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ABSTRACT

3-DIMENSIONAL MEDIAN-BASED ALGORITHMS IN
IMAGE SEQUENCE PROCESSING

Miinire Bilge Alp
M.S. in Electrical and Electronics Engineering
Supervisor: Assoc. Prof. Dr. Levent Onural
September 1990

This thesis introduces new 3-dimensional median-based algorithms to be used
in two of the main research areas in image sequence processing: image sequence
enhancement and image sequence coding. Twa new nonlinear filters are devel-
oped in the field of image sequence enhancement. The motion performances
and the output statistics of these filters are evaluated. The simulations show
that the filters improve the image quality to a large extent compared to other
examples {from the literature. The second field addressed is 1mage sequence
coding. A new 3-dimensional median-based coding and decoding method is
developed for stationary images with the aim of good slow motion perfor-
mance. All the algorithms developed are simulated on real image sequences

using a video sequencer.
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OZET

GORUNTU DIzISI ISLEMEDE 3-BOYUTLU
MEDYAN-BAZLI ALGORITMALAR

Minire Bilge Alp
Elektrik ve Elektronik Mihendisligi Bolumu Yuksek Lisans
Tez Yoneticisi: Assoc. Prof. Dr. Levent Onural
Eylil 1990

Bu tez gortintii dizisi iglemenin iki ana dalinda kullamlmak tzere yeni 3-
boyutlu medyan-bazli algoritmalar tamitmaktadir. Goruntu dizisi iyilegtirme
alaninda iki yeni, dogrusal olmayan suzgeg gelistirilmigtir. Bu stzgeclerin ha-
reket bagarimlar: ve gikig istatistikleri hesaplanmigtir. Benzetimler geligtirilen
stizgeglerin bugiine kadar yaymnlanan érnekleriyle karsilastirildiginda gortinti
niteligini buyuk olgude iyilestirdigini gostermektedir. Uzerinde caligilan ikinci
alan goruntu dizisi kodlamadiv. Duragan gortntiiler icin yeni bir 3-boyutlu
medyan-bazli kodlayici ve kod ¢ozuctu geligtirilmigtir. Bu tasarimda amacg
ayni zamanda iyi bir yavag hareket bagarimi elde etmelktir. Geligtirilen bitiin
algoritmalarin benzetimleri video dizici kullanilarak gergek goruntli dizileri

uzerinde yapilmigtar.
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Chapter 1

INTRODUCTION

Image processing has been an active area of research for many years. Much effort
has been given to the extension of 1-dimensional algorithms to two dimensions,
taking the properties of images into account. However, many applications in
image processing require the processing of 3-dimensional signals, namely image
sequences. TV applications, target tracking, robot navigation, dynamic mon-
itoring of industrial processes, study of cell motion by microcinematography,
highway traffic monitoring, and video transmission are only a few examples
where the signal to be processed is 3-dimensional, the third dimension being
time. It has been shown in many cases that 1-dimensional algorithms do not
produce optinnun results in image processing. In other words, while processing
images, their 2-dimensional nature has to be taken into account. Likewise, in
processing image sequences, 1- or 2-dimensional algorithms do not yield opti-
mum results. Although similar in some respects, the extension of 2-dimensional
algorithms to 3-dimensional signal processing is not straightforward. The mo-
tion content of the image sequence requires the time dimension to be approached

m a different manner.

Temporal filters have been developed to make use of the information in the
time dimension in many image processing problems like image coding [1], noise
filtering [2], and scan rate upconversion [3]. However, temporal filters usually

blur the moving parts of the image sequence, resulting in poor image quality.
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It 1s known that 2-dimensional spatial processing gives better results in moving
parts, whereas temporal processing gives better results in still parts of the image
sequence. This observation leads to the development of adaptive algorithms that
require motion estimation or motion compensation to obtain acceptable image
quality. Some examples are adaptive encoders [4], adaptive scan rate converters
(5], adaptive color processors [6], and adaptive noise filters [7]. However, motion
estimation and motion compensation are critical processes which increase the
complexity and the cost of processing. Therefore, 1t 1s highly desirable to have

3-dimensional filters which would be insensitive to motion in image sequences.

In this thesis, two of the main research arcas in image sequence processing
are addressed. These are image sequence enhancement and image sequence
coding. Two new 3-dimensional nonlinear filtering algorithms are introduced
for noise filtering of image sequences. The motion performances of these filters
are analyzed and their statistical properties are obtained. They are compared
with the other 2- and 3-dimensional algorithms from the litcrature [2,7,9]. The
algorithms are simulated using a video sequencer (DVSR 100), and examples of

their application to real image sequences are presented.

Good results have been reported for the use of adaptive encoders i image
sequence coding [4,29,30]. However, there is a problem with these adaptive en-
coders: their performance relies heavily on the motion detection and estimation
algorithm. False decisions cause visible disturbances in the image quality. To
prevent this, the algorithms used for still parts of the image should bhe able
to perform fairly well in slow motion and vice versa. In this thesis, a new
3-dimensional coding and decoding method is developed for stationary images
with the aim of good slow motion performance. The algorithm may be used as

[
part of an adaptive encoder, or on its own.

All the filtering algorithms that are introduced in both image sequence en-

hancement and image sequence coding are based on the median operation. In
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developing Lhese structures, the detail preserving property of the median oper
ation has been made use of. In image processing, median-type operations are
known for their edge-preserving capability. Since slow motion in an 1mage se-
quence can be considered as an edge in the time dimension, good results can be
expected with 3-dimensional median-based algorithms. 3-Dimensional median-
based processing is a new research area in image processing where so far very

few results have been published [9].

The organization of this thesis is as follows. In Section II, the median oper-
ation and its several extensions are defined. Some properties of the median
operation arc given and the tools nccessary for the theorctical analysis arc in-
trodyced. Section III provides both the theoretical and the practical results
of the research carried on image sequence enhancement. After a brief back-
ground, the newly developed filters are described along with the other 2- and
3-dimensional algorithms. Further, these algorithms are analyzed for compar-
ison purposes. In addition to the theoretical analysis, simulation results on
DVSR image sequencer are presented. In Section IV, the algorithm developed
for image sequence coding is defined and its performance is examined. Finally,

Section V gives some conclusions and possible future work.



Chapter 2

MEDIAN OPERATION IN SIGNNAL
PROCESSING

In 1974 Tukey used the median operation for smoothing statistical data for the
first time [8]. Since then the median operation has been widely used, especially
in image processing tasks. Many generalizations and modifications of the me-
dian operation have been defined [10,11,12,13]. Median-based operations are
known for their capability of following the abrupt changes in the signal, thus
reducing blurring to a large extent. It has been shown via psychophysical ex-
periments that a distorted image with sharp edges can be subjectively more
pleasing than the original [14]. In image processing tasks, median filters pre-
serve edges and high frequency details in the image, resulting in improved image
quality. Active research and development is still going on for the theoretical
analysis, as well as the applications and implementations of the median-based

operations.

2.1 Definitions

Standard median filters are a subclass of the nonlinear filters called stack filters.
They perform a windowed filtering operation where a window of fixed size moves
over the input signal. The operation is nonlinear: at each position of the
window, the median value of the data within the window is taken as the output

15]. For an odd window size of N = 2k + 1, the median of the input signal
) | g
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(x1,...,2n) is defined as the (A + 1)st largest value in the sorted sequence. So,
if
T(1) < T(2) <...< T(k41) <...< T(2k+1)

is the sorted mput sequence, the output of the standard median filter 1s given
as

y(n) = MED[xy,...,xN] = Tty (2.1)
For even window size, the median can be taken as the average of the two middle
samples in the sorted sequence [16]. However, in most cases the window size is

fixed to be an odd integer.
The median of N input samples (x1,...,2n) can also be defined as the value
that minimizes the mean absolute error, i.c.,

N N
Z |m1n.e(l - -'171'] < Z ly - ’l‘il ) for all y. (
1=1

1=1

[
©
SN’

If the window size is odd then the median is unique and is always one of the

input samples. If the window size is even then there can be an infinite number

of possible values that minimize the mean absolute error.

The median of a biexponentially distributed input sequence gives the maximum
likelihood estimate of the mean of the distribution. If (z1,...,2y) are random
variables with a probability density function
flz) = Seel=—A (2.3)
2
where o > 0 is a scalar and £ is the mean, the maximum likelihood estimate
of B is given by MED][zy,...,2y]. This can be easily proved by taking the

logarithm of the likelihood function

AN "
L(B) = (%) [Jeel=A (2.4)

and maximizing 1t with respect to f. Median operation has several properties
that make it suitable for image processing tasks. First, its response to an

impulse is zero, implying that it is very effective in attenuating impulsive noise.
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Second, its step response is a step, implying that it preserves abrupt changes
in the signal, therefore reduces blurring. Finally, since the output of a median
filter is always one of the input samples, there are signals that pass through
the median filter unchanged. These are known as the root signals of the filter.
Since median filters are nonlinear and do not have a passband in the sense of

linear filters, these root signals may be considered as the passband of the filter.

Many generalizations and modifications of the median operation have been in-
troduced [10,11,13]. Since we will later use them, we now describe one of these
modifications: the weighted median filters. In weighted median filters, each
sample x; within the window is associated with a corresponding weight W;.
Usually W;’s are restricted to be positive integers, and ), W; is odd, but the
definition can easily be extended to non-integer weights. For positive integer
weights, each sample is duplicated as many times as its weight and the median of
the overall sequence is taken as the output [17]. The notation < Wy,..., Wy >

will be used to show the weighted median filters. This can be illustrated by a

simple example.

Example: The output of the filter < 1,1,3,1,1 > 1s obtained as
Y= A/IED[.T],.'CQ,.'U:},.T(},.T,'},.?M, CUS],

= MED[x1,22,30 3,24, 25)].
Here o shows the weighting operation. If this filter is applied to an input
sequence z = (3,2,4,5,1) the output will be

y = MED[3,2,4,4,4,5,1] = 4.

An equivalent definition of the weighted median filter is given as the value y

that minimizes the sum, "

N
$(y) =D Wilei—yl. (2.5)
1=1

It can be shown that both definitions are equivalent when W;’s are restricted

to be positive integers [24]. Finally, it should be noted that standard median
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filters are a subclass of weighted median filters where all the weights are fixed

as unity.

2.2 Threshold Decomposition and Stacking Property

Both the median filters and the weighted median filters are a subclass of stack
filters. Therefore they satisfy the two basic properties that define a stack filter,
i.e., the stacking property and the threshold decomposition property. These
properties are essential tools for the theoretical analysis of the median-based

filters, and are described below.

Two signals = (z1,...,zy) and y = (y1,...,yn) “stack” if z; > y; for cach
i € {1,...,N}. This is denoted as z > y. A filter S(.) is said to possess the
stacking property if and only if

S(z) = S(y) whenever z > y. (2.6)
Stacking property is a consistency rule which guarantees that the order of the

input signals will not be changed by filtering.

Threshold decomposition is used to decompose an M-valued signal into M-1
binary signals. Given an M-valued signal X = (X;,...,Xy), the M-1 binary
signals can be obtained as follows:

1, Xi>2m
T’."':{ b= , m=1,...,M—-1. (2.7)

o 0 , otherwise

The signal X can be expressed as the sum of its binary decompositions, i.e.,
M-1

X=> z". (2.8)

m=1
Note that 2! < a! for each ¢ € {1,...,N} for s > ¢, i.e., the binary signals

f
obtained by the threshold decomposition of X form a stack of zeros on top of

a stack of ones.

If the output of a filter can be obtained by first threshold decomposing the

input signal to M-1 levels, then filtering the signals at each threshold level in
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the binary domain, and then summing up the outputs at each level, the filter
1s said to possess the threshold decomposition (THD) property. This can be

illustrated by a simple example shown in Figure 2.1.

23011332 — MEDIAN |}— 22111332
01000110 ——  median 00000110
11000111 —  median 11000111
11011111 — median }— 11111111

Figure 2.1 Threshold decomposition of 3-point standard median filter.
In the binary domain, the median operation reduces to the
application of a positive Boolean function on the input vari-
ables. '

Threshold decomposition is a very useful tool which reduces the analysis of

M-valued signals to binary signals. The results obtained in the bhinary domain
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can then be generalized to integer domain taking each level into account. This
property together with the stacking property has been largely used since their

development by Fitch et al. [18].



Chapter 3

IMAGE SEQUENCE ENHANCEMENT

3.1 General

The enhancement of noisy images has been extensively studied in the literature
[19]. However, very little has been reported on the enhancement of image se-
quences. The extension to the third dimension has two major improvements
over 2-dimensional algorithms. First, it gives a significant freedom to the de-
signer by making various approaches possible. Second, the results obtained via
3-dimensional processing are far better than 2-dimensional processing since the
information present in time is used. The major reason of the linnted success
obtained by 3-dimensional processing of image sequences is the insufficiency of

many existing algorithms which deal with the motion in the sequence.

3-Dimensional linear FIR, IIR, and Kalman filters have been developed for the
enhancement of image sequences [20,21]. These have been found to blur sharp
edges as in the case of linear processing of 2-dimensional images in addition to
the blurring in the moving arcas. Since median-based filters are proved to be
better than linear filters in the preservation of sharp edges and hLigh frequency
details, 1t 1s natural to expect the same ilnprovemucnt in 3-dimensional process-
ing. In fact, the standard median filter has alrecady been found to preserve the
motion better than linear filters even in the straightforward application to time

dimension [7]. However, it still requires motion detection and motion compen-

10
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sation to obtain good image quality. Adaptive filtering has heen applied in the
area of medical imaging where the enhancement of image sequences is of critical

importance in spite of the increase in cost and complexity [22].

The first example of 3-dimensional median-bascd nonlinear filters developed
with the aim of preserving motion has been given by Arce et al. [9]. These
filters have been quite successful in the preservation of motion, but they have
rather poor noise attenuation. As will be seen, substantial improvement over

these algorithms has been obtained by the filters introduced in this thesis.

3.2 Filtering Structures

In this section, two new median-based 3-dimensional filtering structures will be
introduced and their recursive versions will be defined. There are very few ex-
amples in the literature of this kind. For this reason two that are first introduced
by Arce et al. will also be presented. Finally, the 2-dimensional algorithms that

are developed and used for comparison purposes will be described.

3.2.1 3-Dimensional Planar Filter (P3D)

The first 3-dimensional algorithm is based on the multilevel median structure
introduced in [23]. The structure is shown in Figure 3.1. It consists of four
standard median filters. Each of the 5-point median operations in the first
level operate on a different plane of the 3-dimensional image sequence, i.e., on
the x-y, x-t, and y-t planes. This is the reason why the filter is called the 3-
dimensional planar filter. For a discrete spatio-temporal image sequence given
by {I(z,y,t): a,y,t € Z} where Z is the set of mtcgcx numbers, the output of

the 3-dimensional planar filter is defined as follows
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Definition 1:

The three first level filters are
mzy(z,y,t) = MED[I(z +r,y,t), I(z,y +rt), [(2,y,t)], r = £1;

mai(,y,t) = MED[I(z + r,y,t), [(z,y,t + 1), I(z,y,1)] , r =£1; (3.1)
myi(w,y,t) = MED[I(z,y +1,0), I(z,y,t + 1), I(z,,8)] , = %1,

where r takes both 4+1 and -1 values, 1.e., cach standard median filter in the first

level has five input variables, and the final output, fpap (T(:r, Y, f)), s given by

Y(2,y,¢) = fpon (1(x,v,1))

= MED [mzy(m, Y, t), mg(, ¥, t), my(z, y, t)J :

|

{ Median (

(3.2)

Median ’ ’ Median ]' ‘VVW.Median

L
T T NN

Figure 3.1 The multilevel structure for the 3-D planar filter (P3D).

Note that, when the image sequence is static, the consecutive frames are iden-
tical and thus, I(z,y,t —1) = I(z,y,t) = I(z,y,t +1). In this case, the output
sequence is equal to the input sequence, resulting in perfect reconstruction. The

filter preserves all high frequency details of static image sequences.

Usually the recursive versions of median-based filters have higher noise atten-

uations. In this thesis, the recursive version of P3D is also developed. It is

denoted by P3DR and is defined as follows.
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Definition 2:

The three first level filters of P3DR are
May(x,y,t) = MED [}"(;Ir —1,y,0), Y (wr,y — 1,t), I(x,y,t),

I+ 1,y,8), I,y + 1,0 5

mgi(z,y,t) = MED [}/(:L‘ - 1Ly, t),Y(a,y,t — 1), I(z,y,t),

(3.3)
I(;I: -+ 17 s f)» [(11 Y, -t 1)] )
my(a,y,t) = MED [Y(rv, y—1,8),Y(x,y,t — 1), I(x,y,t),
I(x,y 4 1,t), I(x,y,t + 1)J ,
and the final output, fpspnr (I(a:,y,t)), 1s given by
Y(z,y,t) = MED [mzy(:v, Yy, 1), mae(x, v, t), my(T, v, t)J X (3.4)
3.2.2 3-Dimensional Multilevel Filter (ML3D)
The second filter developed is based on the preservation of different features in

the first level of the multilevel structure. The first level consists of two 7-point
median filters each preserving different features of the input image. The mul-
tilevel structure is shown in Figure 3.2, For a spatio-temporal image sequence
{I(z,y,t) : z,y,t € Z} where Z is the set of integers, the filter operation can

be formulated as follows.
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Definition 3:

The first level T-point medians are

my(z,y,t) = MED[I(x +r,y,t), I(z,y + 1,1),
Iz, y,t+r), I(x,y,1)] , r = £1;

v (3.5)
mx(z,y,t) = MED{I(x +r,y+r,t),I(x + 1,y — 1, t),
Iy, t+r), Iy, 1)), v = £1,
and the final output, farr3p (I(rzt, y,t)), 1s
¥ ('1")1 vt) = fA1L3D <I(Tv yat)) (36)

= A4ED[777.+(CII, y>t)7 77’Lx(-"37 Uat),[(l', Y, t)] :

A

Median |
ey i

l L

Median ! : Median !

i
|
- | |

T T T T P T

Figure 3.2 The multilevel structure for the 3-D multilevel filter (ML3D).

For comparison purposes, the first level outputs are analyzed separately. The
first one (m4) preserves plus-shaped features and is called PL3D. The sccond
one (my) preserves cross-shaped features and is called CR3D. It is possible to
define the recursive versions of these filters, denoted by PL3DR, CR3DR, and
ML3DR respectively, as follows.
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Definition 4:

The first level 7-point medians are

my(x,y,t) = MED [Y('rzr - Ly, ), Y(a,y —1,t),Y(z,y,t — 1),

Iy, t), I(a 4+ 1y, 1), Iz, y + 1,1), I(x,y,t + 1)J ;

my(x,y,t) = MED {)(7, - lLy—-11),Y(z+ 1,y — 1,t), ¥ (a,y,t — 1), 30
I(r,y, ), [ = 1y + 1,0, I(x + Ly + 1,0, [(a,y,t + 1)
and the output, farrapr <I(:c, y,t)), is
Y(e,y,t) = MED [m+(z,y,t),mx(:v,y,t),I(a:,y,t)] . (3.8)

3.2.3 Unidirectional (UNI3D) and Bidirectional (BI3D)
Multistage Filters

In [9], Arce et al. intioduced two types of multilevel median-based filters,
i.e., unidirectional and bidirectional multistage filters. These filters are defined
and some simulation results are given in [9]. In this thesis, in addition to
the simulations, the theoretical analysis will also he carried out for these filter
structures under a specified mask and they will be compared with the newly
developed algorithms. For the sake of completeness, the definitions of the filters

will also be given here.

Consider a spatio-temporal input sequence {I(z,y,t) : x,y,t € Z} where Z is
the set of integer numbers. The unidirectional subwindows, Wy, Ws, W3, Wy,
Ws, of a (2N + 1) x (2N + 1) x (2N + 1) cubic windpw are defined as
WA(I(e,5,0)] = {Iz +7,9,8) =N <v < N},
Woll(z,y,t)] = {I(z +ry+7t): =N <r <N},
Will(z,y,0)]) = {I(x,y +r,t) =N <r <N}, (3.9)
Wall(z,y,8)] = {I(x + 7,y —r,8): =N <7 < N},
Ws[I(x,y,t)] = {I(x,y,t+7) =N <r < N}.
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These masks can be seen in Figure 3.3 for N = 1. Let

si(z.y,t) = MED [I(.) e Will(z,y,1)])] , 1<i<5. (3.10)

Definition 5:

Using equations (3.9) and (3.10) , the output of the unidirectional multistage
filter is given by

Y("L',?/at) = MED zm,(,,z(a;,y,t‘),z,,,,,'n(:z:,y,t),I(a:,y,t)} ) (3.11)

where

Zmar (0, Y, 1) = MaX|<i<s [,:','(';:r,y,t)] \
(3.12)

Zmin(2, Y, 1) = min)i<s [zi(:z:, y,t)] .

Figure 3.3 Unidirectional masks defined in (3.9) .

For bidirectional multistage filters the subwindows, Wy 5y, W 5), Wiy 5), W4 5),
of the cubic window are also of bidirectional type and are given as

Wi s) [I(x,y,t)] — W [I(m,y,t)] Jws [I(:r,y,t)] J1<i<4.  (3.13)
The bidirectional subwindows are shown in Figure 3.4 for a 3 X 3 x 3 cubic

window. Let
2% 0,t) = MED[I(-) € Wy I(,,0)]] , 1Si < 4. (3.14)
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Definition 6:

Using equations (3.13) and (3.14) , the output of the bidirectional multistage

filter is given by
Y*(@,y,8) = MED [50,(,9,8), 250(0,v,8), 1w, 0,1)| (3.15)

where

z;*-naz(xa Y, t) = maxi<i<4 [z(i,S)(xa Y, t)] y
(3.16)

z (2,5 1) = minygicq [3(i,5)(-7f, Y, t)] :

It is also possible to define the recursive unidirectional and bidirectional filters

as usual.

Figure 3.4 Bidirectional subwindows defined in (3.13) .

3.2.4 2-Dimensional Filters

Basically, three 2-dimensional filters have been uged to make comparisons with
the 3-dimensional algorithms that have been developed. The first one is the

simple (+)-shaped 5-point median filter (MEDIANS5) given by
Y(z,y,t) = MED [I(a: +r9,t), I(z,y,t), I(z,y + r,t)] , r==%x1, (3.17)
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where r takes both of the values +1 and -1. The second nonlinear filter that is
developed is the 2-dimensional counterpart of ML3D. Instead of taking pixels
from the previous and next frames, a weight of three is given to the center pixel
I(z,y,t). This filter is called multilevel weighted median filter (MLW2D) and

is formulated as follows.
Definition 7:

The two first level filters are

my(z,y,t) = MED [I(a: +ry,t), [z, y + 1',t),3<>I(a:,y,t)J ,

(3.18)
mx(z,y,t) = MED [I(z +ry+rt),I{z+ry -~ r,t),3<>I(.7:,y,t)] ,
where r = £1, and the final output is
Y(z,y,t) = MED [m+($,y,t),m><(m,y,t),I(:c,y,t)} X (3.19)

Finally, the last 2-dimensional filter used for comparison is a linear averaging

filter (LAVE) in a 3 X 3 square window given as

Y(x,y,t)=[I(x -1,y —1,t) + I(x,y —1,t) +I(x + 1,y . 1,1)
+ Iz —1,y,t) Iyt +Iz+1ly1) (3.20)
+I(x -1,y +1,1) +1(zy+1,¢) ”(Q’“’VH’”J/Q'

3.3 Derivation of the Boolean Functions

A Boolean function is positive if and only if it contains no complements of its
input variables in its minimum sum of products (MSP) form. Each positive
Boolean function (PBF) has a unique MSP form [24]. It has been shown that
PBEF’s have the stacking property, i.c., each PRF represents aostack filter [25].
Since multilevel median filters belong to the class of stack filters, there is a
PBF corresponding to each of the filters defined in Section 3.2. These PBF’s
arc used in the analysis of the filters in the binary domain. The results ean then

be extended to multi-valued signals by the threshold decomposition property.
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The PBF corresponding to a stack filter can be found by listing all combinations
of the input variables having value one such that the output of the filter will also
be one. This expression can then be simplified to obtain the MSP form. For
multilevel filters it may be complicated to find all possible combinations when
the number of input variables increases. To overcome this difficulty, the PBE’s

for 3- and 5-point median operations given below are used in the derivations.
MED(zy,x2, 23] = 2122 + x173 + 2ou3 . (3.21)

MEDI|zy, 29,23, 24, T5] =212203 + 12224 + T1T2T5 + 712334
4212325 + T1T4T5 + T2T3T4 + T223T5 (3.22)
+T224T5 + T3T4Ts .
To simplify the expressions, the notation given in Figure 3.5 will be used in the
derivations and the analysis. In this notation, the subscript ‘0’ stands for the
previous frame (¢ — 1), the subscript ‘1’ stands for the current frame (t), and
the subscript ‘27 stands for the next frame (¢ +1). For the current frame, the
notation for the pixels within the given tmask can be summarized as follows.
Ay =I(z—-1,y—1,t) Br=I(z,y—-1,t) Ci=I(xz+1y—1,1)
D, =I(z —1,y,t) Ey = I(z,y,t) Fy=I(z+1,y,t)
Gy=I(x—-1,y+1,t) H =Ia,y+1,t) L =Ix+1y+1,1t)

Only the proof for Proposition 1 will be given here. The proofs for other propo-
sitions can be found in Appendix A.

Proposition 1:

The PBF corresponding to P3D is given by
frap(Eo,By, Dy, By, Iy, Hy, B2) = EoErEp + BiEvHy + DiEnFy

+(Fo -+ ) ByDVEy+ B\DH + B I\ Fy + By F H,
+E\F1Hy + D1EVHy + B1D Fy + D Fi1 Hy)
+EoE2 (B1+ Hy)(Dy + F1) .
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Figure 3.5 3 x 3 x 3 cubic mask representing 3 successive frames.

Proof :

Let Z1, Z2, Z3 be the outputs of the three 5-point median filters on the first

level of P3D. By equation (3.22) these can be expressed as

Z, =MED|(By, Dy, Fy, F1, Hy]
=DB\DWE, + BYD\F\ + Bi\D,H, + B\E\F\, + B,E\H,
+Bi"WHy + D1E\Fy + DEyHy + Di\F\H, + E\F\H; ;
7, =M ED|Ey, Dy, Er, F, Es]
=EyDEy + EgD1F) + EoDvEs + EgE\Fy + EoE E»
+EoFyE2 + D1EYFy + D1E1E2 + D1FYEy + EYFYE
Z3 =MED(Ey, By, By, Hi, B
=EyB\Ey + EoByH, + EoDyEy + EWE\Hy + EyE\E,
+EoH1E> + ByE1Hy + BiEV\Ey + B\H1Ey + E\HVE, .



CHAPTER 3. IMAGE SEQUENGE ENITANCEMENT 21

The output of P3D is given by the median of Z;, Z», and Z3.

frsp(Eo, By, D1, By, F1, H1,E2) = MED|Zy, Za, Z3)

(3.24)
=212y + 2123 + 2273 .

where

212y =EyB D Ey + EgBy\ D\ Iy + EyB YV Fy + EyB D H B>
+ EyDyE1Hy + EoDiFi1Hy + EyE\Fi1Hy + EoBiE1H E»
+B1D1EVEy + BiD1FyE2 + BY\E\FNEs + EoB FyH\E»
+D1E\H\Ey + D1/FYH By + EYFNH1Ey + DEVFy
Z1Z3 =EyB1D\E, + EoB1D1Hy + EyD1E1Hy + EoB1D1F1Es
+ EyB1E\Fy + EoB1H\Fy + EoE1F1Hy, + EgD1E L Es
+ B1DyEV\Ey + B\D1H\E2 + D1E\H\E>» + EgD H F\Es
+DV\E\Eys + BiH YWy + EVIVHVEy + DVEHy
2223y =EyB1D\Ey + EgD1EVHy + E031D1E2 + EyB1 Dy F1H,
+ EyDyH By + EoB1EVFy + EgE\F1Hy + EgB1F\Es
+ EcF\H\Ey + EgE1E2 + ByDFEV\F1H,y
+BDE\F\Ey + DyEVFVH By

Substituting the expressions given above for Z,2,, Z,2Z3, and Z2Z3 in (3.24)
and making the simplifications using Boolean algebra results in the expression

given in (3.23) .
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Proposition 2:

The PBF’s corresponding to the 7-point median filters, PL3D and CR3D, in

the first level of 3-dimensional multilevel filter are

frran(Eo,By,Dh, Er, Fy, Hy, E2) = B\ Dy F1 H|
+E0E1E2(By + D1 + Fi + Hi) + (Eo Er + EoE
+E\Ey))(B\Dy + Bi1Fy + BiyHy + DFiy + D Hy + F1Hy)
+(Eo + By + E»)(Bi1D1FA+ ByD Hy + ByFiH, + D, F1H,) ;
fersp(Eo, 41, Ch, En, Gy, I, Ee) = A1C1GL
+EyE\Ey( A1 +C1+ G+ 1)+ (EoEr + EyEs
+E1E))(A1C+ A1Ghr+ AL+ CiGy + CivL + Gi L)
+(Ey + Ey + E2)(A1C1Gy + 41Ch L) + AGL L + C1GL )

and the PBF corresponding to ML3D is
fursp(Eo,Ar, Bi, Ch, Dy, Ev, Fy, Gh, Hy, Iy, Er) = Ei(A4CiGy

+4:C L + A\G I + CiG Iy + BYDFy + B1DH,
+B1FH) + DiFiHy) + (Eo + E9)(A1C1G1 + A1C1 L
+AGi + CG L))(B/DvFy + BiD1H, + B FyH,

(3.25)

(3.26)

+ D1 F1Hy) + E1(Eo + Eo)(A1C1 + A1Gy1 + ALy

+CiGy + Ci} + GiI1 + BiDy + ByFy + BiHy + DiF
+ Dh1Hy + Fi1Hy) + EoEy(A1Cy + A1Gy + A1y

+Ci1Gy + C11 + Gi1)(B1Dy + ByFy + B H;

+Di1Fy + DiHy + FiHi) + EoEr1Ex(A + By + C1 + Dy
+F + G+ H + L)+ Ai/DC\Dy Gy H T

(3.27)
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Proposition 3:

The PBF corresponding to Arce’s unidirectional multistage filter for a 3 x 3 x 3

cubic window (N = 1) is given by
Junisp(log, Ay, By, Cyy Dy Loy I, Gy Hy Ly, 0s) = [0 (A + By

+C1+ D1+ R +Gi+Hy + 11 + By + E») (3.28)
+A1B1CiD1F\GiH\L1EWE, .

Proposition 4:

The PBF corresponding to Arce’s bidirectional multistage filter for a 3 x 3 x 3
cubic window (N = 1) is given by

fpisp(Eo,Ar, By, C, Dy, By, Fy, G, Hy, Iy, Ez) = Ey(B\Hy + D\ Fy
+A41 1 + C1Gy) + (B + E2)A1 B1CYyD PG H I} + EyEL Eo
+Ei(Eo+ Ex) A1+ B+ Ci+ D1+ Fi+ G+ Hy + Ih)
+ Lo Ey( By + H ) Dy A+ I)(Ay + L )(Cy + Gy) .

(3.29)

Proposition 5:

The PBF’s corresponding to 2-dimensional weighted median filters, PLW2D

and CRW2D, in the first level of multilevel weighted median filter, MLW2D,
are

fpiwap(Bi, Dy, By, Fy, Hi) = BiD1F1Hy + Ey(By + D1 + F1 + Hi) ; (3.30)

ferwap(41,C1, B, G, 1) = L1C1GhL + Ey(A1+ Ci+ G+ 1), (3.31)

and the PBF corresponding to multilevel weighted median filter, MLW2D, is

Tarpwoan (A8, Cy Dy EG GG ) = 4By C Dy VG T )
+E(A1+Bi1+Ci+Dy+ B+ Gi+Hi+1h).



CHAPTER 3. IMAGE SEQUENCE ENHANCEMENT 24
3.4 Some Observations on Root Signal Structures in Binary

Domain

The Boolean functions obtained in Section 3.3 may be used to analyze the be-
haviour of the filters in binary domain. This section does not intend to give
a complete root signal analysis of the filters described. Only some observa-
tions will be made on the root signal structures of these filters based on the

corresponding Boolean expressions.

Observation 1:

The unidirectional multistage filter (UNI3D) introduced by Arce et al. is equiv-

alent to the following weighted median filter.
)"(ﬂf,y,f.) = ]\/[ED[E(),A],B|,C],D1,9OE],F],Gl,Hl,L,EQ] .

This observation follows directly from (3.28) , since this is the same expression

for the PBF of the weighted median filter given above.

Observation 2:

The 2-dimensional multilevel median filter (MLW2D) given in (3.19) is equiva-

lent to the following weighted median filter.
Y(.’IT,:I/,t) = ]\1ED[A],B1,C],D1,7<>E1,F],G],H],[]] .

The positive Boolean functions obtained for UNI3D and MLW2D show that
these algorithms filter only single impulsive points within their masks, like a ‘0’
in the middle of all 1’s or a ‘1’ in the middle of all 0’s. In the integer domain
this corresponds to the maximum and minimum points, 1.e., the input pixel is
changed only if it is an extremum point within tlfe filtering mask. So, all image

sequences that do not contain single impulses are roots of UNI3D and MLW2D.

The behaviour of 3-dimensional planar filter (P3D), 3-dimensional multilevel

filter (ML3D), and bidirectional multistage filter (BI3D) can be analyzed in
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three separate cases according to the motion content of the image sequence.
The first case corresponds to stationary sequences, the second one corresponds
to slowly moving sequences where two successive frames out of three are equal,
and the last one corresponds to fast moving sequences where each successive

frame is different from the one before.

Case 1: Ey = E; = E». The first case corresponds to stationary sequences. In

this case the outputs of the filters can be expressed as follows.
fr3p(-) = Ey;
fprap() = En;
Ey=Ey=Ey= < fursp(-) = AtBiCi D FiGLH (3.33)
+ Ei(A1+ B1+C1 + Dy
+F+ G+ H + 1)

Observation 3:

The above expressions show that both P3D and BI3D preserve all high fre-
quency details in a stationary sequence, i.e., all stationary mage scquences are
root signals of P3D and BI3D. The 3-dimensional multilevel filter, ML3D, still
eliminates an impulsive point even if 1t repeats in successive frames. As will be

seen in Section 3.6, ML3D has the highest noise attenuation, which is expected.

Case 2: Ey = E1 # Ey or Ey # E; = Es. In the second case, only two
successive pixels out of three frames are equal. This may be considered as slow

motion in a binary image sequence.

Observation 4:

In this case (case 2), the output of P3D reduces to
fpsp =B1\ExHy + DyEVFY + BiDyEy + B1DHy + B E Fy

(3.34)
+ Dy Hy + E\["Hy + DyEH, + B,D\Fy + D/ F\H,
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which may be recognized as the 5-point median filter M ED(B,, D, Ei, F1, Hi].
Since the filter reduces to a 2-dimensional algorithm, it 1s expected to preserve

slow motion in the image sequence.

Observation 5:

The output of BI3D can bhe expressed as follows under slow motion.
fopp =A1BC\D\ NG H I + E(A + By + C,
' (3.35)
+D)1+ A+ G+ Hi+1)).
This implies that bidirectional multistage filter attenuates only impulsive points
within the 3 x 3 square mask under slow motion. Its noise attenuation is ex-

pected to be lower than that of P3D.

Observation 6:

The 3-dimensional multilevel filter, ML3D, preserves the input pixel, Ej, only
if at least two other pixels in one of the substructures corresponding to + or
x — shaped features are equal to the input pixel. This unplies that the filter
preserves all lines of arbitrary width under slow motion.

Case 3: Ey # E) # Ey(Ey = E3). In the case of fast motion, all successive
pixels in three frames are different. In the binary domain this corresponds to

oscillation in the time dimension.

Observation 7:

In this case, the following observation can be made on the output of P3D.
frap(')=FE) <= By=Ei=H; or Di=E, =F. (3.36)

This observation follows from the Boolean expression for the output of P3D

under fast motion which can be expressed as

Ey =0= fpap() =(B1+ H1)(Dy + F1);

(3.37)
Ey=1= fp3p(")=DBi1Hy + D Fy.
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The observation above implies that, under fast motion, the filter preserves ver-
tical and horizontal lines of arbitrary width, and diagonal lines that are at least

two pixels wide.

Observation 8:

In the case of fast motion (case 3), the bidirectional multistage filter preserves

all lines of arbitrary width, i.e.,

Biy=FE,=Hy or Di=F,=H; or

fy];;D(-) = F < (3.38)
Al:E1=I] or ClelzG].

Observation 9:

Under fast motion (case 3), the 3-dimensional multilevel filter, ML3D, preserves
the input pixel only if at least 3 other pixels in one of the substructures corre-
sponding to + or x — shaped features are equal to the current pixel, ;. This
implies that the filter preserves all features at least two pixels wide under fast
motion. This reduction in resolution is not critical since the eye does not require

high spatial resolution under fast motion.

3.5 Statistical Analysis

By using the Boolean expressions derived in Section 3.3, it is possible to express
the output probability distribution functions in terms of the input distributions.
An accurate statistical model for general, non-stationary sequences has not been
developed yet. However, the noise attenuation of the filters can still be obtained
for the homogeneous parts of the image where the problem is to estimate a
constant signal in additive white noise. Along édges and under motion, the

structural analysis should be used to evaluate the performance of the filter.

Let the input sequence, I(z,y,t) be an independent, identically distributed

(1.1.d.) diserete random field. The probability space of the input is given by
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(Q, F, P) where Q@ = {0,..., M —1} is the sample field, F'is the event space, and
P is the probability measure with the discrete distribution function £7(y), 7 € 2.
The binary sequence obtained by threshold decomposing the mput at level j

can be expressed as

I(z,y,t) = {1 g o

0 , otherwise
This binary sequence also forms an 1.i.d. random field with sample space
2, = {0,1}, and probability measure function,
Pr{l’ =0} = F(j —1);

_ (3.40)
Pr{ll=1}=1~F( —-1).

Given the input distribution function F(7), the output distribution functions of
the filters defined in Section 3.2 can be derived using the Boolean expressions.
The derivation will be given only for P3D here. The derivations for other filters
can be found in detail in Appendix B.

Proposition 6:

The output distribution function of the 3-dimensional planar filter, P3D, is

given in terms of the input probability distribution function F'(j) as

Fpyp(j) = F(j)* [+ 20F(j) - 5TF(j)* + 49F ()’ = 14F(j)*],  (3.41)
and the output probability density function of P3D is given in terms of the
input probability distribution (F(j)) and density (f(j)) functions as

frap(3) = f(7)F(5)%[0 -+ 80F(j) — 285F(5)* + 294F(5)° — 98F(5)") . (3.42)

Proof :

Let T(-) be the threshold function such that

; 1, I(z,y,t)>]
. = [{(: A=) ) y I bl
T (I(m, Y ”) Pey,t) { 0, otherwise

1

and
' 1, Y(z,y,t)>7
Y — Y1 — ’ y I sl
TJ (1 (.’L’, yvt)) - ) (:‘L‘,y,t) - {0, otherwise

Y
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where I(z,y,t) 1s the M-valued input sequence and Y (a, v, t) 1s the M-valued
output sequence. For the sake of simplicity in the expressions, the following

notation will be used in the proof.
Ey = IP*(z,y,1)
Ey =D+ (z,y,t - 1)
By =Dtz y,t +1)

By :Ij—H(Q:,y—l,t) B ZIj"_l(;l:-{—l,y,t)
Dy :Ij+1(flt-—1,y,t) H; :Ij+](’ll,y+1,t)

Then the output at (j + 1)st threshold level, Y7+ (2, y,t), can be expressed as
given in (3.23) . \‘
Fpsp(j) = Pr{Y(z,y,t) < j} = Pr{Y?*(z,y,t) = 0} (3.43)
Let .
Py = Pr{Y’tY(z,y,t) = 0|Ey = E; = E» = 0} ;
Py = Pr{Y?*Y(z,y,t) =0|Ey = E, = Ey = 1} ;
Py = Pr{yi+t(a,y,t) =0|Ey = E, =0, B2 = 1}
= Pr{Y?*Y(z,y,t) =0|Ey = 1, E; = E2 = 0} ;
Py = Pr{Y’*1(2,y,t) = 0|Ey = E; = 1, E> = 0}
= Pr{Y’'*(z,y,t) =0|Ey =0, F; = E» = 1} ;
Ps = Pr{Y’*Y(z,y,t) = 0|Ey = By = 1, E; = 0} ;
Ps = Pr{Y?*(z,y,t) =0|Ey = By = 0,E; = 1} .
Then, by the total probability theorem, the output distribution function can be
expressed as
Fpyp(5) =P Pr{Ey=E =FE;=0} + P,Pr{Ey=FE =FE,=1)}
+PyPr{Ey=FE1=0, Ex=1} + PyPr{Ey=1, E| = E2 =0}
+PyPr{Ey=FE;=1, E2=0} + PyPr{Ey=0, By =E;=1}
+PsPr{Ey=FEy=1, By =0} + PsPr{Ey=E,=0, E1 =1} .

(3.44)

The probabilities defined above are obtained from the Boolean expression for

P3D (3.23) .
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P3 = Pr{B1D1Hy1 + B1F1H, + BiD1F1 + D, F1Hy = 0}
= Pr{There are less than 3 ones among B, Dy, Fq, H1}

_ <3>F(j)4 + G)F(j)"(_l—F(j)) i @F(j)%l—m))g
= 6F(j)* = 8F(5)* + 3F(j)"

Py = P?"{BlDl +BR+BH+D I +DH+ F1H = 0}

= Pr{There are less than 2 ones among, B;, Dy, F1, H1}

= (o)F0r + ()FGra-ro)
=4F () - 3F()" 5

Ps = Pr{(By + H1)(D1 + F1) =0}
= Pr{(By+ H1) =0 or (D1 +F) =0}
—1—Pr{(Bi+H)=1 and (Dy +F) =1}

2

—1- [Pr{(Bl +Hy) = 1}}2 =1- [1%{191 =1 or H =1}
=1- [1 — Pr{B; =0 and H; =O}}2

2
=1— [1 — F(j)z} =2F(j)* - F(5)* ;
Py = P?‘{BlHl + D1 F) = 0}
= Pr{BiH; =0 and DiFy =0} = [Pr{B) = 0 or H) =0}

2

D)

FA

=[1=Pr{Bi=1 and H, = 1}]2 = [1-a-FG)Y]
= 4F(j)? —4F(5)° + F(5)" ;
Substituting these expressions in (3.44) results in
Fpyp(j) =F(j)* + 2F(j)* (1 - F(5)) (6F(j)* — 8F(;)* + 3F(5)*)
+2F(5) (1 - F(j))* (4F()* = 3F(5)")
+ F(5) (1 - FG))? (2F () - F(j)")
+ F(5)* (1= F()) (4F(5)* = 4F(5)* + F(5)")
=F(j)° [3+ 20F(5) = 57F(j)* + 49F(j)* — 14F(5)*] .
Finally, the output probability density function is obtained from the distribution

function.
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Proposition 7:

The output probability distribution function of the 3-dimensional multilevel
filter, ML3D, and its substructures, PL3D and CR3D, are

Frian(i) = Forsp(j) = F(7)* [35 — 84F(j) + T0F(j)? = 20F(j)°] ;  (3.45)
Fyri3n(i) =F(j)* |40 = 106E(7) + 84F () + GOF(j)’ y
— 195 F(/) + 190F(5)° — 88F(5)® + 16F(j)7] : (3:40)

and the corresponding probability density functions are
friap(i) = foran(j) = 140f(5)F (5)° [1 —3F(5) + 3F(5)* - F(J')S] ; (3.47)
Fuzan(7) =2f(G)F(G)° [80 = 265F(5) + 252F (j)? + 210F )’

(3.48)
— T80F(5)* + 855F(5)° — 440F(5)° + 88F(_7')7] .

Proposition 8:

The output distribution function of the unidirectional multistage filter for the
3 x 3 x 3 cubic mask, UNI3D, is given as |
Fynisn(i) = F()[1 = (1= FGNY] + A =FGDFG)®,  (349)
and the probability density function is given as
fonrsp(3) = £G)[1 = F()'® +10F () (1 = F(3))

(3.50)
+10F() (1= FG))' - (1= FG)®|
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Proposition 9:

The output distribution function of the bidirectional multistage filter, BI3D,

for the 3 x 3 x 3 cubic mask 1s

Fprsp(j) = F(5)* [21 = 80F(§) + 166F(5)* — 224F(5)" + 202F(5)’

3.51)
120F(5)° +45F(5)° = 11F ()" +2F ()" | .
and the probability density function is
Ferap(G) = F(HFG)? [ 63 — 320F(j) + 830F(j)? — 1344F(j)° .

+ 1414F(j)* — 960F(j)° + 405F(j)° — 110F() +22F(j)* | .

Proposition 10:

The output distribution function of the 2-dimensional multilevel weighted me-

dian filter, MLW2D, and its substructures, PLW2D and CRW2D, are
Fprwap(J) = Ferwap(y) = F(])[l—(l — F(37)) ] - (1= F(5)) F(7)% (3.53)
Fypwen(i) = FG) 1= (1= FG)*| + A =FG)FGP . (3.54)
and the corresponding probability density functions are
friwan(i) = forwan(5) =£() |1 = FG)* +4F () (1 - F(5))
+4F() (1= F())’ - (1= FG)'

fuzwan(i) = F()[1 = FG)P +8F(G) (1 - F(7))

(3.56)
+FG) (1= FG) = (1= F(;))° .

Although the closed form formulas for various noise distributions like Gaussian,
biexponential, and uniform noise are rather complicated, it is possible to make
the statistical analysis by numerical methods. The probability distribution and
density functions of the filters are plotted in Figures 3.6-3.11 for various noise

types and filters. These graphs show the noise attenuation of the filters relative

to one another.
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The output statistics of P3D, and UNI3D for zero mean, unit
variance Gaussian noise, (a ) the probability density func—
tions, (b) the probability distribution functions.
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Figure 3.7 The output statistics of BI3D, and ML3D for zero mean, unit

variance Gaussian noise, (a) the probability density func-
tions, (b) the probability distribution functions.
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Figure 3.8 The output statistics of P3D, and,UNI3D for zero mean,
unit variance hiexponential noise, (a) the probability density
functions, (b) the probability distribution functions.
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1
The output statistics of BI3D, and ML3D for zero mean,

unit variance biexponential noise, (a) the probability density
functions, (1) the probability distribution functions.
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Figure 3.10 The output statistics of P3D, and UNI3D for zero mean, unit
variance uniform noise, (a) the probability density functions,
(1) tlie probability distribution functions.
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Figure 3.11 The output statistics of BI3D, and ML3D for zero mean, unit
variance uniform noise, (a) the probability density functions,

(b) the probability distribution functions.
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3.6 Simulations

3.6.1 DVSR Video Sequencer

The filters that are developed and analyzed are simulated on a VTE DVSR 100
[26] image sequencer (Figure 3.12). The sequencer makes it possible to test
algorithms on real image sequences without actually implementing them in
hardware. In the simulations, the filtering structures are implemented in the
C programming language. The programs are run on a SUN-3 workstation and

the resulting sequences are transferred to the image sequencer for storage and

display.
Address processor VME-bus control system
PDOS Systim Control

bit slice 32 bit Motorala 68020 68021

address space 512 Gb 20 Mb Hard disk, fbppy
Analog/ Analog/
Digital Digital
Video Input VTE DVSR 100 Output Video
Input processor processor Output

High speed ram

Y 128 Mb - 1.7 Gb Y

Yuv YW/

RGB RGB

156 MHz 156 MHz
DMA

Host: H  Background disk m  System console
SUN 160 u 650 Mb H  Amiga 500
dma 4Mbl/s H 10 Mb/s H  Raster
system control H  programming

= tools

Figure 3.12 The block diagram of the simulation system,
VTE DVSR. 100.

The sequencer makes it possible to compare results of different a.lgorithms with
the original sequence. It is capable of being progra.mmed for different video
rasters. The current RAM memory which is 256 Ml)jd,es is expandable to

.SGbytes. The sequencer has input and output processors for signed sampling
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and reconstruction, and a video bus for data transfer. The maximum transfer
capability of the video bus is 156Mbits/s. It is possible to process sequences
in the Y, YUV, or RGB domains. In image sequence processing, subjective
visual quality is as important as the mathematical error measures like the mean
square error or the mean absolute error. The visual quality of the filter outputs

can easily be evaluated by the display capability of the image sequencer.

3.6.2 Noise Attenuations and Application to Image
Sequences

Noise attenuations of all the filters that are defined in Section 3.2 and their
recursive versions are calculated for both Gaussian and biexponential inde-
pendent, identically distributed (i.i.d.) additive white noise using a 4 frame
(256 x 128), zero mean, unit variance noise sequence. The results are given in

Table 3.1.

The filters are also applied to still and moving image sequences with additive
impulsive, Gaussian, and biexponential noise. For impulsive noise, the probabil-
ity of an impulse is 0.1 with equal probability for positive and negative impulses.
For additive Gaussian and biexponential noise distributions, the variance is 30
and the mean is zero. The still image sequence is a 4 frame sequence cre-
ated using the image “BRIDGE”. The motion sequence is a 19 frame sequence
called “COSTGIRLS”. The mean square error (MSE) and the mean absolute
error (MAE) between the original sequence and the filter outputs are given for

the “BRIDGE” sequence with impulsive and Gaussian noise distributions in

Table 3.2.

The filters are also applied to color image sequences on a scalar basis, i.e., each
. ! . .
color component is filtered separately. Parts of the original sequences and the

filter outputs are shown in Figures 3.13-3.16 for visual evaluation.
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Table 3.1 Output variance of various filters when the input is zero
mean, unit variance ri.d. noise with Gaussian and biexpo-
nential distributions.

FILTER-TYPE GAUSSIAN BIEXPONENTIAL
P3D 0.238 0.137
P3DR 0.117 0.061
ML3D 0.222 0.124
ML3DR 0.119 0.059
PL3D 0.214 0.119
PL3DR 0.081 0.039
CR3D 0.213 0.118
CR3DR 0.080 0.036
UNI3D 0.735 0.579
UNI3DR 0.735 0.579
BI3D 0.363 0.231
BI3DR 0.298 0.181
MLW2D 0.687 0.529
MIW2DR 0.678 0.529
PLW2D 0.520 0.376
PLW2DR 0.518 0.375
CRW2D 0.507 0.367
CRW2DR 0.505 0.366
MEDIANS 0.293 0.178
MEDIANSR 0.152 0.083
LAVE 0.113 0.113
LAVER 0.101 0.100

As the simulations show, the two proposed 3-dimensional algorithms (P3D and
ML3D) have higher noise attenuation than Arce’s unidirectional and bidirec-
tional filters. Although the 2-dimensional 5-point median and linear average
filters seem to have better noise attenuation, they arc not preferable since they
also filter the high frequency details in the image causing blurring. This is why
they do not give good results when applied to real image sequences as can be
seen from the results presented in Table 3.2. The simulations made on moving
image sequences show that the 3-dimensional filtets presented here do not dis-
turb the motion content of the image. The only disadvantage of 3-dimensional
filters compared to their 2-dimensional counterparts is that they require more

memory, two frames in our case. However, with current VLSI technology, the
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Table 3.2 MSE and MAE between the original “BRIDGE” sequence
and the filter outputs for various noise distributions. For
impulsive noise, the probability of an impulse is 0.1 and for
Gaussian noise, the variance 1s 30.

FILTER-TYPE IMPULSIVE IMPULSIVE GAUSSIAN GAUSSIAN
MAE MSE MAE MSE

P3D 0.989 37.641 12.544 251.794
P3DR 0.954 22.322 - 10.619 186.492
ML3D 1.242 34.314 12.368 244.233
ML3DR 1.457 29.047 10.872 194.157
PL3D 1.715 36.670 12.156 236.670
PL3DR 1.950 33.177 10.118 171.959
CR3D 2.828 74.471 13.028 277.217
CR3DR 3.159 73.073 11.414 223.496
UNI3D 6.347 833.632 21.045 666.403
UNI3DR 6.347 833.632 21.045 666.403
BI3D 1.301 106.394 14.909 347.280
BI3DR 1.011 58.936 14.028 308.323
MLW2D 6.074 722.766 20.335 629.180
MLW2ZDR 6.074 722.7606 20.335 629.180
PLW2D 4.643 424.764 17.796 497.709
PLW2DR 4.620 424.919 17.814 498.620
CRW2D 5.683 466.005 18.212 524.930
CRW2DR 5.605 464.819 18.188 523.455
MEDIANS 5.720 154.661 14.881 359.088
MEDIANSR 5.421 119.197 12.992 283.006
LAVE 15.184 422.844 12.440 270.612
LAVER 14.589 400.602 12.224 259.358

algorithms can already be implemented at video rates [27].
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(a) (b)

N4 K'l

(©) (d)

Figure 3.13 Part of the original noisy “BRIDGF” sequence and the filter
outputs for impulsive noise with probability 0.1. (a) Original
image, (b) P3D output, (¢) ML3D output, (d) UNI3D out-
put, (o) BI3D output, (f) MLW2D output, (g0 MEDIANS

output, (h) LAVE outi:)ut.

43



CHAPTER 3. IMAGE SEQUENCE ENHANCEMENT

™ ; m
“"Am %

(e) (f)

(9) (h)

Figure 3.13 Continued.
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@ (b)

(c) (d)

Figure 3.14 Additive Gaussian noise of variance 30. Parts of (a) the
original noisy “BRIDGE” sequence, (b) P3DREC (recur-
sive) output, (¢) LAVE output, (dj UNI3DREC (recursive)

output.
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(a)

Figure 3.15 Additive Gaussian noise of variance 30. Part of (a) the
original noisy “COSTGIRLS” sequence, (b) LAVE output,
(c) P3DREC (recursive) output.
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Figure 3.15 Continued.
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(c)

Figure 3.15 Continued.
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@)

(b)

Figure 3.16 Impulsive noise of probability 0.1. Frame 8 of (a) the original
noisy “COSTGIRLS” sequence, (b) PSD output.
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Chapter 4

IMAGE SEQUENCE CODING

Images and image sequences contain large amounts of data. Because of the lim-
itations in bandwidth and memory, compression is needed for their storage and
transmission. Many algorithms have been developed for the compression of im-
ages using predictive, interpolative or transform coding methods [28]. Recently
advances in TV technology and the introduction of High Definition Television
(HDTV) to the consumer market increased the interest in image coding. Active

research is still going on in this field.

4.1 General

For high resolution TV applications, transform coding methods have been found
to be complex. For this reason, a significant part of the research on TV ap-
plications of image coding is focused on predictive and interpolative coding
techniques. One main difference between image coding and image sequence
coding is the motion content of image sequences. It has been found that a
compromise between resolution in time and resolution in space has to be made
to obtain good visual quality. The eye is insensitive to high frequency details
around moving parts of the image sequence where high resolution in time is
critical. In still parts of the image, high resolution in space is essential for
acceptable image quality whereas time resolution can be lower. This observa-

tion leads to adaptive image coding techniques which the current HDTV image

50
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coding systems are based on.

There are basically two main image coding structures developed for HDTV
applications. The first one is the Japanese HDTV called MUSE [29]. This
system uses a motion detector and two different coding-decoding methods for

moving and non-moving parts of the image sequence. The block diagram of the

MUSE encoder is shown in Figure 4.1.

The second HDTV system is developed by EUREKA as the European HDTV
and is called HDMAC [31]. This system processes the image sequence in three
different branches corresponding to no-motion, slow-motion, and fast-motion
areas of the image. A different coding-decoding method is used in each branch.

The block diagram is shown in Figure 4.2.

In adaptive image coding algorithms, the performance also depends on the reli-
ability of the motion detector. To have robust systems against motion detector
errors, the algorithms developed for each branch should be able to perform rel-
atively well under different conditions. In this thesis, a 3-dimensional median-
based interpolative coding-decoding method is developed for no-motion parts

of the image which gives acceptable image quality even under slow-motion.

4.2 Median Operation in Image Coding

The detail preserving property of the median operation has been used in im-
age coding as in other arcas of image processing. One of the applications of
the median operation in image coding is the differential pulse code modulator
(DPCM) that uses a median-based nonlinear predictor {32]. The predictor in
DPCM systems predicts the new value from the previous ones and only the dif-
ference signal between input and the predicted sig;ml 1s transmitted or stored
[28]. In the predictor developed in [32], the median is taken over several subpfe—

dictors each of which is optimized for a different ramp or edge signal in varying
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Figure 4.1 The block diagram of the MUSE coding-decoding system

[30].

orientations. It has been shown that the median operation brings an improve-

ment in prediction errors. Median operation has also been applied to adaptive

predictive coding as in [4].

!

Another image coding method that is commonly used in TV applications is the

interpolative coding where only a subset of the pixels are transmitted or stored.
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Figure 4.2 The block diagram of HDMAC coding-decoding system [31].

The missing pixels are interpolated at the receiver using the available ones. This
interpolation operation can be linear or nonlinear. 911incunx downsampling is
an interpolative coding method where only every other pixel in a line taken from
offset positions is stored or transmitted. This way the full horizontal and vertical
frequencies are preserved and only the diagonal resolution, to which the human

eye is insensitive, gets lower [33]. The application of the median operation to
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the interpolation of quincunx downsampled images has been widely examined
in [34]. Various 2- and 3-dimensional median-based interpolation algorithms
are applied to different quincunx downsampling methods and the results are
compared. However, the algorithms are basically for still image sequences. The
2-dimensional methods are found to be good for moving image sequences but
they lower the resolution. The 3-dimensional algorithms distort the motion
content to a large extent although they have a much higher resolution in still
parts. In this thesis, a 3-dimensional median-based algorithm is introduced that
has the perfect reconstruction property in the case of no-motion and a much

better result in the case of slow-motion [35].

4.3 3-Dimensional Interpolative Coding and Decoding

Algorithm

In interpolative image coding systems, quincunx downsampling is usually pre-
ferred since it preserves full horizontal and vertical resolution, and only reduces
the diagonal resolution. There are several different quincunx structures that
could be used. The quincunx structure that is used here is field-quincunx
downsampling with the addition of an offset from frame to frame [33]. This
downsampling scheme is illustrated in Figure 4.3. The offset from frame to
frame results in a quincunx structure also in x-t and y-t planes. This makes
it possible to make use of all three dimensions in the interpolation process, re-
sulting in perfect reconstruction. The offset quincunx downsampling method
has not been used much due to the flicker it causes with many 2-dimensional

interpolation algorithms. This artifact is eliminated by the structure developed

here.

In what follows, two 3-dimensional median-based interpolation algorithms will
!
be presented. The first one is a novel algorithm based on the multilevel median

operation [23] and the second one is the algorithm introduced in [34] that is

based on the weighted median operation [17].
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Figure 4.3 3-Dimensional offset quincunx downsampling of the image
sequence.

4.3.1 3-Dimensional Multilevel Median-Based

Interpolation

Multilevel median operation has been used before to preserve different features
in the image sequence. This property of multilevel median operation can be
used 1n the reconstruction process to preserve lines, edges, or ramps in the
x-y, x-t, and y-t planes. Based on this idea, the 5-point median operation is
applied to each plane of the image sequence separately on the first level of the
multilevel structure. The structure used is the same as the 3-dimensional planar
filter given in Section 3.2 (Figure 3.1). The reconstructed pixel is taken as the
median of the first level outputs. Figure 4.4 shows the 3-dimensional sampling
structure. Here, the white pixels correspond to the image points that need to be
reconstructed and the dotted pixels correspond to the available image points.
Using the notation given in Figure 4.4, the multilevel reconstruction process
can be formulated as follows. Let Fj be the pixel point to be reconstructed.

Then the first level filters are given as
Mgy = MED By, D1, F1, H1,(B1 + D1 + Fy + Hy)/4] ;
met = MED Dy, F1, Eo, Ba, (Eo + E2)/2) ; (4.1)
myt = MED By, Hy, Eo, B2, (Eo + E2)/2]

f

and the final output is

By = MED[mgy, mgi, my] .

Note that for still image sequences, Ey = Ey = E,. This gives mg = my

which results in perfect reconstruction. Thus the downsampling-upsampling
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algorithm preserves all high frequency details of still images. When there is
slow-motion, the time dimension loses its effect and the term mxy dominates.
So the probability of the result being one of the interframe pixels increases

resulting in relatively good ima.ge quality even in the case of motion.

Figure 4.4 3-Dimensional sampling structure corresjDonding to 3 picture
frames.

4.3.2 3-Dimensional Weighted Median-Based Interpolation

This algorithm was first introduced in [34]. The reconstruction method will
be given here again for comparison purposes. The algorithm uses the weighted
median operation that is defined in Section 2.1. Using the notation in Figure 4.4,
the reconstruction filter can be given as follows. Let E\ be the pixel point to

be reconstructed. Then
Fi = MFD[5i,Di,Fi,iii,3,0Fo0] ,

where o stands for the weighting function. Although the algorithm does not
result in perfect reconstruction even in the case of still image sequences, it has
a high probability of retaining the correct pixel value since Eqis given a weight

of three, i.e., Eqis repeated three times in the median operation. Only if Eqis a
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minimum or a maximum, it is replaced by the median within the window. This
interpolation algorithm does not have the perfect reconstruction property, but

it has the advantage of requiring less memory than the 3-dimensional multilevel

median-based interpolation.

4.4 Simulations

The downsampling/upsampling algorithms given in Section 4.3 are simulated

on the VTE DVSR 100 video sequencer. A 2-dimensional algorithm given as
El=MED[Bl,F1,H1,D1,(B1+F1+H1+D1)/4] (4.2)

is also simulated to compare it with the other 3-dimensional reconstruction
methods. The trivial reconstruction method that could be used with the offset
quincunx downsampling is the simple task of retaining the same pixel from
the previous frame. This method would also result in perfect reconstruction
in the case of no-motion. It is simulated and compared with the other 3-
dimensional algorithms to show the difference in the case of slow-motion. Three
error measures, mean square error (MSE), mean absolute error (MAE), and the
subjective visual quality are used as comparison criteria. The algorithms are
applied to the real image sequence called “COSTGIRLS” which is 19 frames
long and which has no-motion, slow-motion and fast-motion areas. The motion
content of the sequence is obtained using the EUREKA 95-type HDTV motion
information. In the error calculations, no-motion corresponds to areas of the
sequence moving with speed less than or equal to 0.5 pixels/frame, and slow-
motion corresponds to areas of the sequence moving with speeds between 0.5
pixels/frame and 12 pixels/frame. The results for 1/2 compression ratio are

given in Table 4.1.

!
Considering HDTV applications, the same algorithms are applied to obtain
1/4 compression.ratios. To obtain this compression ratio, every other frame
is skipped during downsampling and reconstructed by simple frame repetition

during upsampling. Frame skipping and repetition can only be applied at areas
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Table 4.1 Error measures for 1/2 compression ratio.

multilevel weighted 2-D previous pixel
median median median repetition
no MAE 1.29 1.64 2.23 1.68
motion MSE 10.53 21.85 38.62 22.30
slow MAE 2.23 3.15 2.32 3.88
motion MSE 39.28 91.69 40.32 132.07

of no-motion and slow-motion since it would cause visible artifacts around fast
moving parts. The results for 1/4 compression ratio are given in Table 4.2. The
error measures are calculated separately for no-motion and slow-motion areas

of the sequence to show the difference between the algorithms with respect to

motion.

Table 4.2 Error measures for 1/4 compression ratio.

multilevel weighted 2-D previous pixel
median median median repetition
no MAE 2.43 3.11 3.10 3.25
motion MSE 32.38 74.13 51.37 83.95
slow MAE 5.29 6.53 5.06 8.32
motion MSE 161.13 254.25 148.13 388.91

As can be seen in Table 4.1 and Table 4.2, the 3-dimensional multilevel median-
based interpolation algorithm gives best results for no-motion areas of the image
sequence (< 0.5pixels/frame) in both 1/2 and 1/4 compression ratios. Since a
large portion of the image sequences that are shown on TV applications have
no-motion, this algorithm improves the image resolution to a large extent. Its
performance in slow-motion areas is close to the 2-dimensional median based
algorithm which is shown to be good for motion [34]. Thus the 3-dimensional
multilevel median based algorithm is tolerant to motion detection errors. More-
over, the threshold for motion between no-motioh and slow-motion modes of
the encoder can be increased if this algorithm is used for no-motion arcas in an
adaptive encoder. The 3-dimensional weighted median-based interpolation and

the previous pixel repetition algorithms show that 3-dimensional algorithms in
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general distort motion even if they are good for still image sequences. All the
algorithms are also applied to color image sequences on a scalar basis, i.e., the
algorithms are applied to each color component separately. Parts of the original

image sequence and the interpolated outputs are given in Figure 4.5 for visual

evaluation.

Figure 4.5 Part of frame 8 of (a) the original Sequence “COSTGIRLS”,
(b) the multilevel median-based interpolator output, (c) the
weighted median-based interpolator output, (d) the previous
pixel repetition algorithm output. The part shown corre-
sponds basically to slow-motion areas of the image sequence.



Chapter 5

CONCLUSIONS

Since the introduction of median filters, median-based algorithms have gained
an important place in digital signal processing. They have proved to be a
good alternative to linear techniques, especially in image processing tasks. In
this thesis the application of the median-based algorithms to two of the main
research areas in lmage sequence processing, namely image sequence filtering

and image sequence coding are examined.

Two new 3-dimensional median-based algorithms are introduced for image se-
quence filtering. They are compared with the other 2- and 3-dimensional algo-
rithms from the literature. The corresponding Boolean functions for the filters
are obtained and some observations are made on the root signal structures.
The output distributions are derived for the problem of estimating a constant
signal under additive white noise. These results are used to plot distributions
of the filter outputs under various input noise distributions. In addition to the
theoretical analysis, the algorithms developed are evaluated using an image se-
quencer and real image sequences. Noise attenuations of the filters are obtained
and mean square and mean absolute errors are calculated for a real image se-
quence. From the results we can conclude that ,lmedian—based algorithms are
robust algorithms against the motion in image sequence processing. By the
proper choice of the filter structure, the median-based methods give an excel-

lent performance for still and moving images even without a motion detector.
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They have an inherent adaptation to the motion content of the image sequence.

In the field of image sequence coding, a 3-dimensional median-based interpo-
lation technique is developed for still and slow moving image sequences. The
algorithm developed is compared with several other techniques that could be
used with offset quincunx downsampling. The simulations are carried out for
1/2 and 1/4 compression ratios. Mean absolute and mean square errors are cal-
culated for a real image sequence containing different motion areas. It has been
shown that the algorithm developed can be integrated to an adaptive coding

system or applied on its own.

In both fields of image sequence processing, the algorithms developed are ap-
plied to color image sequences on a scalar basis. The application of vector
median operation using the same filtering structures may bring an improve-
ment with color processing and should be researched further. Also, directional
application of the filtering structures together with a motion detector and es-
timator could improve the motion performance further. The results obtained
show that the nonlinear filtering techniques, of which the median filters are

a subclass, offer a large class of choices for image processing which should be

considered for future research.



APPENDICES

APPENDIX A
POSITIVE BOOLEAN FUNCTIONS

To simplify the expressions in the derivation of the positive Boolcan functions
of different filters, the notation given in Figure 3.5 will be used. This notation

is explained in more detail in Section 3.3.
Proof of Proposition 2 :

The outputs of the 7-point median filters, PL3D and CR3D, in the first level of
3-dimensional multilevel filter are one if four of the input variables out of seven
are equal to one. Thus the PBF’s given in the equations (3.25) and (3.26) are
obtained by listing all possible combinations of four variables out of seven. The
PBF corresponding to ML3D is then computed by taking the 3-point median
of the first level outputs and the current pixel value, E;. Let fprap, forip be

the first level outputs. Then y

fymrsp = MED|(fprsp, fcrsp, E1) = frrspfcrsn + frrspEr + ferspEr
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where
fprspE1 = EgEVEy(By + D1 + Fy + Hy) + E1(B1D1Fy + B1 D1 Hy
+ BiF\Hy + D1FiHy) + E1(Eo + E2) (B Dy + BiFy + B H;
+ D\Fy + D1Hy + F1Hy)
ferspEr1 = EoE1Ey (A1 + C1+ G+ 1) + E(A1C1GL + A1 CL Ly
+ AIGiL 4 CiGi L) + Ev(Eo + B2)(A1Ch + AGr + ATy
+ C1G1 + C11 + Gilh) 5
frrapforsp = Ai1B1C1D1F1G1H 1 + EoE1Eo(A1 + C1 + G + L) (B1 + Dy
+ Fy + H1) + (EoE1 + EEy + E1E)(A1C1 + A1Gr + AL
+ C1G1 + C11 + G11)(B1Dy + By Fy + B1Hy + D1 Fy + D1 Hy
+ F1H1) + (Eo + By + E2)(A1C1Gy + A1Cih + A1G Ly
+ C1G1L)(B1D1Fy + ByD\Hy + ByF\Hy + D F1Hy) .
Taking the ‘or’ of the expressions given above results in the equation given in

(3.27).

[w]
Proof of Proposition 3 :

Let z;, 2 = 1...5, be the outputs of the 3-point median operations on the first
level of the unidirectional multistage filter. Using equation (3.21), these can be
expressed as

z21 =MED[Dy, Ey, Fi] = D1Ey + DiFy + EiFy

F4) =MED[A1,E1,11] =AE1 + AL + B L ;

23 =MED|B,,Ey,H\| = B1Ey + B1Hy + E\H,

zg =MEDI[Cy, E1,G1] = C1Ey + C1G1 + E1Gy

25 =J\4ED[E0,E1,E2] = FEyE1 + EgFy + E1E,y .
In the binary domain, the maximum operation corresponds to taking the ‘or’

of the binary input variables and the minimum operation corresponds to taking
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the ‘and’ of the binary input variables. Thus 2zn4; and 2, can be obtained as
Zmaz =maxigiss[zi] = 21+ 22 + 23 + 24 + 25 ;
Zmin =Mini<i<s(2i] = z122232425 .
The final output is given as the 3-point median of zp4z, 2Zmin, and E; as follows.
funsp =M ED[zmin, Zmaz, E1]
=ZminZmaz + Zmin1 + ZmazE1
=Zmin + Zmaz 1
=A1BC1D1 WG H L EyE,
+ Ei(A1+Bi+Ci+ D1+ Fi+Gi+ Hi + 11 + Eg+ E) .

Proof of Proposition 4:

Let z;, 2 = 1...4, be the outputs of the 5-point median operations on the first
level of the bidirectional multistage filter. Using equation (3.22), these can be
expressed as
21 =M ED|Eq, By, Ei, Hy, E]
=FEyB1Ey) + EyB1Hy + EoB1E; + EoE1Hy + EyEqEs
+ EoH1E; + B1E1Hy + B1E\E; + BiH1E;, + EYH\Ey;
2 =MED|E,,C\, E1,G1, E2]
=EyC1Ey + EgC1Gy + E0C1Ez + EoErGy + EyEyEy
+ EyG1E; + C1E1Gy + C1E1Ey, + C1G1Ey + E1G1E2;
2s =MED|Eqy, Dy, E1, F1, Es)
=EyD1Ey + EoD1Fy + EgD1E; + EyErVFy + EqE 1 Es
+ EoyEy + DiEYFy + D1E1Es + DyFVEy + E1F1Ey
24 =MED|Ey, Ay, E1, I, Es)
=EoA1Ey + EoA1L + EoA1Ey + EoErly + EgErE;
+ Ey[1Ey + AtELL + AtEVEy + A1LEy, + E1 L B, .
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The final output is given as the 3-point median of zmqz, 2min, and E; as
fBI3D =MED[zmin.a Zmaz, El]
=ZminZmaz + ZminE1 + Zmaz E1
=Zmin + Zmaz )

where
ZmazB1 =FEoE\Ey + E1(A1l + BiHy + C1Gy + D1 Fy)

+E1(Ey+ E2) (A1 +B1+Ci+Di+ FA+Gi+Hi+ 1)
Zmin =FoFE1Ey + (Eo + E1 + E2)A1 B1C1 Dy FyG1H I
+ (EoEy + EoEg + E1Ez)(A1 4+ IL)(By + H1)(C1 + G1)(D1 + F1) .
By taking the ‘or’ of the above expressions, we obtain
fersp =FEoE1Ey + E1(A1 + B1Hy + C1G1 + D1 Fy)

+ Ei(Eo + E2)(A1+ B1+ C1+ D1+ A + Gy + Hi + It)
+ (Eo + E2)A1 B1Ci1 D1 FiGrH
+ EoEy(A1 + 1) (B1 + Hi)(C1 + G1)(D1 + F1)

which is the expression given in (3.29).

[m}

Proof of Proposition 5 :

The median filters in the first level of the 2-dimensional multilevel weighted
median filter, PLW 2D and CRW2D, give a weight of three to £;. Therefore,
the outputs of these filters will be one if any one of the binary variables is
equal to 1 together with E; or all the four variables other than E; are equal
to 1. Thus the positive Boolean functions corresponding to these filters can be
written directly as
fpowap =MED[B1, Dy,30 By, Fy, Hy]
=B1D1FiHy + Ei(By+ Dy + Fy + Hy),
fcrwap =M ED[41,C1,30 Ey, Gy, 1]
=AC1G1) + Ey\(A1+Ci1+Gi+ 1) .
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The output of the 2-dimensional multilevel weighted median filter is given as
the 3-point median of the first level outputs and the current pixel value, Ej.
furwep =MED(fprwap, E1, forw2D)
=fpiwepE1 + fecrwepEr + frrwap ferwan
=Fi(Ai+B1+Ci+Di1+FAA+Gi+Hi+ 1))
+ A1B1C1 DG H I

which is the expression given in (3.32).

a
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OUTPUT DISTRIBUTIONS

Let T'(-) be the threshold function such that

' 1, I(z,y,t) 2
7 (1e) = Plen) = {57 e 29

and

: 1, Y(z,y,t)>j
Tj(Y(w,y,t))=I’J(x,y,t)={0 otglfarzvis)e T

)

where I(z,y,t) is the M-valued input sequence and Y(z,y,t) is the M-valued
output sequence. For the sake of simplicity in the expressions, the following

notation will be used in the proof of the propositions given in Section 3.5.

Ay = Ij+1(1:—1,y—1,t) By = Ij+1(:c,y—1,t) C; = IJ'+1(x+1,y—1,t)
Dy = PH(z—1,y,t) By = (2, y,1) Py =P (g4+1,y,t)
Gy =P z—1,y+1,¢) Hy =P e, y+1,t) I = P (z+1,y+1,1)
Ey = Ij+1(x, y,t—1) Ey = Pz, y,t+1)

Let F(j) be the input probability distribution function, and Y7+1(z,y,t) de-
note the output of a filter at the (j + 1)st threshold level. Then, the output

distribution function of that filter can be found as
Fou(j) = Pr{Y(z,y,t) < j} = Pr{¥""(z,y,1) = 0} . (B.1)

Using the total probability theorem, this expression can be decomposed into 6
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terms as follows. Let
Py = Pr{Y’*Y(z,y,t) = 0|Ey = E; = B2 = 0} ;

Pg = PT{I/'j+1((E,y,t) = 0|E0 = E1 = Eg = 1} ’
P; = Pr{Y'*Y(z,y,t) = 0|Ey = E; = 0, E; = 1}
= P7‘{1f".+1($,y,t) = O|E0 = l,El = Eg = O} )

. (B.2)
Py = Pr{Y’*Y(z,y,t) = 0|Ey = E; = 1, Ey = 0}

= Pr{Y’*(z,y,t) = 0|Ey = 0, By = B = 1} ;

Ps = Pr{Y’'tY(z,y,t) =0|Ey = E» = 1,E, =0} ;

Ps = Pr{YtY(z,y,t) =0|Ey = E; = 0,E; = 1} .

Then
Fout(j) =P1Pr{Ey=F = E; =0} + PPr{Ey=FE, = Ey =1}

+ PyPr{Ey=FEy =0,E, =1} + P3Pr{Ey =1,E; = E; =0} o5

+ PyPr{Ey=FE1=1,E, =0} + P4Pr{Ey=0,E, = E; =1}

+ PsPr{Ey=FE; =1,FB1 =0} + PsPr{Ey=E,=0,E; =1}
The probabilities defined in (B.2) are obtained from the positive Boolean func-
tion of the corresponding filter and the results are substituted in (B.3). Finally,
the output density function of the filter is obtained from the o:1tput distribution

function by discrete-time differentiation.

Proof of Proposition 7 :

The output of the +-shaped filter at the first level of 3-dimensional multilevel
filter, PL3D, can be expressed at (7 4+ 1)st threshold level as given in (3.25).
Using this equation, the probabilities are obtained as follows.
P, = Pr{B;D,F,H, = 0}
=1—-Pr{Bi=1and Dy =1and F] 51 and H; =1}
=1-(1-F(G)";
Py = Pr{B;+ D1+ Fi + H =0}
= Pr{B;=0and Dy =0and F; =0 and H; =0} = F(5)*;
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Py = Pr{ByD,F\ 4+ B, DyH, + B F\H, + D, F1H, =0}
= Pr{There are less than 3 ones among By, D1, Fi, H1}
= (3)ror + ()rara-roy + (5)F6ra- oy
= 6F(j)* — 8F(j)* + 3F(j)" ;
Py = Pr{BD; + B\F\ + B1H, + D\ Fy1 + D1 Hy + F1 H; = 0}
= Pr{There are less than 2 ones among B, Dy, F1, H}
= () rar + (})rora-£o)
= 4F(j)* = 3F()" ;
Ps =Py
Ps=P;.

Substituting these expressions in (B.3) results in

Fpusp(i) =F(5) [1 = (1= F())| +(1 = F()* FG)*
+3F(§)* (1 = F(j)) (6F(j)* — 8F(7)* +3F(j)")
+3F(7) (1= F(7))" (4F(j)* - 3F(7)")

=F(j)* 35 - 84F(j) + T0F(j)? ~ 20F ()",

which is the expression given in (3.45). Since CR3D has the same Boolean func-
tion with PL3D when By, D1, Fi, H; are replaced by A;,Ci, Gy, I, its output
distribution function can be obtained in the same way. For ML3D the proba-

bilities are calculated from the Boolean function given in (3.27) as follows.

Py = Pr{A,B,C1D1FiG1HI; = 0} =1 — Pr{All of the variables are 1}
= [1-(-FG)Y] 5

Py =Pr{A1+B1+Ci+D1+F1+ G+ Hi + I =0}
= Pr{All of the variables are 0} = F(j)®;
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Py = Pr{(Ai1C1G1+ A1C1I1 + A1G1L1 + C1G1 ]h)
(B1D1Fy + B1D1H; + B1F\H, + D1 FiHy) = 0}

= Pr{Either one of the terms in the parenthesis is equal to 0}
= 1 — Pr{Both of the terms in the parenthesis are equal to 1}
=1— Pr{B1D\F\ + B1D\H| + BiF1H, + D1 F1H, = 1}*
=1~(1 — Pr{BD1Fy + BiD1H\ + B1Fi H, + DiFiH; = 0}]°
—1-[1 - (6F(j)? - 8F(j)* + 3F(5)")]

= 12F(5)2 =16 F(5)* - 30F(5)* +96 F(j)° - 100F(j)° +48F ()" —9F(5)®

Py = Pr{(A1Cy + A, Gy + A1 L1 + C1G1 + C1 Iy + G1 1)
+ (B1D; + B1Fy + BiH1 + D1Fy + D1 H, + F1Hy) = 0}
= Pr{Both of the terms in the parenthesis are equal to 0}
= Pr{B1Dy + B1Fy + B1H; + D\ Fy + D1H; + F1H; = 0}?
= (4F(5)* — 3F(;)")* = F(j)° (16 — 24F(5) + 9F()?) ;
Ps = Pr{(A1C1 + AiG1 + A1 + C1Gy1 + C1 I + G1 1h)
(B1D1 + B1Fy + B1H1 + D1F1 + D1 Hy + F1 Hy) = 0}
= Pr{Either one of the terms in the parenthesis is equal to 0}
=1 — Pr{Both of the terms in the parenthesis are equal to 1}
=1— Pr{B1Dy + B1Fy, + BiH, + D1Fy + D H, + F1H; = 1}?
=1—[1— Pr{B\D; + BiF\ + BiH; + D\F, + D, H; + F1 H; = 0})?
=1-[1- (4F()® - 3F(5)"))’
= F(j)° (8 = 6F(j) — 16F(5)° + 24F(5)* — 9F(j)°) ;
Ps = Pr{(A1C1G1 + A1C 1 + A1Gih + C1G1 )
+ (B1D1Fy + By D1 Hy + B1F1Hy + D1 FiHy) = 0}
= Pr{Both of the terms in the parenthesis are equal to 0}
= Pr{B\D1F\ + BiDH, + B1F1H; + D\ F1H, = 0}
= (6F()* ~ 8F(j)" + 3F()")’
= F(j)* (36 — 96F(j) + 100F(j)* — 48F(5)* + 9F(5)*) .
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Substituting these expressions in (B.3) results in
Fyrap(3) =F(G)* [1 = (1= FG)'| + (1= FG)* FG)?

+ 2F(j)" (1 = F(5)) (12~ 16F(j) — 30F(5)* + 96 F(j)°
—100F(j)* + 48F(5)° — 9F(j)®)

+ 2F(5)7 (1 — F(5))* (16 — 24F(5) + 9F(5)?)

+ F() (1 - F(j))* (8 — 6F(j) — 16F(5)® + 24F(5)* — 9F(5)°)

+ F(5)° (1~ F(5)) (36 = 96F(j) + 100F(j)?
—48F(5)* + 9F(5)*)

=F(5)* [40 — 106 F(j) + 84F(j)* + 60F(j)° — 195F(j)*

+ 190F(5)° — 88F(j)® + 16F(j)7] .

Proof of Proposition 8 :

The output of the unidirectional multistage filter at the (j + 1)st threshold level

can be expressed as given in (3.28). Using this equation, the probabilities are

obtained as follows.

P=1;
P, =0 ;
Py =1
Py=0;

Ps = Pr{A1B,C1D1F\G1H I = 0}
= Pr{At least one of 4, B;,C1, D1, Fy, Gy, Hy, I is equal to 0}
=1 — Pr{All of them are 1}
=1-(1-F(3)* ;
Po=Pr{Ai+B1+Ci+ D1+ Fi+Gi+H + 1 =0}
= Pr{All of the variables, 4;, B, C1, Dy, Fy, Gy, Hy, I1, are equal to 0}

[

= F(j)® .
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Substituting these expressions in (B.3) results in

Fyn1sp(5) =F()* + 2F ()’ (1 = F(j)) + F() (1 = F())* (1 - (1= F(7)°)
+F()*° (1~ F(3) “
=F() [1- (1= FG)"] + 1= FG) PG

Proof of Proposition 9 :

The output of the bidirectional multistage filter at the (5 + 1)st threshold level
can be expressed as given in (3.29). Using this equation, the probabilities are

obtained as follows.

Py = Pr{A;B\CiD\F\G1H\I; = 0}'
=1 — Pr{All of them are 1}
=1-(1-F())’ ;

Py=Pr{A1+ B1+Ci+Di1+FA +G +H +1; =0}
= F(j)® ;
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Ps = Pr{(B1 + H1)(D; + F1)(A1 + I))(C1 + G1) = 0}
= Pr{At least one of the terms in the parenthesis is equal to 0 }
=1 — Pr{All of the terms in the p;xrenthesis are equal to 1}
=1- Pr{(B; + H) = 1}*
= 1 — Pr{Either B; or Hj is equal to 1 }*
=1 — (1 — Pr{Both of them are equal to 0})*
—1- (1= FGY)
Ps = Pr{B1Hy + D1 F1 + A1l + C1G1 = 0}
= Pr{All of the pairs that are ‘and’ed are equal to 0}
= Pr{BH; = 0}* = Pr{Either By or H) is equal to 0 }*
= (1 — Pr{Both of them are equal to 1})*

4
= (1-(-FG)?)
Substituting these expressions in (B.3) results in

Farp(5) =F()° +2P(G)* (1 = F(3) (1= (1= FG)®) +2F()° (1 = F(j))*
+ PG - F(G)? (1- (1= F(G))*)

FEGY (- FG) (1- (- FG)F)
=F(j)? [21 — 80F(j) + 166F(5)2 — 224F(j)? + 202F(j)*

120F(5)° + 45F(5)° — 11F(5)7 + 2F(j)8] .

Proof of Proposition 10 :

Using the total probability theorem, the output distribution function of PLW2D
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can be obtained as follows.
FPLWZD(j) = PT{Y('Evy’t) S ]} = P'I‘{lf‘]_*-l(:l?,y,t) = O}

= Pr{Y7*Y(z,y,t) = 0|E; = 0} Pr{E; = 0}
+ Pr{Y?*Y(z y,t) = 0|E; = 1} Pr{E; = 1}
= Pr{B; D, H; =0} F(j)
+ Pr{B1+ D1+ Fy + Hy =0} (1 - F(j))
= F(5) (1 — Pr{All of the variables, B, D1, F1, Hi are 1})
+ (1 — F(3)) Pr{All of the variables, By, Di, F1, H; are 0}
= Fj) [1- (1= FG)*| + 1= FG) PG
Since CRW2D is the same as PLW2D when B;, D;, Fy, H; are replaced by
A1, C1, Gy, 11, its output distribution function is the same as PLW2D. The out-
put distribution function of MLW2D can be derived in the same way as
Fyurwap(j) = Pr{¥(e,y,1) < j} = Pr{¥’*!(z,y,t) = 0}
= Pr{Y?*(z,y,t) = 0)Ey = 0} Pr{E; = 0}
+ Pr{Y’*(z,y,t) = 0|Ey = 1} Pr{E; = 1}
= Pr{A1B1C1D1F\G1HI; = 0}F(j)
+ Pr{A1+Bi+Ci+ D1+ Fi+Gi+H +151 =0} (1 - F(3))
= F(j) (1 — Pr{All of the variables are 1})
+ (1 — F(j)) Pr{All of the variables are 0}

= F(G) 1~ A= FG)*| + 1= FG) FGY° .,
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