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ABSTRACT

SOLU TIO N  OF FEASIBILITY PROBLEM S  
V IA  N O N -SM O O TH  O PTIM IZATIO N

Iradj Ouveysi
M .S. in Industrial Engineering 

Supervisor: Associate Prof. Dr. Osman Oğuz 
December, 1990

In this study we present a penalty function approach for linear feasibility problems. Our attempt is to find 
an eiL· coive algorithm based on an exterior method. Any given feasibility (for a set of linear inequalities) 
problem, is first transformed into an unconstrained minimization of a penalty function, and then the 
problem is reduced to minimizing a convex, non-smooth, quadratic function. Due to non-differentiability 
of the penalty function, the gradient type methods can not be applied directly, so a modified nonlinear 
programming technique will be used in order to overcome the difficulties of the break points. In this 
research we present a new algorithm for minimizing this non-smooth penalty function.

By dropping the nonnegativity constraints and using conjugate gradient method we compute a maxi
mum set of conjugate directions and then we perform line searches on these directions in order to minimize 
our penalty function. Whenever the optimality criteria is not satisfied and the improvements in all direc
tions are not enough, we calculate the new set of conjugate directions by conjugate Gram Schmit process, 
but one of the directions is the element of sub differential at the present point.

Keyw ’ords: Non-Smooth Optimization, Nonlinear Programming, Linear Programming, Feasibility 
Problem, Penalty Function.
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ÖZET

’’ F E A SIB IL IT Y ” P R O B LEM LER İN İN  Ç Ö ZÜ M Ü N D E  Y E N İ BİR  
C E Z A  F O N K SİY O N U  M E T O D U

Iradj Ouveysi
Endüstri Mühendisliği Bölümü Yüksek Lisans 

Tez Yöneticisi: Doç. Osman Oğuz 
Aralık, 1990

Bu çalışmada, doğrusal uyumluluk (feeısibility) problemleri için, ceza fonksiyonu yöntemine dayalı yeni bir 
yaklaşım sunuyoruz. Amacımız, dışsal metod ilkesiyle çalışan etkili bir algoritma bulmaktır. Geliştirilen 
bu yaklaşımda, ilk olarak, herhangi bir doğrusal uyumluluk problemi (bir lineer eşitsizlikler .kümesi 
için) , sınırlandırılmamış bir ceza fonksiyonunun minimizasyonu problemine dönüştürülür. Bunun so
nunda ; dışbükey, kırıklı (non-smooth) ve ikinci dereceden bir fonksiyon minimizasyonu problemi ortaya 
çıkmaktadır. Ceza fonksiyonunun türevinin alınamaması nedeniyle (non-differentiable) direkt olarak, 
düşüm (gradient) tipi metodlar uygulanamaz. Kırık noktaların yarattığı bu zorlukların üstesinden gelmek 
için, doğrusal olmayan geliştirilmiş (modified) bir programlama tekniği kullanılmıştır. Sonuç olarak, bu 
araştırmada, sözkonusu kırıklı ceza fonksiyonunun minimizasyonu için yeni bir algoritma sunuyoruz.

Bu algoritmada, negatif olmama (non-negativity) kısıtlayıcıları düşürülerek ve ” Conjugate Gradient 
Method ” û kullanılarak, maximum eşlenik yönler kümesi hesaplanır. Daha sonra, ceza fonksiyonunu 
minimizasyonu için, bu yönler üzerinde sırasal doğru taramaları yapılır. Optimal ölçüt sağlanamadığı 
ve bütün yönlerdeki ilerlemelerin (improvements) yeterli olmadığı durumda, ” Conjugate Gram-Schmit 
Süreç ” ü ile, yeni eşlenik yönler kümesi hesaplanır. Fakat, bu yönlerin birisi, bulunan noktadaki alt 
türevselinin (subdifferential) elemanıdır.

A nahtar Kelimeler: Doğrusal olmayan progralama. Doğrusal programlama. Uyumluluk problemi. 

Ceza fonksiyonu.
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1. INTRODUCTION

In this chapter we summarize some of the existing theory and algorithms for solving 
the systems of linear inequalities and then we go over some methods for constrained 
optimization by using a non-differential penalty function and finally we give briefly the 
conjugate subgradient algorithms for non-smooth optimization.

1.1 Relcixation Methods for Solving Systems of Linear In
equalities

Agmon [1] presented the method of relaxation to solve a system of linear inequalities 
in which at each iteration one inequality that is violated, is choosen in some way (the 
inequality which has the maximum distance from the current iterate or the inequality 
with the maximum residual or the inequality which is chosen by a prearranged cyclical 
sequence ). The method continues by moving in the direction of the inner normal to the 
chosen halfspace (inequality) by a multiple A of the distance from the current point to 
that halfspace. In summary at iteration one starts from point and if Ajt =  1 then 

is the orthogonal projection of x  ̂on the chosen halfspace and if Ajt =  2 then is 
the reflection of x .̂ We may have overprojection, that is At G (1,2) or underprojection 
Ait € ( 0, 1).

The convergence proof was done by Agmon, Motzkin and Schoenberg [14] based 
on the fact that, under any of the three implementations of the relaxation method as 
applied to a nonempty polyhedron P (P is the feasible region of the system) and for 
A € [0, 2] the relaxation sequence {x*} satisfies:

A+i - 2|| < \x^ -  zl V z e P

which implies the Fejer-Monotone sequence of the points {x*} with respect to P. 
Fejer showed that any Fejer-Monotone sequence is convergent.



Using some lemmata basic to Khachian’s polynomially bounded algorithm Telgen 
[19] showed that the relaxation method is finite in all cases and so can handle infeasible 
problems as well. However the worst case behavior of the relaxation method is not 
polynomially bounded cind a class of problems are constructed on which the relaxation 
method requires an exponential number of iterations.

The basic advantages of the relaxation methods is that, these methods can be ef
ficiently implemented to solve huge systems of linear inequalities, because there is no 
need for matrix inversions which causes the computational simplicity of these methods.

1.2 Surrogate Constraint Methods

Yang and Murty [23] developed a new iterative method based on the generation of 
a surrogate constraint from the violated inequalities in each step. The basic idea is 
due to fact that when solving a huge system of linear inequalities, considering only one 
constraint at any iteration would lead to slow convergence. They presented the following 
methods;

The Basic Surrogate Constraint M ethod: In this method at each iteration 
a surrogate constraint is derived by taking a nonnegative combination of all violated 
constraints. At the iteration the next point is on the line segment, joining 
to its refiection with respect to surrogate constraint.

The Sequential Surrogate Constraint M ethod: Initially the system of linear 
inequalities Ax < b is partitioned into £ subproblems as: A'x < 6* , i =  1,2, . . . ,^
Starting at point x  ̂ the surrogate constraint is constructed from the set of violated 
constraints of the first subproblem and the basic method is followed for obtaining 
In the next iteration the surrogate constraint is constructed from second subproblem 
but now the starting point is x̂ '̂  ̂ and following the basic method we reach to and 
so on. In this way the algorithm goes through major cycles, in every major cycle, each 
of the £ subproblems is operated on once in serial order i =  1, 2, . . . ,  ¿.

Parallel Surrogate Constraint M ethod: This method is similar to second one 
but now the surrogate constraint is constructed by considering all of the subsystems 
A*x < 6‘ , i =  1 ,2 ,. . .  ,£ simultaneously, that is if we axe at point x*' then this point is 
a starting point for all subsystems. Say the resulting new points based on basic method 
be X(,̂  ̂ i — 1, 2, . . . ,^ then x*'’·'̂  is the convex combination of the points i =
1, 2, . . . , !



1.3 Khachiyan’s Algorithm

Khachiyan [18] showed that the ellipsoid method can be modified in order to check the 
feasibility of a system of linear inequalities in polynomial time. For finding a feasible 
point of the system of Ax < b (where A G G 7^", b G 7̂ ”*) the algorithm starts
with the initial ellipsoid Eq =  E{Aq, xq) where lo =  0, >lo =  R^I, and J2 is a real number 
large enough to have P C S{0, R) , here P  is the set of feasible region. At any iteration 
k we have E{AkiXk) containing P, if Xfc G P then the algorithm stops, but if Xk ^ P, 
then the most violated inequality is chosen, say CcX < 6« and for the feasible part of 
the ellipsoid which is cut off by this constraint, a new ellipsoid is constructed, that is:

E(^Ak̂ x̂  Xk+i') — P(^Akj Xk') n (x : Oo,x ^ Of̂ Xk}·

Hence at each iteration the volume of ellipsoid is decreased by a factor < 1.

The problem is infeasible if fc =  AT, that is the volume of the ellipsoid Vf is small 
enough to declare P is empty. Where Vq is the volume of Eq eind

Vf =  { e -^ f 'V o

N  =  ¡N'l that is the smallest integer greater or equal to N'.

N is an upper bound for the number of iterations, and we can set;

Vf «  where < A > is the encoding length of A.

and
N =  2n ^(2n +  1) < A > +n < b >

R =  y/n where < A, 6 > is the encoding length of A and b.

1.4 c o n n ’s Projection Method

Consider the problem of finding the constrained minimum x* of the function /  on the 
set

P  =  {x G P ” I > 0, i =  l , 2, . . . , fc }  (1)

where RA is an n-dimensional real vector space, / ,  (f>i{i =  1 ,2 ,... ,k)  are real contin
uous functions on RA.

One method of solution is to minimize the well known penalty function [6],[7]
k

Po(x) =  fif{x) -  Y^min{0,<l>i{x))
t = l

(2)



for X 6 /i >  0. Given fj. let x(̂ u) be the minimum of this function. It is known 
that for sufficiently small fj,, x{/j,) — x*. Conn[6} presented a method that enables 
a modified form of the gradient type approach to be applied to a perturbation of the 
penalty function Pq above.

Define J(x, e) =  {i Ç. k : \ (j>i{x) |> e} and A (x,e) =  K\I(x,e). Here I(x ,e) is 
the index set of those <f>i that may be considered inactive in a neighborhood of x, and 
A(.T,e) be the active constraints at x. Starting with x’ and suitable choice of ¡jl and 
e (a small positive number), the algorithm separates the set of e active and inactive 
constraints. Dropping the active constraints from Pq enables us to find the gradient of 
Pq at x'. Projection of — VPq onto nullspace of gradient of active constraints gives the 
search direction, d,·. By line search we find x'·*"̂  and then redetermine the set of active 
and inactive constraints and continue the iterations.

Later Conn and Pietrzykowski [8] presented a method for the same penalty function 
that constructs a single sequence which minimizes P q and converges directly to x*. 
This method is the continuation of their earlier results. For the case of e =  0 we may 
exhibit the zigzagging when <̂,· ’s are nonlinear. According to this reason it is necessary 
to consider projecting when the constraints are not necessarily exactly zero. So the 
stipulation of near-zero (e active) was necessary to avoid zigzagging in the nonlinear 
case. However, since in general this tolerance (e) is rather small, it becomes desirable, 
specially in the initial steps, to consider some larger value, i.e., e . But this form 
of projection made it difficult to satisfy the constraints exactly, a phenomena which is 
clearly most detrimental as we approach final convergence. Their new method overcomes 
this difficulty as follows: At each iteration the direction of search has two components, 
the first which is called horizontal component, is Conn’s projected gradient that we 
mentioned before. The second direction or the vertical component makes a linearization 
to satisfy the relevant constraints exactly.

1.4.1 Conjugate Subgradient Methods and Extension of Them  
to a Class of Bundle Methods

Wolfe [20] and Lemarechal [13] in their methods for Non-Smooth Optimization-(N.S.O) 
use a bundle method, in which the direction of search at any iteration is computed 
from a set of subgradients which have been found so far. In our algorithm we will 
use a bundle of conjugate directions and since there are some similarities in this sence 
between our method and Wolfe’s conjugate subgradient algorithm, we give a summary 
of the theory of the methods used in [13],[20] . Lemarechal [13] showed that the methods 
of conjugate gradients are perfectly justified whenever a local aspect is concerned, but



that this local aspect is not enough for constructing efficient algorithms. So he replaces 
the local concept by finite neighborhood and defines the cleiss of bundle methods. Now 
we give a brief description of local aspect, finite neighborhood aspect and bundle method 
as follows:

Throughout this section f ( x )  is a convex and Lipschitz function defined on 7?.” ; as 
a Lipschitz function /  has a gradient almost everywhere in 7?." and 7 "̂ is considered as 
a Hilbert space.

Local aspect: In the study of local aspect [13], the basic point is that we fix a 
point X and try to find a descent direction, i.e. we want to find a direction d such that: 
f'{x^d) < 0 where:

=  lin, № + M ) - / ( x )
 ̂  ̂ i^o+ i

Since /  is Lipschitz function then it is possible to construct a sequence {x,·} such that 
V/(x,·) exists and Xj —>■ x. By defining

M (x) =  {(j\ g =  lim V /(x,),x,· -> x,W f{xi)  exists},

we obtain the following result [13]:

f '{x ,d )  =  snp{< d,g > \ g e  M {x)}.

The basic idea for constructing a descent direction or, equivalently, for constructing 
M (x) is as follows:

Assume we know k points in M (x)

G =  ( g r , . . . , g k ) c M ( x )

This can be initialized by computing gi =  V /(x ) . Now we show that we can find 
either a descent direction or determine some gk+i G M (x) so as to improve the current 
approximation M (x) of V /(x ) . Since f '(x ,d ) >  max{< d, ,̂· > | i =  l , . . . , /u’} we 
choose some dk ( The set of descent directions is the (open) polar cone of the convex 
cone generated by M(x)  ) such that

^ z — 1 , . . . ,  k, (3)

Now two cases may occur:

i) either there exists t > 0 such that f ( x  +  tdk) < f {x )  then dk is a descent direction, 
and we are done.

ii) or /(x  +  tdk) >  /(x ). Vi.



In this case for any g £ M {x  +  tdk) by using the subgradient inequality for /  and for 
any t > 0 we have:

f { x  +  tdk) > / ( « )  > f { x  +  tdk)-l· < g ,x  -  X -  tdk > =  f { x  +  tdk)+ < g, -tdk >  ·

Let i O'*· and denote by gk+i any cluster point of g , then gk+i G M {x)  by definition. 
Furthermore, since < gk+i,dk > > 0 , then increasing A; by 1 and computing new 
direction satisfying ( 3) guaranties to obtain a new direction. In order for gk+i to be as 
good as possible, dk is found by solving:

minmax{< d,S',· > 1 i =  l , . . . ,A:} .d
and we find dk as:

dk =  - N r  {g i , . . . ,g k } ,

where Nr S is the unique point in the closure of convex hull of the set S with minimal norm.

Finite neighborhood aspect:[13} There are some cases that M (x)  is either singleton 
or is too small and contains only limited number of subgradients. In this cases M {x)  
may be useless or the algorithm for minimizing /  by the descent directions that are 
found by the above procedure, may be slow.

For these cases Lemarechal gives another procedure in which the concept of x,· —>■ x 
is substituted by a finite neighborhood, Us(x) for a small e > 0 which means: x,· close 
enough to X.

Defining Ms{x) to be:

M(x)  C Me(x) =  {s' I g =  lim V/(x,·), X,· -> y, y G

by Vj(x) we mean the e neighborhood of x .(i.e. a ball)

Its construction is easy and it is never singleton (if /  is not linear). Assume d is 
such that < d, y > < 0 Vy G Ms(x) (we choose such a d in the (open) polar cone 
of the convex cone generated by Me(x)) then /(.r +  id) is a decreasing function of t as 
long as X + id G ^ (̂x). Since e > 0 and any line-search will get us out of ^ (̂x,·) then an 
algorithm bcised on this process of search will be finite. Of course like the ” local aspect 
” study if / (x  +  id) > f { x )  Vi , then in the same way it can be shown that we can find 
some gk+i G M j(x) to improve the current approximation Ms{x) of V/ (x) .

Bundle Methods:[13) In this part we assume that we have performed the descent 
algorithm discussed above for the points Xi , . . .  ,Xk and for any point x,· we have one 
subgradient y,· and the value of /  at x,·, /,·.

So symbolize these information by the bundle:

6
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Where /,■ =  Qi G d f(x i)  and d f{x )  is the set of all subgradients of f  at x. Say
=  {^1, · · · ,9k}·

In some situations we are unable to compute exactly the function and it’s gradient 
at X,·, then for any x,· together with some prescribed tolerance £,■ we find /,· and gi such 
that:

/(x,·) -  e,· < /,■ < / (xj )  and gi G d^J{xi)

We use the above bundle to compute xjt+i and gkJri as follows:

Let Gk C df{xk) and choose dk =  —Nr Gk , do line search and find xjt+i =  x+tkdk, 
where tk is the step length and then compute gk+i G df{xk+i +  tkdk)· There are two 
cases to be considered:

1) When all the points from x\ to Xk are close together and all the gds are approxi
mately in df{xk)·

2) If /  is quadratic and we do exact line-searches from xi to Xk then in this case 
Nr Gk turns out to be the direction of conjugate gradients.

It must be noticed that for k being large the direction dk =  —Nr Gk is a poorly justified 
choice. To solve this difficulty we need to use a reset step by deletting those gds that 
appear to be poor approximation of df(xk)· In this way k is forced to be small and this 
gives variants of conjugate subgradient methods.

1.5 Wolfe’s Conjugate Subgradient Method

Let the polyhedral, convex function /  has the form :

/ ( x )  =  m ax{/i(x), i =  1, 2, . . .  ,m},

where the function fi are affine, so that V/i (x)  =  gi is constant for each i ; /  and / '(x ; ·) 
are closed and proper. Define

I(x) =  {i : fi(x) =  / (x ) } .

for all X,  then
d f{x )  =  conv{gi : i G I{x)}·

For any set S C jS", there is a unique point v in the closure of convex hull of S having 
minimal norm, we denote it by Nr S. i.e. if Nr S =  v then:

< v,s > >  ||t;| for all s E S.



Figure 1.1: Constructing in Wolfe’s Method.

By using the following characterization of gradient:

v/(x) = -iV r d f { x l

We can write V / ( x )  =  —Nr (conu{^,· : i € J(x)}) =  —Nr {̂ ,· : i G -f(x)}·

r.'ovv assuming that we have a bundle Gk — {gk-p, ■■■, 9k-i,gk] , (where p is a natural 
number less than k) we set dk =  —Nr Gk be the direction of steepest descent of /  at 
Xk-

Wolfe [20] presented a conjugate subgradient method for minimizing non differen
tiable functions, which is based on bundle methods with a special line search. Assuming 
that we have a bundle

x o y - ,X k  , go,...,gk  , f {xo ),. . .- ,f {xk )

the algorithm works as:

i) Compute dk = —Nr Gk where Gk =  {po, · · · ,gk}·

ii) Line search gives t > 0, and gk+i € d f(x  -b tdk}·

iii) Set

iv) If the optimality conditions are not satisfied, go to (i), else stop.

Computing G+,d+ (G+ =  Gk+i, d =  dk, d+ =  dk+i) is shown geometrically in
Figure 1.1.



If x q , . . .  , Xk  axe close together, the above iteration continues until ||<ijt|| <  e for some 
k =  K  and then if

^  Ifxjt+i -Sfcll <  6
k<K

is satisfied, the optimality conditions can be checked, if not, a reset step is begun.

Resetting is done by choosing Gk =  {fiffc}, that is by discarding all the previous 
subgradients. Wolfe’s algorithm constitutes an extension of the method of conjugate 
gradients method of Hestenes and Stiefel [11].

9



2. A N E W  CONJUGATE GRADIENT  
APPROACH FOR NON-SM OOTH  

OPTIMIZATION

We consider the feasibility problem :

Po s.t. Ax < b
X >  0

where A G x G 7?.” , b G and A is not necessarily full raw rank. Problem P q

is equivalent to:
s.t. Ax =  b

X >  0

where A = A \ L · e  7г'" X 6 7?.’”+” .

by adding the slack variables and identity to A we have nonsingular matrix Q as:

(  dll

Q =
dml ■ · ·

1 0

0

Îm 1 0 0 ^
0

I I 0
^m n 0 ... 0 1
0 0 ... 0

0 ;
1 0 ... ... ojV 0 (

Then A =  Q^Q is a positive definite matrix and we make the transformation:

b =  Q^b*

10



Where we define b* as:

b* =

and where b* , i =  1, 2, . . . ,  n are choosen as:

h-
m

It is known that if we drop the non-negativity constraints, then it is possible to solve 
the system of Ax =  6 by conjugate gradient method which terminates in k iterations 
such that k < n +  m (here A 6 7̂ (n+m)x(n+m)  ̂ gy conjugate directions we mean 
A-conjugate or A-orthogonal directions, so:

diAdj = 0  i ^  j  \/i,j

dfAdi ^ 0  Vi

In fact since A is positive definite, then: d{Adi > 0  Vi . As mentioned in section 2.5 
Wolfe’s algorithm constitutes an extension of the method of conjugate gradients method 
of Hestenes and Stiefel. Based on this we will introduce a set of A-conjugate directions 
{di}^=i^ and perform search on these directions successively. Whenever it is necessary 
we will compute the conjugate directions by Gram Schmit orthogonalization process.

For the feasibility problem P q we define the penalty function Fi(x) aa follows:

m n+m

=  ¿ (a .®  -  bif +  ^  [min(0, 0:̂ )]̂
t=l i = l

Recalling that A =  Q^Q and b =  Q^b* , we drop the non-negativity constraints and 
solve the system of Ax =  b. Assume that we have found the conjugate directions 
{di},i =  1, . . . ,  n -f m and let the step sizes in any direction di, be a,·, z =  1, . . ,  n -|- m. 
then we can write the solution as;

X — X Oiid\ -|- . . . -f- Oin+mdn+m

where x'̂  is any arbitrary starting point. Solving the system of Ax =  b is equivalent to 
minimizing the:

F(a:) =  [Ax -  6]*[Ax -  6]

11



Starting from rc° then the step size in direction dk would be ajt

F{x°) =  [Ax° -  bf[Ax^ -  b]

F(x^) =  [A(x° +  akdk) — bY[A{x^ +  akdk) -  6]

d F {x ^ )

dak
=  0 2{AdkY\A{x^ +  akAdk) — 6] =  0

{AdkYAx^ +  ak{Adk)^(Adk) -  {Adk^b = 0 
(Adk)^b — (Adk)^ Ax°

\ A ^ l

ak =
(d k fA F b -  (dkfA^Ax^

{dkYATAdk
Here ak is the optimal step length in direction dk without considering the non-negativity 
constraints and let a =  iQi«!·
Assume we have 6* ,i =  l , 2, . . . , n  such that the unique solution of Qx — b* is a 
feasible solution to Po and let the set of A-conjugate are given, if we use
the optimal step sizes , we have:

Ei=l

n-f m
Oi ( -f ^  ajdj ) -  6,· 

j=l

- I  2

=  0

since X = -f ajdj is a solution.

Now consider using step sizes dj , i = 1, 2 , . . . ,  (n+m) rather than o,· , i =  1 ,2 , . . . ,  (n-f 
m) and we choose 6 as:

 ̂=  m jn||^l :

then we have the relative reduction:

E ”JT (g.- °̂ -  -  E r ir  |ii (x° +  ̂ <̂a ) -f · ;'
E ”i r  (<jix» -  i ; f

That means if we define error at x  ̂ as
n+m

=  29 - 9"̂

A* = E - i-:).
1=1

then we have

Since A < 2  ̂ ( here L is the size of the system of linear equalities ) then we can 
stop after ¡3 iterations for which

2 ^ { i - 2 0  +  e-‘ Y

12



Which means we can bound the number of iterations as
- 2L log2

log (1 - 2  ̂+  0 )̂

This definitely implies a polynomial bound for for problem P q for any 1 >  ̂ > 0. In 
this work we could not prove the existence of such 6 , but the computations results in 
the next chapter seems to support this idea that practically our algorithm can solve 
problems in polynomial time bound. It means that if in any loop the improvement in 
any direction is not posssible, we can remove that direction from the set of conjugate 
directions and the procedure reduces to search in the directions remained in the bundle 
of directions, and then it is possible to find a 0 < 0 < 1 , such that we can improve in 
all remaining directions.

13



i) Choose X® in 72·"·*·”* , the starting point, and sufficiently small e, 5 > 0, A =  0.

ii) Compute the conjugate gradient directions {d ,}, i =  1 , . . . ,  n +  m by the method 
of C.G. algorithm and normalize them.

iii) For i =  1 to n +  m do

de =  di, do line search, =  a; +  tdi 

X =  X +  \t\

if Fi(x·*·) < £ then stop, a feasible solution is found, 
else check the optimality test, if x"*· is optimal, then stop, 
end (For).
if min < 6 then (Reset) go to step (iu).
else set A =  0 and repeat step (Hi).

iv) Set vi =  — VFi(x·*·) , choose V2,...,Vn+m such that vi,V2 , . . .  ,Vn+m are inde
pendent.

v) Find conjugate directions {d,·}, i =  1, 2, . . . ,  n+m  by the procedure of C.G.Schmit, 
normalize them, set A =  0 and go to step (iii).

The Main Algorithm:

Convergence Results:

Definition: Let W  be the set of minimum points of Fi(x) and let VF 7̂  0 . A 
sequence in 72" is called strictly Fejer-Monotone with respect to the set W
, if for every x G FF we have:

\xfc+i — x|| < llx̂ ' — x|| for all A: > 1

Every Fejer-Monotone sequence is bounded if FF 7̂  0 , since ||x̂ ' —x|| is always positive 
and monotonically decreasing with FF [23].

Definition: Let {d,}"J"/" be A-conjugate directions such that di =  —y/(x*') and 
d2,da,. . .  ydn+m are generated by C.G. or C.G.S. algorithms with respect to di and a 
positive definite matrix A. We say a loop k is processed if starting from point , a 
set of line searches are done on all directions of the set {d. jfj"]”* and we reach the new 
point x*·*·*̂ . Of course this process is equivalent to n +  m iterations.

Theorem  1 (basic idea due to Shor[17j) let F  be a convex function and VF 7̂  0 , 
then any sequence generated by the algorithm above is strictly Fejer-Monotone

14



with respect to W  and for any £ > 0 and any x* ^ W  there exists a k and x such 
that F (x)  =  F(x^) and:

Where h is a real positive number.

Proof: Without loss of generality assume that in any loop the directions
are not suitable for improvement in line searchs. Then our algorithm reduces to a
subgradient type method, that in any loop we have:

where: /ifc+i =  steplength

„k „2
let X* e  W  ||x*+̂  -  x*|| =  llx'' - X *  -  hfc+iijpf||||

~  | | x ^  —  X I I  +  —  2 / i t 4 . x  <  x * ^  —  X*, >

if = 0 then X =  X*’ =  X*.

So let g'̂  ^  0 and take ik = <  x  ̂ — x*, > which is distance from x* to the
hyperplane:

fTx: =  {x : < , x*' — X > =  0}

Define
D , = {x :  F(x) =  F{x'‘ )} 

bk(x*) =  min ||x* — x||
x€Dk

Since Dk and x ‘  are in one side of Hk , then any segment joining the point x* to a point 
oi Hk passes through Dk- so we have :

4(.T*) > bk(x*)

||x̂ +i _  a;*||̂  < lla;''· _  a:*||̂  +  -  2hk+ibk{x*)

let h be sufficiently small positive number as a constant stepsize:

||o;̂ +i _  a;*||2 < ||a;'= -  a:*||'* +  /i" -  2hbk{x*) 

now if bk(x*) < 1  for all A: = 1, 2  . . .

||x̂ +̂  — x*||̂  < ||x*̂ — x*||̂  — eh^ < ||x̂ ' — x*||̂  — e(l +  k)h'^

But since ||x*·*·̂  — x*|| > 0 then there exists k such that:

hi^*) =  min ||x* -  x|| < ^(1 +  e)

15



so no matter how small e or h is, we can find a k such that is the minimizer of 
jP(x) and

II®

Optimality Conditions:

Ben-Tal and Zowe [2] derived the necessary and sufficient optimality conditions for 
the exterior penalty function:

1 ^
P e  m inf(x) =  ho(x) -f -/9^[m ax{0,/i,(x)}]^ .

^ t=l

First, it is convenient to define the following index sets:

E -- {¿1 =  0}
E+ =  {i| hi(x~) > 0}

Theorem 2 Necessary and sufficient, optimality conditions for problem P«

(a) A necessary condition for x* to be a local minimizer of problem Pg is that

K( ‘̂) + E = 0
i&E+

and for every d € 7̂ ”+” ,̂

ho(x) < d , d >  -f-p ^  hi{x*)h” {x ’') <  d , d >  -f p ]^[max{0,/i'(x*)d}]^ 
ieE+ i&E

+P > 0.
i€E+

(b) A sufficient condition for x* to be an isolated local minimizer for problem Pg is 
as above but with strict inequality for d ^  0.

For our penalty function we have:

p =  2
s =  n -f m

hi(x) =  —x,(the negative of the element of x)

16



and

ho(x) =  -  hif
1=1

O ptim ality Test: We have a set of conjugate directions D  =  , then a point
X*  is an optimal solution of Fi{x) if sufficiency condition of optimality is satisfied for 
any dk and —dk such that dk E D, =  1 ,2 , . . . ,  n +  m. Since any set of conjugate 
directions are also independent, then any arbitrary direction de can be written as the 
linear combination of the elements of the set D  , that is d̂  =  rk E TZ. and
dk E D.

So if sufficient conditions for optimality at a point x* is satisfied for any dk and —dk 
such that dk €: D,  ̂ =  1, 2, . . . ,  n +  , then it will be satisfied for any dg G and
in this way the existing point x* will be optimal solution.

Of course the optimality test is not necessary for feasible problems and for the 
attempt feasibility problems we never used this test (for feasible problems), because 
min Pi (x*) =  0 for a feasible point x*. But in application of our algorithm for LP 
problems we need to use this optimality test.

17



3. NUMERICAL EXPERIMENTATION

We decided that for our A-conjugate method, we need to check the effectiveness of the 
algorithm practically. So we generated a series of random problems in different sizes and 
applied our algorithm to solve them. In these problems, that we give in tabular form 
in this chapter, the size of A changes from to , and for larger problems
we need to modify the C.G. algorithm to find exact A-conjugate directions.

Recalling from the last chapter, although we could not guaranty the existence of
0 < 0 < 1 in any loop of iterations ( n+m iterations ) to support the polynomiality 
motivation of our algorithm, but as it is seen from the computations results in this 
chapter, the method solves problems in polynomial time bound practically at least for 
the size range of problems given above.

Due to numerical errors the accuracy of search directions ( generated by
C.G. or C.G.S. processes) to be A-conjugate is decreased as size of A increases. The 
sparsity of the matrix A for all the solved problems is over 80 percent (that is the 
number of non-zero elements of A is more than 80 percent of its all elements) besides 
there is not any conditions on A and b.

The important result from numerical experimentations is that, for all solved prob
lems the convergence is so quick in first loop, that is for the problem of size 7̂ ” *̂ " the 
penalty function is reduced exponencially at first n iterations and reachs to a relatively 
very small penalty value with respect to its initial value and then the process achieves 
a rather slow convergence. The worst case of number of iterations necessary to find a 
minimizer of penalty function in our test, is bounded by 15n.

Since the symmetric and positive matrix A may be ill conditioned, for example 
some of its eigenvalues may be too small, then in calculating A-conjugate directions 
the roundoff errors may be too large and this leads to the cases where d\Adj ^  0 for
1 ^  j  , so the set can not exactly represent 7̂ "+”* space.
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FACTORS 1C =  10 /C =  13 x: =  16 IC =  20 1C =  26 1C =  30 1C =  36 !C =  A0
m
n

Uij

hi
NZ
UCj

Icj
pc

4
6
20

-20
4
10
- 1
0.8

5
8
20

-20
5
10
-1
0.8

6
10
20

-20
6
10
-1
0.8

8
12
20

-20
6
10
-1
0.8

10
16
20

-20
8
10
- 1
0.8

12
18
20

-20
8
10
- 1
0.8

16
20
20

-20
12
10
-1
0.8

16
24
20

-20
12
10
-1
0.8

Table 3.1: Schedule of design of test problems

K, =  
m  =  

n =

Uij

"ij

dimension of the space, A G 
number of linear inequalities.
number of variables without adding slack variables, 
upper bound for d,j. 
lower bound for d,_,·.

UCj  =  

Icj =
upper bound for Cj. 

lower bound for Cj.

NZ =  number of non-zero elements in every column 
density of number of non-zero elements of c. 
total (relative) step length during one loop (m -|- n  iterations).

Pc =  
A _
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problem # ^  of iterations /(* ) min (¿ ) average
1 3 0.003860 0.017921 0.017921
2 4 0.007682 0.004227 0.004227
3 3 0.000367 0.004419 0.004419
4 3 0.007072 0.011708 0.011708
5 17 0.000874 0.003076 0.004755
6 28 0.010914 0.005772 0.012161
7 3 0.001199 0.003783 0.003783
8 3 0.001846 0.004212 0.004212
9 3 0.000119 0.001505 0.001505
10 3 0.000819 0.002757 0.002757
11 56 0.010789 0.000249 0.019070
12 19 0.006049 0.000003 0.001483
13 26 0.016264 0.003028 0.014203
14 15 0.016651 0.002718 0.007129

Table 3.2: Ax =  b , A G

problem # ^  of iterations f(^) min (A) average
1 5 0.000922 0.004142 0.004142
2 5 0.013952 0.002545 0.002545
3 20 0.003806 0.001378 0.002427
4 5 0.000570 0.009462 0.009462
5 30 0.019781 0.000052 0.006128
6 32 0.019084 0.000030 0.003567
7 5 0.010253 0.005145 0.005145
8 41 0.016802 0.000012 0.002100
9 72 0.019898 0.000094 0.010462
10 129 0.019927 0.001547 0.009797

Table 3.3: Ax =  b , A e
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problem ^ of iterations f(^) average
1 23 0.002494 0.000200 0.001460
2 6 0.001620 0.011088 0.011088
3 58 0.017985 0.000874 0.010186
4 54 0.009547 0.000021 0.021087
5 39 0.018295 0.000102 0.002721
6 6 0.000240 0.015218 0.015218
7 72 0.018383 0.000108 0.007236
8 6 0.000549 0.004565 0.004565
9 7 0.002867 0.009162 0.009162
10 62 0.014058 0.000364 0.010775
11 59 0.014058 0.000221 0.005854
12 87 0.015753 0.000100 0.008568
13 5 0.008931 0.002479 0.002479
14 6 0.000389 0.007353 0.007353
15 16 0.016699 0.037585 0.037585
16 6 0.000414 0.007798 0.007798
17 54 0.014726 0.000047 0.018080
18 77 0.019968 0.000305 0.009002
19 72 0.015961 0.000092 0.007809
20 151 0.019186 0.000248 0.004713

Table 3.4: A.T = 6 , A €

21



problem # of iterations f(^) min (A) average
1 53 0.007171 0.002620 0.006169
2 55 0.015347 0.005015 0.007598
3 7 0.007326 0.004334 0.004334
4 9 0.006160 0.013377 0.013377
5 52 0.011085 0.000143 0.026794
6 28 0.007784 0.000488 0.001557
7 25 0.019862 0.000031 0.040541
8 112 0.019612 0.000012 0.039558
9 9 0.005295 0.014534 0.014534
10 29 0.019185 0.000306 0.017977
11 10 0.018377 0.026277 0.026277
12 50 0.008287 0.000080 0.014182
13 49 0.017067 0.000080 0.010122
14 73 0.013925 0.001308 0.010502
15 69 0.019215 0.000271 0.011067
16 74 0.013281 0.000848 0.020566
17 75 0.018330 0.000522 0.008848
18 231 0.018757 0.000734 0.002817
19 76 0.009882 0.000732 0.006515
20 56 0.014150 0.005013 0.009095
21 115 0.019891 0.000747 0.006236

Table 3.5: Ax =  b , AG
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problem :fl: of iterations f(^) min (^) average
1 19 0.012911 0.029228 0.029228
2 191 0.029996 0.000006 0.004158
3 36 0.027740 0.000320 0.018018
4 67 0.007212 0.000330 0.005650
5 11 0.015245 0.005242 0.005242
6 144 0.029670 0.000050 0.005359
7 10 0.007677 0.006737 0.006737
8 149 0.029920 0.000382 0.100395
9 64 0.012921 0.000136 0.004630
10 9 0.010766 0.022777 0.022777
11 68 0.027688 0.000161 0.004136
12 149 0.029920 0.000382 0.100395
13 64 0.012921 0.000136 0.004630
14 9 0.010766 0.022777 0.022777
15 68 0.027688 0.000161 0.004136
16 70 0.024106 0.002148 0.007798
17 169 0.029791 0.000020 0.010201
18 173 0.026735 0.000071 0.001617
19 64 0.026865 0.000230 0.015913
20 91 0.026094 0.000119 0.004617
21 95 0.013781 0.000310 0.006535
22 89 0.027748 0.000033 0.004375
23 143 0.023141 0.001590 0.005584
24 253 0.018113 0.002862 0.068871

Table 3.6; Ax =  b , A e
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problem # #  of iterations f(^) mmH U averageM
1
2
3
4
5
6
7
8
9
10 
11 
12
13
14

14
106
134
14
80
103 
200 
111 
225 
102 
352 
75
104 
104

0.008159
0.028005
0.024513
0.011539
0.024698
0.016989
0.027437
0.010574
0.029625
0.026161
0.029524
0.021587
0.029698
0.029981

0.081600
0.000065
0.000022
0.007543
0.001907
0.000051
0.002198
0.001337
0.000014
0.000006
0.000163
0.000295
0.000009
0.000031

0.081600
0.006770
0.004174
0.007543
0.019771
0.018905
0.055168
0.007677
0.001667
0.003876
0.002316
0.012395
0.004808
0.007279

Table 3.7; Ax =  b , A e

problem # of iterations fi^) average (^ )
1 196 0.028532 0.000001 0.045340
2 273 0.026510 0.000483 0.014159
3 51 0.028544 0.004593 0.123871
4 17 0.026963 0.208405 0.208405
5 47 0.023672 0.001274 0.066795
6 235 0.021095 0.000081 0.180527
7 425 0.029967 0.000001 0.197356

Table 3.8: Ax =  b , A e

problem # ^ of iterations f{^) min (^) average j
1 143 0.028990 0.000039 0.092190
2 458 0.013592 0.000677 0.132495
3 62 0.028406 0.004004 0.048863
4 185 0.029546 0.000174 0.019071
5 17 0.026838 0.014640 0.014640
6 138 0.022210 0.000061 0.038515
7 176 0.028839 0.021943 0.540074
8 386 0.028450 0.000309 0.003927
9 318 0.029407 0.000971 0.018176

Table 3.9: Ax =  b , A e
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Figure 3.1: Number of Iterations vs. Problem Size
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4. APPLICATIONS

4.1 Linear Inequality Models in Computerized Tomography

Computerized tomography [23} is a method in which the image of the cross section of 
the body is reconstructed by a computer. It can be used to show a three dimensional 
view of the interior structures of the human body and so CT can detect some conditions 
that conventional X-ray pictures can not detect. Initially the structure ( which can be 
brain, heart, etc.)which is being studied, is divided into slices and then as finite element 
method any slice is considered to be divided into sufficiently small pixels. The process 
for a two dimensional slice is as follows:

An X-ray beam, say beam 1 penetrate the slice, entering it with the initial intensity 
Ji, and emerges at the detector at the end of its path through the slice, with an intensity 
Fi- Hence the total absorption of the energy through the path is F — Fi. Define a-ij 
be the length of the intersetion of the path of beam number 1 with the pixel, and 
say Xj be the unknown local density of the pixel and assume the data is collected 
from m different beams for every slice, then we have:

O'ijXj — hj i — 1 ,2 ,. . . ,  
i=i

n

where hj =  Ij — Fj

Since the assumption that the local density is a constant within each pixel, is unlikely to 
be valid and since the local densities are not negative, so we can replace upper system 
by the inequality system as:

i>i -  £.· < X] CLijXj <  b{ -f £,· 
j=i

1 < f < ?n

0 < .T,· < u 1 < i  <

where u is a known upper bound for the density of pixels and n equals to the total 
number of pixels in slice. Solution of this system of linear inequalities gives densities of 
the object under study.
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4.2 LINEAR P R O G R A M M IN G  V IA  NON-SMOOT;ri OPTI
M IZATIO N

In this chapter we try to extend our algorithm for solving the linear feasibility problems 
to solve linear programming problems. We onsider the LP problem :

P i

where A 6 7?.'"^", c and x G 7 "̂ , b G 7Z” 

Adding slack variables we have :

max cx 
s.t. Ax < b 

x > 0

max cx 
s.t. Ax =  b 

X > 0

where A = A I Im] e and .t G 7г^+".

There are alternative ways of reducing this LP to a feasibility problem, one way, 
which we have tried is the following: Recalling the exterior penalty function

1 ^m in /(x ) =  /io(x) +  -p^[m ax{0,/i,(a;)}]P , p > 1
«=1

where: <
s

P

. hi(x)

a natural number, 
a positive real number.
smooth function defined on a real normed vector space.

We define the exterior penalty function F2{x) for the LP problem Pi as:

m n-f-m

F2{x) =  {cx -  K f  +  ¿ ( a ,x  -  bif  +  £  [min(0, Xj)^
t= l 3= 1

Here K  is an upper bound for cx and we assumed that p (the penalty weight) equals 2 
for any penalty term, and

ho{x) =  {cx -  K Y  +  ^{b-iX -  bif
i=l

hi{x) =  —Xi (the negative of the element of x )
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i) Choose in the starting point, and p > 0, A =  0.

ii) Compute the conjugate gradient directions {di},i =  1, . . .  ,n +  m. by the method 
of conjugate gradient of Hestenes and normalize them.

hi) For z =  1 to n 4- nr do

d( =  di, do line search, = x +  td(

A =  A +  |i|

Check the optimality conditions, if is optimal solution, then stop, 
end (For).
if Fi(x+) < e then go to step(uz).
if min(A, A) < S, then (Reset) go to step (zu),
else set A =  0 and repeat step (zzz).

iv) Set ui =  —VFi(a;·^), choose V2 , . . .  ,Vn+m such that V\,V2 , ■.. ,Vn+m are indepen
dent.

v) Find conjugate directions {d ,}, z =  1 ,2 , . . . ,  n -f m by the procedure of C .G .S. , 
normalize them, set A =  0 and go to step (zzz).

vi) Improve c .t  by the following procedure (it needs n iterations):

The Basic Algorithm;

consider the simplex tablaue:

 ̂ Cl C2 c„ 0 .... 0 '
dll di2 din 1

U7712 · '' · ^mn 0

Given X then for z =  1 to n set the lower bounds as:

Xi > 0 £i =  0

Xi <  0 =  Xi

and for z =  ?r -f- 1 to n -4 m set the lower bounds as:

Xi >  0 = 4  £i =  0

Xi < 0 ==4 A’ =  Xi — P

Cj =  Cj —  TTO·'
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Cj =  Cj — c b B  =  Cj — CB<P

Case 1:

if Cj > Ojg// —  ̂ ■* ^

if Ji < 0  Vi then problem is unbounded, 
else we find $ such that:

$ = $i, = min|̂ ‘̂_̂. > o|

hence Xj enters the basis and .t,·. leaves the basis.

Case 2:

if Cj < — r' Xj * Xj ~ Q

xb — xb -{■

Where 9 =  min 9x, $2 and 9i =  Xj — Ij and

92 =  9i. =  min | - -  d\ < o|

If 0 =  9·̂  then nonbasic j  reachs its lower bound and basic doesn’t change. If 
9 — 92 then Xi· leaves the basis and Xj enters the basis.

vii) Go to step (iu).

We randomly generated some LP problems and solved those by our algorithm but 
the results show that the method is not efficient for solving LP problems by using 
the exterior penalty function F2(x). We have also tried primal and dual problems 
together, but the results do not seem promising.
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problem ^ solution by Undo solution via NSO
1 99.179 99.184
2 unbounded unbounded
3 395.34 369.70
4 72.135 68.30
5 85.71 80.30
6 260.00 260.41
7 123.179 118.73
8 109.434 109.45
9 132.699 132.71
10 70.339 69.667
11 70.87 69.174
12 83.849 83.853
13 198.860 171.08

Table 4.1: Ax =  b , A e

problem # solution by Undo solution via NSO
1 246.420 245.00
2 88.958 89.17
3 231.291 231.558
4 50.216 50.66

Table 4.2: Ax =  b , A G
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5. CONCLUSIONS

For the feasibility problem, our non-smooth approach seems to be more efficient, at 
least in the size range of computations discussed in chapter 4 . In the surrogate con
straint methods which are efficient versions of relaxation methods, there is no measure 
of usefulness of the selected surrogate constraint. As a future work, we consider using 
our algorithm together with the surrogate constraint methods. In our algorithm the 
penalty function is reduced exponentially in the first loop of iterations ( the first n-|-m 
iterations ). So implementing our algorithm in the beginning of the surrogate constraint 
method will probably yield more efficient results.

In the case of implementing our algorithm for LP problems we see that putting the 
objective function as a penalty term in the so defined non-smooth penalty function has 
a detrimental effect on the convergence of the algorithm. We worked on some variants 
of penalty functions to decrease that effect of the objective function by assigning a small 
penalty weight, but it seems that for LP case the penalty weights must be arranged in 
a more suitable way to gain an effective algorithm.
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