
I ' A - ш ш : с т с ш т . ш м і л т т н t o o l :

' А ш т ш

втштт- то :;Тн і ■ ёттжтшт-ш ils
. : ■ а ш : £lsc^ q #İÇS іШ ш вмнт ш

.viï4.· t?» и ’.Г; İ;İV.W«ьч^ >*'·ν· w-Ä' «w v·'·^' ·*· »и*- vJ ' -Ій ííS-

S C e 'I^ C iS S ':0 £ 'Ş ^ t Â İ İ i î ¥ ^ ^
ö r . "Η ·£ ;Й!2 0 У Ш р ^ Щ 11"Ш

:' V; ’■ : ' · r;£!Ä O r ' ̂ ; ;
- М Д І Т Ё Я І C Æ ' i e r E N Ô S ^ · ' . :

J:;;.:.,.·ώ/·Μϋ̂ - . . ♦W '.«.*'4Ä'

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Bilkent University Institutional Repository

https://core.ac.uk/display/52927721?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

BUSTLE, A NEW CIRCUIT SIMULATION TOOL

A THESIS

SUBMITTED TO THE DEPARTMENT OF ELECTRICAL AND

ELECTRONICS ENGINEERING

AND THE INSTITUTE OF ENGINEERING AND SCIENCES

OF BILKENT UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF
MASTER OF SCIENCE

/M.

L :-.-

By
M. Murat Alaybeyi

July 1990

τ κ .

159ο

I certify that I have read this thesis and that in my opinion it is fully adequate,
in scope and in quality, as a thesis for the degree of Master of Science.

■ / h U ^
Prof. Dr. Abdullah Atalar(Principal Advisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,
in scope and in quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Dr. Mehmet Ali Tan

I certify that I have read this thesis and that in my opinion it is fully adequate,
in scope and in quality, as a thesis for the degree of Master of Science.

.A
"'"Assoc^ ^rof.' Ayhan Altıntaş

Approved for the Institute of Engineering and Sciences:

/V y ________
Prof. Dr. Mehmet Bafay

Director of Institute of Engineering and Sciences

to ту father

ABSTRACT

BUSTLE, A NEW CIRCUIT SIMULATION TOOL

M. Murat Alay beyi
M.S. in Electrical and Electronics Engineering

Supervisor: Prof. Dr. Abdullah Atalar
July 1990

A new circuit simulation tool, BUSTLE, using Asymptotic Waveform Evalua­
tion (AWE) technique and Piece-wise Linear (PW L) models, is implemented.
The results are very promising, especially for large circuits.

This piece of work, in cooperation with [1], explains the techniques used in
the simulator BUSTLE, such as

• efficient LU decomposition of the sparse matrices,

• using derivative and integral moments in order to get rid of the instability
problem,

• combining the PWL approach with AWE in transient analysis,

and illustrates some simulation results.

Ill

ÖZET

BÜSTLE, YENİ BİR DEVRE SİMÜLATÖRÜ

M. Murat Alaybeyi
Elektrik ve Elektronik Mühendisliği Bölümü Yüksek Lisans

Tez Yöneticisi: Prof. Dr. Abdullah Atalar
Temmuz 1990

BÜSTLE, asimptotik eğri tahmini ve parçalı doğrusal yaklaşımını kullanan
yeni bir devre çözümleme programıdır. Elde edilen sonuçlar, özellikle büyük
devreler için oldukça olumludur.

Bu çalışma, [1] ile birlikte, BUSTLE’de kullanılman bazı metodları açıkla­
maktadır. Bunlar arasında

• seyrek elemanlı matrislerin etkili üçgensel ayrıştırılması,

• asimptotik eğri tahmini metodunun kararsızlık problemini çözmek için
türev ve entegral momentlerin birlikte eşleştirilmeleri,

• zamanda geçici inceleme için asimptotik eğri tahmini ve parçalı doğrusal
yaklaşım tekniklerinin birleştirilmesi

sayılabilir. Son olarak bazı simülasyon sonuçları verilmiştir.

IV

ACKNOWLEDGMENT

My first debt is to Prof. Abdullah Atalar who has taught me the meaning
of the word “research” , and provided perfect dosage of criticism and unfailing
support throughout the project. 1 am thankful for his proper combination
of justice and mercy on deadlines to ensure the completion of this thesis. I
explicitly want to acknowledge the support of Assoc. Prof. Mehmet Ali Tan
for his critical guidance and useful advice. In addition I am grateful to Prof.
Ronald Rohrer of Carnegie Mellon University not only for his encouragement
and suggestions but also for initiating the research.

I owe debts of gratitude, too, to Cemal Tamer Dikmen and Satılmış Topçu
who are members of CAD group in Bilkent University, for their co-operation
in the project. This thesis would not have existed without their contributions.
No brief statement can adequately acknowledge the many kinds of help that I
have received from Cemal both in the project and in the course of preparing
this thesis, even the “acknowledgment” part.

A special note of thanks is due to another contributor. Prof. Erol Sezer
for his stimulating insights, and to Assoc. Prof. Ayhan Altıntaş for his com­
plementing study. I am indebted as well to Mujtaba Fidaul Haq for his co­
operation in forming the LU package, and to Gözde Bozdagi, Gökhun Tanyer
and Mustafa Karaman for their helps in shaping the project in its early stages.
I feel obliged to mention Ogan Ocali and his nice discussion as well as his great
pleasure in the exchange of ideas often on the way home from the office at
midnight.

Finally I owe a measure of gratitude to my respective institution, Bilkent
University and to the sponsor of the project NATO-SFS.

VI

Contents

1 INTRODUCTION 1

2 DC ANALYSIS 4

2.1 Determination of the Operating P o in t s .. 4

2.2 Modeling of Nonlinear D evices.. 5

2.2.1 Modeling of two-terminal nonlinear devices....................... 6

2.2.2 Modeling of three-terminal nonlinear devices................... 7

2.3 The Algorithm U s e d .. 8

3 LU DECOMPOSITION 10

3.1 The Function of LU D ecom position... 11

3.2 Implementation of the Program Taking Various Aspects Under
Consideration.. 11

3.2.1 Criteria of E fficien cy .. 11

3.2.2 Possible Data Structures and the Data Structure Actu­
ally Used 12

3.2.3 Methods Generally Used to Increase the Efficiency 18

3.2.4 Our Strategy for Pivot Selection.. 19

3.3 Some of the Tricks Used in the S o ftw a re 20

3.3.1 Memory A lloca tion ... 20

vii

CONTENTS vm

3.3.2 Listheaders and Multiplication T a b le 22

3.3.3 Representing the Values with Two F ie ld s'. 24

3.3.4 Multiple Pivot Candidates.. 24

4 Asymptotic Waveform Evaluation 25

4.1 Using the Combination of Derivative and Integral Moments to
Obtain Stable Approximations.. 26

4.2 Transient Analysis Using AWE 27

5 RESULTS 29

6 H O W TO USE BUSTLE 45

6.1 INPUT FORMAT 45

6.2 CIRCUIT DESCRIPTION ... 46

6.3 BEGIN CARD, COMMENT CARDS, END C A R D46

6.3.1 Begin C a r d .. 46

6.3.2 Comment C a r d ... 47

6.3.3 End C a r d ... 47

6.4 ELEMENT CARDS 47

6.4.1 Resistors.. 47

6.4.2 Capacitors and Inductors... 47

6.4.3 Linear Dependent Sources 48

6.4.4 Independent Sources (Time Invariant) 50

6.4.5 Time Varying Independent S ou rces 50

6.5 PWL DEVICES.. 51

6.5.1 Two Terminal PWL D evices... 51

6.5.2 Three Terminal PWL D ev ices ... 51

6.6 MODEL C A R D S ... 52

6.6.1 Two T erm in a ls ... 52

6.6.2 Three Terminals 52

6.7 CONTROL CARDS 54

6.7.1 TRAN C a rd .. 54

6.7.2 PRINT Card 54

6.7.3 PLOT C A R D ... 55

6.7.4 OPTIONS C ard ... 55

6.8 EXAMPLE INPUT FILE 56

7 Conclusion 59

CONTENTS ix

List of Figures

2.1 (a) Representation of a two-terminal nonlinear device; (b) i-v
characteristics of a two-terminal nonlinear device........................... 6

2.2 Representation of a three-terminal nonlinear device...................... 8

3.1 A possible one dimensional data structure for the M matrix 12

3.2 A possible two dimensional data structure for the M matrix 13

3.3 Representation of a 4 X 4 sparse matrix having only 6 elements,
according to the structure we used... 14

3.4 Structure of (a) a panel, and (b) a node .. 15

3.5 The structure of Listheaders and Multiplication T ab le 23

5.1 Pillage’s 6th order RLC circuit 30

5.2 Output waveforms of the capacitor voltages, for the circuit in
Fig. 5.1, computed using different minorder values. 32

5.3 An 200’th order RLC ladder c ir cu it ... 34

5.4 Output waveforms of the node voltages 15, 101 and 201(the volt­
age on the 500 ohm resistor), for the 200’ th order RLC circuit,
computed using BUSTLE with different minorder values, and
S P IC E .. 35

5.5 Full-wave rectifier c ir cu it .. 36

5.6 Output waveforms of BUSTLE and SPICE for the full-wave rec­
tifier c ir c u it ... 36

X

LIST OF FIGURES XI

5.7 CMOS NOR circu it.. 37

5.8 Piece-wise Linear NMOS model used, in the simulation of the
CMOS NOR g a t e ... 37

5.9 The output waveform of the CMOS NOR g a t e 38

5.10 The operating regions of MOSFETs in the simulation of the
CMOS NOR g a t e ... 39

5.11 A Simple Flip-Flop. The input file for this circuit is given at the
end of the 6th chapter... 41

5.12 The plotting routine of BUSTLE showing the Flip-Flop outputs. 42

5.13 The Ring Oscillator Circuit .. 42

5.14 Transient analysis of the ring oscillator c ir c u it 43

5.15 Simulation results of BUSTLE, for CMOS Full-Adder circuit.
First two waveforms are the inputs, the other two are SUM and
CARRY outputs respectively, (carry-in is grounded)................... 44

List of Tables

5.1 Approximate Poles for resi^onse at C2 and the actual poles of
the circuit. 30

5.2 Trials of BUSTLE to find a second order approximation and
conclusion with a third order approximation. 30

5.3 Total execution time list for different minorder requirements . . 31

5.4 Total execution time list of the 200’th order RLC ladder for dif­
ferent minorder requirements, and the normalized rms difference
from SPICE. 33

5.5 The CPU time for some major functions of BUSTLE, measured
in the simulation of the 200’th order RLC circuit (minorder=3). 33

5.6 Total execution time list of the full-wave rectifier circuit, and
the normalized rms differences with lOOOpt SPICE waveform. 34

Xll

Chapter 1

INTRODUCTION

Simulation plays an important role in the design of integrated circuits. Using
simulation, a designer can determine the functionality and the performance
of a design before the expensive and time-consuming step of manufacture.
BUSTLE, (Bilkent University Simulation Tool for Linearized Environment),
is a circuit level simulator determining the analog waveforms for the branch
voltages and currents and the node voltages.

Circuit simulation tools, with different accuracy and speed, are used in cir­
cuit analysis and design. The accuracy and speed requirements vary depending
on the type and size of the circuit, and the aims of the user. There is a trade-off
between the accuracy and the speed of the simulation. This trade-off assumes
the most important role when the number of elements increases prohibitively
as is the case in VLSI circuits.

The extensive computations and thus very long simulation time are mainly
due to the complex nonlinear characteristic of devices and the large number of
iterations for computing the transient response in timing analysis. Most of the
circuit simulators employ various numerical and iterative methods (e.g. New­
ton Raphson) to find the operating points of nonlinear circuits and numerical
integration methods (Forward Euler, Backward Euler, Trapezoidal, etc.) to
compute the transient response of energy storage elements.

Aspects of stability, convergence and hence completion of the job in a suc­
cessful manner are all important issues for circuit simulators. Moreover the
models of new devices resulting from the emerging technology must be easily
put into a simulator. Otherwise, the simulator may become obsolete in a short
time. The simulator should have provisions such that even the user has the
capability of doing this integration.

1

CHAPTER 1. INTRODUCTION

BUSTLE is developed, with the motivation of the above facts. The first aim
is to complete the simulation successfully without any problem such as conver­
gence. BUSTLE employs Asymptotic Waveform Evaluation (AWE) technique
instead of numerical integration methods, in order to compute the response of
energy storage elements.

Piece-wise linear (PWL) representation is used to characterize the nonlinear
elements. The main reason to choose the PWL characterization is to avoid
solving nonlinear equations and to deal with a set of linear equations to decrease
the time complexity and guarantee the convergence in DC Analysis. AWE is
mainly for linear(ized) circuits. Thei'efore, the use of PWL approximation
makes the utilization of AWE easy and efficient for nonlinear devices.

Another important advantage facilitated by PWL approximation is that
the user can define his own device models for nonlinear devices easily. Subse­
quently, it provides a considerable flexibility to the user for choosing his own
model and determining the trade-off between speed and accuracy in the simu­
lation. This also renders the simulator independent of the trends of technology.

Consequently, PWL approach brings the advantages of guaranteed DC con­
vergence, efficient usage of AWE, and user defined modeling property.

While using AWE, transient analysis is the part that calls for most of the
attention and care. Since the approximate poles and the residues are found for
any output of the circuit, only a simple plotting routine does the AC analysis.
Note that it is also possible to give an approximate proper rational transfer
function of a system in terms of s. The sensitivity analysis using AWE tech­
nique may also be performed with a little additional cost [5] [20].

BUSTLE is the result of a co-operative study of the CAD group in the
Department of Electrical and Electronics Engineering of Bilkent University.
The whole of the program is written in C, using the UNIX operating system
and some programming tools (i.e. Lex, Yacc) and SUN 3/110 Workstations.
This thesis is a complementary work with [1]. Some important points are not
examined in detail but referred to [1].

The following chapter, DC analysis, discusses piece-wise linear modeling,
and determination of the operating points using PWL approach. Chapter 3
is about the implementation of LU decomposition of sparse matrices on the
computer. This chapter mainly deals with the data structures and algorithms
used. Chapter 4 consists of a short description of AWE technique, and the mo­
ment matching algorithm used in the implementation. A detailed examination

CHAPTER 1. INTRODUCTION

of the concepts of this chapter can be found in [1]. Then merging PWL with
AWE for the transient analysis is discussed in the last section.

Chapter 5 is a collection of some simulation results. Some other examples
can be found in [1]. This chapter illustrates the advantages that is brought
by BUSTLE. The results are compared with those of SPICE. Chapter 6 is a
guide for users, and finally the conclusions and the future work can be found
in Chapter 7.

Chapter 2

DC ANALYSIS

The solutions to a circuit with DC inputs are called operating points. The term
DC analysis refers to the determination of the operating points. The behavior
of non-linear circuits are quite different from that of linear circuits. Though
there may be no solution or multiple solutions for a non-linear circuit, there is
always a unique solution for a linear circuit. BUSTLE uses piece-wise linear
(PWL) techniques to determine the operating points of a circuit. Therefore, a
nonlinear network is replaced by a piecewise-linear network with a correspond­
ing simplification of the problem. Consequently, solution of nonlinear algebraic
systems of equations are reduced to the solution of a set of linear systems of
equations :

M x = b (2.1)

where M is the matrix that describes the resistive network, and b is the source
vector.

2.1 Determination of the Operating Points

The general methods used to determine the operating points are mesh analysis,
nodal analysis, and the tableau analysis. BUSTLE uses tableau analysis which
is a completely general analysis method and works for all linear circuits. This
method avoids some restrictions caused by nodal and mesh analysis and con­
ceptually it is simpler than the others. Tableau analysis consists of writing out
the complete list of linearly independent KCL equations, linearly independent
KVL equations, and the branch equations. KCL can be expressed as

A ii = 0 (2.2)

CHAPTER 2. DC ANALYSIS

whereas the KVL is given by

V6 - = 0 (2.3)

where A is the reduced incidence matrix [24], it is the vector containing branch
currents, v;, and v „ are the branch and node voltages respectively.

Branch constitutive equations can be written as

G vt + R Í6 = w (2.4)

where w is the vector including the independent current and voltage sources,
as well as the influence of initial conditions on capacitors and inductors. This
vector also includes the equivalent sources due to linearization of nonlinear
elements. Equations (2.2)-(2.4) can be put into one matrix equation.

I
0
G

0
A
R

M

-A^
0
0

V6 ' 0 ‘

h = 0

. .
w

(2.5)

Listing the tableau equations, none of the variables is eliminated so all
three vectors Vt, ij, and v „ are present as variables. Since we must have as
many equations as there are variables, it is clear that the price we pay for the
increased generality is that the tableau analysis involves many more equations
than node analysis does. In computer-aided circuit analysis, however, this
objection turns out to be an advantage because the matrix associated with
tableau analysis is extremely sparse which brings the benefits of highly efficient
numerical algorithms. The algorithms and the data structure used to solve this
sparse systems of linear equations are described in Chapter 3.

2.2 Modeling of Nonlinear Devices

Modeling is the process by which the electrical properties of a non-linear device
is represented by means of mathematical equations or tables. Physical device
models usually involve many complicated equations. Typical timing studies
have shown that the major part of the computational effort in network analysis
is spent in evaluating these complicated relationships. Further, most analysis
methods also require derivatives of the model equations, which is a cumbersome
and error-prone task for the designer. The iterative methods, such as Newton-
Raphson, to solve the nonlinear equations do not guarantee the convergence. In

CHAPTER 2. DC ANALYSIS

+
V ..

6
b

(a) (b)

Figure 2.1: (a) Representation of a two-terminal nonlinear device; (b) i-v
characteristics of a two-terminal nonlinear device.

order to avoid these problems, piece-wise linear (PWL) representation is used
in BUSTLE for the modeling of nonlinear devices. Table models are employed
to describe two and three terminal nonlinear devices.

2.2.1 Modeling of two-terminal nonlinear devices

Consider a two terminal element as shown in Fig. 2.1.a. If the voltage v across
the element, and the current i which enters the element satisfies /(u , i) = 0 for
every time instant, it is called a resistor. Probably the most familiar circuit
element is the two terminal linear resistor. Linear resistor is a special Ccise of
the resistor and Ohm’s law states that, at all times

/(u , i) = v — R i = i — G v = 0 (2.6)

where the constant R is the resistance and the constant G is the conductance.
Equation 2.6 can be represented in either the i-v plane or the v-i plane.

The i-v characteristics of two-terminal nonlinear resistors is approximated
with a piece-wise linear model, passing through some sample i-v values which
are given by the user. BUSTLE assumes that the i-v characteristics is linear
between these points, so that the characteristics becomes a combination of
linear segments. By using these values, the resistance Ri or the conductance
Gi, and the equivalent source to; due to linearization of a two-terminal nonlinear
device can be calculated very easily, where I is the segment number. The branch
equation of the /th segment of an element can be written as

CHAPTER 2. DC ANALYSIS

i — "f* Giv
V = -|- Rit

and, in general,
G/ V t + R; it = W ; + w

The tableau equations can be written as follows:

0
A 0
R/ 0

I

0
G;

V t 0 ’ 0 '

h 0 + 0

. - . .
w

or in a more compact form

M/ X/ = W/ + w

(2.7)

(2.8)

(2.9)

(2 . 10)

The subscript / denotes the segment in which the network operates. The
right-hand-side vectors denote the equivalent sources due to linearization and
the independent sources respectively; they are written separately for clarity.

2.2.2 Modeling of three-terminal nonlinear devices

Three-terminal nonlinear devices are represented as a combination of two 2-
terminal devices placed between the three nodes as shown in Figure 2.2. The
parasitic capacitors are also included in the device model. The values of these
capacitors are given in the model card.

The characteristics of a three-terminal nonlinear device is defined by two
branch equations and a number of boundaries for each region. These two
branch equations define a 2-dimensional hyperplane in the 4-dimensional space
which describes the characteristics of the nonlinear device where the bound­
aries describe the region at which these equations are valid. The two branch
equations for the three-terminal nonlinear devices are of the general form:

OiUi + 02 2̂ + «3*1 + «4*2 + «5 = 0 (2.11)

and at most three of the coefficients a i,a 2, « 3,«4 can be nonzero. This does
not impose any restriction on the generality since one of them can be elim­
inated using the other plane equation. The boundaries are described by the
inequalities of the following form.

«1*̂ 1 + «2*̂ 2 + «3*1 + «4*2 + «5 > 0 (2.12)

CHAPTER 2. DC ANALYSIS

©

+

V,

Figure 2.2: Representation of a three-terminal nonlinear device.

and at most two of the coefficients 01, 02, 03,04 can be nonzero since two of
the variables can be eliminated, using the two branch equations of the region.
Each nonlinear device must contain a segment that satisfies the origin (both
the equations and the boundaries) in order to have a valid solution when all
of the independent sources are killed. This is required in order to start the
DC analysis which will be described in the next section. Also this rule does
not impose any restriction on the generality, since any device which does not
fit this rule can be modeled with a PWL device satisfying this rule and an
independent current source in parallel.

2.3 The Algorithm Used

For DC solution, all inductors and capacitors are replaced by independent
sources. Given a valid solution Xq for an arbitrary source vector yo, satisfying
the boundaries of the region Rq,

M o Xo = Wo -I- yo (2.13)

we would like to find the solution x and the region Rj for a given source vector
y

M / X = w / -f- y. (2.14)

The algorithm used for the DC Analysis has been derived from the Katzenel-
son’s algorithm [9 ,10] which guarantees the convergence in the DC Analysis [8].

CHAPTER 2. DC ANALYSIS

The modified version of the Katzenelson’s algorithm, used to find the solution
X and the final operating region set Rf, is as follows:

1. Set i = 0.

2. Solve X from
M i X = Wi + y.

3. If X satisfies the boundaries of Ri then TERMINATE, else GOTO 4.

4. Let A be the ratio of the distance from Xi to the first region boundary
crossed when traversing from Xj to x, to the distance from Xi to x.

5. Compute Xi+i as
Xi+i = Xi + A(x - Xi).

6. Set Ri+i to the neighbor region of Ri separated from it with the first
crossed boundary.

7. Increment i and GOTO 2.

Note that for the first DC analysis, Xo and yo can be selected as 0, since
by definition, every nonlinear element is modeled to have a passive resistive
segment satisfying the origin, and 0 is the solution when all the independent
sources are killed. It is obviously a poor starting point, but that is the only
valid solution known initially. Afterwards the lastly found operating points are
chosen as Xq, yo, and Rq. We are expected to do less computation starting
from the last solution, since it is more probable that the old solution is closer
to the new one than the origin (0).

Chapter 3

LU DECOMPOSITION

The major part of the computation time of the circuit simulation tools is spent
on finding the solutions of sets of linear equations. BUSTLE uses LU decompo­
sition and Forward and Backward Substitutions to solve these equations. This
section is a detailed explanation of the methods used by BUSTLE to solve
linear sets of equations efficiently.

The simulator uses piecewise linear (PWL) approach in DC analysis which
is performed several times throughout the program. In DC analysis Sparse
Tableau Analysis is used which in the end , boils down to finding the solution
of the matrix equation M x = b. The matrix M is usually a very sparse matrix
for large circuits, having only 0.1% or fewer non-zero elements on the average.
DC analysis generally performs a set of LU decompositions in order to find
the operating segments of the PWL devices. Most of the LU decompositions
performed by the simulator are this type. There is also another LU decompo­
sition following each DC analysis in order to find the steady state solutions of
the circuit.

Solving a set of linear equations on the computer efficiently is a problem
which has been investigated for a long time and is also being investigated
now [14, 13, 11]. The problem gets even more complicated when the set of
equations form a sparse matrix. The problem springs from the fact that it is
not straightforward to harvest the advantages of the sparsity of the matrix that
can be translated to profitable gains in memory consumption, computational
speed and accuracy.

10

CHAPTER 3. LU DECOMPOSITION 11

3.1 The Function of LU Decomposition

This part of the progrcim is a package of C functions used to quickly and
accurately solve large sparse and real systems of linear equations which can
be expressed as M x = b. The package is optimized for speed using a good
strategy of pivot selection and is able to perform numerical pivoting to avoid
numerical inaccuracy in the solution. What it actually does is,

• It decomposes M into two triangular matrices such that M = LU, where
L is a lower triangular matrix and U is an upper triangular matrix.

• then it solves the y vector from Ly = b by forward substitution which is a
very easy task. Next U x = y is solved by a backward substitution where
y is found from the forward substitution. This whole process is called
Forward and Backward Substitution (FBS). Once the LU decomposition
is performed, the x vector can be solved for the same M matrix and
different b vectors using only FBS.

3.2 Implementation of the Program Taking Various
Aspects Under Consideration

3.2.1 Criteria of Efficiency

Efficiency of the program is characterized by the following points

C om putation tim e : Since the speed of the whole simulator crucially de­
pends on the computation time of both the LU factorization and FBS
(especially for large circuits), they must be executed as fast as possible.

Minimization of the computation time is one of the major concerns for
us while developing the program. We have been extremely cautious to
cut off any redundancy in the computation to make the program as fast
as possible.

A ccu racy : Since various routines of the simulator uses the LU factorization
and FBS quite frequently, the error in computing them has an immense
effect on the overall accuracy of the simulator. It should be mentioned
here that algorithms used to compute LU decomposition and FBS in­
variably causes an error which is cumulative in nature, though the error

CHAPTER 3. LU DECOMPOSITION 12

Row Panel

Figure 3.1: A possible one dimensional data structure for the M matrix

incurred by the simulator itself may or may not be cumulative. Various
methods like numerical pivoting, minimization of fill-in’s etc. which will
be described later, are used in order to make as little compromise with
the accuracy of the program as possible. If necessary, the program has
the capability of doing iterative refinements on the solution.

In order to increase the accuracy one has to make frequency scaling [4],
which is not related with LU decomposition.

M em ory C onsum ption : It is quite reasonable to expect that owing to the
sparse nature of the matrix M , an efficient and compact use of the mem­
ory is possible. But minimizing the consumption of the memory may not
optimize the overall performance of the program. In this program though
we have been careful not to make waste of memory allocation, we did not
seek optimizing the program from the memory consumption standpoint.

3.2.2 Possible Data Structures and the Data Structure
Actually Used

There can be several ways to store the sparse matrix in an efficient form. Two
of the feasible data structures are illustrated in Fig. 3.1 and Fig. 3.2, while the
data structure we have actually used is shown in Fig. 3.3.

In the data structure we have used, the rows and columns are stored as

CHAPTER 3. LU DECOMPOSITION 13

Rüvv Panel

Column Panel

Other '

fie lds

other

fie ld s
A A y\

I

A A A

AN. A
1

A A A

A A

y\.A A j\

Figure 3.2: A possible two dimensional data structure for the M matrix

CHAPTERS. LU DEC0A4P0SITI0N 14

COLUMN PANEL

ROW PANEL

N2

CO
Q.'ÜJ
XI-o

NZ
CO
LL·
LÜ
X
H
r-i

OR N0

OR NO

L.
JZ

NODE

7

Figure 3.3: Representation of a 4 x 4 sparse matrix having only 6 elements,
according to the structure we used.

arrays of structures. Each element of row or column panel has five fields. They
are shown in detail in Fig. 3.4, and their function is described below.

or : It is the original row or column number which remains unchanged through­
out the program.

no : It indicates the order of selection of a row or column as the pivot row or
column.

begin : This is a pointer field pointing to the first element of the row or
column.

m ax : This pointer field points to the largest element in magnitude of the row
or column.

N Z : The number of nonzero elements in a row is known as NZUR and the
NZ field of a row stores the NZUR of that row. Whereas, the number of
nonzero elements in a column is known as NZLC and the NZ field of a
column panel stores it.

CHAPTER 3. LU DECOMPOSITION 15

(b)

Figure 3.4: Structure of (a) a panel, and (b) a node

CHAPTER 3. LU DECOMPOSITION 16

On the other hand, the nonzero elements of the matrix are stored in “nodes”
which are connected both to the panels and to each other. The fields of a node
are illustrated in Fig. 3.4.b and are described below.

row panel poin ter : This is a pointer field pointing to the specific row in the
row panel which it belongs.

colum n panel pointer : This is a pointer field pointing to the specific col­
umn in the column panel which it belongs.

right : This pointer points to the node on the right, if there is any.

dow n ; This pointer points to the node below, if there is any.

val, value : They contain the value of the nonzero elements and they are
described in section 3.3.3 in more detail.

nextm axm ax, previousm axm ax : These fields are used to link the pivot
candidates to each other, and also to mark the elements which are not
pivot candidates.

In order to solve a matrix equation using LU decomposition we must per­
form the following operations n times where n is the order of the M matrix.

1. Pivot selection

2. Row and column interchange

3. Normalizing the pivot row and zeroing the elements under pivot

4. Updatings

And then FBS is performed as many times as required by the simulator.

We are going to calculate the time complexity of the above items for all
of the structures mentioned above, then show that the structure we have used
performs best.

1. P ivot Selection : The complexity of the calculations made for pivot
selection highly depends on the pivot selection algorithm. But it is easily
seen that the data structure we have used eases the work of pivot selection
for any algorithm.

CHAPTER 3. LU DECOMPOSITION 17

2. R ow and C olum n Interchange : As soon as a pivot is selected we have
to interchange the pivot row and column with the ¿’th row and column,
where i is the order the pivot is selected. In the data structure we have
used, a row or column interchange has time complexity of 0 (1) as there
is no physical row or column interchange in this structure. Whenever
an element is chosen as the pivot, the no field of the row panel of that
element is numbered in the order it is selected. For example, if an element
say, of the fourth row, is chosen as the pivot at the beginning; instead of
interchanging the first and the fourth row, the number field of the fourth
row-panel is set to “1” . The column interchange is also performed in a
similar way. In fact this numbering operation is used for marking a row
or column when it is selected, so that in the later operations they are
skipped and they are not subjected to any further execution. Although
we do not perform any physical interchange, the algorithm behaves as if
the interchanges are done physically.

But this is not the case with the data structures in Fig. 3.1 and Fig. 3.2.
The first structure has 0(1) time complexity for row interchange, whereas
the time complexity of column interchange is O(nfc), where k is the aver­
age number of nonzero elements in a row or column, and n is the order of
the matrix. Although k is usually a small number, the performance gets
worse as n increases. For the second structure it can be easily shown that
the time complexity of both the row and column interchange is 0{kS).

3. N orm alizing the p ivot row and zeroing the elem ents under the
p ivot : In fact the factorization can be done without the other items but
this item is the fundamental job during the LU decomposition. There
are two major things to consider in this part. They are

Floating point operations (flops): Operations like normalizing the
pivot row and multiplications and subtractions in the subsequent
rows involve flops which can not be avoided. The computation time
to perform floating point operations are the same for all the struc­
tures, as long as the same algorithm is employed in the pivot selec­
tion. It can be shown that the time complexity is 0{nk'^). These
operations are generally more time consuming than the non-floating
point operations which are mentioned below.

N on-floating point operations : Operations like visiting a node and
checking if it is marked or not are non-floating point operations.
These operations must be performed in addition to flops to LU fac­
torize the matrix and they vary from structure to structure.

CHAPTER 3. LU DECOMPOSITION 18

4. U pdatings : Tn oi-dc.r to make a proper selection of pivots we have to
store certain information about the matrix such as NZUR’s of the rows.
This information may change at any step of the LU factorization and
hence must be updated whenever undergoes a change. The.se updatings
are highly dependent on the data structure, and the algorithm employed.
For the data structure we have employed, the updating procedures will
be explained later.

3.2.3 Methods Generally Used to Increase the Effi­
ciency

The methods generally used to achieve efficiency are as follows:

Numerical Pivoting

The element by which a row is normalized is known as the pivot element. The
selection of the pivot regarding the numerical values of the elements in the
matrix is called numerical pivoting. In order not to lose much from accuracy,
several type of pivoting strategies can be employed. The most widely used of
these strategies are partial pivoting and complete pivoting which are well known
pivoting strategies and can be found in any elementary book on numerical
analysis [12, 11]. Hence, they are not discussed here.

M in im ization o f N um ber o f Fill-ins

Let’s suppose an is chosen as the pivot, and the pivot row is normalized. While
zeroing the pivot column, aji is multiplied with a,·*, and subtracted from ajk,
when j > i and ̂ > L If ajk was 0 previously, it was not stored in the memory.
But now a new non-zero value has occurred at ajk] this is called a fill-in. A
fill-in causes the following problems.

1. A new memory location to be allocated for it which is not very desirable.

2. An increase in the time complexity, due to a few extra non-flops.

3. A drop in the accuracy because of an increase in flops.

CHAPTER 3. LU DECOMPOSITION 19

4. New fill-ins , which is the most important of the problems, as these new
fill-ins, in turn, cause the trouble mentioned in above items and a host
of new fill-ins.

So it is clear from the problems mentioned above that we should try to
minimize the number of fill-ins. An estimate on the number of possible fill-ins
a pivot can cause is { NZUR — l) X (N Z L C —1) of pivot row and pivot column,
as this is the total number of multiplications that should be performed. These
products are then subtracted from ajk, which because of the sparsity of the
matrix has a great probability of being zero.

Hence, { NZUR — 1) x { N ZL C — 1) is a proper estimate on the possible
number of fill-in’s a pivot will create. So, the smaller the product, the lesser
the number of fill-ins. As can be seen, if either NZUR or NZLC is 1, there is
no fill-in. More over the elements in the pivot row(column) are not included in
the calculations anymore, which causes a decrease in NZUR(NZLC). All these
are very desirable. So it is a good strategy to select the pivot from a row or
column whose NZ field is 1, even though the element is not large in magnitude.

3.2.4 Our Strategy for Pivot Selection

Our pivot selecting strategy is a combination of classical numerical pivoting
strategies and minimum fill-in strategy. The algorithm used for LU decompo­
sition is described below.

1. A pivot must be the maximum element of both its row and column, in
our jargon, we say a pivot must be тахтах (this strict rule is modified
in multimaxmax strategy which will be described later). Note that there
is at least one maxmax element : the maximum element in the matrix.
So there is always at least one pivot candidate which is necessary for the
continuation of the job.

2. The elements satisfying the above condition are found, and then among
these pivot candidates the one which has a minimum value of the product
{ NZUR — 1) X { NZ LC — 1) is selected to be the pivot.

3. Floating point operations are performed according to the selected pivot
above. Then we discard the elements in the pivot row and column from
the further calculations.

CHAPTER 3. LU DECOMPOSITION 20

4. Because of the operations and discardings there will be changes among
the pivot candidates selected according to the first rule. Therefore we
must handle these changes by updating maxmax’es.

5. Because of the discardings in “3” , there will be changes in NZUR and
NZLC’s of some rows and columns. We have to register these changes
and update the list which is composed of maxmax elements sorted in the
ascending order of the products (NZUR — 1) x (NZ LC — 1).

3.3 Some of the Tricks Used in the Software

3.3.1 Memory Allocation

The package uses dynamic memory allocation, because of the large variety of
the input matrices in dimension and spai'sity. The memory allocation per­
formed by the system may be very slow if it is not used judiciously. For
example, for a specific type of data structure of size m, allocating memory
space to n variables of this structure type separately, that is using malloc(m)
n times, is much slower than allocating them altogether by malloc(n * m). For
our M matrix, we know the number of nonzero elements from the very begin­
ning. Hence, we can utilize this situation by allocating all the required memory
space right at the beginning. In this subsection we will mention some of the
procedures which use tricks like this in the memory allocation.

D u plicate : At the beginning of the program, the M matrix is set up in the
memory. Since we will have to deal with the matrix for a lot of times,
we duplicate the matrix to a different memory location and perform the
LU factorization on this copy of the matrix. In the very beginning of
the program chunks of memory of ec^ual size are allocated for both the
original and the copy of the matrix. However the actual size of memory
allocated to each of them is a bit larger than the number of nonzero
elements in the matrix, which we call the “tolerance” . The tolerance
is introduced to take care of the changes in the stencils of the original
matrix which may cause an increase in the number of nonzero elements
in the matrix, requiring extra memory space.

After the initial set up of the original matrix, memory spaces are allo­
cated for copies of the list-header and panels in a similar way. The only
remaining task to be done at this stage of duplication is to copy the web

CHAPTER 3. LU DECOMPOSITION 21

of pointers of the original setup to the duplicate copy. The original setup
is full of pointers as was shown if Fig. 3.3, Fig. 3.4 and Fig. 3.5. So if not
done cleverly, it can take a long time to duplicate the pointers to their re­
spective position in the duplicate copy. The strategy we have used to copy
the pointers which are in fact addresses of memory locations, resembles
the method of relative addressing. First of all, the offset, M->beginning-
of-nodes — Mcopy->beginning-of-nodes, is calculated. Then, this offset
is added to the memory address written in the pointer field of the nodes
of the original setup and copied to the respective pointer fields of the
duplicate. This works if all nodes of the original setup and the duplicate
setup are allocated in the same page and hence has a constant relative
address difference between them. The same relative copying method is
used to copy the panel pointers.

stalloc (allocation for stencils) : In order to use the advantage of the infor­
mation that all of the nodes use same amount of memory, the memory
allocation is handled by the program. If a memory space for a new node
is requested, then since we know how much memory is necessary, there
is no need to call a system function. Instead the package routines uses
stalloc or falloc.

A few elements of the M matrix can change values or even disappear
and a few new elements can appear whenever the stencils of the matrix
is changed at the beginning of each LU factorization in a particular sim­
ulation. The function stfree pushes the address of the freed nodes into a
stack and the function stalloc allocates memory space for a new element
by popping an empty node address from the stack. The tolerance nodes
which are allocated at the very beginning of the of the setup are also
pushed into the stack.

If, in case, the stack happens to be empty, i.e. there is no free space left,
we allocate a new space of memoiy which has STACKPAGE number of
more space than previous one and duplicate all the elements (NZUR —
1) X [N Z L C — 1) to the new one. Now, we have STACKPAGE amount
of new free space.

fa lloc (fill-in allocation) : During LU factorization of Mcopy, we will need
new space for fill-in nodes, falloc is used in order to provide these new
nodes. When the first fill-in occurs, a page of size FILL-IN-PAGE is
created, using the system’s allocation command. The pointer indicating
the beginning of the page is then pushed into a stack. The page is then
used to store subsequent fill-ins until if is full whence a new page is

CHAPTERS. LU DECOMPOSITION 22

created and the pointer showing its beginning address is pushed into the
stack.

When a stencil or stencils of Mcopy is altered by some other routine of
the simulator, the Mcopy is LU factorized from the beginning. Hence
the data in the “FILL-IN-PAGE” s become unnecessary and are virtually
freed by the procedure ffrce. What actually happens is instead of being
freed physically, they are overwritten as new fill-ins occur. This technique
serves our purpose better as nearly the same number of fill-ins occur for
the handful of stencil changes. This procedure saves us the time of freeing
memory spaces and reallocating them.

3.3.2 Listheaders and Multiplication Table

In order to implement the efficiency increasing strategies explained in sec­
tion 3.2.4, a separate data structure is constructed. Fig. 3.5, in addition to the
structure which stores the nonzero elements of the matrix. A part of this struc­
ture is listheaders which in fact, is an array of nodes whose nextmaxmax fields
point to possible pivot candidates (maxmax’es) in an ordered manner. The first
element of the array points to maxmax’es whose {NZU R —l) x { NZ LC — 1) =
0, the second element points to maxmax’es whose { N Z U R —l) x { N Z L C —l) =
1 and so on.

The listheader array facilitates the task of selecting a pivot quite elegantly.
We always select the pivot such that it is the maxmax pointed by the non-
NULL nextmaxmax pointer of the topmost element of the listheader array. It
should be mentioned that with a high probability the nextmaxmax pointers of
the upper listheaders will point at some maxmax’es after the updatings have
been performed at each operation. Using the data structure, Addmaxmax,
which inserts a maxmax to the list pointed by the proper listheader, is a very
fast and simple function.

The two way linked list structure if the maxmax elements provides simplic­
ity at the updatings. For example a deletemaxmax operation consists of only
two pointer changes. The nextmaxmax fields of the non-maxmax elements are
equated to a specific address, called ABYSS, so that maxmax elements can be
easily identified.

CHAPTER 3. LU DECOMPOSITION 23

Figure 3.5: The structure of Listheaclers and Multiplication Table

CHAPTER 3. LU DECOMPOSITION 24

3.3.3 Representing the Values with Two Fields

In the sparse tableau analysis, we know that most of the nonzero elements
ai'e I ’s or - I ’s. There is no need for a floating point multiplication with these
elements, the result is obvious, the number which is multiplied with these
elements either stay the same or change sign. In order to speed up using this
property we use two fields to store a value. If the value is 1 or -1 we store it in
the integer field, val. Otherwise we put a zero into the val field and the number
is stored in the double (floating point) field, value.

3.3.4 Multiple Pivot Candidates

We introduce multiple pivot candidates strategy in order to reduce the bad
effects of the strict rule, “a pivot must be a maxmax” . Because of this strict rule
we may be burdened with a lot of unnecessary fill-ins. For example, an element
of numeric value 10, may be selected as a pivot candidate although an element
of numeric value 9.5 at the same row has a lower (NZUR — 1) x (NZLC — 1).
In order to prevent such situations, we can allow more than one element in a
row or column, to be pivot candidates, which we call multimaxmax strategy.
We can normalize every row and afterwards every column, with the maximum
element of that row/column, then defining a threshold, select the elements
greater then this threshold as pivot candidates. Another way to do this is to
define a fast function, may be a function of the power bits of the floating point
number, which is a rough measure of the magnitude and then assume all of the
elements which has the maximum rough magnitude to be pivot candidates.

Chapter 4

Asymptotic Waveform Evaluation

Asymptotic Waveform Evaluation (AWE) is a recently proposed technique for
the approximate pole zero representation of linear time invariant circuits [2]
[3]. It is, in fact, a form of Fade approximation [16]. AWE uses the differential
state equations

x = A x + Bu (4.1)

to find an approximation for the state variables. We know that, the homoge­
neous solution of 4.1 is of the form

x,(i) = (4.2)
1=1

where q is the order of the circuit. ki and pi are the residues and poles respec­
tively.

AWE finds an approximation to 4.2 such that

x,(i) =
/=1

(4.3)

where q' is the order of approximation which is smaller than q (in most cases
q' <C g), and k\ and p\ are the dominant approximate residues and poles re­
spectively. They are calculated from the moments of the circuit. An important
restriction with AWE is that it may produce unstable poles even though the
circuit is stable, which is also a major problem for Fade approximation [16] [15].
This problem is overcome by combining differential and integral moments.

The computation of derivative and integral moments, and the calculation
of poles and residues using the combination of derivative and integral moments
is described in [1].

25

CHAPTER 4. ASYMPTOTIC WAVEFORM EVALUATION 26

4.1 Using the Combination of Derivative and Integral
Moments to Obtain Stable Approximations

Using AWE, we may find unstable approximations for stable circuits. This is
because we are trying to api^roximate a higher order system with a lower order-
one. And the moments may give inconsistent information for that lower order
system. For example, assume that the original waveform has a negative initial
condition and goes to zero at steady state after a large positive overshoot (i.e.,
the area under the original respoirse is positive). If we use the integral moment
for matching, the first order approximation can not find a stable solution.
But if we use the first derivative momeirt approximation or a second order
approximation (derivative or integral or a combination of both), we can find
a stable approximation. We can also conclude with right half-plane (RHP)
poles using only derivative moments. So it is a good idea to use an appropriate
combination of integral and derivative moments for the calculation of poles and
residues of every state variable independently. Here is the algorithm used for
this purpose.

• Necessary moments are computed according to the order of approxima­
tion.

• For every state variable DO

(i) Compute the poles using the proper moments (initially start from
all integral moments if the user does not redefine this parameter).

(ii) If there is any right-hand-plane pole then
If there are no integral moments used then

increase the order of approximation by 1,
else

replace the highest order integral moment with the next
derivative moment, and go to (i) to compute the poles.

(iii) Compute the residues.

So, the number of derivative moments used in the approximation is in­
creased one by one until a stable approximation is found or all of the integral
moments are replaced with the derivative ones. If a stable approximation can
not be found then the order of approximation is increased by one. And we are
trying to avoid large orders, due to numerical inaccuracy and increased num­
ber of operations which requires long time for the approximation. But we have

CHAPTER 4. ASYMPTOTIC WAVEFORM EVALUATION 27

observed for a large number of examples that a stable and good approximation
can be found before the 5’th order. If a stable approximation can not be found
up to a certain order, (which never occurred for all the examples we tried)
the order of approximation is not increased anymore, but the first derivative is
used to approximate the response (Forward Euler) to shift in time. After that
a new AWE is made with different initial conditions. Note that the dominant
approximate poles and residues depend on the initial conditions. Note that,
using this algorithm, the order of approximation and the number of derivative
moments used in the approximation may not be the same for different state
variables. And it is not necessary to approximate all of the states with the
same order for transient analysis as far as you find a good approximation for
that state variable.

4.2 Transient Analysis Using AW E

In the beginning of the transient analysis, a dc analysis is performed in order to
find the operating points. For this dc analysis the capacitors with user defined
initial values are replaced with voltage sources of the same value, while the
other capacitors are assumed to be open circuits. Similar things are performed
for the inductors. Another dc analysis follows in order to find the steady state
values. Then we can approximate the state variables with asymptotic waveform
evaluation technique, using the initial conditions, steady state values and the
linearized circuit itself.

Using AWE wc obtain approxinmte analytic expressions for Ccipcicitor volt­
ages and inductor currents. These expressions are valid on the time axis as long
as PWL elements satisfy the boundaries of the set of current operating regions,
Ri. In order to find voltages and currents of each device, these expressions are
evaluated at certain time instants and using these values as sources, the circuit
is solved by a mere substitution (FBS). As we progress over time with steps
the nonlinear devices in the circuit may change their segments. If this occurs,
we must know the time when one piece-wise linear device, at least, changes its
segment. As soon as we realize a segment change, we go back over time and
search for the time of segment change. The capacitor voltages and inductor
currents at the time instant of segment change, are the initial conditions for
the next AWE. The same thing happens when there is an input change at time
to- We evaluate the approximate expressions found for energy storage elements
and solve the circuit at time Iq by a mere substitution. A new DC analysis
is done at time Iq using the new .source vector, and a new AWE is performed

CHAPTER 4. ASYMPTOTIC WAVEFORM EVALUATION 28

for t > Iq . For DC analysis, v/e can use the previous solution and segments
(instead of 0 vector) as initial valid solution. This saves a lot of computation.

The selection of the time step in transient analysis is a quite critical issue
for the time efficiency standpoint. If the time step is chosen too small, then
too many unnecessary computations must be performed. This may even cause
the simulation not to terminate in a reasonable time. Conversely too large
time steps may cause hirge errors if there exist high frequency poles with large
residues. Another drawback of the large time step is that we may skip an over­
shoot of the waveform which may possibly cause a segment change. Therefore,
the time step used in transient analysis is dynamically calculated after each
FBS. In this calculation, we consider prinicirily the rate of change of the most
rapidly changing exponential. There are some parameters used in the calcula­
tion of the tiine step. For example the calculated time step is divided by the
SAFETY factor which can be set in the .OPTIONS card. TSLOOPLIMIT is
another parameter which is useful if the internal time step turns out to be too
small. In a PWL circuit if there is no segment change over a TSLOOPLIMIT
time step period, then the time step is multiplied with TSMULT at every time
step until a segment change occurs. This causes an exponential increase of the
internal time step and prevents an infinite loop due to an error in the calcu­
lation of the time step. BUSTLE has some other parameters for the transient
a.nalysis which will not be mentioned.

As a result of dynamic selection of the time step, the simulator spends more
effort when there are rapid voltage or current changes, and skips quickly in the
time axis if there are slow changes. This provides an event driven feature to
the simulator.

Chapter 5

RESULTS

In this chapter, some simulation results of BUSTLE will be presented. Some
other results can be found in [1]. The results and computation times of BUS­
TLE is compared with those of SPICE 2G.6. All of the measurements are made
at SUN 3/110 workstations. As it is mentioned before, BUSTLE leaves the ac­
curacy speed trade-off to the user by giving him/her a number of options. The
minimum order of approximation, the mmorder, which can be given a value
in the .OPTIONS card, determines the number of moments matched in AWE.
This parameter is an important parameter for the accuracy of the approxima­
tion. For example, it can be selected as 1 for a digital CMOS circuit, but this
would not be sufficient for an RLC circuit which has an oscillatory response.
The minimum order and also the number of derivatives that will be matched
initially can be determined by the user. There are also some other parameters
that can be set by the user to improve the accuracy or the speed. Another
important feature is that, user can define his own models (or use one from the
library) for nonlinear devices. This provides a capability to keep pace with
the emerging technology, also user can control the accuracy speed trade-off by
choosing the number of segments used for modeling.

EXAM PLES

1) The first example circuit. Fig. 5.1, which is taken from [3], demonstra.tes
the usage of derivative and integral moments together, to get stable approxi­
mations. Using basic AWE method [2], we end up with RHP poles for C2 and
L3 for a second order approximation, which is not mentioned in [3].

However, using the method described in section 4.1, we can find stable ap­
proximations for all of the state variables. As it can be seen from the Table 5.1,
after using the first derivative moment, a stable approximation can be found for

29

CHAPTER 5. RESULTS 30

1 »-1 IH t 2 10 L2 IH Its LS IH

U(t) © Cl
IF C2 IF cs. IF

r'igure 5.1: Pilla.ge’s 6l.h order RLC circuit

2.0 2.1 3.0 3.1
-1.206e-2 -2.015e-2 5 .0 5 3 e -l -8.935e-3
3 .012e-2 -1.653e+l -1.269e-l —2.803e-l“0

-8.915e-3 -1.965e-l
4.0 5.0 Actual

-5.556e-l + j8.965e-l -1.029e-l -5.556e-l + j8.965e-l
-5.556e-l - j8.965e-l -1.330e-l -5.556e-l - j8.965e-l

-8.914e-3 -8.914e-3 -8.915e-3
-1.023e-l -5.556e-l -b j8.965e-l -1.029e-l

-5.556e-l - j8.965e-l -9.797e-f0
-9.998e+l

Table 5.1: Approximate Poles for response at C2 and the actual poles of the
circuit.

2.0 2.1 2.2 2.3 3.0
-1.022e-2 -4.301e-9 O.OOOe+0 O.OOOe+0 -8.914e-3
4 .033e-2 4 .301e-9 -5.404e-fl7 -l.OOle-1 -7.975e-l

-1.047e-l

Table 5.2: Trials of BUSTLE to find a second order approximation and con­
clusion with a third order approximation.

CHAPTER 5. RESULTS 31

minimum order
1

compulation time
1.52 sec.
1.72 sec.
1.80 sec.
2.00 sec.
3.13 sec.

Table 5.3: Total execution time list for different minorder requirements

C2, whereas for L3, we can not get rid of RHP poles using a second order ap­
proximation even all possible combinations of derivative and integral moments
are tried. In this case the order of approximation is increased automatically,
and a stable approximation in the 3’rd order (Table 5.2) is found. But the
remaining states are approximated with second order which is the minimum
required order. Note that a better approximation for L3 is performed which
satisfies the accuracy requirements of the user.

The step responses of 3 different nodes of the circuit in Fig. 5.1, computed
for different minorder requirements, can be seen in Fig. 5.2. The execution
time list is given in Table 5.3. The computation time of BUSTLE is pretty
good. Additionally, for this circuit, BUSTLE finds the results analytically in
about 30% of the total execution times listed in the table, and 70% of the
execution time passes during the evaluation of the exponentials at certain time
instants and simple substitutions.

2) This example is a 200’th order RLC ladder circuit (Fig. 5.3). Since
the circuit is too large, the whole of it is not drawn. But the circuit is a
repetition of the ladder. All of the capacitors are 10/if and all of the inductors
are lOOmh. The initial voltages of all of the capacitors are given as 0, and
the initial inductor currents increments by 1 ma after every 5 inductor, so that
the initial currents of the first 5 inductors are 0 ma, the second 5 are 1 ma,
and the last 5 are 19 rna. The voltage waveforms of the nodes 15, 101 and
201, are drawn in Fig. 5.4, for different minorder values. The timings and the
normalized rms differences ̂ from SPICE are listed in Table 5.4.

3) The third example, Fig. 5.5, is a full wave rectifier. The diodes are

Normalized rms dif ference =
^inax {^9top ^ si art)

CHAPTER o. RESULTS 32

{n

O /-i -

O
o

(0

o § .

o
o

0.00 28.57 57 . 14 85.71

T ¡me (n s)

Actual
2 order
BUSTLE

-------------̂ th order

BUSTLE

\

114.29

. 1 o '
-- 1----r
142.86 171.43 200.00

Figure 5.2: Output waveforms of the capacitor voltages, for the circuit in
Fig. 5.1, computed using different minorder values.

CHAPTERS. RESULTS 33

minimum
order computation time

normalized rms. dif.
with SPICE

v(15) v(lOl) v(201)
1 23.72 sec. 8.9% 4.8% 5.6%
2 27.40 sec. 4.5% 2.8% 4.7%
3 31.70 sec. 4.6% 1.5% 1.5%
4 41.03 sec. 3.8% 1.1% 0.6%

spice 174.30 sec. - - -

Table 5.4: Total execution time list of the 200’th order RLC ladder for different
minorder requirements, and the normalized rms difference from SPICE.

PROCEDURE NAME NUMBER OF
CALLS

CPU
SECONDS

PERCENTAGE

INPUT READING 1 1.42 4.5
CAPLOOP 1 0.10 0.3
LU-C 1 0.07 0.2
SET UP 1 0.17 0.5
CONVERT MODELS 1 0.00 0.0
TRAN 1 29.92 94.4
FIND-DELTA-TIME 100 0.00 0.0
DC 2 1.97 6.2
SOLVE-MXB 3 2.73 8.6
LU 5 2.97 9.4
FBS 129 12.02 37.9
AWE 1 7.85 24.8
COMPLEXEQNSOLVER 417 3.27 10.3
ROOTFIND 0 0.00 0.0
FIND-2-ROOTS 0 0.00 0.0
FIND-3-ROOTS 217 0.50 1.6
FIND-4-ROOTS 0 0.00 0.0
TOTAL 1 31.70 100.0

Table 5.5: The CPU time for some major functions of BUSTLE, measured in
the simulation of the 200’th order RLC circuit (minorder=3).

CHAPTER 5. RESULTS 34

10
r A A A r

u(t) ©

lOOrnH 10
V

ic=0
A A A '

lOOiriH 10 lOOmH

1c=l9mA

lOuF

1c=19mA

lOuF
500,

lOuF

Figure 5.3: An 200’th order RLC ladder circuit

Simulator

BUSTLE
SPICE (lOOpt)
SPICE (lOOOpt)

computation time

4.60 sec.
8.05 sec.
15.11 sec.

normalized rms. dif.
with SPICE (lOOOpt)

1.4%
6 . 1 %

Table 5.6: Total execution time list of the full-wave rectifier circuit, and the
normalized rms differences with lOOOpt SPICE waveform.

modeled with two segments, one representing the OFF region, where the other
is the ON region with Vo = 0.7i>. Transient analysis is performed with SPICE
and BUSTLE with a square wave input. The voltage waveform on the load can
be seen in Fig. 5.6. SPICEl is the SPICE simulation using 100 time steps in
transient analysis where SPICE2 uses 1000 time steps. It is surprising that the
two waveforms are different. Transient analysis, using 100 and 1000 points, are
also performed with BUSTLE, but the results do not differ if the time step is
changed since the response is known analytically, and evaluated at time steps.
The result of BUSTLE is very close to SPICE2, as it is seen from Fig. 5.6.
The normalized rms of the difference between BUSTLE and SPICE2 is 1.4%
where it is 6.1% between SPICEl and SPICE2. As far as the execution times
are concerned, it can be easily noticed in Table 5.6 that BUSTLE is again
faster than both of the SPICE simulations. Consequently the selection of time
step does not effect the simulation result of BUSTLE, but significantly changes
the results of SPICE. We also made simulations of this circuit using a diode
model with 12 segments that is extracted from SPICE. But the results of both
simulations are almost identical, the normalized rms difference between the
two simulations is 0.3%. Obviously two segments are good enough to model a
diode, there is no need to use a more complex model.

4) The fourth example. Fig. 5.7, is a CMOS NOR gate with 4 MOSFETS,
two NMOS and two PMOS. Both type of transistors are modeled simply with

CHAPTERS. RESULTS 35

0.00 57. M 171 . 43

me (n s)
285.71 342.86

SPICE
2 order
BUSTLE
Zith order
BUSTLE

T--------1
400.00

Figure 5.4: Output waveforms of the node voltages 15, 101 and 201(the voltage
on the 500 ohm resistor), for the 200’th order RLC circuit, computed using
BUSTLE with different minorder values, and SPICE

CHAPTER 5. RESULTS 36

10

---- SPICE_1

T I :ii e ̂ I! 5 ■♦^10

Figure 5.6: Output waveforms of BUSTLE and SPICE for the full-wave rectifier
circuit

CHAPTERS. RESULTS 37

Voul

Figure 5.7: CMOS NOR circuit

V gs

VDS

Figure 5.8; Piece-wise Linear NMOS model used, in the simulation of the
CMOS NOR gate

CHAPTERS. RESULTS 38

O
o·

(f>

O Q -

o
o

-J I I J I I I I ̂ ̂ ̂ J I I
0.00 M.?9 2 8 . 5 ; 42.86 5 7 . M

T i m e (n s)
7 \ . 43 85.71 100.00

T ¡ m e (n s)

SPICE

T i m e (n s)

Figure 5.9; The output waveform of the CMOS NOR gate

CHAPTERS. RESULTS 39

to

o c·
> o

o
0 .

o
o -

toOJ

o o
> Co

o '
0 . 00

CO

to CVJ

o o
Co

o
o -

to r \ '

.

c· o
> C o

07- '

T i m e (n s)

-| I I 1 I I “ I I I

■|4.29 28.57 42 .86 57. i4 7l .43

T i m e (n s)

100.00

I I 1
85.7) 100-00

0-00 14.29 28-57 4 2 . 8C 57.14

I 1 m e (n 5)

I I I \ 1
71 .43 85. 7·, lOO-OC

......."V ' 'T·'.... , I
0.. i 4 . 2 9 28-57

'I......"T ~1 I r
4 2 . 8C 5*' . I 4

T i m e (n s ·
7 \ .i:

1--------1------- 1
fi'·.··! 100 0·':

Figure 5.10: The operating regions of MOSFETs in the simulation of the
CMOS NOR gate

CHAPTERS. RESULTS 40

4 PWL regions, cutofl", linear, saturation and reverse saturation. Fig. 5.8. The
NOR gate is loaded with a 2pf capacitor. A transient analysis is performed
with BUSTLE and SPICE. The first two graphs in Fig. 5.9 are the inputs. The
difference between the inputs is not an error due to BUSTLE. It is a result of
the algorithm employed by SPICE which can not change an input between two
time steps. This causes a normcilized rms difference of 7% for the first and 12%
for the second waveform.

There is little difference between the two output waveforms, although the
charging and discharging of the capacitor is very slow which is a disadvantage
for simple modeling. The normalized rms difference is 3.3%. The execution
time is a.gain shorter than that of the both SPICE results.

A new facility of BUSTLE is that user can examine the operating segments
of PWL devices, which he would like to observe, easily by adding a “seg”
command in the print card. The operating segments of the MOSFETS of the
NOR gate can be seen in Fig. 5.9. The 0 level denotes that the transistor is in
the CUT OFF region, and level 1 and 2 are for SATURATION and LINEAR
regions respectively. If we examine Fig. 5.10 we can see that at i = 0“ PMOS’es
are in CUT-OFF, NMOS’es are in LINEAR. At i = O'*· all of the transistors
change their operating regions : Tpa to LINEAR, Tpb to SATURATION and
NMOS’es to CUT-OFF. Then at i = 5.5nsec. Tpb goes into LINEAR and this
goes on.

This facility is a lot of help to the user in the analysis of a circuit, because
it is easier to understand the PWL models which have been conventional for
nonlinear elements. For example a designer generally thinks the diode as a
device which is ON or OFF, instead of an exponential characteristic. We
believe that BUSTLE is highly educational since the solution style is very
similar to the manual solution style.

5) This example is composed of diodes and MOSFETS, as shown in Fig. 5.11.
This is a simple Flip-Flop, i. e. a bi-stable multivibrator. At first Q (node 3)
is high and Q' (node 4) is low. Then Q' is forced to be high, by charging Cl
through D2. The circuit stays in this stable state for a while, then its again
forced to changed its state by the other source-diode combination. Fig. 5.12
is the output of BUSTLE for the input file given in chapter 6. The plotting
routine is designed for a SUN workstation, and can be called from BUSTLE
using the PLOT card. One can easily examine the output waveforms using
this plotting function. Moving the mouse and clicking the button, the time
and voltage values of any point can be learned. The first and third wa,veforms

CHAPTERS. RESULTS 41

Figure 5.11: A Simple Flip-Flop. The input filé for this circuit is given at the
end of the 6th chapter.

are the inputs, whereas the second and fourth waveforms are the voltages of
the capacitors. The operating regions of the NMOS transistors are shown in
the following two plots. Finally the state of D1 can be seen in the last plot.
The dots on the waveforms are the values calculated by BUSTLE, and the
remaining waveform is a linear interpolation. Note that BUSTLE has worked
on the rapidly changing parts and skipped computation along the time axis
where the waveform does not change at all. The total execution time was 11.2
CPU seconds.

6) The sixth example. Fig. 5.13, is a ring oscillator. A transient analysis
is performed again with SPICE and BUSTLE. Output waveforms of BUSTLE
and SPICE can be seen in Fig. 5.14. The results are not very different. The
normalized rms difference between the results of BUSTLE and SPICE is 8.4%.
The frequency of oscillations are almost equal in both simulation results. How­
ever in terms of execution times, SPICE is faster than BUSTLE (29 versus
99sec). This may be due to the nature of the problem, because in an oscillator,
the transistors change their operating regions frequently, which means a new
DC Analysis and a new AWE. Except this single example, BUSTLE alwa}'s
finished the job in a shorter time than SPICE.

7) The last example is a CMOS Full Adder taken from [23]. The adder
has 28 MOSFETS. The outputs CARRY and SUM are loaded with 1-pf ca­
pacitors. The adder is simulated using SPICE and BUSTLE with the inputs
shown in Fig. 5.15. The “carry-in” input is grounded. The simulation is carried
out by BUSTLExand results are shown in Fig. 5.15. The propagation delay
can be observed in outputs SUM and CARRY. Simulation results of BUS­
TLE are acceptable. However we couldn’t compare it with SPICE, because it
gives an error message “internal time step too small in transient analysis” and

CHAPTERS. RESULTS 42

" I | - r I I I 1 I l X "1 l · I - l - l - l - l - l ~ r r n T " l I I I » r I - r 1 1 1 1 1 I I I I T 1 l l - T r 1 I I I I I I I I I t I ■ r - I- 1- I - I -I i I I IiS(ir

1 I I I I I I 1 I I I" l~l" r ri I I I I r r ' i ' I ' T T T ~ » - i I I] i ~ t I 1 I I I ' i " i I t ; I I

I I | · T~r '1 t T ' l ~- r 1' r r I 1 I \ I ' T T- l · 1 1 '

Figure 5.12: The plotting routine of BUSTLE showing the Flip-Flop outputs.

CHAPTERS. RESULTS 43

] I fTi e (ri 5)

Figure 5.14: Transient analysis of the ring oscillator circuit

aborts from the program. SPICE refused to complete the analysis although we
changed the parameters in the option card many times. The execution time
was 95 CPU seconds for BUSTLE.

An analysis on the timings of the results show that the LU decomposition
gains an important role as the size of the circuit increases. This brings the
necessity of good LU decomposition algorithms and maybe the partitioning of
the sparse matrix, in order to diminish the work done in the decomposition
after a small change in the matrix.

As seen from the examples, the results of BUSTLE is accurate, and it
is faster than SPICE, even in small circuits. Although the program is not
optimized for speed yet, it is very fast. It is observed that the performance of
the program increases as the size of the circuit grows.

CHAPTERS. RESULTS 44
O
o-

(f)
oLT) >

O c\J

oo
I I I I I 1 I 1 I I I 1 I 1

" 0 . 0 0 14.29 28.57 42-86 57.14 71-43 85-71 100.00

T i m e (n s)
Oo “1

0)
o

■

O CvJ

o
o

-----1--------1--------1--------1--------1--------1------- 1------- 1--------1--------1--------\--------1------- r
0 . 00 14-29 28.57 42-86 57.14 71-43 85-71

T ¡me (n s)

100.00

O

T i m e (n s)
Figure 5.15: SimuLation results of BUSTLE, for CMOS Full-Adder circuit.
First two waveforms are the inputs, the other two are SUM and CARRY out­
puts resetively. (ccirry-in is grounded)

Chapter 6

HOW TO USE BUSTLE

BUSTLE is a general-purpose circuit simulation program. In order to use it
efficiently its input format is made similar to that of existing simulators, i.e.
SPICE.

6.1 IN PU T FORM AT

The input format for BUSTLE is of free format type. Fields on a card are
separated by one or more blanks. In order to pass from one card to another,
< RETU R N > must be entered. A card may be continued by entering a +
sign in the beginning of the following card; BUSTLE continues reading after
the + sign.

A name field must begin with a letter (A through Z), and cannot contain any
delimiters.

A number field may be an integer field, a floating point field, either an integer
or floating point number followed by an integer exponent, or either an integer
or a floating point number followed by one of the following scale factors.

G=1E9 MEG=1E6 K=1E3 M =lE-3 U=lE-6

N =lE-9 P=1E-12 F=1E-15

45

CHAPTER 6. HOW TO USE BUSTLE 46

6.2 CIRCUIT DESCRIPTION

The circuit to be analyzed is described to BUSTLE by a set of element cards,
which define the circuit topology and element values, and a set of control cards,
which define the required type of circuit analysis and a set of model cards which
define the model parameters.

The first card must be the BEGIN card which initiates the reading of the
input, and the last card must be the END card. The other cards must be in
the following order:

• BEGIN card

• MODEL cards

• ELEMENT cards

• CONTROL cards

• END card

Each element in the circuit is specified by an element card that contains the
element name, the nodes to which the element is connected and the values of
the parameters which determine the electrical characteristics of the element.
The first letter of the element name specifies the element type.

Nodes must be nonnegative integers and should be numbered sequentially. The
ground node must be numbered zero. The branch numbers are given internally.
The circuit can not contain a loop of inductors and a cutset of capacitors. Each
node in the circuit must have a dc path to ground.

6.3 BEGIN C A R D , C O M M EN T CARD S, END CARD

6.3.1 Begin Card

Examples:

.BEGIN

The input deck must always begin with the begin card.

CHAPTER 6. HOW TO USE BUSTLE 47

6.3.2 Comment Card

General Form

* < any comment >
or

any comment >

and in the beginning of a line indicates that this card is a comment
card. Comment cards may be placed anywhere in the circuit description.

6.3.3 End Card

Examples:

.END

The input deck must always end with the end card.

6.4 ELEM ENT CARDS

6.4.1 Resistors

General form:

R X X X X X X X N1 N2 VALUE

Examples:

RC 1 2 100
rl 12 0 IK

N1 and N2 are the two element nodes. VALUE is the resistance (in ohms),
and may be positive , negative or zero.

6.4.2 Capacitors and Inductors

General form:

CHAPTER 6. HOW TO USE BUSTLE 48

C X X X X X X X N + N - VALUE < I N C O N D >

L X X X X X X X N + N - VALUE < I N C O N D >

Examples:

Cl 1 2 3uf 2v
1shunt 71 20 Imh

N+ and N - are the positive and negative nodes of the element, respectively.
VALUE is the capacitance in Farads or the inductance in Henries. For the
capacitor, the (optional) initial condition is the initial value of capacitor voltage
in volts. For the inductor, the (optional) initial condition is the initial value of
inductor current in amperes that flows from N+ to N-.

6.4.3 Linear Dependent Sources

BUSTLE allows circuits to contain linear dependent sources characterized by
any of the four equations

I = gvc V = e v r i = fic V = hir

where g, e, f, and h are constants representing transconductance, voltage gain,
current gain, and transresistance, respectively.

Linear Voltage-Controlled Current Sources

General form:

G X X X X X X X N + N - NC-h N C - VALUE

Examples:

G5 3 4 7 1 Immho

N+ and N - are the positive and negative nodes respectively. NC+ and NC-
are the positive and negative controlling nodes respectively. VALUE is the
transconductance (in mhos).

CHAPTER 6. HOW TO USE BUSTLE 49

Linear Voltage-Controlled Voltage Sources

General form:

E X X X X X X X N-t- N - N C + N C - VALUE

Examples:

eampl 13 5 3 0 4.2

N-f- and N - are the positive and negative nodes respectively. NC-|- and NC-
are the positive and negative controlling nodes respectively. VALUE is the
voltage gain.

Linear Current-Controlled Current Sources

General form:

F X X X X X X X N-h N - NC-f- N C - VALUE

Examples:

FI 15 5 2 7 5

N-|- and N - are the positive and negative nodes respectively. NC-f and NC-
are the node numbers of the controlling branch. VALUE is the current gain.

Linear Current-Controlled Voltage Sources

General form:

H X X X X X X X N-h N - N C -f N C - VALUE

Examples:

hvl 33 0 7 0 1.2M

N-f and N - are the positive and negative nodes respectively. NC-f and NC-
are the node numbers of the controlling branch. VALUE is the transresistance
(in ohms).

CHAPTER 6. HOW TO USE BUSTLE 60

6.4.4 Independent Sources (Time Invariant)

G eneral form :

V X X X X X X X N + N - V A LU E

I X X X X X X X N + N - V A LU E

Exam ples:

vin 1 2 2v
Is 5 0 4.5mA

N+ and N - are the positive and negative nodes respectively. VALUE is the
value of the source (in volts or amperes).

6.4.5 Time Varying Independent Sources

Any independent source can be assigned a time-dependent value for transient
analysis. There are two independent source functions : pulse, piece-wise linear.

1. PU LSE : PULSE VI V2 TD TR TF PW PER

E xam ples:

VIN 1 0 pulse -Iv Iv 2ms 2ms 2ms 40ms 90ms
Vs 3 0 pulse Ov 5v 5ns 0ns 0ns 20ns 50ns

Parameter Description Units
VI initial value Volts or Amps
V2 pulsed value Volts or Amps
TD delay time seconds
TR rise time seconds
TF fall time seconds
PW pulse width seconds
PER period seconds

CHAPTER 6. HOW TO USE BUSTLE 51

2. P IE C E -W IS E L IN E A R : PWL T1 VI <T2 V 2>

E xam ples:

VIN 3 0 pwl 0ms Ov 1ms Iv 2ms Iv 2ms Ov

Each pair of values (T,-,K) specifies that the value of the source is Vi (in
volts or amperes) at time = T,·. The value of the source at intermediate
values of time is determined by using linear interpolation on the input
values.

Note that it is possible to define an ideal step using time varying independent
sources.

6.5 PW L DEVICES

The nonlinear elements of a circuit must be modeled as Piece-wise Linear in
order to be used in BUSTLE. Each PWL element card contains the device
name, the nodes to which the device is connected and the device model name.
The characteristics of the PWL device is described in a separate model card.
More than one element having the same characteristics may use the same
model.

6.5.1 Two Terminal PW L Devices

G eneral form :

D X X X X X N -f N - ’ ’ M N A M E ”

E xam ples:

DCLMP 3 4 "diode"

N-|- and N - are the positive and negative nodes respectively. MNAME is the
model name.

6.5.2 Three Terminal PW L Devices

General form:

CHAPTER 6. HOW TO USE BUSTLE 52

T X X X X X N1 N C N 2 ’ ’ M N A M E ”

E xam ples:

T1 3 5 7 "npn"

N1, NC, N2 are the nodes to which nonlinear device is connected. NC is the
common node. MNAME is the model name.

6.6 MODEL CARDS

6.6.1 Two Terminals

G eneral form :

.M O D E L 2 »M N A M E ” N O P pt V I II pt V 2 12 < pt V 3 13 . . . >

E xam ples:

.M0DEL2 "dl" 3 pt -50v -50uA pt 0 . 6v 0 . 6uA pt lOv lOA

M N A M E is the model name. N O P is the number of points used in the
description. ViT,· gives the corner of each linear segment describing the PWL
characteristics.

6.6.2 Three Terminals

G eneral form :

.M O D E L 3 »M N A M E ” < G, C2 Cj > N O R pi ci,.·, ei,„, ci,., ci,,
62,VI 62,,1 62,„2 62,.2 62,c N O B bd N B N nb bî b^ bî be < b d N B N nb
bŷ . . . ' ^pi 61, ^

E xam ples:

.M0DEL3 "nmos" Ipf Opf Opf 4
+ p i 0 1 0 0 0 0 0 1 - le 7 0 2

+ bd 1 nb -1 0 0 0 1 bd 3 nb -1 0 1 0 1
+ p i 0 1 0 0 0 -400 0 -1 le7 400 2

CHAPTER 6. HOW TO USE BUSTLE 53

+ bd 0 nb 1 0 0 0 -1 bd 2 nb -1 0 1 0 1
+ p i 0 1 0 0 0 0 0 401 - le 7 0 2

+ bd 3 nb 1 0 0 0 -1 bd 1 nb 1 0 -1 0 -1
+ p i 0 1 0 0 0 400 0 -401 le7 -400 2

+ bd 2 nb -1 0 0 0 1 bd 0 nb 1 0 -1 0 -1

.MODELS "pmos" Ipf Opf Opf 4
+ p i 0 1 0 0 0 0 0 1 - le 7 0 2

+ bd 1 nb 1 0 0 0 1 bd 3 nb 1 0 -1 0 1
+ p i 0 1 0 0 0 400 0 1 - le 7 400 2

+ bd 0 nb -1 0 0 0 -1 bd 2 nb 1 0 -1 0 1
+ p i 0 1 0 0 0 0 0 401 - le 7 0 2

+ bd 3 nb -1 0 0 0 -1 bd 1 nb -1 0 1 0 -1
+ p i 0 1 0 0 0 -400 0 401 - le 7 -400 2

+ bd 2 nb 1 0 0 0 1 bd 0 nb -1 0 1 0 -1

M N A M E is the model name. Ci, C2 , and C3 are the intrinsic capacitance
values between the nodes 1 and common, 2 and common, and 1 and 2 of the
PWL element, respectively. If the value of an intrinsic capacitor is given as
zero then it is omitted. N O R is the number of regions used in the description,
pi is written to indicate the beginning of a region. Each region is defined by
two branch equations and a number of boundary equations. Branch equations
are as follows:

+ C l ,„2^2 + C l ,¿2*2 + C i,c = 0

62,vi^l + + C2,v2̂ 2 + 62,12*2 + 62,c = 0

where ui,ii,U2,*2 are defined in Fig. 2.2.

N O B is the number of the boundaries related to the given region. A boundary
is defined by the following equation:

hy,Vi + hiAi + ĥ .,V2 + i>t-2*2 + be > 0

bd indicates the beginning of a boundary. N B N is the id. number of the
region which is the other neighbor of this boundary. Id. number of the region
which is passing through the origin (satisfying 0) is 0, and this region must be
given at the first place in the region list. Id. numbers of the other regions are
numbered sequentially according to their order in the list.

CHAPTER 6. HOW TO USE BUSTLE 54

6.7 CONTROL CARDS

6.7.1 T R A N Card

General form:

.TRAN <TSTEP> TSTOP <TSTART> <UTS>

Examples:

•TRAN Ins 100ns 10ns

.TRAN Ins 100ns u ts

•TRAN 100ns

TSTEP is the maximum internal time step that is allowed. TSTART and
TSTOP are the initial time and final time of the transient analysis respectively.
If TSTART is omitted, it is assumed to be zero. One can omit TSTEP if
TSTART is also omitted. The effect of TSTEP can be removed by giving it
a large value. If UTS (Use Time Step) is used then the internal time step is
directly chosen as TSTEP.

6.7.2 PR IN T Card

General form:

.PRINT PRTYPE OVl <OV2 . . . OV8>

Examples:

.PRINT TRAN VOUT 8 0 IS 1 0

.PRINT TRAN VIN 1 0 IIN 1 0

.PRINT TRAN V5 5 0 SEG2 12

.PRINT TRAN VIN 2 0 VOUT 16 0 IDD 1 0 SEG3 8 SEG2 7

PRTYPE shows whether the output(s) is (are) for a transient or for a dc
analysis. The form for voltage, current or segment output variables is as follows:

CHAPTER 6. HOW TO USE BUSTLE 55

V(N 1<,N 2>) specifies the voltage dilference between nodes N1 and N2. If N2 is omit­
ted, ground (0) is assumed.

I(N1,N2) specifies the current flowing in the branch that is between the nodes N1
and N2. There should be an element between the nodes N1 and N2.

SEG2 IDN specifies the segment number of the two terminal PWL device with the
device id. no IDN. The device id. no’s are numbered sequentially accord­
ing to their order in the input deck.

SEG3 IDN specifies the segment number of the three terminal PWL device with the
device id. no IDN. The device id. no’s are numbered for three terminal
PWL devices same as the two terminal elements.

6.7.3 PLOT CARD

G eneral form :

.PLOT PRTYPE OVl <OV2 . . . OV8>

Exam ples:

.PLOT TRAN VOUT 8 0 IS 1 0

This card very similar to PRINT card. It performs everything that PRINT
card do and additionally it calls the BUSTLE-view routine if you are working
at a SUN workstation.

6.7.4 OPTIONS Card

G eneral form :

.OPTIONS O PTl OPT2 . . . (or OPT=OPTVAL)

Exam ples:

.OPTIONS 0RDER=2 REFNUM=1

O R D E R is the minimum order of approximation in AWE. Default is 1.

N O F D E R is the initial number of the derivative moments used in AWE.
Default is zero, which means no derivatives is used in the approximation.

CHAPTER 6. HOW TO USE BUSTLE 56

R E F N U M is the number of the refinements done while solving the circuit.
In general there is no need for refinement. Default is zero, which means
no refinement.

D E B U G is the level of printing the debugging material in the infde.mio file.
Default is zero, which does not create the infile.mío file.

T SF P is the Time Step Finding Period. BUSTLE computes the time step in
transient analysis dynamically after every TSFP time steps. Default is
1.

S A F E T Y is the safety factor used in the calculation of the internal time step.
The larger the SAFETY, smaller the internal time step. Default is 4.

6.8 EXAM PLE IN PU T FILE

^ > (o (t t MEMORY CELL ******************

begin
>|otc***
********** MOSFET MODELS ***********

MODELS "nmos" 4
+ p i 0 1 0 0 0 0 0 1 - le 7 0 2 #CUT-0FF lg= 0 ,

Vds - 10e7*Ids =0
+ bd 1 nb -1 0 0 0 1 bd 3 nb -1 0 1 0 1

+ p i 0 1 0 0 0 -400 0 -1 le7 400 2 # SAT lg= 0 ,
400*Vgs+Vds-le7*Ids=400

+ bd 0 nb 1 0 0 0 -1 bd 2 nb -1 0 1 0 1
+ p i 0 1 0 0 0 0 0 401 - le 7 0 2 # LINEAR lg= 0 ,

401*V ds-le7*Id s =0
+ bd 3 nb 1 0 0 0 -1 bd 1 nb 1 0 -1 0 -1

+ p i 0 1 0 0 0 400 0 -401 le 7 -400 2 #REV-SAT
+ bd 2 nb -1 0 0 0 1 bd 0 nb 1 0 -1 0 -1

MODELS "pmos" 4
+ p i 0 1 0 0 0 0 0 1 - l e 7 0 2 #CUT-0FF

+ bd 1 nb 1 0 0 0 1 bd 3 nb 1 0 -1 0 1
+ p i 0 1 0 0 0 400 0 1 - l e 7 400 2 #SAT

+ bd 0 nb -1 0 0 0 -1 bd 2 nb 1 0 -1 0 1

CHAPTER 6. HOW TO USE BUSTLE 57

+ p i 0 1 0 0 0 0 0 401 - le 7 0 2 #LINEAR
+ bd 3 nb -1 0 0 0 -1 bd 1 nb -1 0 1 0 -1

+ p i 0 1 0 0 0 -400 0 401 - le 7 -400 2 #REV-SAT
+ bd 2 nb 1 0 0 0 1 bd 0 nb -1 0 1 0 -1

)|c f̂c

¡(tJtott********** DIODE MODELS >|c)(cj(o|of;)(c*:f :*!:(<*♦♦♦* +

.M0DEL2 "dl" 3 pt -50v -50nA pt 0 .6v 0 . 6nA pt lOv lOA

.M0DEL2 "d3" 4 pt -50v -50nA pt 0 . 6v 0 . 6riA
+ pt 0 .7 v 10mA pt lOv lOOA

^|c)|c)|c f̂c |̂c |̂c |̂c)|c |̂c |̂c)|c |̂c)|c ^|c)fc |̂c |̂c f̂c)|c)|c «ifc ^|c)|c

*********** THE CIRCUIT DEFINITION *************
^ 5|c jjc j|c j|c îı|c ?|c j|c 5̂ jji j|c 5|c 5̂c j|c ?|c j|c j|c jjc ^ j|c jjc ?|c 5̂ j|c)|c ̂ j|c î|c sjc jji 5̂ j|c j|c jjc 5̂ j|c i|c >|c ̂ i|c ^

vdd 1 0 5v
v in l 2 0 pwl 0ns Ov 25ns Ov 25ns 5v 26ns 5v 26ns Ov

do not fo r g e t to tr y fo r another v in l ###
vin2 5 0 pwl 0ns Ov 5ns Ov 5ns 5v 6ns 5v 6ns Ov

c l 4 0 O.Olpf Ov
c2 3 0 O.Olpf 5v

d l 2 3 "dl"
d2 5 4 "dl"

t p l 3 1 4 "pmos"
tn l 3 0 4 "nmos"
tp2 4 1 3 "pmos"
tn2 4 0 3 "nmos"

.TRAN 50ns

.PRINT tran v l 2 0 v2 3 0 v3 5 0 v4 4 0
*♦>(!+ seg3 0 * tp l
+ seg3 1 * tn l
♦**+ seg3 1 *tp2

CHAPTER 6. HOW TO USE BUSTLE 58

+ seg3 3 *tn2
+ seg2 0
.END

Chapter 7

Conclusion

BUSTLE is a new circuit level simulator especially for large circuits. It uses
f)iece-wise linear niodels and asymptotic waveform evaluation techniques. One
of the important drawbacks of the AWE technique was the instability caused
by the right-hand-plane poles. BUSTLE has handled this instability prob­
lem using combinations of derivatives and integral moments in the moment
matching algorithm. The most important feature of PWL approach is 100%
convergence with a high speed. Transient analysis results, using simple models
with few segments are quite good. Since BUSTLE gives the user the capability
of defining his own models in a simple manner, it has the power to keep pace
with the new developments. We have obtained some advantages and many
others seem to appear with a future work. Some of the points which needs
future study are below.

• Efficient PWL modeling.

• Partitioning in LU decomposition.

• Direct AWE for the nonlinear devices and the outputs, and different time
step for each.

• An algorithm to determine the order of approximation and the number of
derivative moments in the approximation automatically that will check
the accuracy, and guarantees the stability. •

• A simple method to obtain the moments of the transmission lines directly
from the geometry and use the effect of it in the calculations.

59

References

[1] Cemal T. Dikrnen. “BUSTLE: A New Simulation Tool Using Asymptotic
Waveform Evaluation and PWL Approach,” M.S. Thesis, Bilkent Univer­
sity, Ankara, Turkey, 1990.

[2] Lawrence T. Pillage , Ronald A. Rohrer. “Asymptotic Waveform Estima­
tion,” IEEE Trans. Computer-Aided Design., pp. 352-366, April 1990.

[3] Lawrence T. Pillage. “Asymptotic Waveform Evaluation for Timing Anal­
ysis,” Ph.D. dissertation, Carnegie Mellon University, Pennsylvania, USA,
1989.

[4] X. Huang, V. Raghavan, R. A. Rohrer. “AWEsim : A Program for the
Efficient Analysis of Linear(ized) Circuits,” In ICCAD 90 , 1990.

[5] J. Y. Lee, X. Huang, R. A. Rohrer. “Efficient Pole Zero Sensitivity Cal­
culation in AWE,” In ICCAD 90 , 1990.

[6] L. T. Pillage, X. Huang, R. A. Rohrer. “Asymptotic Waveform Evalua­
tion for Circuits containing Floating Nodes,” In Proceedings of the 1990
International Symposium on Circuits and Systems, 1990.

[7] J. Katzenelson. Bell Syst. Tech. J., Vol. 44, pp. 1605-1620, October 1965.

[8] T. Fujisawa , E. S. Kuh. “Piecewise-Linear Theory of Nonlinear Net­
works,” J. Appl. Math. , Vol. 22 , no. 2, pp. 307-328, March 1972.

[9] M. J. Chien, E. S. Kuh. “Solving nonlinear resistive networks using
piecewise-linear analysis and simplical subdivision,” IEEE Trans, on Cir­
cuits and Systems, Vol. 24, pp. 305-317, June 1977.

[10] H. J. Strayer, D. J. Roulston, P. R. Bryant. “DC Solution Speed in Piece-
wise Linear Network Analysis Progrcims,” Electronics Letters , Vol. 22 ,
no. 3, pp. 165-166, January 1986.

[11] D. J. Evans. Sparsity and Its Applications. Cambridge Univesity Press,
1985.

60

REFERENCES 61

[12] G. W. Stewart. Computer Science and Applied Mathematics. Academic
Press, Inc., 1973.

[13] Z. Zlatev, J. Wasniewski, K. Schaumburg. Y12M, Solution of Large Sys­
tems of Linear Algebraic Equations. Springer-Verlag, 1981.

[14] A. F. Schwarz. Computer Aided Design of Microelectronic Circuits and
Systems

[15] Hu Xiheng. “FF-Pade Method of Model Reduction in Frequency Domain,”
IEEE Trans. Axitomatic Control, Vol. AC-32, No. 3, pp. 243-246, March
1987.

[16] V. Zakian. “Simplification of Linear Time-Invariant Systems by Moment
Approximants,” Int. J. Control, Vol. 18, No. 3, pp. 455-460, 1973.

[17] R. A. Rohrer. Circuit Theory : An Introduction to the State Variable
Approach. McGraw-Hill, Inc. , 1970.

[18] L. 0 . Chua, P. M. Lin. Computer-Aided Analysis of Electronic Circuits.
Prentice-Hall, Englewood Cliffs, 1975.

[19] J. Gilbert, L. Gilbert. Elements of Modern Algebra. PWS-KENT Publish­
ing Company, Boston, 1988.

[20] P. R. Adby. Applied Circuit Theory: Matrix and Computer Methods. John
Wiley h Sons, New York, 1980.

[21] J. Vlach, K. Singhal. Computer Methods for Circuit Analysis and Design.
Van Nostrand Reinhold Company, New York, 1983.

[22] W. H. Press, B. P. Plannery, S. A. Teukolsky, W. T. Vetterling. Numerical
Recipes in C. Cambridge University Press, Cambridge, 1988.

[23] N. Weste, K. Eshraghian. Principles of CMOS VLSI Design, A Systems
Perspective. Addison-Wesley Publishing Company, USA, 1985.

[24] C. A. Desoer, E. S. Kuh. Basic Circuit Theory. McGraw-Hill,

