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ABSTRACT

3-DIMENSIONAL MEDIAN-BASED ALGORITHMS IN 
IMAGE SEQUENCE PROCESSING

Miinire Bilge Alp
M.S. in Electrical and Electronics Engineering 
Supervisor: Assoc. Prof. Dr. Levent Onural 

September 1990

This thesis introduces new 3-dimensional median-based algorithms to be used 
in two of the main research areas in image sequence proc(',ssi,ng; image sequence 
enhancement and image sequence coding. Two new nonlinear filters are devel
oped in the field of image sequence enhancement. The motion performances 
and the output statistics of these filters are evaluated. The simulations show 
that the filters improve the image quality to a large extent compared to other 
examples from the literature. The second field addressed is image sequence 
coding. A new 3-dimensional median-based coding and decoding method is 
developed for stationary images with the aim of good slow motion perfor
mance. All the algorithms developed are simulated on real image sequences 
using a video sequencer.
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ÖZET

GORUNTU d iz is i  İŞLEMEDE 3-BOYUTLU 
MEDYAN-BAZLI ALGORİTMALAR

Münire Bilge Alp
Elektrik ve Elektronik Mülıendisliği Bölümü Yüksek Lisans 

Tez Yöneticisi: Assoc. Prof. Dr. Levent Onııral
Eylül 1990

Bu tez görüntü dizisi işlemenin iki ana dalında kulliinılmak üzere yeni 3- 
boyutlu medyan-bazlı algoritmalar tanıtmaktadır. Görüntü dizisi iyileştirme 
alanında iki yeni, doğrusal olma)'̂ an süzgeç geliştirilmiştir. Bu süzgeçlerin ha
reket başanmları ve çıkış istatistikleri hesaplanmıştır. Benzetimler geliştirilen 
süzgeçlerin bugüne kadar yayınlanan örnekleriyle karşılaştırıldığında görüntü 
niteliğini büyük ölçüde iyileştirdiğini göstermektedir. Üzerinde çalışılan ikinci 
aJarı görüntü dizisi kodlamadır. Durağan görüntüler için yeni bir 3-boyutlu 
medyan-bazlı kodlayıcı ve kod çözücü geliştirilmiştir. Bu tasarımda amaç 
aynı zamanda iyi bir yavaş hareket başarımı elde etmektir. Geliştirilen bütün 
algoritmaların benzetimleri video dizici kullanılarak gerçek görüntü dizileri 
üzerinde yapılmıştır.
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C h a p te r  1

I N T R O D U C T I O N

Image processing has been an active area, of research for many 3'̂ ea.rs. Much effort 
has been given to the extension of 1-climensional algorithms to two dimensions, 
taking the properties of images into accoiint. However, many applications in 
image processing require the processing of 3-dimensional signals, namelj'· image 
sequences. TV applications, target tracking, robot navigation, dynamic mon
itoring of industria.! processes, study of c.c'll motion by microcinema.togra.pli_y, 

highway traffic monitoring, and video transmission are only a few examples 
where the signal to be processed is 3-dimensional, the third dimension being 
time. It has been shown in many cases that 1-dimensional algorithms do not 
produce optimum results in image processing. In other words, whih' processing 
images, their 2-dimensional niiture has to be taken into account. Likewise, in 
processing image sequences, 1- or 2-dimensional algorithms do not yield opti
mum results. Although similar in some respects, the extension of 2-dimensional 
algorithms to 3-dimensional signal processing is not straightforward. The mo
tion content of the image sequence requires the time dimension to be approached 
in a. different manner.

Temporal filters ha,ve been developed to ma.ke vise of the information in the 
time dimension in manj'̂  image processing problems like image coding [1], noise 
filtering [2], a.nd scan rate upconversion [3]. However, temporal filters usuallj  ̂
blur the moving parts of the image sequence, resulting in poor image quality.



It is known that 2-dimensional spatial processing gives better results in moving 
parts, whereas temporal processing gives better results in still parts of the image 
sequence. This observation leads to the development of adaptive algorithms that 
require motion estimation or motion compensation to obtain acceptable image 
quality. Some examples are adaptive encoders [4], adaptive scan rate converters
[5], cidaptive color processors [6], and adaptive noise filters [7]. However, motion 
estirna.tion and motion compensation arc critical processes which increase the 
complexit}/  ̂ and tlui cost of processing. Therefore, it is higldy desiral)le to have 

3-dimensiona.l filters which would be insensitive to motion in image sequences.

In this thesis, two of the ma.in research a.rca.s in image sequence processing 

are addressed. These are image sequence enhancement and ima.ge sequence 
coding. Two new 3-dimensional nonlinear filtering algorithms are introduced 
for noise filtering of image seciuences. The motion performances of these filters 
are analyzed and their statistical properties are obtained. Thej'· are compared 
with the other 2- and 3-dimensional algorithms from the literature [2,7,9]. The 
algorithms are simulated using a video sequencer (DVSR 100), and examples of 
their application to real image sequences are presented.

G(.)od results ha.v<.‘ lx.Hiii rep<.>rted lor the use ol adapt,¡v(,‘ encodc'is in ima.g(,' 

sequence coding [4,29,30]. However, there is a problem with these adaptive en
coders: their performance relies heavily on the motion detection and estimation 
algorithm. False decisions cause visible disturbances in the image qualitjc To 
prevent this, the algorithms used for still parts of the image should be able 
to perform fairly well in slow motion and vice versa. In this thesis, a new 
3-dimensional coding and decoding method is developed for stationary images 
with the aim of good slow motion performance. The algorithm may be used as 
part of an adaptive encoder, or on its own.

CHAPTER 1. INTRODUCTION . 2

All the filtering algorithms that are introduced in both image sequence en
hancement and image sequence coding are based on the median operation. In
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ation has been made use of. In image processing, median-t3'’pe operations are 
known for their edge-preserving capability. Since slow motion in an image se
quence can be considered as an edge in the time dimension, good results can be 
expected with 3-diniensional inedia.n-ba.sed algorithms. 3-Diinciisioiial median- 
based processing is a new research area in image processing where so far verj'· 
few results ha.ve been published [9].

CHAPTER 1. INTRODUCTION - 3

The organization of this thesis is as follows. In Section II, the media.n oper
ation and its several extensions are defined. Some properties of the median 
operation are giveir and the tools necessary for the theoretical analysis arc in- 
trodqced. Section III provides both the theoretical and the practical results 
of the research carried on image sequence enhancement. After a. brief back
ground, the newlj'· developed filters are described along with the other 2- and 
3-dimensional algorithms. Further, these algorithms are analyzed for compar
ison purposes. In addition to the theoretical analysis, simulation results on 
DVSR image seqiiencer are presented. In Section IV, the algorithm developed 
for image sequence coding is defined and its perforimmce is exa.mincd. Finally, 
Section V gives some conclusions and possible future work.



C h a p te r  2

M E D I A N  O P E R A T I O N  IN  S I G N A L  
P R O C E S S I N G

In 1974 Tukey used the median operation for smoothing statistical data, for the 
first time [8]. Since then the median operation has been widely used, especially 
in image processing tasks. Ma.nĵ  genera.liza.tions a.nd modifications of the me
dian operation have been defined [10,11,12,13]. Median-based operations are 
known for their capability of following the abrupt changes in the signal, thus 
reducing blurring to a. large extent. It has been shown via. psychoi)hy.sica.l ex
periments that a distorted ima.ge with sharp edge.s can be subjectively more 
pleasing than the original [14]. In image processing tasks, median filters pre
serve edges and high frequency details in the image, resulting in improved image 
quality. Active research and development is still going on for the theoretical 
analysis, as well as the applications and iniplementa.tions of the median-based 
operations.

2.1 Definitions

Sta.nda.rd median filters are a. subchiss of the nonlinear filters ca.lled stack filters. 
They perform a. windowed filtering operation where a. window of fixed size moves 

over the input signal. The operation is nonlinear: at each position of the 
window, the median value of the data within the window is taken as the output 
[15]. For a.n odd window size of =  2k +  the median of the input signal



(.r i,. . . , ;i‘yv) is defined as the (k + l)st largest value in the sorted sequence. So,
if

•T(j) <  .T(2) <  · · · <  + <  · · · <  ^(2k+l )

is the sorted iii])»it .seciuence, the out]>ut of tlu' sta.ndard median filter is given 

as
xj(n) =  M E D[ x i , . .. ,.TÂ ] =  . (̂¿4.1). (2.1)

For even window size, the median c<m l)e ta.ken as tlie averai2;e of tlu' two middle 
samplers in the sorted se({uence [16]. However, in most cases the window size is 
fixed to be an odd integer.

The media.ii of input samples (:ri,. . . x̂/\r) can also lx.' defined as the value
that minimizes the mean absolute error, i.c.,

N N

\xmed -  --lul < |y -  ■г·̂| , for all y . (2.2)
t=l 1=1

If the window size is odd then the median is unique and is alwa.ys one of the 
input samples. If the window size is even then there can be an infinite number 
of possible va.lues that minimize the mean absolute error.

C i I A P T l · ; R 2 . Mi:ni/\N Ol'KRA'l'JON IN SIGNAI, I'H.OCKSSINC T)

The median of a biexponentiall}'^ distributed input secpience gives the maximum 
likelihood estimate of the mean of the distribution. If ( x i , . . .  are random
va.ria.bk's with a. ]‘>roba.bility density function

(2.3)

where o; > 0 is a scalar and P is the mean, the maximum likelihood estimate 
of p is given by MED[x\, .. .  x̂ n ]. This can be easilj'· proved by taking the 
logarithm of the likelihood function

/ ( q  =

i=l
(2.4)

and maximizing it with respect to p. Median operation has several properties 
that make it suitable for image processing tasks. First, its response to an 
impulse is zero, implying that it is very effective in attenuating impulsive noise.



Second, its step response is a step, impl3dng tliat it presc'rves al)nipt changes 
in the signal, therefore reduces blurring. Finally, since the output of a mediaii 
filter is alwa.3'’s one of the input samples, there are signals that pass through 
tlui UK'dia.n filti'r uncha.ng(Hl. Th('S(' ai(' known as t.lu' root signals of the filter. 

Since median filters are nonlinear and do not have a passband in the sense of 
linear filters, these root signals may be considered as the passband of the filter.

Many genera.lizations and modifications of the median operation have been in

troduced [10,11,13]. Since we will later use them, we now describe one of these 
modifications: the weighted median filters. In weighted median filters, each 
sample Xi within the window is associated with a corresponding weight TFp 
Usually hF,’s are restricted to be positive integers, cincl is odd, but the
definition can easily be extended to non-integer weights. For positive integer 
weights, each sample is duplicated as man}'̂  times as its weight and the median of 
the overall sequence is taken as the output [17]. The notation < Ufi , . . .  , TUyv > 
will be used to show the weighted median filters. This can be illustrated by a 
simple example.

Exam ple: The outi^ut of the filter < 1 ,1, 3 ,1,1 > is obtained as
y =  M  ED  [,T 1, .TO, T3, T.3, T.3, t  ̂, T5],

=  M ED[xi , T2,3 o .T3, T4, T5].
Here o shows the weighting operation. If this filter is aiDplied to an input 
sequence x =  (3, 2 ,4,5,1) the output will be

y = M £:i}[3 ,2 ,4 ,4 ,4 ,5 ,l] =  4.

CHAPTER 2. MEDIAN OPERATJON IN SIGNAL PROCESSING 6

An equivalent definition of the weighted media.n filter is given as the value y 
that minimizes the sum, "

N

« ! / ) =  y i > r ,k , - ! /| .
i=l

(2.5)

It can be shown that both definitions are equivalent when PFt’s are restricted 
to b(' positive intep;ers [24]. it sliould Ix' noti'd tha.t stivnda.rd nu'dia.ii



filters are a subclass of weighted median filters where all the weights are fixed 
as unity.

2.2 Threshold Decomposition and Stacking Property

Both the median filters and the weighted median filters are a. subclass of stack 
filters. Therefore they satisfy the two basic properties that define a stack filter, 
i.e., the stacking property and the threshold decomposition propertjc These 
properties are essential tools for the theoretical analysis of the median-based 
filters, and are described below.

Two signals X - (.Ti,. . .  , x n ) 9.nd y =  (y\,. . . ,  j/jv) “stack” if .t,; > y,· for each 
i G { ! , . . . , A }̂. This is denoted as r > y. A filter S(.) is said to possess the 
stacking property if and only if

5 (r ) > S(y) whenever x > y .  (2.6)

Stacking property is a consistency rule which guarantees that the order of the 
input signals will not be changed by filtering.

Threshold decomposition is used to decompose an M-valued signal into M-1 
binaiy signals. Given an M-vaJued signal X  =  (A '], . . .  ,,Yyv), the M-1 binary

signals can be obtained as follows:
1 , Xi > m
0 , otherwise

The signal X  can be expressed as the sum of its binary decompositions, i.e.,
A/-1

777 =  1
Note that xj < xj for each i € { 1,...,A ^ } for s > t, i.e., the binary signals

 ̂ 'f
<)1>ta.in('(l l)y th(’ t.lire.sliohl (b'coiuposil.ion of X  form a. stack of /<'ros on toj) of 
a stack of ones.

CIIAI '̂J'EH, 2. MI-JDIAN OIMilIU'rJON IN SIGNAL IMiOCHOSSl N( i 7

X; = , m = \̂ ... — \ . (2.7)

(2.S)

If the output of a. filter can l)c ol)ta.in('d Ijy first thiv'sliold d<'coini)osing the 
input signal to M-1 levels, then filtering the signals at each threshold level in



the binary domain, and then summing up the outputs at each level, the filter 
is said to possess the threshold decomposition (THD) property. This can be 
illustrated by a simple example shown in Figure 2.1.

C I 1A P T K R 2 . MEDIAN OPERATION IN SK.'NAE PIlO(:ESSIN(I 8

2 3 0 1 1 3 3 2 2 2 1 1 1 3 3 2

V

A

0 1 0 0 0  1 1 0 median 0 0 0 0 0 1 1 0

11000111

11011111

11000111

11111111

Figure 2.1 Threshold decomposition of 3-poiiit standard median hltcr.
In the binary domain, the median operation reduces to the 
application of a positive Boolean function on the input vari
ables. "

Threshold decomposition is a very useful tool which reduces the analysis of 
M-v:vlu('d signals to l)ina.ry signals. Tlu' iv'snits ol)taincd in the bina.ry domain
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can then be generalized to integer domain taking each level into account. This 
propert}^ together with the stacking property has been largely used since their 

development by Fitch et al. [18].
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I M A G E  S E Q U E N C E  E N H A N C E M E N T

3.1 General

The enhancement of noisy images has been extensivelj'· studied in the literature 
[19]. However, very little has been reported on the enhancement of image se
quences. The extension to the third dimension has two major improvements 
over 2-dimensional algorithms. First, it gives a significant freedom to the de
signer by making various approaches possible. Second, the results obtained via 
3-dimensional processing are far better than 2-dimcnsiona.l processing since the 
information i)re.s(;nt in tinuj i.s used. The major r(iason of the limited success 
obtained by 3-dimensional processing of image sequences is the insufficiency of 
many existing algorithms which deal with the motion in the sequence.

3-Dimensional linear FIR, HR, and Kalman filters have been developed for the 
enhancement of image sequences [20,21]. These have been found to blur sharp 
edges as in the case of linear processing of 2-dimensionaI iniciges in addition to 
the blurring in tlu' moving areas. Sincxi mcdia.n-based filters a.n' prov(;d to Ik; 

better than linear filters in the preservation of sharp edges and high frequency 
details, it is natural to expect the same improvement in 3-dimensional process
ing. In fact, the standard median filter has alrca.dj'̂  been found to i)rosorvc the 
motion better than linear filters even in the straightforward application to time 
dimension [7]. However, it still requires motion detection and motion compen-

10
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sa.t,i()u t.o <)l)ta.in ,u;o(k1 image (|ua.li(._y. Adaptive filUaing has Ix'cn applied in t.lu' 

area of medical imaging where the enhancement of image sequences is of critical 
importance in spite of the increase in cost and complexity [22].

The first example of 3-diniensional median-based nonlinear filters developed 
with the aim of preserving motion has been given by Arce et aJ. [9]. These 
filters ha.ve been quite successful in the preservation of motion, but they have 
rather poor noise attenuation. As will be seen, substantial improvement over 
these algorithms has. been obtained by the filters introduced in this thesis.

3.2 Filtering Structures

In this section, two new median-based 3-dimensional filtering structures will be 
introduced and their recursive versions will be defined. There a.re very few ex
amples in the literature of this kind. For this reason two that are first introduced 
by Arce et ai. will also be presented. Finally, the 2-dimensional algorithms that 
are developed and used for comparison purposes will be described.

3.2.1 3-Dimensional Planar Filter (P3D)

The first 3-dimensional algorithm is based on the multilevel median structure 
introduced in [23]. The structure is shown in Figure 3.1. It consists of four 
standard median filters. Each of the 5-point median operations in the first 
level operate on a different plane of the 3-dimensional image sequence, i.e., on 
the x-y, x-t, and y-t planes. This is the reason why the filter is called the 3- 
dimensional planar filter. For a discrete spatio-temporal image sequence given
by : x , y , t  E Z)  where Z is the set of integer numbers, the output of

1

the 3-cIimensional planar filter is defined as follows.
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The three first level filters are
mxy{x,xj,t) =  MED[I{ x  +  r ,x j , t )J{ x ,y^-r , t )J{x ,y , t ) ]  , r =  ±1 ; 

'irixt(x,y,t) =  MED[I{ x  + r ,y , t )J(x , i j , t  + r), I(x,y,t)]  , r =  ±1 ; (3.1)

myi{x,y,t)  =  MED[I { x , y  +  i\t )J{x ,y , t  +  r) , I {x,y, t ) ]  , r =  ±1 , 
where r takes both +1 and -1 values, i.e., each stcinclard median filter iir the first 
l('V('l has five input variables, and tlie final output, //';ip ^/(.r, y, / )^, is ,u;iven by

F(a:, y, t) =  fpzD y, O)

=  M E D inxy{x, y, t), mxi{x, y, i), 7nyi(x, y, t)
(3.2)

Median

Median Median Median

Figure .3.1 The multilevel structure for the 3-D planar filter (P3D).

Note that, when the image sequence is static, the consecutive frames are iden
tical and thus, /(.T, y, i — 1) =  I(x,  y, t) =  I{x, y,t +  1). In this case, the output 
sequence is equal to the input sequence, resulting in perfect reconstruction. The 
filter iDreserves all high frequency details of static,pmage sequences.

Usually the recursive versions of median-based filters have higher noise atten
uations. In this thesis, the recursive version of PSD is also developed.. It is 
denoted by P3DR. and is defined as follows.
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The three first level filters of P3DR are
mry{x, y, t) = M E D  Y{x  -  1, ?y, t), l'(.r, y -  1 ,0 , Ux,  y, t ),

I(x + l , y , t ) , I ( x , y  + 1,0

mxt{x, y, 0  =  M E D  Y(x  -  1, y, 0 , y^t -  1)> î ·̂, y>

I(:r -1· l , y , /.),/(;)·, ■//,/. -1- 1) ;

ruyiXx, y, 0  = M E D  Y(x, y -  1 ,0 , y, -  1), (̂·''̂  y, 0 , 

/(,r,y  + 1, 0 ,/(■'«:, y,)! + 1) ,

and the final output, fp:iDR^I{x,y,t)^,  is given

Y{x,  y, 0  =  M E D  nixy{x, y, 0 , mxt{x, y, 0 , y, 0  ·

(3.3)

(3.4)

3.2.2 3-Dimeiisional Multilevel Filter (ML3D)

The second filter developed is based on the j^reservation of different features in 
the first level of the multilevel structure. The first level consists of two 7-])oint 
median filters each iDreserving different features of the input imjige. The mul- 
til(W(4 structuri! is shown in Figur(‘ 3.2. For a. spatio h'lnporal ima.g<' s('<iu(aice 

{/(.T ,y ,0  : G Zj  where Z is the set of integers, the filter operation can

be formulated as follows.
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Tli<‘ first l(;v('l 7-])<)int nicdi.uis a.r<'
m^(x,y , t )  =  MED[I( x  +  r , i j , t ) , I (x,y + r j ) ,

I{x,yJ. +  7·),/(.T, ?/,/)] , 7' -- ±1;

7nx(.T, 7/, t) -  MED[I ( x  + r , y  +  7’, t), I(x  +  r, 7/ -  T, i),

+ r) , l (x ,  yj.)] , 7· = ±1,

and the final output, Jmlsd V, O) > is

F(x·, y, t) =  fMLZD y, O)

=  MED[mj^{x ,y , t ) ,m^{x,y , t )J{x ,y , t ) ]  .

(3.5)

(3.6)

Median

Median

T T T r r n Ti
Median

Figure 3.2 The multilevel sti'ucture for the 3-D multilevel filter (ML3D).

For comparison purposes, the first level outputs are analyzed separatelз  ̂ The 
first one (771+) preserves plus-shaped features an cl is called PL3D. The second 
one (777.x) preserves cross-sha.ped features <md is called CR.3D. It is possible to 
define the recursive versions of these filters, denoted by PL3DR, CR3DR, and 
ML3DR respectivelj'·, as follows.
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The first level 7-point medians are 

m+(x, y, t) =  M ED Y(x  -  1, t), Y(x,  y -  1, t), Y{x,  ?/, t -  1),

y, + 1>;(/, y + 1> 0 . y, + 1)

mx(.T, y, ¿) =  A'filD T(.r -  1, y -  1, t), Y{x  -f 1, y -  1, i), Y(x,  y, t -  1),

-̂ (•»'',y,0 > A-i- -  i ,y  + + i,y  + 1, 0 . +  1)

and the output, / a//_3DA (/(·г^ y, O ) , is

Y(x ,y , t )  =  M E D  m+(x , y , t ) ,mx (x ,y , t ) , I { x , y , t )

(3.7)

(3.8)

3.2.3 Unidirectional (UNI3D) and Bidirectional (BI3D) 
Multistage Filters

In [9], Arce et al. introduced two types of imdtilevel median-based filters, 
i.e., unidirectional and bidirectional multistage filters. These filters are defined 
and some simulation results are given in [9]. In this thesis, in addition to 
the simulations, the theoretical analj^sis will also be carried out for these filter 
structures under a specified mask and they will be compared with the newly 

developed iilgorithms. For the sake of completeness, the definitions of the filters 
will also be given here.

Consider a spatio-temporal input sequence { I (x ,y , t )  : x ,y , t  E. Z]  where Z is 
the set of integer numbers. The unidirectional subwindows, bFi, HA, TF3, Hdj, 
TF5, of a (2A  ̂-f 1) X {2N -f 1) x (2Â  -t-1) cubic window are defined as

IF, [J(.T, y, f )] =  {I {x  + r, y, i) ; ^ A < ■,· < AO ,

HA[/(.T, y, t)] =  { I (x +  r,y + r,t) : - N  < r < N } ,

W:\[I{x, y, f.)] =  {/(.1:, y + ?·, f.) : - N  < r < N}  , (3.9)

TFi[/(.r, y, f)] =  {I(x  +  r, y -  t) : - N  < r  < N]  ,

Wry[I{x, y, 0] - {/(;?:, yj.  + r) : - N  < r  < N)  .



CHAPTERS. IMAGE SEQUENCE ENHANCEMENT 16

These masks can be seen in Figure 3.3 for =  1. Let

Zi(x,y,t.) =  MED  [/(.) e Wi[I{x,yj:)] , 1 < / < 5 (3.10)

Definition 5:

Using equations (3.9) and (3.10) , the output of the unidirectional multistage 
filter is given by

Y{x,y,t) =  MED Zmax{^-,y,t),2min{^'^y,t),I(x,y,t) , (З.И)

where
u (-r,yj) “  uiax'i<,<5 y, / )

y, t) = mini<,<5 ¿̂(a.·, y, t)

^ .7 7 7 \

/
у

X

Figure 3.3 Unidirectional masks defined in (3.9) .

(3.12)

For bidirectional rnultista.ge filters the subwindows, H'̂ (i,5), '̂̂ (̂2,5)1 '̂̂ (3,5)’ '̂̂ '̂ ('1,5)) 
of the cubic window are also of bidirectional type and are given as

, 1 < ?: < 4 . (3.13)T"̂ 0',5) y, 0  = W i [j(.T , ty, <)] U  Ws [/(.T , y, t)

The bidirectional subwindows are shown in Figure 3.4 for a 3 x 3 x 3 cubic 
window. Let

=  MED\i (·) € H/(,.5)[/(x ,!/,<)11 , 1 < i < 4 . (3.14)
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Using equations (3.13) and (3.14) , the output of the bidirectional multistage 
filter is given by

F+(.T, jy, t) =  M ED  2 + „j,(.T, jy, t), 2+,„(.T, ?y, t), /(.r, yy, t)

where
max]<j<4 5̂ (a;, 1/, t)

=  mini<,<4 (̂¿,5)(-'iby>0y+. V

(3.15)

(3.16)

It i.s also possible to define the recursive unidirectional and bidirectional filters 
as usual.

Figure 3.4 Bidirectional subwindows defined in (3.13) .

3.2.4 2-Dimensional Filtex'S

Basically, three 2-dimensional filters have been u^ed to make comparisons with 
the 3-dimensional algorithms that have been developed. The first one is the 
simple (-l-)-shaped 5-point median filter (MEDIAN5) given by

Y(x,y,t) = MED^I{x + r,t) , r =  ±1 , (3.17)
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where r takes both of the vcilues +1 and -1. The second nonlinear filter that is 
developed is the 2-dimensional counterpart of ML3D. Instead of taking pixels 
from the previous and next frames,.a weight of three is given to the center pixel 
I(x,y^t).  This filter is called multilevel weighted median filter (MLW'2D) and 
is formulated as follows.
Definition 7:

The two first level filters are
■m+(.T, y, t) = M E D  I{x -}- r, y, t), I(x, y ?·, i), 3 o I{x, y, t)

mx {x ,y , t )  =  M E D  I{x +  r,y +  r , t ) , I {x  r,y -  r, i), 3 o J(.t , y, i)

where r =  ± 1, and the final output is

Y{x,  y, t) =  M E D  m+(x,  y, t), mx{x,  y, t), J(.t , y, t)

(3.18)

(3.19)

Finally, the last 2-dimensional filter used for comparison is a linear averaging 
filter (LAVE) in a 3 x 3 square window given as

y(.T, y, t) = /(;,; -  1, y -  1, t) +  /(-C y -  1 ,0  + + 1, ?/ -  T 0

- f - / ( .T - l ,y ,0  + I ( x  +  hy , t )  (3.20)

+  /(.r -  l ,y - f - 1 ,0  +^(-'ib?y + l ,0  +  Ux + l , y  + IJ) '9 .

3.3 Derivation of the Boolean Functions

A Boolean function is positive if and only if it contains no complements of its 
input variables in its minimum sum of products (MSP) form. Each positive
Boolean function (PBF) has a unique MSP form [24]. It has been shown that

'/
PDF’s liiivo tli(' sl,a.cking jorojKU'f.y, ('iicli PDF i‘('i)r(\s('iii.s a. st,a.(*k iilU'r [25]. 
Since multilevel median filters belong to the class of stack filters, there is a 
PBF corresponding to each of the filters defined in Section 3.2· These PDF’s 
are used in the analysis of the filters in tlui l)inary domain. The results c.a.n then 
be extended to multi-valued signals the threshold decomposition property.
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The PBF corresponding to a stack filter can be found listing all combinations 
of the input variables having value one such that the output of the filter will also 
be one. Thi,s exi)ression can then l>e simplified to obtain the MSP form. For 
rnvdtilevel filters it may be complicated to find all possible combinations when 
the number of inpi.it variables increases. To overcome this difficulty, the PDF’s 
for 3- cind 5-point median operations given below are used in the derivations.

M E D [ x \ , X 2 i Xz ] — .TlX2 +  +  •'i.-2.'C3 . (3.21)

, .T2, .T3, X4, .Ts] =XiX0Xi +  X\Xo^\ + XlX'>X5 +  X-iX3X4

+X 1 X3 X5 -f X 1 x4x5 + xoX3^4 +  ;c2.r3.T5 (3.22)

+X2X4X5 +  X3 X4X5 ■

To simplify the expressions, the notation given in Figure 3.5 will be used in the 
derivations and the analj^sis. In this notation, the subscript ‘0’ stands for the 
previous frame (t — 1), the subscript ‘ 1’ stands for the current frame (/), and 
the subscript ‘2’ stands for the next fra.me (i -|- 1). For the current fra.me, the 
notation for the pixels within the given mask can be summarized as follows.

Ai =  I(x -  l , y  -  l , t )  i?i = /(.T,y -  l , f )  Cl = I{x + l ,y  -  l , t)

Di =  I{x -  l , y , t )  E i = I { x , y , t )  Fi =  I{x +  l ,y , t )

G'l = /(;r — 1,7/ -f-1, <) H\ = l{Xy y + l, t)  G = (̂•<· + T y + li 0

Only the proof for Proposition 1 will be given here. The proofs for other propo
sitions can be found in Appendix A.
Proposition 1:

The PBF corresponding to P3D is given bĵ
fpiDi^o,Bi,Di,Ei,Fi,Hi,E2) =  E0E 1 E2 -(- BiE\Hi +  D\EiF\'f

+{EuE2)(B\D\E\ +BiD[H\ -\-B\E\F\ B[FiFI\ 

+EiF\Hi +  D\E\Bl\ -f- B\D\F\ -1- D\F\Hi)

+ E qE2 {B\ +  Hi) {D\ -f F i ) .

(3.23)
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Figure 3.5 3 x 3 x 3  cubic mask representing 3 successive frames.

Proof :

Let Zi, Zi·, Zz be the outputs of the three 5-point median filters on the first 
level of P3D. By equation (3.22) these can be (ixi)res.sed as

^MED[BuDx,EuFuHi]

=DiDiEi -p Z?iD|Fi -l· BiDiHi -p Z? iF jF i -P

+  D\EiFi +  D\E\H\ +  D\F\Hi +  E\F\H] ;

^2 = M E D [E o, D u E u Fu E2]

=EoD\E] +  EqD]F] +  EqD]E2 +  EoE\F] +  EoE]E2 

+ E0F1 E2 +  DiE\Fi +  D\E\E2 +  D\F\E2 +  E\F\E2 ; 

Z 3 =MED[Eq, Bu Eu Hu E2]

—E{\B\E\ +  Ei^B\H\ +  E{^B\E2 +  E()E\H\ +  E{)E\E2 

E{)H\E2 +  B\E\H\ +  B\E\E2 +  B\H\E2 "t" E\H\E2 .
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The output of P3 D is given by the median of Zi, Zo, and Z3 .

/ p3d (^ o, D i.E i.F i.U i.E o ) = AdED[Z\, Zo, Z 3]

— Zi Z‘2 T Z\ Z3 Z'l Z3
(3.24)

where

Z 1Z2 ^E^)BxDiEi  + E^DiDiFi  + + E^BxDxH^Ei

+ ~b EqD iFiH i +  EqE iFiH i +  EqB iE\HiE2 

~b B\D\E\ Eo + B\ D\ F\ Eo +  B\E\ F] Eo + EoB\ F\ H\ Eo 

D\E\H\E2 +  D\FiH\E2 +  E\F\H\E2 + D\E\F\ ;

Z 1 Z 3 = E qiB iD i E\ +  EqB\D\H\ +  E{)D\EiH\ + E{)B\D\FiE2 

-\- E^B\E\F\ +  EoB\H\F\ +  E(̂ E\F\H\ +  Ei^D\E\F\E2 

-\- B\D\E\E2 + B\D\H\E2 + D\E\H\E2 +

+ B xE^F^E2 + B\I-UF\E2 + E\F^IUE2 + B^Exl-h ;

E2 E2 =Ei)B\D\E\ + E{^D\E\H\ +  E )̂B\D\E2 +  E{)B\D \F\H\ 

F E{)D\H\E2 +  E{)B\E\F\ +  E{2E\F\H\ +  E )̂B\F\E2 

E{)F\H\E2 d" E{)E\E2 +  B\D\E\F\H\

T B\D \E\F\ E2 d~ D\ E \ F\ H 1 E2 .

Substituting the expressions given above for ZjZo, Z ]Z 3 , and Z0Z3 in (3.24) 
and making the simplifications using Boolean algebra results in the expression 
given in (3.23) .
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(3.26)

The PDF’s corresponding to the 7-point median filters, PL3D and CR3D, in
the first level of 3-dimensional multilevel filter are 

fp[An{E(],B\,D\,E\,F\,H\,E2 ) = D\D\F\H\

+ E qE\E2 {B\ -|- i?i -f Fi +  77]) -f {EqE\ +  EqEo

-\-E\Eo){B\D\ B\F\ -{■ B\H\ D\F\ + D\H\ -{■ F\H\)

-P(Fo + E x +  E>){BiDxFi -h B^D,H,  -h ByFiHi + DiFxH,)  ;
f c Rz o iE oA i , C ,, , G'l, h , E.) =  .4, C] G ,h

-\-EqE\E-2{A\ -f G] -f G'l -[- / ] )  -f [EqE\ -f EqE -2 

+EyE2 ){AiCi  -h AiGi + A i h +  C\Gi + GiF + G i h )

+(Eo +  Ei +  E2 ) (Ai G,G i +  AiCiF +  A ,Gih  + G ,G ,/ , )  ,
and the PDF corresponding to ML3D is

.f/V/L3p(Fo,A], B \, G i, F ] , F i , F i, G\, i f i , F , Eo) = F| (.4i Gi Gi 

+ A :C Ji  + A iGJi  +  G ,G ,/i -t- P jF ,F i +  D jF .F ,

+ B 1 F1 H 1 + DiFiHi)  +  (Fo + Eo^AiCiGi +  AiCih  

+ A,G,B  -f G ,G iJ ,)(i? ,F ,F , +  + D ,F ,F ,

+ DiFiHi)  +  Ei{Eo +  E2 )(AiCi  AiG'i +  A ih

-\-C\G\ GiJ] -|- G\I\ -f- B\D\ -f B\F\ 4- F iii i  -I- F iF i 

-f-F iF i +  FxHi) +  F oF2(^ i Gi +  AiGi +  Ayh

+ G1G1 4- G i/i -f G iIi)(i? iF i 4- FiFi -f BiH^

+ D\F\ 4- D\H\ -f F\H\) 4- FoFiF2(.4i 4- F] 4- C\ 4- D]

4-Fi 4- Gi 4- I-h 4- / 1) 4- / l jF iG jF iF jG j//i / j  .

(3.27)



CHAPTER 3. IMAGE SEQUENCE ENHANCEMENT

Proposition 3:

23

The PDF corresponding to Arce’s unidirectional multistage filter f(.)r a. 3 x 3 x 3 
cubic window (Â  =  1) is given

./u n /;iw (A\),.4 i , C 'l , / J i , A’l , P’l , i'd , T i , 7i , A’v) — A'i(.-l| -| B\

+Ci + D 1 + F 1 +  G'l + H i + I i + E q + E2 ) (3:28)

+AiBiCiDiFiGiHihEQE2 .

Proposition 4:

The PBF corresponding to Arce’s bidirectional multistage filter for a 3 x 3 x 3 
cubic window (N =  1) is given by

fDi:u){Eo,Ai, BI , C\, D\, El, F\, GI, H [, I ] , E2 ) = Ei(BiHi  + D\F\

+Ai h +  CiGi) +  (Eo + E2 )Ai Bi C'l D, P, G, Hi h  + E^Ei E2

-\-Ei (̂ Eq +  E2 ) {Ai +  Bi A Cl A Di +  Pi + Gi +  Hi +  / 1)

+ P „ P , ( P ,  +  / / ,  ) ( P ,  -I- F |  )(.4 , -I- 7 , )(C', -I- G , ) .

Proposition 5:

(3.29)

The PBF’s corresponding to 2-dimensional weighted median filters, PLW2D 
and CRW2D, in the first level of multilevel weighted median filter, MLW2D, 
are

fpLW2D{B\,Di,Ei ,Fi ,Hi)  =  BiDiFiHi A Ei{Bi  -f 79i -t- P] 4- P i)  ; (3.30)

/ crh/2p (.4i ,G i ,P i ,G i ,7i ) = AiCiGih  -fi Pi(.4i -f Gi + Gi -1- 7i) , (3.31)

and the PBF corresponding to multilevel weighted median filter, MLW2D, is 
J'm l w w {A I ,/7| , G, , P, , P, , P, , G ,, //,, 7,) = A , P, G, P, P, G, 77, 7,

(3.32)
-f P i(A i A Bi A Cl -f P i -f Pi -f G'l A Hi -f- 7i) .
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The Boolean functions obtciinecl in Section 3.3 maj'· be used to analyze the be
haviour of the filters in biiiciry domain. This section does not intend to give 
a complete root signal analysis of the filters described. Only some observa
tions will be made on the root signal structures of these filters based on the 
corresponding Boolean expressions.

Observation 1:

The unidirectional multistage filter (UNI3D) introduced by Arce et aJ. is equiv- 
ah'.nt to the ff)llowing weighted rru'dian filter.

F(.T, y, t) =  MED[Eo, A\, D\,C], D],9 o E\, Fi,G\, H\, I\, E2 ] .

This observation follows directly from (3.28) , since this is the same expression 
for the PBF of the weighted median filter given above.

Observation 2:

The 2-dimensional multilevel median filter (MLW2D) given in (3.19) is equiva

lent to the following weighted mediivn filter.

y  (.r, y, t) =  MED[A^ , B x, C u D u 7 o E u Fu G u H iJ , ] .

The positive Boolean functions obtained for UNI3D and MLVV2D show that 
these algorithms filter only single impulsive points within their masks, like a ‘0’ 
in the middle of all I ’s or a ‘ 1’ in the middle of all O’s. In the integer domain 

this corresponds to the maximum and minimum points, i.e., the input pixel is 
changed only if it is an extremum point within tll'c filtering mask. So, all image 
sequences that do not contain single impulses are roots of UNI3D and MLW2D.

The beha.viour of 3-dimensional planar filter (P3D), 3-dimensional multilev(!l 
filter (ML3D), and bidirectional multistage filter (BI3D) can l̂ e aualyzed in
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three separate cases according to the motion content of the image sequence. 
The first case corresponds to stationary secimmc/'s, tlu' second oiu' corri'sponds 
to slowly moving sequences where two successive frames out of three are equal, 
and the last one corresponds to fast moving sequences where each successive 
frame is different from the one before.

Case 1: Eq =  E\ =  Eo- The first case corresponds to stationary sequences. In 
this case the outputs of the filters ca.n be expressed as follows.

fpzD{·) = E\ ; 

f ono i · )  =  ;

fML3D{·) =  (3.33)

+  E\{A\ -\- B\ C\ D\

+ F i+ G i  +  i i i + / i ) .

Eq — E\ =  E2 ^  <

Observation 3:

The above expressions show that both P3D and BI3D preserve all high fre
quency details in a. stationaiy sequence, i.e., all stationary ima.ge sequences are 
root signa.ls of PSD and BI3D. The 3-dimensionaI multilevel filto'r, ML3D, still 
eliminates an impulsive point even if it repeats in successive frames. As will be 
seen in Section 3.6, ML3D has the highest noise atten\ia.tion, which is expected.

Case 2: Eq =  E\ ^  E2 or Eq ^  E\ =  E2 · In the second case, only two 
successive pixels out of three frames are equal. This may be considered as slow 
motion in a binary image sequence.

Observation 4:

In this case (case 2), the output of P3D reduces to

fpzD =E\E\H\ -f D\E\F\ -f BiD\E\ -1- BiDiH\ +  B\E\F\ 

+ B\F\Fh -E E^F\H\ -V D^E\^E +  B,D|F, -(- D^FJ-h ,
(3.34)
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which may be recognized as the 5-point median filter M  ED[B\

Since the filter reduces to a 2-dimensional algorithm, it is expectecl to preserve 
slow motion in the image sequence.

Observation 5:

The output of BI3D can be expressed as follows under slow motion.
f n i i D  4- E , { j U +  + 0 ,

(3.35)
+ Dχ - ^ F ^ ^ - Gı + l · h + h )  .

This implies that bidirectional multistage filter attenucites only impulsive points 
within the 3 x 3  square mask under slow motion. Its noise attenuation is ex
pected to be lower than that of P3D.

Observation 6:

The 3-dimensional multilevel filter, ML3D, preserves the input pixel, E\, only 
if at least two other pixels in one of the substructures corresponding to -t- or 
X — shaped features are equal to the input pixel. This implies that the filter 
preserves all lines of arbitrary width under slow motion.

Case 3: Eq ^  E\ ^  E'>{Eq — E-i). In the case of fast motion, all successive 
pixels in three frames are different. In the binaiy domain this corresponds to 
oscillation in the time dimension.

Observation 7:

In this case, the following observation can be made on the output of P3D.

/P3i>(·) =  E\ B\ =  E\ =  H\ or D\ =  E\ =  F\ . (3.36)
'I

This observation follows from the Boolean expression for the output of P3D 
under fast motion which can be expressed as

•¿̂1 =  0=^ fp3D(·) =  +  Fi) ]

El =  1  => fp3p(·) =  B[ Hi 4- DiFi .
(3.37)
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The observa.tion above imi l̂ies that, under fast motion, the filter preserves ver
tical and horizontal lines of arbitrary width, and diagonal lines that are at least 
two pixels wide.

Observation 8:

In the case of fast motion (case 3), the bidirectional multistage filter preserves 
all lines of arbitrary width, i.e.,

B\ =  E\ — H\ or D\ — E\ ■= H\ or 

A\ E\ =  I\ or C\ =  E\ =  (?] .
f n i 3D {· )  =  E l (3.38)

Observation 9:

Under fast motion (case 3), the 3-dimensional multilevel filter, ML3D, pre.serves 
the input pixel only if at least 3 other pixels in one of the substructures corre
sponding to +  or X — shaped features are equal to the current pixel, Ei. This 
implies that the filter preserves all features cit least two pixels wide under fast 
motion. This reduction in resolution is not critical since the eye does not require 
high spatial resolution under fast motion.

3.5 Statistical Analysis

By using the Boolean expressions derived in Section 3.3, it is possible to express 
the output probability distribution functions in terms of the input distributions. 
An accurate statistical model for general, non-stationary sequences has not been 
developed yet. However, the noise attenuation of the filters can still Ije obtained 
for the homogeneous parts of the image where the problem is to estimate a 
constant signal in additive white noise. Along edges and under motion, the 
structural analysis should be used to evaluate the performance of the filter.

Let the input secpence, Z(.T,y,f) be an independent, identically distributed 
(i.i.d.) discrete random field. The probability space of tlui input is given by
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(Q, F, P)  where Q =  { 0 , . . . ,  M  — 1} is the sample field, F  is the cÂ eiit space, and 
P  is the probability measure with the discrete distribution function F ( j ) . j  G il. 
The binary sequence obtained by threshold decomposing the input at level j  

can be expressed a.s
1 , I ( x , y , t ) > : i
0 , otherwiseP {x , y , t )  = (3.39)

This binary sequence also forms an i.i.d. random field with sample space 
Qi, =  {0 ,1 ), and probability measure function,

P r { P  =  0} -  n ?  - 1 ) ;

P r { p  =  1 } =  1 -  F { j  -  1) .
(3.40)

Given the input distribution function F(j) ,  the output distribution functions of 
the filters defined in Section 3.2 can be derived using the Boolean expressions. 
The derivation will be given only for P3D here. The derivations for other filters 

can be found in detail in Appendix B.
Proposition 6:

The output distribution function of the 3-dimensional planar filter, P3D, is 

given in terms of the input probability distribution function F( j )  as

F p 3d {j ) =  F U f { 3  +  20F(j ) -  5 7 F ( j f  +  40F (;)’  -  14F(j)*] . (3.41)

and the output probability density function of P3D is given in terms of the 
input probability distribution (F(j ) )  and density functions as

fp:w(J) =  f (J )F ( j f [ 9  +  80F(i) -  2S5n?)" + 294F( j f  -  98F(jY]  . (3,42) 

P ro o f :

Let T(·) be the threshold function such that

and

r , ( y ( . . ,y .< ) ) = r . '( x .y ,  * ) = { ) -  -
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wher<5 I(x,y,t,) i.s l;he M-valucd input, sequence a.nd Y'{x,y^ t) is I.1h; M-vahu'd 
output sequence. For the sake of simplicitj'· in the expressions, the following 
notation will be used in the proof.

Eq =

E i = P + \ x , y , t - l )

E2 =  P ^ \ x , y p  +  l)

Then the ox.itput at {j +  l)st threshold level, Y^'^^{x,yp), can be expressed as 
given in (3.23) .

Fp3B{j) =  P<-{Y(x,y,t) < j ]  =  Pr{Y>->-\x,y,t) =  0)

B, = P + ' { x , y -  l . f )  a  =  P+' (x  + l,!/,t )

Di =  P*^(x  -  l , y , t )  Hi =  + 1,()

(3.43)

Let
Pi =  Pr{y^+^(a;, y, t) =  0|Pq =  P i =  P 2 =  0} ;

P2 =  Pr{Y^+Hx,yP)  =  0|Po =  Pi =  P 2 =  1} ;

P3 =  Pr{F-^+'(.T,y,i) = 0|Po =  Pj = 0,P 2 =  1}

=  Pr{Y^+\x,yP)  =  0|Po =  l ,P i  =  E-2 =  0} ;

P4 =  Pr{Y^+\x,y , t )  =  0|Po =  Pi =  1,P 2 =  0}

=  Pr{y^+i(a;,y ,i) =  0|Po = 0 ,P i  =  P2 =  1} ;

Ps =  Pr{Y^+\x,y , t )  =  0|Po =  Po =  l ,P i  =  0} ;

Pe =  Pr{Y^+\x,y , t )  =  0|Po =  P 2 =  0,P i =  1} .

Then, by the total probability theorem, the output distribution function can be 

expressed as

Fi>-M)(j) = P ,P r{P o =  Pi = P 2 = 0} + P2Pr(Po = Pj = P 2==;i}

+P 3Pr{Po =  Pi =  0, P 2 = l )  + P 3Pr{Po =  l, P i^ P o .^ 0 } 

+P4Pr{Po =  Pi =  l, P2 =  0) +  P4Pr{Po =  0, Pi =  P2 = l }  

pPsPi'lPo =  p2 =  1, Pi = 0 } +  PePrjPo — E2 =  0, Pi = 1} .

The probabilities defined above are obtained from the Boolean expression for 
PSD (3.23) .

Pi =  l ;

P2 =  0 ;

(3.44)
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P3 =  Pr{BxDiHi  +  BxFiHi  +  BiDiFi  +  DiF^Hx =  0}

=  Pr{There are less than 3 ones among P i, P i, Pi, P ] }

+  ( { ) i ’( i ) ’ ( i - A i ) )  + Q ) A i ) " ( i - - F 0 ) ) "

=  m j f -  -  m j ?  + 3F{ j y  ;

P4 =  P ? '{P iP i +  Pj Pi +  B\H\ +  D\F\ +  D[H\ + F\H\ =  0}

=  PrjThere are less than 2 ones among P i , P ] , P i, }

= 4 P (.y y '-3 P 0 ·) ' ;

P5 =  P7-{(Pi + P i ) (P i + P i ) =  0}

=  P r ( ( P i + P i )  =  0 or (P i + P i)  =  0)

=  1 -  P r {(P i +  P i)  =  1 and (P i +  Pi) =  1}

30

=  1 -  

=  1 -  

=  1 -

P r { ( P i + P i )  =  l } =  1 - P r{P i =  1 or P i = 1}

1 -  Pr (P i =  0 and P i =  0} 

l - P ( i ) 2 ] '  =  2 P (i )2 -P (i)^

Pe =  P r fP iP i +  P iP i =  0}

=  P r (P iP i =  0 and P iP i =  0} =  [Pr(P ] =  0 or P i = 0}
T 2

n 2
1 -  (1 -  F ( j ) f=  1 — P r{P i =  1 and P i =  1}

=  4 P (i )2 -4 P (i)3  +  P (i) '‘ ;

Substituting these expi'essions in (3.44) results in

FpzdH)  = F ( i f  +  2 F ( j f  (1 -  F(j ) )  ( № ( j f  -  8^ 0 ') ’  + 3F(i )<)

+  2F{j )  (1 -  F ( j ) f  ( i F ( j f  -  Z F ( j f )

+  F U ) { - i - F ( j ) f  ( ;2F( i f  -  F ( j f )

+  F { j f  a  -  F{j ) )  ( i F ( j f  -  4 F { j f  + F ( j ) ‘ )

= F ( j f  [3 + 2 0 f( i )  -  57F( j y  +  4 9 ^ 0 )’  -  14^ 0^ ] .

Finally, the outj^ut probcibility density function is obtained from the distribution 
function.
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Proposition 7:
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The output probability distribution function of the 3-dirnensiona.l multilevel 
filter, ML3D, and its substructures, PL3D and CR3D, are

Fp L3d U) =  FcrzdU) =  35 -  84P(y) + 70F(;)^ -  2QF{j f

Fmlzd(j ) = F U y  [40 -  106F(i) +  8 4 F ( j f  + 60F{:jf

-  105F(j)'^ + 190P(i)5 -  88F ( j f  + 16P(i)^l , 

and the corresponding probability densitj'· functions are 

fpL3D(j) =  fcR3D{j) =  U 0 f i j ) F ( j f  [l -  3F(j )  +  3 F ( j f  -  F ( j f^  

fML3D(J) = 2 f { j ) F { j f  [so -  265P(;) +  23 2F{ j f  +  210^0)^

-  180F{ j f  +  855F( j f  -  440F(j)^ +  88P(i)^

Proposition 8:

(3.45)

(3.4C)

(3.47)

(3.48)

The output distribution function of the unidirectional multistage filter for the 
3 x 3 x 3  cubic mask, UNI3D, is given as

i ’i/« ;3cy) = i ’( n [ l - ( l - e ( ; ) ) “ ] + (1 -  F(,))

and the probability density function is given as

fuNIwO) = f(j)  [l -  FUfO +  W F { j f ( l  -  F(j))

+  10i’( i ) ( l - i ’( i ) ) ’ - ( l - i ’( ; ) ) '"

(3.49)

(3.50)
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Proposition 9:
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The output distx'ibution function of the bidirectional multistage filter, BI3D, 
for the 3 x 3 x 3  cubic ina.sk is

FBizoij)  =  [21 -  80F(i) +  i m F i j f  -  224F(i)3 +  202^0)^

l2QF{ j f  +  45F(i)® -  llF (i)^  +  2F{j f^  

and the probability density function is

fBJwij )  =  f i j ) F ( j f  [63 -  320F(;) + 830F(j )2 -  1344F(i)3

+  1414F(i)^ -  960F( j f  +  40 5F( j f  -  110F(jy +  22F(i)®

Proposition 10:

(3.51)

(3.52)

The output distribution function of the 2-dimensional multilevel weighted me
dian filter, MLW2D, and its substructures, PLW2D and CRW2D, are

Fp l w 2d U) =  Fcrw 2dU)  =  F{j )  1 -  (1 -  F{ j ) Y  +  (1 -  F{j ) )  F i j^ ]  (3.53)

Fm lW2d {3 ) =  F{j )  1 -  (1 -  F { j y f  -I- (1 -  F{j ) )  F { j f  .

and the corresponding probability density functions are

f p L W 2 D ( j )  =  f c R W 2 D { j )  = / ( i )  1 “  F ( j y  +  4 F { j f  (1 -  F(j ) )

+  4 F ( j ) ( l - F ( ; j ) f  - ( 1 - F ( j ) y

fMLW2D(j)  =  / ( i )  1 -  F ( j f  +  8F ( j f  (1 -  F(j ) )

+  F ( j ) ( l - F ( j ) y  - ( l - F ( j ) )

(3.54)

(3.55)

(3.56)

Although the closed form formulas for various noise distributions like Gaussian, 
biexponential, and uniform noise are rather complicated, it is possible to make 

the statistical analysis b}'· numerical methods. The probci.bilit}'· distribution cind 
density functions of the filters are plotted in Figures 3.6-3.11 for various noise 
types and filters. These graphs show the noise attenuation of the filters relative 
to one another.
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(a )
Gaussian input (-), P3D UNI3D (.)

(b)

Figure 3.6 The output statistics of P3D, and UlSilSD for zero mean, unit
variance Gaussian noise, (a) the probability densitj  ̂ func
tions, (b) the probability distribution functions.
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(a)

Gaussian input (-), ML3D (-), BI3D (.)

(b )

Figure 3.7 The output statistics of BI3D, and ML3D for zero mean, unit
variance Gaussian noise, (a) the probability density func
tions, (b) the probability distribution functions.



nicxponcniial input (-), UN13D ( j
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Biexponeniial input (-), B3D (-) , UNI3D (.)

Figure 3.8 The output statistics of PSD, ancL,UNI3D for zero mean,
unit variance biexponential noise, (a) the probal)ility density
functions, (bj the probability distribution functions.
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Biexponential input (-), ML3D ( - ) ,  BOD

Figure 3.9 The output statistics of BI3D, and ML3D for zero mean,
unit variance biexponential noise, (a) the probability density
functions, (b) the probability distribution functions.



Uniform input (-), P3D (-), UW3D (.)
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Uniform input (-), P3D (-), UNI3D (.)

Figure 3.10 The output statistics of PSD, and UhilSD for zero mean, unit
variance uniform noise, (a) the prol)a.l>ility density functions,
(1>) the probabilit}'· distribiition functions.



Uniform input (-), MUD (-), BHD (.)
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Uniform input ("), ML3D B13D (.)

Figure 3,11 The output statistics of BI3D, and I4L3D for zero mean, unit
variance uniform noise, (a) the probcibility densit}  ̂functions,
(b) the probability distribution functions.
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3.6.1 DVSR Video Sequencer

The filters that are developed and analyzed are simulated on a VTE DVSR 100 
[26] image sequencer (Figure 3.12). The sequencer makes it possible to test 
algorithms on real image sequences without actually implementing them in 
hardware. In the simulations, the filtering structures are implemented in the 
C programming language. The programs are run on a SUN-3 workstation and 
the resulting sequences are transferred to the image sequencer for storage and 
display.

Analog/
Digital
Video
Input

Address processor VME-bus control system
PDOS

bit slice 32 bit Motorala 68020 68021
address space 512 Gb 20 Mb Hard disk, fbppy

Systim Control

Input
processor

Y
YUV 
RGB 
156 MHz

VTE DVSR 100 

High speed ram 

128 Mb - 1.7 Gb

Output
processor

YYUV
RGB
156 MHz

Analog/
Digital
Video
Output

DMA

Host:

SUN 160

dma 4Mb/s 
system control

H  Background disk m  System console

■  650 Mb H  Amiga 500

H  10 Mb/s H  Raster
H  programming
■  tools

Figure 3.12 The block diagram of the simulation system, 
VTE DVSR. 100.

The sequencer makes it possible to compare results of different a.lgorithms with 
the original sequence. It is capable of being progra.mmed for different video 
rasters. The current R.AM memory which is 256 Ml)jd,es is expandable to 
l.SGbytes. The sequencer has input and output processors for signed sampling
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and reconstruction, and a video bus for data transfer. The maximum transfer 
capabilit}'· of the video bus is 156Mbits/s. It is possible to process sequences 
in the Y, YUV, or RGB domains. In ima.ge sequence processing, subjective 
visual quality is as important as the mathematical error measures like the mean 
square error or the mean absolute error. The visual quality of the filter outputs 
can easily be evaluated by the display capability of the image sequencer.

3.6.2 Noise Attenuations and Application to Image 
Sequences

Noise attenuations of all the filters that are defined in Section 3.2 and their 
recursive versions are calculated for both Gaussian and biexponential inde
pendent, identically distributed (i.i.d.) additive white noi,se using a 4 frame 
(256 X 128), zero mean, unit variance noise seciuence. The results are given in 
Table 3.1.

The filters are also applied to still and moving image sequences with additive 
impulsive, Gaussian, and biexponential noise. For impulsive noise, the proba.bil- 

ity of an impulse is 0.1 with equal probability for positive and negative impulses. 
For additive Gaussian and biexponential noise distributions, the variance is 30 

and the mean is zero. The still ima.ge sequence is a. 4 frame sequence cre
ated using the image “BRIDGE” . The motion sequence is a 19 frame sequence 
called “COSTGIRLS” . The mean square error (MSE) and the mean absolute 
error (MAE) between the original sequence and the filter outputs are given for 
the “BRIDGE” sequence with impulsive and Gaussian noise distributions in 
Table 3.2.

The filters are also applied to color image sequences on a scalar basis, i.e., each 
color component is filtered separately. Parts of tin.' original secpiences and the 

filter outputs are shown in Figures 3.13-3.16 for visual evaluation.
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Table 3.1 Output variance of various filters when the input is zero 
mean, unit variance i.i.d. noise with Gcuissiair and biexpo
nential distributions.

FILTER-TYPE GAUS.SIAN BIEXPONENTIAL
PSD 0.238 0.137

P3DR 0.117 0.061
ML3D 0.222 0.124

ML3DR 0.119 0.059
PL3D 0.214 0.119

PL3DR 0.081 0.039
CR3D 0.213 0.118

CR3DR 0.080 0.036
UNI3D 0.735 0.579

UNI3DR 0.735 0.579
BI3D 0.363 0.231

BI3DR 0.298 0.181
MLW2D 0.687 0.529

MLW2DR 0.678 0.529
PLW2D 0.520 0.376

PLW2DR 0.518 0.375
CRW2D 0.507 0.367

CRW2DR 0..505 o.;i66
MEDIANS 0.293 0.178

MEDIAN5R 0.152 0.083
LAVE 0.113 0.113

LAVER 0.101 0.100

As the simulations show, the two proposed 3-dimensional algorithms (P3D and 
ML3D) have higher noise attenuation than Arce’s unidirectional and bidirec
tional filters. Although the 2-dimensional 5-point median and linear average 
filters seem to have better noise attenuation, thej'· are not preferable since thej'̂  
also filter the high frequency details in the image causing blurring. This is why 
they do not give good results when applied to real image sequences as can be 
seen from the results presented in Table 3.2. The simulations made on moving 
image sequences show that the 3-dimensional filters presented here do not dis
turb the motion content of the image. The only disadvantage of 3-dimensional 
filters compared to their 2-dimensional counterparts is that they require more 
memory, two frames in our case. However, with current VLSI technolog}^, the
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Table 3.2 MSE and MAE between the original ‘TRIDGE” sequence 
and the filter outputs for various noise distributions. For 
impulsive noise, the probal)ility of an impulse is 0.1 and for 
Gaussian noise, the variance is 30.

FILTER-TYPE IMPULSIVE IMPULSIVE GAUSSIAN GAUSSIAN
MAE MSE MAE MSE

P3D 0.989 37.641 12.544 251.794
P3DR 0.954 22.322 . 10.619 186.492
ML3D 1.242 34.314 12.368 244.233

ML3DR 1.457 29.047 10.872 194.157
PL3D 1.715 36.670 12.156 236.670

PL3DR 1.950 33.177 10.118 171.959
CR3D 2.828 74.471 13.028 277.217

CR3DR 3.159 73.073 11.414 223.496
UNI3D 6.347 833.632 21.045 666.403

UNI3DR 6.347 833.632 21.045 666.403
BI3D 1.301 106.394 14.909 347.280

BI3DR 1.011 58.936 •14.028 308.323
MLW2D 6.074 722.766 20.335 629.180

MLW2DR 6.074 722.766 20.335 629.180
PLW2D 4.643 424.764 17.796 497.709

PLW2DR 4.620 424.919 17.814 498.620
CRW2D 5.683 466.005 18.212 •524.930

CRW2DR 5.605 464.819 18.188 523.455
MEDIANS 5.720 154.661 14.881 359.088

MEDIAN5R 5.421 119.197 12.992 283.006
LAVE 15.184 422.844 12.440 270.612

LAVER 14.589 1 400.602 12.224 259.358

algorithms can already be implemented at video ra.tes [27].
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(a) (b)

^ 4 . K 'l

m

(c) (d )

Figure 3.13 Part of the original noisy “BRIDGF” sequence and the filter 
outputs for impulsive noise with probability 0.1. (a) Original 
image, (b) P3D output, (c) ML3D output, (d) UNI3D out
put, (o) BI3D output, (f) MLW2D output, (g) MEDIANS 
output, (h) LAVE outi:)ut.
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t̂ >>x ¿ m

' 'A m %

(e) (f)

(g) (h)

Figure 3.13 Continued.
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(a) (b)

(c) (d)

Figure 3.14 Additive Gaussian noise of variance 30. Parts of (a) the 
original noisy “BRIDGE” sequence, (b) P3DREC (recur
sive) output, (c) LAVE output, (dj UNI3DREC (recursive) 
output.
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(a)

Figure 3.15 Additive Gaussian noise of variance 30. Part of (a) the
original noisy “COSTGIRLS” sequence, (b) LAVE output, 
(c) P3DREC (recursive) output.
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(b )

Figure 3.15 Continued.
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(c)

Figure 3.15 Continued.
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(a)

(b)

Figure 3.16 Impulsive noise of probability 0.1. Frame 8 of (a) the original 
noisy “COSTGIRLS” sequence, (b) PSD output.



C h a p te r  4

I M A G E  S E Q U E N C E  C O D I N G

Images and image sequences contain large amounts of data. Because of the lim
itations in bandwidth and memory, compression is needed for their storage and 
transmission. Many algorithms have been devdo])cd for th<i compression of im
ages using predictive, interpolative or transform coding methods [28]. Recently 
advances in TV technology and the introduction of High Definition Television 
(HDTV) to the consumer market increased the interest in image coding. Active 

research is still going on in this field.

4.1 General

For high resolution TV applications, transform coding methods have been found 
to be complex. For this reason, a significant part of the research on TV ap
plications of image coding is focused on predictive and interpolative coding 
techniques. One main difference between image coding and image sequence 
coding is the motion content of image sequences. It has been found that a 
compromise between resolution in time and resolution in space has to be made 

to obtain good visual quality. The eye is insensitive to high frequency details 
around moving parts of the image sec^uence where high resolution in time is 

critical. In still parts of the image, high resolution· in space is essential for 
acceptable image cjuality whereas time resolution can be lower. This observa.- 
tion leads to adaptive image coding technic]ues which the current HDTV image

50



coding systems are based on.

There are basically two main image coding structures developed for HDTV 
applications. The first one is the Japanese HDTV called MUSE [29]. This 
system uses a motion detector and two different coding-decoding methods for 
moving and non-moving parts of the image sequence. The block diagram of the 
MUSE encoder is shown in Figure 4.1.

The second HDTV system is developed by EUREKA as the European HDTV 
and is called HDMAC [31]. This system processes the image sequence in three 
different branches corresponding to no-motion, slow-motion, and fast-motion 
areas of the image. A different coding-decoding method is used in each branch. 
The block diagrcim is shown in Figure 4.2.

In adaptive image coding algorithms, the performance also depends on the reli
ability of the motion detector. To have robust systems against motion detector 
errors, the algorithms developed for each branch should be able to perform rel
atively well under different conditions. In this thesis, a 3-dimensional median- 
based interpolative coding-decoding method is developed for no-motion parts 

of the image which gives acceptable image quality even under slow-motion.

4.2 Median Operation in Image Coding
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The detail preserving property of the median operation has been used in im- 
ag(i coding as in other areas of image processing. One of the appIica.tions of 
the median operation in image coding is the differential pulse code modulator 
(DPCM) that uses a median-based nonlinear predictor [32]. The predictor in 
DPCM systems predicts the new value from the previous ones and only the dif- 
ference signal between input and the predicted signal is transmitted or stored 

[28]. In the predictor developed in [32], the median is taken over several subpre

dictors each of which is optimized for a different ramp or edge signal in varying
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Transmission

Motion vector

(a) Encoder

(b) Decoder

Figure 4.1 The block diagram of the MUSE coding-decoding system 
[30].

orientations. It hcis been shown that the median operation brings cin improve
ment in ¡prediction errors. Median operation has also been applied to adaptive 

predictive coding as in [4]. '

Another image coding method that is commonly used in TV applications is the 
interipolative coding where only a subset of the pixels are trcinsmitted or stored.
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(a) Encoder

(b) Decoder

Figure 4.2 The block diagram of HDMAC coding-decoding system [31].

The missing pixels are interpolated at the receiver using the available ones. This 
interpolation operation can be linear or nonlinear. (Quincunx downsampling is 
an interpolative coding method where only every other pixel in a line taken from 
offset positions is stored or transmitted. This way the full horizontal and vertical 
frequencies are preserved and only the diagonal resolution, to which the human 
eye is insensitive, gets lower [33]. The application of the median operation to
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the interpolation of quincunx downsampled images has been widely examined 
in [34]. Various 2- and 3-dimensional median-based interpolation algorithms 
are applied to different quincunx downsampling methods and the results are 
compared. However, the algorithms are basically for still image sequences. The 
2-dimensional methods are found to be good for moving image sequences but 
they lower the resolution. The 3-dimensional algorithms distort the motion 
content to a large extent although they have a much higher resolution in still 
parts. In this thesis, a 3-dimensional median-based algorithm is introduced that 
has the perfect reconstruction property in the case of no-motion and a much 
better result in the case of slow-motion [35].

4.3 3-Dimensional Interpolative Coding and Decoding 
Algorithm

In interpolative image coding systems, quincunx downsampling is usually pre
ferred since it i:)reserves full horizontal and vertical resolution, and only reduces 
the diagonal resolution. There are several different quincunx structures that 
could be used. The quincunx structure that is used here is field-quincunx 
downsampling with the addition of an offset from frame to frame [33]. This 
downsampling scheme is illustrated in Figure 4.3. The offset from frame to 
frame results in a quincunx structure also in x-t and y-t planes. This makes 

it possible to make use of all three dimensions in the interpolation process, re
sulting in perfect reconstruction. The offset quincunx downsampling method 
has not been used much due to the flicker it causes with many 2-dimensional 
interpolation algorithms. This artifact is eliminated by the structure developed 

here.

In what follows, two 3-dimensional median-based interpolation algorithms will
'/

be presented. The first one is a novel algorithm bcised on the multilevel median 

operation [23] and the second one is the algorithm introduced in [34] that is 

based on the weighted median operation [17].
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X  X  X  X

X  X  X  X

X  X  X  X

X  X  X  X

1_________ ,_________I I , Jr 1
frame n frame n+1

Figure 4.3 3-Dimensional offset quincunx downsampling of the image 
sequence.

4.3.1 3-Dimensional Multilevel Median-Based 
Interpolation

Multilevel median operation has been used before to preserve different features 
in the image sequence. This property of multilevel median operation can be 
used in the reconstruction process to preserve lines, edges, or ramps in the 
x-y, x-t, and y-t planes. Based on this idea, the 5-point median operation is 
applied to each plane of the image sequence separately on the first level of the 
multilevel structure. The structure used is the same as the 3-dimensional planar 
filter given in Section 3.2 (Figure 3.1). The reconstructed pixel is taken as the 
median of the first level outputs. Figure 4.4 shows the 3-dimensional sampling 
structure. Here, the white pixels corresjDond to the image points that need to be 
reconstructed and the dotted pixels correspond to the available image points. 
Using the notation given in Figure 4.4, the multilevel reconstruction process 
can be formulated as follows. Let be the pixel point to be reconstructed. 
Then the first level filters are given as

mxy =  M ED + Di +  Fi +  iTi)/4] ;

TTixt =  M ED[Di,Fi ,Eo,  E2, (E o E2)/2] ; (4.1)

ruyt =  M E D [B u Hu Eq,E2,{Eo +  E2)/2] , 

and the final output is

El =  MED[mxy,mxt,myi] .

Note that for still image sequences, Eq =  E\ =  E2 . This gives mxt =  myt 
which results in perfect reconstruction. Thus the downsampling-upsampling
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algorithm preserves all high frequency details of still images. When there is 
slow-motion, the time dimension loses its effect and the term mxy dominates. 
So the probability of the result being one of the interframe pixels increases 
resulting in relatively good ima.ge quality even in the case of motion.

Figure 4.4 3-Dimensional sampling structure corresjDonding to 3 picture 
frames.

4.3.2 3-Dimensional Weighted Median-Based Interpolation

This algorithm was first introduced in [34]. The reconstruction method will 
be given here again for comparison purposes. The algorithm uses the weighted 
median operation that is defined in Section 2.1. Using the notation in Figure 4.4, 
the reconstruction filter can be given as follows. Let E\ be the pixel point to 
be reconstructed. Then

Fi =  M F D [5 i,D i,F i,iii ,3 ,o F o ] ,

where o stands for the weighting function. Although the algorithm does not 
result in perfect reconstruction even in the case of still image sequences, it has 
a high probability of retaining the correct pixel value since Eq is given a weight 

of three, i.e., Eq is repeated three times in the median operation. Only if Eq is a
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minimum or a maximum, it is replaced by the median within the window. This 
interpolation algorithm does not have the perfect reconstruction property, but 
it has the advantage of requiring less memory than the 3-dimensional multilevel 
median-based interj^olation.

4.4 Simulations

The downsampling/upsampling algorithms given in Section 4.3 are simulated 
on the VTE DVSR 100 video sequencer. A 2-dimensional algorithm given as

Ex =  M ED  [Ri, Fx,Hx,Dx,{Bx +Fx +  Hx+  T»i)/4] (4.2)

is also simulated to compare it with the other 3-dimensional reconstruction 
methods. The trivial reconstruction method that could be uised with the offset 
quincunx downsampling is the simple task of retaining the same pixel from 
the previous frame. This method would also result in perfect reconstruction 
in the case of no-motion. It is simulated and compared with the other 3- 
dimensional algorithms to show the difference in the case of slow-motion. Three 
error measures, mean square error (MSE), mean absolute error (MAE), a.nd the 
subjective visual quality are used as comparison criteria. The algorithms are 
applied to the real image sequence called “COSTGIRLS” which is 19 frames 
long and which has no-motion, slow-motion and fast-motion areas. The motion 
content of the sequence is obtained using the EUREKA 95-type HDTV motion 
information. In the error calculations, no-motion corresponds to areas of the 
sequence moving with speed less than or equal to 0.5 pixels/frame, and slow- 
motion corresponds to areas of the sequence moving with speeds between 0.5 
pixels/frame and 12 pixels/frame. The results for 1/2 compression ratio are 
given in Table 4.1.

Considering HDTV applications, the same algorithms are applied to obtain 
1/4 compression, ratios. To obtain this compression ratio, every other frame 
is skipped during downsampling and reconstructed by simple frame repetition 
during upsampling. Frame skipjDing and rei^etition can onlj'̂  be applied at areas
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Table 4.1 Error measures for 1/2 compression ratio.
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multilevel
median

weighted
median

2-D
median

previous pixel 
repetition

no MAE 1.29 1.64 2.23 1.68
motion MSE 10.53 21.85 38.62 22.30

slow MAE 2.23 3.15 2.32 3.88
motion MSE 39.28 91.69 40.32 132.07

of no-motion and slow-motion since it would cause visible artifacts around fast 
moving parts. The results for 1/4 compression ratio are given in Table 4.2. The 
error measures are calculated separately for no-motion and slow-motion areas 
of the sequence to show the difference between the algorithms with respect to 
motion.

Table 4.2 Error measures for 1/4 compression ratio.

multilevel
median

weighted
median

2-D
median

previous pixel 
repetition

no MAE 2.43 3.11 3.10 3.25
motion MSE 32.38 74.13 51.37 83.95

slow MAE 5.29 6.53 5.06 8.32
motion MSE 161.13 254.25 148.13 388.91

As can be seen in Table 4.1 and Table 4.2, the 3-dimensional multilevel median- 
based interpolation algorithm gives best results for no-motion areas of the image 

sequence (<  0.5pixels/frame) in both 1/2 and 1/4 compression ratios. Since a 
large portion of the image sequences that are shown on TV applications have 
no-motion, this algorithm improves the image resolution to a large extent. Its 
performance in slow-motion areas is close to the 2-dimensional median based 

algorithm which is shown to be good for motion [34]. Thus the 3-dimensional 
multilevel median based algorithm is tolerant to motion detection errors. More
over, the threshold for motion between no-motioh and slow-motion modes of 
the encoder can be increased if this cilgorithm is used for no-motion areas in an 
adaptive encoder. The 3-dimensional weighted median-based interpolation and 
the previous pixel repetition algorithms show that 3-dimensional algorithms in
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general distort motion even if they are good for still image sequences. All the 
algorithms are also applied to color image sequences on a scalar basis, i.e., the 
algorithms are applied to each color component separately. Parts of the original 
image sequence and the interpolated outputs are given in Figure 4.5 for visual 
evaluation.

Figure 4.5 Part of frame 8 of (a) the original Sequence “COSTGIRLS” , 
(b) the multilevel median-based interpolator output, (c) the 
weighted median-based interpolator output, (d) the previous 
pixel repetition algorithm output. The part shown corre
sponds basically to slow-motion areas of the image sequence.



C h a p te r  5

C O N C L U S I O N S

Since the introduction of median filters, median-based algorithms have gained 
an important place in digital signal processing. They have proved to be a 
good alternative to linear techniques, especially in image processing tasks. In 
this thesis the application of the median-based algorithms to two of the main 
research areas in image sequence processing, namely image sequence filtering 
and image sequence coding are examined.

Two new 3-dimensional median-based algorithms are introduced for image se
quence filtering. They are compared with the other 2- and 3-dimensional cilgo- 
rithms from the literature. The corresponding Boolean functions for the filters 
axe obtained and some observations are made on the root signal structures. 
The output distributions are derived for the problem of estimating a constant 
signal under additive white noise. These results are used to plot distributions 
of the filter outputs under various input noise distributions. In addition to the 
theoretical analysis, the algorithms developed are evaluated using an image se
quencer and real image sequences. Noise attenuations of the filters are obtained 
and mean square and mean absolute errors are calculated for a real image se-

'I
quence. From the results we can conclude that median-based algorithms are 
robust algorithms against the motion in image sequence processing. By the 
proper choice of the filter structure, the median-based methods give an excel
lent performance for still and moving images even without a motion detector.

60
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They have an inherent adaptation to the motion content of the image seqiience.

In the field of image sequence coding, a 3-dimensional median-based interpo
lation technique is developed for still and slow moving image sequences. The 
algorithm developed is compared with several other techniques that could be 
used with offset quincunx downsampling. The simulations are carried out for 
1/2 and 1/4 compression ratios. Mean absolute and mean square errors are cal
culated for a real image sequence containing different motion areas. It has been 
shown that the algorithm developed can be integrated to an cidaptive coding 
system or applied on its own.

In both fields of image sequence processing, the algorithms developed are ap
plied to color image sequences on a scalar basis. The application of vector 
median operation using the same filtering structures may bring an improve
ment with color processing and should be researched further. Also, directional 
application of the filtering structures together with a motion detector and es
timator could improve the motion performance further. The results obtained 
show that the nonlinear filtering techniques, of which the median filters are 
a subclass, offer a large class of choices for image processing which should be 
considered for future research.



A P P E N D I C E S

APPEN D IX A

POSITIVE BO O LEAN  FUNCTIONS

To simplify the expressions in the derivation of the positive Boolean functions 
of different filters, the notation given in Figure 3.5 will be used. This notation 
is explained in more detail in Section 3.3.

Proof of Proposition 2 :

The outputs of the 7-point median filters, PL3D and CR3D, in the first level of 
3-dimensional multilevel filter are one if four of the input varia.bles out of seven 
a.re equal to one. Thus the PBF’s given in the equations (3.25) and (3.26) are 
obtained by listing all possible combinations of four variables out of seven. The 
PBF corresponding to ML3D is then computed by taking the 3-point median 

of the first level outputs and the current pixel value, E\. Let fpizD·, fcRZD be 
the first level outputs. Then ■/

fML3D =  MED[fpLZD, fcRSD, E\\ =  fpL3DfcR3D +  fPL3DE\ +  fcR 3oEi  ,

62
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where

fpLioEi =  EoE\E2{B\ + Di +  + H\) +  E\{B\DiF\ +  B\DiHi

+  B\F\H\ +  DiF\H\) -\- E\{Eq -\r E2)iB\D\ +  B i + B\H\

+  D\F\ +  D\H\ +  F\H\) ;

icRzoBi  =  EqE\E2{A\ +  (7i +  +  I\) +  E\[A\CiG\ +  AiCily

+  AiGi Ji +  CiGih)  +  E x{Eq +  E2){AiG^ +  A jG i +  A^h 

+  CiGi +  C ili +  G 'l/i) ;

fpLiofcRsD =  AiBiGiDiFiGiHiIi  +  EqE iE2{Ai +  Ci +  Gi +  Ii){Bi +  D\ 

+  +  H{) +  {EqE i + E0E2 +  EiE2){AiGi +  A\G\ +  A\I\

A G 1 G1 +  Gih +  Gxh){BiDi A B i F x +  BiHi +  +  DiHi

+ FiH i) +  (Eo A E x + E2){AxGxGx +  AxGxh +  AxGxh 

+  GiGnh){BiDxFi + BxDxHi +  BxFxHx +  DxFxHx) .

Taking the ‘or’ of the expressions given above results in the equation given in

(3.27).
□

Proof of Proposition 3 :

Let zj, i =  1 . . .  5, be the outputs of the 3-point median operations on the first 
level of the unidirectional multistage filter. Using equation (3.21), these can be 
expressed as

zx —MED\I)x^Ex^Fx\ =  DxEx -f DxFx -t- ExFx ;

Z2 =MED[Ax,Ex^Ix] — AxEx - f  Axlx +  Exix ;

Z 3  =MED[Bx,Ex,Hx] = BxEx +  BxHx +  ExHx ;

Z 4  =MED[Gx,Ex,Gx] =  GxEx +  CxGx +  ExGx ;

Z5 —MEE\Eq̂ Ex̂ E·  ̂ =  EqE x E0E2 T E xE2 .

In the binary domain, the maximum operation corresponds to taking the ‘or’ 

of the binary input variables and the minimum 02>eration corresponds to taking
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the ‘and’ of the binary input variables. Thus Zmax and Zmin can be obtained as 

Zmax =maxi<i<5[z,·] =  zi +  Z2 +  Z3 +  Z4 +  Z5 ;

Zmin =mini<,-<5[z,·] =  Z1Z2Z3Z4Z5 .

The final output is given as the 3-point median of Zmax, Zmin, and E\ as follows. 

f U N I Z D  =MED[zmin ) ^max ? El]

^^min^m.ax 4" 4“ ^max El

— ̂ min 4" ^max El 

= A iB i C iD iF i Gi H ih  EqE^

+ E\{A\ + B\ + C\ + D\ +  F\ -\r G\ +  Hi + Ii + Eq + E2 ) .
□

P roo f o f Proposition 4:

)e
Let 2:̂ , 2 =  1 . . .4, be the outputs of the 5-point median operations on the first 
level of the bidirectional multista.ge filter. Using equation (3.22), these can I 
expressed as

zi =MED[E q̂ Bi  ̂E\̂  Hi  ̂E2]

= E qBiE i 4" EqBiHi 4" EqB iE2 4· EqEiHi -j- EqEiE2 

-\r E0H1E2 4" BiEiHi 4“ B1E1E2 4" B 1H1E2 + E\H\E2 ;

Z2 =MED[E{),Ci,Ei,Gi,E2]

=E^C\E\ 4" E{)CiG\ 4“ EqC\E2 4~ EqE iGi 4~ E0E1E2

EqGiE2 4" GiE\Gi 4· G1E1E2 4· C\G\E2 4“ E\G\E2 ;

zz =MED[Eo,Di,Ei,Fi,E2]

"^^EdDiEi -f- EqD\Fi 4“ EdD\E2 4" E{iEiF\ -f- EqE\E2

-\- EoF\E2 4" DiEiF\ -f- D\E\E2 4~ E\F\E2 4" E\F\E2 ;

2T4 ^MED[E q̂ Ai ^E\^Ii Ê2]

=^E{)AiEi 4- E^A\I\ 4- EqA\E2 + E^E\I\ -}- EdE\E2 

4" jE'o-̂ i-E'2 4“ AiE\Ii 4- A\E\E2 4" ^\I\E2 4~ E 1I1E2 .
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The final output is given as the 3-point median of z^ax, m̂in·, and E\ as 

fBI3D =MED[zmin, Zmax,Ei]

—̂ min̂ max 4" ^min E\ +  ^max El

— ̂ rniii d" înai-E] ,

where
ZmaxEi = E qE\E2 -f E\{A\Ii +  B\H\ +  C\Gi DiFi)

-f· Ei{Eo -p E2){A\ -f Bi Cl A Di -f- T'l Gi A Hi -f / ] )  ;

Zmin = E qE i E 2 -I- ( E o a  E l  A  E 2) A i B i C i D i F i G \ H i I i

A{E qE i a  E0E2 A EiE2){Ai A h) {B i  A Hi){Ci A Gi){Di A Fi) 

By taking the ‘or’ of the above expressions, we obtain

Ibizd = E qE iE2 +  Ei(AiIi -f BiHi -f- CiGi -I- DiFi)

A E i {Eq -|- E2){Ai a  B i A Ci A D i A Fi A Gi A H i A Ii) 

A (E oA E 2)A iB i  Ci Di Fi Gi Hi h  

+  EoE2(Ai a  Ii)(Bi +  Hi){Ci A Gi)(Di A Fi) , 

which is the expression given in (3.29).

Proof of Proposition 5 :

The median filters in the first level of the 2-dimensional multilevel weighted 
median filter, PLW2D and CRW2D, give a weight of three to Ei. Therefore, 
the outputs of these filters will be one if any one of the binary variables is 
equal to 1 together with Ei or all the four variables other than Ei are equal 
to 1. Thus the positive Boolean functions corresponding to these filters can be 
written directly as

f p L W 2 D  = M E D [ B i , D i , 3 o  E i , F i , H i ]

=BiDiFiHi  -f El (Bi A Di A Fi A Hi) , 

f c R W 2 D = M E D [ A i , C i , 3 o  E i , G i , I i ]

= A i C i G i h  -b E i { A i  a  C i  A G i  A h )  .
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The output of the 2-dimensional multilevel weighted median filter is given as 
the 3-point median of the first level outputs and the current pixel value, E\. 

fMLW2D =MED[fpLW2D,Ei, fcRW2n]

=fPLW2DE\ fcRW 2DEi -|- fpLW2DfcRW2D 

=Ei{Ax / , )

-l· AxBxCxDxFxGxHxh , 
which is the expression given in (3.32).
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O U TP U T DISTRIBUTIONS

Let T(·) be the threshold function such that

and

Tj (l(x, y, <)) =  0  =

Tj ( y ( x , y, i)) =  Y^(x, y, t) =

1, I ( x , y , t ) > j  . 
0, otherwise ’

1, Y ( x , y , t ) > j  
0, otherwise

where I (x ,y , t )  is the M-valued input sequence and Y {x ,y , t )  is the M-valued 
output sequence. For the sake of simplicity in the expressions, the following 
notation will be used in the proof of the propositions given in Section 3.5.

A i = P + \ x - l , y - l , t )  B i = P + \ x , y - l , t )  C i ^ P + \ x  +  l , y - l , t )  

D i = P + \ x - l , y , t )  Ei =  P + \ x ,y , t )  F i = P + \ x  +  l ,y , t )  

G i = P + \ x - l , y + l , t )  Hi =  P -^ \ x ,y+ l , t )  P = p - ^ \ x  +  l ,y  +  l, t)

Eo =  P~^\x,y , t -1)  E2 =  P+^(.T ,y,i+l)

Let F (j )  be the input probability distribution function, and Y^~^^{x,y,t) de
note the output of a filter at the (j -|- l)st threshold level. Then, the output 
distribution function of that filter can be found as

FoutU) =  P r {Y (x ,y , t )  < j }  =  Pr{Y^+'^{x,y,t) =  0} . (R .l)

Using the total probability theorem, this expression can be decomposed into 6

67
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(B.2)

terms as follows. Let
Pi =  Pr{Y^+\x,y , t )  =  0|Po =  Pi =  P 2 =  0} ;

P2 =  Pr{Y^-^\x,xj,t) =  0|Po =  Pi =  P2 =  1} ;

P3 =  Pr{Y^+\x,y , t )  =  OlPo =  Pi =  0,P 2 =  1}

=  P r { Y ’+ \ x ,y , t )  =  0|Po =  l ,P i  =  P 2 =  0} ;

P4 = Pr{Y^+\x,y,t) =  0|Po = Pi = 1 ,P 2 = 0}

=  Pr{Y^+\x, y, t) =  0|Po =  0, Pi =  P2 =  1} ;

Ps =  Pr{Y^+\x, y, t) =  0|Po =  P 2 =  1, Pi =  0} ;

Pg =  Pr{Y^+\x,y,t) =  0|Po =  P2 =  0,Pi =  1} .

Then
Fout(j) =PiPr{Po =  Pi =  P2 =  0} +  P2Pr{Po = Pi =  P2 =  1}

+ PzP t{E q =  P i =  0,p 2 =  1} +  PsPriPo =  l ,P i  =  P2 =  0}

+  P4Pr{pQ =  Pi =  l,p 2  =  0} +  P4Pr{Po =  0,P i =  P2 =  1}

+  PsPr{Po =  P 2 =  l ,P i  =  0} +  PePr{Po =  P2 =  0,P i =  1}

The probabilities defined in (B.2) are obtained from the positive Boolean func
tion of the corresponding filter and the results are substituted in (B.3). Finally, 
the output densitj' function of the filter is obtained from the output distribution 
function by discrete-time differentiation.

(B.3)

Proof of Proposition 7

The output of the -|—shaped filter at the first level of 3-dimensional multilevel 
filter, PL3D, can be expressed at {j -1- l)st threshold level as given in (3.25). 
Using this equation, the probabilities are obtained as follows.

Pi =  P r {P iP iP iP i =  0}

=  1 — P r{P i =  1 and P i =  1 and F\ I and Hi — 1}

=  1 -  (1 -  F( j ) )^  i

P2 =  Pr{B\ +  Di +  Fi +  Hi = 0 }

=  Pr{Bi  =  0 and P i =  0 and Pi =  0 and P i =  0} =  F ( j ) ‘̂  ;
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P3 =  Pr{B^DχF^ +  P jP i /i i  +  P iF iP ] +  DyF^H^ -  0}

=  Pr{There are less than 3 ones among Pi, P i, Pi, P i }

=  ( o) a ; ) "  +  ( i ) -P ’O ' ) ' ( i - A i ) )  +  ( 2 ) A i ) ' ( i - i ’0 '))"

=  6 F ( j f  -  S F ( j f  +  3F(j)^ ;

P4 =  Pr{BiDi  +  PiPi +  P iP i +  DyFi +  P iP i +  FyHy =  0}

=  Pr{There are less than 2 ones among P|, P j , P i, Pi }

=  (o )-^ W )‘  +  ( i ) A i ) ’ ( i - -F O ') )

=  i F ( j f - 3 F U ) '  1 

Pi =  Ft ■,

P e =  Pi-

Substituting these expi'essions in (B.3) results in
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FplzdU) =P(J) -  (I -  F(j))^\ + (1 -  FU) ?  F(})*

+  S n i f  (1 -  P(j) ) { 6 F ( j f  -  SFUY +  3F(j ) ‘ ) 

+ 3 F ( j ) ( l  -  F ( j ) f  -  3 F ( j f )

= F ( j f  [35 -  84^(1) + i m j f -  2 0 F ( j f

which is the expression given in (3.45). Siirce CR3D has the same Boolean func
tion with PL3D when P i ,P i ,P i ,P i  are replaced by A\,Ci,Gi,Ii,  its output 
distribution function can be obtained in the same way.. For ML3D the proba
bilities are calculated from the Boolean function given in (3.27) as follows.

Pi =  P r lA iP iC iP iP iG 'iP i/i — 0} =  1 — P^jAll of the variables are 1}

=  ) - ( ! -  r ( i ) ) “] i

P2 P r{A i + Pi + Gi -j- P i -j- Pi + Gi + P i + /1 = 0 }

= Pr {All of the variables are 0} =  F(j)^ ;



Ps =  P r { { A , C i G x + A i C x h + A i G i h  +  CiCnh)

(P iP iP i +  P iP iP i +  P iP iP i +  P iP iP i) =  0}

=  Pr {Either one of the terms in the ¡Darenthesis is equal to 0}

=  1 — Pr(Both of the terms in the parenthesis are equal to 1}

=  1 — Pr\̂ B\D\F·  ̂ +  +  B\F\H\ +  D\F\H\ — 1}^

=  1 -  [1 -  P r {P iP iP i + BiDxHi  + P iP iP i +  P iP iP i =  0)]“

=  1 -  [1 -  (6P(;)2 -  S F { j f  +  3 P (;)^ )j'

=  12P (;)2-16P (i)3-30P 0y+96P (i)5- lOOPO')® +48P(i)^-9P(i)« ;

P4 =  P r{(A iC i +  AiGi  + Axh + CiGx +  Cxh + Gi P)

+  (Pi P i +  PiPi +  Pi P i +  P iP i +  P i P i +  P iP i) =  0}

=  Pr{Both of the terms in the parenthesis are equal to 0}

= Pr{PiPi +  PiPi +  PiPi +  Pi Pi +  PiPi +  PiPi =  0}^

=  (4P(i)3 -  Z F { j f f  =  F { j f  (16 -  24P(i) +  9P(;)2) ;

Ps =  Pr{(AiCi +  AiGi +  Aili +  PiGi +  Cxh + i?i Ji)

(PiPi +  PiPi +  PiPi +  PiPi +  PiPi +  Pi Pi) =  0}

=  Pr{Either one of the terms in the parenthesis is equal to 0}

=  1 — Pr (Both of the terms in the parenthesis are equal to 1}

=  1 -  P r {P iP i +  PiPi +  P iP i +  P iP i +  P iP i +  P iP i =

=  1 -  [1 -  Pr{PiPi +  PiPi +  PiPi +  PiPi +  PiPi +  PiPi = 0}]^

=  1 -  [ l - ( 4 P ( i ) 3 - 3 P ( ; r ) ] '

=  F { j f  (8 -  6P(i) -  16P(i)3 +  2AF{jf -  9F{jf )  ;

Ps =  P r{(A iC iG i +  AiCih  +  AiGxh +  CiGxh)

+  (PiPiPi +  PiPiPi +  PiPiPi +  PiPiPi) =  0}

=  Pr{Both of the terms in the parenthesis are equal to 0}

=  Pr{PiPiPi +  PiPiPi +  PiPiPi +  PiPiPi =  0}^

= (6P(i)2 -  8 F ( j f  + 3 P (j) '') '

=  P (i) '‘ (36 -  96P(i) +  100P(i)2 -  48P(;)3 +  9P(i)^) .
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Substituting these expressions in (B.3) results in

F m l :̂ d U)  = F { j f  [l -  (1 -  n?))®] +  (1 -

+  2 F { j f  (1 -  F{j) )  (12 -  16F(i) -  30F(;)2 +  dQ>F{jf

-1 0 0 i^ (i)^ + 4 8 F (i)^ -9 F (i)6 )

+  2F{j)'^ (1 -  F { j ) f  (16 -  2AF{j) +  2>F{jf)

+ F { j f  (1 -  F { j ) f  (8 -  6F(j) -  1 6 F 0 y  +  2A F ( j f  -  9 F { j f )  

+  F ( j f  (1 -  F(j) )  (36 -  96F(j) +  100F(;)2

-4 8 F { jY  + 9F{jY)

= F { j ) ‘̂  [40 -  106F(i) +  84F(i)2 +  60F(;)3 -  195F(i)'^

+  190i^(i)® -  88F{j)^ +  l6F{jy^

Proof of Proposition 8 :

The output of the unidirectional multistage filter at the (j +  l)st threshold level 
can be expressed as given in (3.28). Using this equation, the probabilities are 
obtained as follows.

Pi =  i ;

P2 =  0 ;

P3 = 1 ;
P 4 = 0  ;

Ps =  P r{A iB iC \D iF iG iH iIi =  0}

= P r(A t least one of Ai, P i, Ci, P i, Pi, is equal to 0}

=  1 — P r{ All of them are 1} ^

=  1 - ( 1 - F ( } ) ) ’  ;

Pe =  P r{A i + B 1 P C 1  +  Pi + Pi + G, + iTi + /1 = 0}

=  Pr{A ll of the variables, A i, P i , C i, P ] , P i, G i, P ] , / 1, are equal to 0}

=  m f  ·
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Substituting these expressions in (B.3) results in

Fv n i z d U)  = F ( j f  +  2 F { i  f  (1 -  F ( } ) )  +  F ( i )  (1 -  F ( i ) f  ( l  -  (1 -  F ( , ) ) '  

= F { j )  [l -  (1 -  +  (1 -  F 0))i'(i)>«  .

Proof of Proposition 9 :

The output of the bidirectional multistage filter at the {j +  l)st threshold level 
can be expressed as given in (3.29). Using this equation, the probabilities are 
obtained as follows.

Pi =  l ;

^2 =  0 ;

P3 =  Pr{AiBxCiDiFiGiHJi  =  0 } '

= 1 — Pr{A ll of them are 1}

=  \ - { l - F ( j ) f  ;

P4 =  Pr{Ai  B\ +  C\ A D\ p  F\ A G\ +  H\ -\-1\ 

=  ;

=  0}



APPENDIX B.

Ps =  Pr{{Bi  +  Hy){Di +  Fi)(Ai +  h){Cx +  Gi) =  0}

=  Pr{A t least one of the terms in the parenthesis is equal to 0 } 

=  1 — P r{ All of the terms in the parenthesis are equal to 1}

=  l - P r { { B i + B i )  =  l Y

=  1 — Pr (Either B\ or H\ is equal to 1

=  1 — (1 — Pr{Both of them are equal to 0})^

=  1 - ( 1 - P 0 ' ) ^ r  ;
Pe =  Pr(P :iP i +  P jP i +  Axh +  GiG'i =  0}

=  P r{ All of the pairs that are ‘and’ed are equal to 0}

=  P r {P iP i =  0}'̂  =  Pr{Either B\ or H\ is equal to 0 

=  (1 — Pr (Both of them are equal to 1})'^

=  ( l - ( l - r ( i ) f ) ‘

73

Substituting these expressions in (B.3) results in

FsnDd) = m f  +  m i ?  (1 -  F(i)) ( l  -  (1 -  F ( j ) f )  + 2F( j f  (1 -  F ( j ) f  

+  F ( j ) ( l - F ( j ) ?  ( l - ( l - F O f f )

+  F ( j f ( l - F U ) ) ( l - ( l - F O ) ? y  

= F ( j f  [21 -  80P(i) +  l66F(j)^ -  22 4F ( j f  +  202P(i)“

120P(i)^ +  45P(i)® -  llPO ')" +  2P(j)8T

Proof of Proposition 10 :

Using the total probability theorem, the output distribution function of PLW2D
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can be obtained as follows.
F p l W2d U )  =  P r { Y { x , y , t )  <  j }  =  P r { Y ^ + \ x , y , t )  =  0}

=  P r { Y ^ + \ x , y , t )  =  0|Ei =  0 } P r { E i  =  0}

+  P r { Y ^ + \ x , y , t )  =  0 \ E i  =  l ] P r { E i  =  1} 

^ P r { B i D i F i H , = 0 } F ( j )

+  P r { B i  +  D i + F i + H , = 0 } ( l -  F ( j ) )

=  F ( j )  (1 — Pr{All of the variables, B \ ,  D i ,  F i ,  H i  are 1})

+  (1 — F ( j ) )  P?’ {A11 of the variables, Pi, P i, Pi, H \  are 0}

=  F ( j )  [l -  (1 -  r(i))*] +  (1 -  F ( j ) )  F ( j Y  .

Since CRW2D is the same as PLW2D when B \ ,  D i ,  F i ,  H i  are replaced by 
Ai, Cl, Gi, Ji, its output distribution function is the same as PLW2D. The out

put distribution function of MLW2D can be derived in the same waj'̂  as 

F M L W 2 D U )  =  P r { Y ( x , y , t )  < j }  =  P r{r^+\x ,i/,i) =  0}

=  Pr{P^+i(x, y, t )  =  0|Pi =  0}Pr{Pi =  0}

+  P r { Y ^ + ^ ( x , y , t )  =  0 \ E i  =  l } P r { E i  =  1}

=  P r{AiPiC iP iP iC iP i Ji =  0}P (i)

+  P r { A i  + B i  +  C i + D i  +  F i +  G i  +  H i  +  h  =  0 }  (1 -  F { j ) )  

=  F ( j )  (1 — Pr{All of the variables are 1})

-f (1 — F ( j ) )  Pr(All of the variables are 0}

=  F ( j )  [l -  (1 -  F ( j ) ) ‘ ] +  (1 -  F U ) )  F ( j f  . ,
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