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ABSTEÎACT

COMPUTING WITH CAUSAL THEORIES 

Erkan Tin
M. S. in Computer Engineering and Information Sciences 

Supervisor: Assoc. Prof. Varol Akman 
October 1990

Formalizing commonsense knowledge for reasoning about time has long 
been a central issue in Artificial Intelligence (AI). It has been 
recognized that the existing formalisms do not provide satisfactory 
solutions to some fundamental problems of AI, viz. the frame problem. 
Moreover, it has turned out that the inferences drawn by these systems 
do not always coincide with those one had intended when he wrote the 
axioms. These issues call for a well-defined formalism and useful 
computational utilities for reasoning about time and change. Yoav 
Shoham of Stanford University inti'oduced in his 1986 Yale doctoral 
thesis an appealing temporal nonmonotonic logic, the logic of 
chronological ignorance, and identified a class of theories, causal 
theories, which have computationally simple model-theoretic properties.

This thesis is a study towards building upon Shoham's work on 
causal theories for the latter are somewhat limited. The thesis mainly 
centers around improving computational aspects of causal theories 
while preserving their model-theoretic properties.

K e y w o r d s :  Causation, causal theories, the frame problem, the 
qualification problem, the persistence problem, modal logics, 
nonmonotonic logics, temporal logics, chronological ignorance, model 
theory.
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ÖZET

NEDENSEL TEORİLERLE HESAPLAMA 

Erkan Tın
Yüksek Lisans Tezi, Bilgisayar ve Enformatik Mühendisliği Bölümü 

Tez Yöneticisi; Doç. Dr. Varol Akman 
Ekim 1990

Zaman üzerine çıkarım yapılabilmesi için sağduyu bilgisinin formel 
hale sokulması uzun zamandır Yapay Zekâ'nın (YZ) merkezi 
meselesi olmuştur. Halihazırdaki formel sistemlerin YZ'nin çerçeve 
sorunu gibi bazı temel problemlerine tatmin edici çözümler 
getirmedikleri bilinmektedir. Dahası, bu sistemlerle yapılan 
çıkarım lar aksiyomlarla ifade edilmek istenenlerle daima 
uyuşmamaktadır. Bu meseleler zaman ve değişim üzerine çıkarım 
yapılabilmesi için iyi tanımlanmış bir formalizmi ve yararlı 
hesaplama metodlarını davet etmektedir. Stanford Üniversitcsi’ndcn 
Yoav Shobam doktora tezinde (Yale, 1986) kronolojik bilgisizlik adını 
verdiği temporel, tekdüze olmayan cazip bir mantık ortaya koymuş ve 
nedensel teoriler olarak adlandırılan, hesaplaması basit model teorik 
özellikleri bulunan bir teori sınıfı tanımlamıştır.

Bu sınıfın bazı sınırlamaları olduğu için bu tez Shoham'ın 
nedensel teorileri üzerine yapılan bir geliştirme çalışmasıdır. Tez 
özellikle bu teorilerin hesapsal yönlerinin onların model teorik 
özelliklerini koruyarak iyileştirilmesi etrafında yoğunlaşmaktadır.

Anahtar K elim eler: Nedensellik, nedensel teoriler, çerçeve sorunu, 
kalifiye olma sorunu, kalıcılık sorunu, modal mantıklar, tekdüze 
olmayan mantıklar, temporel mantıklar, kronolojik bilgisizlik, model 
teorisi.
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Chapter 1

INTRODUCTION

Reasoning about the coinmonsense notions of time and change is 
important in various areas of Artificial Intelligence (AI). There have 
been attempts towards formalizing common sense and various logics 
have been devised for commonsense reasoning. It has been recognized 
that reasoning about change requires temporal and nonmonotonic 
reasoning devices. In this direction, Shoham introduced, in his doctoral 
dissertation [28], [35], a temporal nonmonotonic logic that he called the 
logic of Chronological Ignorance (Cl). Cl is based on model-theoretic 
analysis and preference ordering among models. This, arguably, turns 
out to be a solution to the qualification problem. By correlating 
philosophical issues on causation with the notion of time, Shoham 
identified a class of theories, causal theories, which have 
computationally simple model-theoretic properties in Cl. Other 
contributions of Shoham to temporal reasoning, and nonmonotonic 
reasoning include [27], [29-34], [36-37]; these works generated 
considerable interest [1], [4-5], [8-10], [21-23], [25-26].

In this thesis, after an examination of the preliminary notions of Cl 
and causal theories, it is shown that computing with causal theories is 
time-dependent. This contradicts with the method human beings use to 
reason about consequences of actions and to come to conclusions in 
everyday life. To remove this deficiency, a new class of causal theories 
containing axiom schemata is introduced and computational aspects of 
causal theories in this class are investigated. Furthermoi’e, an approach 
to remove one of the technical limitations imposed by Shoham on causal 
theories is proposed. A brief survey of the related literature, critiques of



Sholiam's works, and a discussion on his account of causation are also 
included.

In Chapter 2, our notation and terminology are presented. Included 
are the essential notions of Cl and the definition of causal theories.

Chapter 3 introduces the Yale Shooting Problem (YSP). The role of 
YSP in verifying formal approaches to reasoning is investigated. The 
weakness of causal theories in representing scenarios similar to YSP 
and their inefficiency in computing the consequences of these theories 
are demonstrated. To remove those deficiencies, a new class of causal 
theories, YSP-like causal theories with axiom schemata, is proposed. It 
is shown that computing the consequences of a theox-y in this class is 
independent of time unlike the case with the causal theories of Shoham.

Shoham did not pei’mit simultaneous occuixence of cause and effect 
in his account of causation: he restxdcted causal theoi'ies to have causes 
sti'ictly pi'ecede their effects in time. In Chapter 4, various related ideas 
fi'om philosophy are mentioned. A modified definition of causal theories 
that pei'mits simultaneity is given and an algorithm to compute the 
consequences of such theories is proposed.

Chapter 5 contains the concluding remarks together with directions 
for future research.

In Appendix A, after introducing two epistemological problems, a 
discussion on how Cl suggests a solution to these problems is given.

In Appendix B, Shoham's account of causation is introduced and 
some issues that must be considered to obtain a more complete 
characterization are pointed out.

Appendix C contains omitted proofs of some theorems and 
propositions.

Programs listings are included in Appendix D.



Chapter 2

ESSENTIAL NOTIONS AND TERMINOLOGY

2.1 Notational conventions

Unless otherwise stated, we follow Shoham's terminology and 
definitions verbatim. Lower-case letters such as p and pi denote 
propositional symbols; t is used to express a time point variable, and a 
time point symbol (constant) when indexed (as in ti).

The symbols -i, A , v , 3 , s a r e  used as the standard logical 
connectives. V denotes the universal quantifier. □ and o are modal 
operators described in the following section. ■  is used to denote Q.E.D. 
Other notations are described when they are first used.

2.2 The logic of chronological ignorance

Nonmonotonic logics can be defined by means of a preference criterion 
on the interpretations of a standard logic, i.e., (classical or modal) 
propositional logic or first-order predicate logic. The preference criterion 
forms a preference relation over the models of the standard logic. 
Shoham [33] suggests a semantic framework in this direction. He calls 
such nonmonotonic logics preference logics. Cl is a nonmonotonic logic 
obtained in this way. The standard monotonic logic on which Cl is based 
is called the logic of Temporal Knowledge (TK). The syntax and 
semantics of TK are given below.

We assume the existence of the following:

P: a set of primitive propositions.



TV: a set of temporal variables,

TC: Z (integers) (This characterizes the structure of time which is 
disci'ete, linear, and unbounded in both dii'ections),

U; TC u  TV.

Well-formed formulae (wff) are defined as follows:

1. If ui, U2 e U, then ui=U2 and ui < U2 are wff.

2. If u], U2 e U and p g P, then TRUE(u],u2,p) is a wff. (From now 
on, without loss of generality we assume ui < U2 throughout this 
thesis.)

3. If (pi and (p2 are wif, then so are (pi a (p2> and □(pi- Q(p reads 
as "(p is known." <>(p = —iQ-i(p.

4. If (p is a wff and v e TV, then Vv (p is also a wfF.

Some abbreviations for wff are used; □TRUE(ti,t2,p) is replaced by 
ij(ti,t2,p), □-iTRUE(t],t2,p) by □(ti,t2,-ip), oTRUE(ti,t2,p) by o(ti,t2,p), and 
A—iTRUE(ti,t2,p) by A(t],t2,—>p). TRUE(t],p) is used as an abbreviation for 
TRUE(ti,ti,p).

Definition 2.1 A sentence is a wff containing no free variables.

D efin ition  2.2 A Kripke interpretation (KI) is a set of infinite parallel 
time lines, all sharing the same interpretation of time, viz. a 
synchronized copy of Z. Each world describes an entire possible course of 
the universe, and so over the same time interval, but in different worlds, 
different facts are known. Formally, KI is a pair <W,M> where W is a
nonempty universe of possible worlds, and M is a meaning function such 
that M: P-^2W>̂ ZxZ

Definition 2.3 A variable assignment is a function VA: TV—»Z.

D efinition 2.4 A valuation function VAL is such that VAL(u)=VA(u) if u 
G TV and VAL(u)=u if u G TC.



A KI=<W ,M> and a world w G W satisfy a formula (p under VA 
(written KI,w |=(p[VA]) if the following hold:

1 . KT,w |=u i = u 2[VA] iff V A L ( u i )= V A L (u 2).

2. KI,w |=ui < U2[VA] iff VAL(ui) < VAL(u2).

3. KI,w |=TRUE(u i,U2.p )[VA] iff <w,VAL(u i),VAL(u2)> e M(p).

4. KI,w |=(pi A (p2[VA] iff KI,w.|=(pi[VA] and KI,w |=(p2[VA].

5. KI,w|=^(p[VA] iff KI,w|^(p[VA],

6. KI,w|=Vv (p[VA] iff KI,w|=(p[VA’], VVA' that agree with VA 
everywhere except possibly on v.

7. KI,w |=Q(p[VA] iff KI,w' |=(p[VA]. Vw' e W.

A Kripke interpretation KI=<W,M> and a world w G W are a model 
for a formula (p (written KI,w|=9) if KI,w |=(p[VA] for any variable
assignment VA. A wff is satisfiable if it has a model, and valid if its 
negation has no model. (pi entails (p2 (written (pi |=(p2) iff (P2 is satisfied by
all models of (pi. It should be noted that if (p is true in w g W, in KI this is 
written Kl,w |=(p, and KI,w |?!:(p if it is false.

Another point worth noting is that <w,ti,t2> e M(p) iff <w,t2,ti> g 
M(p). If a proposition holds over an interval, this does not imply that the 
same proposition holds over its subintervals. Below are given some more 
definitions.

D efin ition  2.5 Base formulae are those wff containing no occurrence of 
the modal operators.

D efin ition  2.6 The latest time point (Itp) of a base formula is the latest 
time point mentioned in it:

1. The Itp of TRUE(ti,t2,p) = t2.
2. The Itp of (pi A (p2 = max{ltp of (pi, Itp of (p2}.
3. The Itp of -i(p = the Itp of (p.
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4. The Itp of Vv (p is the minimum among the Itp's of all cp' which 
result from substituting in (p a time point symbol for all free 
occurrences of v, or if there is no such earliest Itp.

The preference criterion associated with TK to obtain the logic of Cl is 
as follows.

D efin ition  2.7 A KT M2 is chronologically more ignorant than a KI M] 
(written MiCi(.jM2) if there exists to such that

1. For any base sentence (p with Itp < to, if M2 |=Q(p then also Mi |=Q(p.
2. There exists a base sentence (p with Itp to such that Mi |=Q(p but 

M2 M'JCp.

D efinition 2.8 M is said to be a chronologically maximally ignorant (cmi) 
model of (p if M i-e., if M |=(p and there is no other M' such that
M' |=(p and MCgiM'.

D e fin it io n  2.9 The logic o f chronological ignorance, Cl, is the 
nonmonotonic logic obtained by associating the preference relation dci
with TK.

2.3 Causal theories

D efin ition  2.10 Formulae in Cl are those base formulae augmented by 
the modal operators.

D efinition 2.11 A theory in Cl is a collection of sentences in CL

D efinition  2.12 Base sentences in Cl are those sentences not containing 
any occurrence of the modal operators, i.e., sentences that refer directly 
to the real world and not to knowledge of it.

D e fin it io n  2.13 Atomic base sentences are either of the form 
TRUE(ti,t2,p) or the form -iTRUE(t],t2,p).



D efin ition  2.14 A causal theory T  is a theory in Cl, in which all 
sentences have the form O a 0  3  Q(p where (in the following [—i] means 
that the negation sign may or may not appear)

1. (p = TR U E (ti,t2 ,[-i]p). (NB In his original definition ([35, p. 109]), 
Shoham takes (p = TR U E (t2 ,ti,[-i]p) which obviously leads to a 
contradiction, viz. overlapping cause and effect.)

2. O = A'^j_^i.j(pi, where (pi is an atomic base sentence with Itp tj such 
that ti<tj.

3. 0  = A'^j_^o(Pj> where (Pj is an atomic base sentence with Itp tj such 
that tj<t].

4. <I> or 0  may be empty. A sentence in which O is empty is called a 
boundary condition. Other sentences are called causal rules.

5. There is a time point to such that if 0  3  Q(ti,t2 [-i]p) is a boundary 
condition, then to<ti.

6. There do not exist two sentences in T such that one contains o(ti,t2,p) 
on its l.h.s. and the other contains o(ti,t2,-ip) on its l.h.s.

7. If A 01 3  Q(ti,t2,p) and 02 A 02 3  □(ti,t2,-ip) are two sentences in 
T, then <t>i A 01 A O 2 A 0 2  is inconsistent.

D efin ition  2.15 The soundness conditions of'F are the set of sentences 
o (t i ,t2 ,p) 3  TRUE(ti,t2 ,p) such that o (t i,t2 ,p) appears on the l.h.s. of 
some sentence in 'F.

Soundness conditions are implicitly part of the causal theoi'ies. One 
essential property of a causal theory is that it has cmi models, and in all 
of them the same set of atomic base sentences are known.

Theorem 2.1 If M-* is a causal theory, then 
1. T has a cmi model.

7



2. If Ml and M2 are cmi models of'^F, and (p is any base sentence, 
then M] |=0(p iff M2 |=U(p.

Proof. [35, pp. 112-113]. ■

D efinition 2.16 A time-bounded Kripke interpretation M/t is a structure 
which can be viewed as an incomplete Kripke interpretation. Like a 
Kripke interpretation it assigns a truth value to atomic propositions, but 
only to those whose Itp < t. The truth value of an arbitrary sentence 
whose Itp < t is also determined in M/t, according to the usual 
compositional rules. It is easy to see that that this is well-defined, since, 
by the semantics of Cl and by the definition of an Itp, the truth value of a 
sentence whose Itp < t does not depend on any sentence whose Itp > t. If a 
sentence (p with Itp < t is satisfied by M/t, this is denoted M/t [=(p.

D efin ition  2.17 M/t partially satisfies a theoi-y T  if M/t satisfies all 
sentences of T whose Itp < t.



Chapter 3

COMPUTING SENTENCES KNOWN IN THE CMI 
MODELS OF CAUSAL THEORIES

Formalizing commonsense reasoning has long been (and still is) an open 
problem of AI. Various nonmonotonic formal systems have been 
proposed to facilitate it (e.g., Reiter's default logic [24] and McCarthy's 
circumscription [14]). Situation calculus [12] has initially been used to 
reason about the effects of actions. In the framework of situation 
calculus, Hanks and McDermott [7] describe what they call temporal 
projection as follows. Given a description of the current situation, some 
descriptions of the effects of possible actions, and a sequence of actions to 
be performed, how do we predict the properties of the world in the 
resulting situation?

Noticing tliat this is not a by-product of situation calculus, but is 
independent of the logic used, they redefine it [8, p. 385]:

"[G]iven an initial description of the world (some facts that 
are true), the occurrence of some events, and some notion 
of causality (that an event can cause a fact to become true), 
what facts are true once all the events have occurred?"

Hanks and McDermott [8] applied some of the existing logics (e.g., 
Reiter's default logic) to scenarios to see whether the expected results are 
indeed produced. It turned out that these logics have some flaws [8, p. 
379]:

"Upon examining the resulting nonmonotonic theories, 
however, we find that the inferences permitted by the logics

9



are not those we had intended when we wrote the axioms, 
and in fact are much weaker."

The Yale Shooting Problem (YSP) was posed by Hanks and 
McDermott [7] as a paradigm to show how the temporal projection 
problem arises. At some point in time, a person (Fred) is alive. A loaded 
gun, after waiting for a while, is fired at Fred. What are the results of 
this action? One expects that Fred would die and the gun would be 
unloaded after the firing of the gun. But Hanks and McDermott [8] 
demonstrate, in the framework of circumscription [15], that unintended 
minimal models are obtained; the gun gets unloaded during the waiting 
stage and firing the gun does not kill Fred.

After Hanks and McDermott showed how existing logics fail to 
produce the expected results for YSP, researchers proposing new 
formalisms applied their methods to the YSP and other similar 
scenarios (e.g., McCarthy's blocks world [15]) to show how they succeed 
in avoiding the unintended models.

Hanks and McDermott argue that a solution to the temporal 
projection problem relies on an answer to two questions [8, p. 409];

"(1) Given a logical theory that admits more than one 
model, what are the preferred models of that theory (that 
is, what is the preference criterion) and (2) Given a theory 
and a preference criterion, how do we find the theorems 
that are true in all 'most preferred' models?"

As they noted, Shoham's [37] preference criterion (see Definitions 2.7- 
8) provides a satisfactory answer to the first question. Moreover, he gives 
an algorithm that computes the true sentences in the models preferred 
under this preference criterion, thus answering the second question.

In this chapter, we argue that Shoham's computational account is 
not very efficient. Furthermore, since his solution, as Hanks and 
McDermott also point out [8, p. 410], is "very specific to the problem of 
temporal projection," we demonstrate how its time-dependent nature can
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be removed. We also show that causal theories may yield unintended 
models.

3.1 Time dependency in causal computations

Causal theories of Shoham contain axioms to reason about the effects of 
actions. Proceeding in time, knowledge about the future is obtained from 
what is known (and wliat is not known) about the past. This forms the 
core of the causal inference mechanism. For example, if you know that a 
match is struck at time t, and you don't know that it is wet at t, then you 
infer that the match lights at t+1. Causal theories have a nice property; 
all cmi models agree on what is known (see Theorem 2.1). That is, in all 
cmi models of a causal theory the same atomic base sentences are 
known. Shoham [35, p. 114] proposed an algorithm to compute the set of 
atomic base sentences known in all cmi models of a causal theory.

Consider the following variant of YSP. A gun, loaded at some point in 
time, is fired at a later time. We would like to reason about the effect of 
firing the gun. Shoham [35, p. 106] gives a possible axiomatization in 
which the gun is loaded at time 1 and fired at 5;

1. Q(l,loaded).
2. □(5,fire).
3. Q(t,loaded) a o(t,-ifire) a o(t,-iemptied-manually)

3  □(t+l,loaded), Vt.
4. Q(t,loaded) a □(t,fire) a o(t,air)

A o(t,firing-pin)
A o(t,no-marshmallow-bullets)
A ... A o other mundane conditions 
3  □(t+l,noise), Vt.

Axioms 1 and 2 are the boundary conditions. The third one is an 
axiom schema needed for persistence. It says that the gun remains 
loaded unless certain conditions obtain. The last one is again an axiom 
schema. It is a causal rule stating that firing a loaded gun causes a 
noise unless certain conditions obtain. In fact, causal theories can only

1 1



contain axioms, not axiom schemata with time variables (see Definition 
2.14). Shoham (personal communication, November 1989) explains:

"I do assume that all boundary conditions and all causal 
rules contain only ground atomic sentences. If variables 
appear it means that this is a schema, standing for all its 
ground instances. I believe this restriction can be lifted, but 
I did impose it."

Therefore, the axiom schemata 3 and 4 above must be replicated by 
replacing the variable t by time points from 1 to 5. This actually 
corresponds to the finite causal theory below (some o-conditions of 
schema 4 are omitted):

1. □ (!,loaded).
2. □d,loaded) a

3. □ (!,loaded) a

4. □(2,loaded) a

5. Q(2,loaded) a

6. G(3,loaded) a

7. Q(3,loaded) a

8. u(4,loaded) a

9. G(4,loaded) a

10. □(5,fire).
11. □(5,loaded) a

12. Q(5,loaded) a

o(l,-ifire) A o(l,-iemptied-manually) ^  □(2,loaded). 
□(l,fire) A o(l,air) a  o (1,firing-pin) ^  Q(2,noise). 
0(2,—ifire) A 0(2,—.emptied-manually) Q(3,loaded).
□(2,fire) A 0(2,air) a  0(1,firing-pin) 3  Q(3,noise). 
0(3,-ifire) A 0(3,—lemptied-manually) IG Q(4,loaded). 
□(3,fire) A o(3,air) a  0(3,firing-pin) 3  Q(4,noise). 
0(4,—ifire) A 0(4,—lemptied-manually) 3  iJ(5,loaded). 
□(4,fire) A 0(4,air) a  o (4,firing-pin) id q(5,noise).

0(5,-ifire) A o(5,-,emptied-manually) id □(6,loaded). 
□(5,fire) A 0(5,air) a 0(5,firing-pin) ID Q(6,noise).

The first axiom says that "it is known that the gun is loaded at 1." 
The second one says that "if it is known that the gun is loaded at 1, and it 
is not known that it is fired at 1 and that it is emptied manually at 1, then 
it is known that the gun is loaded at 2," The third one says that "if it is 
known that the gun is loaded at 1 and that it is fired at 1, and it is not 
known that there is no air and that the gun has no firing pin at 1, then it 
is known that noise is heard at 2." The remaining axioms ai*e analogous. 
Shoham's algorithm steps through each axiom and computes the base 
sentences known in all cmi models of this causal theory. It produces the
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expected atomic base sentences: TRUE(1 .loaded), TRUE(2,loaded), ..., 
TRUE(5,loaded), TRUE(5,fire), and TRUE(6,noise).

This cini model is computed by stepping over each axiom of the 
causal theory in ordered form, and checking whether the l.h.s. of the 
axioms are satisfied. This however is a time consuming procedure. 
Shoham [35, pp. 113-114] suggested improving the efficiency of the 
algorithm by "focus[ing] the attention on the interesting time points, 
those that are potentially Itp's of known atomic base sentences." In other 
words, "in constructing the cmi model, one can skip the time points 
which are not the Itp of the r.h.s. in any sentence of the causal theory: at 
those points no atomic base sentences are known" [35, p. 114].

Measuring the size of a causal theory in terms of the number of base 
sentences in the axioms, the size of the causal theory above turns out to 
be 47. (There exist 2 boundary conditions. Schema 3 contains 4 base 
sentences and schema 4 contains 5 base sentences. Axiom schemata 3 
and 4 are replicated for all time points from 1 to 5, resulting in 45 base 
sentences.)

Now assume that the gun is loaded at time 1, and instead of 5 it is 
fired at 5000. The size of the causal theory describing this scenario is 
45002. Consequently, the later the gun is fired, the larger the size of the 
corresponding causal theory becomes. Hence, more computation time 
and space are needed to reason about the effect of firing the gun.

However, such scenarios call for general representation 
mechanisms. For example, pouring water onto a dry surface will have 
the same effect (a wet surface) regardless of when it happens. Therefoi'e, 
one should bo able to say that "if the gun is fired at any time, then a loud 
noise is heard at the next instant." This suggests having causal theories 
containing axiom schemata with time variables. The theory above with 
two boundary conditions and two axiom schemata is such a causal 
theory.

Again measuring the size of a causal theory in terms of the number 
of base sentences in it, assume that the size of a causal theory with axiom
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schemata is n. Then, the size of the corresponding finite causal theory 
must be Tmax n, where Tmax denotes the number of time points (5 in 
this example) between the time points of the boimdary conditions having 
the eaj'licst (□ ( ! .loaded)) and the latest time points (Q (5,fire)), 
respectively. Shoham's algorithm computes the atomic base sentences 
known in all cmi models of a finite causal theory. Assuming that this 
finite causal theory corresponds to the one with axiom schemata shown 
above, the time complexity of his algorithm becomes 0{Tmax n \og{Tmax 
n)). This means that his approach has a deficiency when the causal 
theories contain axiom schemata; computation is time-dependent for the 
size of the corresponding finite causal theory depends on the time "span" 
of the theory.

3^ YSP-like causal theories

In temporal projection scenarios, there exist two types of axiom 
schemata. The first takes care of the persistence of facts, permitting 
inferences about what remains unchanged. For example, if you load a 
gun, it will stay loaded unless you fire or empty it. This corresponds to 
axiom schema 3 in our shooting scenario. Such axiom schemata will be 
called persistence axiom schemata.

The second type of axiom schemata represent what changes occur in 
the environment. They will be called causal axiom schemata. More 
specifically, these schemata allow one to infer what changes actions 
bring about. In the shooting scenario, number 4 is a causal axiom 
schema. It says that firing a loaded gun causes a loud noise unless some 
conditions obtain (e.g., the gun lacks a firing pin).

It will be assumed in the sequel that scenarios are formalized with a 
persistence axiom schema and a causal axiom schema, along with two 
boundary conditions. The condition having the Itp generally I'epresents 
an action whose consequences are to be determined. However, it need not 
always be an action. Instead, it can well be the knowledge that something
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occurred in the environment. Below is a class of causal theories to 
represent such scenarios.

D efinition 3.1 A YSP-like causal theory  ̂is a theory in Cl containing
□ (ps-

□ (pf.

□9p A 0 p  3  G(pp , Vt.
O c A ©c

where

1. QiPs is initial boundary condition where (pg is of the form 
TRUE(ti.Hp).

2. Q(pf is the final boundary condition where (pf is of the form
TRUE(t2,L-Jp), t,<t2.

3. G(Pp A 0p 3  QCpp is a persistence axiom schema where

(i) (Pp is of the form TRUE(t,[—>]p) (on the l.h.s.) or TRUE(t+l,[—']p) (on 
the r.h.s).

(ii) ©p is a (possibly empty) conjunction of sentences 0(pj, where (Pi is of 
the form TRUE(t,[-n]q).

4. Oc A ©c ^  QiPc is  ̂causal axiom schema where

(i) ct>(. has two conjuncts one of which must be OCpp·

(ii) ©c is a (possibly empty) conjunction of sentences ocpĵ ., where (p̂  is 
of the form TRUE(t,[-i]q).

(iii) (Pc is of the form TRUE(t+l,[—i]r).

5. If <>(t,p) (respectively o(t,-ip)) is a conjunct of ©p, then ©c does not 
contain o(t,—ip) (respectively o(t,p)).

6. If (Pp and (pc are of the forms TRUE(t,p) (respectively TRUE(t,-ip)) and 
TRUE(t,-ip) (respectively TRUE(t,p)) then ocpp a ©p a <l>c a ©c is 
inconsistent.
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7. If (ps (9f) is of the form TRUE(ti,p) (respectively TRUE(t2,->p)) and (Pp is 
of the form TRUE(t,-ip) (respectively TRUE(t,p)) then Q(Pp a ©pis 
inconsistent.

8. If (Ps (9f) is of the form TRUE(ti,p) (respectively TRUE(t2,-ip)) and (Pc is 
of the form TRUE(t,-np) (respectively TRUE(t,p)) then O,, a ©ci s  
inconsistent.

Obviously, the shooting scenario with axiom schemata given in the 
previous section is a YSP-like causal theory.

Theorem  3.1 If ̂  is a YSP-like causal theory, then  ̂ has cmi models and 
in all of these cmi models the same atomic base sentences are known.

Proof. Appen4ix C. ■,

Proposition  3.1 The set of atomic base sentences known in any cmi model 
of a YSP-like causal theory  ̂ is exactly the same as those known in the 
cmi models of the causal theory T  corresponding to  ̂ (this 
correspondence is obtained by replacing each time variable t in axiom 
schemata in  ̂by the time constants in the range t| to t2, where tj and t2 
are the time points mentioned in the initial and final boundary 
conditions, respectively).

Proof, '■F obtained in this way will contain the following sentences 
ordered with respect to their Itp's. ("Rewriting" a formula at t=tj means 
replacing all occurrences of t in that formula with tj.)

□ (Ps.
U(pp A ©p ro U(pp (rewrite for t=ti until t= t2-l).

A ©c ^  QiPc (rewrite for t=ti until t=t2-l).
□ (Pf.
□9p A ©p 3  Qcpp (rewrite at t=t2).
Oc A ©c ^  Qcpc (rewiite at t=t2).

Since this causal theory is actually a causal theory of type T (see 
Definition 2.14) and has a unique cmi model (according to Theorem 2.1), 
the unique cmi model obtained for  ̂ in Theorem 3.1 will exactly be the
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same as this one. Comments on the parallelism between the consti'uction 
procedui'es given in Theorems 2.1 and 3.1 can be found in Appendix C. ■

The specific nature of YSP-like causal theories and the construction 
introduced in the proof of Theorem 3.1 suggest a procedure for 
computing the set of atomic base sentences known in the unique cmi 
model of any YSP-like causal theory.

Theorem  3.2 If ̂  is a YSP-like causal theory of size n, then the unique set 
of atomic base sentences known in any cmi model of  ̂ can be computed in 
time 0{n).

Proof. An 0{n) algorithm has been proposed in Appendix C. The steps of 
the model construction given in the proof of Theorem 3.1 are followed in 
the algorithm. A program has been implemented to test the algorithm 
(see Appendix D). ■

Consider the causal theory with axiom schemata given in Section 3.1. 
It is a YSP-like causal theory since it contains an initial boundary 
condition (axiom 1), a final boundary condition (axiom 2), a persistence 
axiom schema (schema 3) and a causal axiom schema (schema 4). Given 
this YSP-like causal theory (some mundane conditions are omitted), the 
algorithm produces the sentences: TRUE(1,loaded), TRUE(2,loaded), ..., 
TRUE(5,loaded), TRUE(5,fire), and TRUE(6,noise). These are exactly the 
sentences Shoham's algorithm yields.

Now the final boundary condition is replaced by 0(10^^,fire). Both 
algorithm s produce TRUE( 1,loaded), TRU E(2,loaded), ...,
TRUE(10lO,loaded), TRUE(10lO,fire), and TRUE( 1010-^1,noise). Since 
Shoham’s algorithm must step through each time point between 1 and 
1010, it takes too long for it to jump to the conclusion that the gun will be 
loaded at 1010, and then infer that there will be a loud noise at lOlO+l. 
However, if one knows that the gun is loaded and that nothing has 
happened until the time of I'easoning about the effect of firing the gun, 
one will immediately conclude that the gun is still loaded. Then, one will 
reason about the effect of firing the gun with this knowledge. In fact, this 
is what the 0(n) algorithm does; knowing that the gun is loaded at 1, and
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nothing interferes with the gun's being loaded, it concludes that the gun 
will remain loaded until it is fired at lÔ O.

Now let the scenario change. The gun is loaded at 1 but is emptied 
manually at 9. Shoham's algorithm and the 0(n) algorithm both produce 
T R U E d,loaded), TRUE(2,loaded), ..., TRUE(9,loaded), and 
TRUE(9, emptied-manually).

3.3 Multi-agents and a broader class of YSP-Kke causal theories

Restricting theories so that they contain a persistence axiom schema and 
a causal axiom schema does not provide the full power to represent 
realistic scenarios. Consider the YSP. Fred's being alive and the gun's 
being loaded at time 1 form the initial description. Furthermore, assume 
that the gun is fired at 10. An axiomatization follows:

1. □ (!,alive).
2. □d,loaded).
3. □(10,fire).
4. u(t,alive) a  o(t,-ifire) a  o(t,air) id □(t-i-1,alive), 'v't.
5. u(t,loaded) a  u(t,fire) a  o(t,iiring-pin)

A o(t,no-marshmallow-bullets)
ID □(t^-l,dead), Vt.

6. □(t,loaded) a  o(t,-ifire) a  o(t,-iemptied-manually)
ID G(t+1,loaded), Vt.

7. □(t,loaded) a  □(t,fire) a  <>(t,air)
A o(t,firing-pin)
A o(t,no-marshmallow-bullets)
ID □(t-i-1,noise), Vt.

Axioms 1 and 2 describe the initial state. Axiom 3 indicates the 
occurrence of the firing action. Axiom schema 4 says that Fred remains 
alive unless the gun is fired at him or there is no air (and hence he 
suffocates). Axiom schema 5 says that firing a loaded gun causes Fred's 
death provided that some conditions are satisfied. Axiom schemata 6 and 
7 ai'e used in the usual sense. This theory is not a YSP-like causal theory.
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Because a YSP-like causal theory must contain exactly one persistence 
and one causal axiom schema. Moreover, one initial and one final 
boundary condition are allowed. The theory above however contains two 
persistence and two causal axiom schemata, two initial boundary 
conditions, and one final boundary condition. Therefore, scenarios 
similar to this call for a broader class of YSP-like causal theories which 
will be introduced in the sequel. Before doing this, Shoham's causal 
theories will be examined to see whether they succeed in computing the 
intended models when concurrent actions are introduced.

Given an initial description of the world, one would like reason about 
the effects of concurrent actions. For example, turning the ignition key of 
a car and pressing the gas pedal at different times may not cause the car 
to run. But if these actions are performed simultaneously, the car starts 
running. Causal theories allow concurrent actions. Consider the 
following blocks world. There is a block initially located at a position 
(denoted by "at-center") on the table. There are two opei-ations "push-left" 
and "push-right." Executing "push-left" moves the block to a location 
(denoted by "at-left"). Executing "push-right" causes the block to move to 
another position (denoted by "at-right"). It is assumed that the forces 
applied on the block are of equal magnitude when these operations are 
performed concurrently. Now, assume that the block is at "at-center" at 
time 1, and "push-left" and "push-right" are simultaneously executed at
1. One would expect that the block will not move. Let the causal theory 
contain the following:

1. □ (!,at-center).
2. □ (!,push-left).
3. u( 1 ,pusli-right).
4. □ (!,at-center) a  o(l,-ipush-left) a  <>(l,-ipush-right)

13 q(2,at-center).
5. □ (!,at-center) a  □(l,push-left) a  o(l,-,push-right) 3  a(2,at-left).
6. □ (!,at-center) a  □ (!,push-right) a  o(l,-ipush-left) ^  Q(2,at-right).

Shoham's algorithm computes TRUE(1,at-center), TRUE(1,push- 
left), TRUEd,push-right). No other base sentence is known in the cmi 
models of this causal theory. This is strange. Since "push-left" and
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"push-right" are executed concurrently, the block should remain at the 
center of the table. That is, the sentence TRUE(2,at-center) must be 
obtained.

This problem can be resolved by introducing additional axioms such 
as "if it is known that the block is at the center of the table, and that push- 
right and push-left operations are simultaneously performed, then it is 
known that the block remains at the center" and "if it is known that the 
block is at the center of the table, and that no push-right or push-left 
operations are performed, then it is known that the block remains at the 
center." Unfortunately, in more complex domains, the number of such 
axioms can grow quickly. There must be a way of resolving this problem 
with a persistence axiom.

Definition 3.2 The set of counteractions is the set of actions that prevent 
each other from being operative when performed concurrently.

For example, pushing the block to left and pushing it to right are two 
counteractions that prevent each other when performed simultaneously. 
The effect of one of these actions cannot be obtained when the other action 
is also pei'formed (see Appendix B for a discussion).

D efin ition  3.3 Let n=-{ o(ti,Pi) | 1 < i < n, for some t] }■ where pj's are 
counteractions. Letting M be the unique cmi model of a causal theory T, 
let us write M |=n iff M |=o(ti,pj), Vo(ti,Pi) g U, or M ko(ti,Pi), Vo(ti,Pi) 
G n. Otherwise, let us write M k o .

As an illustration, the fourth axiom in the blocks world example 
above is replaced with the axiom below, where n = { o ( l , —,push-left), 
o (1 ,-ip ush-right)}.

□(l,at-center) a  fl 3  □(2,at-center).

Abusing the notation, U will be used as if it were a function over its 
members:

ij(l,at-center) a  ri(o(l,-,push-left), o(l,-ipush-right)) Z) Q(2,at-center).
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Under the interpretation of 11, in all cmi models of the causal theory 
for the blocks world example TRUE(l,at-center), TRUE(1,push-left), 
TRUE(l,push-i'ight), TRUE(2,at-center) are known.

Now a new class of causal theories with axiom schemata will be 
defined. It can be looked upon as a broader class of YSP-like causal 
theories. For this reason, any theory in this class will be called a YSP'- 
like causal theory.

Definition 3.4 A YSP'-like causal theory is a theory in Cl containing 
□(pg., i=l,...,n.
U<Pij, j =
and sentences in one of the following forms 
U(pp A 0p A ©p =) Q(pp , Vt.
(J)c A ©c 3  QCPc , Vt. 

where

1. □9si's the (nonempty) set of initial boundary conditions where 
each (pgj is of the form TRUE(ti,[-i]p).

2. Q(pfj's form the (nonempty) set oi final boundary conditions where each 
(Pfj is of the form TRUE(t2,[-i]p), ti<t2·

3. Any sentence of the form QCPp a 0p a ©p 3  QCPp is a persistence axiom 
schema where

(i) (Pp is of the form TRUE(t,[-i]p) (on the l.h.s.) and TRUE(t-i-l,[-i]p) (on 
the r.h.s.).

(ii) 0p  is a (possibly empty) conjunction of fli, where fli is a set of 
sentences <xpj such that 9j is of the form TRUE(t,[-i]q).

(iii) ©p is a (possibly empty) conjunction of 0(pi ,̂ where (pĵ  is of the 
form TRUE(t,[-,]q).

4. Any sentence of the form a ©c ^  09c is a causal axiom schema 
where
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(i) Oc is a nonempty conjunction of sentences 0 9 1 , where 9 j is of the 
form TRUE(t,[-i]p). Oc must contain at least one sentence of the 
form TRUR(t,r—.Ip) which does not appear on the r.h.s. of any 
(persistence or causal) axiom schema (as TRUE(t+l,[-.]p)).

(ii) 0 c is a (possibly empty) conjunction of sentences <>9j, where 9j is of 
the form TRUE(t,[-.]q).

(hi) 9 c is of the form TRUE(t+l,[—i]r).

5. TRUE(ti,p) and TRUE(ti,-.p) do not appear among the initial boundary 
conditions together.

6. TRUE(t2,q) and TRUE(t2,-iq) do not appear among the final boundary 
conditions together.

7. Let G9p A 0p A ©p ^  i_i9p and Oc a ©c => Q9c be two schemata in
If o(t,p) (respectively o(t,-ip)) is a conjunct of 0p a ©p, then ©<> does not 
contain o(t,—ip) (respectively <>(t,p)) as a conjunct.

8. Let Q9p A 0p A ©p 3  Q9p and Oc a ©c Q9cbe two schemata in
If 9p and 9c are of the forms TRUE(t,p) (respectively TRUE(t,-.p)) and 
TRUE(t,-.p) (respectively TRUE(t,p)) then Q9p a  0p a  ©p a  O c a  ©c is 
inconsistent,

9. Let □9sj (respectively □9fj) be an initial (respectively final) boundary
condition and Q9p a  0 p  a  ©p Z) Q9p be a persistence axiom schema. If 
9 Si (respectively 9fj) is of the form TRUE(ti,p) (respectively
TRUE(t2,-ip)) and 9 p is of the form TRUE(t,-.p) (respectively TRUE(t,p)) 
then Q9p A 0p A ©p is inconsistent,

1 0 . Let Q9si (respectively □9fj) be an initial (respectively final) boundary 
condition and Oc a ©c z> Q9c be a causal axiom schema. If 9sj 
(respectively 9fj) is of the form TRUE(ti,p) (respectively TRUE(t2,-ip)) 
and 9c is of the form TRUE(t,—.p) (respectively TRUE(t,p)) then Oc a 
© cis inconsistent.
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P roposition  3.2 Any YSP'-like causal theory corresponds to a finite 
causal theory 'P if each t in all axiom schemata in is replaced by 
constants in the range tj to t2 , where tj and t2 are the time points 
mentioned in tlie initial and final boundary conditions of respectively.

Proof. Replacing t in axiom schemata with constants gives a finite set of 
axioms. These axioms together with the initial and final boundary 
conditions form T. ■

Theorem  3.3 If is a YSP'-like causal theory, then has cmi models 
and in all of these cmi models the same atomic base sentences are 
known.

Proof. By Proposition 3 .2 , there exists a T  corresponding to By 
Theorem 2 .1 , any T has a unique cmi model. Hence, tf has a unique cmi 
model. In Appendix C a model construction procedure is given. ■

Without the notion of counteractions and the corresponding syntactic 
sugar n, YSP-like causal theories are in the class of YSP'-like causal 
theories.

Theorem  3.4 If ̂  is a YSP-like causal theory, then  ̂ is also a YSP'-like 
causal theory.

Proof. Consider the initial and final boundary conditions of  ̂ as the 
unique members of the sets of initial and final boundary conditions of a 
YSP'-like causal theory '̂, respectively. The causal axiom schema of 
being the only causal axiom schema in '̂, and the persistence axiom 
schema of  ̂ (with an empty set of <> -conditions for the set of 
counteractions), being the only persistence axiom schema of '̂, form a 
YSP'-like causal theory (f. ■

Theorem  3.5 If C is a YSP'-like causal theoi'y of size n, then the unique 
set of atomic base sentences known in any cmi model of C' ^an be 
computed in time O(nlogn).
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Proof. An algorithm is proposed in Appendix C to compute these atomic 
base sentences. The complexity of this algorithm is shown to be O(nlog7t). 
■

Let the following YSP'-like causal theory represent the blocks world 
scenario at the beginning of this section. But now assume that "push- 
left" and "push-right" are executed concurrently at 1 0 .

1 . odjat-center).
2 . 0 (1 0 ,push-left).
3. ij( 10,push-right).
4. □(t,at-center) a n(o(t,-ipush-left), o(t,—.push-right))

3  □(t-i-l,at-center), Vt.
5. iJ(t,at-center) a u(t,push-left) a 0(t,-.push-right)

3  □(t-i-l,at-left), Vt.
6 . □(t,at-center) a □(t,push-right) a o(t,-.push-left)

13 □(t+l,at-right), Vt.

The O(nlogn) program first computes the set of base sentences that 
will be known at 2 from what is known (and what is not known) at 1 . It 
finds out that TRUE(2,at-center) is known by the axiom schema 4. Then, 
it performs one more iteration to see what is known at 3. Again by axiom 
schema 4, it is seen that only TRUE(3 ,at-center) is known. Since the base 
sentences that are known at this step of the iteration are only the 
persistence sentences, it generates the sentences TRUE(4,at-center), 
TRUE(5 ,at-center), ..., TRUE(10,at-center). Finally, it computes the 
sentences that are known at 1 1  from the atomic base sentences known at 
10. Noticing that "push-left" and "push-right" are counteractions 
executed simultaneously, it finds out that the l.h.s. of the axiom schema 
4 is satisfied. It produces the sentence TRUE(ll,at-center). Since l.h.s. of 
all other axiom schemata fail due to the occurrence of counteractions at 
1 0 , the atomic base sentences that are known in the cmi model of this 
YSP'-like causal theory are TRUE(l,at-center), TRUE(2,at-center), ..., 
TRUE(10,at-center), TRUE(1 0 ,push-right), TRUE(10,push-left), and 
TRUE ( 1 1 , at-center).
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Now let just one of the operations, say "push-left," be executed at time 
10. The algorithm then produces TRUE(l,at-center), TRUE(2,at-center), 
..., TRUE(10,at-center), TRUE( 10,push-left), and TRUE(ll,at-left).

To see the consequences of a more interesting YSP'-like causal 
theory, consider the shooting scenario. Fred is alive and that the gun is 
loaded at time 1 . The gun is fired at Fred at time 1 0 . The theory given for 
this scenario contains axiom schemata and boundary conditions. It is a 
typical YSP'-like causal theory. Given this theory, our O(^ilogn) 
algorithm produces the intended model. Shoham's OiTmax n \og{Tmax 
n)) algorithm and this algorithm produce the same sentences: 
TRUECl .alive). TRUEO .loaded), TRUE(2 ,alive), TRUE(2,loaded), ..., 
TRUECIO,alive), TRUE(10,loaded), TRUE(10,fire), TRUE(ll,dead), and 
TRUEdl,noise).

The unintended models in YSP'-like causal theories are eliminated 
by considering the occurrence of counteractions. This is not specific to 
YSP'-like causal theories. The notion of counteractions and the syntactic 
sugar n can be embedded into the sentences in Shoham's causal theories 
as well.

3.4 When is computation time-dependent?

It is not known to what extent causal theories give a satisfactory account 
of the reasoning process. In the previous sections, it has been shown that 
computing with causal theories is inefficient in the sense that one must 
step through each axiom in the causal theory to compute the results of 
some actions. To remove this deficiency, new classes of causal theories 
have been introduced. Restrictions have been imposed on sentences in 
these classes. One may wonder whether the time-dependent nature of 
computations can be removed without imposing these restrictions, but 
still allowing axiom schemata. The answer is not in the affirmative.

For example, consider an electronic circuit which functions as a 
relay. The output of the relay is directly connected to its input. The output
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can be either "on" or "o ff depending on the input. If the input is "on" 
(respectively "o ff )  at some time, then the output becomes "o ff  
(respectively "on") at the next instant of time. One can interrupt the 
system by the operation "interfei'e." When "interfere" is done, the output 
of the circuit is delayed. Assume that the output of the circuit is given as 
"on" at time 1. If "interfere" is executed at time 6 , what are the 
consequences? Below, a causal theory is given as a formalization of this 
scenario. (This theory is neither a YSP-like nor a YSP'-like causal 
theory. For example, G(t,on) is the unique Q-condition of the axiom 
schema 3, but it appears on the r.h.s. of the axiom schema 4.)

1. iJ(l,on).
2 . Q(6 ,interfere).
3. Q(t,on) A o(t,-iinterfere) ^  □(t+l,oif), Vt.
4. □(t,off) A o(t,—linterfei'e) 3  □(t+l,on), Vt.
5. u(t,on) A u(t,interfere) 3  ij(t+4,on), Vt.
6 . □(t,off) A □(t,intei'fere) ^  □(t+4,off), Vt.

TRUE(l,on), TRUE(2,off), TRUE(3,on), TRUE(4,off), TRUE(5,on), 
TRUE(6 ,off), TRUE(6 ,interfere), and TRUE(10,off) are obtained as the 
atomic base sentences known in all cmi models of the corresponding 
finite causal theory.

Obviously, such a scenario requires examination of each axiom 
schema in the theory for all time points between 1 and 6 . However, by 
determining regularities one can jump to conclusions. Knowing that the 
output is initially "on" at time 1 and that the relay produces a regular 
sequence of "on" and "off unless "interfere" is executed, one can directly 
generate the sentences TRUE(2,off), TRUE(3,on), TRUE(4,off), 
TRUE(5 ,on), and TRUE(6 ,off). But detei'mining such regularities may be 
expensive.
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Chapter 4

SIMULTANEITY OF CAUSE AND EFFECT

Asymmetry problem, the question of what distinguishes cause from 
effect, has been a crucial issue in philosophy. That "causes cannot 
succeed their effects in time" is accepted commonly, but not universally. 
Russell states that "If there are causes and effects, they must be 
separated by a finite time-interval" [2, p. 62]. But elsewhere he asserts 
that "It is not essential to a causal law that the object inferred should be 
later than some or all of the data. It may equally well be earlier or at the 
same time" [2 , p. 63]. Changing his mind in a later article he states that 
"A causal proposition can be stated in the following way: A exists at time 
t Z) B will exist at time t+At" [2, p. 63].

It should be noted that the proposition "causes cannot succeed their 
ciTccts in time" does not require the precedence of the cause to its effect in 
time. Causes and effects may coincide in time. To quote Bunge [2 , p. 39]:

"To employ a term of which traditional philosophers are 
fond, the cause is existentially prior to the effect - but need 
not precede it in time."

Von Wright notes the problematic occasions in distinguishing cause 
and effect when there is no temporal precedence [38, p. 107]:

"In the normal cases, the effect brought about by the 
operation of cause occurs later. In such cases time has 
ah'eady provided the distinction. Moi'e problematic is the 
case when cause and effect are supposed to be 
simultaneous. Those who think of the cause-effect 
distinction in terms of temporality will be at loss here."
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4.1 Two philosophical accounts of simultaneous causation

Taylor [38, pp. 39-43] cites a number of examples on causal connections 
in everyday life where the difference between a cause and its effect 
cannot be based on temporality [38, p. 39]:

"Consider, for instance, a locomotive that is pulling a 
caboose, and to make it simple, suppose this is all it is 
pulling. Now here the motion of the locomotive is sufficient 
for the motion of the caboose, the two being connected in 
such a way that the former cannot move without the latter 
moving with it. But so also, the motion of the caboose is 
sufficient for the motion of the locomotive, for given that the 
two are connected as they are, it would be impossible for the 
caboose to be moving without the locomotive moving with it.
From this it logically follows that, conditions being such as 
they are - both objects are in motion, there are no other 
moves present, no obstructions to motion, and so on - the 
motion of each object is also necessary for the motion of the 
other. But is there any temporal gap between the motion of 
one and the motion of the other? Clearly there is not. They 
move together, and in no sense is the motion of one 
temporally followed by the motion of the other."

Taylor identifies the ci'iteiion to distinguish the cause from the effect: 
the cause acts upon something else to produce some change. For 
example, the locomotive acts on the caboose and pulls it whereas the 
caboose does not push the locomotive. Then, he notices that what is 
distinguished as a cause can also be an effect of other causes which are 
again simultaneous with their effects. He asks whether all causes are 
simultaneous with their effects. Noting the existence of causal chains as 
well as temporally separated but causally related events, Taylor 
concludes that causes usually precede their effects in time, but rejects 
the idea that causes must precede their effects in time. He defines cause 
as a given set of conditions, which is antecedently (but not subsequently)
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necessary for, or sufficient for, or both necessary and sufficient for 
another state of affairs.

Von Wright proposes an account of causation which would help in 
cause-effect asymmeti-y when there is no order of temporal precedence 
[38, pp. 95-113], [39]. The idea of causation, which he calls manipulative 
(or experimentalist) causation, is based on interference and action. If 
two simultaneous occurrences are causally connected, then the one 
which can be influenced by manipulating the other must be the cause of 
the other, except there is no common cause of these occurrences. Von 
Wright also examines the role of manipulation in functional 
relationships. He claims that not all factors in a functional relationship 
are manipulable, and the causality in these relationships is in that one 
has the power to change one term by manipulating the other. For 
example, if one can only change the volume of a gas by changing either 
pressure or temperature, then the changes in the volume of the gas must 
be effects, not causes.

In distinguishing a cause from its effect when simultaneity is of 
concern, Taylor and von Wright agree on how to provide the distinction: 
cause acts upon effect and cause can be controlled to produce the effect. 
But von Wright develops a formal analysis of his general account of 
causation and determinism, consisting of ordinary propositional logic, a 
tense logic, and a modal logic.

A2> Shoham’s account

From the definition of causal theories in Chapter 2 , it is obvious that 
Shoham accepts the temporal precedence of causes over their effects. In 
[35, pp. 178-179] he discusses what problematic issues arise when 
simultaneity of causes and effects is allowed in a causal theory.

Causal theories are restricted in that causes strictly precede their 
effects in time. In a causal theory, for any sentence O a  © Q(t5,t6,r),
the Itp's of all conjuncts in <I> and © must be less than t5 (assuming ts < 
t6). That is, if □(ti,t2,p) € <I) and o (t3,t4,q) e ©, then it must be the case
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that t2 < ts and t4 < ts (assuming tj < t2 and t3 < t4). One point worth 
mentioning is the question of whether time is viewed as discrete or 
dense. In causal theories, the time structure is that of Z. But Shoham 
admits that time should not be viewed as the integers in case of 
simultaneity of cause and effect, leaving the question of how to view it 
(dense, complete, linear, or branching) partly unanswered.

4.3 Problems with simultaneous temporal propositions

4.3.1 Self-causation and circular causation

Among the commonly agreed properties of causation three are the 
touchstones for a formal treatment of causation. These are its properties 
of being antisymmetric, irreflexive, and transitive. For example, Bunge 
[2, p. 244] proposes a relational approach where a relation, R, is 
supposed to hold between the cause and its effect. He specifies formal 
properties of R as follows (note the different logical symbols):

(a) It is a dyadic relation xRy holding among events.
(b) It is irreflexive, (x) ~ (xRx).
(c) It is transitive, {x) (y) (z) [xRy & yRz zd xRz].
(d) It is asymmetrical, {x) (y) [xRy zd ~yRr].

Causation asserts that nothing is self-caused. Every change is a 
result of something external to the changing subject. Such a view 
belongs to the modern understanding of causal determinism. Causal 
determinism takes efficient causation for granted such that efficient 
cause is briefly defined as an external actor.

It is the irreflexivity property of causation that is absent in material 
implication. Given any proposition p, it immediately implies itself 
(symbolically p => p). Hence material implication cannot be regarded as a 
correct formalization of causal connection. The irreflexive characteristic 
of causation together with its transitivity property forbids circular 
causation. Causal rules in causal theories are strongly related to 
material implication. But causal rules are weaker in some respects and
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stronger in others. Shoham discusses this issue in a related section on 
the properties of causation [35, p. 152 and p. 160]. Bunge [2 , pp. 242-243] 
also addresses the relation between causation and implication. The 
discussion is threefold. It centers around causation and the kinds of 
implication: material, strict, and causal.

Causal theories have antisymmetry and ii-reflexivity properties by 
definition since temporal precedence of causes over their effects is taken 
as the core principle of causal connections expressed by causal 
sentences. However, the transitivity characteristic is partly missing in 
causal theories. Temporally ordered sequences of causal relations are 
permitted. But this does not give a full account of the transitivity relation. 
A sequence of causes and effects (effects being also the causes of other 
effects) which are not ordered temporally, but possibly causally, and 
occurring simultaneously also form a transitive relation. For example, 
in an isolated environment an event A causes B, which in turn causes C 
such that there is no time difference between their occurrences and evei'y 
cause is simultaneous with its effect. Then, it follows that A also 
(indirectly) causes C since whenever A occurs, B must be there by 
causally depending on A, and whenever B occurs, C must be there by 
causally depending on B.

It might sound confusing to talk about the conceptual inequality of 
causal order and temporal order of occurrences. There are situations in 
which two things may happen at the same time. There exists no 
temporal order between their occurrences. None of them occurs after the 
other in time. However, the occurrence of one of them can be identified as 
the cause of the other. In this case, it is said that there is a causal order 
between them; the cause is causally befoi-e the caused one, the effect.

In causal theories, causal rules can represent causation such that 
the G-conditions on the l.h.s. of a causal rule denote causes while the 
r.h.s. denotes their effects. Under this interpretation, having 
simultaneous temporal pi’opositions on both sides of causal sentences 
may result in circular causation [35, p. 179]: □(t,pj) 3  Q(t,Pi+x), i=l,...,n-
1> Pn = Pi·
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Simply, the causal theory may include a sentence of the form QCtjp) Z) 
□ (t,p). Then, we have self-causation. Our objection to this is twofold. 
First, causation is semantic rather than syntactic. But if circularity 
exists, relating causation to syntactic forms only will not be fair. Instead, 
causation can take the form of a mere material implication. 
Furthermore, sentences of the form Q(ti,p) zd Q(t2,p), where t̂  < t2, are 
allowed in causal theories. Does this mean that p causes itself? There 
can be sentences in the form o(ti,p ) Z) Q(t2 ,p), where t̂  < t2 . Is this 
rendered as "if -ip is not known at ti, then p is known at i2 for no reason"! 
Through soundness conditions, one can write sentences like <>(ti,p) Z) 
TR U E (ti,p). Shoham [35, p. 118] says "we now assume that the 
soundness conditions are implicitly part of the causal theory itself, and 
are omitted simply for reasons of economy of expression." Moreover, the 
boundary between □- and o-conditions in Shoham's account becomes 
hazy if Q-conditions in a causal rule strictly denote the causes.

The second objection, closely connected to the first one, is that one is 
not supposed to look for the causes in the unique cmi model of a causal 
theory. If this were the case, then there would be difficulties in 
identifying the causes and computing possible explanans  of the 
occurrences. Temporal precedence of causes over effects already 
provides the necessary criterion to find out the causes of a given set of 
effects. However, when simultaneous propositions are allowed on both 
sides of the causal rules, the problem becomes more complex.

As an example for cause-effect distinction, reconsider Taylor's 
illustration. Assume that the causal theory contains the following:

□(4,locomotive-moves) z> Q(4,caboose-moves).
□(4,caboose-moves) Z) □(4,locomotive-moves).

Looking only at the syntactic forms of these rules, one can say that 
these permit circular causation. But now add TRUE(4,locomotive- 
moves) to the causal theory. Then, TRUE(4,locomotive-moves) and 
TRUE(4,caboose-moves) will be the only sentences known in all cmi 
models of the causal theory. In this case, if one investigates the cause of
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the motion of the locomotive and the caboose, he may identify the motion 
of the locomotive as the cause of the motion of the caboose although 
ij(4,caboose-moves) Z) 0(4,caboose-moves) implies self-causation.

Permitting causal sentences of the form Q(t,pj) ZD □(t,pj+i), i=l,...,n- 
1, Pn=Pi introduces no peculiarity at all in constructing cmi models. 
However, the original algorithm must be revised to obtain the known 
atomic base sentences. This will be studied in Section 4.5.

4.3^ Self-change

Shoham says [35, p. 179]:

"[0 ]ne might have a set of sentences □(t,pj) id □(t,pj+x), 
i=l,...,n-l, Pn = -ipi; This would destroy the independence 
of the past from the future in general, and the 'unique'- 
model property in particular. Or, as another example, one 
might have sentences of the form o(t,p) ZD □(t,-ip), which 
would have a similarly detrimental effect on the properties 
of causal and inertial theories."

However, by placing some restrictions on the sentences in the 
definition of causal theories these problems can be eliminated. In the 
former case, it is possible to impose some restrictions on the sentences 
similar to the one in the definition of the original causal theories. Recall 
that consistency of the causal theories is maintained by the following:

If cl) 1 A 0 1  Z) Q(ti,t2,p) and (I>2 a  0 2  =5 □(ti,t2,-ip) are two 
sentences in T, then cbi a 0 i a <1)2 a 0 2  is inconsistent.

To see what kind of situations yield inconsistency, two possibilities 
are examined below.

(a) Causal connections can be unidirectional;

□(ti,Pi) ZD □(ti,P2).

□(ti,P2) =) Q(ti,P3).
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If there exists another sentence with □(ti,pi) on its r.h.s., then this 
may result in inconsistent inferences.

(b) The causal connections can be bidii'ectional:

□(t],P]) 3  □(ti,P2).
□(ti,P2) 3  □(ti.pi).
□(t|,P2) =5 Q(ti,P3).
□(ti,P3) ZD □(ti,P2).
Q(fl>P3) ^  □(ti,-'Pi)> where there exists at least one causal chain 
from □(ti.pi) to □(ti,-ipi).

In this case, if the r.h.s. of any of these rules is satisfied, due to the 
existence of causal chain the sentences TRUE(ti,px) and 
TRUE(tx,-ipx) will be obtained.

Instead of prohibiting sentences of the form Q(t,Pi) Z) □(t,Pi+i), 
i=l,...,n-l, Pn = -ipx, more special forms of sentences can be permitted. In 
this way, the possibility for a proposition to be true and false at the same 
time can be eliminated.

4.4 Should simultaneity be treated by causal theories?

As can be seen from the preceding sections, simultaneous causation is 
possible and there may be situations in which cause and effect occur at 
the same time.

Consider the following illustration attributed to von Wright [38, p. 
108], [39]. There is a horizontally positioned pipe whose two ends are 
controlled with two valves. These are connected in such a way that if one 
is opened at one time, then the other valve is closed at the same time, and 
vice versa. Opening of one valve and closing of the other occur 
simultaneously. The pipe has also a top-inlet continuously supplying 
high pressure water into it. Hence, the pipe, with the valves directing the
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water flow to only one direction at a time, functions as a two-way 
watering system. Now let the state of the first valve's being open be 
represented by p while that of the second by q. Then, at any time either p 
A -iQ or -.p A q. Additionally, let the flow of the water through the first 
(respectively second) valve be repi'esented by r (respectively s).

Obviously, the cause of r is p and the cause of s is q. Then, a causal 
theory will contain the sentences:

□(t,p) A 0 1  ZD □(t+l,r), Vt, where © i= A ’^._j^o(tii,ti2 ,ai).

G(t,q) A ©2 3  □(t+l,s), Vt, where © 2= A ‘j_iO(tji,tj2,bj).

Assume that the state of the valves are causally related to a common 
cause (e.g., if there is a possibility for an agent pushing only the first 
valve and closing it, this action causes the first valve to close and the 
second valve to open). In this case, the causal theory above might contain 
the following sentences where the pushing of the first valve is 
represented by u:

□(t,u) A ©3 3  □(t+l,-.p), Vt, where © 3=A^j^jO(tii,tj2 ,ai).

□(t,u) A ©4 3  □(t+l,q), Vt, where © 4=A'^_^o(tji,tj2,bj).

It is noted that if © 3=© 4, one cause produces more than one effect. 
This suggests that causal rules can represent multiple effects. This 
issue is addressed in Appendix B.

If the two changes have separate causes, the situation is easy. For 
example, let the first valve be open and the second closed. If there is an 
agent pushing the first valve to close it, there may be another agent 
pulling the second valve to open it. Then, closing of the first valve can be 
attributed to the pushing of it, and opening of the second valve to the 
pulling of it. Or, it may well be the case that one agent pushes the first 
valve while another pushes the second valve. In this case, there are two 
causes, namely pushing of the first and the second valves, that intervene 
with each other. Although each cause separately has efficacy to produce
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its effect(s), now they prevent the changes that they will bring about. 
Since each one prevents the other from being operative, these two can be 
termed counteracting causes, following von Wright [39, pp. 75-77]. These 
two causes must be involved in the related causal sentences either in the 
form □(t,u) A o(t,—iv) or in the form □(t,v) a o(t,-iu) where u and v denote 
pushing of the first and the second valves, respectively.

So far, everything is on the side of the temporal precedence of causes 
over their effects. But, what happens if there is no cause of these two 
changes? This is quite possible because causal theories allow atomic 
sentences in the form of boundary conditions to be asserted for no 
reason. That is, things can come into being for no reason. In fact, either 
p (the first valve's being open) or -iq (the second valve's being closed) can 
be asserted at any time into the causal theory. Then, how does one assure 
that, when only one of them is known, he will know the other occurred at 
the very same time? A set of sentences in the following form might be 
helpful:

□(t,p) Z) □(t,—iq), Vt.
□(t,-,q) Z) Q(t,p), Vt.

Note that they do not contain a o-condition. This means that 
occurrence of p (respectively -iq) unconditionally necessitates occurrence 
of -iq (respectively p). However, there may be cases in which some 
qualifications must hold for occurrences to be simultaneous.

Ginsberg suggests that distinguishing between the qualifications of 
actions and their effects by imposing a temporal order on them is a weak 
approach [6 , p. 233];

"Suppose I am attempting to take a photograph inside 
a cave. At great expense, I bring in a power supply and a 
battery of lights. I also bring a camera.

Now it turns out that my camera has twelve on-board 
computers and must also be connected to the power supply.

Unfortunately, my power supply cannot both operate 
the camera and run the lights. Thus, when I press the
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shutter release, two things will happen; the shutter will 
open, and the lights will dim.

I need the lights on to take the photograph. And 
furthermore, I need them on at the precise instant that the 
shutter opens. It is imperative that the qualification to 
taking the photograph (that the lights are on) be 
simultaneous with the effect of the action (that the shutter 
drop) in this example."

For example, the following can represent the situation:

□(t,press-shutter-release) a  o(t+l,lights-on)
Z) Q(t+1,shutter-drops), Vt.

4.5 Causal theories: An extended definition

Definition 4.1 An extended causal theory il is a theory in Cl, in which all 
sentences have the form O a  0  Z) ocp, where

1 . (p = TRUE(ti,t2,p).

2 . O = where (pi is an atomic base sentence with Itp tj, ti<ti.

3 . 0  = A  where (pj is an atomic base sentence with Itp tj,

4. O or 0  may be empty.

5. It is assumed that there exists tQ such that if 0  ^  Q(ti,t2 ,p) is in il, 
then to<ti.

6 . There do not exist two sentences in il such that one contains o(ti,t2 ,p) 
on its l.h.s. while the other contains o(ti,t2 ,-ip) on its l.h.s.

7. If A 0 1  Z3 Q(ti,t2 ,p) and O 2 a 0 2  ^  □(ti,t2 ,—ip) are in il, then O i a

0 1  A O 2 ^  is inconsistent.
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8 . There do not exists sentences in Q. of the form O a o (ti,t2,-ip) a  0  Z) 
Q(t2,t3>p) or O A 0 (ti,t2,p) A © =) □(t2 ,t3 ,-np).

Informally, this definition says that causes can occur 
simultaneously with their effects (they can only coincide at a time point 
where the cause ceases while its effect starts). If cause and effect overlap 
for a period of time, the direction of prediction changes: either the past 
determines the future or the future determines the past.

D efin ition  4.2 The earliest time point (etp) of a base formula is the 
earliest time point mentioned in it.

1 . The etp of TRUE(tx,t-2,p) = t̂ .
2. The etp of (pi a 9 2  = min{etp of (pi, etp of 9 2 )·
3. The etp of -19  = the etp of 9 .
4. The etp of Vv 9  is the minimum among the etp's of all 9' which 

result from substituting in 9  a time point symbol for all free 
occurrences of v, or -00 if there is no such minimum etp.

Definition 4.3 The temporally meeting set o f sentences at time t, TMSt, 
arc those sentences in the causal theory D such that for any sentence, the 
etp and Itp of the base sentence on its r.h.s. is the same and equal to t, 
and the Itp of at least one of the base sentences on its l.h.s. is equal to the 
etp dtp) of the base sentence on its r.h.s.

For example, if Q contains □(ti,t2 ,p) a o(t3 ,t4 ,q) Z) Q(t4 ,r) and 
□(ti,t4 ,u) Z) □(t4 ,w), then they are in TMSt4  (assuming that ti < t2  ^ t4  and 
ts ^ k ).

D efinition 4.4 The bounded set of sentences at time t, BS ,̂ are those 
sentences with Itp t.

If □(ti,t2,p) A o(t3 ,t4 ,q) Z) □(t4 ,te,r) and Q(t3 ,t6,u) Z) □(tg,w) are in Q, 
then they are in BSt0. But note that only Q(t3 ,t6,u) 3  Q(t0,w) is in TMSt0. 
Then, a sentence in E! is always in BSt for some time t. But it may or may 
not be in any TMS.
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Definition 4.5 The temporally dependent set of sentences at time t, TDSt, 
are the sentences in TMSt of Q. such that if (p is on the r.h.s. of a sentence 
in TMSt> then it should be the case that either Q(p or o-,(p appears on the 
l.h.s. of other sentences in TMSt-

For example, let TMStg for an extended causal theory Q. be as follows:

TMSL(3 ={'->(ti,t2,p) A 0(t3,L6,q) 13 U(t6,r),
□(tg.r) 3  □(te,s),
□(ti,t2,p) A 0(t5,t6,u) 3  □(tg.v)}.

Then, TDSt6={Q(ti,t2,p) a  ^(t3 ,t6,q) 3  □(t6,r), □(te,r) 3  □(t6,s)}.

Extended causal theories are consistent and satisfiable. Moreover, in 
all cmi models of an extended causal theory the same atomic base 
sentences are known.

Theorem  4.1 If D is an extended causal theory, then
1 . has a cmi model.
2 . If Ml and M2 are both cmi models of Q, and (p is any base sentence, 

then Ml l=Q(p iff M2 |=Q(p.

Proof. Appendix C. ■

Theorem  4 .2  If D is a finite extended causal theory of size n , then the set 
of the atomic base sentences known in the cmi models of D has size 0{n) 
and can be computed in time Oin̂ ·).

Proof. Appendix C. ■
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Chapter 5

CONCLUSION

Shoham's causal theories have computationally simple model-theoretic 
properties. However, it turns out that computing with causal theories is 
not very efficient. Axiom schemata are not directly allowed in causal 
theories. If there is any axiom schema, it stands for all its ground 
instances. New classes of causal theories have been introduced to 
capture generality with axiom schemata as well as to efficiently compute 
the atomic base sentences known in all cmi models of causal theories. 
This has been done without destroying the unique-model property of 
causal theories. It has been shown that computing with these causal 
theories is not time-dependent. It turned out that causal theories, in 
general, call for a syntactic sugar to obtain intended models. Such a 
syntactic sugar has been embedded in our YSP'-like causal theories. A 
model construction procedure has been proposed to compute the atomic 
base sentences in all cmi models of YSP'-like causal theories.

There are still some technical problems. One is prohibiting 
simultaneity of cause and effect. More generally, temporal propositions 
are not allowed on both sides of sentences in causal theories. In the 
second part of the thesis, it has been emphasized that permitting such 
propositions provides more expressive power and an extended definition 
has been given. The intervals of the propositions on both sides of 
sentences in these theories are not allowed to overlap, but meet at certain 
points in time. Provided that some assumptions hold, it has been shown 
that extended causal theories have unique cmi models. In order to 
compute the atomic base sentences known in cmi models of causal 
themies, an O(n^) algorithm has been proposed.
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Tt is not known whether there exist realistic domains to which 
Shoham's causal theories and the ones proposed in this thesis can be 
applied. Moreover, the points mentioned in Appendix B for a full account 
of causation (and also for reasoning) suggest new research directions.

Also open are some technical questions that have to do with 
efficiency. Perhaps one can devise 0(n) algorithms for causal theories 
containing axiom schemata with weaker restrictions.
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Appendix A

TWO EPISTEMOLOGICAL PROBLEMS IN AI

AI progi'ams suffer from a lack of generality [16] and the key for a 
solution is an expressive language to represent general conimonsense 
knowledge [11]. Situation calculus, introduced by McCarthy and Hayes 
[ 1 2 ], is a formalism to express the consequences of actions. The problem 
with the situation calculus is of epistemological nature [13]. It is a 
problem centering around the question of what can formally be 
represented in a computer. In the following, the fram e  and the 
qualification problems are examined.

A.1 The frame problem

Assume that presently there are two blocks on a table. One of them is red 
and the other is blue. Also assume that a robot in the present situation 
moves the red block onto the blue one, resulting in a new situation. What 
are the colors of the blocks in this new situation? The answer is that the 
colors remain unchanged. But this must be embedded into the 
formalism by adding the rule that moving a block in a situation does not 
change the color of any block. Rules for each action asserting what 
features of the situation do not change by performing that action are 
called frame axioms [1 2 ]. As McCarthy and Hayes [1 2 ] argue if one had a 
number of actions to be performed in sequence, one would have quite a 
number of conditions to write down that certain actions do not change 
the values of certain fluents. In fact, with n actions and m fluents, one 
must write down mn such conditions.
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So far the literature has come up with a variety of definitions of the 
frame problem. McCarthy states [17, p. 3]:

"The frame problem is that of specifying what does not 
change when an event occurs."

What makes the frame problem difficult is the word "specifying" in 
this definition. Why should one specify for each individual event and for 
each individual property, that the occurrence of the event does not affect 
that property? If the problem is to determine what remains unchanged 
after the occurrence of some event, then the problem can be softened by 
transforming the question into "Does property p of a situation presei've 
its existence in the next situation?" This is equivalent to writing down 
axioms asserting that a property p persists if  some conditions hold in 
that situation.

The coincidence of frame problem and persistence problem has been 
noticed by Shoham who describes the persistence problem in [35, p. 18] as 
the problem of predicting (on the basis of the past) that a fact will remain 
unchanged throughout a lengthy future interval. He gives the example of 
a billiard ball placed on a chosen spot on the table. One would like to 
predict that it will remain in that spot until it gets hit. The general 
problem, which he calls in [35, p. 17] the extended-prediction problem, is 
that of predicting arbitrary things about a lengthy future interval. That 
is, it is the problem of predicting not only what will not change but also 
what changes will occur throughout that future time interval.

Shoham and McDermott identify the extended-prediction problem as 
one of the formalism-independent problems of the prediction task and 
their claim is that it is a general problem in nature [35, pp. 3-18], [36-37]. 
They admit that the extended-prediction problem arises in classical 
mechanics since it is a hard task to formalize the process of making 
predictions over extended periods of time when the axioms of a tempoi'al 
theory are expressed as differential equations. Moreover, they argue that 
this problem also occurs in the "histoi'ies" framewoi'k of Hayes. In 
contrast, Rayner claims that "there is actually nothing mysterious about
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the process of making predictions about continuous-time processes, and 
that these can readily be formalized with no more theoretical apparatus 
than is afforded by classical logic, together with the differential and 
integral calculus" [2 2 , p. 382] and the extended-prediction problem has 
been solved [2 2 , p. 385]. Additionally, he shows how one can predict 
collisions using classical logic. Shoham's objection there is that the 
approach taken by Rayner is less efficient than using Cl. Obviously, the 
efficiency of both approaches can be compared if one can propose 
algorithms in Cl for continuous time. It should also be noted that Naur 
voices a strong objection and considers that the problem has been solved 
long ago by Newtonian mechanics [19].

The qualification problem

The second fundamental epistemological problem is the qualification 
problem. McCarthy defines the problem [14, p. 27]:

"The 'qualification problem' immediately arose in 
representing general common sense knowledge. It seemed 
that in order to fully represent the conditions for the 
successful performance of an action, an impractical and 
implausible number of qualifications would have to be 
included in the sentences expressing them. For example, 
the successful use of a boat to cross a river requires, if the 
boat is a rowboat, that the oars and rowlocks be present and 
unbroken, and that they fit each other. Many other 
qualifications can be added, making the rules for using a 
rowboat almost impossible to apply, and yet anyone will 
still be able to think of additional requirements not yet 
stated."

The problem has been emphasized by Shoham [35, p. 16]:

"[It] is the problem of trading off the amount of knowledge 
that is required in order to make inferences on the one 
hand, and the accuracy of those inferences on the other
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hand. In the particular context of predicting the future, it 
is the problem of making sound predictions about the 
future without taking into account everything about the 
past. Notice that the problem would disappear if we were 
willing to dramatically idealize the world: we could take it 
as a fact that noise always follows the firing of a loaded 
gun, simply assume that guns always have firing pins, 
that there are never vacuum conditions, and so on. The 
premise of this discussion, however, is that such an 
overidealization is a nonsolution, since the whole point is 
for our robots to be able to function in a realistically 
complex environment."

The qualification problem is twofold. First, there is the problem of 
fully specifying the characteristics of the qualifications in a realistically 
complex environment. For example, if one would like to predict noise 
when a loaded gun is fired, it is more appropriate to talk about the 
existence of a general environment cari'3dng sound rather than a specific 
environment, namely air. This calls for categorization and close analysis 
of the properties of the related entities in a particular context of 
reasoning.

The second aspect of the qualification problem is computational. 
Since the number of qualifications can be very large, devising a 
formalism that will allow correct reasoning efficiently becomes crucial. 
Nonmonotonic logic has been widely accepted as a standard tool towards 
a solution to this problem.

Cl is claimed to be a solution to the qualification problem since it 
"allows one to omit 'obvious facts', and still be able to deduce the desired 
facts about the future" [35, p. 174]. Shoham, however, admits that 
computing the consequences of any theory in Cl is hard. Yet, causal 
theories have some nice properties that yield a good time bound.

It has boon thought tliat qualifications may become infinite showing 
the impossibility of an efficient computational model for intelligent 
robots. Naur sees the formalism introduced by Shoham as a nonsolution
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to the qualification problem. His objection centers around the number of 
<>-conditions in an axiom [20]:

"□(t,loaded) a  G(t,fire) a  o(t,air) a  o(t,firing-pin) A
o(t,no-marshmallow-bullets) a  ... a  o other mundane 
conditions ZD ij(t+l,noise), Vt.

Roughly these lines state that if at time t the gun is 
loaded, fired, surrounded by air, provided with proper 
firing pin, and loaded with bullets not made of 
marshmallow, and in addition other mundane conditions 
are also satisfied, then at time t+ 1  a noise will be heard.
That this is a nonsolution, however, is made visible most 
prominently by the appearance of the 'other mundane 
conditions' clause. This clause clearly will have to take 
care of the rest of the world. But the world cannot be 
captured in terms of predicates."

Are all the things in the rest of the world relevant to the process of 
inferring noise? No matter how large this set of qualifications, the 
context of reasoning limits this set, leaving the rest as assumptions. One 
cannot talk about a context "capturing the whole world." McCarthy 
states [16, p. 1034]:

"Whenever we write an axiom, a critic can say it is true 
only in a certain context. With a little ingenuity, the critic 
can usually devise a more general context in which the 
precise form of the axiom does not hold. [...] We encounter 
Socratic puzzles over what the concepts mean in complete 
generality and encounter examples that never arise in life.
There simply is not a most general context."
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Appendix B

A CRITIQUE OF SHOHAM'S ACCOUNT OF CAUSATION

It is noted that the terminology introduced in Chapter 1 is followed. The 
reader can refer to [35, pp. 142-172] for details of Shoham's account of 
causation.

B. 1 Shoham's account of causation

According to Shoham, causal statements in any domain involve the 
concept of knowledge with temporal dimension. Furthermore, he asserts 
that "causal statements are based on the logic of chronological 
ignorance" [30, p. 158]. Hence, he finds causal rules an appropriate 
formalization of causal statements. As stated in Section 2.3, a causal 
rule has the form O a © 3  Q(p where O must be a non-empty 
conjunction of Q-conditions. Shoham interprets O as the cause of the 
effect relative to the causal theory that contains this causal rule. He 
calls the object in the real world which is denoted by a temporal 
proposition (be it a fact, event, process, or whatever) a happening. 
Identification of causes with respect to a causal theory is a fine approach 
since the causal theory forms a causal context in which only a finite 
number of happenings can cause or be caused. For example, firing a 
gun at some time is a happening. Saying that firing a loaded gun at time 
1 causes a loud noise at time 2 is equivalent to having the following 
causal rule: (*)

(*) □d,fire) A □d,loaded) a  o(l,air) a  0(1,firing-pin) a  ... 3  Q(2,noise).
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But saying that firing a loaded gun causes a noise to be heard at the 
next instant of time is a more general causal statement, and it is 
equivalent to having the following causal rule:

(**) □(t,fire) A Q(t,loaded) a  oft,air) a  o(t,firing-pin) a  ...

3  Q(t+l,noise), Vt.

Statements such as "TR U E (ti,t2 ,p) is an actual cause of 
TRUE(t3 ,t4 ,q)" can be judged as follows. Let M be the cmi model of the 
causal theoi-y 'F. TRUE(ti,t2,p) is an actual cause of TRUE(t3 ,t4,q) iff the 
following conditions hold:

1. NP contains a causal rule □ft]_,t2 ,p) a  © 3  Q(t3,t4,q),

where © = A "^ jO (tj4,ti2,ri).
2. M |=Q(ti,t2 ,p).
3. M |=o(tji,ti2,ri), i=l,...,n.

One can say that TRUE(ti,t2 ,p) actually caused TRUE(t3 ,t4 ,q) iff 
TRUE(ti,t2 ,p) is the only actual cause of TRUE(t3,t4,q). This view of actual 
causation provides a uniqueness criterion in the identification of causes 
[2 , p. 8 and p. 39]. Uniqueness of causation enables finding out what 
caused what in an unambiguous way.

Statements such as "TRUE(t4,t2 ,p) actually caused TRUE(t3 ,t4 ,q)" are 
what Mackie calls singular causal statements [38, pp. 15-38]. This type of 
causation, having only one cause and a single effect, is called simple 
causation [2, p. 119]. Then, one can ask about the possibility of multiple 
causation, that is, having a set of causes and a set of effects. Shoham 
answers this question by stating that causal rules permit multiple 
causation since there exist a set of causes and only one effect. 
Additionally, he suggests two categories: conjunctive and disjunctive 
causation (also cf [2 , pp. 119-147]). He does not give formal definitions of 
these categories; this we shall now do.

Conjunctive causation requires a set of happenings be identified as 
the cause of a single effect. Turning the ignition key of a car and
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pressing the gas pedal cause the car to run. Firing the gun and its being 
loaded cause a loud noise. Causal rules having more than one □- 
condition reflect conjunctive causation.

The statement "The happenings TRUE(tii,ti2 ,Pi) (for i=l,..,n) 
(actually) conjunctively caused TRUE(t3 ,t4,q)" is true with respect to NK if 
the following hold:

1 . contains O A 0  3  □ ( t 3 ,t 4 ,q), where

0=A"^^Q(tii,ti2.Pi) and 0 = A ™  ^^o(tji,tj2,rj).

2 . M |=Q(tii,ti2 .Pi). i=l,-.,n.
3. M l=o(tji,tj2 .rj), j=l,...,m.

The other category, disjunctive causation, transpires when there 
exists a plurality of causes producing the same effect (the effect is 
produced by each cause alone). Furthermore, each cause may actually be 
a conjunction of single causes. Striking a match or exposition of the 
match to heat cause the match to light. Firing a loaded gun or explosion 
of a bomb cause a loud noise. Disjunctive causation is then reflected by 
causal rules with distinct Q-conditions on their l.h.s. and the same r.h.s. 
For example, the following causal rules represent disjunctive causation:

□(t,fire) A o(t,loaded) a  o(t,air) a  ... □(t+l,noise), Vt.
□(t,explosion) A o(t,air) a  ... 3  □(t+l,noise), Vt.

In this case, the statement "The happenings TRUE(tji,tj2 ,Pi) (for 
i=l,..,n) (actually) disjunctively caused TRUE(t3 ,t4,q)" is true relative to T 
if the following hold:

For each TRUE(tii,ti2,Pi),
1 . y  contains □(tii,t^2>Pi) A 0  3  Q(t3 ,t4 ,q), where

0 =>^ j_l^(tji,tj2,ij).
2. M |=Q(tii,ti2 ,Pi).
3. M|=o(tji,tj2,rj), j=l,...,m.

Multiple causation is not restricted to disjunctive and conjunctive 
causation in which one single effect is produced. A set of causes can
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produce a set of effects. Causal statements such as "hitting the table with 
a hammer or with an axe cause both noise to be heard and the table to be 
damaged" exemplify this. One can still judge causal statements of the 
form "TR U E (ti,t2 ,p) was the common cause of the happenings 
TRUE(ti3 ,ti4,qi) (for i=l,..,n)" relative to This is tx'ue if the following 
hold;

For each □(tii,ti2 .qi)>
1. T  contains □(t3 ,t4>p) A 0 j ID □(tji,ti2>fli)> where

© i= A  j_i^(tjl>tj2>^j)·
2. M hQ(t3,t4.P)·
3. M ho(tji,tj2.rj),

This type of causation is weak in the sense that the conjunction of o- 
conditions in each causal rule can be different. Occurrence of one effect 
does not necessitate the occurrence of another. In the example above, if 
one hits a steel table with a hammer, a noise will be heard although the 
table remains intact. However, there might exist dependencies among 
effects of a cause so that whenever one of the effects occurs, the others 
unconditionally occur. Such a view suggests an economical way to 
represent the causal relations between happenings; a causal rule can 
have more than one U-condition on its r.h.s. These rules then can have 
the form O a © D) CO:

1 Tn
1 . cI)=A j^^i_l(tii,ti2 ,Pi), 0 = A  j^i<>(tji,tj2 ,qj), and

<^=A\^;^Q(ti,i,tk2,rk)·
2 . tj2 < t]̂ i, i=l,...,l and k=l,...,n.
3. tj2 < t]̂ i, j=l,...,m and k=l,...,n.

Then, whenever the cmi models of some causal theory T  satisfy the 
l.h.s. of such a causal rule, all the conjuncts on its r.h.s. immediately 
follow. Permitting tliis type of causal rule does not spoil the properties of 
causal theories and provides efficiency in representation and 
computation.
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Shoham treats notions that are indirectly involved in causation. 
These are "prevention" and "enabling." It is said that "a prevented b 
from happening" or "a enabled b to happen." These notions can also be 
defined relative to some causal theory Ψ. For example, TRUE(ti,t2,p) is 
an (actual) direct preventing condition of TRUE(t3 ,t4 ,q) with respect to a 
causal theory Ψ if the following hold:

1. Ψ contains a causal rule Φ λ  Θ □(t3,t4,q), where

<3)=A"^^Q(tji,ti2,ri).
2. o(ti,t2,-ip) is a conjunct of Θ.
3. M|=Q(tii,ti2 ,ri), i=l,...,n.
4. M|=Q(ti,t2 ,p).
5. M |,iG(t3,t4,q).

Then, it is said that TRUE(ti,t2 ,p) (actually) directly prevented 
TRUE(t3 ,t4 ,q) if TRUE(ti,t2 ,p) is the only (actual) direct preventing 
condition of TRUE(t3 ,t4,q). Consider axiom (*). If only TRUE(tx,loaded), 
TRUE(tx,fire), and TRUE(tx,-iair) are known, then it is said that absence 
of air (TRUE(tx,—.air)) prevented a loud noise to be heard (TRUE(t2,noise)).

Similarly, one would say that TRUE(tx,t2 ,—>p) is an (actual) direct 
enabling condition of TRUE(t3 ,t4 ,q) just in case TRUE(tx,t2 ,p) is an 
(actual) direct preventing condition of TRUE(t3 ,t4 ,q). The formal 
definitions for "enabling" are omitted. Clearly, notions such as 
"prevention" and "enabling" are not directly related to causes (that 
appear as Q-conditions in the causal rules), but belong to the class of 
causal factors (that appear as o-conditions in the causal rules).

Von Wright Γ38, pp. 95-113] introduced one type of preventing 
condition which he calls counteracting cause or intervening cause. 
Causal verbs defining causal factors other than the cause involved in 
causation do not normally contain the word "cause." What von Wright 
calls counteracting cause cannot generally be identified as a cause of 
some effect, but only a preventing condition of it. He defines 
counteracting cause as "a cause which operates against some operating 
cause of the prevented change" [39, p. 101] and adds "the effect of the
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occurrence of a counteracting cause is that another change, which also 
happens, fails to produce the effect which, we think, it would have 
produced had the preventive cause not intervened" [39, p. 82]. Consider 
our previous example: a block resting at the center of a table. There are 
two actions; push-left and push-right. It is assumed that the forces 
applied on the block are of equal magnitude. If one pushes the block left, 
but at the same time someone else pushes it right, the block remains at 
the center of the table. It is said that pushing the block right prevented it 
from moving (pushing it I'ight was a counter-acting cause).

Then, the statement "TRUE(t3 ,t4 ,p) is a counteracting cause for 
TRUE(ti,t2,q)" relative to T is true just in case the following hold (p and q 
denote actions):

1. contains Q(ti,t2 ,p) A 0  3  Q(t5 ,tg,s).
2. o(t3 ,t4,-iq) is a conjunct of 0 .
3. M |=Q(t4,t2,p).
4. M |=Q(t3 ,t/|,q).
5. M I?!:lj(t5,t6,s).

But this definition is incomplete for the definition of counteracting 
cause requires persistence of some happening. Then, it is said that 
T R U E ( t 3 ,t4 ,p) is a counteracting cause for T R U E ( t i , t 2 ,q) and 
TRUE(ti,t2 ,p) caused TRUE(t5 ,t6,r) to persist relative to some causal 
theory T just in case the following hold (p and q denote actions):

1. T contains □(ti,t2 ,p) A □(t5 ,tg,r) A0 ^  □(t7 ,tg,s).
2. o(t3 ,t4 ,-iq) is a conjunct of 0'.
3. M |=Q(ti,t2,q).
4. M |=Q(t3,t4,q).
5. M |=Q(t5,t6,r).
6. M |^Q(t7,t8,s).
7. T contains □(t5 ,tg,r) a n (o(ti,t2,-ip),o(t3,t4,-iq)) a 0 ' 3  

□(t9,tio>r) (Definition 3.3).
8 . M h 0 ’.
9. M |=Q(t9,tio,r).
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What else is needed?

B.2.1 Causal determinism

Causal determinism asserts that "everything has a cause," and that 
"nothing can exist or cease to exist without a cause." If causal 
determinism is taken as a doctrine, Shoham's account of causation fails 
in that some facts can be introduced into causal theories for no reason, 
and one fails to determine their causes since, as Shoham [35, p. 1 1 0 ] 
says, "those items of knowledge that come into being for no reason, 
simply because one posits their truth." They are the boundary conditions 
of the causal theory at hand. This contradicts causal determinism.

In fact, this does no big harm since causal determinism is not 
commonly agreed upon. Any causal theory can be looked upon as a 
representation of some part of the world isolated from the rest. The 
boundary conditions can be viewed as external factors that trigger causal 
processes inside the causal theories. If it is assumed that thei-e exist 
causal theories which subsume other causal theories or which interact 
with each other, then when the cause of a happening cannot be found in 
a causal theory it can be looked for in other related causal theories. 
Consequently, this suggests joining various causal theories to obtain a 
representation of a broader part of the world.

B ^^ Self-causation

Consider axiom (*). If interpreted in causal terms, the gun's being 
loaded at t̂  caused the gun's being loaded at t2- Obviously, this does not
mean that the antireflexivity property of causation is lost here since the 
temporal gap between two happenings directly provides this property. 
Then, what is wrong? Actually, people do not talk about the causes of 
persistences. For example, assume that a rod is supported by hand so 
that it stands in a vertical position, and whenever the support is 
removed, it falls. Then, assuming everything remains the same one 
would say that supporting of the rod by hand causes it to remain in a
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vertical position. But, what can be said to be the cause of the gun 
remaining loaded is unclear. If there exist counteracting causes as 
explained before and if they interfere with each other, then they might be 
identified as causes of a constancy. This is not, however, a satisfactory 
way of determining causes of constancies.

Another point is that people generally talk about the cause of 
changes. They look for the cause of something coming into existence 
which had not been there before or disappearance of something which 
had been there befor-e. Von Wright remarks [39, p. 73];

"Let us assume that the presence of oxygen in the 
environment is a causally necessary condition for a 
human body sta}dng alive. Thus in the absence of oxygen 
no human body can stay alive (for more than a short time)
[... This] statement amounts to saying that the 
disappearance (removal) of oxygen from the environment 
will cause [...] the extinction of life in a (living) human 
body which happens to be in this environment."

Then, one would have the following sentence in his causal theory:

□(tx,alive) A o ( t i , oxygen) a  ... a  Mother mundane conditions
Q(t2,alive).

B^.3 Causality: A theory of change

Shoham’s characterization of causation admits other counterintuitive 
statements. As Delgrande notes [3, p. 58]:

"It is thus possible to assert that some condition causes 
some other condition, where the second condition already 
happens to be true. Hence, in this account if I painted a fire 
hydrant red, which was already red, I could nonetheless 
claim that I caused the hydrant to be red."
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Delgrande also points out that some strange results may arise in 
Shoham's account [3, p. 58]:

"I have a friend Art who is an avid drummer. If we 
assume that he catches cold, it seems that we can equally 
well assert catching the cold on Saturday caused Art's 
blocked sinuses and drumming on Saturday caused Art's 
blocked sinuses."

But this is not really true. The cause of Art's blocked sinuses must be 
identified with respect to some causal theory. This means that there 
must be causal rules with r.h.s. indicating Art's blocked sinuses as their 
effects. Then, if an actual cause is found (this may well be catching cold 
on Saturday), then an indirect actual cause can be found. This is possible 
if there is a causal rule whose r.h.s. is the actual cause found, and 
whose l.h.s. is satisfied (this may be a statement asserting that 
drumming on Saturday causes catching cold on Saturday). In this case, 
the indirect actual cause (drumming on Saturday) is an actual cause of 
another actual cause (catching cold on Saturday) which is also an actual 
cause of an effect (Art's blocked sinuses).

B J 2A  litmitations of temporal propositions

It has been mentioned in Section B .l that happenings are propositions 
associated with time intervals. In Shoham's account, only certain 
happenings (primitive propositions) can cause others. However, this has 
been subject of a debate [2 , pp. 31-53]. Causal statements are primitively 
in the foi'm if C then E where C and E are regarded as designators of 
"singulars belonging to any classes of concrete objects - events, 
processes, conditions, and so on" [2 , p. 36]. This view of causation 
suggests the idea of talking about properties of singulars belonging to a 
certain class, instead of relying on only singulars.

To exemplify the situation, consider (**). Assume that the gun was 
loaded when it was fired. Indeed, absence of air in the environment
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prevents hearing a loud noise. Moreover, a loud noise would not be 
inferred if the gun had no firing pin, or if the gun was immersed into the 
water, or if the bullets were made from marshmallow, or if the gun 
powder was moist, and so on. But how does one deal with the bulk of 
these conditions?

First of all, what makes something a real bullet is its having a part 
that has the property of being explosive. Then, a "marshmallow bullet" 
or a "bullet lacking explosives" would not be called a real bullet. For the 
gun powder, being immersed in water or orange juice would not be the 
crux of the problem. What matters is that it becomes moist and that 
being moist directly affects the explosiveness property. One can list many 
things (the gun powder being in touch with all liquids in this case) that 
actually have the same result. Therefore, the condition o(t,-igun-powder- 
moist), when added to the l.h.s. of (**), should suffice to handle the 
effects of all liquids that make the gun powder moist.

Also firing the gun is not necessary for the explosion of the bullet. If 
the bullet is in direct contact with something hot, it may again explode 
and produce noise. Then, all happenings having the same property 
(being hot) can cause the bullet to explode. However, propositions are 
weak for representation of relations in this respect. Another source of 
difficulty is to find out the factors relevant to the phenomenon under 
consideration. A bear jumping in the north-pole cannot have causal 
connections with hearing a loud noise when a gun is fired in the south- 
pole. The approach taken here is that of causal determinism. This 
requires there be some restriction on the range of possibly relevant 
factors to the phenomenon. In particular, the relevant factors must be 
limited at least to the spatio-temporally neighboring ones. These 
assumptions allow one to deal with only a finite number of factors.

B.2.5 □- versus o-conditions

The division between □- and o-conditions in causal rules is made by 
statistical observations about the domain of i*easoning. If a happening
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rarely occurs in the domain, then it is supposed to be a Q-condition. If it 
occurs more often, then it is supposed to be a o-condition. The term 
"more often" is somewhat unclear.

Consider causal rule (**). One can start with the hypothesis that 
firing a gun causes a loud noise. If the gun is continuously fired by a 
patient agent in our world, then firing of the gun would always occur 
and would be a o-condition. However, firing the gim in the real world is 
considered as an action occurring less frequently, and hence as a □- 
condition in (**). Then, one can go on adding other conditions to obtain a 
more general causal rule in this way. Shoham [35, p. 167] claims that 
"after a while Q-conditions of the causal rule become relatively stable." 
But assume that fifty percent of the guns are defective, e.g., they lack 
firing pins. Further assume that the guns are used one after the other. 
In this case, one may again start with (**). If he fails to predict noise 
with one gun, then he will obviously want to know whether the next gun 
has a firing pin. This means that "firing-pin" in (**) must now be a □- 
condition. It will remain as a Q-condition until he is satisfied with the 
frequency of the working guns. Then, it will again become a o-condition.

This means that the □- and o-conditions of a causal rule may not 
become stable after some time. The distinction between these two classes 
of conditions is somewhat dependent on the particular context. More 
important is that in the same context, something can be identified either 
as a cause or just as an "enabling condition" as Shoham calls it [35, p. 
163]. For example, in causal rule (**), firing the gun and its being loaded 
are identified as the causes of hearing a loud noise. However, if the gun's 
having a firing pin temporarily passes from the set of o-conditions to the 
set of Q-conditions as illustrated above, the firing of the gun will be 
identified as the only cause of hearing the noise.

B^.6 Simultaneous cause and effect

Shoham does not permit simultaneous causation. Since the Itp's of base 
sentences on the l.h.s. of a causal rule are required to be earlier than the
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etp of the base sentence on the r.h.s., the time intei'vals associated with 
cause and effect are not allowed to overlap. The principle causes cannot 
succeed their effects in time is taken for granted. However, this does not 
mean that causes strictly precede their effects in time since they may 
coincide in time. Then, Shoham's account lacks this property of 
causation.
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Appendix C

PROOFS

C .l Theorem 3.1

Part 1. To prove that  ̂ has a cmi model, a construction procedux'e is 
devised for a model M for The construction is built upon the time- 
bounded Kripke interpretation M/t for a time point t (see Definition 2.16). 
It starts with a time-bounded Kripke interpretation at Itp t| of the initial 
boundary condition Gipgand it proceeds by augmenting this 
interpretation. (<!)' and 0 ' denote the conjunction of base sentences 
obtained by replacing the variable t in each conjunct by a constant.)

1 . Let M/ti |=Q(Ps· For any other (p appearing on the l.h.s. of the axiom 
schemata, let M/tj |?!:Q(p' where (p' is obtained by replacing the variable 
t in (p by t|.

2 . In order to augment M/tj to M/tj+l such that tj+1 < t2, let

Constj+i =
{□(ti+l,p); Q9p A ©p Z) □(t-)-l,p) G  ̂and M/t2 |=Q9p' a ©p’ for t=tj, 

or Oc A ©g Z) □(t+l,p) G  ̂ and M/tj |=Og' a ©g' for 
t=ti).

Augmentation M/tj is the result of making the wff in Conŝ ĵ̂  ̂ ti'ue,
and for any other (p whose Itp is t|-l·!, making Q(p false. Note that M/tj 
can satisfy either Q9 p' a ©p' or <J>g' a © c' for t=ti since the only base 
sentence that the time-bounded Kripke interpretation M/t| satisfies is 
□ (pg. And if M/t] |=G(Pp' A ©p’ for t=t], then M/tj |=Q(pp' where QcPp' is 
obtained by replacing t in G(Pp on the r.h.s. of the pei'sistence axiom 
schema by tj. This implies that □(Pg=Q(Pp' for QcPp' in QTp' a ©p’. In this
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case, M/t] a ©'  ̂ since for M/tj |=<I>'c to hold it must be the case that
U(Ps ^  c > implying that o c p p  e  <I>'cfor t=tj. Then, there must exist at 
least one conjunct of O',, distinct from □(Pp’> say □cpq'. Consequently, 
M/t] |?̂ Q(Pq' and hence M/t] ^ ®c'· Similarly, if M/t] |=Oc' a ©(,',
then M/t] jî QCPp' A 0 p '.  An immediate conclusion is that Conŝ ^̂ ĵ̂  
have at most one wff; either Q(Pp' or Qipc' with ltp=t]+l.

3. Augmentation of M/t] + l to M/t2 , where t2 is the Up of the final 
boundai'y condition QiPf:

Consj-2 =
{□(t2,p): Qipf = Q (t2 ,p), or Qcpp A 0p z> □ (t+ l,p ) e C a n d  

M/t]+l |=Q(Pp' such that Q(pp' G Cons ĵ ĵ  ̂ for t=t]+l}.

M /t2 is obtained by making all wff in Conŝ ^̂  t’ âe and by letting 
M/t2 |=Q(pp', t] < t < t2, if the latter holds in the specification of Cons^ ·̂ 
Finally, for any other (p' appearing in axiom schemata, let M/t2 |=̂Q<p', t] 
< t < t 2·

4. Construction ends with the augmentation of M/t2 for the next time 
point, i.e., t2+l.

Const2+i =
{□(t2+l,p): Q(pp A 0p 3  rjCt+ljp) G  ̂such that ocpp' e Cons^  ̂and 

o-i(pf 6  0p' for t=t2, or Og A 0g 3  Qft+l.p) G  ̂ such 
that iJ(pfG 0 (.' and M/t2 |=<I>c ^ ©c =̂̂ 2 ·̂

By making all wff in Cons^^+i ^̂ 'ae and for any other (p' appearing in 
the axiom schemata letting M/t2+ l |?̂ Q(p' for t=t2+l, M/t2+l is obtained. 
Thus the construction of the cmi model M is completed.

Part II. In order to complete the proof, it must be shown that the cmi 
model thus constructed is unique. Assume that a model M' exists and it 
differs from M on the truth value of 0 9  for some (p. There are two 
possibilities:

1 . M|î Q(p while M'|=a(p for a (p with Up < t]. By Definition 2.7, this 
means that M' M.
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2 . M and M' differ on the truth value of 0 (p with ltp=t3+l, tj < t3 < t2 · 
There are two possibilities:

(i) M |=Q(p while M' |?̂ Q(p. Let ü(p be of the form □(t3+l,p):

First, if t3=t], since M |=Q(p, there exists either an axiom schema Qcpp 
A 0p ID □(t+l,p) 6   ̂ such that for t=t3 M|=Q(Pp' a ©p'or an axiom 
schema Oc ^ Q(t+l,p) e Ç such that M |=<Î c' ^ ®c' =̂̂ 3· Since M
and M' agree on the knowledge of all base sentences with Itp's < t j , by the 
second construction step M' |=0 (p. This is a contradiction.

If ti + 1 < t3 < t2, then by the third step of the construction procedure 
there exists a persistence axiom schema Q(pp a ©p id □(t+l,p) g Ç, such 
that Myt] + 1 |=Q(t+l,p) for t=ti. Since there exists no known atomic base 
sentence with Itp < t3 other than (p, it will always be the case that 
M/t |=̂ (Pp' A ©p', tj + l < t < t3· Then, M/t3 |=Q(t3,p) and hence M/t3 l=Q(p. 
Since M and M' agree on the knowledge of all base sentences with Itp's < 
t], M'/tj + l |=i-Kp. But by the discussion above, this implies that M'/t3 |=ü(p. 
This contradicts the assumption that M'/t3 |î*QCp.

For t3=t2, M/t2+l |=Q(p. This is true iff one of the following conditions 
hold: M/t2 |=Q(pp' ®p' -̂^2 or M/t2 |=0 (.' a ©g' for t=t2· But it is
known that M and M' have the same atomic base sentences whose Itp's < 
t2· Then, M'/t2+l H-J(p, contradicting the assumption that M'/t2+l |î̂ ü(p·

(ii) M |î Q(p while M' |=Q(p. Again by Definition 2.7, it follows that M'
M. ■

C 2 , Proposition 3.1

The construction procedure of Shoham in the proof of Theorem 2 .1  will 
yield M/ti |=Q(Ps ifs first step since Qcps i® only "boundai'y 
condition" with Itp t] > tp.

Then, the augmentation of M/tj into M/tj+l (as specified by Shoham 
in the proof of Theorem 2 .1 ) will yield QiPp' or QiPc' iff M/tj |=Q(Pp' ®p
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or M/tj |=0(.' A ©c' for t=ti· But for any of them to hold QiPs must appear 
as a single □ -condition in only one of Qipp' a 0 p' and O e' A 0 ,'.  If 
□(pg=Q(pp' and Q(Pp' G Oc', there must be another Q-condition in But 
since only i-icpp' is known, it will be the case that M/t] |=Q(pp' a ©p'. If QCpg 
^ QiPp' and Qips G 0 (.' as its unique Q-condition, then it will only be the 
case that M/tj a © c'. Thus, Cons^j^^ will contain either ocpp' or
□(Pc' with ltp=t] + l.

The augmentation of M/t into M/t-i-1 for tj + 1 < t < t2 will yield the 
following. If M/tj + 1 |=0(pc' for t=t] and D(Pc Q9p> then M/ti-i-2 ĵ ^̂Gcpc' for 
t=tj + l, and no other base sentences will be known until time point t2- 
Otherwise, if M/t|+l |=G(Pp' where (Pp' has the Itp t^+l, then it will be the 
case that M/ti-i-2 |=Q(Pp' such that cpp' has the Itp tj+ l. Since this is the 
only base sentence known, the augmentation into the next time point will 
yield M/t| + 3 |=Q(Pp' where (pp' has the Itp ti-i-3. The iteration, thus 
obtained, will result in M/t2 |=Q9p' such that 9 p' has the Itp t2- Moreover, 
by construction M/t2 |=Q9 f·

The base sentences with Itp's < t2 are then exactly the same as the 
ones following the construction in Theorem 3.1. The last step of this 
construction specifies the same augmentation pi'ocedure as the one 
introduced in Theorem 3.1. However, the augmentation in Theorem 1 is 
more detailed than in Theorem 2.1 since this approach will simplify the 
procedure that will be introduced later for computing the atomic base 
sentences in the unique cmi models of The augmentation of M/t2 into 
M/t2+l will end the construction. The set of atomic base sentences known 
in the cmi models of T and  ̂will be the same. ■

C.3 Theorem 3.2

The algorithm below follows the construction in the proof of Theorem 3.1.

1 . Let KNOWN and CONS be two lists. KNOWN contains Q(ps and CONS 
is empty.
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2 . Find the axiom schema containing QCPg as its unique □ -condition. If 
there exists such an axiom schema, then let CONS contain the r.h.s. of 
this schema such that the Itp of the r.h.s. becomes t j+ l when t is 
replaced by t̂ . Add this atomic base sentence into KNOWN.

3. If CONS is empty, then go to 5.

4. If the atomic base sentence in CONS is a Q-condition in the persistence 
axiom schema, then add the atomic base sentences into KNOWN such 
that these atomic base sentences are obtained by replacing t in the □- 
condition by constants in the range tj+2 to t2· Then, first empty CONS, 
and let CONS contain only the atomic base sentence with ltp=t2 
obtained from the □-condition above.

5. Add G(pf into CONS and KNOWN.

6 . If CONS contains Gipp' with ltp=t2 and if o-i(pf is not a o-condition in 
©p, then add G(pp (by letting its Itp be t2+l) into KNOWN.

7. Let i>c’ A ©c' Z) G(Pc be obtained by replacing t with t2 in a ©  ̂Z) 
□(Pp. Check if each conjunct G(ti,p) of exists in CONS. If so, let the 
conjuncts of ©c' be of the form o(tj,p) (respectively <>(tj,-ip)). If for each 
o(tj,p) (respectively <>(tj,-ip)), G(tj[,—ip) (respectively G(ti,p)) does not exist 
in CONS, then add G(Pc' into KNOWN.

8 . The set of atomic base sentences known in the unique cmi model of the 
YSP-like causal theory  ̂are the ones in KNOWN.

Complexity:

Step 1 : 0(1) (initialization).

Step 2 : 0(n) (searching and matching).

Step 3: 0(1) (testing).

Step 4: 0(1) (matching two atomic base sentences).
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Step 5: 0(1) (add operation).

Step 6 : 0(/г) (searching).

Step 7: 0(n) (searching each condition of the sentence in a list of size at 
most 2 ).

Step 8 : 0(1) (reporting the set of atomic base sentences in KNOWN). 

Consequently, the total time complexity of the algorithm is 0(n). ■

C.4 Theorem 3.3

Part I. To prove that has a cmi model, a procedure to construct a 
model M for  ̂ is given. (As in the proof of Theorem 3.1, any primed base 
sentence (p' is obtained by replacing the variable t in (p by a constant.

and rij' denote the conjunction of base sentences obtained by 
replacing the variable t in each conjunct by a constant.)

1 . Lot t] be the Itp of the initial boundary conditions of Let M/t2 f=ü(pg.,
i=l,...,n. For any other (p appearing on the l.h.s. of the axiom 
schemata, let M/tj |í̂ ü(p'.

2 . Augment M/t] into M/tj+l:

Constj+i =
{□(t] + l,p): Qcpp A 0p A 0p Z) Q(t+l,p) G such that M/tj |=Q(Pp', 

M/tj |=0p’ and M/tj |=Ili' Vrij' in 0p' for t=ti (Definition 
3.3), or Og A 0c 3  Q(t+l,p) G and M/ti |=Oc' a 0 c' 
for t=til.

Make the wff in Cons^^^  ̂ for any other (p whose ltp=ti + l,
make Qcp false.

3 . Consj^j^2 contains the base wff appearing either on the r.h.s. of
persistence axiom schemata or on the r.h.s. of the causal axiom 
schemata. The sentences in the latter can falsify the l.h.s. of the
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persistence axiom schemata in which the former appear. Therefore, 
to find out what base sentences preserve their truth value for the next 
time point, one more iteration is needed. Then, augmentation of 
M/tj+l into M/t]+2 , t]+2 < t2, is done by letting

Const,+2 =
{□(t]+2,p): □ (p p A 0 p  A ©p Z) Q it+ l.p ) G such that 

M/tj + l  |=Q(pp’,M /ti+l |=0p', and M/ti+ 1  |=nj' VDi’ in 
0 p' for t= ti+ l},

making the wff in Const,^.2 true, and for any other (p whose Itp is tj+2 , 
making Q(p false.

4. Augmentation of M/ti+2 into M/t2 is specified first by letting 
M/t2 |='4(Pfj, j=l,--.,ni (note that all final boundary conditions have Itp
t2), and then letting M/t2 |=Q(p" VQ(p' G Const,+2 such that □(p" is 
obtained by replacing the time constants in each Qip' with the time 
constants in the range tj+3 to t2. For any other (p whose Itp is in the 
range tj+3 to t2, make Qip false.

5. Finally, M/t2 is augmented into M/t2+l by letting

Const2+i =
{□(t2+l,p); QCpp A 0p A 0p Z) Q(t+l,p) G such that M/t2 |=Q(pp', 

M/t2 |=0 p' and M/t2 |=rij' Vrij' in 0 p' for t=t2, or a 
©c 3  Q(t+l,p) G and M/ti |=Oc' a ©(.' for t=t2),

making the wff in Cons^^+i fi'ae, and for any other (p whose Itp is t2+l, 
making Q(p false.

Paj'L II. It must be shown that if there exists another model M' of 
which differs from M on the truth value of Qip for some (p, then M' is not 
a cmi model for This would be very similar to the second part of the 
proof of Theorem 3.1. ■
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C.5 Theorem 3.5

The steps of the construction pi'ocedure given in the proof of Theorem 3.3.
are followed.

1 . Let IC and FC denote the set of initial and final boundary conditions 
respectively. Let PS and CS be two lists containing the set of persistence 
and causal axiom schemata. Let CONS, TCONS, and KNOWN be three 
lists. CONS contains the set of initial boundary conditions. TCONS and 
KNOWN are empty.

2 . Let TIMES and TIMEF be two variables, initially set to the respective 
Itp's of the initial and final boundary conditions.

3. Sort CONS in alphabetical order with respect to the propositions.

4. Call Sub-1 , Sub-2 , and Sub-3.

5. If TIMES = TIMEF, then go to step 9.

6 . Sort CONS in alphabetical order with respect to the propositions.

7 . Call Sub-1  and Sub-4.

8 . Call Sub-3 and then set TIMES = TIMEF.

9. Add the final boundary conditions in FC to CONS. Sort CONS in 
alphabetical order with respect to the propositions.

10 . Call Sub-1, Sub-2 , and Sub-3.

1 1 . Add all sentences in TCONS to KNOWN and halt. The atomic base 
sentences known in all cmi models of the given YSP’-like causal 
theory are in KNOWN.

Sub-1.
{This subroutine checks if the l.h.s. of all causal axiom schemata in CS
are satisfied. If the l.h.s. of a schema is satisfied, its r.h.s. is added to 
TCONS.}
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1 . Let TM be an empty list.
2 . Copy the contents of CS to TM.
3. If TM is empty, then I'eturn.
4. Remove the first causal axiom schema of TM, say Og a Z) □(t+l,r).
5. If any conjunct □(t,pi) (□(t,-ipj)) of is not in CONS, then go to 3 .
6 . Check if for any conjunct o(t,qj) (respectively o(t,-iqj)) of ©g, there 

exists a sentence □(t,-iqj) (respectively Q(t,qj)) in CONS. If there is 
such sentence, then go to 3. Otherwise, add □(TIMES+l,r) to TCONS. 
Go to 3.

Sub-2.
{This subroutine checks if the l.h.s. of all persistence axiom schemata in
PS are satisfied. If the l.h.s. of a schema is satisfied, its r.h.s. is added
to TCONS.)

1 . Let TM be an empty list.
2 . Copy the contents of PS to TM.
3. If TM is empty, then return.
4. Remove the first persistence axiom schema of TM, say Q(Pp a 0p a ©p 

Z) □(t+l,r).
5 . If Qipp is not in CONS, then go to 3.
6 . Let TP be an empty list.
7 . Copy the contents of 0p to TP.
8 . If TP is empty, then go to 11.
9. Remove the first element of TP, say Flj.
10. If for all o(t,pj) (respectively o(t,-ipj)) o fllj, there exist sentences 

□(t,-ipi) (respectively □(t,pj)) in CONS, or there do not exist sentences 
□(t,-ipj) (respectively □(t,Pi)) in CONS, then go to 8 . Otherwise go to 3.

1 1 . Check if for any conjunct o(t,qj) (respectively <>(t,-.qj)) of ©p, there 
exists a sentence □(t,-iqj) (respectively □(t,qj)) in CONS. If there is 
such a sentence, then go to 3. Otherwise, add □(TIMES+l,r) to 
TCONS and go to 3.

Sub-3.
{This subi'outine transfers base sentence between lists and sets time.)
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Add all sentences in CONS to KNOWN. Empty CONS and copy the 
contents of TCONS to CONS. Then, empty TCONS. Set TIMES=TIMES+1 . 
Return.

Sub-4.
{This subroutine performs base sentence transfer between lists and 
replaces time variables in sentences by constants.)

Add all sentences in CONS to KNOWN. For each sentence 
□ (TIMES,r) in CONS, add u(TIMES+l,TIMEF-l,r) to KNOWN and 
□(TIMEF,r) to TCONS. Empty CONS and store all sentences in TCONS to 
CONS. Then, empty TCONS. Return.

Complexity:

Step 1 : 0(1) (initialization).

Step 2 : 0(1) (initialization).

Step 3: O(nlogn) (sorting a list of size at most n).

Step 4: 0 (/2log/z) (subroutines Sub-1  and Sub-2 take 0(/ilogn) and Sub-3 
takes 0 (1 )).

Step 5: 0(1) (testing).

Step 6 : Oinlogn) (sorting a list of size at most n).

Step 7 : 0(nlog?z) (Sub-1  takes O(nlogTz) and Sub-4 takes 0(/i)).

Step 8 : 0{n) (Sub-3 takes 0{n)).

Step 9: 0(nlog/i) (sorting a list of size at most n).

Step 1 0 : O(nlogri) (Sub-1 and Sub-2 take 0(n\ogn) and Sub-3 takes 0 (/2)). 

Step 11: 0(1) (reporting).

Sub-1: O(nlogri). For each causal axiom schema, all conjuncts on its
l.h.s. are searched in a list of size at most n. For each conjunct, this 
takes 0 (log/2).
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Sub-2 : O(nlogn). For each persistence axiom schema, all conjuncts on its 
l.h.s. are searched in a list of size at most n. For each conjunct in the set 
of counteractions, two separate searches can be done. Any conjunct can 
be checked in O(logn).

Sub-3: 0(n). After examination of all axioms and axiom schemata, at 
most n base sentences can be added to TCONS. Since all base sentences of 
TCONS are copied to CONS, CONS can have at most n base sentences. 
Add and copy operations take 0{n).

Sub-4: 0(n). CONS can contain at most n base sentences. Adding them to 
KNOWN takes 0(n). Moreover, adding new base sentences to KNOWN 
and TCONS takes 0(/i). Copying all sentences in TCONS to CONS also 
takes 0{n).

Therefore, the total time complexity of the algorithm is O(nlogn). Note 
that base sentences in KNOWN can take the form □(to,ti,p) = {□(ti,p)| to < 
t j < t i } .  The implementation of this algorithm given in Appendix D 
generates each Q(tj,p) explicitly rather than producing a single base 
sentence □(to,ti,p). ■

C.6 Theorem 4.1

A construction procedure will be needed to build a model M for the 
extended causal theory Q.. This will be done by augmenting some time- 
bounded Kripke interpretation. This augmentation, however, cannot be 
used in the construction of M. There exist some technical defects that can 
destroy the unique-model property of extended causal theories. Starting 
with Shoham's augmentation and considering these technical problems, 
a new augmentation will be specified. Then, it will be used to show that 
in all cnii models of any extended causal theory the same atomic base 
sentences are known.

Shoham specifies an augmentation of a time-bounded Kripke 
interpretation M/t to M/t+ 1 as follows [35, p. 1 1 2 ]:
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Const+1 = {□(t',t+l,x): O A 0  H) □(t’,t+l,x) g Q and M7t f=0 a ©), 
M/t+ 1  is obtained by making all wfF in Const+i and all their 
tautological consequences true, and for any other (p' whose Itp is 
t+1 , making U(p' false.

Now, consider the following sentences in Q. Note that they are all in 
TMSt^, but except the first one they are all in as well.

□(ti,t2,s) Z) Q(t3 ,t4 ,q).
□(ti,t2 ,s) A A(t4,-.r) 3  □(t4,v).
□(t4 ,r) 3  □(t4 ,u).
□(ti,t2 ,p) A <>(t3 ,t4,q) 3  □(t4,r).

Assume that M/t3 |=Q(t4,t2 ,s) and M/ts |=Q(t4,t2,p). We would like to 
augment M/t3 to M/t4 . Now, if all sentences are examined in the order 
they are written, Const4 will contain Q(t3 ,t4 ,q) since M/t3 |=Q(t4,t2 ,s).
However, none of the l.h.s. of the other sentences is satisfied since they 
contain base sentences with Itp t4 . Then, as a result of the augmentation 
only □(t3 ,t4 ,q) is obtained. But the l.h.s. of other sentences can also be 
satisfied. For example, for □(t2,t2 ,s) a o(t4 ,-ir) 3  Q(t4,v), M/t4 (=Q(t4,v) iff 
M /t3 |=Q(t2,t2 ,s) and M/t4 |;*Q(t4 ,r). Therefore, in order to perform the
augmentation successfully, one must also consider the sentences in 
Const4· That is, a possible augmentation might be:

Const+i =
{□(t',t+l,x): O A 0  ^  □(t',t+l,x) G Q, but g TMSt+i and 

M/t 1=0 A 0 , or
O A 0  ^  □(t',t+l,x) G Q. and G TMS(;+i such that 
VQ(p G O) Qip £ Const+i if Itp of (p is t+1, M/t |=Q(p 
otherwise, and VO(p g 0 , Q-iip ^ Const+i if Itp of (p 
is t+1, M/t|?t-iQ(p otherwise).

M/t+1 is obtained in the same way as in the first specification.

Returning to the example set of sentences above, the augmentation of 
M/t3 to M/t4 can be obtained;
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1. For □(tj,t2,s) z> □(13,14,q), Const4={0 (l3,l4,q)} since M7l3 t=0 (l4,l2,s).

2. For Q(l^,l2 ,s) A <>(l4,-ir) 3  G(l4 ,v), Const4={G(l3 ,l4 ,q), 0 (1 4 ,v)} since 
M/I3 |=G(l4,l2 ,s) and □(l4,r) ^ Const4 ·

3. For 0 (14 ,r) 3  □ (l4 ,u), Const4={Q(l3 ,l4 ,q), □(l4 ,v)} since □(14 ,1') i  
Const4·

4. For G(lj,l2,p) A O(13,14,q) 3  G(l4,r),Const4={G(l3 ,l4,q), G(l4 ,v), G(l4,r)) 
since M/I3 |=G(l4,l2,p) and G(l3 14,-iq) ^ Const4·

Bui Const4 does not have the right sentences. Since Cons^ contains 
□(14,r), it will cause the l.h.s. of the second sentence to fail and the l.h.s.
of the third sentence to be satisfied. Hence, it must be the case that 
Const4={G(t3 ,t4,q), G(t4,u), G(t4,r)}. Therefore, the augmentation specified
above is incorrect.

Another technical problem has to do with the pluri-extensionality of 
the nonmonotonic systems. One of the properties of nonmonotonic 
systems is that they may produce several sets of possible conclusions. For 
example, consider the following set of premises where Unless(p) is true 
iff p cannot be inferred [18]:

S = {p, p A Unless(q) 3  r, p a Unless(r) 3  q).

Depending on the order of in which inferences have been applied, one 
can obtain two conclusions: {p, r} as a result of the subset {p, p a 
Unless(q) 3  r) and {p, q) as a result of the subset {p, p a Unless(r) 3  q). 
However, these two conclusions cannot be inferred conjointly; if r is 
inferred, then q cannot be inferred, and vice versa. If one is mainly 
interested in constructing only one of these possible sets, then the system 
is inconsistent in a sense that the intended model may not be obtained.

This is the case with extended causal theories. To illustrate the 
situation consider the following set of sentences that constitute TMSt4 of
an extended causal theory Q.
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TMSt4 = {□(t4,p).

□(t4 ,p) A ^(t4,--iq) 3  □(t4,r),
□(t4,p) A ^(t4,-.r) 3  □(t4,q)}.

Assuming that Const4 contains only □(t4 ,p) and assuming that the 
sentences in TMSt;4 are examined in the order they are written, one finds 
out that Const4 = {Q(t4,p), Q(t4,r)}. If the order of the last two sentences in 
TMS^^ is changed, then Const4 = {□(t4 ,p), Q(t4,q)) is obtained. Thus, the 
order of these sentences is important.

In the following proof, an augmentation which will not cause such 
problems will be used.

Let there be two models M and M' such that M' M and they differ 
on the truth value of some sentence Q(p.

1. By definition, there exists a to such that it precedes the Itp of any (p 
where Q(p appears as in the r.h.s. of a boundary condition in Q. Then, 
M/to |=Q<p for any 9  with Itp < to, and M/to MQ9 ' for any other 9 ' with 
Itp < to-

M/to particilly satisfies all the boundary conditions of Q. since their 
Itp's are greater than to- Obviously, M/to also partially satisfies all the 
causal rules since the truth values of sentences with ltp>to depend on 
the sentences with ltp<to, and the l.h.s. of causal rules with ltp<to are 
falsified.

2 . The construction progresses iteratively over time.

Const+i =
{□(t’,t+l,x): O A 0  ^  □(t',t+l,x) G but g TMS^+i, and

M /tH ) A 0 ),

Cons't+i =
{□(t',t+l,x); <J) A 0  => □(t',t+l,x) G TDSt+i, such that VQ9  G cp, 

□ 9  G (Const+i u  Cons't+i) if Itp of 9  is t+l,M/t|=Q9
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otherwise, and VO(p G 0, u-i(p ^ (Const+i u Cons'^+i) 
if Itp of (p is t+1 , M/t iQ(p otherwise),

(1 »'.ons (,+1 =

{□(t',t+l,x): (J) A © ^  □(t',t+l,x) G TM St+i, but ^ T D St+ i such 
that VQ(p G d), Q(p G (Const+i u Cons'^+i u Cons"t+i) 
if  Itp of (p is t+1, M/t|=Q(p otherwise, and Vocp g 0 , 
□-icp  ̂ (Cons(;+i u  Cons't+i u  Cons"t+i) if  Itp of 9  is 
t+1, M/t |?i-iQ(p othei'wise).

It is assumed that the sentences of Q. are examined in the order they 
are written. For this reason, although one can obtain more than one 
possible set Cons’^+i, a unique set is constructed under this assumption. 
(It must be admitted that this is a very strong assumption.)

M/t+ 1  is obtained by first making all wff in Cons^+i true, then making 
all wff in Cons't+i true, and finally making all wff in Cons"j;+i true. For 
any other (p with Itp t+1 , Q(p is made false.

The last step in the proof of the theorem is to show that this M is 
chronologically more ignorant than any M' which differs on the truth 
value of QCp for some (p. There are two cases:

1 . It may be that M' |=Q(p for some (p with Itp < tQ. But this, by Definition 
2 .7 , implies that M' M.

2 . It may be that there exists a time point t, to ^ t, and that either M' |?̂ Q(p 
and M |=0 (p, or M' |=Q(p and M |?̂ Q(p or for some (p with ltp=t+l. Now 
let M K-Jcp. Then two cases must be examined:

(a) There exists a sentence cb a 0  3  Qcp G Q. such that the Itp's of the 
base sentences in <I> and © are < t, and M/t |=0 a ©. It is known that 
M and M' agree on the knowledge of all base sentences having Itp < t. 
Hence, it follows that M' |=Q(p since M7t |=0 a ©. But this contradicts 
M ’ l̂ iQip.

(b) There is a sentence of the form <b a © z> Q(p g D, such that the Itp’s 
of the base sentences in <1> and © are < t+1. Then, the etp of (p must be
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equal to its Itp (t+1 ). This implies that M/t+ 1  |=(I> a  0  and it is known 
from case (a) that for any (p' in O a  © with Itp t+1 , M|=Q(p' and 
M' |=Q(p'. Since M and M' agree on the knowledge of all base 
sentences with Itp < t and they agree on the knowledge of all base 
sentences in O and 0  with Itp < t+1, it must be the case that M' |=0 (p, 
contradicting M'

Similai'ly, if M' |=Q(p and M |?̂ Q(p, in light of the discussion above, for 
any (p with ltp=t+l, whenever M' |=ü(p, it must be the case that M |=Q(p.

Consequently, if there is a model M' differing from the model M 
constructed for Q, then M' cz · M. ■

C.7 Theorem 4.2

The algorithm below organizes the sentences of Q in ascending order of 
their Itp's. Then, each set of sentences with the same Itp is reordered. 
This reordering is done by first dividing these sentences into classes and 
then rearranging these classes among themselves. Note that the classes 
are formed according to the definitions given in Chapter 4 (bounded sets, 
temporally meeting sets, and temporally dependent sets of sentences). As 
a final step, the sentences are examined to see if their l.h.s. are satisfied. 
If so, their r.h.s. are marked accordingly.

1 . Let T be the list of all sentences in il. Let S be a list.

2 . Gather all atomic base sentences appearing in T into a list S by 
dropping negation signs.

3. Sort T in ascending order by the Itp of the r.h.s. of the sentences in it. 
Also sort S in ascending order by the Itp of the base sentences.

4 . Remove all duplicates of any atomic base sentence in S. Mark all 
members UNMARKED.

5. Gather all sentences in T into bounded sets of sentences, BS, such that 
if say O A 0  ^  □(t5 ,tg,[-i]r) is a sentence in T, then it must be in the
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bounded set of sentences at time tg, BSt0. At the end, BS contains the 
ordered sets BS(,j for

6. For each BS^j, divide it into two groups; the temporally meeting set of 
sentences at tj, TMStj, and the set of other sentences, NMStj. Replace 
BS(,j with these two sets such that NMS^j appears before TMStj. That is, 
BStj = NMStj u  TMStj. example, if

BSt4 “  ^
□(t4,u) Л 0(t3,t4,-,r) =) □(t4,v),

□(t4,p) Л (̂t3>t4.q) ^  □(t4,r)}, then 
NMSt4 = {Q(ti,t2,p) 3  □(t3,t4,q)}, and 
TMSt4 = { (̂̂ 4,и) A <>(t3,t4,-'r) 3  Q(t4,v),

□(t4,p) A (̂t3,t4,q) 3 Q(t4,r)}.

7. For each TMStj, divide it into two groups: the temporally dependent set
of sentences at tj, TDSt; ®f other sentences, NDStj. Replace
TMStj with these two sets such that TDStj appears before NDStj. That 
is, TMStj = TDStj NDStj. above example,

TDSt4 = {Q(t4,p) A <̂(t3,t4,q) 3 □(t4,r)},

NDSt4 = Wt4,u) A o(t3,t4,-ir) 3 Q(t4,v)}.

(Now BS contains the sets BStj's such that BStj = NMStj u  TDStj u  
NDStj for some tj. All these sentences are still in increasing order of 

their Itp's. From now on, the names BStj,NMStj, TDStj, NDStj 

not be used. Since the list BS has all the sentences, each sentence in BS 
will be examined.)

8. If BS is empty, then halt. The atomic sentences that are known in all 
cmi models of the extended causal theory are those sentences marked 
YES in S plus the negation of those marked NO in S.

9. Remove the first sentence of BS, and let this sentence be ф a  © ^  
□(t4,t2,[->]p). For each conjunct Q(tj4,tj2,[->]Pi) of ф and each conjunct 
o(tii,tj2,[-']Pj) of 0 , determine how TRUE(tji,tj2,Pj) is marked in S by 

performing binary search on S. If one of the following conditions is 

true:

75



(a) □(tjptj2 ,Pj) is a conjunct of cT) and TRUE(tjj,tj2>Pi) is not marked YES 
in S,

(b) □(tjj,tj2 ,-'Pi) is a conjunct of cj) and TRUE(t|j ,̂tj2>Pi) marked NO
in S,

(c) o(t^,tj2,Pj) is a conjunct of © and TRUE(tQ,tj2>Pi) is mai'ked NO in S,

(d) o(tj]^,tj2 ,-'Pi)  ̂ conjunct of © and TRUE(tjj,tj2,Pj) is marked YES in
S,

then go to 8 ,

else mark TRUE(t]^,t2,p) in S with YES if the r.h.s. is Q(t]̂ ,t2,p), and NO if 
it is □(ti,t2,-ip). Go to 8 .

Complexity:

Step 1 : 0(1) (initialization).

Step 2 : 0{n) (collection).

Step 3: O(nlogn) (sorting).

Step 4: 0{n) (removing duplicates and mai'king).

Step 5: 0{n). Examining the Itp of the r.h.s. of each sentence in T suffices 
to classify the sentences. Note that the sentences in T are currently sorted 
with respect to the Itp of their r.h.s.

Step 6 ; 0(n). This step requires determining the sentences that have 
r.h.s. with the same etp and Itp such that at least one of the conjuncts on 
the l.h.s. has this etp (Itp) as its Itp. For each class BStj, this can be done
by examining the Itp of the l.h.s. of each sentence and comparing it to the 
etp and Itp of its r.h.s. Since this is done for all sentences in every class 
BStj, this step requii-es all sentences to be examined at most once.

Step 7 : 0 (n2). The r.h.s. of each sentence in every class THS ;̂· must be on 
the l.h.s. of all sentences in its corresponding class TMStj.
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Step 8 : 0(1) (testing and reporting).

Step 9: 0 (/2logn). Label checking can be done at most n times. 
Determination of the label of each conjunct requires binary search. A 
new labeling can be done in time 0 (7ilog/i) since it also requires binary 
search. Thei'e can be at most n new labeling operations during the 
execution of the algorithm.

Hence, the total time complexity of the algorithm is 0 (n2). ■
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Appendix D

PROGRAM LISTINGS

This appendix contains the listings of the programs implemented in PC 
Scheme™ programming language.

D .l Causal theories

The atomic base sentences known in all cmi models of a given causal 
theory are computed by the program below. The causal theory given 
below is input to the program. This causal theory represents a shooting 
scenario. The sentences TRU E(1 ,loaded), TRUE(2,loaded), 
TRUE(3,loaded), TRUE(4,loaded), TRUE(5,loaded), TRUE(5,fire), and 
TRUE(6 ,noise) are computed.

1. □ (!,loaded).
2. □d,loaded) a

3. □(l,loaded) a

4. Q(2,loaded) a

5. g(2,loaded) a
6. Q(3 ,loaded) a
7. Q(3,loaded) a

8. □(4,loaded) a

9. u(4,loaded) a

10. □(5,fire).
11. Q(5,loaded) a

12. a(5,loaded) a

o(l,-ifire) A <>(1,—lemptied-manually) 3  □(2,loaded). 
□(l,fii’e) A 0(1,air) a 0(1,firing-pin) 13 Q(2,noise). 
o(2,-ifire) A o(2,-iemptied-manually) I3 □(3,loaded). 
□(2,fire) A 0(2,air) a o(l,firing-pin) 3  q(3,noise). 
o(3,-ifire) A o(3,-,emptied-manually) id Q(4,loaded). 
□(3,fii'e) A 0(3,air) a o(3,firing-pin) id q(4,noise). 
0(4,—ifire) A o(4,-iemptied-manually) 3  Q(5,loaded). 
□(4,fire) A 0(4,ail’) a o(4,firing-pin) id g(5,noise).

0(5,—ifire) A 0(5,—lemptied-manually) id q(6,loaded). 
□(5,fire) A 0(5,air) a o(5,firing-pin) id q(6,noise).

The atomic base sentences generated by the program are given at the 
end of the listing.
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; Sample causal theory, 
(define Causal_Theory 
'((() 0  ((loaded + 1 1 )))

(0 0 ((fire + 5 5))) 
(((loaded + 1 1)) ((fire - 1 1)
(((loaded + 1 1 ) (fire + 1 1 )) 
(((loaded + 2 2 )) ((fire - 2 2 ) 
(((loaded + 2 2) (fire + 2 2)) 
(((loaded + 3 3)) ((fire - 3 3) 
(((loaded + 3 3) (fire + 3 3)) 
(((loaded + 4 4)) ((fire - 4 4) 
(((loaded + 4 4) (fire + 4 4)) 
((Goaded + 5 5^ ((fire - 5 5) 
(((loaded + 5 5) (fire + 5 5))

(emptiedmanually - 1 1 )) ((loaded + 2 2 ))) 
((firingpin + 1 1 ) (air + 1 1 )) ((noise + 2 2 ^) 
(emptiedmanually - 2 2)) ((loaded + 3 3))) 
((firin^in + 2 2 ) (air + 2 2 )) ((noise + 3 3 ^) 
(emptiedmanually - 3 3)) ((loaded + 4 4))) 
((firing^in + 3 3) (air + 3 3)) ((noise + 4 4))) 
(emptiedmanually - 4 4)) ((loaded + 5 5))) 
((firingpin + 4 4) (air + 4 4)) ((noise + 5 5))) 
(emptiedmanually - 5 5)) ((loaded + 6 6 ))) 
((firingpin + 5 5) (air + 5 5)) ((noise + 6 6 )))))

; "Tset" will hold all sentences of the causal theory sorted by their Itp's. 
(define Tset '())

; "Sset" will contain all the base sentences of the causal 
; theory by their Itp's.
(define Sset'())

; Base sentences in a given list are collected, 
define (Construct_Sset_LevelO Baselist)

(cond ((null? Baselist) ())
(T (append (list (append '(())

(append (list (caar Baselist))'(+)
(cddr (car Baselist))))) 

(Construct_Sset_LevelO (cdr Baselist))))))

; The l.h.s. (box-conditions and diamond-conditions) and 
; r.h.s. of a sentence are examined one by one.
(define (Construct_Sset_Levell Axiom)

(cond ((null? Axiom) ())
(T (append (Construct_Sset_LevelO (car Axiom))

(Construct_Sset_Levell (cdr Axiom))))))

; Each sentence in the causal theory is examined.
(define (Construct_Sset_Level2 Theory)

(cond ((null? Theory) ())
(T (append (Construct_Sset_Levell (car Theory))

(Construct_Sset_level2 (cdr Theory))))))

; Duplicates in a given list ai'e eliminated.
(define (Eliminate_Duplicates Atomiclist)

(cond ((null? Atomiclist) ())
((member (car Atomiclist) (cdr Atomiclist)) 

(Eliminate_Duplicates (cdr Atomiclist)))
(T (append (list (car Atomiclist))

(Eliminate_Duplicates (cdr Atomiclist))))))

; The sort criterion is defined for the base sentences in "Sset".
(define (Sort_Condition_S Atomicl Atomic2 )
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; "Sset" is constructed by first extracting base sentences from the causal 
; theory, and then eliminating duplicates. Finally, the set is soi'ted with 
; respect to Itp's of the base sentences.
(define (Construct_Sset)

(set! Sset (Eliminate_Duplicates
(Construct_Sset_Level2 Causal_Theory)))

(sort! Sset Sort_Condition_S)
(set! Sset (car Sset)))

; The sorting criterion is defined for the base sentences in "Tset".
(define (Sort_Condition_T Axioml Axioni2 )

(<= (cadddr (car (caddr Axioml))) (cadddr (car (caddr Axiom2 )))))

; "Tset" is constructed by first making a copy of the causal theory and 
; then sorting its sentences with respect to their Itp's.
(define (Construct_Tset)

(set! Tset (copy Causal_Theory)) (sort! Tset Sort_Condition_T)
(set! Tset (car Tset)))

; Tests whether a given item is in a given list.
(dciine (Mcmber_Test Atomic Atomlist)

(cond ((null? Atomlist) ())
((equal? (append (list (car Atomic))'(+) (eddr Atomic))

(cdr (car Atomlist))) (car Atomlist))
(T (Member_Test Atomic (cdr Atomlist)))))

; "Sset" is searched to determine how a given base sentence is marked 
; The given sentence is assumed to be a box-condition.
(define (Search_Box Atomic)

(let ((Temp (car (Member_'Test Atomic Sset))))
(cond ((and (equal? (cadr Atomic) '+)

(equal? Temp 'YES)) T)
((and (equal? (cadr Atomic)'-) (equal? Temp 'NO)) T)

(T ()))))

; Check if all the box-conditions of a sentence are satisfied.
(define (Test_Boxes Baselist)

(cond ((null? Baselist) T)
(T (and (Search_Box (car Baselist)) (Test_Boxes (cdr Baselist))))))

; "Sset" is searched to determine how a given base sentence is marked 
; The given sentence is assumed to be a diamond-condition.
(define (Search_Diamond Atomic)

(let ((Temp (car (Member_Test Atomic Sset))))
(cond ((and (equal? (cadr Atomic) '-t-)

(equal? Temp 'NO)) ())
((and (equal? (cadr Atomic)'-) (equal? Temp 'YES)) ())

(TT))))

; Check if all the diamond-conditions of a sentence are satisfied.
(define (Test_Diamonds Baselist)

(<= (cadddr (cdr Atomicl)) (cadddr (cdr Atomic2))))
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(cond ((null? Baselist) T)
(T (and (Search_Diamond (car Baselist))

(Test_Diamonds (cdr Baselist))))))

; If the l.h.s. of a sentence is satisfied, the base sentence 
; on its r.h.s. in "Sset" is marked according to its sign.
(define (Set_Truth_Value Basesentence)

(let ((Sign ’NO))
(if (equal? (cadr Basesentence)'+) (set! Sign 'YES))
(set-car! (Member_Test Basesentence Sset) Sign)))

; Tests if the l.h.s. of a sentence is satisfied. If so, its r.h.s.
; is sent for marking.
(define (Test_Antecedents Axiom)

(if (and (Test_Boxes (car Axiom)) (Test_Diamonds (cadr Axiom))) 
(Set_Truth_Value (caadr (cdr Axiom)))))

; Each sentence in "Tset" are examined to see if their l.h.s.
; are satisfied by the base sentences in "Sset".
(define (Reason Axiomlist)

(cond ((null? Axiomlist) 0)
(TGetO

(Test_Antecedents (car Axiomlist))
(Reason (cdr Axiomlist))))))

; The atomic base sentences known in all cmi models of the given 
; causal theory I'eside in "Sset". These known sentences are exti'acted 
; from "Sset" and reported.
(define (Collect_Known_Atomics Atomlist)

(cond ((null? Atomlist) T)
((not (null? (caar Atomlist)))

(let ((Sign '(+)) (Temp (car Atomlist)))
(if (equal? (car Temp) 'NO) (set! Sign '(-)))
(write (append (list (cadr Temp)) Sign (cdddr Temp))) 
(Collect_Known_Atomics (cdr Atomlist))))

(T (C!ollect_Known_Atomics (cdr Atomlist)))))

; Main procedure to compute the atomic base sentences 
; known in all cmi models of the given causal theory.
(define (Compute..CMI Model)

(Construct_Tset)
(Construct_Sset)
(Reason Tset)
(writeln "The Atomic Base Sentences Known in the CMI Models") 
(writeln "of the Given Causal Theory are as Follows:") 
(Collect_Known_Atomics Sset))

The Atomic Base Sentences Known in the CMI Models 
of the Given YSP-Like Causal Theory are as Follows:

(loaded + 1) (loaded -i- 2) (loaded -i- 3) (loaded + 4) (loaded + 5) (fii'e + 5) 
(noise + 6 )
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YSP-like causal theories

The following is an implementation of the algorithm proposed in 
Appendix C for computing the atomic base sentences known in all cmi 
models of YSP-like causal theories. It contains the example shooting 
scenario:

1 . □ (!,loaded). -
2 . 0 (1 0 ,fire).
3. aCt,loaded) a o(t,-ifire) a o(t,-iemptied-manually)

3  Q(t-i-l,loaded), Vt.
4. U(t,loaded) a u(t,fire) a o(t,air) a <>(t,firing-pin)

^  Q(t+1,noise), Vt.

The intended model will contain the sentences TRUE(l,loaded), 
'rRU10(2,loaded), ..., T1UJE( 10,loaded), TRUE( 10,fire), and 
TRUE(ll,noise). The output of the program is given at the end of the 
listing.

; Sample YSP-like causal theory.
; Initial boundai'y condition.
(define Initial '(loaded + 1 ))
; Final boundary condition.
(define Final '(fire + 10))
; Persistence axiom schema.
(define Pschema '((loaded -t- time)

((fire - time) (emptiedmanually - time))
(loaded -f- (+ 1 time))))

; Causal axiom schema.
(define Cschema '(((loaded + time) (fire + time))

((firingpin + time) (air + time))
(noise + (-1- 1 time))))

; "time” denotes the time variable.
(define time '())

; The list that will contain atomic base sentences 
; known in all cmi models of the theory.
(define Known '())

; The list that will keep consequences of augmentations.
(define Conseq '())

; Replaces time variable in a sentence with current time point symbol, 
(define (Replace Atomic)

(append (list (car Atomic))
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; Check persistence schema for existence of a box condition.
(define (Check_Pschema Box)

(if (equal? (edr (reverse Box))
(edr (reverse (car Pschema)))) (caddr Pschema) ()))

; Check causal axiom schema for existence of a unique box condition, 
(define (Check_Cschema Box)

(if (and (= (length (car Cschema)) 1 )
(equal? (edr (reverse Box)) (edr (reverse (caar Cschema))))) 

(caddr Cschema) ()))

; Augmentation Step I.
(define (Check_Schemas Box)

(let ((Atomic '()))
(set! Atomic (Check_Pschema Box))
fif (null? Atomic) (set! Atomic (Check_Cschema)))
(cond ((null? Atomic) ())

(T (let 0 (set! Conseq (Replace Atomic))
(set! Known (append Known (list Conseq))))))))

; Augmentation Step II.
(define (Expand)

(cond ((= time (caddr Final)) (set! Conseq (car (reverse Known))))
(T (let 0 (set! time (addl time))

(if (not (equal? time (caddr Final)))
(set! Known (append Known (list (Replace (caddr Pschema)))))) 

(Expand)))))

; Member test on a given list.
(define (Member_Test M L)

(cond ((null? L) 0)
((equal? (edr (reverse M)) (edr (reverse (car L)))) T)
(T (Member_Test M (edr L)))))

; Augmentation Step III for persistence axiom schema.
(define (Augment_P)

(let ((Temp '()) (Sign '-))
(if (equal? (cadr Final) '-) (set! Sign '+))

(set! Temp (append (list (car Final)) (list Sign) (eddr Final)))
(if (and (Member_Test (car Pschema) Conseq)

(not (Member_Test Temp (cadr Pschema))))
(set! Known (append Known (Replace (caddr Pschema)))))))

; Check Boxes of the causal axiom schema.
(define (Check_Boxes Blist)
(cond ((null? Blist) T)
(T (and (Member_Test (car Blist) Conseq) (Checkboxes (edr Blist))))))

; Check Diamonds of the causal axiom schema.
(define (Check_Diamonds Blist)

(let ((Temp (car Blist)) (Sign '-))

(list (cadr Atomic)) (list (eval (eval (caddr Atomic))))))
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(if (not (null? Temp))
(let 0 (if (equal? (cadr Temp)'-) (set! Sign '+))

(set! Temp (append (list (car Temp)) (list Sign) (cddr Temp))))) 
(cond ((null? Blist) T)

(T (and (not (Member_Test Temp Conseq))
(Check_Diamonds (cdr Blist)))))))

; Augmentation Step III for causal axiom schema.
(define (Augment_C)

(if (and (Check_Boxes (car Cschema)) (Check_Diamonds (cadr 
Cschema)))

(set! Known (append Known (list (Replace (caddr Cschema)))))))

; The main procedure that computes the atomic base sentences known 
; in all cmi models of a given YSP-like causal theory.
(define (Compute_CMI_Model)

(set! Known (append Known (list Initial)))
(set! time (caddr Initial))
(if (and (Check_Schemas Initial) (Check_Pschema Conseq)) (Expand)) 
(set! Known (append Known (list Final)))
(set! Conseq (append (list Conseq) (list Final)))
(set! time (caddr Final))
(Augment_P)
(Augment_C)
(writeln "The Atomic Base Sentences Known in the CMI Models") 
(writeln "of the Given YSP-Like Causal Theory are as Follows:")
(writeln Known))

The Atomic Base Sentences Known in the CMI Models 
of the Given YSP-Like Causal Theory are as Follows:

(loaded + 1) (loaded + 2) (loaded + 3) (loaded + 4) (loaded + 5) (loaded + 6 ) 
(loaded + 7) (loaded + 8 ) (loaded + 9) (loaded + 10) (fire + 10) (noise +11)

D.3 YSP'-Kke causal theories

The following is an implementation of the algorithm proposed in 
Appendix C for computing the atomic base sentences known in all cmi 
models of YSP'-like causal theories. The following blocks world example 
is executed by the program:

1 . Qd.at-center).
2. GdO,push-left).
3. udO,push-right).
4. □(t,at-center) a n(o(t,-ipush-left), o(t,-ipush-right))

Z) □(t+l,at-center), Vt.
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5. ij(t,at-center) a Q(t,push-left) a o(t,-ipush-right)
3  □(t-f-l,at-left), Vt.

6 . □(t,at-center) a oCt,push-right) a o(t,—¡push-left)
3  □(t+l,at-right), Vt.

The sentences TRUE(l,at-center), TRUE(2,at-center),..., TRUE(10,at- 
center), TRUEdO,push-left), TRUE(1 0 ,push-right), and TRUE(ll,at- 
center) are known in all cmi models of this YSP'-like causal theoi'y. The 
output of the program is given at the end of the listing.

; Sample YSP'-like causal theory.
; The set of initial boundary conditions.
(define Initials '((block-at-center + 1)))
; The set of final boundary conditions.
(define Finals '((pushleft -i- 10) (pushright + 10)))
; The set of persistence axiom schemata.
(define Pschemas '((((block-at-center -i- time))

(((pushleft - time) (pushright - time)))
0
(block-at-center + (+ 1 time)))))

; The set of causal axiom schemata.
(define Cschemas '((((block-at-center -i- time) (pushleft + time))

((pushright - time)) (block-at-lefl -f- (+ 1 time))) 
(((block-at-center + time) (pushright -i- time)) 
((pushleft - time)) (block-at-right -t- (+ 1 time)))))

; "time" denotes the time variable.
(define time '())

; The time points mentioned in the initial and final boundary conditions, 
(define timel (caddr (car Initials)))
(define time2 (caddr (car Finals)))

; The list that will contain atomic base sentences 
; known in all cmi models of the theory.
(define Known '())

; The lists that will keep consequences of augmentations.
(define Conseq (copy Initials))
(define Tconseq '())

; Test for the existence of a sentence in a list of sentences.
(define (Member_Test Base Baselist)

(cond ((null? Baselist) ())
((equal? Base (append (list (caar Baselist)) (list (cadr (car Baselist))))) T) 
(T (Member_Test Base (cdr Baselist)))))

; Check to see whether a box-condition is satisfied.
(define (Check_Box Base)
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(Membei'_Test (append (list (car Base)) (list (cadr Base))) Conseq))

; Check to see whether all box-conditions in a given set are satisfied, 
(define (Check_Boxes Baselist)

(cond ((null? Baselist) T)
(T (and (Check_Box (car Baselist)) (Check_Boxes (cdr Baselist))))))

; Check to see whether a diamond-condition is satisfied.
(define (Check_Diamond Base)

(let ((Sign'-))
(if (equal? (cadr Base) '-) (set! Sign '+))

(not (Member_Test (append (list (car Base)) (list Sign)) Conseq))))

; Check to see if all diamond-conditions in a given set ai'e satisfied, 
(define (Check_Diamonds Baselist)

(cond ((null? Baselist) T)
(T (and (Check_Diamond (car Baselist))

(Check_Diamonds (cdr Baselist))))))

; Test if a diamond-condition in a given set of counteractions is satisfied, 
(define (Check_CAct Base)

(let ((Sign '-))
(if (equal? (cadr B ase)'-) (set! Sign '+))

(Member_Test (append (list (car Base)) (list Sign)) Conseq)))

; Test if all diamond-conditions in a given set of 
; counteractions are satisfied.
(define (Check_CActions Baselist)

(cond ((null? Baselist) T)
(T (and (Check_CAct (car Baselist))

(Check_CActions (cdr Baselist))))))

; Check if one of the two conditions holds for a given set 
; of counteractions to be satisfied.
(define (Check_CActionSet Baselist)

(or (Check_Diamon.ds Baselist) (Check_CActions Baselist)))

; Test if all counteraction sets succeed.
(define (Check_All_CActionSets Cset)

(cond ((null? Cset) T)
(T (and (Check_CActionSet (car Cset))

(Check_All_CActionSets (cdr Cset))))))

; If the l.h.s. of a causal axiom schema is satisfied, make its r.h.s. true, 
(define (Check_Cschema Schema)

(let ((Temp (caddr Schema)))
(if (and (Check_Boxes (car Schema)) (Check_Diamonds (cadr Schema))) 

(set! Tconseq (append Tconseq
(list (append (list (car Temp))

(list (cadr Temp))
(list (eval (eval (caddr Temp)))))))))))

; Examine all causal axiom schemata.
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(define (Check_All_Cschemas Schemalist)
(cond ((null? Schemalist) T)

(T (let 0 (Check_Cschema (car Schemalist))
(Chcck_All_Cschemas (cdr Schemalist))))))

; If the l.h.s. of a persistence axiom schema is satisfied,
; make its r.h.s. true.
(define (Check_Pschema Schema)

(let ((Temp (cadddr Schema)))
(if (and (Check_Boxes (car Schema))

(Check_All_CActionSets (cadr Schema)) 
(Check_Diamonds (caddr Schema)))

(set! Tconseq (append Tconseq
(list (append (list (car Temp))
(list (cadr Temp))
(list (eval (eval (caddr Temp)))))))))))

; Examine all persistence axiom schemata.
(define (Check_All_Pschemas Schemalist)

(cond ((null? Schemalist) T)
(T (let 0 (Check_Pschema (car Schemalist))

(Check_All_Pschemas (cdr Schemalist))))))

; Given a sentence, generate new sentences with 
; time points in the range timex to timey (inclusive).
(define (Replace timex timey Base)

(cond ((> tiniex timey) ())
(T (let 0 (set! Tconseq (append Tconseq

(list (append (list (car Base))
(list (cadr Base))
(list timex)))))

(Replace (addl timex) timey Base)))))

; Given a set of sentences, generate new sentences with 
; time points in the range timex to timey (inclusive).
(define (Replace_All timex timey Baselist)

(cond ((null? Baselist) ())
(T (let 0 (Replace timex timey (car Baselist))

(Replace_All timex timey (cdr Baselist))))))

; Eliminates duplicates in a given list.
(define (Eliminate Elist)

(cond ((null? Elist) ())
(T (let 0 (if (not (member (car Elist) Tconseq))

(set! Tconseq (append Tconseq (list (car Elist))))) 
(Eliminate (cdr Elist))))))

; Sort condition for sorting sentences in ascending order 
; of their time points.
(define (Sort_Condition Basel Base2) (<= (caddr Basel) (caddr Base2)))

; Transfers the base sentences in each level to one level up.
(define (Transfer)
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(set! Known (append Known Conseq))
(set! Conseq Tconseq) (set! Tconseq '()))

; The main procedure that computes the atomic base sentences 
; known in all cmi models of a given YSP’-like causal theory.
(define (Compute_CMI_Model)

(set! time timel)
(Check_AIl_Pschemas Pschemas)
(Check_All_Cschemas Cschemas)

(Transfer)
(set! time (addl time))
(if (< time time2)

(let ((Temp '()))
(Check_All_Pschemas Pschemas)

(Transfer)
(set! time (+ 2 time))
(Rei)lace..All time timc2 Conseq)
(set! Temp (copy Conseq))
(Transfer)
(Replace_All tinie2 time2 Temp))

(set! Tconseq Conseq))
(set! Tconseq (append Tconseq Finals))
(Tz'ansfer)
(set! time time2)
(Check_All_Pschcmas Pscliemas)
(Check_All_Cschemas Cschemas)

(Transfer)
(set! Known (append Known Conseq))
(Eliminate Known)
(sort! Tconseq Sort_Condition)
(writeln "The Atomic Base Sentences Known in the CMI Models") 
(writeln "of the Given YSP'-Like Causal Theory are as Follows:") 
(writeln Tconseq))

The Atomic Base Sentences Known in the CMI Models 
of the Given YSP'-Like Causal Theory are as Follows:

(atcenter -t- 1) (atcenter + 2) (atcenter + 3) (atcenter + 4) (atcenter + 5) 
(atcenter + 6) (atcenter + 7) (atcenter -i- 8) (atcenter + 9) (atcenter + 10) 
(pushleft -I- 10) (pushright + 10) (atcenter +11)
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