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ABSTRACT

A SUCCESSIVE ALGORITHM 
FOR THE CHINESE POSTMAN PROBLEM

Noyan Narin
M.S. in Industrial Engineering 

Supervisor: Associate. Prof. Mustafa Akgiil 
June, 1991

The Chinese Postman Problem being one of the well known problems in combinatorial optimization has 

many applications in real life problems such as mail delivery, road maintenance and bus scheduling. In this 

thesis work, we present a successive algorithm for the solution of Chinese Postman Problem. Additionally, 

we present efficient data structures for the existing algorithms in literature and for the implementation of 

our successive algorithm.

K eyw ord s: Chinese Postman Problem, Matching, Blossom algorithm. Successive algorithms.
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ÖZET

ÇİNLİ POSTACI PROBLEMİ İÇİN SIRALI ALGORİTM A

Noyan Narin
Endüstri Mühendisliği Bölümü Yüksek Lisans 

Tez Yöneticisi: Doç. Mustafa Akgül 
Haziran, 1991

Literatürde temel problemlerden biri olarak bilinen Çinli Postacı Probleminin gerçek hayatta da mektup 
dağıtımı, yol bakımı, otobüs çizelgelemesi gibi birçok uygulaması vardır. Bu çalışmada, Çinli Postacı 
Problemi için sıralı algoritma anlatılmıştır. Buna ek olarak, hem halahazırda literatürde var olan, hem de 
bizim geliştirdiğimiz algoritma için uygun olacak veri yapısı sunulmuştur.

A nahtar K elim eler: Çinli Postacı Problemi, eşleme, blossom algoritmaları, sıralı algoritmalar.
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Chapter 1

INTRODUCTION

The Chinese Postman Problem (CPP) is one of the oldest problems in combinatorial 
optimization. It was first introduced by Kwan Mei Ko in 1962 as the problem faced by a 
postman who had to deliver mails along edges over a given network before returning to 
his postofiice.

The importance of the problem arises from the fact that many real-life problems 
such as mail delivery, garbage collection, street cleaning, road maintenance, school bus 
scheduling, and many others can be modelled as a variation of CPP. Some of the appli­
cation areas of the problem involves a generalization of it, that is, there is not just one 
postman but many, and the problem is to assign routes to the postmen with fewest possi­
ble number of postmen none of whom has too long tour. The CPP has many applications 
in VLSI optimization and provides solution to planar multicommodity flows and max cut 
problems as well.

In this study we present a successive algorithm that can ease the application of the 
problem to some variations. The successive algorithm is the first step towards paralleliza­
tion. Beside this we supply an efficient data structure for both the existing algorithms 
and the new successive algorithm.

Now we give the outline of the thesis. In Chapter 2 we review the related litera­
ture. This chapter concentrates on Edmonds’ pionering work on this problem. We also 
describe the primal-dual algorithm by Edmonds and Johnson, and the primal algorithm 
by Barahona in that chapter. In Chapter 3, we provide efficient data structures which 
enable us to implement both the existing algorithms and the new successive algorithm 
with 0(1 II V I log(| V D) time bound. The successive algorithm is presented in Chapter 
4. We provide an example in Chapter 5 and make some concluding remarks in Chapter 6.



Chapter 2

LITERATURE REVIEW

The Chinese Postman Problem which was first introduced by Mei-Ko Kwan [21] in 1962 
is to find the minimum postman tour over an undirected, connected graph, G = {V^E) 
with non-negative edge weights, where the postman tour can be defined as a closed walk 
that traverses each edge at least once.

By simple intuitional appeal, if the degree of all nodes are even then the minimum 
postman tour is that which traverses each edge exactly once, i.e., wherever the postoffice 
is, the postman delivers aU mails and turn back to his postoifice; he traverses aU the 
edges and never traverses any edge more than once. In such a case, we call the graph 
’’Eulerian” . So for Eulerian graphs the solution is trivial.

The problem can be viewed as the transformation of the given graph G = {V^E)  ̂
with nonnegative edge weights Cg, into an Eulerian graph by duplicating some of its edges 
having minimum cost and then finding an Euler tour. In this work we do not deal with 
finding the Euler tour. In [15, 25], two algorithms have been given to find such a tour.

Definition 2.1 Given G = [V^E) and T C V,\T \ even^E  ̂ C E is aT  -  join if in the 
subgraph G' = (F, 1?'), the degree of any node v is odd if and only i fv ^ T ,

Lemma 2.1 IfT  = {u : u is odd degree  ̂ u G F } forG  = (F, J5) and E ' is a T-join^  
then the multigraph obtained from G by duplicating the edges in E' is Eulerian,

Thus if T is the set of aU odd degree nodes of G, then there is a one-to-one corre­
spondence between T — joins in G, and Chinese Postman tours.

Definition 2.2 An im proving circuit C with respect to a Tq — join E' is a circuit such 
that the sum of the cost the edges in C\E' is less than the sum of the cost of the edges in 
C n E \
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Kwan’s algorithm [21] proceeds by finding an arbitrary Tq -  join  and improves by 
finding an improving circuit. Since CAE' is also aTa -  join, the cost of the tour can be 
decreased. Although his idea is appealing, he couldn’t give a polynomial time algorithm 
to find such circuits.

In 1965 Edmonds showed the close relationship between the weighted matching and 
the postman problem [12]. He was also the first who dubbed ’’Chinese” to the problem 
in recognition of the Chinese mathematician Mei-Ko Kwan.

The first proposed method is easy. For all the pairs of odd degree nodes of G, 
shortest paths are computed; and using these values as edge weights of complete graph Kp 
where p is the number of odd degree nodes in G, a minimum weighted perfect matching 
problem is solved [15, 12]. If (i, j)  is a matched edge in Kp, then duplicate the edges on 
the shortest path between i and j  in the original graph G. Then the new graph obtained 
is eulerian. The time complexity of this method is 0(| V |̂ ), however this method does 
not use the advantage of the sparcity of the original graph in anyway.

In 1973 Edmonds and Johnson [15] gave a polyhedral description of the problem, also 
proposed a direct algorithm to solve this problem. An algorithmic proof of the polyhedral 
description was also provided in [15]. Using the data structures proposed by Lawler [22], 
the algorithm can be implemented in 0 (| U p) time.

Later in 1982, Barahona adapted the primal algorithm of Cunningham and Marsh
[8] for the weighted matching problem to this problem [3, 5].

For many polynomial algorithms that solve the Chinese Postman Problem [15, 3, 
5, 8, 19] the essential step is ” blossom shrinking” operation that is first presented by 
Edmonds [11].

In 1984, Sebo described a direct combinatorial algorithm to find a minimum cardi­
nality Tq — join  through elementary improving steps in polynomial time by generalizing 
the Kwan’s improving circuits [27]. His starting point is the Lovasz’s interpretation of the 
matching algorithm [23]. He proved "structure theorem” of Tq —join [28] that generalizes 
the Gallai-Edmonds theorem which plays the same role in Chinese Postman Problem as 
it does in Lovasz’s algorithm. Time complexity of this algorithm is 0{\ V p).

In what follows we will first describe Edmonds* polyhedral description of the problem 
together with the primal-dual algorithm to solve it. Later we will discuss Barahona’s 
primal algorithm.



2.1 Polyhedral Description of CPP and the Primal-Dual 
Algorithm

Given a graph G = (V,E)  and a set of real weights Cg : Cg > 0,Ve 6 E, the problem can 
be formulated as
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PI mm

s.t.

E
eeE

CpXc

(2.1) = 0, (mod2) Vv G F
eeE

(2.2) Xe > 0, Ve G i?
(2.3) Xe is integer^ Ve e E

where

[aye] is the node-edge incidence matrix of graph G 

Xe is the number of extra times that edge e is traversed.

Let by for all nodes of G be

by —
0, if the node v is incident to even number of edges.
1, if the node v is incident to odd number of edges.

Then we can write the congruence equality (2.1) as,

(2.1') = h,  Vv G V.
e^E

The variable Wy can be thought of nonnegative, integer variable that corresponds to 
loops constructed for every node where loop is an edge having two ends meeting the same 
node. Since Wy corresponds to distinct loops for aU nodes, we can extend the coefficient 
matrix [â ĝ] to include the coefficients of Wy by adding n columns which are all zero except 
-2 at the i — th row for i — th node.

Resulting coefficient matrix consists of 0,1 and -2 and for all columns the sum of the 
absolute values of coefficient matrix is less than 2, i.e.,

(2.4) I v̂e \ < 2, Ve G P, also for aJl e corresponds to loops.
v^V
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Indeed (2.1'), (2.2), (2.3) with predefined cost function is a general matching problem 
[14], knowing (2.4) and using the polyhedral theorem of Edmonds and Johnson [13, 14] we 
can write the polyhedral description of the CPP. Prior to this, we provide some necessary 
definitions.

Definition 2.3 A Blossom B is a subset of node set V such that is oddy i,e,y B is
veB

a subset of V containing odd number of odd degree nodes and any number of even degi'ee 
nodes. In particular a single node with odd degree is a blossom. Let B be the set of all 
blossoms.

Definition 2.4 For any subset S C Vj the coboundary o f  S, S{S)y is the set of all 
edges having exactly one end in S. If S = {u} consists of a single node, then we will write 
shortly 8{v) instead of 6{{v})..

Definition 2.5 For any subset S C V , S induced set o f  edges, 7 (6'), is the set of all 
edges having both ends in S.

Let for any subset S of V

X(S{S)) =  ^  -.Xe
eeS(S)

P2 min

s.t.

E
ĝ E

CpXp

(2 .1 0 a;((5(u)) — 2wy = bvi Vt; G V.
(2 .5 ) x{S{B)) > 1, V Be B.
(2 .2 ) Xe > 0, Ve G E.
(2 .6 ) Wy > 0, Vv G V.

Now the aim is to get rid of Wy. From (2.1') we can say

€ { - 1 , 0, 1 , ! , . . . }

Since Wy is integer then it is obvious that Wy is nonnegative. So we can drop (2.6) from 
the constraint set of the polyhedral description of CPP. Also, once we find a solution x 
satisfying (2.5) and (2.2), (2.1') is used in order to determine Wy for all nodes v. Thus in 
polyhedral description we don’t need (2.1').
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Consequently, the claim is that, the optimum solution of P3 is optimum for P2 and 
hence for PI where

P3 : min

s.t.
(2.5)
(2.2)

eeE

x{S{B)) > 1,
^ 0,

V B e B .
Ve € E.

The algorithmic proof for this claim is given in [15]. 

The dual of P3 is

D3 : max

s.t.
BeB

(2.7) Y i V B  : e e 6{B)} < Ce, V e e E .

(2.8)
B&B

ys > 0, ' i B e B .

For an optimal pair (x ,y), complementarary slackness conditions should be satisfied; 
that is,

CS (2.9) X e ( C e - : e € i ( 5 ) } )  = 0, \/e e E.
Bee

(2.10) Veil -  X^{xe : e € S{B)}) = 0, V.B € B.
eeE

Let Cg=Ce — Y^{ vb '· B 6 S(B)} be the reduced cost of edge e.

The primal-dual algorithm for CPP presented in [15, 5] is an adaptation of Edmonds’ 
weighted matching algorithm. Major difference arises from the shrinking operation because 
in Chinese Postman Problem, there are four types of blossoms that will be described in 
the course of the algorithm.

Since the algorithm is very similar to matching algorithms we wiU use the notations 
that are common almost to all matching algorithms.

Definition 2.6 Given an undirected graph G = (V, E), a matching M C E is a subset 
of edges no two of which are incident to a common vertex. Clearly, for the case Cg > 0, 
Ve 6 E, the optimum solution to P3 is a binary vector.
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The edge with Xq = 1 is called a matched edge and it means the edge e should 
be duplicated in order to make the graph Eulerian, and the edge with ô e = 0 is an 
unmatched edge.

The primal-dual algorithm works on the so called surface graph Gs which consists 
of the blossoms and even degree nodes that are not contained in any blossom, i.e., in Gs 
any blossom is maximal.

Initially surface graph is equal to G, except all odd degree nodes correspond to 
pseudonodes(blossom s). Even degree nodes are called even nodes. Initial dual vari­
ables associated with pseudonodes are zero, and even nodes do not have dual variables. 
At the beginning of the algorithm, Xe values are zero for aU edges, i.e., M is empty.

Definition 2.7 If a blossom is incident to no matched edge then it is called a free(exposed) 
blossom. Otherwise it is called saturated. For a free blossom for all e G we have
X q  —  0 .

Definition 2.8 An alternating path with respect to M is a simple path whose edges are 
alternately in M and not in M. An augmenting path is an alternating path whose end 
nodes are free. An alternating cycle is an alternating path with the same starting and 
end point. Obviously an alternating cycle has even number of edges.

Definition 2.9 An alternating tree is a tree T = {V(T)^(E(T)) rooted at free node r 
with the properties that the paths from r to each vertex in T are alternating paths and 
E{T) C[ M is a perfect matching with respect to V{T) \ {r} .

Theorem  2.1 (Berge) A matching M in G is maximum if and only if there is no 
augmenting path with respect to M ,

The algorithm consists of successive stages in each of which it tries to find an aug­
menting path between free blossoms. Each stage ends up with an augmentation, so at the 
end of each stage the number of free blossoms in the surface graph is decreased by two.

Any stage of the algorithm begins with a dual feasible solution y and corresponding 
to that y let Gs{y) be the equality subgraph of Gs· That is Gs{y) consists of all nodes 
of Gs and those edges of Gs for which the reduced costs are zero. Moreover, the matching 
M at hand at the beginning of the stage contains only the edges of Gs{y) so that M and 
y fulfill the complementary slackness conditions ((2,9), (2.10)). That is to say, in equality 
subgraph every matched edge meets at least one pseudonode and every pseudonode is 
incident to at most one matched edge. Only the dual variables corresponding to saturated



pseudonodes can be positive and the dual variables corresponding to free pseudonodes are 
all zero. If the matching M is perfect in Gs{y), i.e., if there is no free blossoms in Gs(y) 
then we are done, we found the optimum solution.

Otherwise, starting from the free pseudonodes the algorithm grows alternating trees 
rooted at those distinct, unmatched pseudonodes by using the edges in Gs{y)· We call 
the collection of those alternating trees as planted forest. The nodes on the planted 
forest are all pseudonodes. The roots of the alternating trees are labelled by + and all 
the other pseudonodes in planted forest are alternately labelled by + and —. For any 
pseudonode p, + label indicates the existence of an even length alternating path from p 
to the root of the alternating tree containing p, whereas — label indicates the existence 
of an odd length alternating path from p to the root of the alternating tree containing 
p. The pseudonodes that are not contained in the planted forest are indicated by 0. 
Each — labelled pseudonode of the planted forest is incident to two edges one of which 
is a matched edge in the planted forest. The + labelled pseudonodes are incident to any 
number of unmatched edges and to one matched edge except the roots of the alternating 
trees. Number of + labelled pseudonodes in planted forest is greater than the number of 
— labelled pseudonodes. Thus, in order to result in an augmentation, we should add some 
edges of Gs into the equality subgraph by changing the dual variables.

The dual changes should be done in a way that, the dual feasibility is not violated 
and there is no edge that leaves the planted forest even there is none that is adjoined to 
it. To satisfy these we employ a special procedure FIND-MIN. FIND-MIN determines the 
maximum possible dual variable change. After the dual update, four cases may occur.

CHAPTER 2. LITERATURE REVIEW 8

a. An edge of Gs, which links an unlabelled pseudonode to a + labelled pseudonode of 
an alternating tree, is adjoined to the equality subgraph. In that case we grow the 
tree.

b. i- An edge of Gs, which joins two + labelled pseudonodes of an alternating tree,
is adjoined to the equality subgraph.

ii- An edge of Gs that joins an even node to a + labelled pseudonode of Gs is 
adjoined.

In both case, we employ a special SHRINK operation to preserve the properties of 
the planted forest and not to ignore the possibility of having an augmenting path 
that passes through a pseudonode that has -  label before SHRINK. Given an odd 
set of nodes S C Fs, we shrink S by updating the surface graph.

G', = {V:,Ei)

and v' is called the pseudonode induced by S.

where
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These structures were first investigated by Edmonds for CPP. Their importance 
comes from the fact that whenever a perfect matching in Gs can be found it can be 
extended to the solution of the CPP over the original graph G. The odd sets that 
are shrunk are nested, and whenever the odd set S is saturated by an edge in S{S), 
the pseudonodes in S can be saturated by using the edges in 7 (5').

c. No edge is adjoined to the equality subgraph but the dual variable corresponding to 
a — labelled pseudonode drops to zero. In that case we call expand.

As we mention before, in any stage, blossom algorithm looks for a minimum cost 
augmenting path with respect to given matching between free pseudonodes over 
the current surface graph Gs· Needless to say that the minimum cost augmenting 
path in G may not be induced by any augmenting path in Gs· In such cases, the 
algorithm detects it and overcome this situation by expanding certain pseudonodes 
and updating the surface graph.

d. An edge of Gs that meets two + labelled pseudonodes on diiferent alternating trees 
is adjoined to the equality subgraph. It means we find an augmenting path P. Then 
the matching M is changed by reversing the role of matched and unmatched edges 
of P. This will be the end of a stage and a new stage begins with the augmented M 
and the updated dual vector y. They satisfy the complementary slackness and the 
additional conditions.

Definition 2.10 The nodes in the current surface graph, i,e., the nodes that are not 
contained in any pseudonode are called exterior nodes, and all nodes that are contained 
in a pseudonode are called interior nodes. For any node v, b (v ) indicates the exterior 
node that contains v, and for any exterior node k, R E A L (k) denotes the set of real 
nodes, ¿.e., the nodes of the original graph G,

Knowing the necessary definitions and the conceptual description of the algorithm, 
the more compact form of the generic primal-dual algorithm can be described. Prior to 
this we will explain the procedures that are used in the algorithm.

F IN D -M IN (A )
begin

Ai = min{c· ·̂ : ( i j )  € b(i) is + labelled (exterior) pseudonode,
b(j) is unlabelled}

Set Pi = (i^j) where (i,j) is the edge satisfying the minimum.
A 2 = \ TCim{c[j : (¿, j ) G Es·, b(i) and b(j) are + labelled (exterior) pseudonodes} 

Set p2 = (¿jj) where (i,j) is the edge satisfying the minimum.
A 3 = min{i/A; : k is -  labelled (exterior) pseudonode}

Set pz = k is the exterior pseudonode satisfying the minimum.
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Set A = min{Ai, A 2, A 3} 
end{FIN D -M IN }

This procedure guarantees that after the dual variable changes, the dual feasibility 
is not violated. In addition it detects that there may be a shortest path that is not induced 
by the current surface graph, (A  = A 3).

Before we continue with the description of the procedures, we will give the definitions 
of the blossoms that are frequently used.

Type-1 blossom is an odd set that contains one even node and one unmatched edge. 
The unmatched edge meets the even node and a pseudonode. The other pseudonodes in 
the blossom, if any, are adjoined to the even node through matched edges.

□  : pseudonode

o : even node

: unmatched edge 

: matched edge

Type-2 blossom contains three pseudonodes. One of the pseudonodes is adjacent to 
the other two through a matched and an unmatched edge. The dual variable corresponding 
to that pseudonode is zero.

□— □ O
type-2 pseudonode

Type-3 blossom is an odd cycle. All the nodes in it are pseudonodes. One of them 
is incident to two unmatched edges in the blossom, while the others are incident to one 
matched, one unmatched edges.
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Type-4 blossom contains one even node and an odd number of pseudonodes that are 
adjacent to the even node through matched edges.

It is obvious that, there are odd number of pseudonodes of any type in any type of blos­
som.

/* b(i) is -f labelled, b(j) is unlabeUed pseudonodeG R O W (id )
begin

Label b(j) by -
if the mate of b(j) is an even node h 

then begin
Set S = {/i} U {mates of h other than b(j)} 
SHRINK(S)

end
else Label the mate of b(j) by -f

b(i) b(j)

end{G R O W }
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/*  S is a blossom.SH R IN K (S)
begin

Shrink S into pseudonode p 
Update Gg 
Set Pp = 0
for all exterior node h in S 

begin
Set b(h)=p

REAL(p) = REAL(p) U REAL(h)
end

Label p by + 
end{SH RIN K }

/* Replace set 5 C U with p.

E X P A N D (k ) /*  k is a -  labelled pseudonode,
begin

if k is type-1 pseudonode 
then begin

Examine the matched edge at the coboundary of k 
if it emanates from an even node j in k 

then begin 
Unshrink k
Set S = { j }  U {mates o f j}U  {mate o f k}
Change the status of the unmatched edge in 'y(k) 
Label the exterior pseudonode in k but not in S by 
Update Gg 
SHRINK(S)

end
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else begin 
Unshrink k 
Update Gs
Let i is the node from which, the unmatched edge in S(k) is emanated, 

h is the node from which, the matched edge in S(k) is emanated, 
j is the even node in k.

Swap the matched and unmatched edges over the path from h to i 
Label i,h with —
Set 5 = { i }  U {mates o f j  other than h}
SHRINK(S)

end
if k is type-2 pseudonode 

then begin
Let i and h are the two -f labelled exterior pseudonodes adjacent to k. 
Set S — {i, k, h}
SHRINK(S)

end
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if k is type-3 pseudonode 
then begin

Unshrink k 
Update Gg
Let i is the node from which, the unmatched edge in S(k) is emanated.

h is the node from which, the matched edge in S(k) is emanated. 
Swap the matched and unmatched edges over the even path from h to i 
Label the nodes over the even path from h to i alternately by — and -f. 
Delete the remaining unlabelled part of k from the planted forest.

end
if k is type-4 pseudonode 

then begin
if the matched edge in S(k) is emanated from the even node j 

then begin
Unshrink k 
Update Gg
Set S = {* , i }  U {mates o f j }
SHRINK(S)

end
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else begin
Let h is the pseudonode that the matched edge in 6(k) is emanated from. 
Unshrink k 
Update Gs
Change the status of the edge between j and h 
Label h by -
Set S = { i , j }  U {mates o f  j }
SHRINK(S)

end
end

end{E X PA N D }

A U G M E N T (i,j) /*  b(i) and b(j) are +  labelled pseudonodes and
begin /*  are in different alternating trees.

Let ri is the root of the alternating tree containing b(i).
?'2 is the root of the alternating tree containing b(j).
Pi is the path from r\ to b(i).
P2 is the path from T2 to b(i).

Set AP = Pi U U P2
for aU edge e € AP 

Set Xg = 1 — Xe
Delete the two trees from the planted forest and 
remove the labels of the pseudonodes on them 

end{A U G M E N T}
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R E C O V E R (k)
begin

if k is a real node 
then Do Nothing 

else begin
Let i is the node in k from which the matched edge in ¿(k) is emanated 

h is the node in k from which the unmatched edge in ¿(k) is emanated 
if k is type-1 blossom 

then begin
if i is even node 

then begin
Unshrink k
Change the status of unmatched edge in k 
Update Gs

end
else begin 
Unshrink k

Let j is the even node in k
if the edge between i and j is matched

then Swap the matched and unmatched edges over the path 
from i to h

Update Gs
end

end
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if k is type-2 blossom 
then begin 

Unshrink k
if i and h are the same node 

then Do Nothing
else Swap the matched and unmatched edges over the path from i to h 

Update Gs

-----  h i aaaa^ h

if k is type-3 blossom 
then begin

Unshrink k
if i and h are the same node 

then Do Nothing
else Swap the matched and unmatched edges over the path from i to 

h such that, the first edge is matched
Update Gs

□

end
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if k is type-4 blossom 
then begin

Unslirink k
Let j is the even node in k 
if i and j are the same node 

then Do Nothing
else Change the status of the matched edge between i and j 

Update Gs

end
end

en d {R E C O V E R }

M A IN  A L G O R IT H M

Initialization
Convert G to Gs 
for all pseudonodes k in Gg 

begin
Set Vk = 0

h = A
REAL{k) = k

end
for all edges e in Gs 

begin
Set Xe = 0

c's -  Ce

end
for all nodes n in Gs 

Set b(n)=n
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W hile 3 a + labelled pseudonode in planted forest 
begin /*  dual update

FIND-MIN(A)
for all + labelled exterior node k in Ga 

begin
Set Vk = Vk + A  
for each edge e in 6(k)

Set Cg = c' — A
end

for all — labelled exterior node k in Gs 
begin

Set yk = Vk-  A 
for each edge e in S{k)

Set Cg = Cg + A
end

end
if A = Ai 

then begin
Add the edge pi = ( i , i )  to planted forest 
if b(j) is even node 

then begin
Set S = {b(i),j}  U {mates o f j }  
SHRINK(S)

type-1 blossom

end
else begin

if dual variable corresponding to b(j) is zero 
then begin

Set S = {b{i),b{j),mate of  b{j)} 
SHRINK(S)
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type-2 blossom

end
else GROW(/9i )

eiid
if A = A 2 

then begin
Add the edge f>2 = (i,j)  to planted forest 
Backtrack from b(i) and b(j) over planted forest 
if a common exterior pseudonode m is reached 

then begin
Set S = {the exterior pseudonodes over the path from m to b(i)} 

U{the exterior pseudonodes over the path from m to b(j)} 
SHRINK(S)

type-3 blossom

end
else AUGMENT(p2)

end
if A = A 3
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then EXPAND(p3) 
end{W hile}

for all exterior pseudonodes k in Gs 
RECOVER(k)

end{M AIN  A L G O R IT H M }

Let us study the complexity of a stage first. In any stage a newly formed pseudonode 
is given a + label and it can never be expanded during the same stage. Thus, Expand 
and Shrink are each called at most 0{\ V |) times, so does Grow. This means Find-Min is 
called at most 0(\ V |) times. The dual updates and the following reduced cost updates 
can be done in 0{\ E |) time. The Shrink and Expand operations can be implemented in 
0(1 V I) time. The Grow operation needs constant time. Hence any stage of the algorithm 
can be accomplished in 0(\ V \ \ E \) time. Since there are at most ^  stages, this results 
in 0(1 V PI E I) total work requirement of the algorithm.

2.2 The Primal Algorithm

This algorithm is the adaptation of the primal matching algorithm by Cunningham and 
Marsh. It uses the same polyhedral description of the problem and uses similar data 
structures as the primal-dual algorithm does.

The primal algorithm begins with any primal feasible solution and try to improve 
the solution over negative cycles until the optimal solution is obtained. The algorithm 
works on the surface graph. The surface graph is the same with the previously defined 
except it contains artificial edges between the odd degree nodes.

Any primal feasible solution corresponds to a perfect matching over the exterior 
pseudonodes of surface graph. If C is an alternating cycle with respect to the matching 
M, then M ® C  IS another perfect matching over the same nodes.

If we define c(M) as the cost of the set M C E

c(M ) =
eGM

then
c{C © M) = c{M)  -I- c{C \ M) -  c{C n M)
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Definition 2.11 A negative cycle C with respect to M is an alternating cycle, for which

[c{C \ M) -  c(C n M)]

is negative.

Theorem  2.2 A matching M is optimal if and only if M does not admit negative cycle.

Like primal-dual algorithm, primal algorithm consists of successive stages. Each 
stage begins by choosing an edge, in the current surface graph, with negative reduced cost 
and tries to find an alternating path with total zero reduced cost between the ends of the 
edge. Finding such a path means there is a negative cycle. Once such a cycle is found, we 
make a primal change. Any stage ends with a primal change and the reduced cost of at 
least one more edge becomes nonnegative.

At the beginning of any stage, we have a primal feasible solution x, a dual solution 
y and the corresponding G3 at hand. The equality subgraph of Ga is as defined before. 
The primal feasible solution x corresponds to a perfect matching M in equality subgraph 
Gs{y). If the dual solution y is feasible, then it means we found optimum. Otherwise, 
there is an edge in surface graph with a negative reduced cost. At least one of the ends of 
that edge in Ga would be a pseudonode. We label that pseudonode by — and its mate by 
-t-. Rooted at that -|- labelled pseudonode, the algorithm grows an alternating tree until 
the other end of the edge is labelled by -|-. When the other end of the edge is labelled by - f , 
primal change and the following mini-dual change are done in order to make the reduced 
cost of the edge non-negative. Once the reduced cost of the edge becomes non-negative, 
it remains non-negative. The stage ends after the primal change and the following mini­
dual change. At the end of the stage, we have an updated primal feasible solution x and 
updated y. Moreover the number of infeasibility in y decreases at least by one.

To get an initial feasible solution, one can put artificial edges between the pairs of 
pseudonodes.The cost of these edges are equal to the cost of the path between the pairs 
of the pseudonodes, and dual variables of these pseudonodes are set to the half of the cost 
of the path.

The primal algorithm uses the same procedures as the primal-dual algorithm does. 
The only diflPerence is in the FIND-MIN procedure. For the primal algorithm, there may 
be some edges that have negative reduced cost in the surface graph, however the algorithm 
uses the edges with non-negative reduced cost to add the alternating tree. Thus there is 
a slight difference in FIND-MIN for this algorithm.

Now, we will first describe the procedure FIND-MIN and then the main algorithm.
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F IN D -M IN (A )

begin

A i =  mm{cL : Cij >  0 ( i , j)  € Eg, b(i) is +  labelled (exterior) pseudonode,

b(j) is unlabelled}

Set Pi =  ( i , j)  where (i,j) is the edge satisfying the minimum.

A2 =  ^min{c(· ·̂ : Cij > 0 ( i , j)  € Eg, b(i) and b(j) are +  labelled (exterior) pseudonodes} 

Set />2 =  (h j)  where (i,j) is the edge satisfying the minimum.
A3 =  min{i/fc : k is - labelled (exterior) pseudonode}

Set p3 =  k k is the exterior pseudonode satisfying the minimum.

Set A  = m in{Ai, A2, A3} 

end{FIN D -M IN }

M A IN  ALGORITHM
begin

Initialization
begin

Start with any primal feasible solution x  and corresponding dual solution y  

Convert G  to Gg
While 3 an edge e in Gg such that c' < 0 
begin

Choose an edge e=(i,j) such that

c'ij <  0 and c'ij =  min{Cg : e G <5(i»(0 )}

Set k=b(i) /* b(i) is a pseudonode in Gg

Let h is the mate of k 

Label k by — and h by +

Set continue=true

while (continue) and (the other end of e is not labelled by +) 

begin
if b(i) is a real node and is zero 

then begin

Remove aU the labels 

Go to the other end of e

Set k=b(j) /* b(j) is a pseudonode in Gg

Let h is the mate of k 

Label k by -  and h by +

end



CHAPTER 2. LITERATURE REVIEW 24

begin /* dual update

FIND-MIN(A)

Set A  =  mm{A, —c'}

for each +  labelled exterior pseudonode n in Gs 

begin
Set +  A

for each edge /  € ¿(n)

Set Cy =  Cy — A

end

for each -  labelled exterior pseudonode n in Gs 
begin

Set ŷ i ŷ i A 
for each edge /  € 6{n)

Set Cy =  Cy +  A

end

end

if A  =  A i 

then begin

Add the edge p\ to planted forest
if Pi G S{jp) such that p is an exterior pseudonode, ?/p > 0 

then GROW(pi) 

else SHRINK

end

if A  =  A2 
then begin

Add the edge p2 to planted forest 

SHRINK

end

if A  =  A3 

EXPAND(p3) 
if A  =  -c'e 

then begin

Set continue=false

Delete the alternating tree and

remove the labels of the nodes on it

end

end{ while}
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if the other end of e is labelled by +  

then begin

Set Xg =  1
for all edge f over the path between the ends of e 

Set Xf =  1 — Xf

end

while Cg < 0
begin /* mini-dual update

Let k is the pseudonode such that e € S(k) and yk > 0 
Set A =  miD.{yk, - c ' } 
for aU edge /  G S(k)

Set Cy =  Cy -f- A 

Set yk =  y k -  A  

ifyk =  0 then RECOVER(k) 
end{while}

Delete the alternating tree and 

remove the labels of the nodes on it 

end {W hile}

for all exterior pseudonodes k in Gs 

RECOVER(k)

end{MAIN ALGORITHM }

This algorithm has at most | V  | stages. In each stage Expand and Shrink are each 

called at most 0 {\ V  |) times, so does Grow. The primal and the following mini dual 

changes can be executed at most in 0 {\ E  |) time, and these calculations are employed 

only once in a stage. The dual changes and the following reduced cost updates require at 

most 0(1 E  I) time, and are employed at most 0 (| V  |) times in a stage. Thus the total 

work requirement of the algorithm is 0 (| V  p| E  |).
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An 0(|F||i;|log(|F|)) 
IMPLEMENTATION

In the generic primal-dual algorithm described in the previous chapter, the most costly 

part is the frequent updates of the dual variables and reduced costs. Before each update 

it is required to examine all the edges in order to calculate the maximum possible change 

without violation of the set of dual constraints, (2.7),(2.8), and complementary slackness 

conditions, (2.9),(2.10). Thus one may examine an edge 0 {\ V |) times throughout a stage.

In order to reduce the amount of computation, we postpone the dual updates to the 

end of the stage, and we reduce the work for FIND-MIN by finding some invariants.

Before going into algorithmic detail we will describe the convenient data structure 

for this implementation.

For each blossom we define a tree that represents the structure of the blossom. Also 

for each blossom B, we keep the type, the base and the mate of the blossom B. Now it is 

better to introduce these structures for diflferent types of blossoms.

1. B is the first type of blossom. The corresponding structure tree is shown below.

26



The base of this blossom is B i and it can be represented by the list

2. B is type-2 blossom.
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B

B. Bx B:,

The dual variable of B2 is zero.

The base of this type of blossom is B i and the corresponding list representing this 

structure is

B2, (B 3 ,62)}

3. B is type-3 blossom, i.e., it contains an odd cycle.

r

0 5 = 0 :

The base of this blossom is jBi . The corresponding list is

{(fii.eO ia i* }

4. B is the fourth type blossom, the structure tree representing this type of blossom is 

shown below.

m

O  3P=£ H  5=t S  ̂  01.* I

The corresponding list is

whore j is the base of the blossom.
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The leaves of the structure trees corresponding to any blossom B are real nodes 

that are included in B. These leaves are maintained in doubly linked Bsts that we call 

REAL(B).

In surface graph any exterior pseudonode k has at most one mate. So we keep 

m(k)=(p,e) for each exterior pseudonode k, where the first part denotes the mate of k and 

the second part denotes the matched edge that k is incident to. However, original nodes 

might have even number of mates. Thus, for each original node j we keep a mate list 

M(j) = {(Bi,ei)\i=i2k}.

Any blossom in planted forest is labelled by +(f,y) or The second part of

the label records the edge by which the blossom received the label. The second part of 

the label makes the backtracking along the alternating tree easier. We indicate the label 
of a pseudonode k with Ik-

In each stage, we define a variable D. At the beginning of each stage it is set to zero 

and it keeps the sum of dual variable changes done throuhgout the stage. Thus, at any 

time in a stage, it gives a lower bound on the length of the shortest augmenting path. 

Related wirh D, for each node i, we define di which is an offset for dual variable j/,·. It is 

initially zero. Whenever the node is added to the planted forest, it is set to the current 

value of D.

For any pseudonode k, we define a partially updated dual variable yk. Vk is set to 

the current value of yk whenever the exterior pseudonode k is added to the planted forest. 

At any time.

Vk = yk + { D -  dk) 
Dk = y k - {D  -  dk) 
yk = yk

for exterior pseudonode k with h  =  +  

for exterior pseudonode k with Ik =  — 

for aU interior pseudonodes k and 

exterior pseudonodes k with Ik =  0

Since the reduced cost updates are done at the and of the stages, throughout a stage 

we maitain a new variable Cjj for any edge ( i , j)  6 E . It is set to c'- at the beginning of 

the stage and is updated at the end of the stage so that c'- =  Cij.

Furthermore, for any node i, we maintain Cj which is explicitly defined as

e»· = Z )  yj
jei{i)\{i}

where I(i) is the set of pseudonodes containing i at the beginning of the stage.

Proposition 3.1 For any (i,j) € E, at any time in a stage the equality

c ' i  =  Cij +  7 i  +  7 j



CHAPTER 3. ANO(\V\\E\ LOG(| V |)) IMPLEMENTATION 29

holds, where

b̂{k) , if lb{k) = 0
Ik =  < eb(k·) +  {D -  d̂ k)) , if k{k) =  -

eb{k) - { D -  db(̂ k)) , ifib{k) = +
and (i,j) is not involved in a shrink operation.

For any { i , j)  with = + , we define dij as

_  i  b̂{i) +  +  h(i) , if h{j) 7̂  +

I hi^ij +  b̂(i) +  db(j) +  b̂(i) +  ^j) ) if 6̂(i) = +

During the generic algorithm, in any stage, we calculate 61,62,63 where

A i =  min{c^ : ( i , j)  e  E , lb(i) =  +  and IbQ) =  0}

A i =  |m in{c^ : ( i , j)  e E , /¡.(¿) = + , lb(j) =  +  and b{i) b(j)}

A3 =  minfyjt : k is an exterior pseudonode with Ik =  —}

But in this implementation, we do not maintain explicitly the dual variables yk and 

the reduced costs Cij throughout a stage. Hence, we try to hnd a way for calculating these 

minimums by using % and c,j.

So let’s examine these three cases:

i) If lb(i) =  +  and lb(j) =  0

c'j =  d j -  X ]  V k - ^  V k - Vb{i)

X  Vk- J2 v k -  iMi) + (^  -  ^̂ 6(0)]
kem\{b(i)} k€i{j)

=  db{i) + Cij -  X  i/fe -  ' ^ V k - D
kei(i) fce/(j)

c\- A D =  db(i) +  Cij -  X  -  X  
k€l(i) kei(j)

ii) If h{i) — h(j) -  +
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ij -  S  ~ “  yb(i) ~ ybii)
kei(i)\m } kei{j)\{b{j)}

— <̂ij ^ 2  yk ^  yk ~ [2/6(0 + (-^ “  <̂6(0)] “  [2/6(7) + (D — cit(7))]
fce/(0\{6(0} keiUMbU)}

— ~ ^ 2  ŷ  ~ Xy yk ~ b̂(i) +  dbf̂ j)
k€l(i) kelU)

2 îj "I D = ji^ij +  <̂6(0 "I" ^6(7))

iii) If 4  =  0
Vk =  Vk ~ {D  -  dk) 

Vk-I D =  Vk A dk

Note that

dij +  eb(j) =  D +  c'ij , ioi ( i , j)  e  E  with lb(i) =  + , lb(j) =  0
D +  ^c'ij , for ( i ,i)  e w ith /(,(,·) = /6(j) = + ,  b {i)y ib (j)

D +  yk , for exterior pseudonode k with Ik =  —
*87

dk + yk

di ■) —

Thus if we compute Ai +  D rather than Aj we do not exphcitly need the dual 

variables yk and reduced cost c'- but rather yk, Cij and dk.

Proposition 3.2 Whenever the pseudonode k is labelled + in a stage; either it remains 

+ labelled or it is contained in another pseudonode that has + label throughout the stage.

Lem m a 3.1 For any ( i , j)  € E  with /;,(,·) =  + , dij remains constant.

Proof:
We look at two cases: ^  +  and /¿.(j) =  +  throughout the stage,

i) First assume that /¿(¿j =  + , ^  + . For that case:

dij — db̂ i) + Cij — ^  ̂ yk ~ Gj — yj 
k€l(i)

Let h be the first exterior pseudonode containing i with +  label in the current stage. Then

dij — dh A Cij — ^  ̂ yk Sj yj 
kei(i)

As long as h remains exterior, dij would not change. Now assume h involves in a shrink
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operation and is the new exterior pseudonode containing i. Since h' is newly added to 
the planted forest d',̂  is equal to current D. If we write d{j after the shrinking operation:

dij =  D +  Cij -  yy  _
kem\{h,h'}

= D + Cij -  ^  y k -[y h  + {D -  dh)] -  0 -  Cj -  yj
ka{i)\{h,h'}

— +  Cij — ^  ̂ yk — Cj — yj
kei(i)

it is equal to the previous one.

ii) Now assume =  /¿(j) =  +  and b(i) ^  b{j) at the beginning of the stage. Let 

b[i) =  hi and b(j) =  /¿2- Then

dij =  dfî  +  +  Cij — ^  yk — ^  Vk
kei{i) kei{j)

As long as hi and /12 are not involved any shrinking operation dij remains constant.

Now assume a shrinking operation is employed and at the end b(i) changes to h[  ̂ then 

d/j/ =  Z?, and dij becomes:

dij =  D +  +  Cij -  Y j  y k -  Y  V k - Vhi -  yh[
kel(i)\{huh[} kel(j)

=  D +  dh2+ Cij -  Y y k -  Y y k -  [yhi + ( D -  dh )̂] -  0
kei(i)\{huK} kei(j)

= dhi +  d 2̂ + Cij — Y j  yk — Y j  yk 
kel(i) k€l(j)

that is equal to the previous one.

By using the same argument, for the cases h2 or both hi and I12 are invoved in a shrinking 

operation, the proof can be done. □

So in order to decide the edge that is joined to the planted forest, we can use dij 

values. For each edge dij is calculated at most twice in a stage, one when b(i) is

labelled by +  and the other when b(j) is labelled by + . The lemma 3.1 motivates us to 

store dij values, for any edge, throughout any stage. We use iibonacci heaps to determine 

the appropriate minimums that guide the successive steps of the algorithm. The reason 

to use Iibonacci heap is that, we can do find-min, insert operations in constant time and 

delete-min in O(logra) time.
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In a stage, we maintain three types fibonacci heaps, FH-V, FH-E and FH-P(k). For 

unlabelled exterior nodes and — labelled pseudonodes we maintain a fibonacci heap FH-V.

The nodes in FH-V are ordered with the Vk values where

mm{djj +  : ( i , j)  £ E , j  ^ R E A L {k), =  -f}, k is an exterior pseudonode,

,  Ik =  0 .
= i , _

dk +  Vk, k is an exterior pseudonode,

lk =  ~.

For edges ( i , j)  with =  -f- we use FH-E. The edges are ordered with the

key value ¿¡j.

For each — labelled and unlabelled exterior pseudonode we maintain another fi­
bonacci heap FH-P(k) with the property that whenever the exterior pseudonode k is 

expanded, the fibonacci heap can be split into the groups that each groups corresponds 

to exterior nodes in k. The split can be done in O(logn) time [18, 1, 17]. These fibonacci 

heaps keep real nodes with the key value u'· in an order that allow easy split in the case 

of expand, where

v'j =  : h(i) =  + , ( i j )  e  E }

The usefulness of Vj arises from the following property:

Vk =  min{t;y : j  € R E A L {k)} Ck

Now we win describe the operations and the main algorithm. First we will introduce 

the new procedure SCAN. This procedure is called whenever an exterior pseudonode is 

labelled by -h, and it computes the key values necessary for the ordering of the nodes and 

the edges in the surface graph in the appropriate fibonacci heap.

SCAN(i,D)
begin

for each k € R E A L (i)  and each (k ,j)  G E  

begin

if lb(j) ^  +  oi =  +  and dkj =  oo) 

then Set dkj =  D +  Ckj +  Si +  D — d{ 

else Set dkj — \i,dkj "I D Si D — di) 

if h(j) =  0 
then begin

Set Vkî j) =  mm{vi,(j),dkj +  ¿¿(j·)) 

if the value of changes

then Set p(b{j)) =  (k ,j)  and adjust the position of b(j) on FH-V

end
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if =  +  and b(k) 7̂  b{j) 

then Place (k,j) on FH-E

if h(j) 7̂  +  
then begin

Set Vj =  mm{v!j,dkj) 

if the value of Vj changes
then Set p \ j)  =  (k ,j)  and adjust the position of j on FH-P(b(j))

end

end

end{SC A N }

F IN D -M IN (D )

begin
Set D i =  min{uj : j on FH-V}

Set D2 =  oo

while FH-E is not empty 

then begin
Take the top edge (k,j) 

if b{k) 7̂  b(j)

then Set D2 =  dkj
else Take the edge off from FH-E

end

end{while}

Set D =  min(I>i,T>2) 
end{FIN D -M IN }

G R O W (i,j,D ) /* b(i) is +  labelled, b(j) is unlabelled pseudonode.

begin

Set b̂(j) —
db(j) = 0
Vb{j) =  db(j)  +  yb{j)

Put b(j) on FH-V
if the mate of b(j) is an original node h 

then begin
Delete (b(j),e) from M(h)

Set S  =  {h} U M{h)
SHRINK(S,p,h,4,b(j),e,D)

Set m(b(j))=(p,e)

end

else begin
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Let m(b(j))=(k,e), k is pseudonode 

Set Ik =  + ,e , dk =  D 

SCAN(k,D)

end

end{G R O W }

SH R IN K (S ,p ,b ase ,typ e ,m ate ,lab e l,D )

begin
Shrink S into a new pseudonode p 

Construct the structure tree corresponding to p 

Update Gs

Set Ip =  label dp =  D yp =  0
type(p)=type base(p)=base m(p)=mate 

for each exterior node h in S 

begin

Set dh =  D 

ii Ih = + 
then begin

Set Vh =  yh +  {D -  dh) 

for aU edges e € b(h) and e 6 '^{S) 

Set Ce = C e -{D  -  dh)

end

if h  =  -
then begin

Set Vh =  Vh -  {D -  dh) 
for all edges e G S(h) and e G 7(5 ) 

Set Ce =  Ce +  (D -  dh) 

SCAN(h,D)

end

if /;, =  0
then SCAN(h,D)

end

en d {SH R IN K }

E X P A N D (k ,D ) /* k is a -  labelled pseudonode,

begin
if k is type-1 pseudonode /* {{Bi,^i)^h,{-Bi,€i)\f^2^ "h f }

then begin
Let m(k)=(B,e)

Unshrink k
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for all h in k

Set dh =  D €h =  ek +  yk 
Update G*
if e is emanated from even node j

then begin /* // is operation that concatenates iists.

Set M(j)=M (j)//(B,e)

S={j,M (j)}
SHRINK(S,p,j,4,( - ,  ei),m(B),D)

Set =  Ik Xei =  1 rn(Bi) =  (p,ei)
Deiete FH-P(k)

Set VBi =  dj5i +  VBi and put B i on FH-V

end

if e is emanated from Bi  ̂  ̂ 7̂  1 
then begin

Set M (j)=M (j)\(Ri,ei)

S={ j , M( j ) }
SHRINK(S,p,j,4,(-,ei), (Bi, eO,D)
Set hi = Ik êi = 1 m{Bi) = (p,ei) 

hi = -,ei m{Bi) = m{k)
Deiete FH-P(k)

Set VBi =  dsi +  VBi and put Bi on FH-V 

Set VBi =  ^Bi +  VBi and put Bi on FH-V

end

if e is emanated from Bi 
then begin

Split FH-P(k)

Set h i  =  h  rriBi -  rrik

S = { j } u { M { j ) }
for aU h in S

if FH-P(h) is not empty 

then begin

Set vh =  v'î  +  eh
p{h) =  p'(fc) where k is the top eiement in FH-P(h)

h  =  ^

end
if k is type-2 pseudonode /* {(-Bi,ei), 52 ,(53,62)}

then begin

Let m(k)=(B,e)
i(k)=-,e’ and e’ between B ’ and k 

Set5- = {(5 ',eO ,A :,(5 ,e )}
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SHRINK(5 , iJ, B ', 1, Ib >, mB>, D)

end

if k is type-3 pseudonode /* {(jBj, 1}

then begin
Let m(k)=(B,e)

e is emanated from Bi 

Unshrink k 

for all h in k
SpUt FH-P(k) into FH-P(h)

Set €h =  Sk +  Vk
Define the odd length path from Bi to B i 

Swap the matched and unmatched edges over this path 

for all pseudonodes h over this path 

begin
Delete FH-P(h)

Set dh =  D
Label h (alternately label the nodes over the odd path by - and +  

beginning with - from Bi) 

if h is -|- labelled 

then SCAN(h,D) 

if h is — labelled

then Set Vh =  dh + Vh and Put h on FH-V

end
for each node h over the remaining even length path 

begin
if FH-P(h) is not empty 

then begin

Set Vh =  6h
p(̂ h) =  p'{k) where k is the top element in FH-P(h)

k  = o
end

end

end

if k is type-4 pseudonode 

then begin

Let m(k)=(B,e)

lk =  (B ',e ')

Unshrink k 

for each h in k

Set dh =  D €h =  €k +  Vk

/*  {j,{B i,ei)\ U kA ^ }
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Update Gs
if e is emanated from even node j 

then begin

Set M (j)=M (j)//(B,e)

S={j,M (j)}
SHRINK(S,p,B’,l,/B,„m(B),D)

Set Ibi = h Xei =  1 rn(Bi) = (p,ei) 
Delete FH-P(k)

end

if e is emanated from Bi 

then begin
Set M (j)=M (j)\(5 i,eO 

S = { {B ',e ') j ,M { j) }  

SHRINK(S,p ,B ’ ,1,/b ', m {B'),B)
Set iBi =  -,e ,· Xei =  0 m(J9,·) =  (B ,e)  

Delete FH-P(k)

Set VBi =  dBi +  VBi and put Bi on FH-V

end

end

en d {E X P A N D }

A U G M E N T (iJ ,D )  /* b(i) and b(j) are +  labelled pseudonodes

begin /* and are in different alternating trees.

Let ri is the root of the alternating tree containing b(i).

T2 is the root of the alternating tree containing b(j).

Pi is the path from r\ to b(i).

P2 is the path from V2 to b(j).

Set A P  =  P iU { i , j) U P 2  

for each edge e € A P
Set Xe =  1 -  and changes the mates respectively 

for each exterior pseudonode k with Ifc =  +

Set Vk =  Vk +  {D -  dk) 
for each exterior pseudonode k with h  = —

Set yk =  Vk -  (D -  dk) 
for each edge ( i , j)  € E  

if /¡((¿) =  +  and =  0 
then Set Cjj =  dij — D +

if h{i) — +  h{j) — ~ 
then Set Cij = dij —
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if k{i) =  k(j) = +  and b(i) 7̂  b(j) 
then Set Cij =  2dij — 2D 

if h(i) 7̂  +  and ^  +  
then begin

Set 6̂(i)

if k(i) =  -

if/,

then Set Cij =  Cij + (D — i/i,(j)) 

bU) = -
then Set Cij =  c-ij +  (D —

end
Delete thetwo alternating trees resulting augmentation from planted forest and 

remove the labels of the nodes over them 

if 3 a +  labelled node in G3 

then begin

Set D=0 
for all k in G j

Set dk =  0, €k =  0, Vk =  00 

for all edge (i , j)  € E 
Set dij — 00

for all +labeUed node k in Gs 

SCAN(k,D)

end
end{AUGMENT}

M AIN  ALGORITHM

begin
Initialization
begin

for all n in Gs
Set dn =  0, e„ =  0, =  00, /„ =  0

for all edge {i , j)  € E 
Set dij =  00, Cij — Cij 

Set D=0
for ah pseudonode k in Gs 

Set i/ife =  0, m* =  0
R E A L {k) =  k, /fc =  +,0 

SCAN(k,D)
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W hile 3 a +  labelled pseudonode in planted forest 

begin

FIND-MIN(D) 

a  D =  Di 

then begin

Delete Vj from FH-V 

if Ij =  0 
then begin

Add p{j) =  (i, k) to planted forest 

if j is even node 

then begin
S e t5 =  {6(0 , J , } u { M ( i ) }

SERmK(S,p,l,b(i),mb(i),D)
end

else begin

if Vj >  0
then GROW(i,k,D) 

else begin

Set S={b(i),j,m(j)} 
SHRINK(S,p,2,b(i),m(b(i)),D)

end

end

end
else EXPAND(j,D)

end

if O =  O2
then begin

Add the edge (i,j) to the planted forest 

Backtrack from b(i) and b(j) over the planted forest 

if a common node m is reached 

then begin
Set S={The odd cycle begins and ends at m } 

SHRINK(S,p,3,m,m(m),D)

end

else AUGMENT(i,j,D)

end

end{W hile}

for all exterior pseudonodes k in Gs 

RECOVER(k)
end{MAIN-ALGORITHM}
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The improvement of this implementation is derived from the use of fibonacci heaps 

on which each operations can be implemented in O(log | F  |) time. Obviously there are 

0 (V) stages each of which ends up with an augmentation.

In each stage, a vertex is scanned only when it is first labelled by + . Thus each edge 

can be examined at most twice. This results in 0 {Elog \ V |) total work requirement of 

Scan per stage. Shrink, Expand and Grow operations are each called at most 0 (V) times. 

Shrink and Expand takes O(log | F  |) time and Grow takes constant time. So for these 

operations at most 0 (Fiog | F  |) time is expended.

Augmentation is called only once in a stage and it takes 0 (E) time.

Finally, a node can be placed in FH-V at most twice, once when it is labelled by 0, 

and once when it is labelled by —, and an edge can be placed on FH-E at most once in a 

stage. Thus Find-Min can remove a vertex from FH-V at most twice and can remove an 

edge from FH-E at most once, that requires at most 0 (E log  | F  |) time per stage.

Consequently, the overall time bound of this algorithm is 0 (F E lo g  | F  |).



Chapter 4

THE SUCCESSIVE ALGORITHM

In the following, we describe the successive algorithm for the Chinese postman problem. 

Although the worst case time bound is the same as before, 0 {\ V \\ E  \ log | |),

provided by using the data structure suggested previously, the size of the alternating trees 

we worked on and the number of dual changes are decreased. This will speed up the 

algorithm. Beside this, we can divide the graph into two and solve the problem over two 

parts simultaneously and then combine the solutions. We haven’t identified the rules of 

dividing the graph into two that gives rise to a parallel algorithm yet. But, we accept this 

algorithm as a first step towards such researches. In addition, this algorithm can easily be 

adapted to some variations required by the real life applications.

The motivation for this algorithm comes from the idea given for the primal match­
ing algorithm by Derigs [9]. The notations and the definitions we will use during the 

description of the algorithm have already been given in previous chapters. For the imple­

mentation, the data structure given in chapter 3 is used.

4.1 The Successive Algorithm

This is neither primal nor dual algorithm. It consisits of stages each of which composed 

of two steps, namely dual step and primal step. We work on two complementary 

surface graphs, the dual surface graph G d s  =  (Vd s , E d s ), and the primal surface graph 

G ps =  (Vps, E ps)· Initially the dual surface graph is equal to the original graph except 

the odd degree nodes correspond to pseudonodes and the primal surface graph is empty. 

As the algorithm proceeds, we remove some part of the dual surface graph and add to the 

primal surface graph. The algorithm terminates when the dual surface graph is empty. 

We caU the edges with one end in G d s and the other end in G ps  as hidden edges. E h -

The dual surface graph is a dual feasible subgraph and the dual step is done over

41
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that subgraph. We choose a pseudonode on that subgraph and grow an alternating tree 

rooted at that node. Whenever the alternating tree reaches another pseudonode in G d s 

we stop growing and augment. In that time, we have a matched pair of pseudonodes at 

hand. We remove that pair with adjacent even degree nodes from the dual surface graph 

and add that part into the primal surface graph. After that operation some of the hidden 

edges become the element of E ps  and some of the edges in E p s  become hidden. Then 
the primal step begins. As I said just before, some of the hidden edges are made the edges 

of the primal surface graph and only these edges may violate the dual fesibility of Gps- 

So the primal step is done for keeping the dual feasibility over the subgraph G ps, and the 

stage terminates. At the termination of any stage the primal surface graph becomes both 

primal and dual feasible.

M AIN  ALGORITHM
begin
Initialization

Set G d s  = ( V d s , E d s ) where Vos = V except all degree nodes are pseudonodes
E d s  =  E

Gps = (Vps, Eps) where Vps = 0 
Eps = 0

Eh = ^
for each pseudonode k in Gps 

begin
Set i/A: = 0 

/̂  = 0
REAL(k) = k

end
for each edge e in 

begin
Set Xe =  0

c'g =  Ce

end
for each node n in Gds 

Set b(n)=n
While G d s  is not empty 
begin

Choose a pseudonode k in G d s  

Set Ik — P
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while 3 a +  labelled pseudonode inGos  

begin{dual step}

Set A =  m in{Ai, A2}

/*  where

/*  =  min{c' : e =  =  + , =  0 and b{j) is even degree node }.

/* A2 =  I  min{c' : e =  =  1̂ ^ ,̂ and b{i) 7̂  b(j)}

yb(i) =  2/6(0 +  ^

for aU edge e 6 ^{b{i)) and e  ̂E 
Set c' =  c' -  A 

If A =  A i 

then begin

SHRINK b(i) and b(j) into a new pseudonode p 

Set Ip ~

2/p =  0

end

If A  =  A2 
then begin

Set Xe =  1 where e=(i,j) is the edge satisfying the above minimum. 

Remove all the labels

Delete the matched pair (b(i),b(j)) with adjacent original nodes from G d s  

Add that part to G ps  

Update the hidden edges E h ·, G d s , G ps  

end

end { dual step }

If 3e 6 that (c' < 0 and c' =  min{c' : e G ¿(¿>(0 )})

then make a primal stage for e 

end { W hile }

for aU exterior pseudonodes k in G ps  

RECOVER(k)

end { M A IN -A L G O R IT H M  }

The successive algorithm has at most y  stages. In each stage we make one dual 

step that can be accomplished at most in 0 {\ E  ( log(| V |)) time. At the beginning 

of each primal step we introduced a matched pair of pseudonodes one of which has a 

0 dual variable. Thus, in each stage we make at most one primal step. A primal step 

requires 0 {\ E  | log(| V  |)) total work requirement provided by using the data structure 

we describe in chapter 3. Consequently, the worst case time bound of the algorithm is 

(9( | F | | K | lo g ( | F | ) )



Chapter 5

EXAMPLES FOR THE ALGORITHMS 
PROVIDED

In this chapter we apply the three algorithms to the same graph given below. The numbers 

written over the edges are the costs of the edges.

We first apply the primal dual algorithm. 

Primal-dual algorithm:

Initialization

44
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The initial values of the dual variables and the reduced costs are:

n Vn

reduced costs

a b C d e f g h k 1

a 0 1 3 4
b 0 4 7 2

C 0 5 3 4
d 0 6 2 3
e 0 5 4 1

f 0 1 3

Based on these values, the equality subgaph and the planted forest can be defined

as:

E ]  ©  0

O  0  0  ©

0 © 0
the equality subgraph

0 0 

0 0

0 0
the planted forest

Stage 1

di = 2, because of the edge (6, h)

¿2 = 1
2 ’ because of the edge (a, e)

ds = 00, there is no pseudonode with — label

We make the dual update and the reduced cost updates.

reduced costs

n Vn a b C d e f g h k 1

a 1
2 0 5

2
7
2

b 1
2 3 13

2
3
2

C 1
2 4 5

2
7
2

d 1
2 5 3

2
5
2

e 1
2 4 7

2
1
2

f 1
2

1
2

5
2

After these updates the edge (a,e) is added to the equality subgraph. Since it joins 

two +  labelled nodes in the planted forest, it results in an augmentation.
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E] © 0 0  0  

\  ·©  Ej 0 © □  0  

+ +
0 © 0 0  0
the equality subgraph the planted forest

We delete the matched pair (a,e) from the planted forest and the stage ends. 

Stage 2

di = 1
2 ’ because of the edge (f^g)

d2 = 3
2 ’ because of the edge (6, /)

ds = (X), there is no pseudonode with — label

reduced costs

n Vn a b C d e f g h k 1

b 1 2 6 1

C 1 3 2 3
d 1 6 1 2

f 1 0 2

H  ©  H
the equality subgraph

Set 2/pj = 0

di =  1 , because of the edges (b,h),{d,k)

¿2 =  1, because of the edge (b ,f)

d z =  oo, there is no pseudonode with — label

=i>- d =  1
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b(n) yh(n) 11

reduced costs

b c d f g a e h k 1

b 2 b 0 4 0

C 2 c 1 1

d 2 d 7
2 0 1

Pi 1 f 0 5
2 1

g 3
2

5
2

Q - -©  0 0 — © 0
the equality subgr̂ h the planted forest

Set =  Vp3 =  0. Delete the matched pair (pi,P2) from the planted forest. The 

stage ends with this augmentation.

Stage 3

dl = 1
2’ because of the edge (e, k)

¿2 = 1, because of the edge (c, k)

4  = oo, there is no pseudonode with — label

d =  1

b(n) yb{n) n

reduced costs

c d k a b e f g h 1

c 5
2 C 1 1

2
1
2

Pz 1
2 d 0 3 1

2
k 0 1

2

□

the planted forest
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di = 
¿2 = 
ds =

1
2’
1
2’
1
2’
d = i

because of the edges 

because of the edge (c, k) 

because of the pseudonode e

b(n)

P3

Уь(п)

reduced costs

the equality subgraph the planted forest

The edge (c,k) that is added to the equality subgraph results in an augmentation 

since it joins two +  labelled nodes of the planted forest. Thus the stage ends. There is no 

free pseudonode left in the planted forest. We recover the blossoms pi, p2 and pz- Then 

the algorithm stops. The solution is:

Xae =  X b f  =  Xck =  Xdk = i  and Же =  0, for all other e.

Уа ~ 1> i/i> ~ Ус — yd ~ 2, i/e — — Ij 2/pi Ур2 Урз
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Now we apply the primal algorithm.

Primal Algorithm:

Initialization

We begin with a primal feasible solution. For the initial feasible solution one can 

put artificial edges. In this particular example we put two artificial edges, (a,b) and (c,d). 

The cost of the artificial edges are equal to the cost of the paths between the end nodes 
of the artificial edges.

The initial primal feasible solution is Xat — Xcd — Xcf =  1 <iad Xg = 0 for the other 

edges. Corresponding to that primal solution we choose the dual solution as = yij = 5, 
Vc =  yd =  3, and j/e =  y/ =  I ·

reduced costs

n Vn a b C d e f g h k 1

a 5 0 13 
" 2 -2 -1

b 5 7
'2 2 -3

C 3 0 1
’ 2 0

d 3 1
2 -1 0

e 5
2 0 3

2
3

"2
f 5

2
3

'2

Stage 1

Choose an edge with negative reduced cost, let e=(a,e).

□  ©  0

the plamod forest
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13
~^e - 2

2,

d2 = oo,

dz — 5,
d =

because of the edge (b,g)

there is no edge between +  labelled nodes with nonnegative reduced cost 

because of the pseudonode a

reduced costs

11 Vn a b C d e f g h k 1

a 3 0 9
"2 0 1

b 7 11
" 2 0 -5

[aj------- © -----

Set j/pi =

9
2
3
2’
OO,

3,
d - ^  “  -  2

- 0  ©  0 ^

the plenied forest

because of the edge (e^g)

there is no edge between +  labelled nodes with nonnegative reduced cost 

because of the pseudonode a

Make dual update and reduced cost update.

b(n) yb{n) n

reduced costs

a b g C d e f h k 1

a 3
2 a 0 -3 5

2

Pi
3
2 b 0 -7 13 

" 2

g 0 -3
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the planted foicst

dг = 
d2 =
ds =

1
2’
00 ,

3
2’
d = i

because of the edge (/, k)

there is no edge between +  labelled nodes wdth nonnegative reduced cost 

because of the pseudonode a

b(n) yb(n) n

reduced costs

a b g e f C d h k 1

a 1 a 0 -2 3

Pi 2 b 0 -8 -7

g 0 -4
e 2 e 0 1 -1

f 3 f -1 0

Set i/p2 =  0

-c'e =  
dг = 
¿2 = 
ds =

2
1, because of the edge (c, k)

00, there is no edge between +  labelled nodes with nonnegative reduced cost

1, because of the pseudonode a 

d = l
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b(n) yb(n) n

reduced costs

a b g e f k C d h 1

a 0 a 0 0 4

Pi 3 b 0 -10 -8

g 0 -6

e 1 e 0 0 2

P2 1 f 0 -2

k 0 -2

the equality subgmpb

The reduced cost of the edge e—(a,e) became 0. Thus the stage ends.

Stage 2

Choose another edge with negative reduced cost, let e=(b,f). Label the pseudonode 

Pi that contains b by - and its mate a by + . Since the edge (a,e) is in the equality 

subgraph, grow the alternating tree by using the edge (a,e). Label e by - and p2 by + .

the planted forest

Since b is contained in a +  labelled pseudode, we make primal change and following 

mini dual change.

d =  min{j/pi, -Cg} =  min{3, 7} =  3

b(n) yb(n) n

reduced costs

b g a c d e f h k 1

Pi 0 b 0 n 
- i -5

g 3 0 -3
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d =  min{y6, —c '} — miii{7, 7} =  7

53

n Vn

reduced costs

b g a c d e f h k 1

b 0 7 0 2

This is the end of stage 2.

Stage 3

Choose another edge say e=(f,g) with negative reduced cost. Label the pseudonode 

containing f, P2? by - and its mate b by +·

the planted forest

- c ' =  3
di = 2,

ds = 1,
d =  1

because of the edge (6, h)

there is no edge between +  labelled nodes with nonnegative reduced cost 

because of the pseudonode p2

b(n) yb{n) n

reduced costs

f k b a c d e g h 1

P2 0 f 0 0 -1 -1 -2

k 1 -1 1

b 1 b 6 1

the planted forest
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= 2

di = 1,
d2 = oo,

ds = 3,
d =

because of the edge (6, h)

there is no edge between +  labelled nodes with nonnegative reduced cost 

because of the pseudonode /

11 Vn

reduced costs

f b a c d e g h k 1

f 2 0 0 2 -1 1

b 2 5 0

Set 2/p3 =  yp^= 0

- <  = 1

di = 2 ,

d>2 = 00 ,

¿3 = 2 ,

d =

because of the edge (d, e)

there is no edge between +  labelled nodes with nonnegative reduced cost 

because of the pseudonode /

b(n) yb(n) n

reduced costs

f b h c d 1 a e g k

f 1 f 0 2 2 0 2

P3 1 b 0 4
h 0

C 2 c 2

P4 1 d 0 1 -2

1 3

The reduced cost of the edge e=(f,g) became 0. Thus stage 3 ends.
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Stage 4

We choose the edge e=(d,k). We label p4 by - and its mate c by +.

Set 2/p5 = 0

- 4  = 2
di = 1,
d2 = 1,
ds = 2,

d =

because of the edge ( / ,  e) 
because of the edge ( / ,  c) 
because of the pseudonodes ps,p4

b(n) yb(n) n
reduced costs

f g b h C d 1 a e k

P5 1 f 0 0 0 2 1

g 4 2 2

Pz 0 b 0
h 0

C 3 C 0 1

P4. 0 d 0 2 -1
1 4

T

thc«)ii3lily»ub|i.ph toplatuedforal

Set j/pg = = 0. After the dual update we get the optimal solution.
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b(n) yb(n) n
reduced costs

d c h b f g a e k 1

d 2 d 3 0 1

P7 1 c 0 0 0
h 0
b 0 4
f 0 1 0

g 1 1

And finally we solve the problem by applying our successive algorithm.

Successive Algorithm:

Initialization

Initially the primal surface graph and the set of hidden edges are empty. The dual 
surface graph is equal to the original graph except the odd degree nodes correspond to the 
pseudonodes. Xe = 0 for aU e and j/n = 0 for all n.

Stage 1

We choose a as a free pseudonode in the dual surface graph and label it by +.

the planted forest

= 1, because of

¿2 = 00, there is no

ds = oo. there is no
d =  1

2/a = 1 <e = 0

j a |v̂ vVvA*»v|"c~| 
the planted forest

The edge (a,e) enters into the planted forest. We made augmentation using the edge 
(a,e) and put the matched pair (a,e) together with the neighbour even nodes to the primal 
surface graph. Since there is no edge in the primal surface graph that violates the dual 
feasibility, the stage ends.
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primal surface graph dual surface graph

by +.

Stage 2

We choose another free pseudonode from the dual surface graph. Let it is b, label b

the planted forest

because of the edge (6, h)
there is no edge in the planted forest that joins two + labelled nodes, 
there is no pseudonode in the planted forest with - label.

d i  = 2 ,

¿2  = OO ,

d s  = O O ,

d  =

Vb =

' = 0

9̂

hh
' - 5

4 /  =  2

■. ------©

di = 2,
¿2  =  OO ,

3̂ — OO j
d ~ 2

because of the edge (6, / )
there is no edge in the planted forest that joins two + labelled nodes, 
there is no pseudonode in the planted forest with - label.

2/pi — 2
^6/ -  

nf —ĥc = 1
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the planted forest

We augment pi and f and remove the pair together with the adjacent even nodes 
from the dual surface graph and add to the primal surface graph.

primal surface graph

Stage 3

Since there is no path between c and d in the dual surface graph, we put an artificial 
matched edge between c and d with a high cost and put the matched pair into the primal 
surface graph. After making one primal stage over the primal surface graph we can obtain 
the solution.



Chapter 6

CONCLUDING REMARKS

In most of the cases, the real-hfe applications of the CPP are the large scale problems. 
Thus the parallel algorithms with the use of multiprocessors are very important for the 
goal of obtaining good solutions faster.

The main concern for this work was to develop an iterative algorithm that can 
exhibit parallelism. Having the same worst case time bound as the other algorithms in the 
literature, the successive algorithm can be thought of as a first step towards parallelism. 
It is parallel in a sense that, the primal and the dual steps can be concurrently done over 
the two disjoint subgraphs, the primal and the dual surface graphs. Beside this, the size of 
the alternating trees that the algorithm works on are small. These provide some speedups.

For the future research, there is a lot that has to be done. First, the successive algo­
rithm, together with the primal-dual and the primal algorithm, have to be implemented 
using the same data structures in order to test the efficiency of it. As a complementary 
research, the algorithm can be improved so that it will be parallel in a more efficient fash­
ion. Additionally, the variants of the algorithm that can handle the problems with multi 
postmen can be designed.
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