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ABSTRACT

BUSTLE, A NEW CIRCUIT SIMULATION TOOL 

M. Murat Alay beyi
M.S. in Electrical and Electronics Engineering 

Supervisor: Prof. Dr. Abdullah Atalar 
July 1990

A new circuit simulation tool, BUSTLE, using Asymptotic Waveform Evalua­
tion (AWE) technique and Piece-wise Linear (PW L) models, is implemented. 
The results are very promising, especially for large circuits.

This piece of work, in cooperation with [1], explains the techniques used in 
the simulator BUSTLE, such as

• efficient LU decomposition of the sparse matrices,

• using derivative and integral moments in order to get rid of the instability 
problem,

• combining the PWL approach with AWE in transient analysis, 

and illustrates some simulation results.
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ÖZET

BÜSTLE, YENİ BİR DEVRE SİMÜLATÖRÜ 

M. Murat Alaybeyi
Elektrik ve Elektronik Mühendisliği Bölümü Yüksek Lisans 

Tez Yöneticisi: Prof. Dr. Abdullah Atalar 
Temmuz 1990

BÜSTLE, asimptotik eğri tahmini ve parçalı doğrusal yaklaşımını kullanan 
yeni bir devre çözümleme programıdır. Elde edilen sonuçlar, özellikle büyük 
devreler için oldukça olumludur.

Bu çalışma, [1] ile birlikte, BUSTLE’de kullanılman bazı metodları açıkla­
maktadır. Bunlar arasında

• seyrek elemanlı matrislerin etkili üçgensel ayrıştırılması,

• asimptotik eğri tahmini metodunun kararsızlık problemini çözmek için 
türev ve entegral momentlerin birlikte eşleştirilmeleri,

• zamanda geçici inceleme için asimptotik eğri tahmini ve parçalı doğrusal 
yaklaşım tekniklerinin birleştirilmesi

sayılabilir. Son olarak bazı simülasyon sonuçları verilmiştir.
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Chapter 1

INTRODUCTION

Simulation plays an important role in the design of integrated circuits. Using 
simulation, a designer can determine the functionality and the performance 
of a design before the expensive and time-consuming step of manufacture. 
BUSTLE, (Bilkent University Simulation Tool for Linearized Environment), 
is a circuit level simulator determining the analog waveforms for the branch 
voltages and currents and the node voltages.

Circuit simulation tools, with different accuracy and speed, are used in cir­
cuit analysis and design. The accuracy and speed requirements vary depending 
on the type and size of the circuit, and the aims of the user. There is a trade-off 
between the accuracy and the speed of the simulation. This trade-off assumes 
the most important role when the number of elements increases prohibitively 
as is the case in VLSI circuits.

The extensive computations and thus very long simulation time are mainly 
due to the complex nonlinear characteristic of devices and the large number of 
iterations for computing the transient response in timing analysis. Most of the 
circuit simulators employ various numerical and iterative methods (e.g. New­
ton Raphson) to find the operating points of nonlinear circuits and numerical 
integration methods (Forward Euler, Backward Euler, Trapezoidal, etc.) to 
compute the transient response of energy storage elements.

Aspects of stability, convergence and hence completion of the job in a suc­
cessful manner are all important issues for circuit simulators. Moreover the 
models of new devices resulting from the emerging technology must be easily 
put into a simulator. Otherwise, the simulator may become obsolete in a short 
time. The simulator should have provisions such that even the user has the 
capability of doing this integration.

1



CHAPTER 1. INTRODUCTION

BUSTLE is developed, with the motivation of the above facts. The first aim 
is to complete the simulation successfully without any problem such as conver­
gence. BUSTLE employs Asymptotic Waveform Evaluation (AWE) technique 
instead of numerical integration methods, in order to compute the response of 
energy storage elements.

Piece-wise linear (PWL) representation is used to characterize the nonlinear 
elements. The main reason to choose the PWL characterization is to avoid 
solving nonlinear equations and to deal with a set of linear equations to decrease 
the time complexity and guarantee the convergence in DC Analysis. AWE is 
mainly for linear(ized) circuits. Thei'efore, the use of PWL approximation 
makes the utilization of AWE easy and efficient for nonlinear devices.

Another important advantage facilitated by PWL approximation is that 
the user can define his own device models for nonlinear devices easily. Subse­
quently, it provides a considerable flexibility to the user for choosing his own 
model and determining the trade-off between speed and accuracy in the simu­
lation. This also renders the simulator independent of the trends of technology.

Consequently, PWL approach brings the advantages of guaranteed DC con­
vergence, efficient usage of AWE, and user defined modeling property.

While using AWE, transient analysis is the part that calls for most of the 
attention and care. Since the approximate poles and the residues are found for 
any output of the circuit, only a simple plotting routine does the AC analysis. 
Note that it is also possible to give an approximate proper rational transfer 
function of a system in terms of s. The sensitivity analysis using AWE tech­
nique may also be performed with a little additional cost [5] [20].

BUSTLE is the result of a co-operative study of the CAD group in the 
Department of Electrical and Electronics Engineering of Bilkent University. 
The whole of the program is written in C, using the UNIX operating system 
and some programming tools (i.e. Lex, Yacc) and SUN 3/110 Workstations. 
This thesis is a complementary work with [1]. Some important points are not 
examined in detail but referred to [1].

The following chapter, DC analysis, discusses piece-wise linear modeling, 
and determination of the operating points using PWL approach. Chapter 3 
is about the implementation of LU decomposition of sparse matrices on the 
computer. This chapter mainly deals with the data structures and algorithms 
used. Chapter 4 consists of a short description of AWE technique, and the mo­
ment matching algorithm used in the implementation. A detailed examination
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of the concepts of this chapter can be found in [1]. Then merging PWL with 
AWE for the transient analysis is discussed in the last section.

Chapter 5 is a collection of some simulation results. Some other examples 
can be found in [1]. This chapter illustrates the advantages that is brought 
by BUSTLE. The results are compared with those of SPICE. Chapter 6 is a 
guide for users, and finally the conclusions and the future work can be found 
in Chapter 7.



Chapter 2

DC ANALYSIS

The solutions to a circuit with DC inputs are called operating points. The term 
DC analysis refers to the determination of the operating points. The behavior 
of non-linear circuits are quite different from that of linear circuits. Though 
there may be no solution or multiple solutions for a non-linear circuit, there is 
always a unique solution for a linear circuit. BUSTLE uses piece-wise linear 
(PWL) techniques to determine the operating points of a circuit. Therefore, a 
nonlinear network is replaced by a piecewise-linear network with a correspond­
ing simplification of the problem. Consequently, solution of nonlinear algebraic 
systems of equations are reduced to the solution of a set of linear systems of 
equations :

M x  =  b (2.1)

where M  is the matrix that describes the resistive network, and b is the source 
vector.

2.1 Determination of the Operating Points

The general methods used to determine the operating points are mesh analysis, 
nodal analysis, and the tableau analysis. BUSTLE uses tableau analysis which 
is a completely general analysis method and works for all linear circuits. This 
method avoids some restrictions caused by nodal and mesh analysis and con­
ceptually it is simpler than the others. Tableau analysis consists of writing out 
the complete list of linearly independent KCL equations, linearly independent 
KVL equations, and the branch equations. KCL can be expressed as

A  ii = 0 (2.2)
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whereas the KVL is given by

V6 - =  0 (2.3)

where A  is the reduced incidence matrix [24], it is the vector containing branch 
currents, v;, and v „ are the branch and node voltages respectively.

Branch constitutive equations can be written as

G vt +  R  Í6 =  w (2.4)

where w is the vector including the independent current and voltage sources, 
as well as the influence of initial conditions on capacitors and inductors. This 
vector also includes the equivalent sources due to linearization of nonlinear 
elements. Equations (2.2)-(2.4) can be put into one matrix equation.

I
0
G

0
A
R

M

-A^
0
0

V6 ' 0 ‘

h = 0

. .
w

(2.5)

Listing the tableau equations, none of the variables is eliminated so all 
three vectors Vt, ij, and v „ are present as variables. Since we must have as 
many equations as there are variables, it is clear that the price we pay for the 
increased generality is that the tableau analysis involves many more equations 
than node analysis does. In computer-aided circuit analysis, however, this 
objection turns out to be an advantage because the matrix associated with 
tableau analysis is extremely sparse which brings the benefits of highly efficient 
numerical algorithms. The algorithms and the data structure used to solve this 
sparse systems of linear equations are described in Chapter 3.

2.2 Modeling of Nonlinear Devices

Modeling is the process by which the electrical properties of a non-linear device 
is represented by means of mathematical equations or tables. Physical device 
models usually involve many complicated equations. Typical timing studies 
have shown that the major part of the computational effort in network analysis 
is spent in evaluating these complicated relationships. Further, most analysis 
methods also require derivatives of the model equations, which is a cumbersome 
and error-prone task for the designer. The iterative methods, such as Newton- 
Raphson, to solve the nonlinear equations do not guarantee the convergence. In
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Figure 2.1: (a) Representation of a two-terminal nonlinear device; (b) i-v 
characteristics of a two-terminal nonlinear device.

order to avoid these problems, piece-wise linear (PWL) representation is used 
in BUSTLE for the modeling of nonlinear devices. Table models are employed 
to describe two and three terminal nonlinear devices.

2.2.1 Modeling of two-terminal nonlinear devices

Consider a two terminal element as shown in Fig. 2.1.a. If the voltage v across 
the element, and the current i which enters the element satisfies /(u , i) =  0 for 
every time instant, it is called a resistor. Probably the most familiar circuit 
element is the two terminal linear resistor. Linear resistor is a special Ccise of 
the resistor and Ohm’s law states that, at all times

/(u , i) =  v — R i  =  i — G v  =  0 (2.6)

where the constant R is the resistance and the constant G is the conductance. 
Equation 2.6 can be represented in either the i-v plane or the v-i plane.

The i-v characteristics of two-terminal nonlinear resistors is approximated 
with a piece-wise linear model, passing through some sample i-v values which 
are given by the user. BUSTLE assumes that the i-v characteristics is linear 
between these points, so that the characteristics becomes a combination of 
linear segments. By using these values, the resistance Ri or the conductance 
Gi, and the equivalent source to; due to linearization of a two-terminal nonlinear 
device can be calculated very easily, where I is the segment number. The branch 
equation of the /th segment of an element can be written as
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i — "f* Giv
V =  -|- Rit

and, in general,
G/ V t  + R; it = W ; + w  

The tableau equations can be written as follows:

0
A 0 
R/ 0

I

0
G;

V t 0 ’ 0  '

h 0 + 0

. - .  .
w

or in a more compact form

M/ X/ =  W/ +  w

(2.7)

(2.8)

(2.9)

( 2 . 10 )

The subscript / denotes the segment in which the network operates. The 
right-hand-side vectors denote the equivalent sources due to linearization and 
the independent sources respectively; they are written separately for clarity.

2.2.2 Modeling of three-terminal nonlinear devices

Three-terminal nonlinear devices are represented as a combination of two 2- 
terminal devices placed between the three nodes as shown in Figure 2.2. The 
parasitic capacitors are also included in the device model. The values of these 
capacitors are given in the model card.

The characteristics of a three-terminal nonlinear device is defined by two 
branch equations and a number of boundaries for each region. These two 
branch equations define a 2-dimensional hyperplane in the 4-dimensional space 
which describes the characteristics of the nonlinear device where the bound­
aries describe the region at which these equations are valid. The two branch 
equations for the three-terminal nonlinear devices are of the general form:

OiUi +  02 2̂ +  «3*1 +  «4*2 +  «5 =  0 (2.11)

and at most three of the coefficients a i,a 2, « 3,«4 can be nonzero. This does 
not impose any restriction on the generality since one of them can be elim­
inated using the other plane equation. The boundaries are described by the 
inequalities of the following form.

«1*̂ 1 + «2*̂ 2 + «3*1 + «4*2 + «5 > 0 (2.12)
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©

+

V,

Figure 2.2: Representation of a three-terminal nonlinear device.

and at most two of the coefficients 01, 02, 03,04 can be nonzero since two of 
the variables can be eliminated, using the two branch equations of the region. 
Each nonlinear device must contain a segment that satisfies the origin (both 
the equations and the boundaries) in order to have a valid solution when all 
of the independent sources are killed. This is required in order to start the 
DC analysis which will be described in the next section. Also this rule does 
not impose any restriction on the generality, since any device which does not 
fit this rule can be modeled with a PWL device satisfying this rule and an 
independent current source in parallel.

2.3 The Algorithm Used

For DC solution, all inductors and capacitors are replaced by independent 
sources. Given a valid solution Xq for an arbitrary source vector yo, satisfying 
the boundaries of the region Rq,

M o  Xo =  Wo -I- yo (2.13)

we would like to find the solution x  and the region Rj for a given source vector
y

M / X =  w / -f- y. (2.14)

The algorithm used for the DC Analysis has been derived from the Katzenel- 
son’s algorithm [9 ,10] which guarantees the convergence in the DC Analysis [8].
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The modified version of the Katzenelson’s algorithm, used to find the solution 
X and the final operating region set Rf, is as follows:

1. Set i =  0.

2. Solve X from
M i X =  Wi +  y.

3. If X satisfies the boundaries of Ri then TERMINATE, else GOTO 4.

4. Let A be the ratio of the distance from Xi to the first region boundary 
crossed when traversing from Xj to x, to the distance from Xi to x.

5. Compute Xi+i as
Xi+i =  Xi +  A(x -  Xi).

6. Set Ri+i to the neighbor region of Ri separated from it with the first 
crossed boundary.

7. Increment i and GOTO 2.

Note that for the first DC analysis, Xo and yo can be selected as 0, since 
by definition, every nonlinear element is modeled to have a passive resistive 
segment satisfying the origin, and 0 is the solution when all the independent 
sources are killed. It is obviously a poor starting point, but that is the only 
valid solution known initially. Afterwards the lastly found operating points are 
chosen as Xq, yo, and Rq. We are expected to do less computation starting 
from the last solution, since it is more probable that the old solution is closer 
to the new one than the origin (0).



Chapter 3

LU DECOMPOSITION

The major part of the computation time of the circuit simulation tools is spent 
on finding the solutions of sets of linear equations. BUSTLE uses LU decompo­
sition and Forward and Backward Substitutions to solve these equations. This 
section is a detailed explanation of the methods used by BUSTLE to solve 
linear sets of equations efficiently.

The simulator uses piecewise linear (PWL) approach in DC analysis which 
is performed several times throughout the program. In DC analysis Sparse 
Tableau Analysis is used which in the end , boils down to finding the solution 
of the matrix equation M x  =  b. The matrix M  is usually a very sparse matrix 
for large circuits, having only 0.1% or fewer non-zero elements on the average. 
DC analysis generally performs a set of LU decompositions in order to find 
the operating segments of the PWL devices. Most of the LU decompositions 
performed by the simulator are this type. There is also another LU decompo­
sition following each DC analysis in order to find the steady state solutions of 
the circuit.

Solving a set of linear equations on the computer efficiently is a problem 
which has been investigated for a long time and is also being investigated 
now [14, 13, 11]. The problem gets even more complicated when the set of 
equations form a sparse matrix. The problem springs from the fact that it is 
not straightforward to harvest the advantages of the sparsity of the matrix that 
can be translated to profitable gains in memory consumption, computational 
speed and accuracy.

10
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3.1 The Function of LU Decomposition

This part of the progrcim is a package of C functions used to quickly and 
accurately solve large sparse and real systems of linear equations which can 
be expressed as M x  =  b. The package is optimized for speed using a good 
strategy of pivot selection and is able to perform numerical pivoting to avoid 
numerical inaccuracy in the solution. What it actually does is,

• It decomposes M  into two triangular matrices such that M  =  LU, where 
L is a lower triangular matrix and U is an upper triangular matrix.

• then it solves the y  vector from Ly =  b by forward substitution which is a 
very easy task. Next U x =  y  is solved by a backward substitution where 
y  is found from the forward substitution. This whole process is called 
Forward and Backward Substitution (FBS). Once the LU decomposition 
is performed, the x  vector can be solved for the same M  matrix and 
different b vectors using only FBS.

3.2 Implementation of the Program Taking Various 
Aspects Under Consideration

3.2.1 Criteria of Efficiency

Efficiency of the program is characterized by the following points

C om putation  tim e : Since the speed of the whole simulator crucially de­
pends on the computation time of both the LU factorization and FBS 
(especially for large circuits), they must be executed as fast as possible.

Minimization of the computation time is one of the major concerns for 
us while developing the program. We have been extremely cautious to 
cut off any redundancy in the computation to make the program as fast 
as possible.

A ccu racy  : Since various routines of the simulator uses the LU factorization 
and FBS quite frequently, the error in computing them has an immense 
effect on the overall accuracy of the simulator. It should be mentioned 
here that algorithms used to compute LU decomposition and FBS in­
variably causes an error which is cumulative in nature, though the error
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Row Panel

Figure 3.1: A possible one dimensional data structure for the M matrix

incurred by the simulator itself may or may not be cumulative. Various 
methods like numerical pivoting, minimization of fill-in’s etc. which will 
be described later, are used in order to make as little compromise with 
the accuracy of the program as possible. If necessary, the program has 
the capability of doing iterative refinements on the solution.

In order to increase the accuracy one has to make frequency scaling [4], 
which is not related with LU decomposition.

M em ory  C onsum ption  : It is quite reasonable to expect that owing to the 
sparse nature of the matrix M , an efficient and compact use of the mem­
ory is possible. But minimizing the consumption of the memory may not 
optimize the overall performance of the program. In this program though 
we have been careful not to make waste of memory allocation, we did not 
seek optimizing the program from the memory consumption standpoint.

3.2.2 Possible Data Structures and the Data Structure 
Actually Used

There can be several ways to store the sparse matrix in an efficient form. Two 
of the feasible data structures are illustrated in Fig. 3.1 and Fig. 3.2, while the 
data structure we have actually used is shown in Fig. 3.3.

In the data structure we have used, the rows and columns are stored as
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Figure 3.2: A possible two dimensional data structure for the M matrix
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Figure 3.3: Representation of a 4 x 4 sparse matrix having only 6 elements, 
according to the structure we used.

arrays of structures. Each element of row or column panel has five fields. They 
are shown in detail in Fig. 3.4, and their function is described below.

or : It is the original row or column number which remains unchanged through­
out the program.

no : It indicates the order of selection of a row or column as the pivot row or 
column.

begin  : This is a pointer field pointing to the first element of the row or 
column.

m ax : This pointer field points to the largest element in magnitude of the row 
or column.

N Z : The number of nonzero elements in a row is known as NZUR and the 
NZ field of a row stores the NZUR of that row. Whereas, the number of 
nonzero elements in a column is known as NZLC and the NZ field of a 
column panel stores it.
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(b )

Figure 3.4: Structure of (a) a panel, and (b) a node
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On the other hand, the nonzero elements of the matrix are stored in “nodes” 
which are connected both to the panels and to each other. The fields of a node 
are illustrated in Fig. 3.4.b and are described below.

row  panel poin ter : This is a pointer field pointing to the specific row in the 
row panel which it belongs.

colum n panel pointer : This is a pointer field pointing to the specific col­
umn in the column panel which it belongs.

right : This pointer points to the node on the right, if there is any.

dow n ; This pointer points to the node below, if there is any.

val, value : They contain the value of the nonzero elements and they are 
described in section 3.3.3 in more detail.

nextm axm ax, previousm axm ax : These fields are used to link the pivot 
candidates to each other, and also to mark the elements which are not 
pivot candidates.

In order to solve a matrix equation using LU decomposition we must per­
form the following operations n times where n is the order of the M  matrix.

1. Pivot selection

2. Row and column interchange

3. Normalizing the pivot row and zeroing the elements under pivot

4. Updatings

And then FBS is performed as many times as required by the simulator.

We are going to calculate the time complexity of the above items for all 
of the structures mentioned above, then show that the structure we have used 
performs best.

1. P ivot Selection  : The complexity of the calculations made for pivot 
selection highly depends on the pivot selection algorithm. But it is easily 
seen that the data structure we have used eases the work of pivot selection 
for any algorithm.
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2. R ow  and C olum n Interchange : As soon as a pivot is selected we have 
to interchange the pivot row and column with the ¿’th row and column, 
where i is the order the pivot is selected. In the data structure we have 
used, a row or column interchange has time complexity of 0 (1) as there 
is no physical row or column interchange in this structure. Whenever 
an element is chosen as the pivot, the no field of the row panel of that 
element is numbered in the order it is selected. For example, if an element 
say, of the fourth row, is chosen as the pivot at the beginning; instead of 
interchanging the first and the fourth row, the number field of the fourth 
row-panel is set to “1” . The column interchange is also performed in a 
similar way. In fact this numbering operation is used for marking a row 
or column when it is selected, so that in the later operations they are 
skipped and they are not subjected to any further execution. Although 
we do not perform any physical interchange, the algorithm behaves as if 
the interchanges are done physically.

But this is not the case with the data structures in Fig. 3.1 and Fig. 3.2. 
The first structure has 0(1) time complexity for row interchange, whereas 
the time complexity of column interchange is O(nfc), where k is the aver­
age number of nonzero elements in a row or column, and n is the order of 
the matrix. Although k is usually a small number, the performance gets 
worse as n increases. For the second structure it can be easily shown that 
the time complexity of both the row and column interchange is 0{kS).

3. N orm alizing the p ivot row and zeroing the elem ents under the 
p ivot : In fact the factorization can be done without the other items but 
this item is the fundamental job during the LU decomposition. There 
are two major things to consider in this part. They are

Floating point operations (flops): Operations like normalizing the 
pivot row and multiplications and subtractions in the subsequent 
rows involve flops which can not be avoided. The computation time 
to perform floating point operations are the same for all the struc­
tures, as long as the same algorithm is employed in the pivot selec­
tion. It can be shown that the time complexity is 0{nk'^). These 
operations are generally more time consuming than the non-floating 
point operations which are mentioned below.

N on-floating point operations : Operations like visiting a node and 
checking if it is marked or not are non-floating point operations. 
These operations must be performed in addition to flops to LU fac­
torize the matrix and they vary from structure to structure.
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4. U pdatings : Tn oi-dc.r to make a proper selection of pivots we have to 
store certain information about the matrix such as NZUR’s of the rows. 
This information may change at any step of the LU factorization and 
hence must be updated whenever undergoes a change. The.se updatings 
are highly dependent on the data structure, and the algorithm employed. 
For the data structure we have employed, the updating procedures will 
be explained later.

3.2.3 Methods Generally Used to Increase the Effi­
ciency

The methods generally used to achieve efficiency are as follows:

Numerical Pivoting

The element by which a row is normalized is known as the pivot element. The 
selection of the pivot regarding the numerical values of the elements in the 
matrix is called numerical pivoting. In order not to lose much from accuracy, 
several type of pivoting strategies can be employed. The most widely used of 
these strategies are partial pivoting and complete pivoting which are well known 
pivoting strategies and can be found in any elementary book on numerical 
analysis [12, 11]. Hence, they are not discussed here.

M in im ization  o f  N um ber o f Fill-ins

Let’s suppose an is chosen as the pivot, and the pivot row is normalized. While 
zeroing the pivot column, aji is multiplied with a,·*, and subtracted from ajk, 
when j  >  i and  ̂ > L If ajk was 0 previously, it was not stored in the memory. 
But now a new non-zero value has occurred at ajk] this is called a fill-in. A 
fill-in causes the following problems.

1. A new memory location to be allocated for it which is not very desirable.

2. An increase in the time complexity, due to a few extra non-flops.

3. A drop in the accuracy because of an increase in flops.
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4. New fill-ins , which is the most important of the problems, as these new 
fill-ins, in turn, cause the trouble mentioned in above items and a host 
of new fill-ins.

So it is clear from the problems mentioned above that we should try to 
minimize the number of fill-ins. An estimate on the number of possible fill-ins 
a pivot can cause is { NZUR — l)  X ( N Z L C —1) of pivot row and pivot column, 
as this is the total number of multiplications that should be performed. These 
products are then subtracted from ajk, which because of the sparsity of the 
matrix has a great probability of being zero.

Hence, { NZUR  — 1) x { N ZL C  — 1) is a proper estimate on the possible 
number of fill-in’s a pivot will create. So, the smaller the product, the lesser 
the number of fill-ins. As can be seen, if either NZUR or NZLC is 1, there is 
no fill-in. More over the elements in the pivot row(column) are not included in 
the calculations anymore, which causes a decrease in NZUR(NZLC). All these 
are very desirable. So it is a good strategy to select the pivot from a row or 
column whose NZ field is 1, even though the element is not large in magnitude.

3.2.4 Our Strategy for Pivot Selection

Our pivot selecting strategy is a combination of classical numerical pivoting 
strategies and minimum fill-in strategy. The algorithm used for LU decompo­
sition is described below.

1. A pivot must be the maximum element of both its row and column, in 
our jargon, we say a pivot must be тахтах (this strict rule is modified 
in multimaxmax strategy which will be described later). Note that there 
is at least one maxmax element : the maximum element in the matrix. 
So there is always at least one pivot candidate which is necessary for the 
continuation of the job.

2. The elements satisfying the above condition are found, and then among 
these pivot candidates the one which has a minimum value of the product 
{ NZUR  — 1) X { NZ LC  — 1) is selected to be the pivot.

3. Floating point operations are performed according to the selected pivot 
above. Then we discard the elements in the pivot row and column from 
the further calculations.
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4. Because of the operations and discardings there will be changes among 
the pivot candidates selected according to the first rule. Therefore we 
must handle these changes by updating maxmax’es.

5. Because of the discardings in “3” , there will be changes in NZUR and 
NZLC’s of some rows and columns. We have to register these changes 
and update the list which is composed of maxmax elements sorted in the 
ascending order of the products ( NZUR  — 1) x ( NZ LC  — 1).

3.3 Some of the Tricks Used in the Software

3.3.1 Memory Allocation

The package uses dynamic memory allocation, because of the large variety of 
the input matrices in dimension and spai'sity. The memory allocation per­
formed by the system may be very slow if it is not used judiciously. For 
example, for a specific type of data structure of size m, allocating memory 
space to n variables of this structure type separately, that is using malloc(m) 
n times, is much slower than allocating them altogether by malloc(n * m). For 
our M  matrix, we know the number of nonzero elements from the very begin­
ning. Hence, we can utilize this situation by allocating all the required memory 
space right at the beginning. In this subsection we will mention some of the 
procedures which use tricks like this in the memory allocation.

D u plicate  : At the beginning of the program, the M  matrix is set up in the 
memory. Since we will have to deal with the matrix for a lot of times, 
we duplicate the matrix to a different memory location and perform the 
LU factorization on this copy of the matrix. In the very beginning of 
the program chunks of memory of ec^ual size are allocated for both the 
original and the copy of the matrix. However the actual size of memory 
allocated to each of them is a bit larger than the number of nonzero 
elements in the matrix, which we call the “tolerance” . The tolerance 
is introduced to take care of the changes in the stencils of the original 
matrix which may cause an increase in the number of nonzero elements 
in the matrix, requiring extra memory space.

After the initial set up of the original matrix, memory spaces are allo­
cated for copies of the list-header and panels in a similar way. The only 
remaining task to be done at this stage of duplication is to copy the web
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of pointers of the original setup to the duplicate copy. The original setup 
is full of pointers as was shown if Fig. 3.3, Fig. 3.4 and Fig. 3.5. So if not 
done cleverly, it can take a long time to duplicate the pointers to their re­
spective position in the duplicate copy. The strategy we have used to copy 
the pointers which are in fact addresses of memory locations, resembles 
the method of relative addressing. First of all, the offset, M->beginning- 
of-nodes — Mcopy->beginning-of-nodes, is calculated. Then, this offset 
is added to the memory address written in the pointer field of the nodes 
of the original setup and copied to the respective pointer fields of the 
duplicate. This works if all nodes of the original setup and the duplicate 
setup are allocated in the same page and hence has a constant relative 
address difference between them. The same relative copying method is 
used to copy the panel pointers.

stalloc (allocation for stencils) : In order to use the advantage of the infor­
mation that all of the nodes use same amount of memory, the memory 
allocation is handled by the program. If a memory space for a new node 
is requested, then since we know how much memory is necessary, there 
is no need to call a system function. Instead the package routines uses 
stalloc or falloc.

A few elements of the M  matrix can change values or even disappear 
and a few new elements can appear whenever the stencils of the matrix 
is changed at the beginning of each LU factorization in a particular sim­
ulation. The function stfree pushes the address of the freed nodes into a 
stack and the function stalloc allocates memory space for a new element 
by popping an empty node address from the stack. The tolerance nodes 
which are allocated at the very beginning of the of the setup are also 
pushed into the stack.

If, in case, the stack happens to be empty, i.e. there is no free space left, 
we allocate a new space of memoiy which has STACKPAGE number of 
more space than previous one and duplicate all the elements ( NZUR — 
1) X [ N Z L C  — 1) to the new one. Now, we have STACKPAGE amount 
of new free space.

fa lloc (fill-in allocation) : During LU factorization of Mcopy, we will need 
new space for fill-in nodes, falloc is used in order to provide these new 
nodes. When the first fill-in occurs, a page of size FILL-IN-PAGE is 
created, using the system’s allocation command. The pointer indicating 
the beginning of the page is then pushed into a stack. The page is then 
used to store subsequent fill-ins until if is full whence a new page is



CHAPTERS. LU DECOMPOSITION 22

created and the pointer showing its beginning address is pushed into the 
stack.

When a stencil or stencils of Mcopy is altered by some other routine of 
the simulator, the Mcopy is LU factorized from the beginning. Hence 
the data in the “FILL-IN-PAGE” s become unnecessary and are virtually 
freed by the procedure ffrce. What actually happens is instead of being 
freed physically, they are overwritten as new fill-ins occur. This technique 
serves our purpose better as nearly the same number of fill-ins occur for 
the handful of stencil changes. This procedure saves us the time of freeing 
memory spaces and reallocating them.

3.3.2 Listheaders and Multiplication Table

In order to implement the efficiency increasing strategies explained in sec­
tion 3.2.4, a separate data structure is constructed. Fig. 3.5, in addition to the 
structure which stores the nonzero elements of the matrix. A part of this struc­
ture is listheaders which in fact, is an array of nodes whose nextmaxmax fields 
point to possible pivot candidates (maxmax’es) in an ordered manner. The first 
element of the array points to maxmax’es whose {NZU R —l) x { NZ LC  — 1) =  
0, the second element points to maxmax’es whose { N Z U R —l) x { N Z L C —l) =  
1 and so on.

The listheader array facilitates the task of selecting a pivot quite elegantly. 
We always select the pivot such that it is the maxmax pointed by the non- 
NULL nextmaxmax pointer of the topmost element of the listheader array. It 
should be mentioned that with a high probability the nextmaxmax pointers of 
the upper listheaders will point at some maxmax’es after the updatings have 
been performed at each operation. Using the data structure, Addmaxmax, 
which inserts a maxmax to the list pointed by the proper listheader, is a very 
fast and simple function.

The two way linked list structure if the maxmax elements provides simplic­
ity at the updatings. For example a deletemaxmax operation consists of only 
two pointer changes. The nextmaxmax fields of the non-maxmax elements are 
equated to a specific address, called ABYSS, so that maxmax elements can be 
easily identified.
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Figure 3.5: The structure of Listheaclers and Multiplication Table
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3.3.3 Representing the Values with Two Fields

In the sparse tableau analysis, we know that most of the nonzero elements 
ai'e I ’s or - I ’s. There is no need for a floating point multiplication with these 
elements, the result is obvious, the number which is multiplied with these 
elements either stay the same or change sign. In order to speed up using this 
property we use two fields to store a value. If the value is 1 or -1 we store it in 
the integer field, val. Otherwise we put a zero into the val field and the number 
is stored in the double (floating point) field, value.

3.3.4 Multiple Pivot Candidates

We introduce multiple pivot candidates strategy in order to reduce the bad 
effects of the strict rule, “a pivot must be a maxmax” . Because of this strict rule 
we may be burdened with a lot of unnecessary fill-ins. For example, an element 
of numeric value 10, may be selected as a pivot candidate although an element 
of numeric value 9.5 at the same row has a lower ( NZUR  — 1) x ( NZLC  — 1). 
In order to prevent such situations, we can allow more than one element in a 
row or column, to be pivot candidates, which we call multimaxmax strategy. 
We can normalize every row and afterwards every column, with the maximum 
element of that row/column, then defining a threshold, select the elements 
greater then this threshold as pivot candidates. Another way to do this is to 
define a fast function, may be a function of the power bits of the floating point 
number, which is a rough measure of the magnitude and then assume all of the 
elements which has the maximum rough magnitude to be pivot candidates.
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Asymptotic Waveform Evaluation

Asymptotic Waveform Evaluation (AWE) is a recently proposed technique for 
the approximate pole zero representation of linear time invariant circuits [2] 
[3]. It is, in fact, a form of Fade approximation [16]. AWE uses the differential 
state equations

x =  A x +  Bu (4.1)

to find an approximation for the state variables. We know that, the homoge­
neous solution of 4.1 is of the form

x,(i) = (4.2)
1=1

where q is the order of the circuit. ki and pi are the residues and poles respec­
tively.

AWE finds an approximation to 4.2 such that

x,(i) =
/=1

(4.3)

where q' is the order of approximation which is smaller than q (in most cases 
q' <C g), and k\ and p\ are the dominant approximate residues and poles re­
spectively. They are calculated from the moments of the circuit. An important 
restriction with AWE is that it may produce unstable poles even though the 
circuit is stable, which is also a major problem for Fade approximation [16] [15]. 
This problem is overcome by combining differential and integral moments.

The computation of derivative and integral moments, and the calculation 
of poles and residues using the combination of derivative and integral moments 
is described in [1].

25
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4.1 Using the Combination of Derivative and Integral 
Moments to Obtain Stable Approximations

Using AWE, we may find unstable approximations for stable circuits. This is 
because we are trying to api^roximate a higher order system with a lower order- 
one. And the moments may give inconsistent information for that lower order 
system. For example, assume that the original waveform has a negative initial 
condition and goes to zero at steady state after a large positive overshoot (i.e., 
the area under the original respoirse is positive). If we use the integral moment 
for matching, the first order approximation can not find a stable solution. 
But if we use the first derivative momeirt approximation or a second order 
approximation (derivative or integral or a combination of both), we can find 
a stable approximation. We can also conclude with right half-plane (RHP) 
poles using only derivative moments. So it is a good idea to use an appropriate 
combination of integral and derivative moments for the calculation of poles and 
residues of every state variable independently. Here is the algorithm used for 
this purpose.

• Necessary moments are computed according to the order of approxima­
tion.

• For every state variable DO

(i) Compute the poles using the proper moments (initially start from 
all integral moments if the user does not redefine this parameter).

(ii) If there is any right-hand-plane pole then
If there are no integral moments used then 

increase the order of approximation by 1, 
else

replace the highest order integral moment with the next 
derivative moment, and go to (i) to compute the poles.

(iii) Compute the residues.

So, the number of derivative moments used in the approximation is in­
creased one by one until a stable approximation is found or all of the integral 
moments are replaced with the derivative ones. If a stable approximation can 
not be found then the order of approximation is increased by one. And we are 
trying to avoid large orders, due to numerical inaccuracy and increased num­
ber of operations which requires long time for the approximation. But we have
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observed for a large number of examples that a stable and good approximation 
can be found before the 5’th order. If a stable approximation can not be found 
up to a certain order, (which never occurred for all the examples we tried) 
the order of approximation is not increased anymore, but the first derivative is 
used to approximate the response (Forward Euler) to shift in time. After that 
a new AWE is made with different initial conditions. Note that the dominant 
approximate poles and residues depend on the initial conditions. Note that, 
using this algorithm, the order of approximation and the number of derivative 
moments used in the approximation may not be the same for different state 
variables. And it is not necessary to approximate all of the states with the 
same order for transient analysis as far as you find a good approximation for 
that state variable.

4.2 Transient Analysis Using AW E

In the beginning of the transient analysis, a dc analysis is performed in order to 
find the operating points. For this dc analysis the capacitors with user defined 
initial values are replaced with voltage sources of the same value, while the 
other capacitors are assumed to be open circuits. Similar things are performed 
for the inductors. Another dc analysis follows in order to find the steady state 
values. Then we can approximate the state variables with asymptotic waveform 
evaluation technique, using the initial conditions, steady state values and the 
linearized circuit itself.

Using AWE wc obtain approxinmte analytic expressions for Ccipcicitor volt­
ages and inductor currents. These expressions are valid on the time axis as long 
as PWL elements satisfy the boundaries of the set of current operating regions, 
Ri. In order to find voltages and currents of each device, these expressions are 
evaluated at certain time instants and using these values as sources, the circuit 
is solved by a mere substitution (FBS). As we progress over time with steps 
the nonlinear devices in the circuit may change their segments. If this occurs, 
we must know the time when one piece-wise linear device, at least, changes its 
segment. As soon as we realize a segment change, we go back over time and 
search for the time of segment change. The capacitor voltages and inductor 
currents at the time instant of segment change, are the initial conditions for 
the next AWE. The same thing happens when there is an input change at time 
to- We evaluate the approximate expressions found for energy storage elements 
and solve the circuit at time Iq by a mere substitution. A new DC analysis 
is done at time Iq using the new .source vector, and a new AWE is performed
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for t >  Iq . For DC analysis, v/e can use the previous solution and segments 
(instead of 0 vector) as initial valid solution. This saves a lot of computation.

The selection of the time step in transient analysis is a quite critical issue 
for the time efficiency standpoint. If the time step is chosen too small, then 
too many unnecessary computations must be performed. This may even cause 
the simulation not to terminate in a reasonable time. Conversely too large 
time steps may cause hirge errors if there exist high frequency poles with large 
residues. Another drawback of the large time step is that we may skip an over­
shoot of the waveform which may possibly cause a segment change. Therefore, 
the time step used in transient analysis is dynamically calculated after each 
FBS. In this calculation, we consider prinicirily the rate of change of the most 
rapidly changing exponential. There are some parameters used in the calcula­
tion of the tiine step. For example the calculated time step is divided by the 
SAFETY factor which can be set in the .OPTIONS card. TSLOOPLIMIT is 
another parameter which is useful if the internal time step turns out to be too 
small. In a PWL circuit if there is no segment change over a TSLOOPLIMIT 
time step period, then the time step is multiplied with TSMULT at every time 
step until a segment change occurs. This causes an exponential increase of the 
internal time step and prevents an infinite loop due to an error in the calcu­
lation of the time step. BUSTLE has some other parameters for the transient 
a.nalysis which will not be mentioned.

As a result of dynamic selection of the time step, the simulator spends more 
effort when there are rapid voltage or current changes, and skips quickly in the 
time axis if there are slow changes. This provides an event driven feature to 
the simulator.
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RESULTS

In this chapter, some simulation results of BUSTLE will be presented. Some 
other results can be found in [1]. The results and computation times of BUS­
TLE is compared with those of SPICE 2G.6. All of the measurements are made 
at SUN 3/110 workstations. As it is mentioned before, BUSTLE leaves the ac­
curacy speed trade-off to the user by giving him/her a number of options. The 
minimum order of approximation, the mmorder, which can be given a value 
in the .OPTIONS card, determines the number of moments matched in AWE. 
This parameter is an important parameter for the accuracy of the approxima­
tion. For example, it can be selected as 1 for a digital CMOS circuit, but this 
would not be sufficient for an RLC circuit which has an oscillatory response. 
The minimum order and also the number of derivatives that will be matched 
initially can be determined by the user. There are also some other parameters 
that can be set by the user to improve the accuracy or the speed. Another 
important feature is that, user can define his own models (or use one from the 
library) for nonlinear devices. This provides a capability to keep pace with 
the emerging technology, also user can control the accuracy speed trade-off by 
choosing the number of segments used for modeling.

EXAM PLES

1) The first example circuit. Fig. 5.1, which is taken from [3], demonstra.tes 
the usage of derivative and integral moments together, to get stable approxi­
mations. Using basic AWE method [2], we end up with RHP poles for C2 and 
L3 for a second order approximation, which is not mentioned in [3].

However, using the method described in section 4.1, we can find stable ap­
proximations for all of the state variables. As it can be seen from the Table 5.1, 
after using the first derivative moment, a stable approximation can be found for

29
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r'igure 5.1: Pilla.ge’s 6l.h order RLC circuit

2.0 2.1 3.0 3.1
-1.206e-2 -2.015e-2 5 .0 5 3 e -l -8.935e-3
3 .012e-2 -1.653e+l -1.269e-l —2.803e-l“0

-8.915e-3 -1.965e-l
4.0 5.0 Actual

-5.556e-l +  j8.965e-l -1.029e-l -5.556e-l +  j8.965e-l
-5.556e-l -  j8.965e-l -1.330e-l -5.556e-l -  j8.965e-l

-8.914e-3 -8.914e-3 -8.915e-3
-1.023e-l -5.556e-l -b j8.965e-l -1.029e-l

-5.556e-l -  j8.965e-l -9.797e-f0
-9.998e+l

Table 5.1: Approximate Poles for response at C2 and the actual poles of the 
circuit.

2.0 2.1 2.2 2.3 3.0
-1.022e-2 -4.301e-9 O.OOOe+0 O.OOOe+0 -8.914e-3
4 .033e-2 4 .301e-9 -5.404e-fl7 -l.OOle-1 -7.975e-l

-1.047e-l

Table 5.2: Trials of BUSTLE to find a second order approximation and con­
clusion with a third order approximation.
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minimum order
1

compulation time
1.52 sec.
1.72 sec.
1.80 sec.
2.00 sec.
3.13 sec.

Table 5.3: Total execution time list for different minorder requirements

C2, whereas for L3, we can not get rid of RHP poles using a second order ap­
proximation even all possible combinations of derivative and integral moments 
are tried. In this case the order of approximation is increased automatically, 
and a stable approximation in the 3’rd order (Table 5.2) is found. But the 
remaining states are approximated with second order which is the minimum 
required order. Note that a better approximation for L3 is performed which 
satisfies the accuracy requirements of the user.

The step responses of 3 different nodes of the circuit in Fig. 5.1, computed 
for different minorder requirements, can be seen in Fig. 5.2. The execution 
time list is given in Table 5.3. The computation time of BUSTLE is pretty 
good. Additionally, for this circuit, BUSTLE finds the results analytically in 
about 30% of the total execution times listed in the table, and 70% of the 
execution time passes during the evaluation of the exponentials at certain time 
instants and simple substitutions.

2) This example is a 200’th order RLC ladder circuit (Fig. 5.3). Since 
the circuit is too large, the whole of it is not drawn. But the circuit is a 
repetition of the ladder. All of the capacitors are 10/if and all of the inductors 
are lOOmh. The initial voltages of all of the capacitors are given as 0, and 
the initial inductor currents increments by 1 ma after every 5 inductor, so that 
the initial currents of the first 5 inductors are 0 ma, the second 5 are 1 ma, 
and the last 5 are 19 rna. The voltage waveforms of the nodes 15, 101 and 
201, are drawn in Fig. 5.4, for different minorder values. The timings and the 
normalized rms differences  ̂ from SPICE are listed in Table 5.4.

3) The third example, Fig. 5.5, is a full wave rectifier. The diodes are

Normalized rms dif ference =
^inax {^9top ^  si art)
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Figure 5.2: Output waveforms of the capacitor voltages, for the circuit in 
Fig. 5.1, computed using different minorder values.
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minimum
order computation time

normalized rms. dif. 
with SPICE

v(15) v(lOl) v(201)
1 23.72 sec. 8.9% 4.8% 5.6%
2 27.40 sec. 4.5% 2.8% 4.7%
3 31.70 sec. 4.6% 1.5% 1.5%
4 41.03 sec. 3.8% 1.1% 0.6%

spice 174.30 sec. - - -

Table 5.4: Total execution time list of the 200’th order RLC ladder for different 
minorder requirements, and the normalized rms difference from SPICE.

PROCEDURE NAME NUMBER OF 
CALLS

CPU
SECONDS

PERCENTAGE

INPUT READING 1 1.42 4.5
CAPLOOP 1 0.10 0.3
LU-C 1 0.07 0.2
SET UP 1 0.17 0.5
CONVERT MODELS 1 0.00 0.0
TRAN 1 29.92 94.4
FIND-DELTA-TIME 100 0.00 0.0
DC 2 1.97 6.2
SOLVE-MXB 3 2.73 8.6
LU 5 2.97 9.4
FBS 129 12.02 37.9
AWE 1 7.85 24.8
COMPLEXEQNSOLVER 417 3.27 10.3
ROOTFIND 0 0.00 0.0
FIND-2-ROOTS 0 0.00 0.0
FIND-3-ROOTS 217 0.50 1.6
FIND-4-ROOTS 0 0.00 0.0
TOTAL 1 31.70 100.0

Table 5.5: The CPU time for some major functions of BUSTLE, measured in 
the simulation of the 200’th order RLC circuit (minorder=3).



CHAPTER 5. RESULTS 34

10
r A A A r

u( t ) ©

lOOrnH 10
V

ic=0
A A A '

lOOiriH 10 lOOmH

1c=l9mA

lOuF

1c=19mA

lOuF
500,

lOuF

Figure 5.3: An 200’th order RLC ladder circuit

Simulator

BUSTLE
SPICE (lOOpt)
SPICE (lOOOpt)

computation time

4.60 sec.
8.05 sec.
15.11 sec.

normalized rms. dif. 
with SPICE (lOOOpt)

1.4%
6 . 1 %

Table 5.6: Total execution time list of the full-wave rectifier circuit, and the 
normalized rms differences with lOOOpt SPICE waveform.

modeled with two segments, one representing the OFF region, where the other 
is the ON region with Vo =  0.7i>. Transient analysis is performed with SPICE 
and BUSTLE with a square wave input. The voltage waveform on the load can 
be seen in Fig. 5.6. SPICEl is the SPICE simulation using 100 time steps in 
transient analysis where SPICE2 uses 1000 time steps. It is surprising that the 
two waveforms are different. Transient analysis, using 100 and 1000 points, are 
also performed with BUSTLE, but the results do not differ if the time step is 
changed since the response is known analytically, and evaluated at time steps. 
The result of BUSTLE is very close to SPICE2, as it is seen from Fig. 5.6. 
The normalized rms of the difference between BUSTLE and SPICE2 is 1.4% 
where it is 6.1% between SPICEl and SPICE2. As far as the execution times 
are concerned, it can be easily noticed in Table 5.6 that BUSTLE is again 
faster than both of the SPICE simulations. Consequently the selection of time 
step does not effect the simulation result of BUSTLE, but significantly changes 
the results of SPICE. We also made simulations of this circuit using a diode 
model with 12 segments that is extracted from SPICE. But the results of both 
simulations are almost identical, the normalized rms difference between the 
two simulations is 0.3%. Obviously two segments are good enough to model a 
diode, there is no need to use a more complex model.

4 ) The fourth example. Fig. 5.7, is a CMOS NOR gate with 4 MOSFETS, 
two NMOS and two PMOS. Both type of transistors are modeled simply with
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Figure 5.4: Output waveforms of the node voltages 15, 101 and 201(the voltage 
on the 500 ohm resistor), for the 200’th order RLC circuit, computed using 
BUSTLE with different minorder values, and SPICE
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Figure 5.6: Output waveforms of BUSTLE and SPICE for the full-wave rectifier 
circuit
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Voul

Figure 5.7: CMOS NOR circuit

V gs

VDS

Figure 5.8; Piece-wise Linear NMOS model used, in the simulation of the 
CMOS NOR gate
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Figure 5.9; The output waveform of the CMOS NOR gate
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4 PWL regions, cutofl", linear, saturation and reverse saturation. Fig. 5.8. The 
NOR gate is loaded with a 2pf capacitor. A transient analysis is performed 
with BUSTLE and SPICE. The first two graphs in Fig. 5.9 are the inputs. The 
difference between the inputs is not an error due to BUSTLE. It is a result of 
the algorithm employed by SPICE which can not change an input between two 
time steps. This causes a normcilized rms difference of 7% for the first and 12% 
for the second waveform.

There is little difference between the two output waveforms, although the 
charging and discharging of the capacitor is very slow which is a disadvantage 
for simple modeling. The normalized rms difference is 3.3%. The execution 
time is a.gain shorter than that of the both SPICE results.

A new facility of BUSTLE is that user can examine the operating segments 
of PWL devices, which he would like to observe, easily by adding a “seg” 
command in the print card. The operating segments of the MOSFETS of the 
NOR gate can be seen in Fig. 5.9. The 0 level denotes that the transistor is in 
the CUT OFF region, and level 1 and 2 are for SATURATION and LINEAR 
regions respectively. If we examine Fig. 5.10 we can see that at i =  0“  PMOS’es 
are in CUT-OFF, NMOS’es are in LINEAR. At i =  O'*· all of the transistors 
change their operating regions : Tpa to LINEAR, Tpb to SATURATION and 
NMOS’es to CUT-OFF. Then at i =  5.5nsec. Tpb goes into LINEAR and this 
goes on.

This facility is a lot of help to the user in the analysis of a circuit, because 
it is easier to understand the PWL models which have been conventional for 
nonlinear elements. For example a designer generally thinks the diode as a 
device which is ON or OFF, instead of an exponential characteristic. We 
believe that BUSTLE is highly educational since the solution style is very 
similar to the manual solution style.

5) This example is composed of diodes and MOSFETS, as shown in Fig. 5.11. 
This is a simple Flip-Flop, i. e. a bi-stable multivibrator. At first Q (node 3) 
is high and Q' (node 4) is low. Then Q' is forced to be high, by charging Cl 
through D2. The circuit stays in this stable state for a while, then its again 
forced to changed its state by the other source-diode combination. Fig. 5.12 
is the output of BUSTLE for the input file given in chapter 6. The plotting 
routine is designed for a SUN workstation, and can be called from BUSTLE 
using the PLOT card. One can easily examine the output waveforms using 
this plotting function. Moving the mouse and clicking the button, the time 
and voltage values of any point can be learned. The first and third wa,veforms
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Figure 5.11: A Simple Flip-Flop. The input filé for this circuit is given at the 
end of the 6th chapter.

are the inputs, whereas the second and fourth waveforms are the voltages of 
the capacitors. The operating regions of the NMOS transistors are shown in 
the following two plots. Finally the state of D1 can be seen in the last plot. 
The dots on the waveforms are the values calculated by BUSTLE, and the 
remaining waveform is a linear interpolation. Note that BUSTLE has worked 
on the rapidly changing parts and skipped computation along the time axis 
where the waveform does not change at all. The total execution time was 11.2 
CPU seconds.

6) The sixth example. Fig. 5.13, is a ring oscillator. A transient analysis 
is performed again with SPICE and BUSTLE. Output waveforms of BUSTLE 
and SPICE can be seen in Fig. 5.14. The results are not very different. The 
normalized rms difference between the results of BUSTLE and SPICE is 8.4%. 
The frequency of oscillations are almost equal in both simulation results. How­
ever in terms of execution times, SPICE is faster than BUSTLE (29 versus 
99sec). This may be due to the nature of the problem, because in an oscillator, 
the transistors change their operating regions frequently, which means a new 
DC Analysis and a new AWE. Except this single example, BUSTLE alwa}'s 
finished the job in a shorter time than SPICE.

7) The last example is a CMOS Full Adder taken from [23]. The adder 
has 28 MOSFETS. The outputs CARRY and SUM are loaded with 1-pf ca­
pacitors. The adder is simulated using SPICE and BUSTLE with the inputs 
shown in Fig. 5.15. The “carry-in” input is grounded. The simulation is carried 
out by BUSTLExand results are shown in Fig. 5.15. The propagation delay 
can be observed in outputs SUM and CARRY. Simulation results of BUS­
TLE are acceptable. However we couldn’t compare it with SPICE, because it 
gives an error message “internal time step too small in transient analysis” and
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Figure 5.12: The plotting routine of BUSTLE showing the Flip-Flop outputs.
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Figure 5.14: Transient analysis of the ring oscillator circuit

aborts from the program. SPICE refused to complete the analysis although we 
changed the parameters in the option card many times. The execution time 
was 95 CPU seconds for BUSTLE.

An analysis on the timings of the results show that the LU decomposition 
gains an important role as the size of the circuit increases. This brings the 
necessity of good LU decomposition algorithms and maybe the partitioning of 
the sparse matrix, in order to diminish the work done in the decomposition 
after a small change in the matrix.

As seen from the examples, the results of BUSTLE is accurate, and it 
is faster than SPICE, even in small circuits. Although the program is not 
optimized for speed yet, it is very fast. It is observed that the performance of 
the program increases as the size of the circuit grows.
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Chapter 6

HOW TO USE BUSTLE

BUSTLE is a general-purpose circuit simulation program. In order to use it 
efficiently its input format is made similar to that of existing simulators, i.e. 
SPICE.

6.1 IN PU T FORM AT

The input format for BUSTLE is of free format type. Fields on a card are 
separated by one or more blanks. In order to pass from one card to another, 
<  RETU R N  >  must be entered. A card may be continued by entering a + 
sign in the beginning of the following card; BUSTLE continues reading after 
the +  sign.

A name field must begin with a letter (A through Z), and cannot contain any 
delimiters.

A number field may be an integer field, a floating point field, either an integer 
or floating point number followed by an integer exponent, or either an integer 
or a floating point number followed by one of the following scale factors.

G=1E9 MEG=1E6 K=1E3 M =lE-3 U=lE-6

N =lE-9 P=1E-12 F=1E-15

45
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6.2 CIRCUIT DESCRIPTION

The circuit to be analyzed is described to BUSTLE by a set of element cards, 
which define the circuit topology and element values, and a set of control cards, 
which define the required type of circuit analysis and a set of model cards which 
define the model parameters.

The first card must be the BEGIN card which initiates the reading of the 
input, and the last card must be the END card. The other cards must be in 
the following order:

• BEGIN card

• MODEL cards

• ELEMENT cards

• CONTROL cards

• END card

Each element in the circuit is specified by an element card that contains the 
element name, the nodes to which the element is connected and the values of 
the parameters which determine the electrical characteristics of the element. 
The first letter of the element name specifies the element type.

Nodes must be nonnegative integers and should be numbered sequentially. The 
ground node must be numbered zero. The branch numbers are given internally. 
The circuit can not contain a loop of inductors and a cutset of capacitors. Each 
node in the circuit must have a dc path to ground.

6.3 BEGIN C A R D , C O M M EN T CARD S, END CARD

6.3.1 Begin Card

Examples:

.BEGIN

The input deck must always begin with the begin card.
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6.3.2 Comment Card

General Form

* <  any comment >
or

any comment >

and in the beginning of a line indicates that this card is a comment 
card. Comment cards may be placed anywhere in the circuit description.

6.3.3 End Card

Examples:

.END

The input deck must always end with the end card.

6.4 ELEM ENT CARDS

6.4.1 Resistors

General form:

R X X X X X X X  N1 N2 VALUE

Examples:

RC 1 2 100 
rl 12 0 IK

N1 and N2 are the two element nodes. VALUE is the resistance (in ohms), 
and may be positive , negative or zero.

6.4.2 Capacitors and Inductors

General form:
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C X X X X X X X  N +  N -  VALUE < I N C O N D  >

L X X X X X X X  N +  N -  VALUE < I N C O N D  >

Examples:

Cl 1 2 3uf 2v 
1shunt 71 20 Imh

N+ and N - are the positive and negative nodes of the element, respectively. 
VALUE is the capacitance in Farads or the inductance in Henries. For the 
capacitor, the (optional) initial condition is the initial value of capacitor voltage 
in volts. For the inductor, the (optional) initial condition is the initial value of 
inductor current in amperes that flows from N+ to N-.

6.4.3 Linear Dependent Sources

BUSTLE allows circuits to contain linear dependent sources characterized by 
any of the four equations

I =  gvc V =  e v r i =  fic V =  hir

where g, e, f, and h are constants representing transconductance, voltage gain, 
current gain, and transresistance, respectively.

Linear Voltage-Controlled Current Sources 

General form:

G X X X X X X X  N +  N -  NC-h N C - VALUE  

Examples:

G5 3 4 7 1 Immho

N+ and N - are the positive and negative nodes respectively. NC+ and NC- 
are the positive and negative controlling nodes respectively. VALUE is the 
transconductance (in mhos).
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Linear Voltage-Controlled Voltage Sources

General form:

E X X X X X X X  N-t- N -  N C +  N C - VALUE

Examples:

eampl 13 5 3 0 4.2

N-f- and N - are the positive and negative nodes respectively. NC-|- and NC- 
are the positive and negative controlling nodes respectively. VALUE is the 
voltage gain.

Linear Current-Controlled Current Sources

General form:

F X X X X X X X  N-h N -  NC-f- N C - VALUE

Examples:

FI 15 5 2 7 5

N-|- and N - are the positive and negative nodes respectively. NC-f and NC- 
are the node numbers of the controlling branch. VALUE is the current gain.

Linear Current-Controlled Voltage Sources

General form:

H X X X X X X X  N-h N -  N C -f N C - VALUE  

Examples:

hvl 33 0 7 0 1.2M

N-f and N - are the positive and negative nodes respectively. NC-f and NC- 
are the node numbers of the controlling branch. VALUE is the transresistance 
(in ohms).
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6.4.4 Independent Sources (Time Invariant)

G eneral form :

V X X X X X X X  N +  N -  V A LU E

I X X X X X X X  N +  N -  V A LU E

Exam ples:

vin 1 2 2v 
Is 5 0 4.5mA

N+ and N - are the positive and negative nodes respectively. VALUE is the 
value of the source (in volts or amperes).

6.4.5 Time Varying Independent Sources

Any independent source can be assigned a time-dependent value for transient 
analysis. There are two independent source functions : pulse, piece-wise linear.

1. PU LSE : PULSE VI V2 TD TR TF PW PER

E xam ples:

VIN 1 0 pulse -Iv Iv 2ms 2ms 2ms 40ms 90ms 
Vs 3 0 pulse Ov 5v 5ns 0ns 0ns 20ns 50ns

Parameter Description Units
VI initial value Volts or Amps
V2 pulsed value Volts or Amps
TD delay time seconds
TR rise time seconds
TF fall time seconds
PW pulse width seconds
PER period seconds
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2. P IE C E -W IS E  L IN E A R : PWL T1 VI <T2 V 2 .....>

E xam ples:

VIN 3 0 pwl 0ms Ov 1ms Iv 2ms Iv 2ms Ov

Each pair of values (T,-,K) specifies that the value of the source is Vi (in 
volts or amperes) at time =  T,·. The value of the source at intermediate 
values of time is determined by using linear interpolation on the input 
values.

Note that it is possible to define an ideal step using time varying independent 
sources.

6.5 PW L DEVICES

The nonlinear elements of a circuit must be modeled as Piece-wise Linear in 
order to be used in BUSTLE. Each PWL element card contains the device 
name, the nodes to which the device is connected and the device model name. 
The characteristics of the PWL device is described in a separate model card. 
More than one element having the same characteristics may use the same 
model.

6.5.1 Two Terminal PW L Devices

G eneral form :

D X X X X X  N -f  N -  ’ ’ M N A M E ”

E xam ples:

DCLMP 3 4 "diode"

N-|- and N - are the positive and negative nodes respectively. MNAME is the 
model name.

6.5.2 Three Terminal PW L Devices

General form:



CHAPTER 6. HOW TO USE BUSTLE 52

T X X X X X  N1 N C  N 2 ’ ’ M N A M E ”

E xam ples:

T1 3 5 7 "npn"

N1, NC, N2 are the nodes to which nonlinear device is connected. NC is the 
common node. MNAME is the model name.

6.6 MODEL CARDS

6.6.1 Two Terminals

G eneral form :

.M O D E L 2 »M N A M E ” N O P  pt V I  II  pt V 2 12 < pt V 3  13 . . .  > 

E xam ples:

.M0DEL2 "dl" 3 pt -50v -50uA pt 0 . 6v 0 . 6uA pt lOv lOA

M N A M E  is the model name. N O P  is the number of points used in the 
description. ViT,· gives the corner of each linear segment describing the PWL 
characteristics.

6.6.2 Three Terminals

G eneral form :

.M O D E L 3 »M N A M E ” < G, C2 Cj > N O R  pi ci,.·, ei,„, ci,., ci,, 
62,VI 62,,1 62,„2 62,.2 62,c N O B  bd  N B N  nb bî  b^ bî  be < b d  N B N  nb 
bŷ  . . .  ' ^pi  61, ^

E xam ples:

.M0DEL3 "nmos" Ipf Opf Opf 4 
+ p i 0 1 0 0 0 0 0 1  - le 7  0 2

+ bd 1 nb -1 0 0 0 1 bd 3 nb -1 0 1 0 1 
+ p i 0 1 0 0 0 -400 0 -1 le7  400 2
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+ bd 0 nb 1 0 0 0 -1  bd 2 nb -1  0 1 0 1
+ p i 0 1 0 0 0 0 0 401 - le 7  0 2

+ bd 3 nb 1 0 0 0 -1 bd 1 nb 1 0 -1  0 -1
+ p i 0 1 0 0 0 400 0 -401 le7  -400 2

+ bd 2 nb -1  0 0 0 1 bd 0 nb 1 0 -1  0 -1

.MODELS "pmos" Ipf Opf Opf 4 
+ p i 0 1 0 0 0 0 0 1  - le 7  0 2

+ bd 1 nb 1 0 0 0 1 bd 3 nb 1 0 -1  0 1 
+ p i 0 1 0 0 0 400 0 1 - le 7  400 2

+ bd 0 nb -1  0 0 0 -1 bd 2 nb 1 0 -1  0 1
+ p i 0 1 0 0 0 0 0 401 - le 7  0 2

+ bd 3 nb -1  0 0 0 -1  bd 1 nb -1 0 1 0 -1
+ p i 0 1 0 0 0 -400 0 401 - le 7  -400 2

+ bd 2 nb 1 0 0 0 1 bd 0 nb -1  0 1 0 -1

M N A M E  is the model name. Ci, C2 , and C3 are the intrinsic capacitance 
values between the nodes 1 and common, 2 and common, and 1 and 2 of the 
PWL element, respectively. If the value of an intrinsic capacitor is given as 
zero then it is omitted. N O R  is the number of regions used in the description, 
pi is written to indicate the beginning of a region. Each region is defined by 
two branch equations and a number of boundary equations. Branch equations 
are as follows:

+  C l ,„2^2 +  C l ,¿2*2 +  C i,c  =  0

62,vi^l +  +  C2,v2̂ 2 +  62,12*2 +  62,c =  0

where ui,ii,U2,*2 are defined in Fig. 2.2.

N O B  is the number of the boundaries related to the given region. A boundary 
is defined by the following equation:

hy,Vi +  hiAi +  ĥ .,V2 +  i>t-2*2 + be > 0

bd  indicates the beginning of a boundary. N B N  is the id. number of the 
region which is the other neighbor of this boundary. Id. number of the region 
which is passing through the origin (satisfying 0) is 0, and this region must be 
given at the first place in the region list. Id. numbers of the other regions are 
numbered sequentially according to their order in the list.
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6.7 CONTROL CARDS

6.7.1 T R A N  Card

General form:

.TRAN <TSTEP> TSTOP <TSTART> <UTS>

Examples:

•TRAN Ins 100ns 10ns

.TRAN Ins 100ns u ts

•TRAN 100ns

TSTEP is the maximum internal time step that is allowed. TSTART and 
TSTOP are the initial time and final time of the transient analysis respectively. 
If TSTART is omitted, it is assumed to be zero. One can omit TSTEP if 
TSTART is also omitted. The effect of TSTEP can be removed by giving it 
a large value. If UTS (Use Time Step) is used then the internal time step is 
directly chosen as TSTEP.

6.7.2 PR IN T Card

General form:

.PRINT PRTYPE OVl <OV2 . . .  OV8>

Examples:

.PRINT TRAN VOUT 8 0 IS 1 0

.PRINT TRAN VIN 1 0 IIN 1 0

.PRINT TRAN V5 5 0 SEG2 12

.PRINT TRAN VIN 2 0 VOUT 16 0 IDD 1 0 SEG3 8 SEG2 7

PRTYPE shows whether the output(s) is (are) for a transient or for a dc 
analysis. The form for voltage, current or segment output variables is as follows:
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V(N 1<,N 2>) specifies the voltage dilference between nodes N1 and N2. If N2 is omit­
ted, ground (0) is assumed.

I(N1,N2) specifies the current flowing in the branch that is between the nodes N1 
and N2. There should be an element between the nodes N1 and N2.

SEG2 IDN specifies the segment number of the two terminal PWL device with the 
device id. no IDN. The device id. no’s are numbered sequentially accord­
ing to their order in the input deck.

SEG3 IDN specifies the segment number of the three terminal PWL device with the 
device id. no IDN. The device id. no’s are numbered for three terminal 
PWL devices same as the two terminal elements.

6.7.3 PLOT CARD

G eneral form :

.PLOT PRTYPE OVl <OV2 . . .  OV8>

Exam ples:

.PLOT TRAN VOUT 8 0 IS 1 0

This card very similar to PRINT card. It performs everything that PRINT 
card do and additionally it calls the BUSTLE-view routine if you are working 
at a SUN workstation.

6.7.4 OPTIONS Card

G eneral form :

.OPTIONS O PTl OPT2 . . .  (or OPT=OPTVAL) 

Exam ples:

.OPTIONS 0RDER=2 REFNUM=1

O R D E R  is the minimum order of approximation in AWE. Default is 1.

N O F D E R  is the initial number of the derivative moments used in AWE. 
Default is zero, which means no derivatives is used in the approximation.
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R E F N U M  is the number of the refinements done while solving the circuit. 
In general there is no need for refinement. Default is zero, which means 
no refinement.

D E B U G  is the level of printing the debugging material in the infde.mio file. 
Default is zero, which does not create the infile.mío file.

T SF P  is the Time Step Finding Period. BUSTLE computes the time step in 
transient analysis dynamically after every TSFP time steps. Default is 
1.

S A F E T Y  is the safety factor used in the calculation of the internal time step. 
The larger the SAFETY, smaller the internal time step. Default is 4.

6.8 EXAM PLE IN PU T FILE

^ > ( o ( t t  MEMORY CELL ****************** 

begin
>|otc*******************************************
********** MOSFET MODELS ***********
*********************************************
MODELS "nmos" 4
+ p i 0 1 0 0 0 0 0 1  - le 7  0 2 #CUT-0FF lg= 0 ,

# Vds -  10e7*Ids =0
+ bd 1 nb -1 0 0 0 1 bd 3 nb -1  0 1 0 1

+ p i 0 1 0 0 0 -400 0 -1 le7  400 2 # SAT lg= 0 ,
# 400*Vgs+Vds-le7*Ids=400  

+ bd 0 nb 1 0 0 0 -1  bd 2 nb -1 0 1 0 1
+ p i 0 1 0 0 0 0 0 401 - le 7  0 2  # LINEAR lg= 0 ,

# 401*V ds-le7*Id s =0
+ bd 3 nb 1 0 0 0 -1  bd 1 nb 1 0 -1 0 -1

+ p i 0 1 0 0 0 400 0 -401 le 7  -400 2 #REV-SAT
+ bd 2 nb -1 0 0 0 1 bd 0 nb 1 0 -1 0 -1

MODELS "pmos" 4
+ p i 0 1 0 0 0 0 0 1  - l e 7  0 2 #CUT-0FF

+ bd 1 nb 1 0 0 0 1 bd 3 nb 1 0 -1 0 1 
+ p i 0 1 0 0 0 400 0 1 - l e 7  400 2 #SAT 

+ bd 0 nb -1 0 0 0 -1  bd 2 nb 1 0 -1 0 1
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+ p i 0 1 0 0 0 0 0  401 - le 7  0 2 #LINEAR
+ bd 3 nb -1 0 0 0 -1 bd 1 nb -1 0 1 0 -1  

+ p i 0 1 0 0 0 -400 0 401 - le 7  -400 2 #REV-SAT 
+ bd 2 nb 1 0 0 0 1 bd 0 nb -1 0 1 0 -1

)|c f̂c

¡(tJtott********** DIODE MODELS >|c)(cj(o|of;)(c*:f :*!:(<*♦♦♦* +

.M0DEL2 "dl" 3 pt -50v -50nA pt 0 .6v  0 . 6nA pt lOv lOA 

.M0DEL2 "d3" 4 pt -50v -50nA pt 0 . 6v 0 . 6riA 
+ pt 0 .7 v  10mA pt lOv lOOA

^|c )|c )|c f̂c |̂c |̂c |̂c )|c |̂c |̂c )|c |̂c )|c ^|c )fc |̂c |̂c f̂c )|c )|c «ifc ^|c )|c

*********** THE CIRCUIT DEFINITION *************
^  5|c jjc j|c j|c îı|c ?|c j|c 5̂  jji j|c 5|c 5̂c j|c ?|c j|c j|c jjc ^  j|c jjc ?|c 5̂  j|c )|c ̂  j|c î|c sjc jji 5̂  j|c j|c jjc 5̂  j|c i|c >|c ̂  i|c ^

vdd 1 0 5v
v in l  2 0 pwl 0ns Ov 25ns Ov 25ns 5v 26ns 5v 26ns Ov

### do not fo r g e t  to  tr y  fo r  another v in l  ### 
vin2 5 0 pwl 0ns Ov 5ns Ov 5ns 5v 6ns 5v 6ns Ov

c l  4 0 O.Olpf Ov
c2 3 0 O.Olpf 5v

d l 2 3 "dl"
d2 5 4 "dl"

t p l  3 1 4  "pmos" 
tn l  3 0 4  "nmos" 
tp2 4 1 3  "pmos" 
tn2 4 0 3  "nmos"

.TRAN 50ns

.PRINT tran  v l 2 0 v2 3 0 v3 5 0 v4 4 0 
*♦>(!+ seg3 0 * tp l 
+ seg3 1 * tn l 
♦**+ seg3 1 *tp2
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+ seg3 3 *tn2 
+ seg2 0 
.END



Chapter 7

Conclusion

BUSTLE is a new circuit level simulator especially for large circuits. It uses 
f)iece-wise linear niodels and asymptotic waveform evaluation techniques. One 
of the important drawbacks of the AWE technique was the instability caused 
by the right-hand-plane poles. BUSTLE has handled this instability prob­
lem using combinations of derivatives and integral moments in the moment 
matching algorithm. The most important feature of PWL approach is 100% 
convergence with a high speed. Transient analysis results, using simple models 
with few segments are quite good. Since BUSTLE gives the user the capability 
of defining his own models in a simple manner, it has the power to keep pace 
with the new developments. We have obtained some advantages and many 
others seem to appear with a future work. Some of the points which needs 
future study are below.

• Efficient PWL modeling.

• Partitioning in LU decomposition.

• Direct AWE for the nonlinear devices and the outputs, and different time 
step for each.

• An algorithm to determine the order of approximation and the number of 
derivative moments in the approximation automatically that will check 
the accuracy, and guarantees the stability. •

• A simple method to obtain the moments of the transmission lines directly 
from the geometry and use the effect of it in the calculations.
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