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ABSTRACT

STABILITY ROBUSTNESS ANALYSIS OF LINEAR
SYSTEMS

Mehmet Karan
M. S. in Electrical and Electronics Engineering
Supervisor: Prof. Dr. M. Erol Sezer
February, 1990

In this thesis, robustness of stability of linear, time-invariant, continuous-
and discrete-time systems is investigated. Only state-space models and
additive perturbations are considered. Existing results concerning stability
robustness of continuous-time systems, based on Liapunov approach and
continuity of eigenvalues, are reviewed; and similar results for discrete-
time systems under single- and multi-parameter additive perturbations
are derived. An inherent difficulty which originates from mixed linear
and bilinear appearance of perturbation parameters in inequalities defining
robustness regions of discrete-time systems is resolved by transforming the
problem to robustness of a higher order continuous-time system. Finally,
stability robustness of discrete-time interconnected systems is studied, and

various approaches are compared.

Keywords: Robust Stability, Discrete-time systems, Additive perturba-

tions, Liapunov stability, Interconnected systems.
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OZET

DOGRUSAL SISTEMLERIN KARARLILIGININ
GURBUZLUK ACISINDAN INCELENMESI

Mehmet Karan
Elektrik ve Elektronik Muhendisligi Bolumu Master
Tez Yoneticisi: Prof. Dr. M. Erol Sezer
Ocalk, 1990

Bu tezde, dogrusal, zamana gore degismeyen, surekli ve ayirtik zamanh
sistemlerin kararlibgimin gurblizligi aragtirilmigtir. Yalmizca durum uzay:
digliniilmigtir. Strekli zamanli sistemlerin girbiiz kararhiligina iligkin
varolan sonuglar, Liapunov yaklagimi ve o6zdegerlerin surekliligi acisindan
gozden gegirilmigtir. Ayrica, tek parametreli ya da ¢ok parametreli sistem
belirsizlikleri altinda ayirtik zamanli sistemler i¢in de benzer sonuglar elde
edilmigtir.  Ayirtik zamanh sistemlerin glirbiizlik alanlarini tanimlayan
esitsizlikler iginde belirsizlik parametrelerinin dogrusal ve ikildogrusal
gozukmelerinden kaynaklanan dogal bir zorluk da, problemi daha ytksek
boyutlu stirekli zamanlh bir sistemin glrbtizliigine dontsturilerek agilmigtir.
Son olarak, ayirtik zamanl birbirine bagli sistemlerin kararhilik gurblzligi

caligilmig ve degisik yontemler kargilagtirilmigtar.

Anahtar sozctikler: Glrbliz kararhlik, Ayirtik zamanh sistemler, Toplam-

sal belirsizlikler, Liapunov kararlhiligi, Bagl sistemler.
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Chapter 1

INTRODUCTION

An cssential feature of complex dynamic systems is the uncertainty in the
system parameters, which may arise due to modelling errors or change of
operating conditions. Since stability is one of the major properties of systems,
it 1s desirable to be able to determine to what extend a nominal system

remains stable when subject to perturbations. This is the robust stability

problem.

In analysis of stability robustness, perturbations can be considered
as having stochastic or deterministic nature. In the case of stochastic
perturbations, one attempts to obtain robustness bounds for nominal system
in terms of statistical properties of perturbations such as mean and variance.
Another way is to view perturbations as completely or partially unknown
deterministic uncertainties. The partial information about the perturbations

is usually expressed in terms of the structure of the system.

In the context of stability robustness analysis, there has been many
new advances such as quantitative feedback theory (Horowitz [1]), singular
value theory ( Doyle and Stein [2]), H* theory (Zames and Francis (3]).
The recent results on the frequency domain robustness analysis are based
mainly on the seminal paper of Kharitonov [4] . In this paper, Kharitonov
showed that stability of a family of polynomials which correspond to a

hyper-rectangle in the coefficient space is equivalent to the stability of only
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four extreme polynomials corresponding to the vertices of the rectangle
with the assumption of independent perturbations in the coefficients of the
polynomials. Later, Bartlett, Hollot and Lin [5] have established the well-
known Edge Theorem which says that the strict stability of the entire family
of polytopes is equivalent to the strict stability of the exposed edges. A recent
paper by Siljak [6] provides an excellent survey of parameter space methods

in robustness analysis and robust control design.

The techniques of state-space robustness analysis in recent literature ¢hn

be viewed from two perspectives, namely,

e Time Domain Methods

e Frequency Domain Methods

In time domain methods, Lyapunov approach is the fundamental
framework, which is known to Dbe the best approach for time-varying
perturbations. In the literature, mostly the stability of a linear time-invariant
system in the presence of time-invariant and completely or partially unknown
perturbations has been considered. Patel and Toda [7] have presented an
explicit robustness bound. Later, Yedavalli [8,9,10] provided an improved
bound on structured perturbations taking into account different types of
perturbations. Zhou and Khargonekar [11] gave better stability robustiness

bounds for systems with structured uncertainty.

Frequency domain methods are based on the transfer function representa-
tion of systems and eigenvalue type of considerations. Qiu and Davison [12]
have studied the robust stability problem for a state space representation of
a system using frequency domain approach. Fu and Barmish [13] obtained
results which can be extended to single-parameter perturbation case casily.
Later, Qiu and Davison [14,15] obtained frequency domain results with
similar techniques. Hinrichsen and Pritchard [16,17] formulated the problem

formally and found the distance of the system matrix to the unstable complex

matrices.
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As has already be mentioned, perturbations may be viewed as partially
or completely unknown deterministic uncertainties. In particular, for state

space robustness analysis, a physical system can be described as,

£(t) = (A+ 4,) z(t) (Continuous Time) (1.1)
Trpr = (B + &) 2k ( Discrete Time) (1.2)

where z(t) € R™ is the state of the continuous system at time ¢, and
correspondingly zp € R"™ is the state of the discrete-time system at time
k. A€ R and ® € R"™™ are nominal system matrices which are assumed
to be asymptotically stable, A, € R**" and ®, € R"*" are the perturbation
matrices which are completely or partially unknown. Perturbations may be

classified as
e Unstructured Perturbations

e Structured Perturbations

e Parametric Perturbations

(i) Unstructured Perturbations :

No information about the perturbation exists. A stability robustness
bound on either the norm of A4, [ resp. ®, ] or on its entries, is tried to

be obtained.
(ii) Structured Perturbations :

In this case, we have partial information about the perturbations, i.e.
the structure of the perturbations of A, [ resp. &, | is prespecified, and
the bounds on such structured perturbations are tried to be obtained. Tlis
structure information may source from the physical nature of the system. For

example, an oscillator’s motion £ obeys the equation

€4 a1l +a=0 (1.3)
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which yields the state equation

0 1

—Qy —a

i(t) = [ J 2(t) (1.4)

where z(t) = [¢ £]T. Since perturbations can occur only on the oscillator

parameters a; and az, A, has a structure

0 0
* ok
(iii) Parametric Perturbations :

A, [ ®, | may depend on one or several parameters.In this case, we can

model the perturbation matrix as

e Linear Parametric Perturbations:
m
Ap [(I)p] = ZPkEk
k=1

where F}’s are known, constant, square matrices, px’s are unknown,real
parameters. Here m = 1 ( m > 1) case denotes single parameter

perturbation (multi-parameter perturbations).

o Polynomial Parametric Perturbations :

4,18,]= 5 o) By

k=1l=1
Here, also, FE;’s are known, p;’s are unknown, f;’s are known

polynomials of py’s.

e Nonlinear Parametric Perturbations:
r 3
A 2] = ZZﬁ(73k)El
k=11=1
The same assumptions as before, but now f;’s are some nonlinear,

known functions of p;’s.
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So far, there has been a considerable nunber of results on stability
robustness analysis of continuous-time systems in state-space domain. But,
we felt a lack of a survey on this subject, and we devoted Chapter 2 to this
purpose, where we stated the existing results in their original perturbation
models. We also provided a comparison of these results using a linear
parametric perturbation model, which is suitable for applications of the

results reviewed in this chapter.

In Chapter 3, using the techniques in Chapter 2, we developed similar
stability robustness results on discrete-time systems in state-space domain
with linear parametric perturbations. For single parameter perturbation
case, we developed necessary and sufficient conditions for the stability of the
perturbed system. For the case of multi-parameter perturbation, sufficient
conditions are derived and it is shown that stability of a nominal discrete-
time system matrix under multi-parameter perturbation is equivalent to
the stability of a higher dimensional continuous-time system matrix with
continuous-time perturbation matrices which are obtained from the discrete-
time perturbation matrices. Therefore, stability robustness analysis of

discrete-time systems is reduced to that of continuous-time systems.

In Chapter 4, we applied the results of Chapter 3 to interconnected
systems, where the strength of the interconnections for the stability of the
overall system is a fundamental question. Vector-Liapunov functions and
global Liapunov function methods can give several bounds for the strength
of these interconnections. In this chapter, we compared these two methods

for discrete-time systems, which have been obtained in Sezer and Siljak [18]

and in Chapter 3.

Finally, in Chapter 5, we stated several further research areas in the field

of stability robustness ; and, in the Appendix A, provided some background

material.



Chapter 2

STABILITY ROBUSTNESS

BOUNDS FOR
CONTINUOUS-TIME SYSTEMS

2.1 Robust Stability Problem

Consider a continuous-time system containing additive perturbations
Syt (1) = (A + Ap)(t) (2.1)

where z(t) € R™ is the state of S,, A and A, are constant matrices
of appropriate dimensions representing the nominal system matrix and

perturbations, respectively. We assume that the nominal system described

by
S: #(t) = Az(t) (2.2)

1s stable.

Stability robustness analysis is concerned with obtaining suitable bounds

on the perturbation matrix A, which guarantee stability of the perturbed

system S,,.

When no information about the structure of A, is known, that is, in

the case of unstructured perturbations, stability robustness bound is usually

6
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expressed in terms of the norm of 4, as

pu = sup{||4,]| : S, is stable} (2.3)

Patel and Toda [7], Yedavalli [8,9,10], and Qiu and Davison [12] have tried

to maximize this bound using various techniques.

Information about the structure of 4, may be useful in obtaining improved
robustness bounds, or in expressing these bounds in a different form. One

way of incorporating structural information on 4, is to define a normalized

perturbation matrix U, = (uf;) as

ub = af; fal . (2.4)
where
Uhax = H}c}X{lafjl} (2.5)

and write 4, = a%, U,. Now, U, carries information about the relative values
of the uncertain parameters, but more important than this, information about

fixed zeros in A,. Using U,, the robustness bound can be defined in terms of

p
Anax &8

pn = sup{al,, : S, is stable} (2.6)

Yedavalli [8,10] adopted this approach in his work on stability robustness

analysis.

An alternative way of making use of structural information on 4, is to

decompose it as

A, = BD,C (2.7)

where B and C are fixed matrices, and all uncertainty is included in D,. In

this case, the robustness bound is expressed in terms of D, as

pa = sup{||D,|| : S, is stable} (2.8)

An attractive feature of the decomposition in { 2.7) is that it allows the
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uncertainty to be interpreted as output feedback gain D, applied to the
system (A, B,C). This way, well-known results on robustness of feedback
systems can be applied directly to the system S,. This approach has been
used by Hinrichsen and Pritchard [16,17] and Qiu and Davison [12].

Most commonly used structured perturbation models in the literature are
parametric perturbations described as

Ap = ZPkEk (2.9)

k=1
where Ej are fixed, known matrices, and p; are uncertain parameters. Note

that the perturbation model in (2.6) is a special case of (2.9) corresponding
to a single-parameter perturbation. In multi-parameter perturbation model,
stability robustness is specified in terms of a region in the parameter space
as

2, =sup{) C R™: S, is stable} (2.10)
where R™ is the parameter space. However, 2, is usually difficult to
characterize in terms of the perturbation parameters. A common approach
is to imbed a region into §2,, such as a diamond, parallelopiped or sphere,

which yield

( Diamond ) p : iak|pkl< 1 (2.11)
( Parallelopiped ) Qp : T]?)lﬂoo:max{lpkl} < pp (2.12)
(Sphere) Qs - upnz=<§”:pz>”2<us (2.19)
i=1
where p = (pi1,p2,...,Pm) is the parameter vector, and o« are real

constants. Multi-parameter perturbation models have been used by Zhou

and Khargonekar [11].

2.2 Liapunov Approach to Stability Robustness
Analysis

The essence of Liapunov techniques in stability robustness analysis of linear

systems is to construct a Liapunov function for the nominal ( stable ) system,
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and seek bounds on the perturbations to establish stability of the perturbed

system using the same Liapunov function.

Let V(z) = 2THa be a quadratic Liapunov function for the nominal

system & where H is the positive definite solution of the equation

ATH+ HA = -G (2.14)
for some positive definite G.

The derivative of V' along the solutions of the perturbed system S, of

( 2.1) 1s computed and bounded as

V(z)ls, = 2T[(A+4,)" + HA+A4,) ]2
= —27[G—(A]H + HA,) J»

—a TGP I — GTV2(ATH + HA,)G? |GV

S (1= OmaeGTVHATH + HA)GTV]) [|GH 2| ?

ii

where omez(+) denotes the maximum singular value of the indicated matrix.

From ( 2.15), a sufficient condition for the stability of S, is obtained as

Omas| GTVP(ATH + HA)G? ] < 1 (2.15)

( 2.15) can be used to derive several robustness bounds for both structured
and unstructured perturbations. The most common approach is to choose

G = G = I to maximize the estimate of the degree of stahility of the nominal

system, in which case ( 2.15) becomes
Omar(ALH + HA,) < 1 (2.16)
where H is the solution of ( 2.14) corresponding to G.

The simplest bound for unstructured perturbations is obtained by direct

majorization of ( 2.16) as

1 A
amu,a:(Ap) < ;;_'_(—H.—S = My (217)
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which is the bound obtained by Patel and Toda [7]. Noting that
Omaz(4p) S naly,, (2.18)

where a?, is defined in ( 2.5), ( 2.17) can be further be majorized to obtain

the bound

1 N
Pa < =~ = 2.19
amaa, 2no'ma:r(H) lu’uz ( )

To incorporate structural perturbations, we let A, = a?,,.U,, where U, is

the normalized perturbation matrix defined in ( 2.4). Then, ( 2.16) is implied

by

1 A
ab .. < o = =JR 2.20
s e OTTE T D) (220
where | - | denotes a matrix obtained by taking the absolute value of every

element of the indicated matrix. The bound in ( 2.20), obtained by Yedavalli

[8], is less conservative than p,, and p,,.

In the case of parametric perturbations, substituting ( 2.9) for 4,, ( 2.16)

becomes .
Omaz Z LFL (221)
where
F,. = ETH + HE; (2.22)

Starting from ( 2.21), Zhou and Khargonekar [11] obtained the following

stability regions in the parameter space.

(1) Qo : Y Ipklomes(Fi) <1 (2.23)
k=1
(i) Qp ¢ [Iplleo = maxpi| < o7z (3 | Fi {) (2.24)
k=1
(i) Qs ¢ el = Q2 P < AR F) (2.25)
k=1 k=1

All the robustness bounds mentioned so far are obtained for the special

choice of G = I. Sezer and Siljak [19] have pointed out that G = I is not
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always the best choice to use in ( 2.15). Leaving G free, ( 2.17) becomes

Umin(G) Ay

2omea(H) 1 (2.26).

1451l <

Since the ratio omin(G)/0mez(H) is maximum for G = G = I,
fus < Ly, that is, additional freedom in the choice of G' does not provide
any improvement in the robustness bound for unstructured perturbations.
However, for structured perturbations, ( 2.20) becomes

Omin(G) A

:an 227
e (UT1H| + [HIT) (2.27)

al <

max
and depending on the structure of the matrix U, a choice of G other than

G = I, may give a better bound for a? __.

In the case of parametric perturbations, for a general G, the stability

regions in ( 2.23) - ( 2.25) becomes

Qo Y Ipklomez(Fr) < omin(G) (2.28)
k=1
Qr  |IPllo = max [pr] < opin(G)omae (D 1 Fil) (2.29)
k=1
Qs (Z Pl2c)l/2 < amin(G)U;léz(Z FLZ) (2~30)
k=1 k=1

Again, depending on the structure of the perturbation matrices Ey, a suitable
choice of G' may result in larger stability regions than those in ( 2.23) - ( 2.25).
Unfortunately, there is so far no systematic way of choosing the best G to

maximize the bound in ( 2.27) or the stability regions in ( 2.28) - (1 2.30).

Another attempt to improve stability robustness bounds has been to use
a similarity transformation

z=Ta (2.31)

which transforms the perturbed system into

S, #(t) = (A + 4,)(t) (2.32)
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where
A=T1 AT, A, =T"'4,T (2.33)

Then, the Liapunov equation ( 2.14) becomes

~

ATH+ HA= -G (2.34)

Let A denote the solution of ( 2.34) corresponding to the choice G = G = I.
Then, the bound in ( 2.17) becomes

omin(T) & (2.35)

20 man(T)0man(H)

Omaz (Ap) <

Yedavalli and Liang [9] argued that a suitable choice of the transformation
matrix T may give better estimate of the degree of of the nominal system, as
measured by 1/ Umw(ﬁ ), which offsets the reduction in the robustness bound
due to the ratio Tmin(T)/0mez(T), and resulting in g,, < .. They also
suggested a procedure for computing the best diagonal T to maximize ..
However, as pointed out by Sezer and Siljak [19], a comparison of ( 2.34) with

( 2.14) shows that
H=TTHT, G=T7GT (2.36)

Now, using ( 2.33) and ( 2.36), V(%) can be bounded as

V() ls, = —37GE+3"(ATH + HA)z
< —(1 = Omaa GV ATH + HA,)G V) ||GPTx||* (2.37)

yielding the same stability condition as given in ( 2.35) This shows that the
effect of a similarity transformation is equivalent to the effect of choosing a
different G matrix for the original system. It also shows that finding the best

transformation matrix is as difficult as finding the best G.

Before closing this section, we note that better stability robustness bounds
can be obtained when A has some special properties. For example, when A is
normal, that is, it satisfies A7 A = AAT, using the explicit expression ( A.10)

for the solution of Liapunov equation and choosing G = I , it follows that
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AT and H commute, so that

= (AT + A" = —%A;‘ (2.38)

where A, = 1(AT + A) is the symmetric part of 4. From ( 2.38) we obtain

_ 1 1
Unlax(H) = §Umin(As) = 0'_0 (239)

where oy is the exact degree of stability of the nominal system. Accordingly,
the bounds in ( 2.17) - ( 2.20), are modified into
Omaz(4p) < 00
by Patel and Toda [T7],
Omaz(Ap) < Omin(As) = 00

by Yedavalli [10], and
2
Tmes(OF AT 145710,) ~ 1

p
Uax <

by Yedavalli [8].

2.3 Non-Liapunov Approaches to Stability Robustness
Analysis

In this section we summarize non-Liapunov methods for obtaining stability
robustness bounds, which are based on continuity of eigenvalues of a matrix
on its parameters or (ronecker operations on matrices. As in the Liapunov

approach, stability conditions obtained through these methods are sufficient,

but not necessary except in special cases.

Stability robustness bounds based on the continuity of eigenvalues malke

use of the fact that the system matrix A 4 A4, of the perturbed system &,
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can be viewed as a continuous deformation of the 4 matrix of the nominal

system &. Since S is assumed to be stable,
det[jwl — A] # 0 (2.40)
and S, remains to be stable when A, is small enough to satisfy
det(jwl — A— A,) #0,
or equivalently,

det[I — (jwl — A)'A,]#0 w>0 (2.41)

From ( 2.41), a sufficient condition for S, to be stable is obtained { Qiu and

Davison [12] ) as

1 A
Al < : 2 e, 2.42
14 < posa TG =2y~ * (2.42)

where || - || denotes any matrix norm which satisfies ||AB|| < ||A]|||B||. For

spectral norm ( 2.42) becomes

Omaz(Ap) < ir;fc') Omin(Jwl — A) (2.43)

In the case of structural perturbations modeled as A, = BD,C, where B

and C are constant, ( 2.41) becomes
det[I — C(yjwI — A)"*BD,] #0 w >0 (2.44)
which leads to the condition ( Hinrichsen and Pritchard [17])

1 A
&, 2.45
Umal‘(-DP) < supwzo amax[C(ij — A)_lB] Hss ( )

For single parameter perturbations modeled as A, = pE, ( 2.43) gives

infy>0 Omin(jwl — A) A
> 2 2.46
p| < .72 p (2.46)

and from ( 2.45) by taking D, = pI, B = E and C = I, we obtain

1 A

2., 2.47
|pl < supwzo O'maz[(]wI _ A)__lE] lu’ 3 ( )
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An alternative to the bound in ( 2.47) was obtained by Qiu and
Davison [12] as

1 A
. 2 2.48
puno TICGwI — A BJE]  » (2:48)

bl <
( Here, II(+) denotes the Perron-eigenvalue of a nonnegative matrix. )

In the case of multi-parameter perturbations, ( 2.41) is satisfied if
SUP Omaz| Y pr(jwl — A)7'Ey) < 1 (2.49)
w20 k=1
Following the technique of Zhou and IKhargonekar ( [11]), we derive the
following stability regions from ( 2.49)

Qp > Ipklsup{omaz[(jwl — A) ' Ey]} < 1 (2.50)
k=1 w>0
Q pel < - (2.51)
:  max . :
P drcm) SUP(up0) {Tmas(CFe | (jwl — A)1Ex )}

Qs (ZP RERS Jnf Ami{f(z ET(—jwl — AT) " (jwl — A)1Ey)
(2.52)

Robustness bounds derived from Kronecker operations also make use of
the continuity of eigenvalues. From the properties of the Kronecker sum ( see
the Appendix ) it follows that if a matrix M has eigenvalues on the imaginary
axis, then M @ M has at least two eigenvalues at the origin. Qiu and Davison

[14] used this observation to conclude that S, is stable if

Omaz(A4p) < min{omin(4), O'nz 1(A® A)} =N (2.53)

For single-parameter perturbation case, i.e. when A, = pE, S, remains

to be stable for p small enough to satisfy
det[(A+pE) @ (A+pE)] #0 (2.54)

or equivalently,

det[I+p(Ad A" (EDE)] #0 (2.55)
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Using ( 2.55), Fu and Barmish [13] showed that S, is stable for p € (puin, Pmax)

where
o 1 (2.56)
P i giem (N [~ (A ® A)(E @ E))) -
! (2.57)

Prex = maxicien O [—(4 ® A)-1(E @ B))

where A\[*(-) and A]~(-) denote respectively the positive and the negative real
eigenvalues of the indicated matrix. If a bound on |p| is searched, then we

obtain

| < - 2 u (2.58)
PIS maxiciem | N[(AG A (E@ E)] | 1 -

Also, a more conservative bound can be obtained as

1 A
lpl < O'mar[(A-@A)_l(E@E)] = Hsg

(2.59)

The technique of Fu and Barmish [13] can also be applied to multi-
parameter perturbations. Straightforward computations yield the following

stability regions in the parameter space:

ip Z lpkla'maa:[(A @ A)"l(Ek ] Ek)] <1 (2.60)
k=1
Qp : max |pil<omi (O |(A® A YEr® Ex) |) (2.61)
(1<k<m) P
Qs+ ()P < MM (Ef @ ED)(AT @ AT) (A @A) (Er @ Ey)]
k=1 k=1
(2.62)

At this point, it is appropriate to mention the single-parameter polynomial

perturbation model considered by Genesio and Tesi [20], where

A, =Y p*Ey (2.63)
k=1

This model is interesting, because, unlike other perturbation models,
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robustness analysis based on it can also be applied, with some modifications,

to discrete-time systems as we consider in the next chapter.

For A, of ( 2.63), ( 2.55) becomes

detlI+ > pFF]#0 (2.64)
k=1
where
Fo=(A0A) (B & E) (2.65)
Noting that
det[I+> p'F]
1=1
. _
I —pl 0 0
0 I :
= det : 0
0 . 0 I —pl
_me me—l PFZ (I+pF1)J
= det[] + pF]
where _
( 0 -I 0 0
0 0 -I 0
F=10 0 0 0
: 0 -—-I
L En Fm—l F2 Fl |
we obtain the robustness bound
! 2 4, (2.66)

Ipl < min; | AT(F) | -

A more conservative bound can be obtained as

1
pl < —= =
o-ma:c(f)

which reduces to ( 2.59) for m = 1.
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Note that since Fj are n? X n? matrices, obtaining the bounds in ( 2.58)
- ( 2.62) pose computational difficulties. However, these bounds are usually
better than the ones obtained through Liapunov methods ( Section 2.1 ), and
whether the increase in computational effort is justified by the improvement

in the robustness bounds depends on the particular system considered.

2.4 Summary and Examples

Before closing this chapter, we give a comparison of the robustness bounds
mentioned so far. To provide a common ground for the comparison, we choose

a single-parameter perturbation model, that is
gle-p | ,
A, = pE,

where F is a constant matrix, and p i1s the perturbation parameter. Table 2.1
is a list of various bounds, corresponding to different majorization schemes
and different choices of G by using single parameter perturbation model.
Also, multi-parameter perturbation bounds are given in Table 2.2. Bounds

that are obtained using the Liapunov approach correspond to different levels

of majorizations. For example,
o-maz(UTlﬂ-l + II_{'U) S 20’171(13:(']?')0-771(1::(17) S 277'Umaa:(|ﬁl)

so that p,, < p,, if [H| = H. Also, as given in [12] a comparison between

fu, and g, 1s available as follows: Since
ATH+ HA= -1
(—jwl — ATH + H(jwl - A) = -1

we have

HN(jw)+ N*(jw)H = —N(jw)N*(jw)
where N(jw) = (jwl — A)~'. Hence

U:m:c(_]v(j'w)) S zamax(ﬁ)gnlax(]\r(_ftll))
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so that, gy, < iy,

In general, although eigenvalue type bounds give better robustness bounds
than maximum singular value type bounds, they are not suitable when a norm

type bound is searched on the perturbation matrix.

Example 2.1 Consider the motion of an oscillator described in ( 1.3). Let

the nominal system parameters be a¢; = 4, a;, = 3. The solution of the
Liapunov equation ( A.3) for G = G' = I, can be obtained as
_ 7/6 1/6
_ 1;(5 1;6 J (2.68)
If the structure information on Ap is not talken into account, we obtain
Omaz(Ap) < pu, = 0.4189 (2.69)
al o < tu, = 0.2095 (2.70)
from ( 2.17), ( 2.19) and
Omar(Ap) < fuy = Pus = Omin(A4) = 0.5924 (2.71)
ab .. <0.2962 (2.72)

from ( 2.42) and ( 2.53).
If the perturbations are modeled as A, = pE with
00
FE =
that is , if a single-parameter perturbation model is used then ( 2.23), ( 2.47),

( 2.58) and ( 2.59) yield the bounds

lp| < ps, =15 (2.73)
Ip| < ps =2.1213 (2.74)
ol < g =3 (2.75)

[pl] < s = 2.0371 (2.76)
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Finally, a two-parameter perturbation model, A, = piEy + pa By with

0 0 00
E1 - ) E2 =
10 0 1
results in the stability regions
Qp  0.4024(|py| + [pa]) < 1 (2.77)
I: Qp : max{|pi|,|pl} < 1.5 (2.78)
Qs = (P2 +pH)? < 1.8974 (2.79)
if (12.23) - ( 2.25) is used; or
Q]) 03333(,])1| + l])g,) <1 (280)
IT: Qp : max{|p],|p2]} <2.1213 (2.81)
Qs Pr4+pHV? <3 (2.82)
if ( 2.50) - ( 2.52) is used, or
Sp 0.3404|p;| + 0.2887|p,| < 1 (2.83)
IIT: Qp max{|p|, |p2]} < 1.9054 (2.84)
Qs (P2 +p2)/? < 2.8284 (2.85)

if ( 2.60) - ( 2.62) is used.

Note that, although the bounds in ( II ) are better than the others, they

are more difficult to compute.

Finally, we note that, when p; = p, = p, the stability regions in (1)
reduce to
QL — |pl <1.2425
QL - pl< 15
QL — |p| < 1.3416,

all of which are worse than the bounds in ( 2.73) - ( 2.76) obtained directly

for a single-parameter perturbation model. However, the bounds obtained
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from the stability regions in ( II )

F — Ipl<3
QF — |p| <2.1213

Q- |pl<21213

are comparable to, and are better than some of the bounds in (2.73) - ( 2.76).
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1

|P| < 207nar(E) amaz(ﬁ) = Huy
ol < =,

21 |(E)ijlmaxOmaz(H) ’

Omin(G

lp| < 2amaI(E)(073a$(H) = flu
| < T = b

[(E)ijlmaxomaa| UL [H| + [H|U]
lp] < :

Omas(BETH + HE) 12

( Anormal ) |p| < min |Re{Xi(A)} = g,

1

anzax(E)
2 —

Tmaa| UT| AT+ |45 1 0]~

( Anormal) |p| <

infy50 omin(jwl — A)

bl < . -
P SUPy,50 Tmaz[(Jw] — A)"1E] = Has
Ip] < ! =
sup,zo L[|C(jwl — A)B[[E]] ~ "
pl < min{omin(A), 1;an'z_l(AEBA)} _
Umax(E> e
1
Ip| < - - = Ly
maXi<i<n2 | AJ[(A® A)"H(E @ E)] |
1
Ip| <

Omaz[(A D A)-1(E @ E)| = fig,

Table 2.1.  Stability robustness bounds for single-parameter perturbed

Continuous-time systems
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QD Z ,pk ,Uma:c(Fk
Qp : |plleo = max|pe| < o72.(3 | Fx )
k=1
Qs 2 lplla= (32 pD)? < A5 F)
k=1 k=1
Qp Z lpklsglg{amaz[(ju)j'—— A'E]} <1
k=1 w2
Q max |px| < L
P m . -
(1<k<m) SUP(w>0) {Tmas( TRy | (I — A)-1E, )}
Qs (Zp 12 < mf))\mie(z El(—jwI — AT (GwI — A) T Ey)
k= k=1
QD Z lpklama:v((A & A)—I(Ek D Ek)) <1
k=1
O max [pel < onk(3 | (A® A)NE @ B) |
(1<k<m) k=1
Qs (Z P <AL (E @ Bl)(AT @ A”) (A @A) (B & By))
-=1
Table 2.2.  Stability robustness bounds for multi-parameter perturbed

Continuous-time systems



Chapter 3

STABILITY ROBUSTNESS
BOUNDS FOR DISCRETE-TIME

SYSTEMS

Although there has been a considerable number of results ([7] [8,9], [11],
[12], [16] etc.) in the literature for stability robustness of continuous-
time systems, this is hardly true for discrete-time systems. One reason
for the robustness problem of discrete-time systems having been given less
importance might be the widespread belief that almost all results concerning
continuous-time systems can be carried over, with necessary modifications, to
discrete-time systems.Q Stability robustness problem, however, is an example,
where such a modification i1s not obvious. Another reason is perhaps the
lack of a strong justification for any disturbance model. As an example,
if a discrete-time model is obtained by sampling a continuous-time system
under additive perturbations, then the perturbations enter into the system
matrix nonlinearly. This raises the question of whether a discrete-time model
with additive perturbations have any meaning at all. ( Nevertheless, additive
perturbations are not the only significant ones for continuous-time systems,

and a strange perturbation model for a continuous-time system may lead to

additive perturbations after sampling ).

In this chapter, we aim at obtaining discrete-time counterparts of the

24
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stability robustness bounds studied in Chapter 2.  Wec consider both
unstructured ( Section 3.2 ), and parametric ( Sections 3.1 and 3.2 ) additive

perturbation models. That is we consider a system described by
Dy : 2pp1=(24+ D)z, ke Z,, (3.1)
where we assume that the nominal system
D gy =P, ke Zy, (3.2)

1s stable. As in Chapter 2, we classify the analysis methods as Liapunov-type

and other approaches.

3.1 Liapunov Approach to Robustness Analysis

Let V(2) = 2THz be a Liapunov function for D, where H is the unique

positive-definite solution of the discrete Liapunov equation
TH® — H = -G (3.3)
for some positive-definite G.

To motivate our discussion, we start with single-parameter perturbation

case, where

¢, = pE. (3.4)
The increment of V(z) along the solutions of D, is computed as
AV(zi) lp, = 2;[(®+pE) H(® +pE) - Hlay
= —2l|G—p(ETH® 4+ ®"HE) — p’ETHE]a,
= —olGY*G(p)GY %z, (3.5)
where
Glp) =1 —pGVETH® + dTHE)G™/?* - p’G-'?E"HEG™'*  (3.6)
From ( 3.6), a sufficient condition for stability of D, is obtained as

P|0mas|G"VHETH® + @THE)G ) + |p/0max (G P ETHEG™/?) < 1
(3.7)
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which is of the form
alp* +blp| —1 <0 (3.8)

where a and b are obvious from ( 3.7). Computing the roots of the quadratic

expression in ( 3.8), we obtain the robustness bound

(da+ NP —b A
pl < BP0y, (3.9)

An alternative to the bound in ( 3.9) was obtained by Sezer and Siljak -

[18] by majorizing ( 3.5) as

AV(mk) |‘Dp5 - [Umin(G) - 2|P|‘7rln/az$(H - G)amaz(ETHE)
— |pl*Omac( ETHE)] ||z (3.10)

which leads to

ax H-G min 172 _ 1/2- H -
Il)l < [Um ( )+0' (G)] Umam( G) é /vL.gQ (3-11)
onl(ETHE)

An interesting property of the bound in ( 3.11) is that, for G =G =1, a
further majorization gives

1= [1-oni(H)V? _ 1-4 &

Ipl < O'maa:(E) B Uma:c(E) = fm (312)

where p, is the best estimate of the degree of stability of D, as given by
( A.17)

Another interesting result is obtained by majorizing ( 3.5) as

AV(zy) |p, = —21[G—p(ETH® + ®THE) — p’ ETHE]z;

= —2T[H - 3TH® — p(ETH® + ®"HE) — p’ETHE)ay,

= —2f HY?*{I — [HY*(® + pE)H YT[HY*(® + pE)H |} H'/ %2,

{1 = Omosl HYX(® + pEYH ]} | H

IN

(3.13)
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From (3.13), a sufficient condition is obtained as
Omas|[HYH A+ pEYH ] < 1 (3.14)

which is equivalent to H'/?(® + pE)H~!/? being a contraction. However,
since H/2(® + pE)H~1/? is nothing but the system matrix of an equivalent
system defined by a very special similarity transformation, this is completely
an expected result. Although ( 3.14) is even a stronger, therefore useless
condition than (& + pFE) itself being a stability matrix, it illustrates how

Liapunov techniques can be both useful and conservative in robustness

analysis.

A final robustness bound for single-parameter perturbation model is
obtained by requiring G(p) in ( 3.6) to be positive definite. Since G(0) = I
is positive definite, from the continuity of eigenvalues of G(p), it follows that

D, is stable if [p| is small enough to satisfy
detG(p) # 0 (3.15)
Following the technique in Section 2.2, we write

detG(p) = det(I + pF), (3.16)

where
0 H\/2gpG-1/2

= G._1/2ETH1/2 —G—I/Z(ETH(I’—}—Q)THE)G—U? (3.17)

f’

and obtain the bound

Pl < olo(F) 2 s (3.18)

As a special case, let F denote the F matrix correspondiﬁg to G =G =1,

H = H. Decomposing F as

0 0 0 0 N 0 I 0 0
0 ETHY? I —HY?9 0 —dTH? 0 HY:E

(3.19)
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it follows that

Omas(F) < 20mea(B)oy (NI + H 20T HY?)

< 20maz( B)oZ ()L + Anaa( @7 HE)]H?
S gamax(E)U7rlaz(E) (320)
Thus, if
Ipl < . — (3.21)
2amam(E)Umax(H) '

then ( 3.18) is satisfied for F = F. It is interesting to note that ( 3.21) also
implies ( 3.12).

In the case of multi-parameter perturbations, AV (zy) is computed as

AV (i) o, = af[(®+Y_peB)TH(® + > e E,) — Hlay,

r=1 r=1
= —z GG (p)G a (3.22)

where
G(p) = I-3 p.GVHETHE+ITHE,)G-~3° S p,p, G- PETHE,G?
B — (3.23)

It turns out that the only way to achieve a robustness bound is to use the
continuity of the eigenvalues of G(p), and to require |p,| to be small enough

to have the inequality ( 3.15). Fortunately, an explicit expression can be

obtained as m
detG(p) = det[I + > p.JF] (3.24)

r=]
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where
0 HY2E,.G-/?
Fr = o . " : (3.25)
G-Y:ETHV* G-V ETH® + ®THE,)G/? '
Since F, are symmetric, ( 3.15) is satisfied if
Omaz(D_ e Fr) < 1 (3.26)
r=1

Now, the technique of Zhou and Khargonckar [11] can be applied to ( 3.26)
to obtain the stability regions

m

QI) Z |prlo'max(}—r) <1 (327)
r=1
Qp  plleo = max |p,| < oro (30| F ) (3.28)
- = r=1
Qs plla= Qo) <AL FIF) (3.29)
r=1 r=1

in the parameter space.

3.2 Non-Liapunov Approach to Stability Robustness
Analysis

A necessary and sufficient condition for the stability of D, is that all

eigenvalues of (® + ®,) be within the open unit circle. Since the nominal

system 1s stable, we have
det(¢?’T — @) # 0

Again, using the continuity of eigenvalues, it turns out that D, is stable if

| ®,]] is small enough to satisfy

det(¢’'T — & — ®,) # 0,
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or equivalently

det[I — (/T — ®)7'®,] #£0, 0<O<n (3.30)

Obviously, ( 3.30) is satisfied if

1
18, < : = (3.31
T ey e 30
for any matrix norm. Using the spectral norm, ( 3.31) becomes
. - A
Omas(Pp) < Oél(}; Omin(€] — @) 2 py, (3.32)

In the case of a single-parameter perturbation, when &, = pE, ( 3.32) is
satisfied if e (e )
MIo<s<r Omin e’ — @ A
p| < = = 3.33
o i s (3.33)

Although ( 3.32) can also be used to obtain several stability regions in the
parameter space in the case of multi-parameter perturbations, we do not
pursue this point any further, because computing the expression on the right

hand side of ( 3.32) is not an easy task except in special cases.

As in the case of continuous-time systems, where Kronecker sums are
used, Kronecker products may be employed to obtain alternative robustness
bounds for discrete-time systems. From the properties of Kronecker products,
it follows that if a real matrix M has an eigenvalue on the unit circle, then
M ® M has two eigenvalues at z = 1. Applying this fact to single-parameter
perturbation model of D,, we observe that D, is stable if p is small enough
to satisfy

det(I —(® +pE)® (® 4 pE)] #0 (3.34)

Using properties of I{ronecker products, and the fact that
det(I -®2@®)#0
( 3.34) can be rewritten as

det[—I+p(I-d@®) (EQ®+IQE)+p*(I-8@3) (EQE)] #0 (3.35)
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Although the determinant in ( 3.35) contains quadratic terms in p, it can
be expressed as the determinant of a larger matrix in which only linear terms

in p appear. This gives,

det(—I +pM)#0 (3.36)

where

0 I
M= (3.37)

I-2®%)(EQE) —-(I-2@%)(ERP+IQRE)

Although ( 3.36) can be used to derive several stability robustness bounds
for D,, we observe that it is a necessary and sufficient condition for the

stability of an associated continuous-time system described as

Sp(Dp) t=(—I+pM)z (3.38)

Thus, all the robustness results concerning continuous-time systems can be
used to obtain bounds on |p| for stability of D,. From ( 3.36), a bound on |p|

can be obtained as

1
< — 3.39
Pl e A (339
whereas a more conservative bound can be stated as
p| < ——— (3.40)
PSS e (M) ‘

Similar results can be obtained for multi-parameter perturbations. In this

case, ( 3.34) and ( 3.35) become

det[I — (® + ip,E,) ® (P + ipsEs)] #0 (3.41)
r=1 s=1
and
det| I - ipr(f -PR%)(E,QP+PQE)
r=1
- i f:prps(f - ®®®)7H(E, ® E)] #0 (3.42)

r=1s=1
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respectively. ( 3.42) is equivalent to

det[-I+ ) p,M,] #0 (3.43)
r=1
where
0 ... 0 0 0 ... 0 E, ® E ]
M, = . : : : .
0 0 0 0 E. ® E,

0 I-2®%®)"T 0 ... 0 —(E,Q®P+PRE,) |

(3.44)

Thus, stability of D, is equivalent to stability of the auxiliary continuous-time
system

Sp(Dp) & =(-I4> pM)z (3.45)
r=1

with multi-parameter additive perturbations. From ( 3.45), the following

stability regions in the parameter space can be obtained in a standard way:

Qp Y Iprlomas( M) < 1 (3.46)
r=1
Qp ¢ Iplleo = max|p,| < opg (3 | M: ) (3.47)
r=1
Qs ¢ lIplle = ()2 < A MEM,) (3.48)
r=1 r=1

Also, if continuous-time stability robustness analysis is applied to ( 3.45) by

using Liapunov approach, H = I/2 is obtained with G = G = I. Then,
F. = MTH + HM, = (M,), where (M,), is the symmetric part of M.
From, ( 2.23)- ( 2.25) will give the following bounds,

QD . f: lprlamar((Mr)s) <1 (349)

r=1

Qp ¢ plleo = max|p,| < one. (O [ (M), [) (3.50)
r=1
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O ¢ ol = (A < AR (M) (3.51)

3.3 Summary and Examples

Listings of stability robustness bounds for discrete-time systems are given
in Tables 3.1 and 3.2 for single- and multi- parameter perturbations,

respectively.

Example 3.1 When a discrete-time system is obtained by sampling a
continuous-time system, continuous-time additive perturbations appear
nonlinear in discrete-time model. However, under some ( perhaps, very

strict ) assumptions, they can also appear as additive perturbations after

sampling. As an example, consider the system

Syt 2(t) =(A+pE)a

-1 0 1
E= 0
0 -2 0 0

The discrete-time model for the sampled system will then be

where

A=

Dp: z{(k 4+ 1)T] = (@ + p®,)z[k T},

where

and

-7 -T
3, = %[G(MMP)T _ AT = [ 0 e (1—e™) } .

For this particular example, D, is stable for all values of p as S, is.
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Ip]

Ip|

Ip]

|p]

|pl

|p]

|p|

|p]

|pl

where

|

and

=

Table 3.1.

(da 4+ b*)Y2 — b
2a

= Hs,

[Omaz(H = G) + 0min(GY]2 ~ o}f2,(H ~ G) _

oot (ETHE)

1 -1 - onb ()
Omaz(E)

1 —

20max(E)amax(g) B

= Huy

Huy

U;}zm(]:) = /1.93
inf0<0<7r amin(eje-[ - (I))
= = HMug
Omaz(E)
: = u
Supocper [|(e90T — ®)-1E|
1 —
max; A\[(M) Has
1 —
(M) — 1

0 HI/ZEG—1/2

G-2ETHY? —G-Y*(ETHA+ ATHE)G™'/*

0 I

Discrete-time Systems
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52

|

(I-3® %) (E®E) —(I—<I>®<I>)*1(E®<I>+<I>®E)]

Stability robustness bounds for single-parameter perturbed
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Qp

Qp

s

2p

2p

Qg

where

Z lprlamax(Fr) <1
r=1

[plleo = max |p,| < 070 (3 | 5 1)
r=1

Ipllz = Qo P} < \2(C FIR)
r=1 r=1

Z Iprlamaz(M'r) <1
r=1

m
Iplleo = max [p,| < 075,37 | M- )
r=1

Ipllz = (32 P2 < AR50 MIM,)

r=1 r=1

Z |pr|Omaz((My)s) < 1

r=1

1Pl = max | < 075032 | (Mo, )
r=1

Ipllz = Qo P22 < AP (Q_(M:)3)
r=1 r=1

0 Hl/zE,.G_lﬂ

fr = G—l/zE;l’Hl/2 -G_1/2(ETTH(I) + (I,THET)G—l/Z

and

0 ... 0
0 ... 0

Table 3.2.

Discrete-time Systems

ET®E1

0 0 ... 0 E, ® En,
(I-3@3)" 0

(M), = (MT 4+ M,)/2

.. 0 —(E,®2+2PQE,)

35

Stability robustness bounds for multi-parameter perturbed
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Example 3.2 To illustrate the computation of the stability robustness
bounds for single-parameter perturbed systems, consider two perturbed

systems Dp; and D,, where

05 1 1
d = E, = 0 and FE,; =
0 0.5 00

The solution for the Liapunov equation for the nominal system is obtained

as
- 20/15 8/15
R e
8/15 36/15
An unstructured perturbation model yields the following bounds for both D,;
and D, :

Pl < g, =0.2136 (3.52)
Ip| < fptu, = 0.1908 (3.53)
Pl < fuy = 0.4109 (3.54)

On the other hand, if the structure of perturbations are taken into

consideration, the bounds are modified into

For D,y For D,

Ip| < ps, = 0.4056 lp| < psy, = 0.3571
Ip| < psy = 0.3962 Ip| < ps, = 0.342

lp| < psy, = 0.5 lp| < ps, = 0.5

Pl <ps; = 05 Pl <psy = o0

Ip| < po, = 0.3884 Pl < gy = 0.3489

Now, using the same &, £y and E, matrices consider a system,
Dy apy1 = (P + prEy + p2Eo)xs
Then, we obtain the stability robustness regions

QL 2.3742|p| +2.7742]p,| < 1
QL max{|pi], |p2|} < 0.2411
QL: (2 +p3)Y? < 0.296
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from ( 3.27) -( 3.29);

Q-
Qi
Qi
from ( 3.46) - ( 3.48); and
QU
QU

IIT
Qur

from ( 3.49) - ( 3.51).

2.8085py | + 3.1732[ps| < 1
max{|p1], |p2|} < 0.2109
(p? + p3)"/? < 0.3019

2.3210|p;| + 1.8595ps| < 1
max{|p1], |p2|} < 0.2725
(p? + p2)'/? < 0.3649

37

These stability regions are shown in Figures 3.1, 3.2, 3.3. Note that the

stability regions obtained from ( 3.49) - ( 3.51) are superior to others.

Finally, by using ( 3.55) and modifying ® and p; as

®' =P+ 0.2725E, py = p; — 0.2725

i.e. shifting the origin along the p, axis, then the following bounds are

obtained from ( 3.49) - ( 3.51).

2.5443|p1| + 2.242]p,| < 1

max{|p:| + |p3]} < 0.2377

(p? +p3 )Y < 0.3201

(3.55)
(3.56)
(3.57)
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Figure 3.1. Stability regions obtained using ( 3.27) - ( 3.29)
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P

Figure 3.2. Stability regions obtained using ( 3.46) - ( 3.48)
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Figure 3.3. Stability regions obtained using ( 3.49) - ( 3.51)
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Figure 3.4. Stability regions obtained by shifting the origin



Chapter 4

APPLICATION TO
DISCRETE-TIME
INTERCONNECTED SYSTEMS

A natural way to describe a complex system is to view it as an interconnection
of dynamic parts, or subsystems. In such a description, the essential
uncertainty lies in the interconnection parameters, which reflect the strength
of coupling, or interaction, among more precisely modeled subsystems. The
concept of connective stability, put forward by éiljak [26], refers to the
stability of an interconnected system, where the subsystems are disconnected
and connected again during operation. Since overall stability of the system
when all the subsystems are decoupled requires the stability of individual
subsystems, in connective stability analysis the interconnections are treated

as undesired perturbations. This brings into picture the issue of robustness.

In this chapter, we apply the results of the previous chapter to obtain

robustness bounds for a discrete-time interconnected system described as

N
Dp : 'U,(k-{—l) = (I),'.’B,'(k)-}-Zpij(I)ij.’I:j(k), 1=1,2,...,N. (41)

i=1
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In ( 4.1), z;(k) € R™ is the state of the ith subsystem,
D;: ai(k+1) = d;z:(k) (4.2)

which is assumed to be stable; ®;; are fixed interconnection matrices, and p;;

are interconnection gains which are treated as perturbation parameters.

Letting
2(k) = [T (k) 23 (k) ...<h(k) |7 (4.3)

and
$ :diag{@h @2, ,(I)N }, (44)

the collection of decoupled subsystems in ( 4.2) can be described in a compact

way as

D: z(k+1)=2z(k) (4.5)

Similarly, letting E;; = (E;;{;)NxN, where

i ®y, forp=i,9=7
E¥ = { (4.6)

Q, otherwise

the interconnected system in ( 4.1) can be modelled as

N N
Dy a(k+1)=(2+) ) pi;Eij)a(k) (4.7)

1=1j=1

which has the standard multi-parameter perturbation description.
Choosing V(z) = 2T Hz as a Liapunov function for D of ( 4.5), where
TH® - H=-I (4.8)
we obtain the following stability regions in the parameter space of D,.
Qp ZZ |Pislomas(Fyy) < 1 (4.9)
Qp max lpij] < amax(zz | F5 1), (4.10)

(Z Zpij 1/2 < 0171314.2(22 (411)

Qi
)
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where B
B 0 HE;;
7 | EEA\* —(ELH® + ®THE;)
We immediately notice from ( 4.4) and ( 4.8) that

H = diag{H,, Hy,...,Hy}

41

(4.13)

where V;(z;) = 27 H;x; are Liapunov functions for the decoupled subsystems

D; of ( 4.2), with H; being the solutions of

®TH®, — H; = -1

(4.14)

The block diagonal structure of H, together with the special structures of

the perturbation matrices E;; defined in ( 4.6) allows for obtaining explicit

expressions for 0., (+) terms in ( 4.9)-( 4.11). As an illustration, for N = 3,

and i = 1,5 = 2, F;; becomes

-

0 0 0 0 H?®, 0
0 0 0 0 0 0
a 0 0 0 0 0 0
Fyp = ~
0 0 0 0 —®TH,®, 0
dTLH* 0 0 &7, H,®, 0 0
0 0 0 0 0 0
from which we obtain
amam(Fl2) = ’\rln/az\(F122)
= MNA(X5Xn)
= o)2(OLH 810 + O, H 913] H1 12)

where

XL = [8L A" — 0T, H,3,]

In general, we have

amﬂl(E]) - o-ma:t((I)lJH (I)U + (I)‘JH (p q)TH (I)U)

(4.15)

(4.16)

(4.17)

(4.18)
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which provides an explicit expression for o,q..(Fi;) in terms of system

matrices. Majorizing ( 4.18) further, we obtain

Omas(Fiy) < oplZ (H)oM L (®LH ;) (4.19)

maxr

resulting a stability region

G LT bsllAE)LEAR) <1 (420)
i
which is smaller than Qp of ( 4.9), but easier to compute.

We now turn our attention to stability analysis of Dp via composite
Liapunov functions ( Sezer and Siljak [18]). Let Vi(z;) = zTH;z; be the

subsystem Liapunov functions, where
®TH,®; - H;=~G;, i=12,...,N (4.21)

for positive definite matrices G;. Computing the increment of V; along the

solutions of the interconnected system Dp of ( 4.1), we obtain

AV,("cl) = ("B{‘(I”;r + Z])ijmf@z;‘)Hi((I’imi + Zpijq)ijmj) - QZ?H,'.’Z:,;
J J

= -—a,‘;rG,':B,' + 2$?(I)tTH,1/2 Zpinil/2®ijxj

J

+(Z pinil/z‘I’iﬂj)T(Z pin,‘l/z(I)ij-Tj)
I 3

A

~Omin(Go)llaill? + 2032 (BF Hi®:) ||zl (B Ipisl &5 ll51)
J
+(2_ il & ll511)*
J

= —[Umin( "'1) + U7nax(Hi - G,)]”’D,“z
Homae(Hi = Gollaill + 3 Ipij] & ll;1I)? (4.22)
2

max

= ~[a?llzl® = (Billell + Z pis] &is ll5]1)?] (4.23)
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where

az = a-min(Gi)'*'ama:c(Hi"‘Gi)

Bi = oMi(H;-G;) (4.24)
Ei = o2 (®TH:3,;)

-

We now choose

N
V(’L‘) = ;d,v,(a:,) (4.25)

as a candidate for a Liapunov function for Dp, where d; > 0 are to be

determined. Using ( 4.23), we get

N
AV(z) < =3 dilad|aill = Billzill + 32 lpii| & Ml2il))’]
=1 J

= —U%(||e|[)(CTDC — BTDB)U(||z|) (4.26)
where
UT(|lz]l) = (lel, Nzall, -y llzall] (4.27)
and
C = diag{ai, az, ..., an}
D = diag{dl, dg, ey dN} (428)
B = (bij)NxN (429)
with
bi; = { Bi + |pislés s J =i‘ (4.30)
Ipilé; T #1

Thus AV(z) is negative definite if the matrix CDC — BTDB is positive
definite for some suitable choice of the diagonal matrix D. However, the

latter is equivalent to the aggregate matrix
W=C-B (4.31)
being an M-matrix. Letting W = (w;;)Nxn, we observe that

wi = o — B

= [amin(Gi) + Umaa:(Hi - Gi)]l/z - 0'7177,/¢;2$(Hi - Gz) (432)
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and

wi; = =|pijléi; = ~IpiilonlZ (BT Hi®y),  #1 (4.33)
That is, each interconnection gain |p;;| appears in an off-diagonal element of
W. The M-matrix conditions in terms of the leading principal minors of W
provide a set of inequalities in |p;;|’s, which define a stability region in the

parameter space.

To obtain explicit expressions for the robustness regions defined through

W, let us choose G; = G; = I, so that ( 4.32) and ( 4.33) become

wii = O'yln/azg;(}_ji)_[Umaz(ﬁi)—1]1/2, (434)
@iy = —|pilollZ(®LH;®), (4.35)

We also note that W = (@;;)nxn is an M-matrix if and only if W = (Wi;)NxN
is an M-matrix, where
. 1 =1
Wiy = { B ,__ ] . (4.36)
Wi [ Wi, J #1
From ( 4.34) - ( 4.36), we can write
Wo=1I-3"3 IplEy, (4.37)
i g
where Fj; has a single nonzero element in the (i, j)-th position given by

01/2 (@?;I—{l@,])

max

7 i : 4.38
oM H)) = [Omas(H;) — 1)1/2 (4.38)

Obviously, W in ( 4.37) is an M-matrix if

Umarc(z Z |pij|Fij) <1 (4.39)

Y

from which we obtain the stability regions

Q5 23 Ipiilomas(E) <1 (4.40)
T A

OF ¢ max|pyl < ol (U Y Fy) (4.41)
i i g

QF PP < MR Y FGES (4.42)

i g i i
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In other words, the role of F}; in ( 4.9)-( 4.11) are taken by Fj; in ( 4.40) -
( 4.42). However, it is much easier to evaluate the expressions in ( 4.40) -

( 4.42). From the structure of Fj;, it follows that

() Opla (PG H i) (4.43)
Omaz\L'ij) = = 3 ’
? Urln/azz(H1) - [ama:v(fli) - 1]1/2

Umax(z ZFU) = Umax(p) (4.44)

V\’Ilel‘c F = [O'nl(Lx(-Zﬁij)]NXN, a‘r‘ld

NS S FoFy') = max{oman(F), (4.45)
iog# '

which provide very simple characterization of the stability regions in ( 4.40)

- (4.42).

Finally, it is interesting to compare the stability regions obtained by the

two approaches. Since,

= 1
o2 (H;) < - - 4.46
) (77177./1121;(H,‘) — [Omaz(H;) — 1]1/2 ( )
from ( 4.19) and ( 4.43), we get
O'ma:z:(-Fij) S o'ma:c(ﬁvij) (447)
Thus,
Qy cQpcOp (4.48)

where Qp, Qp and QF are defined in ( 4.9), ( 4.20) and ( 4.40)
respectively. This shows that, for the choice G; = I, the composite Liapunov
function approach does not provide any improvement over ordinary Liapunov
functions as far as the diamond-shaped stability region is considered. Since
explicit expressions for other stability regions are not available, 1t is not
possible to compare Qp and Qg of ( 4.10) and ( 4.11) with QF and Q¥
of ( 4.41) and ( 4.42). However, Q) and QY are so easy to characterize
compared to Qp and Qg that, any loss in the estimate of stability regions

should be outweighed by the enormous reduction in computational effort.
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Example 4.1 Consider an interconnection of three subsystems

3
Dp . CL‘,(}V + 1) = lel(k) + Zp,'jq),'jl‘j(k) 7= 1,2,3 (449)

i=1

and all other ®,;’s are zero.

Using Vi(z;) = «¥ H;z; as subsystem Liapunov functions, where H; satisfy
1 t T ’ t

( 4.14), the stability regions in ( 4.9) - ( 4.11) are evaluated as

Qp : 0.1626|p12] + 0.6003|pas| + 0.3907|pss| < 1 (4.50)

Qp : max|p;;] < 1.6288 (4.51)
tJ

Qs ¢ (p}, + pls +p3p)'/* < 0.8791 (4.52)

On the other hand, computing W of ( 4.37) as

1 0.402py 0
Ww=1o0 1 1.1201|psal |
0 1.0641|ps] 1

we observe that , W is an M-matrix, if

W  |pas||ps2] < 0.8389 (4.53)

It is interesting to compare the stability regions Qin ( 4.53)with the ones

in ( 4.50) - (4.52)

1. While each of Qp,Qp and Qg are bounded in the p;,- direction, Q is
not. This is because ) carries more information about the structure of

D,, in which the subsystems do not form a loop through D;.
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2.  includes Qp if Ip12] = 0.6941, Qp if |p12] > 1.6288 and Qs for all |p;].

Finally, the stability regions in ( 4.40) - ( 4.42) are found as

QY : 0.402|pia| + 1.1201|pas| 4 1.064|pss| < 1 (4.54)

QF . max|p;| < 1.6364 (4.55)
1’1]

QF : (ply+ Pl +p3)"* < 0.8791 (4.56)

We observe that although Q% C Qp as expected, Q¥ D Qp and Q¥ = Qs.

Thus, the regions Q" are comparable to  although they are much easier to

compute.
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FURTHER RESEARCH AREAS

Usually, the more generalvthe problem is, the harder the solution is. This has
been the case of robust stability problem in state-space. Although, necessary
and sufficient bounds are available for some special cases, in general we have

only sufficient bounds.

The robust stability problem in state-space can be handled in two ways;
Liapunov and Non-Liapunov approaches. Liapunov approach uses Liapunov
stability theory to determine to what extend the nominal system is still
stable when it is perturbed. This approach usually yields bounds which are
conservative, but easier to compute. It is possible to reduce the conservatism
of the bounds if some information about the structure of the perturbations
exists. But, this brings out the question of choosing a Liapunov function for
the nominal system which has the best decaying rate, i.e. choosing the best
G in the Liapunov equation, ATH + HA = -G or ®TH® — H = —G. We
know that the best choice of G depends on both the structures of the system

matrix and the perturbations, but the answer is not straightforward.

Non-Liapunov approaches, including frequency-domain techniques, yield
bounds which are better for some cases, but harder to compute. Use of
operators like Kronecker sums or products causes an increase in the matrix
dimensions. Introducing new operators which have smaller dimensions and

ecasier to compute, would be for the benefit of the analysis of robust stability

48
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problem.

One of the open questions is modelling the perturbations. Usually, a
perturbation model is assumed and the problem is solved in either frequency
domain or in state-space. As in all control problems, the question of whether
the perturbation model is physically meaningful or not is important. In
addition, since robust stability problem can be analyzed in frequency domain
or in state-space, the relations between the existing bounds in each domain

should be revealed.

If the perturbations are due to the nonlinear functions of some parameters,
this case should also be studied extensively. Up to now, only results about
linear parametric perturbations are at hand, which can be extended to
polynomial case. But, nonlinear parametric perturbation case is an open

question.

Another open question is the stability robustness analysis of sampled-data
systems. Since perturbations in the continuous-time system seems highly
nonlinear when the system is sampled, a special care must be taken for the

analysis of this case.

Searching a norm type bound on the perturbation matrix is equivalent
to finding the distance of the system matrix to the unstable real matrices.
However, we still don’t know the distance of a stable matrix to the unstable

real matrices whereas the distance to the unstable complex matrices is known.

Consequently, robust stability problem is still an active, promising

research area.



Appendix A

BACKGROUND MATERIAL

In this appendix, we briefly review stability of lincar systems and summarize

some results from matrix algebra.

A.1 Lyapunov Theory for Linear Systems

Consider the linear, continuous time system

S z(t) = Az(¢) (A1)
which has an equilibrium at z, = 0. It is well-known [21] that due to linearity
of §, stability, asymptotic stability in the large, and exponential stability of
the equilibrium 2, = 0 imply each other. They also imply that origin is the

unique equilibrium of §. In this thesis, we use the phrase “stability of S” to

mean these equivalent concepts of stability.

Let V(2) = 2T Hz, where H is a symmectric, positive definite matrix. The

derivative of V(z) along the solutions of § is given by

V(e)ls = 2T(ATH + HA)z (A.2)

Then, a symmetric matrix G can be defined as

ATH+ HA= -G (A.3)

50
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We now state a basic result about the stability of S :
Theorem A.1 ( Vidyasagar [21]) The following are equivalent :

1. S is stable.
2. All exgenvalues of A have negative real parts.

8. For every symmetric, positive-definite matric G, equation ( A.8) has a

unique, symmetric, positive-definite solution H.

Consider a stable system &, and let
oo = min{ |Re[X\:(4)]| }

where Re[A;(A)] denote real part of the eigenvalues of A. From the solution

properties of S, it can easily be shown that there exists M > 0 such that
lz(®)ll < Me™!|z(0)ll, Vte Ry

for all initial states (0). In other words, oo is the degree of exponential

stability of S.

Now let H be the positive-definite solution of ( A.3) for some given
positive-definite matrix G. Then V(z) = 2T Hz is a Liapunov function for &,

having a negative-definite time derivative.
V(z)ls = —2"Ge (A.4)
Using the inequalities
Omin(M) [ < 2T Me < e M) o] (4.5)

where 0nin(M) and 0pq0.(M) denote the minimum and maximum singular

values of the symmetric matrix M, it follows from ( A.4) that

V(x(t)) < exp[~omin(G)/0maz(H)|V (2(0)) (A.G)
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and that
=] < Mye™*![|l2(0)]] (A7)
where
M, = oM (H)/oMi(H) (A.8)
0y = Omin(G)/20maz(H) (A.9)

Thus, if V(z) = 2THz is a Liapunov function for S, then o, provides an

estimate of the degree of stability oo such that

o, < 09

It is also well-known that [21], the solution H ( A.3) is given by

_ [ AT A
H= /Oe Gettdt (A.10)

Using this expression it can be shown that the estimate o, of the degree of
stability given by ( A.9) is maximized for the choice of G = I. That is the
main reason for choosing the corresponding V(z) as a Liapunov function in

most of studies on robustness analysis.

All the stability concepts and the results mentioned so far also apply to

discrete-time linear systems described as
D: ap41 =%z, keZ, (A.11)

In this case, Theorem A.1 becomes :

Theorem A.2 The following are equivalent :

1. D 1s stable.

2. All ergenvalues of ® have moduli less than unity.
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3. For every symmetric, positive-definite G, the equation
®TH® - H =-G (A.12)

has a unique, symmetric, positive-definite solution H.

When D is stable,
po = max{|:(®)[}
is the degree of exponential stability in the sense that there exists an M > 0
such that

leill < Mpglizoll, VE € 24, (A.13)

for all initial states zg.

As in continuous-time systems, with H being the solution of ( A.12) for

some positive-definite G, V(z) = zT Hz is a Liapunov function for D with a

negative-definite increment.

AV(z)|p = —2TGz (A.14)
From ( A.14) it follows that
Omin(G) 11
zp) <l = —————~ .
Vi) <1 Umaz(H)] V(zo), (A.15)
and hence,
it < Mupylizoll, (A.16)
where M, is given in ( A.8) and
Omin(G) 1/2
v =[1-—== Al
N (A7

is an estimate of the degree of stability of D such that

0< Pv S po <1 (A.18)

Using the fact that the solution of ( A.12) is given by

H = fj(cb’f)*'aqﬂ (A.19)

1=0

It can be shown ( Sezer and Siljak [18] ) that the best estimate of the degree

of stability is obtained by choosing G = 1.
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A.2 Kronecker Products and Sums of Matrices

In this part of the Appendix, we present some results on Kronecker products

and sums of matrices, which are borrowed mainly from Lancaster and

Tismenetsky [22] and Fuller [23]

The Kronecker product of the px ¢ matrix A = (a;;) and the m X n matrix

B = (b;;) is defined as

[ CL11B amB e aqu
B B :
AgB=| " (A.20)
| ap B oo QB |

The Kronecker sum of the n X n matrix N and the m X m matrix M is

the nm X nm matrix defined as

NoeM=NQIL,+I,M (A.21)

The following identities involving Kronecker products can easily be shown

using the definition.

(LA)® B =A® (uB) = u(AB)
(A+B)®C=(ARC)+(B®C)
A®(B+C)=(A®B)+(4®C)

AR(B®C)=(A®B)®C

(A®B)" = (AT ® BT)
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(A® B)(C® D)= AC ® BD

A®B=(A®I)I® B)

(A B)™' = A"' @ B-! if A-! and B~ lexists.

det(A ® B) = (det A)"(det B)"

tr(A® B) = (tr A)(tr B)

rank(A @ B) = (rankA)(rankB)

The following theorem states a basic result about the eigenvalues of the

Kronecker product of matrices.

Theorem A.3 (Stéphanos [24])

Let {A,} and {B,} be finite sets of n x n and m X m matrices having

eigenvalues A7, i =1,...,n and u}, j =1,2,...,m. Then, the eigenvalues of
the matriz
Y hpeA, ® By (A.22)
Pa
are the nm values 3, o hpg APl 1=1,2,...,n57=1,2,....m

Corollary A.1 Let A and B be square matrices of dimensions n and m,
and having eigenvalues X;, i = 1,2,...,n and pj, 3 =1,2,...,m. Then the
matrices AQB and AD B have the eigenvalues A\ipt; and A\i+p;,1=1,2,...,n

7 =1,2,...,m, respectively.
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As an illustration of Corollary A.1, consider the 2 x 2 matrix

0 1

A: : , 3= + , I =
) K1 T M2 H1fha

which has the eigenvalues A\; = y; 7 = 1,2. The matrix

[0 1 1 o0
-II S 0 1
-II 0 ¥ 1
0 -II -II 2% |

AB A=

has the characteristic polynomial
(s — )*(s* — 285 + 4m),

and the eigenvalues

Ay = I+ VII2 — 411 = 24y

Ay = L=+
Az = L= 1+ p

)\4 = E—\/22—4H:2,u,2,

verifying Corollary A.1.

A.3 M-matrices

5€

A class of matrices, which play an important role in dynamical modelling of

economic systems as well as in stability analysis of large-scale systems via

composite Liapunov functions, is M-matrices characterized by the following

theorem.

Theorem A.4 ( Araki [25])

Let A be a real square matriz with non-negative off-diagonal elements.

Then, the following statements are equivalent.
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1. The principal minors of A are all positive.

2. There 1s a vector z ( or y ) whose elements are all positive such that

the elements of Az (or ATy ) are all positive.
8. The leading principal minors of A are all positive.
4. A 1s nonsingular and the elements of A™! are all nonnegative.
5. ( Liapunov-type condition ) There i3 a diagonal

matriz D =diag( dy,...,d, ) with d; > 0, such that ATD + DA is a

positive definite matriz,

A matrix A satisfying the above conditions is called an M-matrix.
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