
A SUCCESSIVE ÂLCOBÎTHM
FOR THE CHINESE POSTMAN paOSLEM

.4 THESIS^

SUSMrfTrC. TO THE DEPARTMENT OF INOUSTRIAL
àMù THE INSTITUTE OF ΕΝΟΙΝΕΕΚΙΝβ AND SCIENCES

Or BSLKE ÎT üNiVERSrfT
Ш PARTIAL FULFILLMENT OF THE REQUmSMENTS

FOR THE DSeRSE oF

MASTER OF SCIENCE

U 0 X ‘ S

• N 3 ^

/ a s i

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bilkent University Institutional Repository

https://core.ac.uk/display/52927748?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A SUCCESSIVE ALGORITHM
FOR THE CHINESE POSTMAN PROBLEM

A THESIS

SUBM ITTED TO THE D E PAR TM EN T OF INDUSTRIAL ENGINEERING

AND THE INSTITUTE OF ENGINEERING AND SCIENCES

OF BILKENT U N IVERSITY

IN PARTIAL FULFILLM ENT OF THE REQUIREM ENTS

FO R THE DEGREE OF

M A STE R OF SCIENCE

0 D c x n n

tarafliidan

By
Noyan Narin

June, 1991

я и

3 0 f' I·'.' о. '' <J ü

I certify that I have read this thesis and that in my opinion it is fully adequate, in
scope and in quality, as a thesis for the degree of Master of Science.

Associate. PfSfT^ustala Akgiil(Principal Advisor)

I certify that I have read this thesis and that in my opinion it is fully adequate, in
scope and in quality, as a thesis for the degree of Master of Science.

Associate. Prof, ^ a n Oğuz

I certify that I have read this thesis and that in my opinion it is fully adequate, in
scope and in quality, as a thesis for the degree of Master of Science.

Associate Prof. Peter Kas

I certify that I have read this thesis and that in my opinion it is fuUy adequate, in
scope and in quality, as a thesis for the degree of Mastery-Science.

' u

Associate Prof. Belâ Vizvari

Approved for the Institute of Engineering and Sciences:

Prof. Mehmet)8|i^y
Director of Institute of Engineering and Sciences

ABSTRACT

A SUCCESSIVE ALGORITHM
FOR THE CHINESE POSTMAN PROBLEM

Noyan Narin
M.S. in Industrial Engineering

Supervisor: Associate. Prof. Mustafa Akgiil
June, 1991

The Chinese Postman Problem being one of the well known problems in combinatorial optimization has

many applications in real life problems such as mail delivery, road maintenance and bus scheduling. In this

thesis work, we present a successive algorithm for the solution of Chinese Postman Problem. Additionally,

we present efficient data structures for the existing algorithms in literature and for the implementation of

our successive algorithm.

K eyw ord s: Chinese Postman Problem, Matching, Blossom algorithm. Successive algorithms.

Ill

ÖZET

ÇİNLİ POSTACI PROBLEMİ İÇİN SIRALI ALGORİTM A

Noyan Narin
Endüstri Mühendisliği Bölümü Yüksek Lisans

Tez Yöneticisi: Doç. Mustafa Akgül
Haziran, 1991

Literatürde temel problemlerden biri olarak bilinen Çinli Postacı Probleminin gerçek hayatta da mektup
dağıtımı, yol bakımı, otobüs çizelgelemesi gibi birçok uygulaması vardır. Bu çalışmada, Çinli Postacı
Problemi için sıralı algoritma anlatılmıştır. Buna ek olarak, hem halahazırda literatürde var olan, hem de
bizim geliştirdiğimiz algoritma için uygun olacak veri yapısı sunulmuştur.

A nahtar K elim eler: Çinli Postacı Problemi, eşleme, blossom algoritmaları, sıralı algoritmalar.

IV

To my family,

ACKNOWLEDGMENT

I am grateful to Assoc. Prof. Mustafa Akgiil, for his excellent supervision, guidance,
encouragement and patience during the development of this thesis. I am indebted to the
members of the thesis committee: Assoc. Prof. Osman Oğuz, Assoc. Prof. Belâ Vizvari
and Assoc. Prof. Peter Kas for their advice.

I also wish to express my appreciation to Oya Ekin for her invaluable help.

My special thanks are due to Yasemin Eken for her morale support and encouragement.

VI

Contents

1 IN T R O D U C T IO N 1

2 L ITE R A TU R E R E V IE W 2

2.1 Polyhedral Description of CPP and the Primal-Dual Algorithm 4

2.2 The Primal Algorithm ... 21

3 A n 0(1 V\\E\ log(| V D) IM PLEM E N TATIO N 26

4 TH E SUCCESSIVE A L G O R IT H M 41

4.1 The Successive A lgorithm ...41

5 E X A M PLE S FO R TH E A L G O R ITH M S PR O V ID E D 44

6 CO N C LU D IN G R E M A R K S 59

B IB L IO G R A P H Y 60

Vll

Chapter 1

INTRODUCTION

The Chinese Postman Problem (CPP) is one of the oldest problems in combinatorial
optimization. It was first introduced by Kwan Mei Ko in 1962 as the problem faced by a
postman who had to deliver mails along edges over a given network before returning to
his postofiice.

The importance of the problem arises from the fact that many real-life problems
such as mail delivery, garbage collection, street cleaning, road maintenance, school bus
scheduling, and many others can be modelled as a variation of CPP. Some of the appli­
cation areas of the problem involves a generalization of it, that is, there is not just one
postman but many, and the problem is to assign routes to the postmen with fewest possi­
ble number of postmen none of whom has too long tour. The CPP has many applications
in VLSI optimization and provides solution to planar multicommodity flows and max cut
problems as well.

In this study we present a successive algorithm that can ease the application of the
problem to some variations. The successive algorithm is the first step towards paralleliza­
tion. Beside this we supply an efficient data structure for both the existing algorithms
and the new successive algorithm.

Now we give the outline of the thesis. In Chapter 2 we review the related litera­
ture. This chapter concentrates on Edmonds’ pionering work on this problem. We also
describe the primal-dual algorithm by Edmonds and Johnson, and the primal algorithm
by Barahona in that chapter. In Chapter 3, we provide efficient data structures which
enable us to implement both the existing algorithms and the new successive algorithm
with 0(1 II V I log(| V D) time bound. The successive algorithm is presented in Chapter
4. We provide an example in Chapter 5 and make some concluding remarks in Chapter 6.

Chapter 2

LITERATURE REVIEW

The Chinese Postman Problem which was first introduced by Mei-Ko Kwan [21] in 1962
is to find the minimum postman tour over an undirected, connected graph, G = {V^E)
with non-negative edge weights, where the postman tour can be defined as a closed walk
that traverses each edge at least once.

By simple intuitional appeal, if the degree of all nodes are even then the minimum
postman tour is that which traverses each edge exactly once, i.e., wherever the postoffice
is, the postman delivers aU mails and turn back to his postoifice; he traverses aU the
edges and never traverses any edge more than once. In such a case, we call the graph
’’Eulerian” . So for Eulerian graphs the solution is trivial.

The problem can be viewed as the transformation of the given graph G = {V^E) ̂
with nonnegative edge weights Cg, into an Eulerian graph by duplicating some of its edges
having minimum cost and then finding an Euler tour. In this work we do not deal with
finding the Euler tour. In [15, 25], two algorithms have been given to find such a tour.

Definition 2.1 Given G = [V^E) and T C V,\T \ even^E ̂ C E is aT - join if in the
subgraph G' = (F, 1?'), the degree of any node v is odd if and only i fv ^ T ,

Lemma 2.1 IfT = {u : u is odd degree ̂ u G F } forG = (F, J5) and E ' is a T-join^
then the multigraph obtained from G by duplicating the edges in E' is Eulerian,

Thus if T is the set of aU odd degree nodes of G, then there is a one-to-one corre­
spondence between T — joins in G, and Chinese Postman tours.

Definition 2.2 An im proving circuit C with respect to a Tq — join E' is a circuit such
that the sum of the cost the edges in C\E' is less than the sum of the cost of the edges in
C n E \

CHAPTER 2. LITERATURE REVIEW

Kwan’s algorithm [21] proceeds by finding an arbitrary Tq - join and improves by
finding an improving circuit. Since CAE' is also aTa - join, the cost of the tour can be
decreased. Although his idea is appealing, he couldn’t give a polynomial time algorithm
to find such circuits.

In 1965 Edmonds showed the close relationship between the weighted matching and
the postman problem [12]. He was also the first who dubbed ’’Chinese” to the problem
in recognition of the Chinese mathematician Mei-Ko Kwan.

The first proposed method is easy. For all the pairs of odd degree nodes of G,
shortest paths are computed; and using these values as edge weights of complete graph Kp
where p is the number of odd degree nodes in G, a minimum weighted perfect matching
problem is solved [15, 12]. If (i, j) is a matched edge in Kp, then duplicate the edges on
the shortest path between i and j in the original graph G. Then the new graph obtained
is eulerian. The time complexity of this method is 0(| V |̂), however this method does
not use the advantage of the sparcity of the original graph in anyway.

In 1973 Edmonds and Johnson [15] gave a polyhedral description of the problem, also
proposed a direct algorithm to solve this problem. An algorithmic proof of the polyhedral
description was also provided in [15]. Using the data structures proposed by Lawler [22],
the algorithm can be implemented in 0 (| U p) time.

Later in 1982, Barahona adapted the primal algorithm of Cunningham and Marsh
[8] for the weighted matching problem to this problem [3, 5].

For many polynomial algorithms that solve the Chinese Postman Problem [15, 3,
5, 8, 19] the essential step is ” blossom shrinking” operation that is first presented by
Edmonds [11].

In 1984, Sebo described a direct combinatorial algorithm to find a minimum cardi­
nality Tq — join through elementary improving steps in polynomial time by generalizing
the Kwan’s improving circuits [27]. His starting point is the Lovasz’s interpretation of the
matching algorithm [23]. He proved "structure theorem” of Tq —join [28] that generalizes
the Gallai-Edmonds theorem which plays the same role in Chinese Postman Problem as
it does in Lovasz’s algorithm. Time complexity of this algorithm is 0{\ V p).

In what follows we will first describe Edmonds* polyhedral description of the problem
together with the primal-dual algorithm to solve it. Later we will discuss Barahona’s
primal algorithm.

2.1 Polyhedral Description of CPP and the Primal-Dual
Algorithm

Given a graph G = (V,E) and a set of real weights Cg : Cg > 0,Ve 6 E, the problem can
be formulated as

CHAPTER 2. LITERATURE REVIEW 4

PI mm

s.t.

E
eeE

CpXc

(2.1) = 0, (mod2) Vv G F
eeE

(2.2) Xe > 0, Ve G i?
(2.3) Xe is integer^ Ve e E

where

[aye] is the node-edge incidence matrix of graph G

Xe is the number of extra times that edge e is traversed.

Let by for all nodes of G be

by —
0, if the node v is incident to even number of edges.
1, if the node v is incident to odd number of edges.

Then we can write the congruence equality (2.1) as,

(2.1') = h, Vv G V.
e^E

The variable Wy can be thought of nonnegative, integer variable that corresponds to
loops constructed for every node where loop is an edge having two ends meeting the same
node. Since Wy corresponds to distinct loops for aU nodes, we can extend the coefficient
matrix [â ĝ] to include the coefficients of Wy by adding n columns which are all zero except
-2 at the i — th row for i — th node.

Resulting coefficient matrix consists of 0,1 and -2 and for all columns the sum of the
absolute values of coefficient matrix is less than 2, i.e.,

(2.4) I v̂e \ < 2, Ve G P, also for aJl e corresponds to loops.
v^V

CHAPTER 2. LITERATURE REVIEW

Indeed (2.1'), (2.2), (2.3) with predefined cost function is a general matching problem
[14], knowing (2.4) and using the polyhedral theorem of Edmonds and Johnson [13, 14] we
can write the polyhedral description of the CPP. Prior to this, we provide some necessary
definitions.

Definition 2.3 A Blossom B is a subset of node set V such that is oddy i,e,y B is
veB

a subset of V containing odd number of odd degree nodes and any number of even degi'ee
nodes. In particular a single node with odd degree is a blossom. Let B be the set of all
blossoms.

Definition 2.4 For any subset S C Vj the coboundary o f S, S{S)y is the set of all
edges having exactly one end in S. If S = {u} consists of a single node, then we will write
shortly 8{v) instead of 6{{v})..

Definition 2.5 For any subset S C V , S induced set o f edges, 7 (6'), is the set of all
edges having both ends in S.

Let for any subset S of V

X(S{S)) = ^ -.Xe
eeS(S)

P2 min

s.t.

E
ĝ E

CpXp

(2 .1 0 a;((5(u)) — 2wy = bvi Vt; G V.
(2 .5) x{S{B)) > 1, V Be B.
(2 .2) Xe > 0, Ve G E.
(2 .6) Wy > 0, Vv G V.

Now the aim is to get rid of Wy. From (2.1') we can say

€ { - 1 , 0, 1 , ! , . . . }

Since Wy is integer then it is obvious that Wy is nonnegative. So we can drop (2.6) from
the constraint set of the polyhedral description of CPP. Also, once we find a solution x
satisfying (2.5) and (2.2), (2.1') is used in order to determine Wy for all nodes v. Thus in
polyhedral description we don’t need (2.1').

CHAPTER 2. LITERATURE REVIEW

Consequently, the claim is that, the optimum solution of P3 is optimum for P2 and
hence for PI where

P3 : min

s.t.
(2.5)
(2.2)

eeE

x{S{B)) > 1,
^ 0,

V B e B .
Ve € E.

The algorithmic proof for this claim is given in [15].

The dual of P3 is

D3 : max

s.t.
BeB

(2.7) Y i V B : e e 6{B)} < Ce, V e e E .

(2.8)
B&B

ys > 0, ' i B e B .

For an optimal pair (x ,y), complementarary slackness conditions should be satisfied;
that is,

CS (2.9) X e (C e - : e € i (5) }) = 0, \/e e E.
Bee

(2.10) Veil - X^{xe : e € S{B)}) = 0, V.B € B.
eeE

Let Cg=Ce — Y^{ vb '· B 6 S(B)} be the reduced cost of edge e.

The primal-dual algorithm for CPP presented in [15, 5] is an adaptation of Edmonds’
weighted matching algorithm. Major difference arises from the shrinking operation because
in Chinese Postman Problem, there are four types of blossoms that will be described in
the course of the algorithm.

Since the algorithm is very similar to matching algorithms we wiU use the notations
that are common almost to all matching algorithms.

Definition 2.6 Given an undirected graph G = (V, E), a matching M C E is a subset
of edges no two of which are incident to a common vertex. Clearly, for the case Cg > 0,
Ve 6 E, the optimum solution to P3 is a binary vector.

CHAPTER 2. LITERATURE REVIEW

The edge with Xq = 1 is called a matched edge and it means the edge e should
be duplicated in order to make the graph Eulerian, and the edge with ô e = 0 is an
unmatched edge.

The primal-dual algorithm works on the so called surface graph Gs which consists
of the blossoms and even degree nodes that are not contained in any blossom, i.e., in Gs
any blossom is maximal.

Initially surface graph is equal to G, except all odd degree nodes correspond to
pseudonodes(blossom s). Even degree nodes are called even nodes. Initial dual vari­
ables associated with pseudonodes are zero, and even nodes do not have dual variables.
At the beginning of the algorithm, Xe values are zero for aU edges, i.e., M is empty.

Definition 2.7 If a blossom is incident to no matched edge then it is called a free(exposed)
blossom. Otherwise it is called saturated. For a free blossom for all e G we have
X q — 0 .

Definition 2.8 An alternating path with respect to M is a simple path whose edges are
alternately in M and not in M. An augmenting path is an alternating path whose end
nodes are free. An alternating cycle is an alternating path with the same starting and
end point. Obviously an alternating cycle has even number of edges.

Definition 2.9 An alternating tree is a tree T = {V(T)^(E(T)) rooted at free node r
with the properties that the paths from r to each vertex in T are alternating paths and
E{T) C[M is a perfect matching with respect to V{T) \ {r} .

Theorem 2.1 (Berge) A matching M in G is maximum if and only if there is no
augmenting path with respect to M ,

The algorithm consists of successive stages in each of which it tries to find an aug­
menting path between free blossoms. Each stage ends up with an augmentation, so at the
end of each stage the number of free blossoms in the surface graph is decreased by two.

Any stage of the algorithm begins with a dual feasible solution y and corresponding
to that y let Gs{y) be the equality subgraph of Gs· That is Gs{y) consists of all nodes
of Gs and those edges of Gs for which the reduced costs are zero. Moreover, the matching
M at hand at the beginning of the stage contains only the edges of Gs{y) so that M and
y fulfill the complementary slackness conditions ((2,9), (2.10)). That is to say, in equality
subgraph every matched edge meets at least one pseudonode and every pseudonode is
incident to at most one matched edge. Only the dual variables corresponding to saturated

pseudonodes can be positive and the dual variables corresponding to free pseudonodes are
all zero. If the matching M is perfect in Gs{y), i.e., if there is no free blossoms in Gs(y)
then we are done, we found the optimum solution.

Otherwise, starting from the free pseudonodes the algorithm grows alternating trees
rooted at those distinct, unmatched pseudonodes by using the edges in Gs{y)· We call
the collection of those alternating trees as planted forest. The nodes on the planted
forest are all pseudonodes. The roots of the alternating trees are labelled by + and all
the other pseudonodes in planted forest are alternately labelled by + and —. For any
pseudonode p, + label indicates the existence of an even length alternating path from p
to the root of the alternating tree containing p, whereas — label indicates the existence
of an odd length alternating path from p to the root of the alternating tree containing
p. The pseudonodes that are not contained in the planted forest are indicated by 0.
Each — labelled pseudonode of the planted forest is incident to two edges one of which
is a matched edge in the planted forest. The + labelled pseudonodes are incident to any
number of unmatched edges and to one matched edge except the roots of the alternating
trees. Number of + labelled pseudonodes in planted forest is greater than the number of
— labelled pseudonodes. Thus, in order to result in an augmentation, we should add some
edges of Gs into the equality subgraph by changing the dual variables.

The dual changes should be done in a way that, the dual feasibility is not violated
and there is no edge that leaves the planted forest even there is none that is adjoined to
it. To satisfy these we employ a special procedure FIND-MIN. FIND-MIN determines the
maximum possible dual variable change. After the dual update, four cases may occur.

CHAPTER 2. LITERATURE REVIEW 8

a. An edge of Gs, which links an unlabelled pseudonode to a + labelled pseudonode of
an alternating tree, is adjoined to the equality subgraph. In that case we grow the
tree.

b. i- An edge of Gs, which joins two + labelled pseudonodes of an alternating tree,
is adjoined to the equality subgraph.

ii- An edge of Gs that joins an even node to a + labelled pseudonode of Gs is
adjoined.

In both case, we employ a special SHRINK operation to preserve the properties of
the planted forest and not to ignore the possibility of having an augmenting path
that passes through a pseudonode that has - label before SHRINK. Given an odd
set of nodes S C Fs, we shrink S by updating the surface graph.

G', = {V:,Ei)

and v' is called the pseudonode induced by S.

where

CHAPTER 2. LITERATURE REVIEW

These structures were first investigated by Edmonds for CPP. Their importance
comes from the fact that whenever a perfect matching in Gs can be found it can be
extended to the solution of the CPP over the original graph G. The odd sets that
are shrunk are nested, and whenever the odd set S is saturated by an edge in S{S),
the pseudonodes in S can be saturated by using the edges in 7 (5').

c. No edge is adjoined to the equality subgraph but the dual variable corresponding to
a — labelled pseudonode drops to zero. In that case we call expand.

As we mention before, in any stage, blossom algorithm looks for a minimum cost
augmenting path with respect to given matching between free pseudonodes over
the current surface graph Gs· Needless to say that the minimum cost augmenting
path in G may not be induced by any augmenting path in Gs· In such cases, the
algorithm detects it and overcome this situation by expanding certain pseudonodes
and updating the surface graph.

d. An edge of Gs that meets two + labelled pseudonodes on diiferent alternating trees
is adjoined to the equality subgraph. It means we find an augmenting path P. Then
the matching M is changed by reversing the role of matched and unmatched edges
of P. This will be the end of a stage and a new stage begins with the augmented M
and the updated dual vector y. They satisfy the complementary slackness and the
additional conditions.

Definition 2.10 The nodes in the current surface graph, i,e., the nodes that are not
contained in any pseudonode are called exterior nodes, and all nodes that are contained
in a pseudonode are called interior nodes. For any node v, b (v) indicates the exterior
node that contains v, and for any exterior node k, R E A L (k) denotes the set of real
nodes, ¿.e., the nodes of the original graph G,

Knowing the necessary definitions and the conceptual description of the algorithm,
the more compact form of the generic primal-dual algorithm can be described. Prior to
this we will explain the procedures that are used in the algorithm.

F IN D -M IN (A)
begin

Ai = min{c· ·̂ : (i j) € b(i) is + labelled (exterior) pseudonode,
b(j) is unlabelled}

Set Pi = (i^j) where (i,j) is the edge satisfying the minimum.
A 2 = \ TCim{c[j : (¿, j) G Es·, b(i) and b(j) are + labelled (exterior) pseudonodes}

Set p2 = (¿jj) where (i,j) is the edge satisfying the minimum.
A 3 = min{i/A; : k is - labelled (exterior) pseudonode}

Set pz = k is the exterior pseudonode satisfying the minimum.

CHAPTER 2. LITERATURE REVIEW 10

Set A = min{Ai, A 2, A 3}
end{FIN D -M IN }

This procedure guarantees that after the dual variable changes, the dual feasibility
is not violated. In addition it detects that there may be a shortest path that is not induced
by the current surface graph, (A = A 3).

Before we continue with the description of the procedures, we will give the definitions
of the blossoms that are frequently used.

Type-1 blossom is an odd set that contains one even node and one unmatched edge.
The unmatched edge meets the even node and a pseudonode. The other pseudonodes in
the blossom, if any, are adjoined to the even node through matched edges.

□ : pseudonode

o : even node

: unmatched edge

: matched edge

Type-2 blossom contains three pseudonodes. One of the pseudonodes is adjacent to
the other two through a matched and an unmatched edge. The dual variable corresponding
to that pseudonode is zero.

□— □ O
type-2 pseudonode

Type-3 blossom is an odd cycle. All the nodes in it are pseudonodes. One of them
is incident to two unmatched edges in the blossom, while the others are incident to one
matched, one unmatched edges.

CHAPTER 2. LITERATURE REVIEW 11

Type-4 blossom contains one even node and an odd number of pseudonodes that are
adjacent to the even node through matched edges.

It is obvious that, there are odd number of pseudonodes of any type in any type of blos­
som.

/* b(i) is -f labelled, b(j) is unlabeUed pseudonodeG R O W (id)
begin

Label b(j) by -
if the mate of b(j) is an even node h

then begin
Set S = {/i} U {mates of h other than b(j)}
SHRINK(S)

end
else Label the mate of b(j) by -f

b(i) b(j)

end{G R O W }

CHAPTER 2. LITERATURE REVIEW 12

/* S is a blossom.SH R IN K (S)
begin

Shrink S into pseudonode p
Update Gg
Set Pp = 0
for all exterior node h in S

begin
Set b(h)=p

REAL(p) = REAL(p) U REAL(h)
end

Label p by +
end{SH RIN K }

/* Replace set 5 C U with p.

E X P A N D (k) /* k is a - labelled pseudonode,
begin

if k is type-1 pseudonode
then begin

Examine the matched edge at the coboundary of k
if it emanates from an even node j in k

then begin
Unshrink k
Set S = { j } U {mates o f j}U {mate o f k}
Change the status of the unmatched edge in 'y(k)
Label the exterior pseudonode in k but not in S by
Update Gg
SHRINK(S)

end

CHAPTER 2. LITERATURE REVIEW 13

else begin
Unshrink k
Update Gs
Let i is the node from which, the unmatched edge in S(k) is emanated,

h is the node from which, the matched edge in S(k) is emanated,
j is the even node in k.

Swap the matched and unmatched edges over the path from h to i
Label i,h with —
Set 5 = { i } U {mates o f j other than h}
SHRINK(S)

end
if k is type-2 pseudonode

then begin
Let i and h are the two -f labelled exterior pseudonodes adjacent to k.
Set S — {i, k, h}
SHRINK(S)

end

CHAPTER 2. LITERATURE REVIEW 14

if k is type-3 pseudonode
then begin

Unshrink k
Update Gg
Let i is the node from which, the unmatched edge in S(k) is emanated.

h is the node from which, the matched edge in S(k) is emanated.
Swap the matched and unmatched edges over the even path from h to i
Label the nodes over the even path from h to i alternately by — and -f.
Delete the remaining unlabelled part of k from the planted forest.

end
if k is type-4 pseudonode

then begin
if the matched edge in S(k) is emanated from the even node j

then begin
Unshrink k
Update Gg
Set S = {* , i } U {mates o f j }
SHRINK(S)

end

CHAPTER 2. LITERATURE REVIEW 15

else begin
Let h is the pseudonode that the matched edge in 6(k) is emanated from.
Unshrink k
Update Gs
Change the status of the edge between j and h
Label h by -
Set S = { i , j } U {mates o f j }
SHRINK(S)

end
end

end{E X PA N D }

A U G M E N T (i,j) /* b(i) and b(j) are + labelled pseudonodes and
begin /* are in different alternating trees.

Let ri is the root of the alternating tree containing b(i).
?'2 is the root of the alternating tree containing b(j).
Pi is the path from r\ to b(i).
P2 is the path from T2 to b(i).

Set AP = Pi U U P2
for aU edge e € AP

Set Xg = 1 — Xe
Delete the two trees from the planted forest and
remove the labels of the pseudonodes on them

end{A U G M E N T}

CHAPTER 2. LITERATURE REVIEW 16

R E C O V E R (k)
begin

if k is a real node
then Do Nothing

else begin
Let i is the node in k from which the matched edge in ¿(k) is emanated

h is the node in k from which the unmatched edge in ¿(k) is emanated
if k is type-1 blossom

then begin
if i is even node

then begin
Unshrink k
Change the status of unmatched edge in k
Update Gs

end
else begin
Unshrink k

Let j is the even node in k
if the edge between i and j is matched

then Swap the matched and unmatched edges over the path
from i to h

Update Gs
end

end

CHAPTER 2, LITERATURE REVIEW 17

if k is type-2 blossom
then begin

Unshrink k
if i and h are the same node

then Do Nothing
else Swap the matched and unmatched edges over the path from i to h

Update Gs

----- h i aaaa^ h

if k is type-3 blossom
then begin

Unshrink k
if i and h are the same node

then Do Nothing
else Swap the matched and unmatched edges over the path from i to

h such that, the first edge is matched
Update Gs

□

end

CHAPTER 2. LITERATURE REVIEW 18

if k is type-4 blossom
then begin

Unslirink k
Let j is the even node in k
if i and j are the same node

then Do Nothing
else Change the status of the matched edge between i and j

Update Gs

end
end

en d {R E C O V E R }

M A IN A L G O R IT H M

Initialization
Convert G to Gs
for all pseudonodes k in Gg

begin
Set Vk = 0

h = A
REAL{k) = k

end
for all edges e in Gs

begin
Set Xe = 0

c's - Ce

end
for all nodes n in Gs

Set b(n)=n

CHAPTER 2. LITERATURE REVIEW 19

W hile 3 a + labelled pseudonode in planted forest
begin /* dual update

FIND-MIN(A)
for all + labelled exterior node k in Ga

begin
Set Vk = Vk + A
for each edge e in 6(k)

Set Cg = c' — A
end

for all — labelled exterior node k in Gs
begin

Set yk = Vk- A
for each edge e in S{k)

Set Cg = Cg + A
end

end
if A = Ai

then begin
Add the edge pi = (i , i) to planted forest
if b(j) is even node

then begin
Set S = {b(i),j} U {mates o f j }
SHRINK(S)

type-1 blossom

end
else begin

if dual variable corresponding to b(j) is zero
then begin

Set S = {b{i),b{j),mate of b{j)}
SHRINK(S)

CHAPTER 2. LITERATURE REVIEW 20

type-2 blossom

end
else GROW(/9i)

eiid
if A = A 2

then begin
Add the edge f>2 = (i,j) to planted forest
Backtrack from b(i) and b(j) over planted forest
if a common exterior pseudonode m is reached

then begin
Set S = {the exterior pseudonodes over the path from m to b(i)}

U{the exterior pseudonodes over the path from m to b(j)}
SHRINK(S)

type-3 blossom

end
else AUGMENT(p2)

end
if A = A 3

CHAPTER 2. LITERATURE REVIEW 21

then EXPAND(p3)
end{W hile}

for all exterior pseudonodes k in Gs
RECOVER(k)

end{M AIN A L G O R IT H M }

Let us study the complexity of a stage first. In any stage a newly formed pseudonode
is given a + label and it can never be expanded during the same stage. Thus, Expand
and Shrink are each called at most 0{\ V |) times, so does Grow. This means Find-Min is
called at most 0(\ V |) times. The dual updates and the following reduced cost updates
can be done in 0{\ E |) time. The Shrink and Expand operations can be implemented in
0(1 V I) time. The Grow operation needs constant time. Hence any stage of the algorithm
can be accomplished in 0(\ V \ \ E \) time. Since there are at most ^ stages, this results
in 0(1 V PI E I) total work requirement of the algorithm.

2.2 The Primal Algorithm

This algorithm is the adaptation of the primal matching algorithm by Cunningham and
Marsh. It uses the same polyhedral description of the problem and uses similar data
structures as the primal-dual algorithm does.

The primal algorithm begins with any primal feasible solution and try to improve
the solution over negative cycles until the optimal solution is obtained. The algorithm
works on the surface graph. The surface graph is the same with the previously defined
except it contains artificial edges between the odd degree nodes.

Any primal feasible solution corresponds to a perfect matching over the exterior
pseudonodes of surface graph. If C is an alternating cycle with respect to the matching
M, then M ® C IS another perfect matching over the same nodes.

If we define c(M) as the cost of the set M C E

c(M) =
eGM

then
c{C © M) = c{M) -I- c{C \ M) - c{C n M)

CHAPTER 2. LITERATURE REVIEW 22

Definition 2.11 A negative cycle C with respect to M is an alternating cycle, for which

[c{C \ M) - c(C n M)]

is negative.

Theorem 2.2 A matching M is optimal if and only if M does not admit negative cycle.

Like primal-dual algorithm, primal algorithm consists of successive stages. Each
stage begins by choosing an edge, in the current surface graph, with negative reduced cost
and tries to find an alternating path with total zero reduced cost between the ends of the
edge. Finding such a path means there is a negative cycle. Once such a cycle is found, we
make a primal change. Any stage ends with a primal change and the reduced cost of at
least one more edge becomes nonnegative.

At the beginning of any stage, we have a primal feasible solution x, a dual solution
y and the corresponding G3 at hand. The equality subgraph of Ga is as defined before.
The primal feasible solution x corresponds to a perfect matching M in equality subgraph
Gs{y). If the dual solution y is feasible, then it means we found optimum. Otherwise,
there is an edge in surface graph with a negative reduced cost. At least one of the ends of
that edge in Ga would be a pseudonode. We label that pseudonode by — and its mate by
-t-. Rooted at that -|- labelled pseudonode, the algorithm grows an alternating tree until
the other end of the edge is labelled by -|-. When the other end of the edge is labelled by - f ,
primal change and the following mini-dual change are done in order to make the reduced
cost of the edge non-negative. Once the reduced cost of the edge becomes non-negative,
it remains non-negative. The stage ends after the primal change and the following mini­
dual change. At the end of the stage, we have an updated primal feasible solution x and
updated y. Moreover the number of infeasibility in y decreases at least by one.

To get an initial feasible solution, one can put artificial edges between the pairs of
pseudonodes.The cost of these edges are equal to the cost of the path between the pairs
of the pseudonodes, and dual variables of these pseudonodes are set to the half of the cost
of the path.

The primal algorithm uses the same procedures as the primal-dual algorithm does.
The only diflPerence is in the FIND-MIN procedure. For the primal algorithm, there may
be some edges that have negative reduced cost in the surface graph, however the algorithm
uses the edges with non-negative reduced cost to add the alternating tree. Thus there is
a slight difference in FIND-MIN for this algorithm.

Now, we will first describe the procedure FIND-MIN and then the main algorithm.

CHAPTER 2. LITERATURE REVIEW 23

F IN D -M IN (A)

begin

A i = mm{cL : Cij > 0 (i , j) € Eg, b(i) is + labelled (exterior) pseudonode,

b(j) is unlabelled}

Set Pi = (i , j) where (i,j) is the edge satisfying the minimum.

A2 = ^min{c(· ·̂ : Cij > 0 (i , j) € Eg, b(i) and b(j) are + labelled (exterior) pseudonodes}

Set />2 = (h j) where (i,j) is the edge satisfying the minimum.
A3 = min{i/fc : k is - labelled (exterior) pseudonode}

Set p3 = k k is the exterior pseudonode satisfying the minimum.

Set A = m in{Ai, A2, A3}

end{FIN D -M IN }

M A IN ALGORITHM
begin

Initialization
begin

Start with any primal feasible solution x and corresponding dual solution y

Convert G to Gg
While 3 an edge e in Gg such that c' < 0
begin

Choose an edge e=(i,j) such that

c'ij < 0 and c'ij = min{Cg : e G <5(i»(0)}

Set k=b(i) /* b(i) is a pseudonode in Gg

Let h is the mate of k

Label k by — and h by +

Set continue=true

while (continue) and (the other end of e is not labelled by +)

begin
if b(i) is a real node and is zero

then begin

Remove aU the labels

Go to the other end of e

Set k=b(j) /* b(j) is a pseudonode in Gg

Let h is the mate of k

Label k by - and h by +

end

CHAPTER 2. LITERATURE REVIEW 24

begin /* dual update

FIND-MIN(A)

Set A = mm{A, —c'}

for each + labelled exterior pseudonode n in Gs

begin
Set + A

for each edge / € ¿(n)

Set Cy = Cy — A

end

for each - labelled exterior pseudonode n in Gs
begin

Set ŷ i ŷ i A
for each edge / € 6{n)

Set Cy = Cy + A

end

end

if A = A i

then begin

Add the edge p\ to planted forest
if Pi G S{jp) such that p is an exterior pseudonode, ?/p > 0

then GROW(pi)

else SHRINK

end

if A = A2
then begin

Add the edge p2 to planted forest

SHRINK

end

if A = A3

EXPAND(p3)
if A = -c'e

then begin

Set continue=false

Delete the alternating tree and

remove the labels of the nodes on it

end

end{ while}

CHAPTER 2. LITERATURE REVIEW 25

if the other end of e is labelled by +

then begin

Set Xg = 1
for all edge f over the path between the ends of e

Set Xf = 1 — Xf

end

while Cg < 0
begin /* mini-dual update

Let k is the pseudonode such that e € S(k) and yk > 0
Set A = miD.{yk, - c ' }
for aU edge / G S(k)

Set Cy = Cy -f- A

Set yk = y k - A

ifyk = 0 then RECOVER(k)
end{while}

Delete the alternating tree and

remove the labels of the nodes on it

end {W hile}

for all exterior pseudonodes k in Gs

RECOVER(k)

end{MAIN ALGORITHM }

This algorithm has at most | V | stages. In each stage Expand and Shrink are each

called at most 0 {\ V |) times, so does Grow. The primal and the following mini dual

changes can be executed at most in 0 {\ E |) time, and these calculations are employed

only once in a stage. The dual changes and the following reduced cost updates require at

most 0(1 E I) time, and are employed at most 0 (| V |) times in a stage. Thus the total

work requirement of the algorithm is 0 (| V p| E |).

Chapter 3

An 0(|F||i;|log(|F|))
IMPLEMENTATION

In the generic primal-dual algorithm described in the previous chapter, the most costly

part is the frequent updates of the dual variables and reduced costs. Before each update

it is required to examine all the edges in order to calculate the maximum possible change

without violation of the set of dual constraints, (2.7),(2.8), and complementary slackness

conditions, (2.9),(2.10). Thus one may examine an edge 0 {\ V |) times throughout a stage.

In order to reduce the amount of computation, we postpone the dual updates to the

end of the stage, and we reduce the work for FIND-MIN by finding some invariants.

Before going into algorithmic detail we will describe the convenient data structure

for this implementation.

For each blossom we define a tree that represents the structure of the blossom. Also

for each blossom B, we keep the type, the base and the mate of the blossom B. Now it is

better to introduce these structures for diflferent types of blossoms.

1. B is the first type of blossom. The corresponding structure tree is shown below.

26

The base of this blossom is B i and it can be represented by the list

2. B is type-2 blossom.

CHAPTER 3. AN 0(\ V\\E\ LOG(| V ()) IMPLEMENTATION

B

B. Bx B:,

The dual variable of B2 is zero.

The base of this type of blossom is B i and the corresponding list representing this

structure is

B2, (B 3 ,62)}

3. B is type-3 blossom, i.e., it contains an odd cycle.

r

0 5 = 0 :

The base of this blossom is jBi . The corresponding list is

{(fii.eO ia i* }

4. B is the fourth type blossom, the structure tree representing this type of blossom is

shown below.

m

O 3P=£ H 5=t S ̂ 01.* I

The corresponding list is

whore j is the base of the blossom.

CHAPTER 3. AN 0(\V\\E\ LOG(| V |)) IMPLEMENTATION 28

The leaves of the structure trees corresponding to any blossom B are real nodes

that are included in B. These leaves are maintained in doubly linked Bsts that we call

REAL(B).

In surface graph any exterior pseudonode k has at most one mate. So we keep

m(k)=(p,e) for each exterior pseudonode k, where the first part denotes the mate of k and

the second part denotes the matched edge that k is incident to. However, original nodes

might have even number of mates. Thus, for each original node j we keep a mate list

M(j) = {(Bi,ei)\i=i2k}.

Any blossom in planted forest is labelled by +(f,y) or The second part of

the label records the edge by which the blossom received the label. The second part of

the label makes the backtracking along the alternating tree easier. We indicate the label
of a pseudonode k with Ik-

In each stage, we define a variable D. At the beginning of each stage it is set to zero

and it keeps the sum of dual variable changes done throuhgout the stage. Thus, at any

time in a stage, it gives a lower bound on the length of the shortest augmenting path.

Related wirh D, for each node i, we define di which is an offset for dual variable j/,·. It is

initially zero. Whenever the node is added to the planted forest, it is set to the current

value of D.

For any pseudonode k, we define a partially updated dual variable yk. Vk is set to

the current value of yk whenever the exterior pseudonode k is added to the planted forest.

At any time.

Vk = yk + { D - dk)
Dk = y k - {D - dk)
yk = yk

for exterior pseudonode k with h = +

for exterior pseudonode k with Ik = —

for aU interior pseudonodes k and

exterior pseudonodes k with Ik = 0

Since the reduced cost updates are done at the and of the stages, throughout a stage

we maitain a new variable Cjj for any edge (i , j) 6 E . It is set to c'- at the beginning of

the stage and is updated at the end of the stage so that c'- = Cij.

Furthermore, for any node i, we maintain Cj which is explicitly defined as

e»· = Z) yj
jei{i)\{i}

where I(i) is the set of pseudonodes containing i at the beginning of the stage.

Proposition 3.1 For any (i,j) € E, at any time in a stage the equality

c ' i = Cij + 7 i + 7 j

CHAPTER 3. ANO(\V\\E\ LOG(| V |)) IMPLEMENTATION 29

holds, where

b̂{k) , if lb{k) = 0
Ik = < eb(k·) + {D - d̂ k)) , if k{k) = -

eb{k) - { D - db(̂ k)) , ifib{k) = +
and (i,j) is not involved in a shrink operation.

For any { i , j) with = + , we define dij as

_ i b̂{i) + + h(i) , if h{j) 7̂ +

I hi^ij + b̂(i) + db(j) + b̂(i) + ^j)) if 6̂(i) = +

During the generic algorithm, in any stage, we calculate 61,62,63 where

A i = min{c^ : (i , j) e E , lb(i) = + and IbQ) = 0}

A i = |m in{c^ : (i , j) e E , /¡.(¿) = + , lb(j) = + and b{i) b(j)}

A3 = minfyjt : k is an exterior pseudonode with Ik = —}

But in this implementation, we do not maintain explicitly the dual variables yk and

the reduced costs Cij throughout a stage. Hence, we try to hnd a way for calculating these

minimums by using % and c,j.

So let’s examine these three cases:

i) If lb(i) = + and lb(j) = 0

c'j = d j - X] V k - ^ V k - Vb{i)

X Vk- J2 v k - iMi) + (^ - ^̂ 6(0)]
kem\{b(i)} k€i{j)

= db{i) + Cij - X i/fe - ' ^ V k - D
kei(i) fce/(j)

c\- A D = db(i) + Cij - X - X
k€l(i) kei(j)

ii) If h{i) — h(j) - +

CHAPTER 3. AiV 0'(l ^ II ^ I LOG(| V |)) IMPLEMENTATION 30

ij - S ~ “ yb(i) ~ ybii)
kei(i)\m } kei{j)\{b{j)}

— <̂ij ^ 2 yk ^ yk ~ [2/6(0 + (-^ “ <̂6(0)] “ [2/6(7) + (D — cit(7))]
fce/(0\{6(0} keiUMbU)}

— ~ ^ 2 ŷ ~ Xy yk ~ b̂(i) + dbf̂ j)
k€l(i) kelU)

2 îj "I D = ji^ij + <̂6(0 "I" ^6(7))

iii) If 4 = 0
Vk = Vk ~ {D - dk)

Vk-I D = Vk A dk

Note that

dij + eb(j) = D + c'ij , ioi (i , j) e E with lb(i) = + , lb(j) = 0
D + ^c'ij , for (i ,i) e w ith /(,(,·) = /6(j) = + , b {i)y ib (j)

D + yk , for exterior pseudonode k with Ik = —
*87

dk + yk

di ■) —

Thus if we compute Ai + D rather than Aj we do not exphcitly need the dual

variables yk and reduced cost c'- but rather yk, Cij and dk.

Proposition 3.2 Whenever the pseudonode k is labelled + in a stage; either it remains

+ labelled or it is contained in another pseudonode that has + label throughout the stage.

Lem m a 3.1 For any (i , j) € E with /;,(,·) = + , dij remains constant.

Proof:
We look at two cases: ^ + and /¿.(j) = + throughout the stage,

i) First assume that /¿(¿j = + , ^ + . For that case:

dij — db̂ i) + Cij — ^ ̂ yk ~ Gj — yj
k€l(i)

Let h be the first exterior pseudonode containing i with + label in the current stage. Then

dij — dh A Cij — ^ ̂ yk Sj yj
kei(i)

As long as h remains exterior, dij would not change. Now assume h involves in a shrink

CHAPTER 3. ANO{\V\\E\ LOG(| V |)) IMPLEMENTATION 31

operation and is the new exterior pseudonode containing i. Since h' is newly added to
the planted forest d',̂ is equal to current D. If we write d{j after the shrinking operation:

dij = D + Cij - yy _
kem\{h,h'}

= D + Cij - ^ y k -[y h + {D - dh)] - 0 - Cj - yj
ka{i)\{h,h'}

— + Cij — ^ ̂ yk — Cj — yj
kei(i)

it is equal to the previous one.

ii) Now assume = /¿(j) = + and b(i) ^ b{j) at the beginning of the stage. Let

b[i) = hi and b(j) = /¿2- Then

dij = dfî + + Cij — ^ yk — ^ Vk
kei{i) kei{j)

As long as hi and /12 are not involved any shrinking operation dij remains constant.

Now assume a shrinking operation is employed and at the end b(i) changes to h[̂ then

d/j/ = Z?, and dij becomes:

dij = D + + Cij - Y j y k - Y V k - Vhi - yh[
kel(i)\{huh[} kel(j)

= D + dh2+ Cij - Y y k - Y y k - [yhi + (D - dh)̂] - 0
kei(i)\{huK} kei(j)

= dhi + d 2̂ + Cij — Y j yk — Y j yk
kel(i) k€l(j)

that is equal to the previous one.

By using the same argument, for the cases h2 or both hi and I12 are invoved in a shrinking

operation, the proof can be done. □

So in order to decide the edge that is joined to the planted forest, we can use dij

values. For each edge dij is calculated at most twice in a stage, one when b(i) is

labelled by + and the other when b(j) is labelled by + . The lemma 3.1 motivates us to

store dij values, for any edge, throughout any stage. We use iibonacci heaps to determine

the appropriate minimums that guide the successive steps of the algorithm. The reason

to use Iibonacci heap is that, we can do find-min, insert operations in constant time and

delete-min in O(logra) time.

CHAPTER 3. AN 0{\ V\\E\ LOG(| V |)) IMPLEMENTATION 32

In a stage, we maintain three types fibonacci heaps, FH-V, FH-E and FH-P(k). For

unlabelled exterior nodes and — labelled pseudonodes we maintain a fibonacci heap FH-V.

The nodes in FH-V are ordered with the Vk values where

mm{djj + : (i , j) £ E , j ^ R E A L {k), = -f}, k is an exterior pseudonode,

, Ik = 0 .
= i , _

dk + Vk, k is an exterior pseudonode,

lk = ~.

For edges (i , j) with = -f- we use FH-E. The edges are ordered with the

key value ¿¡j.

For each — labelled and unlabelled exterior pseudonode we maintain another fi­
bonacci heap FH-P(k) with the property that whenever the exterior pseudonode k is

expanded, the fibonacci heap can be split into the groups that each groups corresponds

to exterior nodes in k. The split can be done in O(logn) time [18, 1, 17]. These fibonacci

heaps keep real nodes with the key value u'· in an order that allow easy split in the case

of expand, where

v'j = : h(i) = + , (i j) e E }

The usefulness of Vj arises from the following property:

Vk = min{t;y : j € R E A L {k)} Ck

Now we win describe the operations and the main algorithm. First we will introduce

the new procedure SCAN. This procedure is called whenever an exterior pseudonode is

labelled by -h, and it computes the key values necessary for the ordering of the nodes and

the edges in the surface graph in the appropriate fibonacci heap.

SCAN(i,D)
begin

for each k € R E A L (i) and each (k ,j) G E

begin

if lb(j) ^ + oi = + and dkj = oo)

then Set dkj = D + Ckj + Si + D — d{

else Set dkj — \i,dkj "I D Si D — di)

if h(j) = 0
then begin

Set Vkî j) = mm{vi,(j),dkj + ¿¿(j·))

if the value of changes

then Set p(b{j)) = (k ,j) and adjust the position of b(j) on FH-V

end

CHAPTER 3. ANOi\V\\E\ LOG(| V |)) IMPLEMENTATION 33

if = + and b(k) 7̂ b{j)

then Place (k,j) on FH-E

if h(j) 7̂ +
then begin

Set Vj = mm{v!j,dkj)

if the value of Vj changes
then Set p \ j) = (k ,j) and adjust the position of j on FH-P(b(j))

end

end

end{SC A N }

F IN D -M IN (D)

begin
Set D i = min{uj : j on FH-V}

Set D2 = oo

while FH-E is not empty

then begin
Take the top edge (k,j)

if b{k) 7̂ b(j)

then Set D2 = dkj
else Take the edge off from FH-E

end

end{while}

Set D = min(I>i,T>2)
end{FIN D -M IN }

G R O W (i,j,D) /* b(i) is + labelled, b(j) is unlabelled pseudonode.

begin

Set b̂(j) —
db(j) = 0
Vb{j) = db(j) + yb{j)

Put b(j) on FH-V
if the mate of b(j) is an original node h

then begin
Delete (b(j),e) from M(h)

Set S = {h} U M{h)
SHRINK(S,p,h,4,b(j),e,D)

Set m(b(j))=(p,e)

end

else begin

CHAPTER 3. AN 0(\ V \\ E \ LOG(| V |)) IMPLEMENTATION 34

Let m(b(j))=(k,e), k is pseudonode

Set Ik = + ,e , dk = D

SCAN(k,D)

end

end{G R O W }

SH R IN K (S ,p ,b ase ,typ e ,m ate ,lab e l,D)

begin
Shrink S into a new pseudonode p

Construct the structure tree corresponding to p

Update Gs

Set Ip = label dp = D yp = 0
type(p)=type base(p)=base m(p)=mate

for each exterior node h in S

begin

Set dh = D

ii Ih = +
then begin

Set Vh = yh + {D - dh)

for aU edges e € b(h) and e 6 '^{S)

Set Ce = C e -{D - dh)

end

if h = -
then begin

Set Vh = Vh - {D - dh)
for all edges e G S(h) and e G 7(5)

Set Ce = Ce + (D - dh)

SCAN(h,D)

end

if /;, = 0
then SCAN(h,D)

end

en d {SH R IN K }

E X P A N D (k ,D) /* k is a - labelled pseudonode,

begin
if k is type-1 pseudonode /* {{Bi,^i)^h,{-Bi,€i)\f^2^ "h f }

then begin
Let m(k)=(B,e)

Unshrink k

CHAPTER 3. AN 0(\V\\E\ LOG(| V |)) IMPLEMENTATION 35

for all h in k

Set dh = D €h = ek + yk
Update G*
if e is emanated from even node j

then begin /* // is operation that concatenates iists.

Set M(j)=M (j)//(B,e)

S={j,M (j)}
SHRINK(S,p,j,4,(- , ei),m(B),D)

Set = Ik Xei = 1 rn(Bi) = (p,ei)
Deiete FH-P(k)

Set VBi = dj5i + VBi and put B i on FH-V

end

if e is emanated from Bi ̂ ̂ 7̂ 1
then begin

Set M (j)=M (j)\(Ri,ei)

S={ j , M(j) }
SHRINK(S,p,j,4,(-,ei), (Bi, eO,D)
Set hi = Ik êi = 1 m{Bi) = (p,ei)

hi = -,ei m{Bi) = m{k)
Deiete FH-P(k)

Set VBi = dsi + VBi and put Bi on FH-V

Set VBi = ^Bi + VBi and put Bi on FH-V

end

if e is emanated from Bi
then begin

Split FH-P(k)

Set h i = h rriBi - rrik

S = { j } u { M { j) }
for aU h in S

if FH-P(h) is not empty

then begin

Set vh = v'î + eh
p{h) = p'(fc) where k is the top eiement in FH-P(h)

h = ^

end
if k is type-2 pseudonode /* {(-Bi,ei), 52 ,(53,62)}

then begin

Let m(k)=(B,e)
i(k)=-,e’ and e’ between B ’ and k

Set5- = {(5 ',eO ,A :,(5 ,e)}

CHAPTER 3. AN 0(1 V\\E\ L0G(| V |)) IMPLEMENTATION 36

SHRINK(5 , iJ, B ', 1, Ib >, mB>, D)

end

if k is type-3 pseudonode /* {(jBj, 1}

then begin
Let m(k)=(B,e)

e is emanated from Bi

Unshrink k

for all h in k
SpUt FH-P(k) into FH-P(h)

Set €h = Sk + Vk
Define the odd length path from Bi to B i

Swap the matched and unmatched edges over this path

for all pseudonodes h over this path

begin
Delete FH-P(h)

Set dh = D
Label h (alternately label the nodes over the odd path by - and +

beginning with - from Bi)

if h is -|- labelled

then SCAN(h,D)

if h is — labelled

then Set Vh = dh + Vh and Put h on FH-V

end
for each node h over the remaining even length path

begin
if FH-P(h) is not empty

then begin

Set Vh = 6h
p(̂ h) = p'{k) where k is the top element in FH-P(h)

k = o
end

end

end

if k is type-4 pseudonode

then begin

Let m(k)=(B,e)

lk = (B ',e ')

Unshrink k

for each h in k

Set dh = D €h = €k + Vk

/* {j,{B i,ei)\ U kA ^ }

CHAPTER 3. AN 0(| V\\E\ LOG(| V |)) IMPLEMENTATION 37

Update Gs
if e is emanated from even node j

then begin

Set M (j)=M (j)//(B,e)

S={j,M (j)}
SHRINK(S,p,B’,l,/B,„m(B),D)

Set Ibi = h Xei = 1 rn(Bi) = (p,ei)
Delete FH-P(k)

end

if e is emanated from Bi

then begin
Set M (j)=M (j)\(5 i,eO

S = { {B ',e ') j ,M { j) }

SHRINK(S,p ,B ’ ,1,/b ', m {B'),B)
Set iBi = -,e ,· Xei = 0 m(J9,·) = (B ,e)

Delete FH-P(k)

Set VBi = dBi + VBi and put Bi on FH-V

end

end

en d {E X P A N D }

A U G M E N T (iJ ,D) /* b(i) and b(j) are + labelled pseudonodes

begin /* and are in different alternating trees.

Let ri is the root of the alternating tree containing b(i).

T2 is the root of the alternating tree containing b(j).

Pi is the path from r\ to b(i).

P2 is the path from V2 to b(j).

Set A P = P iU { i , j) U P 2

for each edge e € A P
Set Xe = 1 - and changes the mates respectively

for each exterior pseudonode k with Ifc = +

Set Vk = Vk + {D - dk)
for each exterior pseudonode k with h = —

Set yk = Vk - (D - dk)
for each edge (i , j) € E

if /¡((¿) = + and = 0
then Set Cjj = dij — D +

if h{i) — + h{j) — ~
then Set Cij = dij —

CHAPTER 3. AN 0{\V\\E\ LOG(| V |)) IMPLEMENTATION 38

if k{i) = k(j) = + and b(i) 7̂ b(j)
then Set Cij = 2dij — 2D

if h(i) 7̂ + and ^ +
then begin

Set 6̂(i)

if k(i) = -

if/,

then Set Cij = Cij + (D — i/i,(j))

bU) = -
then Set Cij = c-ij + (D —

end
Delete thetwo alternating trees resulting augmentation from planted forest and

remove the labels of the nodes over them

if 3 a + labelled node in G3

then begin

Set D=0
for all k in G j

Set dk = 0, €k = 0, Vk = 00

for all edge (i , j) € E
Set dij — 00

for all +labeUed node k in Gs

SCAN(k,D)

end
end{AUGMENT}

M AIN ALGORITHM

begin
Initialization
begin

for all n in Gs
Set dn = 0, e„ = 0, = 00, /„ = 0

for all edge {i , j) € E
Set dij = 00, Cij — Cij

Set D=0
for ah pseudonode k in Gs

Set i/ife = 0, m* = 0
R E A L {k) = k, /fc = +,0

SCAN(k,D)

CHAPTER 3. AJV 0(1 F II f; I L0G(| V |)) IMPLEMENTATION 39

W hile 3 a + labelled pseudonode in planted forest

begin

FIND-MIN(D)

a D = Di

then begin

Delete Vj from FH-V

if Ij = 0
then begin

Add p{j) = (i, k) to planted forest

if j is even node

then begin
S e t5 = {6(0 , J , } u { M (i) }

SERmK(S,p,l,b(i),mb(i),D)
end

else begin

if Vj > 0
then GROW(i,k,D)

else begin

Set S={b(i),j,m(j)}
SHRINK(S,p,2,b(i),m(b(i)),D)

end

end

end
else EXPAND(j,D)

end

if O = O2
then begin

Add the edge (i,j) to the planted forest

Backtrack from b(i) and b(j) over the planted forest

if a common node m is reached

then begin
Set S={The odd cycle begins and ends at m }

SHRINK(S,p,3,m,m(m),D)

end

else AUGMENT(i,j,D)

end

end{W hile}

for all exterior pseudonodes k in Gs

RECOVER(k)
end{MAIN-ALGORITHM}

CHAPTER 3. AiV 0(1 F II f; I L0G(| V |)) IMPLEMENTATION 40

The improvement of this implementation is derived from the use of fibonacci heaps

on which each operations can be implemented in O(log | F |) time. Obviously there are

0 (V) stages each of which ends up with an augmentation.

In each stage, a vertex is scanned only when it is first labelled by + . Thus each edge

can be examined at most twice. This results in 0 {Elog \ V |) total work requirement of

Scan per stage. Shrink, Expand and Grow operations are each called at most 0 (V) times.

Shrink and Expand takes O(log | F |) time and Grow takes constant time. So for these

operations at most 0 (Fiog | F |) time is expended.

Augmentation is called only once in a stage and it takes 0 (E) time.

Finally, a node can be placed in FH-V at most twice, once when it is labelled by 0,

and once when it is labelled by —, and an edge can be placed on FH-E at most once in a

stage. Thus Find-Min can remove a vertex from FH-V at most twice and can remove an

edge from FH-E at most once, that requires at most 0 (E log | F |) time per stage.

Consequently, the overall time bound of this algorithm is 0 (F E lo g | F |).

Chapter 4

THE SUCCESSIVE ALGORITHM

In the following, we describe the successive algorithm for the Chinese postman problem.

Although the worst case time bound is the same as before, 0 {\ V \\ E \ log | |),

provided by using the data structure suggested previously, the size of the alternating trees

we worked on and the number of dual changes are decreased. This will speed up the

algorithm. Beside this, we can divide the graph into two and solve the problem over two

parts simultaneously and then combine the solutions. We haven’t identified the rules of

dividing the graph into two that gives rise to a parallel algorithm yet. But, we accept this

algorithm as a first step towards such researches. In addition, this algorithm can easily be

adapted to some variations required by the real life applications.

The motivation for this algorithm comes from the idea given for the primal match­
ing algorithm by Derigs [9]. The notations and the definitions we will use during the

description of the algorithm have already been given in previous chapters. For the imple­

mentation, the data structure given in chapter 3 is used.

4.1 The Successive Algorithm

This is neither primal nor dual algorithm. It consisits of stages each of which composed

of two steps, namely dual step and primal step. We work on two complementary

surface graphs, the dual surface graph G d s = (Vd s , E d s), and the primal surface graph

G ps = (Vps, E ps)· Initially the dual surface graph is equal to the original graph except

the odd degree nodes correspond to pseudonodes and the primal surface graph is empty.

As the algorithm proceeds, we remove some part of the dual surface graph and add to the

primal surface graph. The algorithm terminates when the dual surface graph is empty.

We caU the edges with one end in G d s and the other end in G ps as hidden edges. E h -

The dual surface graph is a dual feasible subgraph and the dual step is done over

41

CHAPTER 4. THE SUCCESSIVE ALGORITHM 42

that subgraph. We choose a pseudonode on that subgraph and grow an alternating tree

rooted at that node. Whenever the alternating tree reaches another pseudonode in G d s

we stop growing and augment. In that time, we have a matched pair of pseudonodes at

hand. We remove that pair with adjacent even degree nodes from the dual surface graph

and add that part into the primal surface graph. After that operation some of the hidden

edges become the element of E ps and some of the edges in E p s become hidden. Then
the primal step begins. As I said just before, some of the hidden edges are made the edges

of the primal surface graph and only these edges may violate the dual fesibility of Gps-

So the primal step is done for keeping the dual feasibility over the subgraph G ps, and the

stage terminates. At the termination of any stage the primal surface graph becomes both

primal and dual feasible.

M AIN ALGORITHM
begin
Initialization

Set G d s = (V d s , E d s) where Vos = V except all degree nodes are pseudonodes
E d s = E

Gps = (Vps, Eps) where Vps = 0
Eps = 0

Eh = ^
for each pseudonode k in Gps

begin
Set i/A: = 0

/̂ = 0
REAL(k) = k

end
for each edge e in

begin
Set Xe = 0

c'g = Ce

end
for each node n in Gds

Set b(n)=n
While G d s is not empty
begin

Choose a pseudonode k in G d s

Set Ik — P

CHAPTER 4. THE SUCCESSIVE ALGORITHM 43

while 3 a + labelled pseudonode inGos

begin{dual step}

Set A = m in{Ai, A2}

/* where

/* = min{c' : e = = + , = 0 and b{j) is even degree node }.

/* A2 = I min{c' : e = = 1̂ ^ ,̂ and b{i) 7̂ b(j)}

yb(i) = 2/6(0 + ^

for aU edge e 6 ^{b{i)) and e ̂E
Set c' = c' - A

If A = A i

then begin

SHRINK b(i) and b(j) into a new pseudonode p

Set Ip ~

2/p = 0

end

If A = A2
then begin

Set Xe = 1 where e=(i,j) is the edge satisfying the above minimum.

Remove all the labels

Delete the matched pair (b(i),b(j)) with adjacent original nodes from G d s

Add that part to G ps

Update the hidden edges E h ·, G d s , G ps

end

end { dual step }

If 3e 6 that (c' < 0 and c' = min{c' : e G ¿(¿>(0)})

then make a primal stage for e

end { W hile }

for aU exterior pseudonodes k in G ps

RECOVER(k)

end { M A IN -A L G O R IT H M }

The successive algorithm has at most y stages. In each stage we make one dual

step that can be accomplished at most in 0 {\ E (log(| V |)) time. At the beginning

of each primal step we introduced a matched pair of pseudonodes one of which has a

0 dual variable. Thus, in each stage we make at most one primal step. A primal step

requires 0 {\ E | log(| V |)) total work requirement provided by using the data structure

we describe in chapter 3. Consequently, the worst case time bound of the algorithm is

(9(| F | | K | lo g (| F |))

Chapter 5

EXAMPLES FOR THE ALGORITHMS
PROVIDED

In this chapter we apply the three algorithms to the same graph given below. The numbers

written over the edges are the costs of the edges.

We first apply the primal dual algorithm.

Primal-dual algorithm:

Initialization

44

CHAPTER 5. EXAMPLES FOR THE ALGORITHMS PROVIDED 45

The initial values of the dual variables and the reduced costs are:

n Vn

reduced costs

a b C d e f g h k 1

a 0 1 3 4
b 0 4 7 2

C 0 5 3 4
d 0 6 2 3
e 0 5 4 1

f 0 1 3

Based on these values, the equality subgaph and the planted forest can be defined

as:

E] © 0

O 0 0 ©

0 © 0
the equality subgraph

0 0

0 0

0 0
the planted forest

Stage 1

di = 2, because of the edge (6, h)

¿2 = 1
2 ’ because of the edge (a, e)

ds = 00, there is no pseudonode with — label

We make the dual update and the reduced cost updates.

reduced costs

n Vn a b C d e f g h k 1

a 1
2 0 5

2
7
2

b 1
2 3 13

2
3
2

C 1
2 4 5

2
7
2

d 1
2 5 3

2
5
2

e 1
2 4 7

2
1
2

f 1
2

1
2

5
2

After these updates the edge (a,e) is added to the equality subgraph. Since it joins

two + labelled nodes in the planted forest, it results in an augmentation.

CHAPTER 5. EXAMPLES FOR THE ALGORITHMS PROVIDED 46

E] © 0 0 0

\ ·© Ej 0 © □ 0

+ +
0 © 0 0 0
the equality subgraph the planted forest

We delete the matched pair (a,e) from the planted forest and the stage ends.

Stage 2

di = 1
2 ’ because of the edge (f^g)

d2 = 3
2 ’ because of the edge (6, /)

ds = (X), there is no pseudonode with — label

reduced costs

n Vn a b C d e f g h k 1

b 1 2 6 1

C 1 3 2 3
d 1 6 1 2

f 1 0 2

H © H
the equality subgraph

Set 2/pj = 0

di = 1 , because of the edges (b,h),{d,k)

¿2 = 1, because of the edge (b ,f)

d z = oo, there is no pseudonode with — label

=i>- d = 1

CHAPTER 5. EXAMPLES FOR THE ALGORITHMS PROVIDED 47

b(n) yh(n) 11

reduced costs

b c d f g a e h k 1

b 2 b 0 4 0

C 2 c 1 1

d 2 d 7
2 0 1

Pi 1 f 0 5
2 1

g 3
2

5
2

Q - -© 0 0 — © 0
the equality subgr̂ h the planted forest

Set = Vp3 = 0. Delete the matched pair (pi,P2) from the planted forest. The

stage ends with this augmentation.

Stage 3

dl = 1
2’ because of the edge (e, k)

¿2 = 1, because of the edge (c, k)

4 = oo, there is no pseudonode with — label

d = 1

b(n) yb{n) n

reduced costs

c d k a b e f g h 1

c 5
2 C 1 1

2
1
2

Pz 1
2 d 0 3 1

2
k 0 1

2

□

the planted forest

CHAPTER 5. EXAMPLES FOR THE ALGORITHMS PROVIDED 48

di =
¿2 =
ds =

1
2’
1
2’
1
2’
d = i

because of the edges

because of the edge (c, k)

because of the pseudonode e

b(n)

P3

Уь(п)

reduced costs

the equality subgraph the planted forest

The edge (c,k) that is added to the equality subgraph results in an augmentation

since it joins two + labelled nodes of the planted forest. Thus the stage ends. There is no

free pseudonode left in the planted forest. We recover the blossoms pi, p2 and pz- Then

the algorithm stops. The solution is:

Xae = X b f = Xck = Xdk = i and Же = 0, for all other e.

Уа ~ 1> i/i> ~ Ус — yd ~ 2, i/e — — Ij 2/pi Ур2 Урз

CHAPTER 5. EXAMPLES FOR THE ALGORITHMS PROVIDED 49

Now we apply the primal algorithm.

Primal Algorithm:

Initialization

We begin with a primal feasible solution. For the initial feasible solution one can

put artificial edges. In this particular example we put two artificial edges, (a,b) and (c,d).

The cost of the artificial edges are equal to the cost of the paths between the end nodes
of the artificial edges.

The initial primal feasible solution is Xat — Xcd — Xcf = 1 <iad Xg = 0 for the other

edges. Corresponding to that primal solution we choose the dual solution as = yij = 5,
Vc = yd = 3, and j/e = y/ = I ·

reduced costs

n Vn a b C d e f g h k 1

a 5 0 13
" 2 -2 -1

b 5 7
'2 2 -3

C 3 0 1
’ 2 0

d 3 1
2 -1 0

e 5
2 0 3

2
3

"2
f 5

2
3

'2

Stage 1

Choose an edge with negative reduced cost, let e=(a,e).

□ © 0

the plamod forest

CHAPTER 5. EXAMPLES FOR THE ALGORITHMS PROVIDED 50

13
~^e - 2

2,

d2 = oo,

dz — 5,
d =

because of the edge (b,g)

there is no edge between + labelled nodes with nonnegative reduced cost

because of the pseudonode a

reduced costs

11 Vn a b C d e f g h k 1

a 3 0 9
"2 0 1

b 7 11
" 2 0 -5

[aj------- © -----

Set j/pi =

9
2
3
2’
OO,

3,
d - ^ “ - 2

- 0 © 0 ^

the plenied forest

because of the edge (e^g)

there is no edge between + labelled nodes with nonnegative reduced cost

because of the pseudonode a

Make dual update and reduced cost update.

b(n) yb{n) n

reduced costs

a b g C d e f h k 1

a 3
2 a 0 -3 5

2

Pi
3
2 b 0 -7 13

" 2

g 0 -3

CHAPTER 5. EXAMPLES FOR THE ALGORITHMS PROVIDED 51

the planted foicst

dг =
d2 =
ds =

1
2’
00 ,

3
2’
d = i

because of the edge (/, k)

there is no edge between + labelled nodes wdth nonnegative reduced cost

because of the pseudonode a

b(n) yb(n) n

reduced costs

a b g e f C d h k 1

a 1 a 0 -2 3

Pi 2 b 0 -8 -7

g 0 -4
e 2 e 0 1 -1

f 3 f -1 0

Set i/p2 = 0

-c'e =
dг =
¿2 =
ds =

2
1, because of the edge (c, k)

00, there is no edge between + labelled nodes with nonnegative reduced cost

1, because of the pseudonode a

d = l

CHAPTER 5. EXAMPLES FOR THE ALGORITHMS PROVIDED 52

b(n) yb(n) n

reduced costs

a b g e f k C d h 1

a 0 a 0 0 4

Pi 3 b 0 -10 -8

g 0 -6

e 1 e 0 0 2

P2 1 f 0 -2

k 0 -2

the equality subgmpb

The reduced cost of the edge e—(a,e) became 0. Thus the stage ends.

Stage 2

Choose another edge with negative reduced cost, let e=(b,f). Label the pseudonode

Pi that contains b by - and its mate a by + . Since the edge (a,e) is in the equality

subgraph, grow the alternating tree by using the edge (a,e). Label e by - and p2 by + .

the planted forest

Since b is contained in a + labelled pseudode, we make primal change and following

mini dual change.

d = min{j/pi, -Cg} = min{3, 7} = 3

b(n) yb(n) n

reduced costs

b g a c d e f h k 1

Pi 0 b 0 n
- i -5

g 3 0 -3

CH APTER 5. EXAM PLES EOR THE ALGORITHMS PROVIDED

d = min{y6, —c '} — miii{7, 7} = 7

53

n Vn

reduced costs

b g a c d e f h k 1

b 0 7 0 2

This is the end of stage 2.

Stage 3

Choose another edge say e=(f,g) with negative reduced cost. Label the pseudonode

containing f, P2? by - and its mate b by +·

the planted forest

- c ' = 3
di = 2,

ds = 1,
d = 1

because of the edge (6, h)

there is no edge between + labelled nodes with nonnegative reduced cost

because of the pseudonode p2

b(n) yb{n) n

reduced costs

f k b a c d e g h 1

P2 0 f 0 0 -1 -1 -2

k 1 -1 1

b 1 b 6 1

the planted forest

CHAPTER 5. EXAMPLES FOR THE ALGORITHMS PROVIDED 54

= 2

di = 1,
d2 = oo,

ds = 3,
d =

because of the edge (6, h)

there is no edge between + labelled nodes with nonnegative reduced cost

because of the pseudonode /

11 Vn

reduced costs

f b a c d e g h k 1

f 2 0 0 2 -1 1

b 2 5 0

Set 2/p3 = yp^= 0

- < = 1

di = 2 ,

d>2 = 00 ,

¿3 = 2 ,

d =

because of the edge (d, e)

there is no edge between + labelled nodes with nonnegative reduced cost

because of the pseudonode /

b(n) yb(n) n

reduced costs

f b h c d 1 a e g k

f 1 f 0 2 2 0 2

P3 1 b 0 4
h 0

C 2 c 2

P4 1 d 0 1 -2

1 3

The reduced cost of the edge e=(f,g) became 0. Thus stage 3 ends.

CHAPTER 5. EXAMPLES FOR THE ALGORITHMS PROVIDED 55

Stage 4

We choose the edge e=(d,k). We label p4 by - and its mate c by +.

Set 2/p5 = 0

- 4 = 2
di = 1,
d2 = 1,
ds = 2,

d =

because of the edge (/ , e)
because of the edge (/ , c)
because of the pseudonodes ps,p4

b(n) yb(n) n
reduced costs

f g b h C d 1 a e k

P5 1 f 0 0 0 2 1

g 4 2 2

Pz 0 b 0
h 0

C 3 C 0 1

P4. 0 d 0 2 -1
1 4

T

thc«)ii3lily»ub|i.ph toplatuedforal

Set j/pg = = 0. After the dual update we get the optimal solution.

CHAPTER 5. EXAMPLES FOR THE ALGORITHMS PROVIDED 56

b(n) yb(n) n
reduced costs

d c h b f g a e k 1

d 2 d 3 0 1

P7 1 c 0 0 0
h 0
b 0 4
f 0 1 0

g 1 1

And finally we solve the problem by applying our successive algorithm.

Successive Algorithm:

Initialization

Initially the primal surface graph and the set of hidden edges are empty. The dual
surface graph is equal to the original graph except the odd degree nodes correspond to the
pseudonodes. Xe = 0 for aU e and j/n = 0 for all n.

Stage 1

We choose a as a free pseudonode in the dual surface graph and label it by +.

the planted forest

= 1, because of

¿2 = 00, there is no

ds = oo. there is no
d = 1

2/a = 1 <e = 0

j a |v̂ vVvA*»v|"c~|
the planted forest

The edge (a,e) enters into the planted forest. We made augmentation using the edge
(a,e) and put the matched pair (a,e) together with the neighbour even nodes to the primal
surface graph. Since there is no edge in the primal surface graph that violates the dual
feasibility, the stage ends.

CHAPTER 5. EXAMPLES FOR THE ALGORITHMS PROVIDED 57

primal surface graph dual surface graph

by +.

Stage 2

We choose another free pseudonode from the dual surface graph. Let it is b, label b

the planted forest

because of the edge (6, h)
there is no edge in the planted forest that joins two + labelled nodes,
there is no pseudonode in the planted forest with - label.

d i = 2 ,

¿2 = OO ,

d s = O O ,

d =

Vb =

' = 0

9̂

hh
' - 5

4 / = 2

■. ------©

di = 2,
¿2 = OO ,

3̂ — OO j
d ~ 2

because of the edge (6, /)
there is no edge in the planted forest that joins two + labelled nodes,
there is no pseudonode in the planted forest with - label.

2/pi — 2
^6/ -

nf —ĥc = 1

CHAPTER 5. EXAMPLES FOR THE ALGORITHMS PROVIDED 58

the planted forest

We augment pi and f and remove the pair together with the adjacent even nodes
from the dual surface graph and add to the primal surface graph.

primal surface graph

Stage 3

Since there is no path between c and d in the dual surface graph, we put an artificial
matched edge between c and d with a high cost and put the matched pair into the primal
surface graph. After making one primal stage over the primal surface graph we can obtain
the solution.

Chapter 6

CONCLUDING REMARKS

In most of the cases, the real-hfe applications of the CPP are the large scale problems.
Thus the parallel algorithms with the use of multiprocessors are very important for the
goal of obtaining good solutions faster.

The main concern for this work was to develop an iterative algorithm that can
exhibit parallelism. Having the same worst case time bound as the other algorithms in the
literature, the successive algorithm can be thought of as a first step towards parallelism.
It is parallel in a sense that, the primal and the dual steps can be concurrently done over
the two disjoint subgraphs, the primal and the dual surface graphs. Beside this, the size of
the alternating trees that the algorithm works on are small. These provide some speedups.

For the future research, there is a lot that has to be done. First, the successive algo­
rithm, together with the primal-dual and the primal algorithm, have to be implemented
using the same data structures in order to test the efficiency of it. As a complementary
research, the algorithm can be improved so that it will be parallel in a more efficient fash­
ion. Additionally, the variants of the algorithm that can handle the problems with multi
postmen can be designed.

59

Bibliography

[1] M.O. Ball and U. Derigs, “An analysis an alternative strategies for implementing
matching algorithms” , Networks 13, 517-549 (1983).

[2] F. Barahona and A.R. Mahjoub, “On the cut polytope” . Mathematical Programming
36, 157-173 (1986).

[3] F. Barahona, R. Maynard, R. Rammal and J.P. Uhry, “Morphology of ground states of
two-dimensional frustration model” . Journal of Physics A, Mathematical and General
15, 673-679 (1986).

[4] F. Barahona, “The max cut problem on graphs not contractible to K$", Operations
Research Letters2, 107-111 (1982).

[5] F. Barahona, “Planar multicommodity flows, max-cut and the Chinese postman prob­
lem” , Report 87454-OR, Institut für Operations Research, Universität, Bonn (1987).

[6] F. Barahona, “On via minimization” . Research Report CORR 88-10, University of
Waterloo, (1988).

[7] F. Barahona, “On some applications of the Chinese postman problem” . Research
Report CORR 88-85, University of Waterloo, (1988).

[8] W.H. Cunningham and A.B. Marsh, “A primal algorithm for optimum matching” .
Mathematical Programming Study 8, 50-72 (1978).

[9] U. Derigs, Programming in Networks and Graphs, (Springer-Verlag, Berlin, 1988).

[10] M. Dror, II. Stern and P. Trudeau, “Postman tour on a graph with precedence rela­
tions on arcs” . Network 17, 283-294 (1987).

[11] J. Edmonds, “Paths, trees and flowers” , Canadian Journal of Mathematics 17, 449-
467 (1965).

[12] J. Edmonds, “The Chinese Postman Problem” , Operations Research 13, suppl. 373,
(1965).

60

BIBLIOGRAPHY 61

[13] J. Edmonds, “Maximum matching and a polyhedron with (0,l)-vertices” , Journal of
Research of the National Bureau of Standards, 69B, 125-130 (1965).

[14] J. Edmonds and E.L. Johnson, “Matching: A w^ell-solved class of integer linear pro­
grams” , Combinatorial structures and their applications, 89-92, (Gordon and Breach,
New York, 1970).

[15] J. Edmonds and E.L. Johnson, “Matching, Euler tours and the Chinese Postman” ,
Mathematical Programming 5, 88-124 (1973).

[16] A. Frank, E. Tardos and A. Sebo, “Covering directed and odd cuts” . Mathematical
Programming Study 22, 99-112 (1984).

[17] M. Fredman and R. Tarjan, “Fibonacci heaps and their uses in improved network
optimization algorithms” . Journal of ACM 34, 596-615 (1987).

[18] Z. Galil, S. Micali and H. Gabow, “An OdE’HFI log(|F|)) algorithm for finding a
maximal weighted matching in general graphs” , SIAM Journal of Computing 15,
120-130 (1986).

[19] E. Korach, “Packing of T-cuts and other aspects of dual integrality” , Ph.D. thesis,
Llniversity of Waterloo, (1982).

[20] E. Korach and M. Penn, “Tight integral duality gap in the Chinese postman prob­
lem” , Technical Report #360, Israel Institute of Technology, Department of Computer
Science, Haifa (1985).

[21] Mei-Ko Kwan, “Graphic programming using odd or even points” , Chinese Mathe­
matics 1, 273-277 (1962).

[22] E. Lawler, Combinatorial Optimization: networks and matroids, (Holt, Rinehard and
Winston, New York, 1976)

[23] L. Lovasz and M.D. Plummer, Matching Theory, (Annals of Discrete Math (29),
Elsevier Science Publishers B.V., Amsterdam 1986).

[24] K. Matsumoto, T. Ninhizenki and M. Saito, “The planar multicommodity flows,
maximum matching and negative cycles” SIAM Journal of Computing 15, 495-510
(1986).

[25] C.H. Papadimitriou, Combinatorial Optimization: Algorithms and Complexity,,
(Prentice-Hall Inc., New Jersey, 1982).

[26] A. Sebo, “The Schrijver system of odd join polyhedra” , Combinatorica 8, 103-106
(1982).

BIBLIOGRAPHY 62

[27] A. Sebo, “Finding the t-join structure of graphs” Mathematical Programming 36,
123-134 (1986).

[28] A. Sebo, “Undirected distances and the postman structure of graphs” . Journal of
Combinatorial Theory, Series B 49, 10-39 (1990).

[29] P.D. Seymour, “On odd cuts and plane multicommodity” , Proc. London Mathematics
Society 42, 178-192 (1972).

