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ABSTRACT

SIMPLEX TABLEAU BASED APPROXIMATE PROJECTION
IN

KARMARKAR’S ALGORITHM

Yavuz Giinalay 
M.S. in Industrial Engineering 

Supervisor: Assoc. Prof. Mustafa Akgiil 
September, 1990

In this thesis, our main concern is to develop a new implementation of Karmarkar’s LP Algorithm 
and compare it with the standard version. In the implementation, the “Simplex Tableau” information 
is used in the basic step of the algorithm, the projection. Instead of constructing the whole projection 
matrix, some of the orthogonal feasible directions are obtained by using the Simplex Tableau and to give 
an idea of its effectiveness, this approximation scheme is compared with the standard implementation 

of Karmarkar’s Algorithm, by D. Gay. The Simplex Tableau is also used to calculate a basic feasible 
solution at any iteration with a very modest cost.

K eyw ords: Karmarkar’s LP Algorithm, Simplex Tableau.
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ÖZET

KARMARKAR’IN ALGORİTHMASINDA SIMPLEX TABLOYA 
BAĞLI YAKLAŞIK İZ DÜŞÜM UYGULAMASI

Yavuz Günalay
Endüstri Mühendisliği Bölümü Yüksek Lisans 

Tez Yöneticisi: Doç. Mustafa Akgül 
Eylül, 1990

Bu çalışmada, Karmarkar’ın Doğrusal Programlama Algoritmasının yeni bir uygulaması geliştirilmiş 
ve bu uygulama standart algoritma ile karşılaştırılmıştır. Uygulamadaki yenilik “Simplex Tablo” bilgisin­
den yararlanılmasıdır. Her iterasyonda projeksiyon matriksinin hesaplanması yerine “feasible” yönler 
Simplex Tablodan yararlanılarak bulunmuş ve bu yönlerin bir bölümü kullanılarak değer vektörünün 
yaklaşık iz düşümü hesaplanmıştır. Ayrıca, herhangi bir iterasyonda Simplex Tablo kullanılarak bir köşe 
noktasının ziyaret edilmesi çok az bir extra çaba gerektirmektedir.

A nalıtar kelim eler: Karmarkarhn Algoritması, Simplex Tablo.

IV



To my parents,



ACKNOWLEDGEMENT

I would like to thank to Assoc. Prof. Mustafa Akgiil for his supervision, guidance, 
suggestions, and patience throughout the development of this thesis. I am grateful to 
Prof. Halim Doğrusöz, Assoc. Prof. Osman Oğuz and Asst. Prof. Bela Vizvari for their 
valuable comments.

My sincere thanks are due to all of my close friends, both from Bilkent and outside, 
even from US, for their valuable remarks, comments and encouragement.

VI



TABLE OF CONTENTS

1 IN T R O D U C T IO N  1

2 N O TA TIO N  and LITERA TU RE REVIEW  2

3 K A R M A R K A R ’S A LG O RITH M  8

4 SIM PL E X  TABLEAU BASED APPRO XIM A TE PR O JE C T IO N  AL­
G O R IT H M  10

4.1 Simplex T ab leau ..............................................................................................  11

4.2 Projection onto N { A ) .....................................................................................  12

4.3 Stopping Criteria ...........................................................................................  13

4.4 The A lgorithm .................................................................................................  14

5 C O M PA R ISO N  and RESULTS 16

6 C O N C LU SIO N  18

A P R O O F  OF PO LY NOM IALITY OF THE K A R M A R K A R  ALGO­
R IT H M  19

B S T O P P IN G  C R IT E R IA  22

C RESULTS OF TH E T E S T  PROBLEM S 26

R E F E R E N C E S  31

vii



LIST OF FIGURES

2.1 The projective transformation from the unit simplex S  in onto itself.

C.l 29

C.2 29

C.3 30

C.4 30

vm



LIST OF TABLES

C.l Results of the problems of small size (50 x 100) with density 10%...............  27

C.2 Results of the problems of small size (50 x 100) with density 80%............... 28

IX



1. IN TR O D U C TIO N

Linear Programming is an optimization problem of a linear cost function over a convex 
polyhedra defined by a finite number of linear inequalities. The well known algorithm to 
solve the LP problems is the Simplex Method. Although Simplex Method is very efficient 
for the most real world problems, the worst case behavior is exponential, which makes it 
theoretically unsatisfactory. The recent polynomial time LP algorithm is demonstrated 
by N. Karmarkar [16] in 1984.

In this thesis, “Simplex Tableau Based Approximate Projection (STBAP) Algorithm”, 
an implementation of Karmarkar’s Algorithm, will be presented. Karmarkar’s algorithm 
is an interior point algorithm, and its most costly step is the calculation of a feasible decent 
direction in every iteration. In the STBAP Algorithm this direction vector is constructed 
approximately by projecting the cost vector over some of the orthogonal feasible directions. 
In most of the variants of the Karmarkar Algorithm approximate projection is utilized 
and the calculated vector may be an infeasible direction, because of the used approximate 
projection technique. But in the STBAP Algorithm the constructed direction is always 
feasible because it is the convex linear combination of some of the orthogonal feasible 
direction vectors. In order to calculate the orthogonal feasible directions, a Simplex 
Tableau of the problem is formed. But, in contrast to the Simplex Method it is not 
necessary to change it in every iteration. The tableau is changed in some iterations to 
keep the basis matrix well-conditioned. And these basis changes may cause an early 
termination of the algorithm with the optimum basis, instead of terminating due to the 
original stopping criteria which is very loose in most problems.

This thesis consists of 6 chapters. The next chapter contains the notation and litera­
ture review. In chapter 3, the Karmarkar Algorithm is discussed briefly. The suggested 
STBAP Algorithm is stated in chapter 4, and it is compared with the standard imple­
mentation of Karmarkar’s algorithm by D. Gay [10] in chapter 5. Last chapter is reserved 
for conclusion and further research suggestions.



2. NOTATIO N and LITERATURE REVIEW

In this thesis the following notation will be used.
• ) Unless otherwise specified, the upper case letters (e.g. Á) define matrices, and lower 
case letters (e.g. x) define one dimensional vectors of appropriate sizes.
• ) N{A) represents the null space of matrix A.
• ) Superscript ”T” is used to represent the transpose.

Since 1947, the most commonly used LP algorithm was the Simplex Method, which 
had been introduced by G.B. Dantzig [7]. Let P  be a Linear Programming problem in 
canonical form;

P) min c^x
s.t. A X < b

where y4 is a m x n matrix, b G and c,x E R^· The Simplex algorithm starts at a 
vertex of V=  {x G i?" : Ax  < b}, the feasible region of the problem P  and pivots
to a neighbor vertex of V  until the optimal solution is reached or it is proven that the 
problem is unbounded. Any vertex of V  can be defined by the intersection of n linearly 
independent hyperplanes. The number of vertices of V, i.e. the basic feasible solutions.

is bounded above with number of such intersection points, which is equal to
m
n

Since the maximum number of vertices is finite and pivoting requires O (n^) elementary 
arithmetic operations. Simplex Method is a finite algorithm if visiting a vertex twice (i.e. 
cycling) is avoided. But, it is not a polynomial time algorithm, which is also shown by Klee 
and Minty [19], Edmonds [8], Jeroslow [15] and many others, by generating special type 
of LP problems. Many scientists have worked on the variants of the Simplex algorithm to 
overcome the deficiency of this exponential running time complexity of the algorithm by 
applying different pivoting rules [4, 15, 12], using duality theory; Dual Simplex Method 
[23] or Primal-Dual Simplex Method [9]. Up to now, none of those studies have been 
succesfull.



In contrast to this exponential worst case behavior, the Simplex Method works very 
fast for most real world problems. A probabilistic analysis on Simplex Method was pre­
sented by K.H. Borgwardt [6] in his book. He proved that the expected number of the 
pivots is polynomial and this makes the Simplex Algorithm efficient in most real world 
problems. But, the idea of finding a polynomial algorithm to LP always attracted re­
searchers. In 1979 L.G. Khachian [18], a Russian mathematician, announced that the 
system of Linear Inequalities can be solved in polynomial time. His algorithm, which 
is named as “Ellipsoid Algorithm”, was designed to solve the feasibility problems, but 
it was easily modified to solve LP problems in polynomial time. The algorithm de­
pends on the idea of shrinking the ellipsoids. The problem is to search a feasible vector, 
X G V? = {x G jR" : Ax < 6 & — 2^ < Xi < 2^ i = 1,2, ..,n}, where b G and L is 
the bit size required to input the data. Initially, a large ellipsoid enough to contain 
the polyhedra (f is built. In each iteration, is shrinked such that the new ellipsoid, 

still contains y? and the volume of the ellipsoid is reduced at least a constant amount 
which does not depend on the problem data. If the center of E* is in <̂ , then the algo­
rithm terminates with the solution vector. Otherwise, the iteration are continued until 
the volume of the ellipsoid becomes less than a certain value with which one can claim 
that 9? is empty.

In 1984, a new polynomial time LP Algorithm was presented by N. Karmakar [16] at 
the Symposium on Theory of Computing, in Washington D.C. The algorithm was called 
the Projective Algorithm. He worked on the problem KP;

K P ) min c^x 
s.t. j4x =  0 

ê "x =  1 
X > 0

where A is a m x n matrix, b G , c, x G R”, and e G i?" is the vector of ones. 

With the assumptions:

i) c^x* =  0, where x* is the optimum solution vector of KP.

ii) KP has a nonempty and bounded feasible region, fCV.

iii) A  is full row rank.

iv) The center of the unit simplex S, ^e, is feasible.

The algorithm starts at an interior point, x° G /CP, and generates a sequence of new 
interior points, x^, x^, ...x*'. It stops when a stopping criterion is satisfied, c^x* < 2“^,



where L is the length of input data. In each iteration, the algorithm utilizes a projective
transformation, r ( .) , from simplex S  onto itself, such that the current interior point, x’, is
mapped to ^e, the center of the simplex, S. Simplex is the polytope defined by n+1 affinely
independent vectors in i?" and the unit simplex, ( 5 =  {x 6 jR" : e^x =  1 , a; > 0 } )
One can construct two spheres centered at with radii r and R, such that the small one
is contained in the simplex S  and the large one contains S i r — - , - —  L· R  = \ )^ * '' Vn(n-l) V n )
see fig. 2.1.

T ( .)

Figure 2.1: The projective transformation from the unit simplex S  in i?" onto itself.

If the current point is the center of S', then feasibility is always preserved by moving 
at most r units along a feasible unit direction p, i.e. p satisfies Ap = 0 e^p =  0 || p ||= 1. 
Then the algorithm is given as follows:

0) Initialization, =  0 , x° =  ^ e .

1) Optimality check. If c^x* < 2~^ STOP, otherwise continue.

2) Basic iteration.

i) B  =
AD

ii) Pn (b) = I -B '^ { B '^ B ) - ^ B

iii) p = Pn (b )D c

iv) 2/ =  i  e + , where a < r.

v) x*'+̂  =  where T(x,x*') =  jD is an n x n diagonal matrix
with diagonal entries are; Du =  xf.

vi) k = k + 1 and return to step (1).



Since our original cost function, c^x is not invariant under projective transformations, 
a somehow different cost function, named as “Potential Function”, /(c, x) = lo g (^ ) ,
which is invariant under such transformations is used. It is shown that, in every iteration 
at least a constant amount reduction, 6 which is independent from the problem data, in 
potential function is guaranteed. Using the stopping criterion which will be discussed in 
the next chapter, it is concluded that the number of iterations is O (nL). In each iter­
ation, 0  (n^) arithmetic operations is required to perform the matrix of projection onto 
the N{A). Those make the total time complexity of Karmarkar’s Algorithm o (tAL). In 
contrast to both, the Ellipsoid Algorithm and the Simplex Method, the round-off errors 
in each iteration is not accumulated in the Karmarkar algorithm, and this is a very good 
feature for the computer implementations.

After the presentation of Karmarkar, a large number of studies on the subject of the 
projective algorithm were published. Those studies can be classified in two groups :
i) those taking the advantage of the sparseness of the large scale LP problems [1, 24],
ii) those using approximate projection [3, 14, 21].

A well known variant of Karmarkar’s algorithm was reported by M.J. Todd L· B.P. 
Burrell [26], in 1985. They combined the duality theory with the interior point approach 
and used the dual variables to get an estimate for the optimum value, as a lower bound. 
This was a relaxation on the first assumption, and as a result of it, the variant could 
solve the problems with unknown objective values. Another practical improvement that 
they introduced was to generate the basic point solutions [not necessarily feasible) at any 
desirable iteration with a very modest extra cost.

A variant of the Karmarkar’s Algorithm for problems in standard LP form was intro­
duced by D.M. Gay [10], in 1987. The standard form LP is defined as;

SP) min (Fx
s.t. A X = b 

X > 0

where A, b, c, and x have the same sizes as in P. The variant requires no apriori knowledge 
of the optimal objective function value. It uses a similar approach with Todd and Burrell 
[26] to compute the more strict lower bounds for the optimal value. Besides the elimination 
of the first assumption, the variant works exactly as the original algorithm. It utilizes the 
exact projection, and it stops when the “gap” between the current objective value and 
the lower bound is reduced to e = 2“^.

In 1988, D. Goldfarb L· S. Mehrotra [13] reported a relaxed variant of Karmarkar’s Al­
gorithm. They used the similar LP family LP(z) with Anstriecher [3], for the transferred 
problem formulations.



L P(z) min (c — zdYX 
s.t. A X = 0 

e^x =  1 
X > 0

where d = the current iterate solution. The relaxed problem LP(z) is solved using 
approximate projection. The new iterate point is x̂ '̂  ̂ =  T~^{y, d) where y = e +
0 < Q' < 1 and p € jR" is a decent direction. They called (p, z) as an admissible pair if 

the following conditions are satisfied; i) A'p = 0 , e^p = 0 and p ^  0, 
ii) { c — zd ) (  e + ) < 0, where A' = AD , c = Dc and Z) is a n x n diagonal
matrix with D{i,i) = x,̂  i = 1,2, ...,n . Using a Congugate Gradient (CG) technique 
p = Z'w{c),  the decent vector, is generated approximately from the least square problem 
||Z'te(c") — c’ll where c” = {Dc — zd) , w{c)  G BA and Z' is the basis matrix of 
N{A!). Basic linear algebra knowledge gives us a simple representation of the basis of

, where B  and N  are the partitions of the matrix A.. Therefore,N{A) as Z =

Z' =
- D b^B-^

I

N D n where Db and Dn are the partitions of the diagonal matrix

D as D If the generated (p, z) pair is not admissible, then either a

/

Db 0
0 Dj^

more accurate projection vector p' is required, or a more strict lower bound z', where 
z < z' < z* is needed. If a CG technique is used, the more accurate projection vector 
p ' can be easily obtained by continuing on iterations on least square problem from where 
it was temporarily stopped, instead of recalculating it from scratch. Also, the updated 
lower bound z' = z A A  , A  > 0 can be calculated using the information of approximate 
CGLS solution.

Performance of the Karmarkar’s algorithm and its variants are highly dependent on 
the stopping criteria. One way of improving the stopping criteria is to identify the optimal 
basis as early as possible. Recent studies are mostly related with this early identification 
schemes. Gay [11], Kovacevic [22], Tapia [25] and Ye [28] use very similar techniques 
to form the optimal basis in their studies. The simplest one is due to Tapia and Zhang 
[2.5]. They define an indicator vector q, which is the diagonal entries of the matrix of 
projection to the row space of the constraint matrix, R(A). And it is stated that this 
indicator vector convergence to a 0 — 1 vector, which indicates whether the variable is 
nonbasic or basic at the optimum solution quadraticly faster than the convergence of the 
interior point solution to the optimum solution (i.e. — q*\\ < 0  (||.x  ̂— x’ lH ). These
stopping rule implementations will be discussed in the Appendix B briefly. Also, in the 
late seventies M.C. Cheng presented an early optimum basis identification scheme for the 
Simplex Method [29].



In 1986, M. Kojima [20] reported that it is possible to determine the basis of the 
optimal solution before the algorithm satisfies the stopping criterion. This reduced the 
number of iterations in some problems, but he could not manage to put a limit to the 
number of iterations. In the same year, Kojima &: Tone published a modified version of 
the Karmarkar’s Algorithm [21]. Besides the optimum basic variable test, they presented 
a test for nonbasic variables at the optimum solution, as well. They used approximate 
projection in this variant and obtained some good results.



3. K A R M A R K A R ’S ALGORITHM

The algorithm was announced at the Symposium on Theory of Computing by N. Kar- 
markar, in April 1984. In the worst case the algorithm requires o {n‘̂ L) arithmetic op­
erations, where n is the dimension of the problem and L is the input data length. The 
algorithm works on the special type of LP problems over rational data, call it K P (defined 
in Chap. II). After the projective transformation T{x,d) = gT£)-i  ̂ iii the image space an 
equivalent problem K P is defined as;

K P ) min -Tc^y
s.t. Ay = 0 

e^y =  1 
i/ > 0

where c =  Dc , A =  AD, and D is diagonal matrix with Da = d, and d € int(ICV), 
i.e. an interior point of the problem KP. The potential function which is invariant under 
projective transformation is defined

n
$(c, x) = n  log c^x — ^  Iog(a;j) 

i=i

and in the image space $(c, y) = $(c, x)-\-\og[Det{D)], where y =  T(x, d). This invariance 
will lead the number of iterations in the algorithm be polynomial, if at least a constant 
amount reduction in the potential function is guaranteed in the image space.

Theorem 1: For a G (0,1) , there exist a 8[a) > 0 such that.

$(c,?/) -  $(c,e) < -8{a) ,

where e =  -e  and y = e — arn
Pc

The proof of theorem 1 is given at the Appendix A in details. Using this main result, 
the following theorem concludes that the algorithm has a polynomial time complexity.

8



Theorem 2: Let n be the dimension of the problem K P and L be the input data length. 
Under the given assumptions in Chap. II, Karmarkar’s Algorithm will obtain an interior 
vector X satisfying

c^x < 2~^ ( 1)

in at most O (nL) iterations.

Proof: Let us start with the interior vector, a;° = e. After k iterations we get another 
interior point a;̂ , and a k8{a) reduction in potential function. So,

$ (c ,x * )-$ (c ,e )  < -kS{a)

Using the definition of potential function

n log ^  log X* + n log n -  kS{a)
i=i

Or,

where Kq =  nc^e =  YJj-i cj and for k = o {nL) Equation 4 becomes,

c^x^ < e~^ < 2~^

(2)

(3)

(4)

□  .

Moreover the stopping criterion guarantees us that any basic feasible x vector satisfies 
c^x < c^x will be an optimal solution to the problem K P. It is a very well known fact 
that calculation of the projection matrix P  in each iteration is of O {n^). This concludes 
that the Karmarkar’s Algorithm is a polynomial algorithm, and its worst case bound is 
of the O {n*L). But in most variants this is reduced to O using approximation
techniques in the step (2 ii). Depending on the implementation the algorithm could run 
even 50 times faster than the Simplex Method for large scale problem instances [1, 17, 24].



4. SIM PLEX  TABLEAU  BASED A PPRO XIM ATE  

PR O JE C T IO N  ALGORITHM

In this chapter, a new variant of Karmarkar’s Algorithm, Simplex Tableau Based Ap­
proximate Projection (STBAP) Algorithm will be discussed. As its name implies, this 
variant uses approximation in calculating the projection matrix like many other variants 
of Karmarkar Algorithm. In STBAP Algorithm, the Simplex Tableau (ST) information 
is embedded into the approximation rule. Also, an early termination with an optimum 
ST is another advantageous feature of the algorithm.

Our algorithm works on the canonical form LP problems 
L P min c^x

s.t. Ax  =  h
X >  0

with the following assumptions:

i) LP has an optimum value of zero.

ii) Constraint matrix, A  is of full row rank.

iii) The center of the unit simplex in RP· is feasible.

In order to convert the problem LP into K P  and be sure that it satisfies all the as­
sumptions, the A  and c matrices change, and the new problem LP is:
LP min c^x

s.t. Ax =  0
X > 0

where =  [c^, —z*], z* is the optimum objective value of LP, A = [A, —6] and x € 
with x\:n =  X and x„+i =  1 (constant). Since x„+i has to be fixed to one, the inverse trans­
formation is defined as; T~^{y,d) = where d and D are defined in the previous

10



chapter. In LP, there is no constraint as e^x = 1, because after the transformation T(.), 
the equivalent problem K P  in Y-space (image space of the transformation T(.)) always 
satisfies the constraint, e^y = =  1, and the optimum value of the problem LP

z* = 0). After the formation of the problem LP, the ST of theis zero (c·“®* =  c^x(
problem is constructed by using a partition of constraint matrix, A = [jB, N] where B  is 
a nonsingular square submatrix of A.

4.1 S im plex Tableau

Since K P  has a special structure, ST looks different than the ones in the Simplex Method. 
There is no need to carry the “rhs” vector and to calculate the objective value, since 
“rhs” is a vector of zeros and the basis is not necessarily feasible. Thus, the “rhs” column 
(i.e. the last column) of the original tableau can be eliminated. Therefore, the built ST 
occupies a place of (m + 1) X (n +  1) instead of (m + 1) x (n + 2) in the memory. Due 
to the construction of K P  from LP, the first element of the last column of the ST gives 
the gap between the optimum value and current basic solution’s objective value, and the 
remaining elements in the last column represent the current basic solution in opposite 
sign.

ST )
cn — cbB —z* -|- cbB ^b

B -^ N - B - H

where cb and Cjv are the appropriate partition of the cost vector, c with respect to the 
partition of A.
R esults:

1. The current basis is feasible if and only if the last column of the ST is non-positive.

2. The current basis is optimal if and only if both:

i) the last column of the ST is non-positive,

ii) the first row of the ST is non-negative.

which means, the last element of the first row is equal to zero. This makes sense, 
because if the basis is optimal then Xg = B~^b , cb^ b ~  CBB~^b = z*.

In order to transform ST into the image space, Y-space, replace B  by B D b , N  by 
NDj\f, Cb by cbDb and cyv by cnD^.  Since Xn+i = 1, there is no need to modify b. Then

11



STy looks somehow different but it gives exactly the same information, because both Db 
and Dn are positive diagonal matrices.

S T y ) (cyv — cbB ^N)Dn

Db ^B-^ND n

- z ·  + CBB-'^b
-Dg^B-^b

Again the same results are valid for the STy. STy has the same space requirement and 
time complexity in build up as the original ST used in the Simplex Method; space(STy) 
is O (mn) and time(STy) is 0  {rn^n). STy has to be updated in each iteration due to the 
changes in matrices Db and and this updating is O (mn) simple multiplications. 
Besides these regular updates, in some iterations the basis is changed to ensure the basis 
matrix, B D b be well-conditioned.

Since approximate projection is utilized, in some iterations the constructed direction is 
not admissible (i.e. it could not guarantee the minimum reduction 6 in potential function), 
and exact projection is required. In order to prevent the bad effects of the ill-conditioned 
basis matrix over the constructed decent direction, the basis representation of N(A)  is 
changed (i.e. the basis of the ST), before the exact projection. This ST change means 
that a new basic feasible solution is reached. First, it is checked whether it is the optimum 
solution or not. If the optimum basic feasible solution is not reached, a new interior vector 
is found via line search over the potential function between the current solution and the 
new basic solution. This type of tableau update is O (n^m). For assuring the numerical 
stability the pivot rule used in finding the basic solution is different than the one in the 
Simplex Method.
T he pivot ru le  is:
Since the current solution is strictly positive, while entering a nonbasic variable into the 
basis it is possible to decrease it as well. Therefore, every nonbasic variable enters the 
basis ones, by increasing or decreasing its value. For the leaving variable, among the 
variables with non-zero entries in ST at the required column (i.e. the column of the 
entering variable) choose the one which has the smallest value in the current interior 
solution, so that the basis matrix will be kept well-conditioned.

4.2 P rojection  onto N{A)

In each iteration of the Karmarkar’s algorithm, the transformed cost vector in Y-space 
have to be projected onto the null space of constraint matrices in Y-space to get an 
admissible moving direction, p — Pĵ ^̂ ad^Dc . If the exact projection is applied to the
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vector Dc the direction is:

P = I - D A ^ \ A D ^ A ^ ) - ^ A D -  —
ee
n Dc

Let M  =  DA'^(AD^A^)~^AD, then AIDc is the costly term of the calculation of the 
direction vector, p. It requires O (n^) arithmetic operations whereas the other terms 
require O (n).

Since in each iteration the D matrix changes, M  has to be recalculated, and its time 
complexity directly effects the overall performance of the algorithm. Therefore several 
methods, like Least Square, Chelosky Factorization, etc... are used to calculate the MDc  
approximately, and reduce the time complexity of the algorithm.

The STBAP Algorithm also utilizes approximate projection, but contrary to most 
approximation techniques the scheme used causes only very small round-off errors, like 
the implementation of Goldfarb & Mehrotra [13]. Because the idea is not to approximate 
the space, A^(A), but to use a proper subsection of it, r)(A) C N{A).

Let p = (I  — M)Dc  , then another representation of the direction vector is ; 
p =  ZZ^Dc^ where Z is n orthonormal basis of N{A). The simplex tableau basis of

- D I ^ B - ^ N D n and it is orthonormalized by Gram-Schmidt tech-N(AD) is Z =
1

nique to form Z. One can calculate the exact projection over Dc using the whole 
nullspace basis, Z. In the case of approximate projection a subset of the basis vec­
tors is used. Basis vectors are the columns of Z  i.e. z*. Then the approximate direc­
tion is; p = ZkZjDc,  where Zk = {z' : i £ Ik } , and 0 < < 1 is the approxima­
tion coefficient, and h  C {1,2, ..,n — m}. In the implementation Ik is chosen such that ;
I k  = {i : i = i i ,  , \cji\ > \cj2 \ > ... > |cj;| > ... > |cj(„_„,)| , I = [A:(n -  m)J }, where 
C{ denotes the reduced cost of variable i. Therefore, p =  z'z''^Dc is the direction
calculated in a k-approximate projection iteration which has a time complexity of 0  {Pn).

4.3 Stopping Criteria

The STBAP algorithm terminates due to the “Simplex Tableau Test” (STT) or the orig­
inal stopping criteria which is also utilized in the standard Karmarkar Algorithm imple­
mentation as well.

The algorithm is stopped by STT if the current ST basis is the optimum basis. STT 
gives a positive answer if i) the first row of the ST is nonnegative, ii) the last column of 
the ST is nonpositive.
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4.4 T he A lgorithm

In the previous section the termination of the algorithm is discussed. But in order to 
commence the iteration a strictly positive solution vector, x° is required. In the algorithm 
this difficulty is solved by using the “Big-M” method. First, the dimension of the problem, 
n is increased by one. Secondly, the constraint matrix and cost vector are modified as; 
A = [A, b — Ae] , c = [c, AI] where M e i? is very farge number. Then = e G is 
a strictly positive solution to the new problem, and it releases the assumption (iii). Since 
AI is very large at the optimum solution, x*^j = 0.

After the conversion of the problem into LP, the algorithm starts with the initial 
interior point, x° = e and a partition of the constraint matrix, PA = [B, Â ], where B 
is any nonsingular m x m submatrix of A  and P  is a permutation matrix, which will 
be ignored throughout the section. Using the partition initial ST is constructed and its 
optimality is checked by STT. Unless the optimum basis is attained the iterations are 
commenced. STy is built using the current interior solution, x*. Then, approximate 
projection scheme is applied to the Dc vector and a feasible direction, p in Y-space is 
calculated. The feasible direction is first tested if it is a decent direction by calculating 
the directional derivative of the potential function at the center of the simplex. If it is 
a decent direction, the step size, a  along the direction via line search is found, and the 
reduction at the potential function due to the decent direction with the found step size 
is calculated. If the reduction is above a preset value, in the implementation it is taken 
bmin =  0.1, the new iterate point in Y-space, y = e — arp a G (0 ,1) is back transformed 
to get the next interior solution, x*"*·̂ . Then the next iteration starts.

But, in the case where at least one of the two tests fail; i) the basis changes by means 
of the pivoting rule defined in the “Simplex Tableau” section and the new basis is checked 
for optimality by STT, ii) if the optimal basis is not achieved an exact projection scheme is 
done in the next iteration. Then the algorithm continues on iterations using approximate 
projection again.

The itemized structure of the STBAP Algorithm is given as follows:

0) Initialization. Choose a nonsingular basis of the constraint matrix, A. If it is the 
optimal basis, STOP
else, set A: = 0 , flag = 0 and start iterations.

1) Calculate the STy.
If flag = 0 goto (2), 
else goto (3).
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2) Approximate Projection. Using the reduced cost information, select a subset of 
feasible directions, and project the cost vector onto the subspace defined by the 
chosen directions, p = Papp Dc .
Goto (4).

3) Exact Projection. Using the ST calculate the orthogonal basis of the N(AD)  and 
the projection matrix Pn (ad)· Project the cost vector onto N{AD), p = Pn (ad) Dc

4) Project p onto N ( e ^ ) , p = P;v(er)P and calculate the directional derivative due to 
p at point ^e.
If the directional derivative is negative, goto (6).

5) Using ST find a basic solution (bfs) which has a better objective value than the 
current interior point, a:*'.
Apply STT; if it is the optimal basic feasible solution (bfs), STOP
else i) find a better interior point via line search between the current point and the
found bfs; ii) set flag = 1 goto (1).

6) Calculate the step size, a  and find the new interior point,
xkJrX _   ̂ xky A: =  +  1 and goto (1).
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5. C O M PARISO N and RESULTS

In order to compare STBAP Algorithm with the standard version of Karmarkar’s Algo­
rithm, two computer programs were coded in C language. The implementation by D. Gay 
was chosen as the standard Karmarkar Algorithm. In both codes the same data struc­
tures were used (i.e. neither of them utilize the sparsity or structure of the problem and 
no preprocessing was done in both of them). Test problems are randomly generated in 
laboratory. The generated problems are in two different densities, 10% and 80%. First, A 
matrix is built via the given density by random numbers generated between —10 and 10. 
Then the rhs vector is calculated as 6 = Ae, so that problem is always feasible and satisfies 
the assumption (iii). The cost coefficients are calculated between the limits —99 and 99 
with a density of 40%. In order to construct the LP problem, the value of the generated 
problems re calculated by using MINOS 5.0 on Data General MV 2000 mainframe. And 
for the computations the Sun Workstations were used.

The results of both algorithms are stated in the tables 1-2 and figures 1-4 at Appendix 
C. In the tables the following abbreviations are used. “App. Percent” : Percentage of 
approximation, lOOfc {k is the approximation coefficient). of ST change” : Number of 
basis changes during the algorithm. “7̂  ̂of Exact Proj.” : Number of iterations that exact 
projection scheme is done. “Total iter.” : Total number of iterations. “Termination” : 
In termination the stopping criteria; CS means optimum ST cause the termination, G 
means the gap between the optimum and current objective value is less than e =  1 x 10~®, 
IL l & IL 2 are used for termination due to iteration limit with a success or a fail to get the 
optimum, solution respectively. Where the iteration limit is taken as 51. The results due 
to the 100% approximation form the class of problems solved by the standard Karmarkar 
Algorithm.

If the completion times are compared (see the figures 1 L· 2), STBAP algorithm seemed 
to be advantageous for all the approximation schemes. This big difference is due to the 
time spend on calculation of the whole projection matrix in the standard implementation, 
whereas it is rarely calculated in the STBAP algorithm. In the last two figures, the total 
iterations and the number of iterations with exact projections (EP) are given. In terms
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of the iterations, the low (10%) app. and the high (75%) app. schemes have closer total 
iterations to the standard implementation. As expected, the number of EP iterations de­
creased as the approximation coefficient k, increase. Because the approximated projected 
vector is closer to the exact projected vector as the approximation coefficient increases, of 
course the time per iteration increases as well. The best approximation scheme is seemed 
to use a low approximation coefficient (less than 20%, like 10%).
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6. CONCLUSION

In this study, it is tried to use the Simplex Tableau information in the implementation of 
Karmarkar Algorithm. Two computer programs are coded in order to compare this imple­
mentation with the standard implementation by D. Gay. The results of the comparison 
between the STB A P Algorithm and the standard Karmarkar Algorithm implementation, 
shows that the idea of embedding the ST information into the interior point algorithms is 
promising. Therefore, a better computer code of the algorithm is needed to carry on the 
studies over the large scale problems. Also, the first assumption that the optimum value 
of the problem is zero has to be relaxed.

In the future, the possible research topics are:

• Investigate the best frequency of the basis changes in ST.

• Cooperate the stopping criteria discussed in App. B with the STRAP Algorithm 
and find the most compatible one with the algorithm. •

• Is it applicable to use a size reduction scheme in the STBAP Algorithm?
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A. PRO O F OF Pi;LYNOM IALITY OF THE  

K A R M A R K A R  ALGORITHM

It is the bound on the number of iterations which makes the algorithm polynomial. In 
this section we will try to investigate why the algorithm stops in at most o{nL) iterations 
[2]. The stopping criterion is:

<  2 "^

For simplicity I will use c , e , P instead of c , , and projection onto the null space
of B , Pn {b) matrices, through out this section.

Lemma 1: Let X  = e + N{B) = { r 6 : Ax = 0 , e^x =  1}. Then G N{B) s.t.
G u ^  X  , c^e ^  c^ti.

Proof:
Wx £ X  X = e P Xo Xo ^ (1)

VXo G (? X = <F{PXo) =  {(FP^)Xo =  (Pc)^xT d T\ (2)

Therefore,
X = c" e +  {Pc)^x° 'ix £ X (3)

Since the feasible region in the image space is contained by the ball B{e,R)  in X ,  and 
—Pc is the minimizing direction in Biß, R) projected onto X ,  for the function f (x)  = c^x,

Pc
/ (  e — Ru ) < f{x*  ), where u =

Or, c^e — R(Pc)^u < c^x* =  0, by eqn. 3 . 
Since R = < 1 3.nd (Pc)'^u c^u > 0 ,

19



c^e — (p-u < c^e — Rc^u < 0

7̂  — 7^c e < c u

□  .

(4)

Lemma 2: For ||a;|| < /? < 1, we have the inequalities,

X — 2(1 -/? )2 < log (1 + x) < a: . (5)

Proof: Let F[t) = log (1 +  i) . By the Taylor’s theorem,

F(t) = F(0) + F '(0)i + ^F"{0)F for some\e\ e (-/3,

Then
log(l + t) = t -

2(1 + 0)2

Since 1 + 0  > 1 — P and 2{i+e)'  ̂ — from the equality

Ft - 2(1 +  0)2 < log (1 + i) < t

□ .

Theorem 1: For a G (0,1), there exist a 0(a), depending only on a  such that,

$(c,y) -  $(c,e) < 0(a) (6)

Pc _ 1 .Proof: Putting y = e — au  , u = ---------, e =  -  e into the LHS,
\\Pc\\

where a < r = ^ for  n >> 1.

$(c, y) — #(c, e) =  n log(c^e — 6t<Pu) — ^  log(e — au)j
i= i

n 2
-n log c^e -

j i  ni= l

= nlog
< T -   ̂ T \ ne — ac^ u '

c^e
— ^  log(ne — nau)j 

i= i

By lemma 1,

nlog
< T- A T >e — ac^ u 

P ' e
< nlog(l — a)

(7)

(8)

(9)
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^  log(ne -  nau)j = log(l -  ащ) 
j=i j=i

Using lemma 2 and changing a  by Equations 9 and 10 turn out to be;

fc^E — a c^u \
n log I ------ 7WZ----- I < —Oic^e

a^Uj
- Y l o g ( n e - n a u ) j  < Y  ~o^uj + Л2

Since auj < and и G N(e^) is an unitary vector Equation 12 becomes,

^  < Y-OCUJ +
a^Uj

4,2

< Q
2(1 — o:)̂

Put Equations 11 and 14 into Equation 8,

Ф(с,?/) -  Ф(с,ё) < -¿ (а )

where <5(a) =  a  -  >  0.
□ .

(10)

( 11)

( 1 2 )

(13)

(14)
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B. ST O PPIN G  CRITERIA

In this section, some of the stopping criteria rules by D.Gay [11], V.V.Kovacevic-Vujcic 
[22], Y.Ye [28] and Kojima [20] will be discussed. The rule by R.A. Tapia [25] was stated 
in chapter 4.

M. Kojima [20] stated a sufficient condition for a variable of a LP to be a basic variable 
at all optimum solution. He worked on the canonical LP for Karmarkar’s algorithm, KP. 
The proposed conditions are:

• rank = m + 1, for A

• a;* G int{}CV), where int(fCV) is used to indicate the set of interior points of problem 
KP.

• > 0.

• c^x* < 0.

where (x*) is a sequence of vectors in and x* is the optimum solution vector.

Indeed, these conditions are satisfied by the sequence of interior points (x*̂ ), generated 
by any proper variant of the Karmarkar Algorithm. Then, the test is:
For i = 1,2, ..,n  define the piecewise linear function g* : R ^  R  
s.t.

g'{n) =  min |c^ + i  ^

where P' denotes the column of the projection matrix, P  and d’ = PDc.
Suppose that

g'{p) > 0 for  some ^ > 0 , 

then X,· > 0 for any optimum solution.
The proof is given in the related paper by a contradiction. It is stated that the test is not 
effective for the first k iterations and the value of the k can be estimated by intuition.
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V.V. Kovacevic-Vujcic [22] proposed a sequence of vectors (i*) related to the sequence 
(x^) generated by an interior point method have a higher degree of convergence to the 
optimum solution x* than the original interior point solution (x^). It is stated that 
different interior point methods share the same property that the normalized sequence of

lt+1 kthe search directions ^Txk+iZcTxk converges to the same direction.

Let us consider the Karmarkar’s canonical form problem, KP with his assumptions^ 
and a sequence of interior points, (x*). If (x*) satisfies the following conditions:

• x ’̂ E int(fCV) A; =  1,2,...

• x*·*·̂  x^ A: =  1,2,...

• limfc_̂ oo 3;* =  X, where x £ KP.

• limjt-
.*+1 -k

=  Sfc->oo

• 3 r  > 0 s.t. X — ts > 0 , 0 < t < T

then the procedure of generating the auxiliary sequence (x*') is:

+  - I * )  ¿ =  0,1,...

where a* =  min   ̂ — xf < 0 i = 1,2, . . ,n |.

D. Gay presented a method based on the “complementary slackness” idea for finding 
the optimum basis. Let P  and D defines the primal aind dual problems respectively.

P  =  min{c^x : Ax = b , x > 0}

D = {b'^y : A^y < c}

and the dual slacks are;
s = c — A^y > 0 .

Then the complementary slackness conditions imply for the primal and dual optimal 
solutions, X* and s*;

x*^s* = 0 .

The triple (x,y, s)  is called “strict complementary triple” if x + s > 0, besides the third 
equation.

Using the above definitions, the stopping test for a primal-dual problem pair (P, D) 
which have a strict complementary triple is to search for a basis;

În the original paper both the problem and the vector sequence are in general form
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B = {1 < i < n : limyt_oo 7̂  =  °°} =  ̂ linifc—oo ^  =  0}. This test is very
suitable for the primal-dual algorithms.

In the implementation a small enough threshold value, r  > 0 has to be decided so 
that  ̂ B  = {i : ^  "t} will give the optimum basis at iteration k. The crucial point is
the problem dependence of the the threshold value, r. This difficulty could be solved by 
rescaling the constraint matrix, A.

Y. Ye proposed a built-down scheme for both the Karmarkar Algorithm and the Sim­
plex Method. This is a size reduction procedure applied to the problem until the size 
reduced to rank(A) = m  (in case of non degeneracy), i.e. the optimum basis is reached. 
The scheme commences with the “optimum basis candidate” set, which is all the columns 
of the constraint matrix, A  at the beginning. Then the columns are monotonically elim­
inated via a special pricing rule. The pricing rule is based on the ellipsoid theory. The 
dual ellipsoid that contains all the optimal dual slacks is searched, and using the comple­
mentary slackness conditions:
s*x* =  0 Vi < n, one can identify the nonbasic variables at any optimal solution.

For the primal-dual pair (P  — £>), with the assumptions of Karmarkar, let’s define 
the transformed primal problem, P;

P  = ra in {^x  : Ax = 0 x > 0}

where A = [A, —6] and =  [c^, —z*] with z* is the optimum value of the problem P. 
Thus, the optimum dual slacks set is defined as;

P *  =  {s*  G  : s* =  c - A ^ y ,  y e R ^ }

M.J. Todd [27] derived that the ellipsoid that contains all the optimum dual slacks is;

||Ps*|p <  (e^Ps*)2 =  ( c V - z * ) 2

where D is the diagonal matrix defined by

diag(x^) 0
D =

0 1

We know that in any optimum dual solution the slack variable 5* > 0 implies that x* is 
nonbasic in any primal solution. Therefore, the minimum value of every slack variable 
has to be calculated. Indeed, one has to solve the following optimization problems for 
i =  1,2, ..,n.

E O P) min. Si
s.t. s = c — A^y

||Z)3|| <
where = (c^x* — z*).
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If the minimum value of the problem E O P is positive for some i, then the corresponding 
variable in primal problem, a;,· is nonbasic in any optimum solution. Thus the column 
of the constraint matrix can be eliminated from the “candidate” set.
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C. RESULTS OF TH E TEST PROBLEM S

In this section the results of the both algorithms and the graphs demonstrating the per­
formance of different approximation schemes are given. In the tables the following ab­
breviations are used. “App. Percent” ; Percentage of approximation, 100^ (k is the 
approximation coefficient). of ST change” : Number of basis changes during the 
algorithm. of Exact Proj.” : Number of iterations that exact projection scheme is 
done. “Total iter.” ; Total number of iterations. “Termination” : In termination the 
stopping criteria; CS means optimum ST cause the termination, G means the gap be­
tween the optimum and current objective value is less than e = 1 x 10“®, IL l L· IL2 are 
used for termination due to iteration limit with a success or a fail to get the optimum, so­
lution respectively. Where the iteration limit is taken as 51. The results due to the 100% 
approximation form the class of problems solved by the standard Karmarkar Algorithm.
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Problem App. Percent #  of ST  change Exact Proj. Total Iter. Time(min.) Termina
5 30 15:43 cs
5 27 15:38 cs
4 14 12:01 cs
6 35 18:14 cs
5 22 14:35 cs
6 27 16:50 cs
5 25 17:12 cs
6 20 17:05 cs
6 27 17:06 cs
6 27 17:20 cs
4 51 17:40 ILl
4 41 17:48 ILl
5 48 17:15 cs
5 51 22:21 ILl
5 25 20:19 CS
5 32 19:25 cs
4 30 18:45 cs
5 51 20:10 ILl
4 34 15:06 CS
3 50 16:01 CS
2 43 16:48 cs
2 39 16:16 cs
3 46 19:06 cs
3 51 20:14 ILl
3 45 18:42 CS
2 42 16:33 cs
2 23 13:55 cs
3 51 20:25 ILl
2 36 15:01 CS
3 51 21:05 ILl
1 19 14:25 CS
2 21 17:08 CS
2 32 22:20 CS
3 31 23:04 cs
3 30 20:41 cs
2 26 17:00 cs
2 31 21:33 cs
3 38 27:56 cs
1 35 21:29 cs
3 36 24:58 cs
17 17 43:04 G
14 14 36:14 G
22 22 56:24 G
16 16 37:41 G
20 20 50:30 G
18 18 46:44 G
19 19 48:10 G
18 18 38:22 G
18 18 42:24 G
16 16 39:54 G

Prob. 1 10
Prob. 2 10
Prob. 3 10
Prob. 4 10
Prob. 5 10
Prob. 6 10
Prob. 7 10
Prob. 8 10
Prob. 9 10
Prob.10 10
Prob. 1 25
Prob. 2 25
Prob. 3 25
Prob. 4 25
Prob. 5 25
Prob. 6 25
Prob. 7 25
Prob. 8 25
Prob. 9 25
Prob. 10 25
Prob. 1 50
Prob. 2 50
Prob. 3 50
Prob. 4 50
Prob. 5 50
Prob. 6 50
Prob. 7 50
Prob. 8 50
Prob. 9 50
Prob.10 50
Prob. 1 75
Prob. 2 75
Prob. 3 75
Prob. 4 75
Prob. 5 75
Prob. 6 75
Prob. 7 75
Prob. 8 75
Prob. 9 75
Prob.10 75
Prob. 1 100
Prob. 2 100
Prob. 3 100
Prob. 4 100
Prob. 5 100
Prob. 6 100
Prob. 7 100
Prob. 8 100
Prob. 9 100
Prob.lO 100

6
6
4
7
6
6
6
6
6
6
4
3 
6
4 
6
5 
5 
4 
4 
4 
3 
3 
3 
3 
3 
3 
3 
3 
2 
2 
2 
2 
3 
3 
3 
3
3
4 
2 
4

Table C.2: Results of the problems of small size (50 x 100) with density 80%.
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