loci vectors having a constant 0 angle of a and

lying on the sphere ‘S’ of radius ‘r , see figuie A.l.

An arc r 'ir2 consisting of edge vectors r i and r 2 lying on the sphere S of

radius ‘r \ such that;

sin 0i cos 4>i
n = r sin 0\ sin (j)i

cos

sin 02 cos (j)2

V2 = T' sin 02 sin (j>2

COS 02

(2)

(3)

The problem is to find the intersections between the given circle CIR{<f>)

81

and the circle on sphere ‘S’ obtained by extending the given arc 7̂ 72 from

both sides until two of the edges meet. Since one of the circles, CIR{4>) has

a constant 9 angle loci so the problem reduces to finding only the <f> values as
the magnitudes are also fixed because of the sphere ‘S’, see figure A.l.

The loci of the given arc is described by the vector r, such that:

r(o;) = /1 (a) r i + /2 (o :) r2

where 0 < a; < ao

llrHIl = llrill = ||r2 || = r

(4)

a; = 0

Of — (Xq

MO) = 1
/2(0) = 0

/ i (q'o) = 0
/2(0:0) = 1

r = r i

r = T2

The domain of a , [0 ,ao] gives the sweep of the vector r over the given arc.

We can calculate Oq by

ao = cos - 1
T

(5)

The unit vector n appearing in the transformation matrix expression can

be determined as:

n =
1

rn
n (6)

where n is the normal to the plane formed by the two vectors r i and r2·

Direction of n is given by:

n = R ir2 (7)

From the definition of the vector r and the transformation matrix, T{n,a)

we can write:

r = r(n ,Q ;)r i

= cos a r i + (1 — cos o:)nn'^ri + sin crNri

= cos a r i + sin a N ri as n _L r i

82

(8)

(9)

1 Ktcos a r ı + sm orTr^yrNri
||n||
- 1 r. -cos a r i + sm tx -n ^ R in
||n||

cos a r i + sin aT Tz^R i(R ir2)
l|n||
-1 X. T.cos a r i + sin o ;7 T ^ R iR ir2
n

-1= cos a r i + s in o ;T |^ (r ir i - (rj'ri)l)r2

c o şa rı + s i n a | j ^ [(r i r i) r 2 - (r f r2)ri]

/ rî'r2 . ^ \
(10)

Comparing equations 4 and 10 one can get the expressions for /i(a) and

Mo:)·

Substituting the values of r j 'r 2, ||n|| and ||ri|| in the equation 10 we get:

/ cos ao . \ ,r = cos a — —;------r sm a r i +
V sm Q’o sm ao

sm a T2 (11)

Equation 11 actually represents three equations. Wc can also write the vector

r in terms of its components as:

(12)

r\ sin 0 cos
r = T2 = V sin 0 sin

. 3̂ . cos 0

Dividing the second row by the first row in equation 11 and 12 we get:

r i2 (cos a - sin a) + r22p ^\ Isinaol / '̂ |̂sinofo|tan 4> —
r „ (cos a - sin a) + T2iIsmcvo sinao

(13)

From the third row of equation 11 we have:

 ̂ (cosao . \ , s in a
rcosO = r i a j c o s a — 1—;-------- ¡ -sma | +,^237—:----------¡- (14)

sm ao sm ao

Equation 13 gives values and equation 14 gives the value for the

vector r corresponding to an ‘a ’ value. To find the intersections the angle ‘0’

83

value is known, so we can solve equation 14 for ‘o ’. Rearranging equation 14

we obtain:

(15)r.3 cos cr + - r r s T ^ sin o = r cos 9
Yİ smoo 1 1 smoio \j

A cos a-\- B sin a = C (16)

where A =

B =

C =

ri3
r23

Y| SinCHo
r cos 6

- n si
cos Oo
sin «0

To solve a equation of the form 16, a procedure is describe in [40] is the

following:

(17)

(18)

Let

A = a sınŞ

Q = a cos ¡3

where = A^ + B^

tan /? = —

Replacing these expressions of and ‘C’ in equation 16. an expression

for ‘ct’ can be established:

a sin /3 cos a + a cos ¡3 sin cn = C

Let k =
C

V A 2 "+ ^

a s\n{Ş + a) — C
C

sin(/? + a) - + Ĵ 2

then sin(/? + o;) = ’̂

cos{l3 + û) = ± \ / l - k'̂
k

Equations 19 & 20 ^ tan(^ + <a) — _ j,2

01,2 = ± ta n - '
-1 74İ - t a n -

(19)

(20)

(21)

(22)

84

Equation 21 gives two values, ‘a i ’ and ‘q^’ corresponding to the intersection

points. Substituting these ‘a ’ values in equation 13 we obtain the required

respective ‘<̂ i’ and ‘<̂2’ values.

85

B. AOHM USER’S M ANUAL

AOHM is used to generate a motion sequence as a computer graphics simula

tion of the wide range of human bod}' motions. Finally the generated motion

sequence can be animated. Using this tool one can also modify a previously

generated motion sequence.

To provide the users with a friendly environment, SUNVIEW has been used

for creating panels, menus, buttons, etc. [36]. More information about multi

window environments can be found in [31]. The modules that comprise the

system and the user interface are given in detail in the following two sections.

The Modules

The tool is implemented as several modules containing functions and def

initions written in the C programming language. The modules are compiled

and linked using the UNIX’s makefile facility.

The source files are :

anim.c

anim-lib.c

a-menu.c

def .h

anim-init.c

anim-pop.c

struct-def.h

The definition files include data for the initialization of the program and

the motion sequences stored under the directories ‘films’ and ‘rasfilms’.

86

joint.file
joint.name

seg.file
m-com.file

films/ rasfilms/

The User Interface

The user interface consists of three sub windows. The first one is a. panel

that contains message items to give the him name, total number of frames

and the frame under consideration information to the animator. The second

subwindow contains several command buttons (to be discussed in detail). The

third subwindow functions as the graphical display for the tool, as all the ani
mation and human body orientations’ display are done in this window (hgure

B .l).

HUMAN MOTION ANIMATION TOOL

FILM : walk
TOTAL FRAMES : 16
FRAME # : 16

[INIT_FILM][ANIMATE][INTER_POL]

[SAVE_FILM][LOAD.FILM] [LOAD.RASTER)

[INV.PERS)[PERSPECT][' RETURN)

Figure B.l: Main window of AOHM.

87

The second subwindow which is a panel containing several buttons is the

control panel. This control panel has three modes that are discussed in detail

in the following subsections.

Main Mode

This is the default mode of the this panel and contains six buttons. The

function of each button is explained below:

L SET_VIEV) c SCALE 1

L FRAME r FILM)

(START 1 (QUIT 1

Figure B.2: Button panel in the main mode of AOHM.

• SET-VIEW : This is used for setting or resetting the multi view environ

ment. Pressing this button, a pop-up window emerges and informs the

user about the state of multi-view and if the user desires, the state can

be switched from multi-to single-view and vice versa. In the multi-view

state, user is able to see the human body orientation from the top, side,

front, and as a isometric view, figure B.3.

• SCALE : Pressing this button, a pop-up window, figure B.4 emerges and

the user can scale the entire systems, including both the single and multi

views, by a percentage factor of the present scale. At the beginning the

default value of the scale is taken to be 1.

• FRAME : The function of this button is to change the mode of the

subwindow from main mode to frame mode, frame mode is discussed in

the next subsection, figure B.5.

• FILM : The function of this button is to change the mode of the subwin

dow from main mode to film mode, film mode is discussed in the later

subsection, figure B.15.

88

CZ3
9

s .

r \ii.
Ittli

B ■ r

i

Figure B.3; Multi view environment of AOHM showing isometric, top, side
amd the front views.

Figure B.4: Scale pop-up window

89

• START : Pressing this button the user can initialize a frame or a film,

but it is not a very important one as it is duplicated in the frame and
film modes.

• QUIT : This for exiting from the tool and on pressing this the system
confirms for the user’s desire of exit.

Frame Mode

In the frame mode the user can prepare a frame for a motion secjuence

by using the different facilities supported by the tool AOHM, modify a previ

ously prepared frame, insert or delete a frame by using the button commands

explained below:

LINIT.FRAME]f ROTATE JC TRANSLATE)

r MENU.COM 1 CSAVE.FRAME DCL0AD_FRAME

C POSITION □ C INFO DC COPY D
r DELETE DC INSERT DC RETURN

Figure B.5: Button panel in the frame mode. •

• INIT-FRAME : This button is used to bring the human body orientation

to the standard initial orientation shown in the third subwindow of figure

B .l, from whatever state of orientation it is in.

• ROTATE : Pressing this button a pop-up window emerges, figure B.6.

This is for the lowest level of motion specification i.e. joint parameters

of the human body is modified to yield different orientations. There are

two slider inputs to specify the change in the two degrees of freedom of

the joint motion, namely theta 6 and phi f .

• TRANSLATE : This button is used for translating the human body in

the 3-D space by specifying the X, X, and Z displacement values in the

pop-up window, figure B.7.

90

DELTA-PHI : [0] -1 7 9

DELTA-THEETA : [0] -89

EKTER JOim* NAMES Rotate w . r . t . :

100

n 90

c w n

Figure B.6: Rotation pop-up window

ENTER X C o -o rd in a te :
ENTER Y C o -o rd in a te :
ENTER Z C o -o rd in a te :

Q Q

Figure B.7; Translation pop-up window

• MENU-COM : The purpose of this button is to allow the user to enter

the mode of highest level of motion specification supported in AOHM.

On pressing this button a pop-up panel, figure B.8 emerges containing

five buttons explained below:

00_COM
I CHANGE_PAR 1
I DEFINE_COM]
I DEL_C0M]

I DONE/CANCEl)

Figure B.8: Pop-up window for menu-command mode.

DO-COM : Pressing this button a menu of commands appears, and

choosing one of these commands the user can achieve different orien

tations of the human body embedded in the definition of that menu

command. For example the command STEP-RIGHT changes the

human body orientation from figure 3.12 (a) to figure 3.12 (b).

CHANGE-PAR : The function of this button is to provide the user

91

with a facility to change the values of the parameters of primitive op

erations in menu command, to yield a different orientation of human

body but close to the one specified by the original menu command.

Pressing this button a menu of commands appears, and choosing

one of these commands another pop-up window, figures B.9 (a) or

(b). If the primitive operation is one of the translation or positioning

then figure B.9 (a) otherwise figure B.9 (b) for the 0 and (j) primi

tive rotation operations can be used. At the top of these windows

the type of the primitive operation is mentioned followed by the

joint identifier. Then the nature of the operation, whether relative

or absolute is mentioned. After that if the operation is translation

or positioning then three ¡parameters X, Y, and Z coordinates are

listed together with their current values which can be modified if

the user desires, figure B.9 (a), otherwise the single parameter phi

4> or theta 9 is displayed, figure B.9 (b).

T ra n s la tio n operation

J o in t name : BODY
1 = Rel /0 = Abs : 0
K_coordinato : 0.000000
Y_coordinate : 2.000000
2Lcoordinate : -5 5 .0 0 0 0 0 0 ^

t Prev] (Ok) [Next)

(a)

Theeta angle m o d ifica tio n

J o in t name : BODY
1 = Rel /0 = Abs : 1
Theeta angle : -7.000000 ^

[Prey) (Ok] [Next

(b)

Figure B.9: Pop-up windows to modify the parameter value(s) of (a) translation
(b) theta angle rotation

In the last row there are three buttons:

* Prev : When this button is pressed, the parameter values cur

rently displayed are noted down for any change and the window

information switches to another primitive operation which is be

fore the one under display in order of their definition sequence

in the menu command.

♦ Ok : The function of this button is to exit from the change

92

parameter mode after checking for any change in the parameter

values.

* Next : When this button is pressed, the parameter values cur

rently displayed are noted down for any change and the window

information switches to another primitive operation which is af

ter the one under display in order of their definition sequence

in the menu command.

— DEFINE-COM : Pressing this button, a pop-up window, figure B.IO

emerges, informing the user that whatever operation he performs

will be recorded as the part of a menu command definition. It
also has an operation nature switching mechanism from relative to

absolute and vice versa.

From now on luhatever you
do u 1 1 1 be recorded as
command u n t il you press
DONE or CANCEL

1 DONE I [CANCEL

1 = Rel /0 = Abs : G 1

Figure B.IO: Pop-up window for helping the user to define a menu-command.

It has two buttons:

* DONE : Pressing of this button is interpreted as an end to

the command definition and the user is prompted for the menu

command name.

* CANCEL : This button takes the program out of the menu com

mand definition mode by canceling all the operations defined so

far.

- DEL-COM : The function of this button is to provide the user with

the facility of removing some unwanted menu commands from the

pool of user defined menu commands, but the user cannot remove

any of the system or tool commands.

93

- DONE/CANCEL : This simply gets the program out of the menu

mode.

• SAVE-FRAME : It saves the current orientation of the human body as a

frame in the motion sequence by recording the transformation and state

information of each of the joints.

• LOAD-FRAME : It prompts the user with a pop-up window to get the

frame number desired to be loaded. If the frame number specified by the

user is valid then that frame is loaded for observation and modification,
otherwise the user is warned.

• POSITION ; This button provides the user with the facility of joint

positioning. It lets the user to specify the 3-D goal position {gx-,gy,gz)
by 2-D device mouse. User can see the cursor position in all the four

views if in multi-view environment, figure B .ll and the coordinate values

in the pop-up window, figure B.12. This is done by defining three modes

Figure B .ll: Cursor positions in the multi-view environment.

for the cursor movement, in each mode restricting the cursor to move in

94

one of the three planes X-Y, Y-Z or Z-X. Following is our interpretation

of the mouse button clicks:

x_cor = 75
y_cor = 120
z_cor = -22

[DONE/CANCEL |

Figure B.12: Pop-up window to give positioning mode of the AOHM and to
give the coordinate values.

— When the RIGHT-BUTTON is down and up the plane of cursor

movement is switched in the cyclic order of X-Y, Y-Z, Z-X, and

X-Y, depending on the state of the plane.

— When the MIDDLE-BUTTON is down and the mouse is dragged,

the coordinate values of any two of the X, Y, and Z is changed

depending on which mode of plane is valid. These changes are re

flected by showing the coordinate values in a pop-up window, figure

B.12, as well as by the cursor movements in the respective subwin

dows of the multi view window if the user has set the multi view

environment, figure B .ll. We strongly advise to set the multi view

environment while joint positioning because of its ease in doing so.

— When the LEFT-BUTTON is down and up, present location of the

cursor is selected as the desired goal position for some joint to be

chosen from the joint name menu. A joint name menu emerges and

the animator selects the joint to be positioned.

• INFO : Pressing this button, a pop-up window, figure B.13 appears. The

purpose of this button is to provide the user with the facility of retriev

ing instantaneous values of the joint’s degrees of motion and coordinate

values for any orientation of the human body displayed in the third sub

window of the main window of the tool, the canvas.

This pop-up window has three items:

95

I JOINT-PARAMETERS

Param eters : C a I I

I DONE/CANCEL)

Figure B.13: Pop-up window for joint parameter information retrieving mode.

— JOINT-PARAMETERS : Pressing this button, a menu of joint

names appears and on choosing a joint from this menu another in

formation pop-up window emerges, figure B.14.

DONE

LSHOULDER

X-COR : 155

Y-COR : 82

Z-COR : 0

PHI : 0

THEETA : 0

Figure B.14: Information about the joint parameters.

This information pop-up window has two subwindows, first one

containing a button D O N E pressing which the information pop

up window disappears, and the second subwindow is the one that

provides the information. In the second subwindow, first the joint

identifier is written followed by the joint coordinates and degrees of

freedom values, if all the information is to be displayed, or only the

joint coordinates, if the coordinates is to be displayed and only the

degrees of freedom if only they are to be displayed.

Parameters : It is a panel cycle which switches in the cyclic order of

All, XY Z-Cor, and PhT h-A ng, meaning what information is to

be displayed, both coordinates and the degrees of freedom, only the

joint coordinates or only the joint’s degrees of freedom respectively.

96

— DONE/CANCEL : It merely drives the program out of the informa
tion providing mode by making the pop-up window of figure B.13

to disappear.

• COPY : The purpose of this button is to provide the user with the facility

of copying one frame information to another frame. The user is prompted

for the source and destination frame numbers.

• DELETE : Using this, the user can remove a frame from the motion

sequence. It is a very critical operation and so the tool prompts the user

for confirmation.

• INSERT : This lets the user to insert a frame between any two frames

in a previously defined motion sequence. The user is prompted for the

necessary frame numbers.

• RETURN : This button is merely for taking the second subwindow of

the tool main window from frame mode to the main mode.

Film Mode

In the film mode., a motion sequence can be loaded, sa\'ed, animated, in

terpolated, etc., by using the button commands discussed below (figure B.lo):

[INIT_FILM |[ANIMATE 1| INTER_P0L]

[SAVE_FILM II L0AD_FILH~1[L0AD_RASTER]

[INV_PERS If PERSPECT 1| RETURN 1

Figure B.15: Button panel in film mode of AOHM.

• INIT-FILM ; It initializes the controller so that a new film could be

prepared.

97

• ANIMATE : Pressing this button, the user is able to see animation] the

motion sequence loatied or prepared in the tool at that instant.

• INTER-POL : The user is prompted for the specification of the number

of frames to be calculated as inbetweens between the respective frames

in the motion sequence.

• SAVE-FILM : This saves the film to the disk on a raster or text file de

pending on the type of the film currently loaded in the tool, i.e., whether

the film is in the form of images or transformations. The user is prompted

for the file name.

• LOAD-FILM : Pressing this button, a menu of files appears, and a file

from the menu is loaded to the tool.

• LOAD-RASTER : Pressing this button, a menu of raster files appears,

and a file from the menu is loaded to the tool.

• INV-PERS : If the motion sequence currently loaded in the tool is viewed

■perspectively then it makes it parallel projection view, and if the motion

sequence is not in the perspective view then it does nothing.

• PERSPECT : If the motion sequence currently loaded in the tool is not

viewed perspectively then it makes it perspective, and if the motion se

quence is already in the perspective view then it does nothing.

• RETURN : This button takes the second subwindow of the tool main

window from film mode to the main mode.

98

