
ϊ) fifíΝβκί<· · « i λβ» M P I ^ S Q T ^ f-i 4 MiM* « t» á ’Cw'î ¿ i
Λ; « >: " Г

<· » à M Λ

A > Ί ! ' И V •j.wJ
p ó D r p4 w ; ¿ i

V*sÇ ···«>' 'У, '» j
Ч · Λ ñ

• ¿ ^ ·* ■* SrtJ< ’· fc V '* rt * ; « Λ « :

'*'·, T W; Ji'̂ '·'̂·* '· ̂
4 ‘ : i .·*'; ‘f, ,t.‘ ' >.A i :,.ί: ;*ЛЛ Γ',·> ;· '̂ «. ·, л* J t.>i'.. J W' W*' Wií- - ̂í.'W'̂ '.’íVw

. . .—. 4· . ^ Л -Jii W ' i V à . - V » W .) . , *'

‘ V S S

/ 9 9 S

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bilkent University Institutional Repository

https://core.ac.uk/display/52927752?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

SOME HEURISTICS AS PREPROCESSING FOR
0-1 INTEGER PROGRAMMING

A THESIS

SUBMITTED TO THE DEPARTMENT OF INDUSTRIAL ENGINEERING

AND THE INSTITUTE OF ENGINEERING AND SCIENCES

OF BILKENT UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF
MASTER OF SCIENCE

By
Fatih Yılmaz

June, 1991

P tA 'V T 11'

t a r a f bil'. > '■ iir.

T
Я ' 7
* " /S 5

I certify that I have read this thesis and that in my opinion it is fully adequate,
in scope and in quality, as a thesis for the degree of Master of Science.

''L , / ' ? . I) "

Assoc. Prof. Bela Vizvari(Principal Advisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,
in scope and in quality, as a thesis for the degree of Master of Science.

Prof. Halim Doğrusöz

I certify that I have read this thesis and that in my opinion it is fully adequate,
in scope and in quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Osman Oğuz

I certify that I have read this thesis and that in my opinion it is fully adequate,
in scope and in quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Peter Kas

Approved for the Institute of Engineering and Sciences:

Prof. Mehmet BatSay
Director of Institute of Engineering and Sciences

11

ABSTRACT

SOM E HEURISTICS AS PREPRO CESSING FOR
0-1 IN TE G E R P R O G R A M M IN G

Fatili Yılmaz
M.S. in Operations Research

Supervisor: Assoc. Prof. Bela Vizvari
June, 1991

It is well-known that 0-1 integer programming is one of the hard problems to solve other than special
cases of constraint set in mathematical programming. In this thesis, some preprocessing will be done
to get useful informations, such as feasible solutions, bounds for the number of Ts in feasible solutions,
about the problem. A new algorithm to solve general (nonlinear) 0-1 programming with linear objective
function will be devoloped. Preprocessing informations, then, are appended to original problem to show
improvements in enumerative algorithms, e.g. in Branch and Bound procedures.

K eyw ords: 0-1 Programming, Heurictic algorihm, Preprocessing.

Ill

ÖZET

0-1 TA M SA YILI PROBLEM LER ICIN
BAZI s e z g i s e l y ö n t e m l e r

Fatih Yılmaz
Yöneylem Araştırması Yüksek Lisans

Tez Yöneticisi: Doç. Bela Vizvari
Haziran. 1991

0-1 tamsayı programlamaları, genelde çözümlenmesi zor problemlerdir. Eğer sınır kıımesi özel bir hal
gösteriyorsa, bu problem polinom zamanda çözen algorithmalar vardır. Bu tezde, problemin zorluğunuda
düşünerek bazi ön işlemler yapılacaktır. Sırasi ile, olurlu çözümler, herhangi bir olurlu çözümdeki 1 lere
alttan ve de üstten sınır vermek gibi. Daha sonra, genel 0-1 programlamayı çözecek yeni bir algoritmanın
tanıtımı yapilacaktır. Bu ön işlemlerden çıkan sonuçları kullanarak, bırerleme algoritmalarında, örneğin
dal ve sınır algorithmasında, yapılabilinecek iyileştirmelerden bahsedilecektir.

Anahtar kelimeler: 0-1 Programlama, Sezgisel algoritma, Ön işlem.

IV

To m y parents,

ACKNOWLEDGEMENT

I would like to thank to Assoc. Prof. Bela Vizvari for his supervision, guidance,
suggestions, and patience throughout the development of this thesis. I am grateful to
Prof. Halim Doğrusöz, Assoc. Prof. Osman Oğuz and Assoc. Prof. Peter Kas for their
valuable comments.

Also, I would like to thank to my love Yıldız, and members of my parents, Abdulkadir
(father), Ayşe (mother). Deniz (sister) and Murat (brother) for their piitience and love
throughhout this thesis.

Special thanks are for my friends both in life and not in life.

VI

TABLE OF CONTENTS

1 INTRODUCTION 1

2 GENERATION OF FEASIBLE SOLUTIONS 3

2.1 Background re v ie w .. 3

2.2 A Combined Heuristic 5

2.3 Computational results I4

3 BOUNDING NUMBER OF I ’s IN FEASIBLE SOLUTIONS 16

3.1 Bounding Schemes

3.2 An E xam ple... 23

3.3 Experimental R esults... 25

4 IMPROVEMENTS ON BOUNDS 26

4.1 A Feasibility T e s t .. 26

4.2 Application of T e s t .. 28

4.3 Computational results 3q

5 A N EW ALGORITHM TO SOLVE GENERAL (non-linear) 0-1 PRO­
GRAM M ING 32

5.1 Boros’ I d e a ... 34

vii

5.2 The Tree Representation of the Ordering of the Binary Vectors................... 34

5.3 An E xam ple... 42

6 CONCLUSIONS 45

7 REFERENCES 46

Vlll

LIST OF TABLES

1.1 Importance of Preprocessing.. 2

2.1 Result of Combined Heuristic

4.1 Lower and Upper Bounds

. 15

31

IX

5.2 The Tree Representation of the Ordering of the Binary Vectors................... 34

5.3 An E xam ple... 2̂

6 CONCLUSIONS 45

7 REFERENCES 46

Vlll

LIST OF TABLES

1.1 Importance of Preprocessing............................. 9

2.1 Result of Combined Heuristic 15

4.1 Lower and Upper Bounds 31

IX

1. INTRODUCTION

A wide class of practical problems can be modelled using integer variables and linear
constraints [6,7,12,15,17,19,21,30]. We can think of sitiuations where it is only meaningful
to take integral quantities of certain goods such as cars, aeroplanes, cities or use of integral
quantities of some resource such as men.

Most of the practical integer programming models restrict the integer variables to two
values 0 or 1. For instance. Travelling Salesmen Problem, Matching problem, and so on.
Such 0-1 variables are used to represent ’ yes or no ’ decisions.

In this thesis, we shall deal with these kind of pure 0-1 integer programming problems
which can be formulated as:

max z = cx

A'x < h' {B P)

X e { 0, 1} "

with assumptions. A' G b' G Z'^, and c G N!̂ .

It is well-known that unless the constraints have a special structure, (BP) is a hard
problem to solve, because the problem is NP-complete in general. While linear program­
ming problems involving thousands of constraints and variables can almost certainly be
solved in a reasonable amount of time, a similar situations does not hold for integer
programming problems.

To attack these problems, one can need preprocessing. It means to collect as much
useful information about the problem as possible. These kind of information can be :

• Generations of feasible solutions,

• Calculation of bounds for objective function value,

• Generation of laew constraints, which either contains aggregated informa­
tion of the original constraints or is algebrically independet from them.

«o f
Const.

« of
Var.

Without
Preprocessing
(CPU Time)

With
Preprocessin
(CPU Time)

15 30 8 min. 3 min.
15 30 12
20 50 .5
20 50
20 50 50 35
20 50 55 40
20 60 10
20 60 55 30

Table 1.1: Importance of Preprocessing

• Estimation of number of I ’s in feasible solutions,

• Obligatory fixing of variables, e.t.c.

Any kind of enumeration method can be accelareted by these informations. The following
computational results have been obtained with LINDO packages on a PC. In ’With Pre­
processing’ step, we append results of preprocessings to original problem such as objective
function constraint, surrogate constraint, lower and upper bounds for the number of I ’s
in any feasible solution of (BP). It can be seen that, except one problem, improvements
are significant.

In Chapter 2, a combined heuristic method to generate feasible solutions is devoloped.
Lagrange problem, surrogate constraint problem and some heuristics will be combined to
find feasible solutions eflSciently in this algorithm. It will be shown that these solutions
are reached in a very short time. And an algorithmic optimality test will be given. In
Chapter 3, new bounding schemes for the number of I ’s in feasible solutions of (BP) is
discussed. The calculation of these bounds takes polynomial number of iterations. In
Chapter 4, a feasibility test for a special system of 3 linear inequalities with 0-1 variables
is constructed. Then, this test is applied to improve bounds given in Chapter 3. In
Chapter 5, a new algorithm to solve general (non-linear) 0-1 programming with linear
objective function is discussed. Finally, some conclusions are made.

2. GENERATION OF FEASIBLE SOLUTIONS

There are several ways for the use of Lagrange Multipliers (LM) in mathematical pro­
gramming. Most of them is based on the paper, H.Everett [3]. The LM method is very
simple, especially, in integer programming. A lot of papers are considering LM as a way
to find a dual program for integer programming [22]. But LM is very useful algorithmic
tool as well. It is used to decompose a large scale problem [6], or to reduce the number of
variables [4]. The application of LM to generate feasible solutions and reduce the feasible
region is discussed in [24].

In section 1, Lagrange problem, surrogate constraint problem and their relations are
introduced [5,14]. In section 2, a combined heuristic to generate feasible solutions is de-
voloped, and an optimality test will be discussed. Some test problems which are randomly
generated are devoted to see that how these feasible solutions are good.

2.1 Background review

Relaxation methods in integer programming are very important. Two of them, Lagrange
relaxation and surrogate constraint problem, are discussed here.

Consider (BP), its Lagrange Relaxation Problem (LRP) is given as

L{\') = max a:g{o,i}n {(c - A'A)a; + X'b'}

where A' > 0 is a fixed vector, and optimal solution can be found as:

Xi = <
1 if Cj — X'a'j > 0
1 or 0 if Cj — X'a'j = 0
0 if Cj — X'a'j < 0

where a) is the column of A'.

{LRP)

Hence,

l (y) = Y ,\ c i -\ 'a 'ih + n ' (2 .1,1)
J=1

where I7 I+ = max { 0, 7 } for any arbitrary real number 7 .

Lem m a 2.1 [2] VA' > 0, (LRP) is an upper bound for (BP).

II.Everett [3] gave in 1963 the main theorem of LM method, and then Nemhauser and
Ulman [20] generalized his result a bit more.

T heorem 2.1 If x* solves problem (LRP) for a given A' > 0 and x' is feasible in (BP)
and

X f b - A ' x *) = 0

then X* solves problem (BP).

The surrogate constraint problem [8] is defined as:

max cx

X'A'x < X'h'

X € { 0, 1) ”

where A' > 0 is a fixed vector.

It can easily be seen that SP{X') is a relaxation of (BP).

Lem m a 2.2 L{X') is an upper bound of SP(X').

(2.1.2)

(SP(\'))

P ro o f : Let x* be an optimal solution of (LRP) for a given A'. Then

L { y) > c x + X' (b ' -A'x) V x G {0 , l } "

In addition,
Vx €5 'P (A '), X ' { b ' - A ' x) > 0 . □

Although SP{X') is a good relaxation to (BP), computationally, solving (LRP) is much
more easier than SP(X'), because SP(X') is a knapsack problem, therefore it is NP-hard.

2.2 A Combined Heuristic

The followings are some important properties of relaxation methods :

• solving relaxation problems are much more easier than original problem, these prob­
lems give an upper bound to original problem,

• if the optimal solution of these problems satisfying certain conditions is a feasible
solution of the original problem, then it is optimal, too. E.g. in the case of (LRP),
this extra condition is (2.1.2), as it can be seen from Theorem 2.1

Assume that a feasible solution, say, x° is known. Then we can add (BP) the following
objective function constraint :

cx > Zo + I

where Zo is the appropriate objective function value.

(2.2.1)

Then, it is enough to restrict ourselves to looking only for these feasible solutions,
which have a better objective function value, i.e. the set of feasible solutions can be
substituted by

P = {x : Ax < 6, X 6 {0 ,1 }" }

where

and

instead of

A =

b =

A'
—c

b'

-Zo — 1

P' = {x : A'x < 6', X G {0 ,1 }" } .

It is obvious that if the optimal solution is better than the given feasible solution, it
is in P.

If we have initially no feasible solution, then without loss of generality we can assume
that cx > —1, i.e. it is no restriction. Later on, if a feasible solution is found, the objective
function constraint can be updated. The set P is used instead of P', i.e. the problem is
considered in the form

max cx

X e P

and (LRP) becomes,
L{X) = max {(c — AA)x + A6}

(MBP)

(MLRP)

where A = (A', A,ri+i) > 0.

In addition, S'P(A') turns out to be

max cx

XAx < Xb

X e { 0, 1}".

(,?P(A))

In [24], a new optimality criterion was given. It defines the optimality region of a
feasible solution, say, x* generated by solving (MLRP), i.e.

arq max {(c — Ay4)a;} = x*. ®€{0,l}n

Then, the optimality region of x* is given as:

H {x\ X) = { x e { 0, 1}" I AAa:* - AAx > 0}

Lem m a 2.3 [24] y4n optimal solution of the following system

max cx
X E P D H{x' ‘ , A)

is X*.

(2 .2 .2)

(2.2.3)

(2.2.4)

Lemma 2.3 is a good algorithmic tool for dividing feasible region in order to find
optimal solution.

Let X* generated by (MLRP) for a given A 6 , be a feasible solution to (MBP).
and let define

P ” = Pnii(a;*,A)^ (2.2..5)

where
H {x\ Xy = { x e {0 ,1} " 1 AAt* - AAx < 0}.

Since all coefficients are integer, therefore if A is an integer vector, then it is equivalent to

H(x\ x y = {x 6 {0 ,1} " I XAx* - XAx < - 1}. (2.2.6)

6

T h eorem 2.2 Let x* be the point generated by (MLRP) for a given A > 0 and assume
that it is a feasible solution of (MBP). If there is a feasible solution having better objective
function value, then it is in P ” .

P r o o f : By lemma 2.3, it is obvious. □

Surrogate constraint problem is used to generate binary vectors. The following lemma
contains optimality criterion of SP{\) for (MBP).

Lem m a 2.4 Let x* be the optimal solution of SP{\). If x* is in (MBP). then it is an
optimal solution, too.

^^(A) is a hard-problem to solve. Therefore a greedy algorithm is used to find a
feasible solution of SP{\). One can write SP{X) more explicitely as

max CjXj
AojXj < A,6,·

a : j G { o , i } V i e J .

To simplify the following steps, let us define
m

0 = a,-6,-
i=l

and
aj = Xaj.

(2.2.7)

Then, SP{\) becomes

max
i=i

ajXj < ^
j=i

X,· € { 0.1}, Vi G J.

In addition, without loss of generality we may assume that there is an index p, such that
<̂ j E 0 if i < p and aj > 0 ii j > p and furthermore

Cp+l/^p+l ^ C-p-\-2! ^ (̂ n· (2 .2 .8)

In this ordering, aj for some j can be equal to zero. But without losing this index
ordering we can add a small quantity to denominators. Then, the following algorithm
finds a feasible solution to SP{X).

A lgorithm 1: A greedy algorithm for SP{\)

1. begin

2. for j := 1 to p do

3. begin

4. Xj :== 1;

5. 15 : = 15 - aj]

6. end;

7. for j := p + 1 to n do

8. if aj < 15

9. then

10. begin

11. Xj : = 1;

12. 13·.- (5 - aj]

13. end;

14. end;

With this algorithm, we have x* solution to SP{X) for a given A > 0. Here the following
question arises.

A re there Lagrange m ultipliers such that x* is the optim al solution o f the
appropriate Lagrange problem ?

8

If the answer is yes, then all of the properties of points generated by Lagrange multi­
pliers, e.g. the existence of the optimality region, can be preserved.

We will modify the result of [24], in such a way that A vector which is used to find x*
is preserved here. In [24], A = 0.

Let’s extend (MBP) into

max z = cx

A : Ax < b

p. : Ex < e

X e { 0, 1}

(2.2.9)

where E is the appropriate identity matrix and A and ¡x are respective Lagrange multi­
pliers. Let i > 0 be a real number. Consider the following (MLRP) :

maa;j;g{o,i}n {(c — t\A — ix)x}. (2.2.10)

Then previous question is transformed to
A re there t and ¡x such that

arg max a:e{o,i}" {(c — tXA - i.i)x] = x ’

w here x* is the any feasible solution o f SP{\) ?

Let k be defined as follows :

k = max = 1, and aj > 0}. (2 .2 .11)

If such k does not exists then there are two cases. The first one is that Vj aj < 0. It
means that all components of a:* is 1 . Due to cost coefficient, it is the optimal solution
if feasible. The second case is that 3p < n with ctp+i > 0. Then, \et k = p A 1 and we
proceed as in the existence of k. So, choose

In addition.

H =

t = Ck/Xak

Cj — tXaj ii j < k and Xj = 0
0 if not

(2.2.12)

(2.2.13)

Lem m a 2.5 For t and p chosen as above,

arg max a:€{o,i}n {(c - tXA - /x)x} = x*.

9

Cp+i/tAop+i > · · · > Ck-ilt\ak-i > 1 > Ck+i/tXak+i > ■■■> CnItXan. (2.2.14)

Case 1: If i = k, then Ck — tXak — fj,k =
Case 2: if j > k and Xaj > 0, Cj — tXaj — ¡j.j = Cj — tXaj < 0,
Case 3: if j < k and Xj = 0, we have cj — tXaj — fXj = cj — tXaj — (cj — tXaj) = 0.
Case 4 : if j < k and Xj = 1, then Cj — Xuj — m = Cj — Xaj > 0, due to (2.2.14).

□

Then, it follows that

cx* — cx > {tXA + ii)x* — (tXA + fj,)x, Wx G { 0, 1}" (2.2.15)

In addition, the optimality region of x* is

7i(x*,iA ,/z) = {a; G {0 ,1 }" : (¿AA + /z)x* - (iAA + p)a: > 0} (2.2.16)

Let us define

P ” = Pf\H{x' ' , tX,ny (2.2.17)

where

H { x ‘ , tX, fiY = {x e { 0 , i y : {tXA + ij,)x ̂ - {tXA + fi)x < 0} (2.2.18)

In the applications, instead of (2.2.18) the following is used

H { x y tX,nY = {x e { O A V ■■ {tXA + f i) x , - { t X A + f i) x < - e } (2.2.19)

where e > 0 is a small number.

Lem m a 2.6 If there exists a feasible solution better than x*, it is in P''. O

These methods, i.e. solving the Lagrange problem or the surrogate constraint problem,
does not guarantee that feasible solution will be found at the first run. If it is not found,
then A vector will be modified. By these changes, the importance of constraints can be
found. Importance means which constraints are much more difficult to satisfy. To collect
this information, we can open an array such that each component of it corresponds the
different constraint. Then if constraint i is infeasible for generated binary vector, then
increase the vilolation number of this constraint by 1. The following modification of the
Lagrange multiplier somehow reflect importance of the constraints.

Proof : If i = Ck/Xak·, then

10

Let X* be the generated binary vector and assume that it is not feasible to (MBP).
Then, the following sets are introduced

and

Let us define

I{x*) — { i : aix* > bi}

J(x*) = {j : ajX* <bj}.

^ XittiX*

and
52= Xjaj

jeJ(x*)
X

Since XAx* < Xb ,

Let r be a real number such that

¿2 — ^jbj·

s l + s 2 < tl + t 2

r > {t2 - S2)/{Si - tl).

Choose new Lagrange multipliers [8] as

vXk if A: G ^(x*)n̂ew _
Xk if not

(2 .2 .20)

The idea behind that choice is as follows: Assume that all of the components of the
vector A are positive and the vector x* is generated by A lgorithm 1. Then, x* satisfies
constraint sets of SP{X). But,

^ Xidx* > Xibi
ieiix") i€i[x*)

and therefore
AjCjX < ^jbj.

j e J (x *) j ^ J { x *)

That kind of choice is a way to increase the weight of constraints which are not feasible.
And the meaning of this kind of choice of r is described in the following lemma.

Lem m a 2.7 I f r is chosen as in above and X is modified as in (2.2.20), then x* is not a
feasible solution to 5'P(A”®“').

11

r ♦ si + s2 < r * tl + ¿2

Proof : If X* is a feasible solution, then

but this is a contradiction of

r > { t 2 - s2) / (s l - i l) . □

In [8], for a given A, SP(X) was solved optimally, and concentrated on the optimal
solution of the (BP) because of Lemma 2.4. But, since SP{\) is a difficult problem, we
are only concentrated on finding feasible solutions which are good and found in a short
time.

Another heuristic to generate a feasible solution is as follows : Let x° be any start­
ing binary vector, e.g, choose x° as a binary vector generated by Lagrange problem or
surrogate constraint problem. Then, let

n

5(x°) = { i / € { 0, 1}" : = 1}
1=1

which is called the neighborhood set of x°. The following function, g measures infeasibility
or objective function value, resp., of a binary vector x if it is infeasible or feasible, resp.,
where

cx if X is feasible

TaLi \̂ i - ■ if not
and the following set G contains all binary vectors in the neighborhood of x which are
closer to be a feasible solution than previous ones;

g { x) =

G{x) = {y e S{x) : g{y) > ^(x)}

Then we get the following heuristic method to generate feasible solutions.

(2 .2 .21)

Algorithm 2

1. begin

2. k ■- 0;

3. Choose x°\

4. while G(x^) 0 do

5. begin

6. Choose x*̂ +̂ G G {x ’̂)\

7 . A::=fc + 1;

12

8. end;

9. end;

There are several ways to execute the choice described in Row 6. One possible way is to
choose the first neighbor which better than a;*.

These heuristics can be combined. The following algorithm is a general scheme for this
combination, and computational experiences show that it is very effective to find feasible
solutions if there are any.

Algorithm 3: A combined heuristic

1. begin

2. A := A°

3. for A: := 1 to /

4. begin

5. Apply Algorithmic G SP{\^) / * Binary Vector Generation * /

6. if G P

7. then

8. Put {2.2.1^) into P / * P := P D H {x'^,t\,py */

9. else

10. Modify A vector as in (2.2.20);

11. end;

12. Apply Algorithm 2 with the starting point x ‘]

13. end;

Now, we will give an optimality test. The following statement is an immediate con­
sequence of the fact that the surrogate knapsack problem is a relaxation of the integer
programming problem

i f SP{\) = 0, then P = .̂

For Algorithm 3, instead of arbitrary starting Lagrange multiplier, let us start with
A° = (A ',0). Then, apply Algorithm 3 with the following rule :
RULE : Change the last component of A , which corresponds to objective function
constraint, to positive quantity if and only if Algorithm 3 finds a feasible solution.

With this choice of vector A, the following theorem is valid:

13

T heorem 2.3 With the. above RU LE, if SP{\) = 0 then, one of the following statement
is true: — i.e. original system is empty,
2) let Y be the set of feasible solutions obtained by the Algorithm 3. Then

z = max cx.
xeY

P ro o f : If = 0, i.e, no feasible solution is found, it follows that SP{\) — SP{\'). It
means iS'P(A') = 0. Therefore, P = 0, thus the problem is infeasible. On the other hand,
if A,n+i > 0) then we have found a feasible solution. But, oP(A) = 0. Due to Lemma
7 and Algorithm’s property of adding constraint if we found a feasible solution, P” = 0.
But, P ” is used whenever there is a feasible solution. This completes the proof. □

In this theorem, there are two test which are infeasibility test and optimality test.
Test : n

rnin{0 , Qfj} greater than (3 ?
j=i

If the answer is yes and Am+i = 0, then original problem is infeasible, on the other hand,
answer is yes and A„i+i > 0, then an optimal solution is found.

2.3 Computational results

All problems are generated randorrily. To find exact value of problems, LINDO is used.
Tableau 1 is for the comparison of generated feasible solution value and exact value.

Computational experiences show that, for some problems, feasible solutions that we
found, are the optimal solution. If the problem is infeasible , it can be detected. For
the third problem, algorithm concludes that optimal solution is found. In general, dif­
ference between exact values and objective values of feasible solutions are small, and in
computational point of view, it runs in a short time.

14

H of
Const.

« o f
Var.

Density « of
Feasible sol.

Best found
Obj.Fnc.Val

Infeas.
Test

Optimal.
Test

CPU time
(in minute)

E.xact
Solu.

5 20 100 1 22 - - 0.07 min. 22 1
5 ^ 20 ^ 80 1 22 - - 0.04 22
5 ^ 20 60 1 53 - + 0.003 53
10 20 80 - - + - 0.005 -
10 20 60 1 17 - - 0.07 21
10 20 60 1 16 - 0.008 17
10 20 40 1 13 - - 0.05 15
15 30 80 - - + - 0.09 -
15 30 60 1 24 - - 0.10 27
15 30 40 1 38 - - 0.12 47·
20 50 100 1 41 - 0.30 43
20 50 80 1 26 - - 0.25 48
20 60 80 1 37 - - 0.34 38
20 60 40 1 28 - - 0.70 42

Table 2.1; Result of Combined Heuristic

15

3. BOUNDING NUMBER OF I ’s IN FEASIBLE
SOLUTIONS

This part of the thesis refers to the set of the feasible solutions of 0-1 linear integer
programming (MBP), i.e.

Ax < b

X G {0 ,1 }”
(3.0J)

Generation of feasible solutions by heuristics are discussed in Chapter 2. This part of
the thesis is to give bounds to the number of ones in feasible solutions [26,27,29].

In Section 1 of this chapter, two lower and upper bounds for the number of I ’s in any
feasible solution are discussed. Section 2 contains a numerical example. Then, in Section
3, experimental analysis is provided.

3.1 Bounding Schemes

The detailed form of (3.0.1) is
n

bi
J=1
Xj G {0,1}

where / = { 1, · · ■, m } and J = { l , · · · , n } .

Wi e l

Vi G J.

Define TTj to be a permutation over the set J for a given iGl in which the coefficients
of constraint i are sorted in nondecreasing order i.e

!̂7ri(l) — t̂V,'(2) ^ ^ 1̂7r,(n) (3.1.1)

There are three cases for any given constraint i e I

16

1. if bi > 0, then the origin 0 is a feasible solution for that particular constraint,

2. if ^ where N = {k : aik < 0}, then there is no feasible solution for
constraint i, therefore (BP) is infeasible.

3· — '̂1 where N — {k : aik < 0}, then there is at least one feasible
solution for constraint i.

Further developments requires some definitions.

D efin ition 3.1 pi{j) is the largest lower bound of the number of 1 ’s that must he contained
in any feasible solution of constraint i, if it exists with Xj = 1.

D efin ition 3.2 qi{j) is the smallest upper bound of the maximal number of I ’s that can
be contained in any feasible solution of constraint i, if it exists with xj = 1.

Assume that the indicies 7 and 0 defined by the following inequalities exist;
Vi < 7 ,

t 7-1 7

^ ^ (3.1.2)
k=l k̂ ĵ k=l̂ k:̂ j

Vto > 0,

w 0-{-l 9
îTTi(j) + ^ > CLiT̂-[j) + <̂17T,(/c) (3.1.3)

k=\,k^j k=\,kî j k=\,k ĵ

i.e. 7 .is the smallest and 0 is the greatest index i, such that

t

<̂ t7r,(/c) + t̂7Tt(i) ^ î·
k=ly k:ff:j

17

The shape of function f{ t) = <3tir,(yt) is illustrated in Figure 1:

In figure 1
....... represents a constraint i with positive coefficients,

represents a constraint i with nonnegative coefficients,
------ represents a constraint i with negative, zero and positive coefficients.

The possible values of pfij) and qfij) in (3.1.2) and (3.1.3) are

7 if a feasible solution with X7r,(j) = 1 exists

and

P.(7r.-(i)) =

;? .(7 r .(i)) =

n + 1 if not

9 if a feasible solution with = 1 exists
— 1 if not

Hence, for a given constraint i, we have pi{j) = n + 1 i f f qfij) = - 1. Thus, if
Vi e J, Vz G I. Pi{j) ^ n + 1, then p ,(i) < qfij).

The following statements are consequences of definitions; for any i €: I, li j < k then
^ i ’»(^t(^))· follows that for the same indices, <7i(7rt(i)) > g,(7r,(A·)).

The following figures are showing all of the possible cases of constraint i with x^d) = 1·
In fact, these figures are conceptual figures, but they give a good idea about pfiirfij)) and

values.

18

firt /N

- · «

r I
9 I9 >

/

• I
/ It \

/ i

Figure 2: Possible values of pi{TTi{j)) and qi{'Ki{j)).

Let l{j) be the number of I ’s which must -be contained in any feasible solution of
(3.0.1) if such exists with Xj = 1. Then

Vj e J, p (j) = max i pi{j) < l{j).

Hence, for any feasible solution x with Xj = 1, we have

(3.1.4)

p U) < (3.1.5)
k=l

Let u{j) he the maximal number of I ’s that can be contained in any feasible solution
vs that

Vi e J, u(j) < q{j) = min .· qi{j). (3.1.6)

X with Xj = 1. It follows that

and

Y ^ X k < q{j).

19

(3.1.7)
k=l

Further on we use only numbers p{j) and q{j), instead of l{j) and u{j) respectively.
Consider the index set

J{x) = { j : Xj = 1} (3.1.8)

where a; is a feasible solution. It follows that |J(a:)| is the number of I ’s in a:, i.e

n

' ^ X j = l·̂ (2:)|■
i=i

Lem m a 3.1 For any given feasible solution x ^ 0 to (3.0.1),

y j e J { x) , p (i) < |J(a:)|.

P ro o f : By definition of p (j), it is obvious. □

The next theorem is the generalization of Lemma 3.1. It gives a lower bound for the
number of I ’s in any given feasible solution. We will call it as a trivial lower bound in the
sense that only definition of p{j) is used.

T heorem 3.1 Let x ^ 0 be any feasible solution. Then,

n

> min ,■ p(;). (3.1.9)
J=1

P ro o f : Let P be the set of feasible solutions of (MBP) By lemma 3.1, we have that

Va: € P \{0}, Vi G J{x), p{j) < |J(a:)|.

Since I J(a;)| = h follows that

n
min j p{j) < ^ X j , V.a: 6 P\{0}. □

i=i

The next lemma is for upper bound which is also called trivial.

Lem m a 3.2 For any feasible solution x,

q{j)>\J{x)\ if jeJix).

P ro o f : The statement follows immediately from the definition of ? (i) ’s. □

20

n

'^ X j < max j q{j).
j=i

Theorem 3.2 For any feasible solution to (MBP),

(3.1.10)

P ro o f : The proof is similar to the proof of the previous theorem. □

Now, we will give second lower and upper bounds for any feasible solution. These
bounds are at least as good as obtained from Theorem 3.1 and Theorem 3.2.

Let’s define Li as the set of variables which can be contained with Vcilue 1 in at least
one feasible solution if it exists with at most I I ’s. In other words,

v /e {l,··■,..), i, = {; : i(i) < (}

It follows from (3.1.6) that,

Li C { j : p { j) < l } = T,.

It is obvious that
C T2 C . . . c

T heorem 3.3 For any feasible solution, x ^ Q, we have

n

^ Xj > UJx

i=l

where

(3.1.11)

(jj\ — min{/ : |T/| > I, I > 1}.

P ro o f : Let us consider a feasible solution x with exactly I I ’s in it. Then Vj E
J{x), p{j) < 1. Hence, J{x) C T/. Now, I — |J(a:)l < |T/| and thus the statement
follows. □

For a given / € {I , · ' ‘ define Ui such that it contains only variables which could
be with value 1 in a feasible solution which solution contains at least I I ’s, i.e.

It follows from (3.1.6) that

It is obvious that

U l = { j : u U) > /)

Ui 5 0 : iO') > l) = S,.

Si 5 «2 3 ■ ■ ■ 3

21

n

< L02
j=l

Theorem 3.4 For any feasible solution x , we have

where
u>2 — m ax{/ : \Si\ > I, I > 1}.

(3.1.12)

P ro o f : The proof is similar to the proof of the last theorem. □

The following two algorithms are constructed to determine the values u>i and u>2.

A lgorithm a>i

1. begin

2. count \= —1;

3. / := 0;

4. while count < Id o

5. begin

6. / : = / + !;

7. count := 0;

8. for j := 1 to n do

9. if V{i) < ^

10. then

11. count = count

12. end;

13. LOl = 1]

14. end;

1. begin

2. count := 0;

3. 1 n \

4. while count < Id o

5. begin

Algorithm CU2

22

6.

7. count := 0;

8. for j := 1 to n do

9. if q { j) > ^

10. then

11. count ·.— count

12. end;

13. CU2 := 1

14. end;

The following theorems and corrolaries are the consequences of the previous theorems
and lemmas.

T heorem 3.5 If uji > u>2, then (MBP) is infeasible. □

T heorem 3.6 If p{j) = n then for any feasible solution x, xj = 0. □

C orrolary 3.1 { j : q{j) = - 1 } = { j : p{j) = n + 1}. □

C orrolary 3.2 If there exists an index j with q[j) = n, then e is a feasible solution,xohere
e is all 1 vector.

P ro o f : By definition of q{j), Vi G / , qi{j) = n, i.e. Vz G / , the vector consisting of n
I ’s is feasible. □

C orrolary 3.3 If for an index j, q[j) < p{j), thenxj = 0 in any feasible solution. □

3.2 An Example

Consider the following system of linear inequalities:

—3xi + 4x2 — 2x3 + 5x4 < —2

2xi — X2 + 4x3 — 2x4 < 2

x. G {0 ,1 }, z = 1 ,2 ,3 ,4

23

(P)

a;i X2 X3 X4

Pi(i) 1 5 1 5

P2{j) 1 1 2 1

p U) 1 5 2 5

9i(i) 2 -1 2 -1

92 (i) 3 3 3 3

9(i) 2 -1 2 -1

Tableau 1: Results of computations

If we analyze Tableau 1, we can say that X2 = X4 = 0 due to Theorem 3.6. Moreover,
cui = minj p{j) = 1 and u>2 = maxj q{j) = 2. Therefore, by Theorem 3.3 and 3.4, we
have

. Hence,

1 <
j=i

\ < X\ -r X:i < 2

If we rewrite P with X2 = X4 = 0, nothing is lost in the sense of feasible points. Then,
new system is given by :

—3xi — 2x3 < —2

2xi T 4x3 ^ 2

X\)X3 € { 0, 1}

Then if the algorithm is applied again, then the following results are obtained.

X l a ; 3

Pi(i) 1 1

P2U) 1 5

pU) 1 5

9i(i) 2 2

9 2 (i) 1 - 1

9(;) 1 - 1

Tableau 2 : Result of second iteration of algorithm

Hence, X3 = 0. The final result is that, the only feasible solution is (1,0,0,0).

24

3.3 Experimental Results

In this section, computational experiences are discussed. Tableau in Chapter 4 provides
informations about coi, cu2, exact lower and upper bounds. All of these problems are
generated randomly. To find exact lower and upper bounds for the number of I ’s that
must be satisfied by any feasible solutions other than 0, LINDO package is used.

The calculation of uji and u>2 takes polynomial number of iterations, p and q vectors
can be used in any enumeration algorithm for bounding number of I ’s in an}' subset of
feasible solutions within a verv short time.

25

4. IMPROVEMENTS ON BOUNDS

This part of the thesis is devoted to improve bounds discussed in the previous chapter.
In Section 1 of this chapter, a feasibility test for 3Tinear constraints of 0-1 variables is
given. Then, in Section 2, this test, for a special system, is going to be applied for
sharpening the upper bound and improving the lower bound. One of these constraints is
the objective function constraint, the second one is the surrogate constraint with special
choice of Lagrange multipliers, and the third one is the constraint of the number of I ’s
that can be contained in some feasible solution. The last constraint has varying right
hand side, say a;, such that co G [101 0̂̂ 2]· In Section 3, computational experiences will be
discussed. Finally, some conclusions are obtained.

4.1 A Feasibility Test

Let us consider the set of binary vectors
n n n

P{uj) = {x e {0 ,1 }" : Y^djXj > T], < p, ^ X j = w}.
j = l j - l j = l

where the two inequalities are consequences of the constraints of the (MBP) problem. If
P{u>) is empty, then the (MBP) problem has no feasible solution with exactly lo I ’s.

An easy test to check this is developed here. First of all, some preliminaries are
required. Let us define

n n

Po{lo) = (x G {0,1)" : ^ a j X j < p, ^ x̂ = u}.
}=1 j = l

It is obvious that P { oj) C Po(u>). The following lemma will be called ’main lemma’ .

Lem m a 4.1 I f 3 y G Po{^) with djyj > t], then P{ uj) 7̂ 0. □

26

Let us consider the following 0-1 Integer Programming problem:

Su) — max ĵ '̂j

X e Po{<)̂
(4.1.1)

The following lemma is equivalent to Lemma 4.1 in the sense that if one of them has a
positive result, so has the other one. Positive result means P{u>) ^ 0.

Lemma 4.2 6^̂ > r] iff P(u>) ^ 0 . □

Thus
P(oj) = 0 i f f < rj.

But (4.1.1) is a diffucult problem. Let us consider the LP relaxation of P{u>) and
Po{>)̂ as P'{oj) and i.e.

n n n

P'{oj) = {x : ' ^ d j X j > T j , ' ^ a j X j < p, ' ^ X j = cu, 0 < a; < e}
j=l j=l j=l

a.nd
n n

P'o{>̂) = < p, 0 < .T < e}
i=i j=\

where e is the all 1 vector.

It is clear that P{uj) C P'(cu) and Pq C Pffu>). Then, instead of (4.1.1), the following
LP problem can be solved :

61 = max djXj

x e P'(cu)
(4.1.2)

(4.1.2) is an easy problem to solve. Its constraint set has special structure and upper
bounding version of simplex method can be applied as a solution scheme very efficiently.
Then, the following lemma arises :

Lem m a 4.3 If 8'̂ < t], then P{u)) = 0.

P ro o f : If (5̂ < 7], P'{u>) = 0, but P(tu) C P'{u)). □

Thus, a feasibility test is obtained for a system of 3 linear inequalities with 0-1 vari­
ables.

27

4.2 Application of Test

In Chapter 2, a combined heuristic which generate feasible solutions to (MBP) have been
developed.

The following problem is identical to (MBP) :

(4.2.1)

// > 0 are
problem :

max z = cx
A : Ax < b
/.I : Ex < e

xG {0 ,1 } ’̂

where E is the appropriate identity matrix, e is the all 1 vector, A > 0, and
appropriate Lagrange multipliers. Consider the following surrogate constraint

SP{X,iJ,) : max Z = cx

(AA + fi)x < \b + /j.e

X e {0 ,1 }” .

Let x° be a feasible solution of SP{X, 0) i.e.,

max Z = cx

XAx < Xb

X G {0 ,1 }”

and assume that x° is also a feasible solution of (MBP). Then, there exists t and /i
(2.2.12-13) such that

argmax {{c —tXA —ii)x : a: 6 {0 ,1 }” } = x,.o

in other words
max {{c — tXA — ix)x] = {c — tXA — f.i)x°.

Then, we have the following surrogate constraint :

{tXA -f fi)x < tXb -1- ¡.LC (4.2.2)

It can be seen that Vx G P, x satisfies (4.2.2) . In addition, optimality region of x° is
defined as

{tXA -f fi)x° — {tXA + [Pjx > 0.

28

It can be seen that if x° is not an optimal solution of (MBP), then it must satisfy

{tXA + ¡j,)x° — (tXA + n)x < —e (4.2.3)

where e > 0 is the appropriate small number. The objective function constraint with
this feasible solution, is defined as

cx > Zo + I (4.2.4)

where Zo = cx°.

If there is a feasible solution having better objective function value then Zo, it must
satisfy (4.2.4). Furthermore, assume that we have an upper (lower) bound, say, lo, for the
number of I ’s in feasible solutions of P is known, i.e.

< (> V ·
j=i

Consider the following sets of binary vectors defined by linear inequalities :

(4.2.5)

P i (u)) = {a : G {0, !}"■ : c x > Z o + l, (tXA + n)x < tXb + jj,e, = (4.2.6)
J = 1

= {x e {0 ,1 }" : cx > Zo + 1, {tXA + fi)x° - {tXA + fi)x < -e , ^ xj = u;](4.2.7)
J = 1

P\o{p) = {a: G {0, !}"■ : {tXA + n)x < tXb + ^e, ^ Xj = a;} (4.2.8)
i=i

and

P2o{()̂ = {a: G {0 ,1 }” : {tXA + n)x° - (tXA + fj,)x < - e , ^ xj = a;} (4.2.9)
J = 1

L em m a 4 A If Pi(u>) = 0, or P2{u>) = 0, then in any feasible solution with cx > Zo
we have Xj < w (X^”=i > ac).

P r o o f : Since we assumed that 3 x* such that it is feasible to P and ex" > Zo + 1· D

Let us modif}' problem (4.1.2) for these new constraints as

Si = max

x e P /o H

29

(4.2.10)

= max YTo=\ (4.2.11)

where Plo(<)̂ and P^oi^) ̂ resp., are the LP relaxations of Pxo((^) and Pio(o;), resp.

Then, the following algorithm gives sharpened upper bound of the number of I ’s in
any feasible solution.

A lgorithm : Sharpening

1. begin

2. / := true·,

3. to := u>2]

4. while / do

5. if SI, (5") < Zo + 1

6. then

7. u> u> — 1

8. else

9. / := false·,

10. end;

As a result of this algorithm and Lemma 4.4, the following corrolary is valid. It is a
test for a given arbitrary u> that no need to search for larger lo values.

In above algorithm, if we choose u> as u>i at step 3 and cu = iu + 1 at step 7, lower
bound cji can be improved.

4.3 Computational results

All of the problems are generated randomly.. ’Before Improve.’ column values are results
of the algorithm that are found in Chapter 3. Last two columns is for the exact lower
and upper bounds of some problems calculated by LINDO. Computational experiences
shows that improvement are significant. Objective function and surrogate constraint are
very effective over the upper bound, lô . Diference between exact upper bound and uj" are,
in general, very small. Only one problem has diference value as 4. Surrogate constraint,
upto finding feasible solution to (MBP), collects aggregate information about the problem.

30

D of Const. (t of Var. Bef
CUi

ore Improve.
CJ2

Aft
. cu'

er Improve.
co"

Exact Lower
Bound

Exact Upper
Bound

5 20 1 11 7 9 1 9
5 20 2 11 4 7 4 6
5 20 2 15 11 15 2 14
10 20 2 14 4 8 2 7
10 20 2 16 6 13 2 12
15 30 1 23 11 21 1 17
15 30 1 25 10 18 1 16
20 50 6 25 12 22 6 21
20 50 5 32 11 21 6 20
20 50 6 31 8 17 . 6 17
20 60 1 36 10 22 2 22
20 60 2 37 11 24 3 21
20 60 4 49 11 36 4 35

Table 4.1: Lower and Upper Bounds

Special choice of Lagrange Multipliers, until generation of feasible solution, makes this
information more compact.

Due to special structure of the constarint set of (4.2.10), computation of 8'̂ consumes
very low CPU time, and above algorithm runs at most u>2 — U times in which U is the
exact upper bound.

31

5. A NEW ALGORITHM TO SOLVE GENERAL
(non-linear) 0-1 PROGRAMMING

In this chapter, a new algorithm to solve general 0-1 programming problems with linear
objective function is developed. Furthermore, this algorithm is adopted to solve linear
0-1 programming problems. The solution of the original problem, is equivalent with the
solution of a sequence of set packing problems with special constraint sets. The solution of
these set packing problems is equivalent with the ordering of the binary vectors according
to their objective function value. An algorithm is developed to generate this order in a
dynamic way. The main tool of the algorithm is a tree which represents the desired order
of the generated binary vectors.

General 0-1 programming problem with linear objective function can be stated as:

max cx

x e S C {0 ,1 }" (GBP)

where c G and without loss of generality it is assumed in the whole chapter that

Cl > C2 > · · · > Cn > 0. (5.0.1)

It is well-known that the above problem (GBP) is a hard problem to solve if S has no
special properties. If 5 is a set of linear inequalities with 0-1 variables, then it is (BP).

In [11] and [17], the following scheme is applied to solve the problem :

li ¡3i = e E. S, then it is optimal where e is the all 1 vector. If e ^ S', then the optimal
solution of (GBP), if it exists, must satisfy the following inequality

n

X j < n — \.

i=l

32

/?2i =

Let us consider the following problem :

Z-i — max cx
(5.0.2)

X e {0 ,1 }"

and assume that its optimal solution is /32- Then, it is obvious that if /?2 6 S, then it is
an optimal solution of (GBP). It can be seen that

1 i f j e {1,...,72 - 1}
0 i / i = n

Now assume that 2̂ ^ S, it follows that optimal solution of original problem must satisf}^
n

Xj < n — 1
j=l

< 7̂ 26 — 1

X e (0,1)"

If we continue this procedure, the following generalization is obtained.

Assume that /?i = e,y02, ···, have been generated so far and none of them was feasible
to (GBP). Then, solve the following set packing problem :

Zk+i = max cx

x e P k = { a ;G {0 , l } " : - 1, / = 1, .·., ^̂ } {SPP)

and assume that the optimal solution of {SPP) is

Lem m a 5.1 Assume that /3i,...,Pk ^ S. Then S C P .̂

P roof: Let us assume that y G {0 ,1 }" , y ^ {^x, ...,^/.}, but y ^ Pk- Consider the
following index r such that

r = min {I : ¡3iy > 0ie — l } .

It is obvious that r > 2 . Otherwise, ?■ = 1, y = ^1. It follows that

fSry = Pre

i.e.,
y > T̂-

Hence, it follows from (5.0.1) that
cy > c^r-

This is a contradiction to optimal property of /?r, because y G Pr-i·

33

Lemma 5.2 (SPP) is a relaxation of (GBP).

P roof: By previous lemma, Va; G -S', a; G Pr-. □

T heorem 5.1 Let k be the minimal index of iterations, such that ^ -S'. Then it is
optimal to (GBP).

P ro o f : It follows from previous lemmas. □

5.1 Boros’ Idea

It was Boros [1] who made the following observation in 1985. This solution scheme
of sequence of set packing problems is equivalent to the ordering of the binaiy vectors
in decreasing values of the objective function value. As it is stated in Lemma 1, the
constraint set of the current set packing problem excludes only the points, generated so
far. Therefore the optimal solution of next set packing problem is the best nongenerated
binary vector.

Let L be the list that obeys above property. Then, the first feasible element of L is an
optimal solution.
E xam ple : let c be the following decreasing vector :

c = (6,4,3,3)

Then, L contains
T = {(1,1,1,1), (1,1,1,0), (1,1,0,1), (1,0,1,1), (0,1,1,1). (1,1, 0,0),

(1 ,0 ,1 ,0),....,(0 ,0 ,0 ,0)}.

5.2 The Tree Representation of the Ordering of the Binary
Vectors

In this section the following problem is discussed ;

H ow can a sequence o f the binary vectors be generated in which the values
o f the linear form cx are in a decreasing order ?

34

First of all, the subproblem is solved, where only the vectors having exactly in k
components the value 1, i.e.

j=i
(5.2.1)

are ordered. Let u and v be two binary vectors satisfying (5.2.1). Let {¿i, *2, and
resp., the set of indices of the I ’s in the vector u and v, resp. It follows

immediately from (5.0.1) that if

^ jpt P — ' ' ' 1 k (5.2.2)

then cu > cv.

D efinition 5.1 Let {¿i, ...,u } be the set of indices of I ’s in the binary vector u. Assume
that for some index p the inequality

ip “h 1 p̂+i

holds, where ik+i = n + 1. Then an immediate successor of u is the vector u', if
/

j 7̂ ”1" 1
= < 0 i f j = ip

I 1 i f j = ip + 1

Any vector V satisfying (5.2.2) is a successor of u.

It is obvious from previous remarks, that u is an immediate successor of u, then
cu > cu .

T heorem 5.2 Let {ii,...,U -} and {j i , ■■■■¡jk}, resp., be the sets of indices of the I ’s in
the binary vectors u and v, resp. Assume that (5.2.2) holds. Then there is a-sequence of
binary vectors

Wo = U, W i , . . . , W i — V,

such that wi is an immediate successor of wi-\ (/ = 1, ...,t).

(5.2..3)

P ro o f : Assume that u ^ v, otherwise t — 0 and the statement holds. Let

p = max {q : i, <

Hence = 0, otherwise
*p + 1 = ip+i ^ jp < ip+i

35

and this contradicts the maximal property of p. Let

{woj i / i 7̂ ip, ip + 1
0 i / i = ip

1 i / i = ip + 1

Then the set of the indices of I ’s in Wi is

— '{il,···, p̂—1 j^pT 1,···,^/:}·

It is obvious that
ill < ji, I — 1,

Then either wi — v, or the process can be repeated for wi. □

It is trivial that all of the binary vectors containing exactly k I ’s is the successor of
the vector x, where Xi = ... = a:̂ = 1, Xk+i = .·· = a;„ = 0. Therefore all of these vectors
can be enumerated with the following algorithm, where L is the list of binaiy vectors to
be enumerated.

Algorithm 4

1. Begin

2. L : = {x = (1, ...,1,0,,0)};

3. while L 0 do

4. begin

5. choose u ̂ L]

6. L (L U {v : V is an immediate successor o f u})

7. end;

8. end
Without any deeper organization this algorithm will work unnecessarily too much,

because the sequence (5.2.3) is not unique, i.e. a binary vector can be generated several
times as the immediate successor of different vectors. This phenomena is illustrated
with the following example. Let k = 2, n = A. Then Algorithm 4 starts from the
point X = (1 ,1 ,0,0). In the first iteration it has only one immediate successor, which is
Ui = (1 ,0 ,1,0). The immediate successor of ui are «2 = (0 ,1 ,1 ,0), and 113 = (1,0,0,1).
The only immediate successor of U2 is 114 = (0,1,0,1) which is at the same time immediate
successor of « 3, too. To avoid this disadvantageous effect the following ordering of binary
vectors is introduced.

36

D efinition 5.2 The vector u is ’greater’ than v, denoted u t> v if either

• cu > cv or

• cu = cv and u is lexicographically greater than v which is denoted by u y v.

It is obvious that any two distinct vectors are comparable by this ordering, i.e. in any
set of binary vectors there is a unique maximal element in this ordering. Thus the choice
of the vector u in the 5-th row of Algorithm 4 can be executed in the following way

5' u := ?nax ̂ {u E X}.

It follows from (5.0.1), that if u' is an immediate successor of u, then u t> id. Hence
the following statement is obtained.

Lem m a 5.3 If in Algorithm Jf. the choice of the vector u is done according to 5 ’, then, no
vector can be chosen twice.

P roo f : Assume that the vector u was chosen in iteration t. Then it was the maximal
vector in ordering > which was contained in L and it was substituted by a set of smaller
vectors. If it returned to L then at least one vector had to be substituted by a greater
vector, which is impossible. □

Hence the following algorithm is obtained to enumerate all of the binary vectors. The
vector 6j is the j-th unit vector.

Algorithm 5

1. B egin

2· L := : k = l,...,n }·,

3. while T yi 0 do

4. begin

5. u := max^ {v € L};

6. L := (LU {v : V is an immediate successor o f u }) \ {u);

7. end;

37

8 . e n d

T heorem 5.3 All of the binary vectors are chosen in row 5 of Algorithm 5 exactly once.

P ro o f : It follows from lemma 5.3 that it is enough to prove that all of the points are
chosen at least once. Assume that the vector v containing exactly k I ’s is not chosen. Let
us consider a sequence (5.2.3) from the point to v. Without loss of generality we
may assume that in this sequence only v was not chosen. Then wt — v an immediate
successor of which was chosen in an iteration. When in row 5 xi was Wt
entered to L according to row 6. If u is in L and v has been never chosen then L has
become never empty. Thus it follows from Lemma 5.3 that it should be infinite many
binary vectors being greater in the ordering > than v, which is a contradiction. □

For the sake of convenient handling of the list L it is organized as a rooted tree. The
root contains always the greatest point. All of the nodes of the tree, except the root, can
have two children, a left and a right one. The root has only a left child. All of the binary
vectors of the left (right) subtree of a node are less (greater) than that of v according to
the relation t>. Thus it is very easy to find the appropriate position of a newly generated
binary vector in the tree. This is done by Algorithm 6.

Algorithm 6

1. begin

2. {* Let L be the current tree *)

3. (* S := Set o f all immediate successor o f x *)

4. X := Binary vector in the root]

5. while 5 7̂ 0 do

6. begin

7. y e S]

8. 2: := cy]

9. p := root''.left]

10. / := true]

11. w hile p 7̂ nil and f do

38

12. begin

13. Temp := p]

14. if z > p^.obfv

15. then p := p^.rightnode

16. else if z < p^.obfv

17. then p := p^.leftnode

18. else if y >- p^.BVector]

19. then p := p^.rightnode·,

20. else if p^.BVector >>- y

21. then p ̂.leftiiode

22. else

23. begin

24. / := false·,

25. S : = S - { y } · ,

26. end;

27. end;

28. i f f

29. then

30. begin;

31. 5 := S \ W ;

32. if z > Temp^.obfv

33. then Temp'^.rightnode := y

34. else if 2T < Temp^.obfv

35. then Temp'^.leftnode ·.— y

36. else if Temp^.BVector >- y

37. then Temp'^.leftnode :■

39

3 8 .

3 9 . e n d ;

4 0 . e n d ;

else Temp'^.rightnode := y;

In the row 6 of Algorithm 5, the point contained in the root is omitted from the tree.
Therefore a method is needed to find the point, which must go into the root, i.e. the
maximal binary vector in the tree. But, notice that this is always the most right point of
the (left) subtree of the root.

As a implementation of the above algorithm, let Lk be the current tree at step k, and
assume that Xk, binary vector in the root, is not feasible to (GBP), otherwise it is optimal,
and S is the set of immediate successor of Xk- Then

Lk+i := Lk U S \{a;A;} (5.2.4)

E xam ple : Assume that = 6, c = (7,5,4,3, 2,1) and the current tree Lk consists of
the following binary vectors

Xk = (1 ,0 ,1 ,0 ,1 ,0)

y i = (l , 0 , l , 0 , 0 , 0)

y2 = (1,1,0,0,0,0)

ya = (0,1,0,1,1,0)

y 4 = (l , 0 , 0 , 0 , 0 , 0)

and the tree representation is

then immediate successor of Xk are

u = (0 , l , l , 0 , l , 0)

u = (l ,0 , l ,0 ,0 , l)

40

u; = (1 ,0 ,0 ,1 ,1 ,0)

then tree becomes

r- -'L

V X

Then point j/2 goes into the root and the shape of tree is

V

In Chapter 3 and 4, the lower and upper bounds were given for the number of I ’s in
any feasible solution of 0-1 integer programming. If (GBP) is assumed to be 0-1 linear
integer programming, these bounds can be used to make improvements in the algorithm.

5.3 An Example

Consider the following problem

max 2xi -f X2 + 3xa + 4x4

3xi + 2x2 + + 4x4 < 3

41

then

2xi 4x2 "t" 2x3 4" 3x4 ^ 6

Xi, X2, X3, X4 G {0, 1}.

C4 > C3 > Cl > C2

(P)

Therefore, index set used to generate immediate successors of binary vector in the root is
(4,3,1,2). So, for the initial tree (To)» the following binary vectors is used.

{ (1, 1,1 ,1), (1,0,1,1), (0 ,0 ,1 ,1), (0 ,0 ,0 ,!) } = {xo ,x i,X 2,X3}

cind tree becomes

Xo

(1, 1, 1, 1) ^ P then tree turns out to be

Binary vector in the root is (1 ,0 ,1,1) ^ P and its ordering with respect to objective
function value is (1, 1, 1, 0). Immediate successor of it in this ordering is (1 ,1 ,0,1) and
corresponding binary vector is X4 = (0 ,1 ,1,1). If we append it to the current tree, then
tree becomes

Xv

L,

The binary vector in the root is (0 ,1 ,1,1) ^ P and its ordering is (1, 1, 0, 1). Then
the immediate successor of (1, 1, 0, 1) is (1, 0, 1, 1) and corresponding binary vector is

42

X5 = (1 ,1, 0, 1). If it is put in tree, tree becomes

The following iterations is similar and these are shown without explanations

L, L 5
K1

u ..
■'>

■T

8

L
8

\ \

X
8

\o

where Xe = (1, 1, 1, 0), x j = (1>0, 0, 1), xg = (0, 1, 0, 1), xio = (0, 1, 1, 0).

Now, we shall use informations, the bounds for the number of I ’s , found in Chapter
3 and 4. The followings are the p and q vectors (see. Chapter 3)

p = (l , 1,1,5), g = (2 ,2 ,2 , - l)

It follows that a;4 = 0 by Theorem 3.6. Then S (x4 = 0) is

3a;i + 2x2 + xa < 3

2a:i + 4x2 + 2xa < 6

so if we calculate p and q vectors, then p = (1,1,1), q = (2,2,2). Then, no need to
search for the subproblems having total number of I ’s greater than two I ’s. In addition,

43

ordering (4, ̂ 1 is rodnr.ed to i3.1.2'). So. initial tree is

L,

Binary vector in the root is (1 ,0 ,1 ,0) ^ P, and its ordering is (1,1,0) Immediate
successor of (1,1,0) is (1,0,1) and corresponding binary vector is (0,1,1,0). Then tree
becomes

V ^

L o X 1

Since binary vector in the root, (0 ,1,1, 0) is a feasible solution to P, then stop, it is
optimal solution.

Computational experiences show that for some problems, tree representation of the
ordering of the binary vectors for decreasing values of objective function value, solves
the problem in a reasonable amount of time. Assuming that constraint set of (GBP)
is difficult to handle by known algorithms, it generates upper bounds to (GBP) and
generates thousands of binary vectors in a vey short time.

44

6. CONCLUSIONS

We have studied 0-1 linear integer programming problems. These optimization problems
are usually NP-complete, except the specific cases that can be solved polynomially. Pre­
processing is used to increase the effectiveness of the methods designed to solve these
problems. The aim of the preprocessing stage is to collect as many useful information
about the problem as possible. Preprocessing reduces computational times of the opti­
mization methods. In this study, various preprocessing schemes were developed.

First of all a combined heuristic method was constructed to find good feasible solutions
in a short time. Then, new lower and upper bounds were given for the number of I ’s in
feasible solutions. Morever, these bounds were improved by a special feasibility test for
3-linear inequalities with 0-1 variables. These inequalities were consequences of (MBP).
Finaly, a new algorithm to solve general 0-1 programming with linear objective function
were developed. And the results of the previous chapters were used to make refinements
in this algorithm.

In any solution scheme developed to solve (MBP), such as a branch and bound, the
use of the preprocessing improves the solution time (see Table in Chapter 1).

As an essential future of the study is to develope a computer code which combines and
modifies the results of the thesis to solve large 0-1 integer programming problems within
one system.

45

REFERENCES

[1] Boros, E., Private Comminication, 1985.

[2] Balas, E., Zemel, E., Solving Large Zero-One Knapsack Problems. Oprns. Res. 28
(1980) 1130-1154.

[3] Everett, H., Generalized Lagrange Multiplier Method for Solving of Optimum Allo­
cation of Resources, Oprns. Res. (1963) 399-417.

[4] Fayard, M.L., Plateau, G., Resolution of the 0-1 Knapsack Problem : Gomparision
of Methods, Math. Programming, 8 (1975) 272-307.

[5] Fisher, M.L., The Lagrangian Relaxation Method of Solving Integer Programming
Problem, Man. Sci. 27, (1981) 1-18.

[6] Fisher, M.L., Optimal Solution of Scheduling Problems Using Lagrange Multipliers
: Part 1, Oprns. Res., 21 (1973) 1114-1127..

[7] Garfinkel, R.S., Nemhauser, G.L., Optimal Political Districting by Implicit Enumer­
ation Techniques, Man. Sci. 16, (1970) B495-B508.

[8] Glover, F., A Multiphase Dual Algorithm for Zero-One Integer Programming, Opsn.
Res., 13, (1965) 879-919.

[9] Glover, F., Surrogate Constraint Duality in Integer Programming, Opns. Res., (1975)
434-451.

[10] Glover, f., Woolsey, R.E., Converting the 0-1 Polynomial Programming Problem to
a 0-1 Linear Program, Opns. Res. 22(1), (1974) 141-161.

[11] Granot, D., Granot, F., Kalberg, J., Converting Relaxation for Positive 0-1 Polyno­
mial Programs, Management Science, 25, (1979) 264-273.

[12] Hirsh, W.M., Dantzing, G.B., The Fixed Charge Problem, Na.v. Res. Log. Quart. 15,
(1968) 413-424.

[13] Ingargiola, J.P., Korsch J.F., A Reduction Algorithm for Zero-One Single Knapsack
Problems, Mng. Sci. 20 (1973) 460-463.

47

[14] Karwan, M.H., Rordan, R.L., Some Relationships Between Lagrangian and Surrogate
(constraint) Duality in Integer Programming, Math. Prog. 17, (1979) 320-334.

[15] Koopmans, T.C., Beckmann, M.J., Assignment Problems and the Location of Eco­
nomic Activities, Econometrica 25, (1957) 53-76.

[16] Lawler, E.L., Bell, M.D., A Method for Solving Discrete Optimization Problems,
Opns. Res. 14(6), (1966) 1098-1112.

[17] Maga, F., Vizvari, B., The Relaxation of a Special Polynomial Zero-One Program­
ming Problem to Set Covering Problem, Alkalrnazott Matematikai Lapok, 12 (1986)
41-49.

[18] Manne, A.S., On the Job-Shop Scheduling Problem, Opns. Res. 8, (1960) 219-223.

[19] Murty, K.G., Solving the Fixed Charge Problem by Ranking the Extreme Points,
Opns. Res. 16, (1968) 268-279.

[20] Nemhauser, G.L., Ullman, Z., A Note on the Generalized Multiplier Solution to an
Integer Programming Problem, Operations Research 16, (1968) 450-452.

[21] Pritsker, A.A., Watters, L.J., Wolfe, P.M., Multiproject Scheduling with Limited
Resources: A 0-1 Programming Approach, Man. Sci. 16, (1969) 93-108.

[22] Shapiro, J.F., A Survey of Lagrangean Techniques for Discrete Optimization, Annals
of Discrete Mathematics, 5 (1979) 113-138.

[23] Taha, H.A., Further Improvements in the Polynomial Zero-One Algorithm, Man. Sci.
19(2), (1972) B226-227.

[24] Vizvari, B., Lagrange Multipliers in Integer Programming, Problems of Control and
Information Theory, Vol.7 (5), 393-406 (1978).

[25] Vizvari, B., The Heuristic Method of Discrete Programming I: MTA SZTAKI, Tanul-
manyok, 152 (1983) 109-138.

[26] Vizvari, B., Yılmaz, F., New Bounding Schemes for 0-1 Knapsack-Like Constraints,
Research Reporth: 9021, Bilkent University, Turkey(1990).

[27] Vizvari, B., Yılmaz, F., Sharpening of the Number of I ’s in Feasible Solutions of 0-1
Integer Programming, Research Report: 9104, Bilkent University, Turkey(1991).

[28] Vizvar, B., Yılmaz, F., A New Algorithm to Solve General 0-1 Programming Prob­
lem with Linear Objective Function, Research Report: 9105, Bilkent Llniversity,
Turke3''(1991).

48

[29] Yılmaz, F., Combined Heuristic Method for 0-1 Programming, Research Report:
IEOR-9101, Bilkent University, Turkey(1991)

[30] Weingartner, H.M., Capital Budgeting of Interrelated Projects: Survey and Synthe­
sis, Man. Sci. 12, (1966) 485-516.

49

