-

View metadata, citation and similar papers at core.ac.uk brought to you byﬁ" CORE

provided by Bilkent University Institutional Repository

SOLUTION OF FEASIBILir/ PROBLEMS
VIA NON-SMOOTH OPTIMI2.ATIO M

Am €cC 5¢
it A s f Sarears.oy «an *-CHOACA WT2l 3 w2 Y *e2 A - r_iw. A~ Y t
PR s s B RS MK 3 E AT e R e i T Ydiw 2t s
- A2 -5, § j" & .ft‘l" H 7
A= 3ntfA a\ TR (Ee e 2w F BblOiLLEEALL i

|
A %_’E T o
KL gioo> e i sl P
Wl A

https://core.ac.uk/display/52927725?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

SOLUTION OF FEASIBILITY PROBLEMS
VIA NON-SMOOTH OPTIMIZATION

A THESIS
SUBMITTED TO THE DEPARTMENT OF INDUSTRIAL ENGINEERING
AND THE INSTITUTE OF ENGINEERING AND SCIENCES
OF BILKENT UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF
MASTER OF SCIENCE

By
Iradj Ouveysi
December, 1990

IH

Jb4
)92
1990

51992

(© Copyright December, 1990
by
Iradj Ouveysi

il

I certify that I have read this thesis and that in my opinion it is fully ade-

quate, in scope and in quality, as a thesis for the degree of Master of Science.

Associate Prof. Dr. Osman gJguz (Principal Advisor)

I certify that I have read this thesis and that in my opinion it is fully ade-

quate, in scope and in quahty, aga thes1s f the degree of Master of Science.

%A \/\J

Assocmt\\Epef Dr. ustafa Akgil

I certify that I have read this thesis and that in my opinion it is fully ade-

quate, in scope and in quality, as a thesis for the degree of Master of Science.

K Prof. Dr{ Halim Dogrusoz

I certify that I have read this thesis and that in my opinion it is fully ade-

quate, in scope and in quality, as a thesis for the degree of Master of Science.

MAG L~

Prof. Df. Akif Eyler

I certify that I have read this thesis and that in my opinion it is fully ade-

quate, in scope and in quality, as a thesis for the degree of Master of Science.

-~

.\/_,;7-) < EA _.“\-——\

Associate Prof. Dr. Péter Kas

Approved for the Institute of Engineering and Sciences:

Prof. Mehmgt Baray
Director of Institute of Engineering and Sciences

111

ABSTRACT

SOLUTION OF FEASIBILITY PROBLEMS
VIA NON-SMOOTH OPTIMIZATION

Iradj Ouveysi
M.S. in Industrial Engineering
Supervisor: Associate Prof. Dr. Osman Oguz
December, 1990

In this study we present a penalty function approach for linear feasibility problems. Our attempt is to find
an eilecilve algorithm based on an exterior method. Any given feasibility (for a set of linear inequalities)
problem, is first transformed into an unconstrained minimization of a penalty function, and then the
problem is reduced to minimizing a convex, non-smooth, quadratic function. Due to non-differentiability
of the penalty function, the gradient type methods can not be applied directly, so a modified nonlinear
programming technique will be used in order to overcome the difficulties of the break points. In this

research we present a new algorithm for minimizing this non-smooth penalty function.

By dropping the nonnegativity constraints and using conjugate gradient method we compute a maxi-
mum set of conjugate directions and then we perform line searches on these directions in order to minimize
our penalty function. Whenever the optimality criteria is not satisfied and the improvements in all direc-
tions are not enough, we calculate the new set of conjugate directions by conjugate Gram Schmit process,

but one of the directions is the element of subdifferential at the present point.

Keywords: Non-Smooth Optimization, Nonlinear Programming, Linear Programming, Feasibility

Problem, Penalty Function.

iv

OZET

”FEASIBILITY” PROBLEMLERININ COZUMUNDE YENI BIR
CEZA FONKSIYONU METODU

Iradj Ouveysi
Endtstri Mihendisligi Bolimii Yiksek Lisans
Tez Yoneticisi: Dog. Osman Oguz
Aralik, 1990

Bu ¢aligmada, dogrusal uyumluluk (feasibility) problemleri igin, ceza fonksiyonu yontemine dayali yeni bir
yaklasim sunuyoruz. Amacimiz, digsal metod ilkesiyle galisan etkili bir algoritma bulmaktir. Gelistirilen
bu yaklasimda, ilk olarak, herhangi bir dogrusal uyumluluk problemi (bir lineer esitsizlikler kimesi
i¢in) , simirlandirilmamyg bir ceza fonksiyonunun minimizasyonu problemine doniigtiirilir. Bunun so-
nunda ; digblikey, kirikhi (non-smooth) ve ikinci dereceden bir fonksiyon minimizasyonu problemi ortaya
¢ikmaktadir. Ceza fonksiyonunun tiirevinin ahnamamas: nedeniyle (non-differentiable) direkt olarak,
diigtim (gradient) tipi metodlar uygulanamaz. Kink noktalarin yarattigi bu zorluklarin iistesinden gelmek
i¢in, dogrusal olmayan geligtirilmis (modified) bir programlama teknigi kullamlmistir. Sonug olarak, bu

aragtirmada, sézkonusu kirikh ceza fonksiyonunun minimizasyonu i¢in yeni bir algoritma sunuyoruz.

Bu algoritmada, negatif olmama (non-negativity) kisitlayicilar diigiiriilerek ve ” Conjugate Gradient
Method ” ’u kullanilarak, maximum eglenik yonler kiimest hesaplamir. Daha sonra, ceza fonksiyonunu
minimizasyonu igin, bu yonler iizerinde sirasal dogru taramalan yapilir. Optimal dlgiit saglanamadigi
ve biitiin yonlerdeki ilerlemelerin (improvements) yeterli olmadig: durumda, ” Conjugate Gram-Schmit
Siireg ” ’i ile, yeni eglenik yonler kilmesi hesaplanir. Fakat, bu ydnlerin birisi, bulunan noktadaki alt

tiirevselinin (subdifferential) elemanidir.

Anahtar Kelimeler: Dogrusal olmayan progralama, Dogrusal programlama, Uyumluluk problemi,

Ceza fonksiyonu.

To my wife and my parents,

vi

ACKNOWLEDGEMENT

I would like to thank to Assoc. Prof. Osman Oguz for his supervision, guidance,
suggestions, and encouragement throughout the development of this thesis. I am grate-
ful to Prof. Halim Dogrusoz, Assoc. Prof. Mustafa Akgiil, Prof. Akif Eyler and Assoc.
Prof. Péter Kas for their valuable comments.

I would like to extend my deepest gratitude and thanks to my wife for her morale

support, encouragement, especially at times of despair and hardship.

vii

TABLE OF CONTENTS

INTRODUCTION 1
1.1 Relaxation Methods for Solving Systems of Linear Inequalities 1
1.2 Surrogate Constraint Methods 2
1.3 Khachiyan’s Algorithm 3
1.4 CONN'’s Projection Methed 3
1.4.1 Conjugate Subgradient Methods and Extension of Them to a

Class of Bundle Methods 4

1.5 Wolfe’s Conjugate Subgradient Method 7

A NEW CONJUGATE GRADIENT APPROACH FOR NON-SMOOTH

OPTIMIZATION 10
NUMERICAL EXPERIMENTATION 18
APPLICATIONS 26
4.1 Linear Inequality Models in Computerized Tomography 26

42 EINEAR PROGRAMMING VIA NON-SMOOTH OPTIMIZA-
TION 27

CONCLUSIONS 31

BIBLIOGRAPHY 32

Viil

LIST OF FIGURES

1.1 Constructing G4,d, in Wolfe’'s Method.

3.1 Number of Iterations vs. Problem Size

1X

...................

W
=

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

4.1

4.2

LIST OF TABLES

Schedule of design of test problems
Ar=0b, AeRIOXI0
Az =b, AeRI313
Az =b, AeRI6
Az =b, AeRWXO
Az =b, AgR¥»x%
Az =b, A g R3¥0x30
Az =b, AeR¥®*3*
Az =0b, A g RI0x40
Az =b, AeRI5x6
Az =0b, A e R¥Mx

20

21

22

23

24

24

24

30

30

1. INTRODUCTION

In this chapter we summarize some of the existing theory and algorithms for solving
the systems of linear inequalities and then we go over some methods for constrained
optimization by using a non-differential penalty function and finally we give briefly the
conjugate subgradient algorithms for non-smooth optimization.

1.1 Relaxation Methods for Solving Systems of Linear In-

equalities

Agmon [1] presented the method of relaxation to solve a system of linear inequalities
in which at each iteration one inequality that is violated, is choosen in some way (the
inequality which has the maximum distance from the current iterate or the inequality
with the maximum residual or the inequality which is chosen by a prearranged cyclical
sequence). The method continues by moving in the direction of the inner normal to the
chosen halfspace (inequality) by a multiple A of the distance from the current point to
that halfspace. In summary at k** iteration one starts from point z* and if Ay = 1 then
zF*1 is the orthogonal projection of z¥ on the chosen halfspace and if Ay = 2 then z**! is
the reflection of z*¥. We may have overprojection, that is Az € (1, 2) or underprojection

Ax € (0, 1).

The convergence proof was done by Agmon, Motzkin and Schoenberg [14] based
on the fact that, under any of the three implementations of the relaxation method as
applied to a nonempty polyhedron P (P is the feasible region of the system) and for
A € [0,2] the relaxation sequence {z*} satisfies:

|l —z|| < ||lzF - 2] VzeP

which implies the Fejer-Monotone sequence of the points {z*} with respect to P.
Fejer showed that any Fejer-Monotone sequence is convergent.

1

Using some lemmata basic to Khachian’s polynomially bounded algorithm Telgen
[19] showed that the relaxation method is finite in all cases and so can handle infeasible
problems as well. However the worst case behavior of the relaxation method is not
polynomially bounded and a class of problems are constructed on which the relaxation
method requires an exponential number of iterations.

The basic advantages of the relaxation methods is that, these methods can be ef-
ficiently implemented to solve huge systems of linear inequalities, because there is no
need for matrix inversions which causes the computational simplicity of these methods.

1.2 Surrogate Constraint Methods

Yang and Murty [23] developed a new iterative method based on the generation of
a surrogate constraint from the violated inequalities in each step. The basic idea is
due to fact that when solving a huge system of linear inequalities, considering only one
constraint at any iteration would lead to slow convergence. They presented the following
methods:

The Basic Surrogate Constraint Method: In this method at each iteration
a surrogate constraint is derived by taking a nonnegative combination of all violated
constraints. At the k** iteration the next point z**1 is on the line segment, joining z*
to its reflection with respect to surrogate constraint.

The Sequential Surrogate Constraint Method: Initially the system of linear
inequalities Az < b is partitioned into £ subproblems as: Aiz <& , i=1,2,...,¢
Starting at point z* the surrogate constraint is constructed from the set of violated
constraints of the first subproblem and the basic method is followed for obtaining z**?.
In the next iteration the surrogate constraint is constructed from second subproblem
but now the starting point is z¥+! and following the basic method we reach to z*+2 and
so on. In this way the algorithm goes through major cycles, in every major cycle, each
of the £ subproblems is operated on once in serial order 1 =1,2,...,%.

Parallel Surrogate Constraint Method: This method is similar to second one
but now the surrogate constraint is constructed by considering all of the subsystems

Aig <b , i=1,2,...,¢simultaneously, that is if we are at point z* then this point is
a starting point for all subsystems. Say the resulting new points based on basic method
be z’(‘i';'l i = 1,2,...,¢ then zF*! is the convex combination of the points zfgl i =
1,2,...,L

1.3 Khachiyan’s Algorithm

Khachiyan [18] showed that the ellipsoid method can be modified in order to check the
feasibility of a system of linear inequalities in polynomial time. For finding a feasible
point of the system of Az < b (where A € R™t" z € R",b € R™) the algorithm starts
with the initial ellipsoid Eq = E(Ao, zo) where 29 = 0, A = R?I, and R is a real number
large enough to have P C S(0, R) , here P is the set of feasible region. At any iteration
k we have E(Ag,z) containing P, if zx € P then the algorithm stops, but if zx ¢ P,
then the most violated inequality is chosen, say a,z < b, and for the feasible part of
the ellipsoid which is cut off by this constraint, a new ellipsoid is constructed, that is:

E(Aii1,zem1) = E(Ak,ze) N {z : aaz < aazi}

Hence at each iteration the volume of ellipsoid is decreased by a factor ¢, < e~ < 1.

The problem is infeasible if ¥ = N, that is the volume of the ellipsoid V} is small
enough to declare P is empty. Where Vj is the volume of Ey and

Vy= (%)Y
N = [N’] that is the smallest integer greater or equal to N'.

N is 2n upper bound for the number of iterations, and we can set:
V; & 27 (mH1)<A>+%° where < A > is the encoding length of A.

and
N=2n((2n+1)<A>+n—n3)

R=/n 2<Ab>=n* where < A,b > is the encoding length of A and b.

1.4 CONN'’s Projection Method

Consider the problem of finding the constrained minimum z* of the function f on the

set

F={zeR"|)20, i=1,2,...,k} (1)

where R™ is an n-dimensional real vector space, f, ¢:(¢ = 1,2,...,k) are real contin-

uous functions on R™.

One method of solution is to minimize the well known penalty function [6],[7]
k
Po(z) = pf(z) — 3_min(0, ¢i(z)) ()
=1 b

3

for z € R*, p = 0. Given pu let z(u) be the minimum of this function. It is known
that for sufficiently small y, z(p) = z*. Conn[6} presented a method that enables
a modified form of the gradient type approach to be applied to a perturbation of the
penalty function Py above.

Define I(z,e) = {i € k: | ¢i(z) |> ¢} and A(z,e) = K\I(z,¢). Here I(z,¢) is
the index set of those ¢; that may be considered inactive in a neighborhood of z, and
A(z,€) be the active constraints at z. Starting with z' and suitable choice of x4 and
¢ (a small positive number), the algorithm separates the set of € active and inactive
constraints. Dropping the active constraints from P, enables us to find the gradient of
Py at z'. Projection of —V P, onto nullspace of gradient of active constraints gives the
search direction, d;. By line search we find 2**! and then redetermine the set of active

and inactive constraints and continue the iterations.

Later Conn and Pietrzykowski [8] presented a method for the same penalty function
that constructs a single sequence which minimizes P, and converges directly to z*.
This method is the continuation of their earlier results. For the case of € = 0 we may
exhibit the zigzagging when ¢; ’s are nonlinear. According to this reason it is necessary
to consider projecting when the constraints are not necessarily exactly zero. So the
stipulation of near-zero (¢ active) was necessary to avoid zigzagging in the nonlinear
case. However, since in general this tolerance (¢) is rather small, it becomes desirable,
specially in the initial steps, to consider some larger value, i.e., € . But this form
of projection made it difficult to satisfy the constraints exactly, a phenomena which is
clearly most detrimental as we approach final convergence. Their new method overcomes
this difficulty as follows: At each iteration the direction of search has two components,
the first which is called horizontal component, is Conn’s projected gradient that we
mentioned before. The second direction or the vertical component makes a linearization
to satisfy the relevant constraints exactly.

1.4.1 Conjugate Subgradient Methods and Extension of Them
to a Class of Bundle Methods

Wolfe [20} and Lemarechal [13] in their methods for Non-Smooth Optimization (N.S.0)
use a bundle method, in which the direction of search at any iteration is computed
from a set of subgradients which have been found so far. In our algorithm we will
use a bundle of conjugate directions and since there are some similarities in this sence
between our method and Wolfe’s conjugate subgradient algorithm, we give a summary
of the theory of the methods used in [13],[20] . Lemarechal [13] showed that the methods
of conjugate gradients are perfectly justified whenever a local aspect is concerned, but

4

that this local aspect is not enough for constructing efficient algorithms. So he replaces
the local concept by finite neighborhood and defines the class of bundle methods. Now
we give a brief description of local aspect, finite neighborhood aspect and bundle method
as follows: |

Throughout this section f(z) is a convex and Lipschitz function defined on R"; as
a Lipschitz function f has a gradient almost everywhere in R™ and R" is considered as
a Hilbert space.

Local aspect: In the study of local aspect [13], the basic point is that we fix a
point z and try to find a descent direction, 1.e. we want to find a direction d such that:

f'(z,d) < 0 where:

f’(:l),d) — tgr& f(T + tc? — f((l:)

Since f is Lipschitz function then it is possible to construct a sequence {z;} such that
V f(z;) exists and z; — z. By defining

M(z) = {g¢] ¢ =mVf(z;),z; = z,Vf(z;) exists},
we obtain the following result [13]:
f'(z,d) =sup{< d,g >| g€ M(z)}.

The basic idea for constructing a descent direction or, equivalently, for constructing
M(z) is as follows:

Assume we know k points in M(z)
G = (gl"")gk) C]V_[(:E)

This can be initialized by computing ¢; = Vf(z). Now we show that we can find
either a descent direction or determine some g1 € M(z) so as to improve the current
approximation M(z) of Vf(z). Since f'(z,d) > max{< d,¢; > | ¢« = 1,...,k} we
choose some di, (The set of descent directions is the (open) polar cone of the convex
cone generated by M(z)) such that

< dp,g; ><0, t=1,...,k. (3)

Now two cases may occur:

i) either there exists ¢t > 0 such that f(z +1tdy) < f(z) then dj is a descent direction,

and we are done,

i) or f(x +tdy) > f(2). Vt.

In this case for any ¢ € M(z + tdy) by using the subgradient inequality for f and for
any t > 0 we have:

flz+tde) > f(z) 2 flz+tde)+ < g,z —z —tde > = f(z + tde)+ < ¢, —td > .

Let t — 0% and denote by g4, any cluster point of g , then gry1 € M(z) by definition.
Furthermore, since < gg41,dr > = 0, then increasing k£ by 1 and computing new
direction satisfying (3) guaranties to obtain a new direction. In order for g4 to be as
good as possible, dj is found by solving:

mdinrnax{< d,gi>| t=1,...,k}.

and we find d; as:
dlc = —Nr {gla"')gk}a

where Nr S is the unique point in the closure of convex hull of the set S with minimal norm.

Finite neighborhood aspect:[13} There are some cases that M(z) is either singleton
or is too small and contains only limited number of subgradients. In this cases M(z)
may be useless or the algorithm for minimizing f by the descent directions that are
found by the above procedure, may be slow.

For these cases Lemarechal gives another procedure in which the concept of z; — =
is substituted by a finite neighborhood, v.(z) for a small ¢ > 0 which means: z; close

enough to z.

Defining M.(z) to be:
M(T) - st(a:) = {g | g = lim Vf(:c,), Ty, Y& 1)5(1')}.

by v.(z) we mean the € neighborhood of z .(i.e. a ball)

Its construction is easy and it is never singleton (if f is not linear). Assume d is
such that < d,g > <0 Vg € M.(z) (we choose such a d in the (open) polar cone
of the convex cone generated by M,(z)) then f(z + td) is a decreasing function of ¢ as
long as z + td € ve(z). Since € > 0 and any line-search will get us out of v(z;) then an
algorithm based on this process of search will be finite. Of course like the ” local aspect
" study if f(z +td) > f(z) Vt, then in the same way it can be shown that we can find
some gp41 € M.(z) to improve the current approximation M,(z) of V f(z).

Bundle Methods:[13] In this part we assume that we have performed the descent
algorithm discussed above for the points z1,...,2: and for any point z; we have one

subgradient g; and the value of f at z;, f;.
So symbolize these information by the bundle:

L1y yThy fl,...,fk; g1y .y Gk

6

Where f; = f(z:i), ¢; € 8f(z:) and Of(z) is the set of all subgradients of f at z. Say
Gk = {gl,. ..,gk}.

In some situations we are unable to compute exactly the function and it’s gradient
at z;, then for any z; together with some prescribed tolerance ¢; we find f; and g¢; such
that:

f(zi) —ei < fi < f(z:) and g; € 0., f(z:)

We use the above bundle to compute xx4+1 and gr41 as follows:

Let Gx C Of(zx) and choose dy = —Nr Gy , do line search and find z41 = z+1t5dy,
where t; is the step length and then compute gryy € Of(zk41 + trd). There are two
cases to be considered:

1) When all the points from z; to x; are close together and all the g;’s are approxi-
mately in 9f(xx).

2) If f is quadratic and we do exact line-searches from z; to z; then in this case
Nr Gy turns out to be the direction of conjugate gradients.

It must be noticed that for k being large the direction d, = —Nr G is a poorly justified
choice. To solve this difficulty we need to use a reset step by deletting those g¢;’s that
appear to be poor approximation of 0f(zx). In this way k is forced to be small and this
gives variants of conjugate subgradient methods.

1.5 Wolfe’s Conjugate Subgradient Method

Let the polyhedral, convex function f has the form :
f(z) = max{fi(z), i=1,2,...,m},

where the function f; are affine, so that V f;(z) = g, is constant for each ¢ ; f and f'(z;")

are closed and proper. Define

I@)={i: fi(e) = f(2)}.

for all z, then

f(z) = conv{gi: t € I(x)}.

For any set S C E™, there is a unique point v in the closure of convex hull of S having
minimal norm, we denote it by Nr S. ie. if Nr S = v then:

<v,8 >> ||v|)? forall seSs.

CONV G

Figure 1.1: Constructing G, d, in Wolfe’s Method.

By using the following characterization of gradient:
Vf(z)=-Nr 9f(z),
We can write Vf(z) = =Nr (conv{gi: i€ I(z)}) = —Nr {g:: i€ I(z)}.

Jiow assuming that we have a bundle Gy = {gx—,, .., gk-1,9x} , (where p is a natural
number less than k) we set dy = —Nr G\ be the direction of steepest descent of f at

Tk.

Wolfe [20] presented a conjugate subgradient method for minimizing non differen-
tiable functions, which is based on bundle methods with a special line search. Assuming
that we have a bundle

xO)"'yxk y 907"‘7gk) f(xo))"'7f($k)

the algorithm works as:

i) Compute dy = —Nr Gj where Gy = {go,..., s}
ii) Line search gives t > 0, and ggy1 € 9f(z + tdi).
i) Set Gyr = {Gry Gt1).
iv) If the optimality conditions are not satisfied, go to (i), else stop.

Computing G4,dy (G4 = Gi41, d = di, dy = diy1) is shown geometrically in
Figure 1.1.

If zo, ..., zi are close together, the above iteration continues until ||di|| < € for some
k = K and then if

> ek — el <6
k<K

is satisfied, the optimality conditions can be checked, if not, a reset step is begun.

Resetting is done by choosing Gx = {gx}, that is by discarding all the previous
subgradients. Wolfe’s algorithm constitutes an extension of the method of conjugate
gradients method of Hestenes and Stiefel [11].

2. A NEW CONJUGATE GRADIENT
APPROACH FOR NON-SMOOTH
OPTIMIZATION

We consider the feasibility problem :

Po s.t. A

where A € R™*" z € R™ , b€ R™; and A is not necessarily full raw rank. Problem P,

1s equivalent to:

where A = [4 | I,] € R™¥("47), g ¢ R,

by adding the slack variables and identity I, to A we have nonsingular matrix Q as:

ai aim 1 0 0
0
0
0= mi --- «v. Gmn 0 ... 0 1
1 0 0 O 0
0
: 0 :
0 0 1 0 0

Then A = QT(Q is a positive definite matrix and we make the transformation:

b=QTh

10

Where we define b* as:

b
b
=1 _
b1
| b
and where b ,i=1,2,...,n are choosen as:
- ™. b
br="2 Wi=1,2,...,n.
m

It is known that if we drop the non-negativity constraints, then it is possible to solve
the system of Az = b by conjugate gradient method which terminates in k iterations
such that k < n + m (here A € R(+m)x(n+m)) By conjugate directions we mean

A-conjugate or A-orthogonal directions, so:
diAd; =0 1#£ 35 Vi,j

diAd; £ 0 Vi

In fact since A is positive definite, then: d;Ad; > 0 Vi . As mentioned in section 2.5
Wolfe’s algorithm constitutes an extension of the method of conjugate gradients method
of Hestenes and Stiefel. Based on this we will introduce a set of A-conjugate directions
{d;}?%™ and perform search on these directions successively. Whenever it is necessary
we will compute the conjugate directions by Gram Schmit orthogonalization process.

For the feasibility problem Pg we define the penalty function Fi(z) as follows:

n+m

Fy(z) = i(aw ~ B 3 fmin(0, ;)

Recalling that 4 = QTQ and b = QTb* , we drop the non-negativity constraints and
solve the system of Az = b. Assume that we have found the conjugate directions
{d;},i=1,...,n+m and let the step sizes in any direction d;, be ot;, ¢ = 1,...,n+m.

then we can write the solution as:
¥ = .TO + a1d1 + ...+ Oln_*.mdn.;_m

where z° is any arbitrary starting point. Solving the system of Az = b is equivalent to
minimizing the:

F(z) = [Az — b)t[Az — b]

11

Starting from z° then the step size in direction dy would be a4
F(2°) = [Az° —)T [A2® —]

F(z') = [A(z° + ardy) — BT [A(2° + cdy) - b]
OF(z')
Bak
(Ady)T Az® + i (Ade)T(Adk) — (Ady)Tb =0
o = (Adk)Tb - (Adk)TAxO

¢ |Adk |3
_ (de)TATb — (di)T AT Az®
- (dy)TAT Ad,

Here oy is the optimal step length in direction dy without considering the non-negativity

=0 = 2(Adi)T[A(z° + arAdy) — 0] =0

constraints and let a = S |ayf.
Assume we have l_)f ,t = 1,2,...,n such that the unique solution of Qz = b* is a

n+m

feasible solution to Pg and let the set of A-conjugate {d;}’5[™ are given, if we use

the optimal step sizes {o;}2H™ , we have:
m n+m _ 2
Z a; m°+2ajdj -5 =0
1=1 j=1

since = =z%+ LM o d; s a solution.

Now consider using step sizes &; ,1 = 1,2,...,(n+m) rather than «; ,¢1 =1,2,...,(n+
m) and we choose 6 as:

9=mjin{|gi:] Doy 750}

J

then we have the relative reduction:

2
S (gi0® = 8" = S [(B0 H O esds) -8
S (g — by) -

That means if we define error at z* as

n+m

Z (q,x —b)

=1
then we have

A = A¥(1 - 26+ 6%)

Since A < 2L (‘here L is the size of the system of linear equalities) then we can
stop after § iterations for which

28(1-20 +6%)' < 513

12

Which means we can bound the number of iterations as

—2Llog2
<
ps log (1 — 26 + 62)

This definitely implies a polynomial bound for for problem Pg for any 1> 6 > 0. In
this work we could not prove the existence of such 6 , but the computations results in
the next chapter seems to support this idea that practically our algorithm can solve
problems in polynomial time bound. It means that if in any loop the improvement in
any direction is not posssible, we can remove that direction from the set of conjugate
directions and the procedure reduces to search in the directions remained in the bundle
of directions, and then it is possible to find a 0 < § < 1 , such that we can improve in

all remaining directions.

13

The Main Algorithm:

1) Choose z° in R™™ | the starting point, and sufficiently small ¢,6 >0, A =0.

i1) Compute the conjugate gradient directions {d;},i = 1,...,n + m by the method
of C.G. algorithm and normalize them.

ili) Fori=1ton+m do
de = d;, do line search, z* = z + td,

A=A+ [t

if Fi(z*) < e then stop, a feasible solution is found.

else check the optimality test, if =% is optimal, then stop.
end (For).

if min (g,/\) < & then (Reset) go to step (zv).

else set A = 0 and repeat step (727).

iv) Set vy = —VFy(zt), choose v;,...,Vnqm such that vy, vs,...,0n4m are inde-

pendent.

v) Find conjugate directions {d;},7 =1,2,...,n+m by the procedure of C.G.Schmit,

normalize them, set A =0 and go to step (12).

Convergence Results:

Definition: Let W be the set of minimum points of Fi(z) andlet W # 0. A
sequence {zF}%2, in R™ is called strictly Fejer-Monotone with respect to the set W

, if for every =z € W we have:
lz**! — z|| < ||l2* — || forall k > 1

Every Fejer-Monotone sequence is bounded if W # § , since ||z*—z]|| is always positive

and monotonically decreasing with W [23).

Definition: Let {d;}?t™ be A-conjugate directions such that d; = —g(z*) and
da,ds,...,dnym are generated by C.G. or C.G.S. algorithms with respect to d; and a

k

positive definite matrix A. We say a loop k is processed if starting from point 2* | a

set of line searches are done on all directions of the set {d;}!™ and we reach the new

k

point z**1. Of course this process is equivalent to n + m iterations.

Theorem 1 (basic idea due to Shor(17]) let F be a convez function and W # 0,
then any sequence {z¥}2, generated by the algorithm above is strictly Fejer-Monotone

14

with respect to W and for any € > 0 and any z* € W there ezists a k and T such
that F(3) = F(z*) and:

- . h

|2 —z*l| < 5(1 +e€)
Where h is a real positive number.

Proof: Without loss of generality assume that in any k** loop the directions {d;}7%"

are not suitable for improvement in line searchs. Then our algorithm reduces to a

subgradient type method, that in any loop we have:

k
k+1 __ _k g95(z"*)
besd =z — hk+1_
llgs(z*)ll
here: hi+1 = steplength
where: By = ok — U R(gh
9s(z*) = g* =VF(z*)
2
let 2* € W = [l — o*|" = |la* — 2"~y 2|

= lz* 2 q*
= |lz* — z*|| +h,2c+1—2hk+1<xk—-a:*,”gk”>
if g*=0th T =z* = g*
if g* = en I =z"=z"

So let gF # 0 and take £ =< z* — z*,ﬁﬁ:—” > which is distance from z* to the

hyperplane:
H.={z:<g¢", ¥ -2 >=0}

Define
Dy ={z: F(z)= F(z")}

* —_ . * —
be(z") = min [l - |

Since Dy and z* are in one side of H} , then any segment joining the point 2* to a point

of H; passes through Dj. so we have :
Ek(:c*) Z bk(.’l:*)

Y 3 * *
”:17k+1 -7 “ S ”mk —z ”2 + h‘12c+1 _ 2hk+1bk($)

let h be sufficiently small positive number as a constant stepsize:
|2**? = 2*|)* < fla* — 2*])” + h? — 2hbi(s")
now if be(z*) < & forall k=1,2...
et 27| < flok = 2"|* ~ eh? < 2 — o7|" — (1 + k)h?
But since ||z**! — z*|| > 0 then there exists & such that:
be(s*) = min " — 3] < (1 +¢)
zeDg 2

15

so no matter how small € or h is, we can find a k such that z* is the minimizer of

F(z) and
h
Iz -2l < 21 +¢)

Optimality Conditions:

Ben-Tal and Zowe [2] derived the necessary and sufficient optimality conditions for
the exterior penalty function:

P. min f(z) = ho(z) + %p i[max{o, hi(z)}]?.

First, it is convenient to define the following index sets:

B= {i| h(z)=0)
Et = {ZI h;(:l)') > 0}

Theorem 2 Necessary and sufficient, optimality conditions for problem P,

(a) A necessary condition for z* to be a local minimizer of problem P, is that

hi(e™) +p 3 hi(a)hi(a") =0

teE+

and for every d € R™*™,

ho(z) < d,d > +p > hi(z*)h!(z*) < d,d > +p Y [max{0, hi(z*)d})?
i€E+ i€k

+p 3 [Ri=")dl? 2 0,

ieE+

(b) A sufficient condition for z* to be an 1solated local minimizer for problem P, is
as above but with strict inequality for d # 0.

For our penalty function we have:

p

N

2
n+m

hi(z) = —z;(the negative of the :** element of z)

Il

16

and

ho(:t) = mE(&{iE - 7),)2

i=1

Optimality Test: We have a set of conjugate directions D = {d;}24" , then a point
z* is an optimal solution of Fi(z) if sufficiency condition of optimality is satisfied for
any dx and —dj such that dy € D, k = 1,2,...,n + m. Since any set of conjugate
directions are also independent, then any arbitrary direction d. can be written as the
linear combination of the elements of the set D , that is d. = Y1 rrdy, 7% € R and

dr € D.

So if sufficient conditions for optimality at a point z* is satisfied for any d; and —d;
such that dy € D, k=1,2,...,n 4+ m , then it will be satisfied for any d. € R**™ and

in this way the existing point z* will be optimal solution.

Of course the optimality test is not necessary for feasible problems and for the
attempt feasibility problems we never used this test (for feasible problems), because
min Fy(z*) = 0 for a feasible point z*. But in application of our algorithm for LP
problems we need to use this optimality test.

17

3. NUMERICAL EXPERIMENTATION

We decided that for our A-conjugate method, we need to check the effectiveness of the
algorithm practically. So we generated a series of random problems in different sizes and
applied our algorithm to solve them. In these problems, that we give in tabular form
in this chapter, the size of A changes from R0%10 to R40%40 ~and for larger problems
we need to modify the C.G. algorithm to find exact A-conjugate directions.

Recalling from the last chapter, although we could not guaranty the existence of
0 < § < 1 in any loop of iterations (n+m iterations) to support the polynomiality
motivation of our algorithm, but as it is seen from the computations results in this
chapter, the method solves problems in polynomial time bound practically at least for

the size range of problems given above.

Due to numerical errors the accuracy of search directions {d;}!™ (generated by

C.G. or C.G.S. processes) to be A-conjugate is decreased as size of A increases. The
sparsity of the matrix A for all the solved problems is over 80 percent (that is the
number of non-zero elements of A is more than 80 percent of its all elements) besides

there is not any conditions on A and b.

The important result from numerical experimentations is that, for all solved prob-
lems the convergence is so quick in first loop, that is for the problem of size R™*" the
penalty function is reduced exponencially at first n iterations and reachs to a relatively
very small penalty value with respect to its initial value and then the process achieves
a rather slow convergence. The worst case of number of iterations necessary to find a

minimizer of penalty function in our test, is bounded by 15n.

Since the symmetric and positive matrix A may be ill conditioned, for example
some of its eigenvalues may be too small, then in calculating A-conjugate directions
the roundoff errors may be too large and this leads to the cases where diAd; # 0 for
i # 7, s0 the set {d;}™™ can not exactly represent R™*™ space.

i=1

18

FACTORS | K=10 | K=13[K=16 | K=201K=26|K=30|K=36|K=40
m 4 5 6 8 10 12 16 16
n 6 8 10 12 16 18 20 24
Uij 20 20 20 20 20 20 20 20
li; —20 -20 -20 -20 —20 -20 -20 -20
NZ 4 5 6 6 8 8 12 12
uc; 10 10 10 10 10 10 10 10
Ic; -1 -1 -1 -1 -1 -1 -1 -1
Pe 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8

Table 3.1: Schedule of design of test problems
K = dimension of the space, A € RF*K,
m = number of linear inequalities.
n number of variables without adding slack variables.
u;; = upper bound for a;;.
l;; = lower bound for a;.
uc; = upper bound for c;.
lej lower bound for c;.
NZ number of non-zero elements in every column &’
p. = density of number of non-zero elements of c.
2 = total (relative) step length during one loop (m + n iterations).

19

problem # | # of iterations f(=) min (f) average (%)
1 3 0.003860 | 0.017921 | 0.017921
2 4 0.007682 | 0.004227 0.004227
3 3 0.000367 | 0.004419 | 0.004419
4 3 0.007072 { 0.011708 } 0.011708
5 17 0.000874 | 0.003076 0.004755
6 28 0.010914 | 0.005772 0.012161
7 3 0.001199 | 0.003783 | 0.003783
8 3 0.001846 | 0.004212 0.004212
9 3 0.000119 | 0.001505 | 0.001505
10 3 0.000819 | 0.002757 | 0.002757
11 56 0.010789 | 0.000249 | 0.019070
12 19 0.006049 | 0.000003 0.001483
13 26 0.016264 | 0.003028 0.014203
14 15 0.016651 | 0.002718 0.007129
Table 3.2: Az =b, A R0
problem # | # of iterations f(z) min (ﬁ) average (-;\-()
1 5 0.000922 | 0.004142 | 0.004142
2 5 0.013952 | 0.002545 0.002545
3 20 0.003806 | 0.001378 | 0.002427
4 5 0.000570 | 0.009462 | 0.009462
5 30 0.019781 | 0.000052 | 0.006128
6 32 0.019084 | 0.000030 | 0.003567
7 5 0.010253 | 0.005145 0.005145
8 41 0.016802 | 0.000012 { 0.002100
9 72 0.019898 | 0.000094 0.010462
10 129 0.019927 | 0.001547 | 0.009797
Table 3.3: Az =b, A€ R

20

problem # | # of iterations | f(z) min (é) average (%)
1 23 0.002494 | 0.000200 | 0.001460
2 6 0.001620 | 0.011088 | 0.011088
3 58 0.017985 | 0.000874 | 0.010186
4 54 0.009547 | 0.000021 | 0.021087
5 39 0.018295 | 0.000102 | 0.002721
6 6 0.000240 | 0.015218 | 0.015218
7 72 0.018383 | 0.000108 | 0.007236
8 6 0.000549 | 0.004565 | 0.004565
9 7 0.002867 | 0.009162 | 0.009162
10 62 0.014058 | 0.000364 | 0.010775
11 59 0.014058 | 0.000221 | 0.005854
12 87 0.015753 | 0.000100 | 0.008568
13 5 0.008931 | 0.002479 | 0.002479
14 6 0.000389 | 0.007353 | 0.007353
15 16 0.016699 | 0.037585 | 0.037585
16 6 0.000414 | 0.007798 | 0.007798
17 54 0.014726 | 0.000047 | 0.018080
18 77 0.019968 | 0.000305 | 0.009002
19 72 0.015961 | 0.000092 | 0.007809
20 151 0.019186 | 0.000248 | 0.004713
Table 3.4: Az =b, A g R6x16

21

problem # | # of iterations f(z) min (%) average (%)
1 53 0.007171 | 0.002620 0.006169
2 55 0.015347 | 0.005015 0.007598
3 7 0.007326 | 0.004334 0.004334
4 9 0.006160 | 0.013377 0.013377
5 52 0.011085 | 0.000143 0.026794
6 28 0.007784 | 0.000488 0.001557
7 25 0.019862 | 0.000031 0.040541
8 112 0.019612 | 0.000012 0.039558
9 9 0.005295 | 0.014534 0.014534
10 29 0.019185 ; 0.000306 0.017977
11 10 0.018377 | 0.026277 0.026277
12 50 0.008287 | 0.000080 0.014182
13 49 0.017067 | 0.000080 0.010122
14 73 0.013925 | 0.001308 0.010502
15 69 0.019215 | 0.000271 0.011067
16 74 0.013281 | 0.000848 0.020566
17 75 0.018330 | 0.000522 0.008848
18 231 0.018757 | 0.000734 0.002817
19 76 0.009882 | 0.000732 0.006515
20 56 0.014150 ¢ 0.005013 0.009095
21 115 0.019891 | 0.000747 0.006236
Table 3.5: Az =b, A€ R

22

problem # | # of iterations f(z) min (ﬁ) average (f)
1 19 0.012911 | 0.029228 0.029228
2 191 0.029996 | 0.000006 0.004158
3 36 0.027740 | 0.000320 | 0.018018
4 67 0.007212 | 0.000330 0.005650
5 11 0.015245 | 0.005242 | 0.005242
6 144 0.029670 | 0.000050 | 0.005359
7 10 0.007677 | 0.006737 0.006737
8 149 0.029920 | 0.000382 | 0.100395
9 64 0.012921 | 0.000136 0.004630
10 9 0.010766 | 0.022777 | 0.022777
11 68 0.027688 | 0.000161 0.004136
12 149 0.029920 { 0.000382 | 0.100395
13 64 0.012921 | 0.000136 0.004630
14 9 0.010766 | 0.022777 0.022777
15 68 0.027688 | 0.000161 0.004136
16 70 0.024106 | 0.002148 | 0.007798
17 169 0.029791 | 0.000020 0.010201
18 173 0.026735 | 0.000071 0.001617
19 64 0.026865 | 0.000230 0.015913
20 91 0.026094 | 0.000119 0.004617
21 95 0.013781 | 0.000310 | 0.006535
22 89 0.027748 { 0.000033 0.004375
23 143 0.023141 | 0.001590 0.005584
24 253 0.018113 | 0.002862 0.068871

Table 3.6: Az =b, A€ R™*%*

23

problem # | # of iterations | f(z) | min (;’}) average (ﬁ)
1 14 0.008159 | 0.081600 0.081600
2 106 0.028005 | 0.000065 | 0.006770
3 134 0.024513 | 0.000022 0.004174
4 14 0.011539 | 0.007543 | 0.007543
5 80 0.024698 | 0.001907 | 0.019771
6 103 0.016989 | 0.000051 | 0.018905
7 200 0.027437 | 0.002198 0.055168
8 111 0.010574 | 0.001337 0.007677
9 225 0.029625 | 0.000014 0.001667
10 102 0.026161 | 0.000006 | 0.003876
11 352 0.029524 | 0.000163 | 0.002316
12 75 0.021587 | 0.000295 | 0.012395
13 104 0.029698 | 0.000009 0.004808
14 104 0.029981 | 0.000031 | 0.007279

Table 3.7: Az =b, A g R3Ix3P0

problem # | # of iterations f(z) min (%) average (ﬁ)
1 196 0.028532 | 0.000001 | 0.045340
2 273 0.026510 | 0.000483 0.014159
3 51 0.028544 | 0.004593 0.123871
4 17 0.026963 | 0.208405 | 0.208405
5 47 0.023672 | 0.001274 | 0.066795
6 235 0.021095 | 0.000081 0.180527
7 425 0.029967 | 0.000001 | 0.197356

Table 3.8: Az =b, A g R3?6x3

problem # | # of iterations f(z) min (é) average (c—’})
1 143 0.028990 | 0.000039 0.092190
2 458 0.013592 | 0.000677 | 0.132495
3 62 0.028406 | 0.004004 | 0.048863
4 185 0.029546 | 0.000174 0.019071
5 17 0.026838 | 0.014640 | 0.014640
6 138 0.022210 | 0.000061 | 0.038515
7 176 0.028839 | 0.021943 0.540074
8 386 0.028450 | 0.000309 | 0.003927
9 318 0.029407 | 0.000971 | 0.018176

Table 3.9: Az =b, A g ROX4

24

Tteration vs. Problem Size
500 . , : . : ;

450 | o

400 | el §
360 L e i
300 / -

250 L P |
/,) aver !

“00 F -
/ . ‘/‘/

¥ T Min

%% 1R 70 e 50 G 40

Problem Size

Figure 3.1: Number of Iterations vs. Problem Size

25

4. APPLICATIONS

4.1 Linear Inequality Models in Computerized Tomography

Computerized tomography [23] is a method in which the image of the cross section of
the body is reconstructed by a computer. It can be used to show a three dimensional
view of the interior structures of the human body and so CT can detect some conditions
that conventional X-ray pictures can not detect. Initially the structure (which can be
brain, heart, etc.)which is being studied, is divided into slices and then as finite element
method any slice 1s considered to be divided into sufficiently small pixels. The process

for a two dimensional slice is as follows:

An X-ray beam, say beam 1 penetrate the slice, entering it with the initial intensity
I, and emerges at the detector at the end of its path through the slice, with an intensity
Fy. Hence the total absorption of the energy through the path is I; — Fj. Define a;;
be the length of the intersetion of the path of beam number 1 with the j** pixel, and
say z; be the unknown local density of the ji* pixel and assume the data is collected

from m different beams for every slice, then we have:
n
Za,‘jltj = bJ' 1= 1,2,...,71,
J=1

where b; =I; — Fj

Since the assumption that the local density is a constant within each pixel, is unlikely to
be valid and since the local densities are not negative, so we can replace upper system

by the inequality system as:

n
bi—eiSZa;jijbi-}—e; 1<i:<m
=1
0<z;<u 1<7<n

where u 1s a known upper bound for the density of pixels and n equals to the total
number of pixels in slice. Solution of this system of linear inequalities gives densities of
the object under study.

26

4.2 LINEAR PROGRAMMING VIA NON-SMOOTZE OPTI-
MIZATION

In this chapter we try to extend our algorithm for solving the linear feasibility problems
to solve linear programming problems. We onsider the LP problem :

max cx
P1 s.t. A:i S 1_7
>0
where 4 € R™*"* cand Z € R* , b€ R™.
Adding slack variables we have :
max cz
st. Az =15
z2>0

where 4 = [A | Im] € Rmx(m+n) and z € R™n,

There are alternative ways of reducing this LP to a feasibility problem, one way,
which we have tried is the following: Recalling the exterior penalty function

min f(z) = ho(2) + 5p 3 [max{0, hi(z)}P, p>1

=1

s : a natural number.
where: p: a positive real number.

hj(x) : smooth function defined on a real normed vector space.

We define the exterior penalty function Fp(z) for the LP problem P, as:

m n+m
Fy(z) = (cz — K)* + 3 (&z = b;)* + D [min(0, z;))?

=1 j=1

Here K is an upper bound for cx and we assumed that p (the penalty weight) equals 2

for any penalty term, and
ho(z) = (cz — K)* + E(diz — b;)*
i=1

hi(z) = —z; (the negative of the ¢* element of x)

27

The Basic Algorithm:

i) Choose z° in R™*™, the starting point, and €,6,p > 0, X = 0.

ii) Compute the conjugate gradient directions {d;},i =1,...,n + m. by the method
of conjugate gradient of Hestenes and normalize them.

iii) Fort=1ton+m do
d; = d;, do line search, z* = z + td,

A=A+ |t

Check the optimality conditions, if z* is optimal solution, then stop.
end (For).

if Fj(z*) < € then go to step(vi).

if min(}, 2) < §, then (Reset) go to step (iv),

else set A = 0 and repeat step (4i7).

iv) Set v; = —VFy(z7), choose vs,...,Vngm such that vy, vs,...,vp4m are indepen-
dent.

v) Find conjugate directions {d;},7i = 1,2,...,n + m by the procedure of C.G.S. ,
normalize them, set A = 0 and go to step (:t).

vi) Improve cz by the following procedure (it needs n iterations):

consider the simplex tablaue:

1 Co Cn 0 ... 0
i a2 a1n
Ami Am2 ... Gmn 1

Given z then for : = 1 to n set the lower bounds as:
z; 20=4=0

L, <0=4¥ =2

and for 1 =n + 1 to n + m set the lower bounds as:

; >0=4;=0

Foomm s -1 _ ..]
¢;=cj—cgB7d =c¢j — cpd’

Case 1:

zgp =zg — 04’

ifd <0 Vi then problem is unbounded,
else we find 6 such that:

0 = 6. =min{mB‘_.— Z;, &> 0}
d! '

hence z; enters the basis and z;. leaves the basis.

Case 2:

Ip =g + 64’
Where § = minb,,0; and 6, = z; — ¢; and
92 = 9{- = mln{tﬁ, CZ{ < 0}
dl
If § = 6, then nonbasic j reachs its lower bound and ba.sic doesn’t change. If
6 = 6, then z;. leaves the basis and z; enters the basis.

vii) Go to step (iv).
We randomly generated some LP problems and solved those by our algorithm but
the results show that the method is not efficient for solving LP problems by using

the exterior penalty function F2(x). We have also tried primal and dual problems
together, but the results do not seem promising.

29

problem # | solution by lindo | solution via NSO
1 99.179 99.184
2 unbounded unbounded
3 395.34 369.70
4 72.135 68.30
5 85.71 80.30
6 260.00 260.41
7 123.179 118.73
8 109.434 109.45
9 132.699 132.71
10 70.339 69.667
11 70.87 69.174
12 83.849 83.853
13 198.860 171.08
Table 4.1: Az =b, A e RIEx16

problem # | solution by lindo | solution via NSO
1 246.420 245.00
2 88.958 89.17
3 231.291 231.558
4 50.216 50.66
Table 4.2: Az =b, A€ R¥6x?

30

5. CONCLUSIONS

For the feasibility problem, our non-smooth approach seems to be more efficient, at
least in the size range of computations discussed in chapter 4 . In the surrogate con-
straint methods which are efficient versions of relaxation methods, there is no measure
of usefulness of the selected surrogate constraint. As a future work, we consider using
our algorithm together with the surrogate constraint methods. In our algorithm the
penalty function is reduced exponentially in the first loop of iterations (the first n+m
iterations). So implementing our algorithm in the beginning of the surrogate constraint

method will probably yield more efficient results.

In the case of implementing our algorithm for LP problems we see that putting the
objective function as a penalty term in the so defined non-smooth penalty function has
a detrimental effect on the convergence of the algorithm. We worked on some variants
of penalty functions to decrease that effect of the objective function by assigning a small
penalty weight, but it seems that for LP case the penalty weights must be arranged in

a more suitable way to gain an effective algorithm.

31

BIBLIOGRAPHY

32

REFERENCES

[1] Agmon S.,” The relaxation method for linear inequalities ” , Canadian Journal of
Mathematics 6 (1954), 382-392.

[2] Ben-Tal A. and Zowe J., ” Necessary and sufficient optimality conditions for a class
of nonsmooth minimization problems” ;| Mathematical Programming 24 (1982), 70-

91.

[3] Burke V., ” Second order necessary and sufficient conitions for convex composite

NDO ” , Mathematical Programming 38 (1987) 287-302.

[4] Coleman T.F. and Conn A.R., ” Nonlinear programming via an exact penalty
function: Global Analysis ” , Dept. of Computer Science Tech. report CS-80-31,
July, 1980, University of Waterloo.

[5] Coleman T.F. and Conn A.R., ” Second order conditions for an exact penalty
function ” , Mathematical Programming 19 (1980) 178-185.

[6] Conn A.R.,” Constrained optimization using a nondifferentiable penalty function

? SIAM J. Numer. Anal. vol. 10, No. 4, September 1973.

[7] Conn A.R.,” Linear programming via a nondifferentiable penalty function ” , STAM
J. Numer. Anal. vol. 13, No. 1, March 1976.

[8] Conn A.R. and Pietrzykowski T., ” A penalty function method converging directly
to a constrained optimum ” , STAM J. Numer. Anal. vol. 14, No. 2, April 1977.

[9] Fletcher R., ” Practical methods of optimization ” , John Wiley , Great Britain
1987. ‘

[10] Goffin J.L., ” The relaxion method for solving systems of linear inequalities ” ,

Mathematics of Operational Research , vol. 5, No. 3, August 1980.

[11] Hestenes M.R.,” Conjugate direction methods in optimization ” , Spinger- Verlag,
New York 1985.

33

[12]

[13]

[14]

[15]

[16)

[17)

[18]

[19]

[20]

[21]

22]

23]

Himmelblau D.M., ” Applied nonlinear programming ” , McGraw-Hill, New York

1972.

Lemarechal C. and Mifflin R.(Eds), ” Nonsmooth optimizitation ” , ITASA Pro-
ceedings 3, Pergamon, Oxford 1977.

Motzkin T.S. and Schoenberg I.T., ” The relaxation method for linear inequalities
?, Canadian Journal of Mathematics 6 (1954), 393-404.

O’Neill P.F. and Conn A.R., ” Nondifferentiable optimization and worse ” , Dep.
of Combinatorics and Optimization report CS-83-05, March 1983.

Polak E. and Mayne D.Q., ” Algorithm models for nondifferentiable optimization
» SIAM J. Control and Optimization vol. 23, No. 3, May 1985.

Shor N.Z., ” Minimization methods for nondifferentiable optimizationy ” , Springer-
Verlag Berlin, Heidelberg 1985.

Shrijver A. and Grotschel M. and Lovasz L., ” Geometric algorithms and combi-
natorial optimization ” | Springer- Verlag Berlin, Heidelberg 1988.

Telgen J., ” On relaxation methods for systems of linear inequalities ” , European
Journal of Operational Research 9 (1982) 184-189.

Wolfe P., ” A method of conjugate subgradients for minimizing nondifferentiable
functions ” , Mathematical Programming Study (1975) 145-173.

Womersley R.S., ” Local properties of algorithms for minimizing nonsmooth com-
posite functions ” , Mathematical Programming 32 (1985) 69-89.

Wright S.J., ” Local properties of inexact methods for minimizing nonsmooth com-
posite functions ” , Mathematical Programming 37 (1987) 232-252.

Yang K. and Murty K.G., ” Surrogate constraint methods for linear inequalities ” ,

Department of Industrial and Operations Eng. University of Michigan, June, 1990.

