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ABSTRACT

STABILITY ROBUSTNESS ANALYSIS OF LINEAR
SYSTEMS

Mehmet Karan
M. S. in Electrical and Electronics Engineering 

Supervisor: Prof. Dr. M. Erol Sezer 
February, 1990

In this thesis, robustness of stability of linear, time-invariant, continuous- 
and discrete-time systems is investigated. Only state-space models and 
additive perturbations are considered. Existing results concerning stability 
robustness of continuous-time systems, based on Liapunov approach and 
continuity of eigenvalues, are reviewed; and similar results for discrete­
time systems under single- and multi-parameter additive jDerturbations 
are derived. An inherent difficulty which originates from mixed linear 
and bilinear appearance of perturbation parameters in inequalities defining 
robustness regions of discrete-time systems is resolved by transforming the 
problem to robustness of a higher order continuous-time system. Finally, 
stability robustness of discrete-time interconnected systems is studied, and 
various approaches are compared.

Keywords: Robust Stability, Discrete-time systems. Additive perturba­
tions, Liapunov stability. Interconnected systems.
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ÖZET

DOĞRUSAL SİSTEMLERİN KARARLILIĞININ 
GÜRBÜZLÜK AÇISINDAN İNCELENMESİ

Mehmet Karan
Elektrik ve Elektronik Mühendisliği Bölümü Master 

Tez Yöneticisi: Prof. Dr. M. Erol Sezer 
Ocak, 1990

Bu tezde, doğrusal, zamana göre değişmeyen, sürekli ve ayırtık zamanlı 
sistemlerin kararlılığının gürbüzlüğü araştırılmıştır. Yalnızca durum uzayı 
düşünülmüştür. Sürekli zamanlı sistemlerin gürbüz kararlılığına ilişkin 
varolan sonuçlar, Liapunov yaklaşımı ve özdeğerlerin sürekliliği açısmdem 
gözden geçirilmiştir. Ayrıca, tek parametreli ya da çok parametreli sistem 
belirsizlikleri altında ayırtık zamanlı sistemler için de benzer sonuçlar elde 
edilmiştir. Ayırtık zamanlı sistemlerin gürbüzlük alanlarını tanımlayan 
eşitsizlikler içinde belirsizlik iDarametrelerinin doğrusal ve ikildoğrusal 
gözükmelerinden kaynaklanan doğal bir zorluk da, problemi daha yüksek 
boyutlu sürekli zamanlı bir sistemin gürbüzlüğüne dönüştürülerek aşılmıştır. 
Son olarak, ayırtık zamanlı birbirine bağli sistemlerin kcirarlılık gürbüzlüğü 
çalışılmış ve değişik jmırtemler karşılaştırılmıştır.

Anahtar sözcükler: Gürbüz kiirarhhk, Ayırtık zamanlı sistemler, Toplam­
sal belirsizlikler, LiaiDunov kararlılığı. Bağlı sistemler.
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Chapter 1

INTRODUCTION

An essential feature of complex dynamic systems is the uncertainty in the 
system parameters, which may arise due to modelling errors or change of 
operating conditions. Since stability is one of the major properties of systems, 
it is desirable to be able to determine to what extend a nominal sj'̂ stem 
remains stable when subject to perturbations. This is the robust stability 
problem.

In analysis of stability robustness, perturbations can be considered 
as having stochastic or deterministic nature. In the case of stochastic 
perturbations, one attempts to obtain robustness bounds for nominal system 
in terms of statistical properties of perturbations such as mean and variance. 
Another way is to view perturbations as completely or partially unknown 
detenninistic uncertainties. The partial information about the perturbations 
is usually expressed in terms of the structure of the system.

In the context of stability robustness analysis, there has been many 
new advances such as quantitative feedback theory (Horowitz [1]), singular 
value theory ( Doyle and Stein [2]), theory (Zames and Francis [3]). 
The recent results on the frequency domain robustness analysis are based 
mainly on the seminal paper of Kharitonov [4] . In this paper, Kharitonov 
showed that stability of a family of polynomials which correspond to a 
hyper-rectangle in the coefEcient space is equivalent to the stability of only



four extreme pcljmemials corresponding to the vertices of the rectangle 
with the assumption of independent perturbations in the coeiRcients of the 
polynomials. Later, Bartlett, Hollot and Lin [5] have established the well- 
known Edge Theorem which says that the strict stability of the entire family 
of poly topes is equivalent to the strict stability of the exposed edges. A recent 
paper by Siljak [6] provides an excellent survey of parameter space methods 
in robustness analysis and robust control design.

The techniques of state-space robustness analysis in recent literature (?lin 
be viewed from two perspectives, namely,

• Time Domain Methods

• Frequency Domain Methods

CHAPTER 1. INTRODUCTION 2

In time domain methods, Lyapunov approach is the fundamental 
framework, which is known to be the best approach for time-varying 
perturbations. In the literature, mostly the stability of a linear time-invariant 
system in the presence of time-invariant and completely or partially unknown 
perturbations has been considered. Patel and Toda [7] have presented an 
explicit robustness bound. Later, Yedavalli [8,9,10] provided an improved 
bound on structured perturbations taking into account different tjqoes of 
perturbations. Zhou and Khargonekar [11] gave better stability robustness 
bounds for systems with structured uncertainty.

Frequency domain methods are based on the transfer function representa­
tion of systems and eigenvalue type of considerations. Qiu and Davison [12] 
have studied the robust stability problem for a state space representation of 
a system using frequency domain approach. Fu and Barmish [13] obtained 
results which can be extended to single-parameter perturbation case easily. 
Later, Qiu and Davison [14,15] obtained frequency domain results with 
similar techniques. Hinrichsen and Pritchard [16,17] formulated the problem 
formally and found the distance of the system matrix to the unstable complex 
matrices.



CHAPTER 1. INTRODUCTION

As has already be mentioned, perturbations may be viewed as partially 
or completely unknown deterministic uncertainties. In particular, for stcite 
space robustness analysis, a physical system can be described as.

x(t) =  (A +  Ap) x(t) (Continuous Time) 

Xk+l =  ($  +  $p) Xk ( Discrete Time)

( 1 .1 )

( 1 .2 )

where x(t) 6 Jî” is the state of the continuous system at time t, and 
correspondingly Xk G is the state of the discrete-time sj''stem at time 
k. A G and $ G are nominal system matrices which are assumed
to be asymptotically stable, Ap G and $p G are the perturbation
matrices which are completely or partially unknown. Perturbations may be 
classified as

• Unstructured Perturbations

• Structured Perturbations

• Parametric Perturbations

(i) Unstructured Perturbations :

No information about the perturbation exists. A stability robustness 
bound on either the norm of Ap [ resp. ] or on its entries, is tried to 
be obtained.

(ii) Structured Perturbations :

In this case, we have partial information about the perturbations, i.e. 
the structure of the perturbations of Ap [ resp. $p ] is prespecified, and 
the bounds on such structured perturbations are tried to be obtained. This 
structure information may source from the physical nature of the system. For 
example, an oscillator’s motion (  obeys the equation

 ̂+  Qii +  — 0 (1.3)



which yields the state equation

x(t) =

CHAPTER 1. INTRODUCTION

0 1
—a2 —0,1

x(t) (1.4)

where x(t) =  [(f î ]̂ . Since perturbations can occur only on the oscillator 
parameters oi and «2) -d-p has a structure

0 0
* *

(iii) Parametric Perturbations :

Ap [ $p ] may depend on one or several parameters.In this case, we can 
model the perturbation matrix as

• Linear Parametric Perturbations:

m

[^p] =  Y,PkEk
k = l

where Ek̂ s are known, constant, square matrices, p^’s are unknown,real 
parameters. Here m =  1 ( m > l )  case denotes single parameter 
perturbation (multi-parameter perturbations).

• Polynomial Parametric Perturbations :

k= l t= l

Here, also, Ei's are known, p̂ .’s are unknown, / / ’s are known 
polynomials of p^’s.

• Nonlinear Parametric Perturbations:

/=1

The same assumptions as before, but now / / ’s are some nonlinear, 
known functions of p̂ -’s.
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So far, there has been a considerable number of results on stability- 
robustness analysis of continuous-time systems in state-space domain. But, 
we felt a lack of a survey on this subject, and we devoted Chapter 2 to this 
purpose, where we stated the existing results in their original perturbation 
models. We also provided a comparison of these results using a linear 
parametric perturbation model, which is suitable for applications of the 
results reviewed in this chapter.

In Chapter 3, using the techniques in Chapter 2, we developed similar 
stability robustness results on discrete-time systems in state-space domain 
with linear parametric perturbations. For single parameter perturbation 
case, we developed necessary and sufficient conditions for the stability of the 
perturbed system. For the case of multi-parameter perturbation, sufficient 
conditions are derived and it is shown that stability of a nominal discrete­
time system matrix under multi-parameter perturbation is equivalent to 
the stability of a higher dimensional continuous-time system matrix with 
continuous-time perturbation matrices which are obtained from the discrete­
time perturbation matrices. Therefore, stability robustness analysis of 
discrete-time systems is reduced to that of continuous-time systems.

In Chapter 4, we applied the results of Chapter 3 to interconnected 
systems, where the strength of the interconnections for the stability of the 
overall system is a fundamental question. Vector-Liapunov functions and 
global Liapunov function methods can give several bounds for the strength 
of these interconnections. In this chapter, we compared these two methods 
for discrete-time systems, which have been obtained in Sezer and Siljak [18] 
and in Cha]Dter 3.

Finally, in Chapter 5, we stated several further research areas in the field 
of stability robustness ; and, in the Appendix A, provided some background 
material.



Chapter 2

STABILITY ROBUSTNESS 
BOUNDS FOR
CONTINUOUS-TIME SYSTEMS

2.1 Robust Stability Problem

Consider a continuous-time system containing additive perturbations

Sp : x{t) =  {A-\- Ap)x{t) (2.1)

where x(i) E 7?” is the state of Sp, A and Ap are constant matrices 
of appropriate dimensions representing the nominal system matrix and 
perturbations, respectively. We assume that the nominal system described
by

S : x(t) — Ax(t) (2-2)

is stable.

Stability robustness analysis is concerned with obtaining suitalsle bounds 
on the perturbation matrix Ap which guarantee stability of the perturbed 
system Sp.

When no information about the structure of Ap is known, that is, in 
the case of unstructured perturbations, stability robustness bound is usucvll}'·

6
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expressed in terms of the norm of Ap as

/,i„ =  sup{||Ap|| : Sp is stable} (2.3)

Patel and Toda [7], Yedavalli [8,9,10], and Qiu and Davison [12] have tried 
to maximize this bound using various techniques.

Information about the structure of Ap may be useful in obtaining improved 
robustness bounds, or in expressing these bounds in a different form. One 
way of incorporating structural information on Ap is to define a normalized 
perturbation matrix Up =  (tif·,·) as

<  = < /< n .x  (2.4)

where
<nax =  max{laf·)} (2.5)

and write Ap — a^^Up. Now, Up carries information about the relative values 
of the uncertain parameters, but more important than this, information about 
fixed zeros in Ap. Using Up, the robustness bound can be defined in terms of

*̂ max
fin =  sup{a^a,£ : Sp is stable} (2.6)

Yedavalli [8,10] adopted this approach in his work on stability robustness 
analysis.

An alternative way of making use of structural information on Ap is to 
decompose it as

(2.7)Ap =  BDpC

where B and C are fixed matrices, and cill uncertainty is included in Dp. In 
this case, the robustness bound is expressed in terms of Dp as

fid =  sup{||Dp|| : Sp is stable} (2.8)

An attractive feature of the decomposition in ( 2.7) is that it allows the
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uncertainty to be interpreted as output feedback gain Dp applied to the 
system (A, 5 ,(7 ). This way, well-known results on robustness of feedback 
systems can be applied directly to the system Sp. This approach has been 
used by Hinrichsen and Pritchard [16,17] and Qiu and Davison [12].

Most commonly used structured perturbation models in the literature are 
parametric perturbations described as

m
Ap =  J2P>cEk (2.9)

k=l
where Ek are fixed, known matrices, and pk are uncertain parameters. Note 
that the perturbation model in (2.6) is a special case of (2.9) corresponding 
to a single-parameter perturbation. In multi-parameter perturbation model, 
stability robustness is specified in terms of a region in the parameter space 
as

Dp =  sup{il C ED : Sp is stable} (2.10)

where is the parameter space. However, Dp is usually difficult to 
characterize in terms of the perturbation parameters. A common approach 
is to imbed a region into Dp, such as a diamond, parallelopiped or sphere, 
which yield

( Diamond ) Dd 

( Parallelopiped ) Dp 

( Sphere ) ÎÎ5

k=l
IIp IL = max{|pi|) < ftp

( 2. 11 )

( 2.12)

(2.13)\\ph = (Y^pIŶ  ̂ < PS
k=l

where p =  {piiP2 i · ■ ■ iPm) is the parameter vector, and ak are real 
constants. Multi-parameter perturbation models have been used by Zhou 
and Khargoneliar [11].

2.2 Liapunov Approach to Stability Robustness 
Analysis

The essence of Liapunov techniques in stability robustness analysis of linear 
systems is to construct a Liapunov function for the nominal ( stable ) system.



and seek bounds on the perturbations to establish stability of the perturbed 
system using the same Liapunov function.

Let V {x) =  x^Hx be a quadratic Liapunov function for the nominal 
system S where H  is the positive definite solution of the equation

CHAPTER 2. STABILITY ROBUSTNESS BOUNDS FOR CONTINUOUS-TIME SYSTEMS 9

A^H +  HA =  - G (2.14)

for some positive definite G.

The derivative of V along the solutions of the perturbed system Sp of 
( 2.1) is computed and bounded as

Up ~  (j4 +  Ap)^ +  / /(A  +  j4p) ]X

=  - x '^ [G - { A lH  +  HAp)]x

= -x'^G^/^l I  -  +  HAp)G~^l^ ]Ĝ I'̂ x

< - (1  -  amax[G-^'\AlH +  HAp)G-^l^]) \\G^>^xf

where cTmaxi,') denotes the maximum singular value of the indicated matrix. 
From ( 2.15), a sufficient condition for the stability of <Sp is obtained as

G-^I\AÎH  +  HA^)G-'I'‘  ] < I (2.15)

( 2.15) can be used to derive several robustness bounds for both structured 
and unstructured perturbations. The most common approach is to choose 
G =  G =  I  to maximize the estimate of the degree of stability of the nominal 
system, in which ca.se ( 2.15) becomes

(^max{A'^H +  HAp) <  1

where H  is the solution of ( 2.14) corresponding to G.

(2.16)

The simplest bound for unstructured perturbations is obtained by direct 
majorization of ( 2.16) as

1
c(-d-p)

2a maxi H)
A
— f̂ Ui (2.17)
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which is the bound obtained by Patel and Toda. [7]. Noting that

<ymax{Ap) < , (2.IS)

where is defined in ( 2.5), ( 2.17) can be further be majorized to obtain 
the bound

1 Aœ <^max ^ 2,72(7max(̂ Ĥ (2.19)

To incorporate structural perturbations, we let Ap =  â ^̂ Up., where Up is 
the normalized perturbation matrix defined in ( 2.4). Then, ( 2.16) is implied 
by

'  -  ------------ ------------- = /*.. (2.20)^max ^ Crmax{UJ\H\ +  |i7|17,) 
where | · | denotes a matrix obtained by taking the absolute value of every 
element of the indicated matrix. The bound in ( 2.20), obtained by Yedavalli 
[8], is less conservative than and /¿„j.

In the case of parametric perturbations, substituting ( 2.9) for Ap, ( 2.16) 
becomes m

amax{J2pkFk)<l (2.21)
k=l

where
Fk =  ETh  +  HEk (2.22)

Starting from ( 2.21), Zhou and Khargoneliar [11] obtained the following 
stability regions in the parameter space.

(i) Qjd •  ̂ V \Pk\̂ max{Fk} 1 
k=l

(2.23)

(Û) Cip
m

: ||7;||̂  =  max \p7:\ < 1 D 
 ̂ k=l

(2.24)

(in) Cls :
m m

(2.25)
k=l k=\

All the robustness bounds mentioned so far are obtained for the si>ecial 
choice oi G =  I. Sezer and Siljak [19] have pointed out that G =  I  \s not
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always the best choice to use in ( 2.15). Leaving G free, ( 2.17) becomes

II^pII <
,(G) A

— /̂ «3 (2.26)

Since the ratio crmin{G)/crmax{H) is maximum for G = G — I, 
^ ) that is, additional freedom in the choice of G does not provide

any improvement in the robustness bound for unstructured perturbations. 
However, for structured perturbations, ( 2.20) becomes

______)_________________aP < A
—  f̂ U2amax{UT\H\ +  \H\U,)

and depending on the structure of the matrix Ï7p, a choice of G other than 
G =  I, may give a better bound for

In the case of parametric perturbations, for a general G, the stability 
regions in ( 2.23) - ( 2.25) becomes

G,£)  ̂  ̂\pk\(̂ maxÇF'k̂  m̂xn {G)
k=l

IIp IU =  inax Ipfcl < <Tm.-n(i?)o-JarQ^

( S  Pkf^^ < crmin(G)aJJJ{Y^ F^)
k=l k=l

(2.28)

(2.29)

(2.30)

Again, depending on the structure of the perturbation matrices Ek, a suitable 
choice of G may result in larger stability regions than those in ( 2.23) - ( 2.25). 
Unfortunately, there is so far no systematic way of choosing the best G to 
maximize the bound in ( 2.27) or the stability regions in ( 2.28) - ( 2.30).

Another attempt to improve stability robustness bounds has been to use 
a similarity transformation

x =  Tx (2.31)

which transforms the perturbed system into

Sp : x{t)  =  ( Â  +  Ap)x{t) ( 2 .3 2 )
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where
A =  T-\AT, Ap=-T~\ApT 

Then, the Liapunov equation ( 2.14) becomes

A^H +  HA =  - G

(2.33)

(2.34)

Let H  denote the solution of ( 2.34) corresponding to the choice G = G =  I. 
Then, the bound in ( 2.17) becomes

XT)
^^max(T^^max(^H )

A
— /̂ «3 (2.35)

Yedavalli and Liang [9] argued that a suitable choice of the transformation 
matrix T may give better estimate of the degree of of the nominal system, as 
measured by l/amax(S), which offsets the reduction in the robustness bound 
due to the ratio i7min(T)/amax(T), and resulting in /i«, < /¿„3. They also 
suggested a procedure for computing the best diagonal T to maximize ^„3. 
However, as pointed out by Sezer and Siljak [19], a comparison of ( 2.34) with 
( 2.14) shows that

H  =  T^HT, G =  T^GT (2.36)

Now, using ( 2.33) and ( 2.36), V {x) can be bounded as

V{x)\s^ =  -x^'Gx +  x ^ {A lH +  HAp)x

< - (1  -  a^ax[G~^>\AlH +  HAp)G-^l'^])\\CAl‘̂ T x f (2.37)

yielding the same stability condition as given in ( 2.35) This shows that the 
effect of a similarity transformation is equivalent to the effect of choosing a 
different G matrix for the original system. It also shows that finding the best 
transformation matrix is as difficult as finding the best G.

Before closing this section, we note that better stability robustness bounds 
can be obtained when A has some special properties. For example, when A is 
normal, that is, it satisfies A  ̂A — AA^, using the explicit expression ( A.10) 
for the solution of Liapunov equation and choosing G — I  , it follows that
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Al̂  and H  commute, so that

1
i i  =  ~{A^ +  A)-^ = - ~ a :^ (2.38)

where As — -f .4) is the symmetric part of A. From ( 2.38) we obtain

(2.39)(^max(H) — ¿̂ (̂ min(A-s) —'■
O-Q

where cro is the exact degree of stability of the nominal system. Accordingly, 
the bounds in ( 2.17) - ( 2.20), are modified into

by Patel and Toda [7], 

by Yedavalli [10], and

^max ^

by Yedavalli [8].

^max (Ap) <  cro

^max(Ap) <C O'min(As) — O"o

CTmaxiUnAj^ +  \Aj^Up) =

2.3 Non-Liapunov Approaches to Stability Robustness 
Analysis

In this section we summarize non-Liapunov methods for obtaining stability 
robustness bounds, which are based on continuity of eigenvalues of a matrix 
on its parameters or Kronecker opercitions on mati’ices. As in the Liapunov 
approacli, stabilitj' conditions obtained through these methods are sufficient, 
but not necessary except in special cases.

Stability robustness bounds based on the continuity of eigenvalues make 
use of the fact that the system matrix A -|- Ap of the ¡Derturbed system Sp
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can be viewed as a continuous deformation of the A matrix of the nominal 
system S. Since S is assumed to be stable,

det[jwl — A] 7̂  0

and Sp remains to be stable when Ap is small enough to satisfy

det{jw l — A — Ap) 7̂  0,

or equivalently,
det[I — {jw l — A)~^Ap] 7̂  0 IV > 0

(2.40)

(2,41)

From ( 2.41), a sufficient condition for Sp to be stable is obtained ( Qiu and 
Davison [12] ) as

1 A
l|4i,ll < /̂ «4 (2.42)

s'iPu,>oll(i^p/-^)-M 

where || · || denotes any matrix norm which satisfies ||AB|| < ||A||||.B||. For 
spectral norm ( 2.42) becomes

CTmax{Ap) <  inf a^in(jwl -  A)w>0 (2.43)

In the case of structural perturbations modeled as Ap =  BDpC^ where B 
and C are constant, ( 2.41) becomes

det[I -  C {jw l -  A)-^BDp] 7̂  0 to > 0

which leads to the condition ( Hinrichsen and Pritchard [17])

1 A<̂ maa;(-Dp) <C
^max [C (jw I-A )-^ B ]

(2.44)

(2.45)

For single parameter perturbations modeled as Ap =  pE, ( 2.43) gives

(2.46)mi^>Q CTminijwI -  A) A  
\P\ < ----- ^ max(,E)

and from ( 2.45) by taking Dp — pi, B =  E  and C =  I, v/e obtciin

1
\p\ < ^max I ( jw l -A ) - 'E ]

A
/̂ 53 (2.47)
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An alternative to the bound in ( 2.47) was obtained by Qiu and 
Davison [12] as

1 A

( Here, n(·) denotes the Perron-eigenvalue of a nonnegative matrix. )

(2.48)

In the case of multi-parameter perturbations, ( 2.41) is satisfied if
m

sup CTmax[J2 ~ Ek] < 1 (2.49)
“<>0 k=\

Following the technique of Zhou and Khargonelcar ( [11]), we derive the 
following stability regions from ( 2.49)

^|p -̂|sup{ T̂Tiax [{ jwl -  A)- 'Bt]]  < 1
k=l w>0

1
' (i™ S) I (jw l -  A ) - 'Et D)

(2.50)

(2.51)

: (Y(ply'^< 'nd \ J J ,\ '^ E l ( - j w I - A '^ ) ' ( j w I - A ) 'B t )
t=i t=i

(2.52)

Robustness bounds derived from Kronecker operations also make use of 
the continuity of eigenvalues. Prom the properties of the Kronecker sum ( see 
the Appendix ) it follows that if a matrix M  has eigenvalues on the imaginary 
axis, then M  ® M  has at least two eigenvalues at the origin. Qiu and Davison 
[14] used this observation to conclude that Sp is stable if

O-max(Ap) < min{cr,nm(A), ^(7„2_i(A 0  A )} = (2.53)

For single-parameter perturbation case, i.e. when Ap — pE  ̂ Sp remains 
to be stable for p small enough to satisfy

or equivalently.

det[{A + pE) 0  (A +  pE)] ^  0

det[I +  p(A 0  A )-\ E  0  E)] 7̂  0

(2.54)

(2.55)
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Using ( 2.55), Fu and Barmish [13] showed that Sp is stable for p 6 (i>min,i>max) 
where

Pmin —

Ртах —

mini<i<„2(A[ [ - (A  0  0  FI)])
1

(2.56)

(2.57)maxi<,-<„2(A U [-(A  © A y^ (E  0  F?)])

where AU(·) and A[“ (·) denote respectively the positive and the negative real 
eigenvalues of the indicated matrix. If a bound on |p| is searched, then we
obtain

bl < maxi<,-<n2 I A[[(A 0  A)-i(Fl 0  E)] 
Also, a more conservative bound can be obtained as

1 A

A

bl < ^max [ ( A 0 A ) - i (F10F;)]

(2.58)

(2.59)

The technique of Fu and Barmish [13] can also be applied to multi­
parameter perturbations. Straightforward computations yield the following 
stability regions in the parameter space:

ÎÎd : bfcbmai[(-A 0  A) ^ ( Ek ®Ek ) ] < l
k=l

1 I (A 0  A) \Ek 0  Ek) I)

(2.60)

(2.61)

Ф 0  А ^ )-у А  0  A)-\Ek  0  .S,)]
k=l k=l

(2.62)

At this point, it is appropriate to mention the single-parameter polynomial 
perturbation model considered by Genesio and Tesi [20], where

A, = ■£p^E,
k=l

(2.63)

This model is interesting, because, unlike other perturbation models.
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robustness analysis based on it can also be applied, with some modifications, 
to discrete-time systems as we consider in the next chapter.

For Ap of ( 2.63), ( 2.55) becomes

where

Noting that

k=l

Fk = (A © A )- '(F ;l· © Ek)

det[I +  J2p^Fi]
t= l

where

I - p i 0 0
0 I • .

det * 0
0 . . . 0 I p i

pF'rn pFm—1 pF2 U  +  p i ’i)

det[I +  pF]

0 - I 0 • · · 0
0 0 - I 0

F-- 0 0 0 0
; 0 - I

F„i_i F2 El .
we obtain the robustness bound

\p\ < —
1

min,· I A’/(:T) I 

A more conservative bound can be obtained as

Par-

\p\ <
1 A“■ l·̂ S8^max

which reduces to ( 2.59) for m =  1.

(2.64)

(2.65)

(2.66)

(2.67)
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Note that since Fk are x matrices, obtaining the bounds in ( 2.58) 
- ( 2.62) pose computational difficulties. However, these bounds are usually 
better than the ones obtained through Liapunov methods ( Section 2.1 ), and 
whether the increase in computational effort is justified by the improvement 
in the robustness bounds dejDends on the particular system considered.

2.4 Summary and Examples

Before closing this chapter, we give a comparison of the robustness bounds 
mentioned so far. To provide a common ground for the comparison, we choose 
a single-parameter perturbation model, that is

Ap = pE,

where E is a, constant matrix, and p is the perturbation parameter. Table 2.1 
is a list of various bounds, corresponding to different majorization schemes 
and different choices of G by using single parameter perturbation model. 
Also, multi-parameter perturbation bounds are given in Table 2.2. Bounds 
that are obtained using the Liapunov ai^proach correspond to different levels 
of majorizations. For example,

<7,na.(Û \H\ +  \H\U) < 2cr,nar{\H\)a„,aAU) < 2патах{\Н\)

SO that /.tij < if |H| =  H . Also, as given in [12] a comparison between 
Pui and рщ is available as follows; Since

-b ЯА = - /

{ - j w l  -  A^)H +  H {jw l  -  A) =  -  J

we have
HN(jw) + N*(jw)H = -N(jw)N*{jw) 

where N(jw) = (jiul — A)~b Hence

— ^̂ max ІЮ ̂ max (N(jw))
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SO ^  '

In general, although eigenvalue type bounds give better robustness bounds 
than maximum singular value type liounds, they are not suitalile wluni a norm 

type bound is searched on the perturbation matrix.

Exam ple 2.1 Consider the motion of an oscillator described in ( 1.3). Let 
the nominal system parameters be ai =  4, 02 =  3. The solution of the 
Liapunov equation ( A.3) for G = G =  I, can be obtained as

H =
7/6 1/6
1/6 1/6

(2.68)

If the structure information on Ap is not taken into account, we obtain

c^max{Ap) < /J.U1 =  0.4189 (2.69)

=  0.2095 (2.70)

from ( 2.17), ( 2.19) and

<̂ mai:(-'4p) — flus ~  >̂ntn(·'̂ ) ~  0.5924 (2.71)

< 0.2962 (2.72)

from ( 2.42) and ( 2.53).

If the perturbations are modeled as Ap =  pE with

E =
0 0 
1 1

that is , if a single-parameter perturbation model is used then ( 2.23), ( 2.47), 
( 2.58) and ( 2.59) jdeld the bounds

bl <  l·<'S2 =  L5 (2.73)
H < ^,3=2.1213 (2.74)

bl < = 3  (2.75)

Ip I < 2.0371 (2.76)
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Finally, a two-parameter perturlration model, Ap =  p^Ei +  P2E2 with

El =

results in the stability regions

0 0 

1 0
, E2 = 0 0 

0 1

ÇLd 0.4024(|pj|-Hp2|)<1 (2.77)
/  : n,p : max{|pi|,|p2|} <  1.5 (2.78)

ù s : (p I +  p IY '̂  ̂ <  1.8074 (2.70)

( 2.25) is used; or

Üd 0.3333(|pi| + |p2|) <  1 (2.80)
I I :  Up : rnax{|72i|, IP2D <  2.1213 (2.S1)

fis : (p I + P Î Y ^ ^ < 8 (2.82)

( 2.52) is used, or

n,D 0.3404Ipi 1 -h 0.2887IP2I <  1 (2.83)
I I I  : flp max{|22i|, |p2|} <  1.9054 (2.84)

fis (p I + p IY^^ <  2.8284 (2.85)

if ( 2.60) - ( 2.62) is used.

Note that, although the bounds in ( II ) are better than the others, they 
are more difficult to compute.

Finally, we note that, when pi = p2 — p, the stability regions in ( I ) 
reduce to

nj.
ni

\p\ < 1.2425 

Ip I < 1-5 
Ip I < 1.3416,

all of which are worse than the bounds in ( 2.73) - ( 2.76) obtained directly 
for a single-parameter perturbation model. However, the bounds obtained
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from the stabilit}'· regions in ( II ),

\p\ <  3 
\p\ < 2.1213 

b| < 2.1213

are comparable to, and are better than some of the bounds in ( 2.73) - ( 2.76).
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bl < 

bl < 

bl < 

bl < 

bl <

2 ŷnax (E) ^max (H)

1

2 ^max (E) ^max (H)

_______________ 1_______________
|(-E"){j Iniax̂ max [U'^H\ +  \H\U] 

1
μ32

= μ3:

^max ( Ε ^ Η  +  H E )

( A normal ) \p\ < ------min |iie{A,(A)}| =
Λ Ε )

( A normal ) \p\ <
^η,.Α ΐτηΑ^Ί + ΐΑ ;η υ ] μ Si

I I ^min ( jw l  -  A)
\P\ ^ — /̂U4

bl <

Ip I <

1
sup^>0 ^max [ ( j wI - A ) - ^ E]

1
sup^>on[|C(iu;/-A)-ii7||£:|]

=  /̂ 53

= μst

rnm{amin{A),\an‘i -i{A® A)}
bl < ---------------— -------------- = μ̂^m̂ax\-Ê  )

bl < 

bl <

1
maxi<,-<„2 I λ1·[(Α 0  A)~'^{E 0  E)] 

1

μβζ,

^max [(A ® A )-^ (E ® E )] ~  Â«6

Table 2.1. Stability robustness bounds for single-parameter perturbed 
Continuous-time systems
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=̂1
^max № )  < 1

i ip

iis

IblU =  max|pi.| < | |)
/c=l

m

k=l ¿=1

Clp :

Fls :

: Y ^\pk\sup{(7^ar[(iu /̂ -  A )  < 1
k=i *">0

: max \pk\ < ---------------------------------------- —_________
(l</:<m) S U P (u ,> 0){< 7m ax (E r= l I ~ A y ^ E k  |)}

rn

CIIpIY'^ < K^JxC^ Ek {-jiul -  A^'y^{jwl -  A)~^Ek)
k=l k=l

k=\
\PkWmax{{A © A )  ^{Ek © E k ))  <  1 

iip

: i Y , p i y ' ^  <  ® A'^'y(A 0  A )-‘ (Ek © Ek))

I ®  A ) - ^ ( E k  0  E k )  I )

A;=l A : = l

Table 2.2. Stability robustness bounds for multi-parameter perturbed 
Continuous-time systems



Chapter 3

STABILITY ROBUSTNESS 
BOUNDS FOR DISCRETE-TIME 
SYSTEMS

Although there has been a considerable number of results ([7] [8,9], [11], 
[12], [16] etc.) in the literature for stability robustness of continuous­
time systems, this is hardly true for discrete-time systems. One reason 
for the robustness problem of discrete-time systems having been given less 
importance might be the widespread belief that almost all results concerning 
continuous-time systems can be carried over, with necessary modifications, to 
discrete-time systems^ Stability robustness problem, however, is an example, 
where such a modification is not obvious. Another reason is perhaps the 
lack of a strong justification for any disturbance model. As an example, 
if a discrete-time model is obtained by sampling a continuous-time system 
under additive perturbations, then the perturbations enter into the system 
matrix nonlinearly. This raises the question of whether a discrete-time model 
with additive perturbations have any meaning at all. ( Nevertheless, additive 
perturbations are not the only significant ones for continuous-time systems, 
and a strange perturbation model for a continuous-time system may lead to 
additive perturbations after sampling ).

In this chapter, we aim at obtaining discrete-time counterparts of the

24
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stability robustness bounds studied in Chapter 2. Wc consider both 
unstructured ( Section 3.2 ), and parametric ( Sections 3.1 and 3.2 ) additive 
perturbation models. That is we consider a system desci'ilsed by

Dp : .T/t+i = (#  +  k G (3.1)

where we assume that the nominal system

D : .Tfc+i =  ^Xki k G (3-2)

is stable. As in Chapter 2, we classify the analysis methods as Liapunov-type 
and other approaches.

3.1 Liapunov Approach to Robustness Analysis

Let V(x) = x'^Hx be a Lia23unov function for D, where H is the unique 
positive-definite solution of the discrete Liapunov equcition

- H  =  - G (3.3)

for some positive-definite G.

To motivate our discussion, we start with single-iDarameter perturbation 
case, where

$ p  =  p E .  ( 3 . 4 )

The increment of F(.r) along the solutions of Vp is comiruted as

^V{xk)\vp =  x l [ { ^ + p E f H { ^ + p E ) - H ] x k

= -x l [G  -  p(E^H^  -F i '̂ '̂HE) -  p'^E'^HEjxk

= -xlCZ/^G{p)G^ /2 Xk

where

(3.5)

(3.6)G { p )  = 1 -  p G ~ ^ ^ \ E ' ^ H ^  +  ^ ^ H E )G r -^ ^ '^  -  p '^ G -^ '^ E ^ 'H E G -^ ! '^

From ( 3.6), a sufficient condition for stability of Vp is obtained as

(3.7)
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which is of the form
a|pp +  6|p| -  1 < 0 (3.8)

where a and b are obvious from ( 3.7). Computing the roots of the quadratic 
expression in ( 3.8), we obtain the robustness bound

II (4a +  -  6 A
Ip I < --------- (3.9)

An alternative to the bound in ( 3.9) was obtained by Sezer and Siljak
[18] by majorizing ( 3.5) as

^ V ( x k )  \ v ,<  -  [a m in (G )  -  2 \ p \ a l/ ^ {H  -  G ) a m a . { E ^ H E )

-  \p\^ama.{E'^HE)\ \\xk\\̂  (3.10)

which leads to

I I -  G) +  -  aK K H  -  G) A ^ ,3 j j .
cV2,{ETHE) ’

An interesting property of the bound in ( 3.11) is that, for G  = G  = I  , a, 
further majorization gives

1 -11  - ^  i - p .  A (3.12)

where /?„ is the best estimate of the degree of stability of T>, as given by 
( A.17)

Another interesting result is obtained by majorizing ( 3.5) as

A V ( x k ) \ v ,  =  - x l [ G - p { E ^ H ^  +  ^ ^ ' H E ) - p ^ E ^ H E ] x k

=  -x l [H  -  -  p{E'^'H^ +  ^'^HE) -  p'^E'^HE]xk

Xk

< {1 -  +pE )H -'!^ ]) (3.13)
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From (3.13), a sufficient condition is obtained as

(3.14)

which is equivalent to being a contraction. However,
since is nothing but the system matrix of an equivalent
system defined by a very special similarity transformation, this is completely 
an expected result. Although ( 3.14) is even a stronger, therefore useless 
condition than ($  +  pE) itself being a stability miitrix, it illustrates how 
Liapunov techniques can be both useful and conservative in robustness 
analysis.

A final robustness bound for single-parameter perturbation model is 
obtained by requiring G(p) in ( 3.6) to be positive definite. Since G(0) =  I  
is positive definite, from the continuity of eigenvalues of G{p), it follows that 
Vp is stable if |p| is small enough to satisfy

detG(p) ^  0 (3.15)

Following the technique in Section 2.2, we write

detG{p) = det{I +  p^),

where

0 H Î'^EG- Î'^
G~iI2e Th /̂2 _ G - i /2(_Er^$ +  ^^HE)G-^/^

(3.16)

(3.17)

and obtain the bound

\p\ < (3.18)

As a special case, let E  denote the E  matrix corresponding to G — G = I, 
H =  H. Decomposing E  as

' 0 o ' ' 0 0 ‘ 0 I ' 0 o '
E  =

0 I _ ^ l / 2$ +
0 _ $ î ’^ l /2 0 Ĥ /'̂ E

(3.19)
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it follows that

<  2 a m a x { E )  ̂  max { H ) (3.20)

Thus, if

Ip! < raaxî Ê (7max ( H )
(3.21)

then ( 3.18) is satisfied for T  = J-. It is interesting to note that ( 3.21) also 
implies ( 3.12).

In the case of multi-parameter perturbations, AV(xjt) is computed as
m m

AF(.T,) \v, =  .Tn(i> +  EPr^r)^iT(<I> + E p>-̂ >·) -
r = l  r= l

= -xlG^/^G{p)G^/^Xk (3.22)

where
tti» i I It ItL·

G(p) = I-J2p^G -'/^EjH ^+<i'^H E,)G -'‘ /^-Y^J^PrP.G-'/^EjHE,G-'/^

(3.23)
r= l r= l  5=1

It turns out that the only way to achieve a roljustness bound is to use the 
continuity of the eigenvalues of G{p), and to require [p̂ l to be small enough 
to have the inequality ( 3.15). Fortunately, an explicit expression can be 
obtained as m

detG(p) =  det[I -}- X^p.,..F,] (3.24)
r= l
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where

Tr ~
0

(3.25)

Since Er are sjaTimetric, ( 3.15) is satisfied if
m

^max CZ^PrEr) < 1 (3.26)
r = l

Now, the technique of Zhou and Khargonekar [11] can be applied to ( 3.26) 
to obtain the stal:)ility regions

V d ^   ̂ \Pr\^max(^^r) ^  1 
r = l

(3.27)

V p
m

=  m^ax \pr\ <  1 1)
~ ~ r = l

(3.28)

V s
m 771

llplb =  ( E pE ^  <  K E E ^ V . ) (3.29)
r=l r = l

in the parameter space.

3.2 Non-Liapunov Approach to Stability Robustness 
Analysis

A necessary and sufficient condition for the stability of Vp is that all 
eigenvalues of ($  +  $p) be within the open unit circle. Since the nominal 
system is stable, we have

det(e^^I — $) 7̂  0

Again, using the continuity of eigenvalues, it turns out that Vp is stable if 
||$p|| is small enough to satisfy

def(e^U -  $ -  $p) ^  0,
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or equivalently

det[I -  (e^^I -  7̂  0, 0 < 9 < n (3.30)

Obviously, ( 3.30) is satisfied if

ll^rll <
A

I-lll “  ^̂“3supo<fi<̂  \ \ ( e ^ ^ I - ^ y  

for any matrix norm. Using the spectral norm, ( 3.31) becomes

CTmax(^p) <  „inf I  -  $) =  „̂3
0<t/<7T

(3.31)

(3.32)

In the case of a single-parameter perturbation, when =  pE, ( 3.32) is 
satisfied if

info<fl<T ^min (e^^I -  $ ) A
\p\ < — Puî (3.33)

Although ( 3.32) can also be used to obtain several stability regions in the 
parameter space in the case of multi-parameter perturbations, we do not 
pursue this point any further, because computing the expression on the right 
hand side of ( 3.32) is not an easy task except in special cases.

As in the case of continuous-time systems, where Kronecker sums are 
used, Kroneclcer products may be employed to obtain alternative robustness 
bounds for discrete-time systems. Prom the properties of Kronecker products, 
it follows that if a real matrix M  has an eigenvalue on the unit circle, then 
M  ® M  has two eigenvalues at z =  1. Applying this fact to single-parameter 
perturbation model of Pp, we observe that Vp is stable if p is small enough 
to satisfy

det[I -  ($  4- pE) ® ($  -H pE)] 7̂  0 (3.34)

Using properties of Kronecker products, and the fact that

det{I — fk ® $ ) 7̂  0

( 3.34) can be rewritten as

d e t [ - / -h p ( /-$ ® $ )-^ (E (8)$ +  <5®P)+p^(/-<50#)-^(i;®Æ ?)] 7^0 (3.35)
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Although the determinant in ( 3.35) contciins quadratic terms in p, it can 
be expressed as the determinant of a larger matrix in which only linear terms 
in p appear. This gives,

d e t { - I +  p M ) ^ 0  (3.36)

where

M  =
0 I

( /  -  <3? (g) (g E) - ( /  -  $  g  $)~^(E g  $ +  $ g  E)
(3.37)

Although ( 3.36) can be used to derive several stcibility robustness bounds 
for T>p, we observe that it is a necessary and sufficient condition for the 
stability of an associated continuous-time system described as

SpiVp) x =  {—I  +  pM )x (3.38)

Thus, all the robustness results concerning continuous-time systems can be 
used to obtain bounds on \p\ for stability of Vp. From ( 3.36), a bound on |p| 
can be obtained as

bl <
1

max,·
whereas a more conservative bound can be stated as

bl < ^

(3.39)

(3.40)

Similar results can be obtained for multi-parameter perturbations. In this 
case, ( 3.34) and ( 3.35) become

det[I -  ($  -t- '^prE r) g  ($  +  ¿P sF li)] 7̂  0 (3.41)
r= l 5=1

and

det[ I  -Y ^ p r ( I -^ ® ^ )~ '^ {E r ^ ^  +  <i®Er)
r=l  

m m

T.'EPrPsi^  -  ^ ® $ )- '(-S . g  Æ1.)] ^  0 (3.42)
r = l  5 = 1
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respectively. ( 3.42) is equivalent to
771

d e t[ -1 4- Y^PrMr] 7̂  0

where

(3.43)
r=l

Mr  =

0 . . .  0 0 0 ...  0 Er 0  El

0 0 0 0 0 Er® Em
0 0 ( I - ^ ® ^ ) - ^  0 . . .  0 - (E ,  ® $  +  $®Æ;r)

(3.44)

Thus, stability of T>p is equivalent to stability of the auxiliary continuous-time 
system

m
Sp{Vp) : X = { - I  ■\-'Y^prMr)x (3.45)

r=l

with multi-parameter additive perturbations. From ( 3.45), the following 
stability regions in the parameter space can be obtained in a standard way:

 ̂  ̂\Pr\̂ max(,'̂ dr̂  ^ 1
r=l

m
■ I b i l o o  =  m a x  I p ,  I <  \ Mr | )

r=l

(3.46)

(3.47)

(3.48)
r=l r=l

Also, if continuous-time stability robustness analysis is applied to ( 3.45) by 
using Liapunov approach, H =  J/2  is obtained with G = G =  I. Then, 
Fr =  M ^H  4- HMr  =  (A4,.)a where (M,-)s is the symmetric part of Mr- 
Prom, ( 2.23)- ( 2.25) will give the following bounds.

î £) : y ] \Pr\̂ maxÇ(̂ Mlr̂ s') 1
r=l

m
: Wp Woo =  max |p,.| < | (Mr)s |)

(3.49)

(3.50)
7’~1
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: ibib = (3.51)
r= l r=l

3.3 Summary and Examples

Listings of stability robustness bounds for discrete-time systems are given 
in Tables 3.1 and 3.2 for single- and multi- parameter perturbations, 
respectively.

Exam ple 3.1 When a discrete-time system is obtained by sampling a 
continuous-time system, continuous-time additive perturbations ai^pear 
nonlinear in discrete-time model. However, under some ( perhaps, very 
strict ) assumptions, they can also appear as additive perturbations after 
sampling. As an example, consider the system

<Sp : x{t) =  (A -|- pE)x

where

A =
-1  0 
0 - 2

E =
0 1 
0 0

The discrete-time model for the sampled system will then be 

Pp : x[{k -1- 1)T] =  ($  -f p^p)x[kT],

where

and

$ =  =
e  ̂ 0

0 e - 2̂

1$p =  ■
P

0 e-^'(l -  
0 0

For this particular example, Vp is stable for all values of p as Sp is.
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, , Ua +  b y / ^ -b  
\p\ < ---------=

\p\ <

2a

-  g )  +  amin{G)Y/  ̂ -  aUlAH  -  G)
crULiETHE) =

„1 < =

bl <

^maxî Ê

1
— l̂ U2

2 c ^ 7 7 i a a 7 ( - E ' ) ^  max ( H )

\p\ < (^mix(E) =  Î S,

I I in.fo<̂ <7T
bl < ----- --------------------------- =  Pu3

bl < 

bl < 

bl <

^max(,E^

1
SUP0<,<. ||(ê '’ / -$ ) -^ i ;| t  

1

Psi

max,· A-(tW)

1

=  Pss

~  Pse

where

0 E^I'^EG-^I'^
G-1I2ETH1/2 -G~'^/\E^HA +  A^EE)G-^!'^

and

M  = 0 1 
(J -  # O ^ ) -\ E  ® E) - ( /  -  $  ® ^ ) -\ E  (g) # +  # ® -E)

Table 3.1. Stability robustness bounds for single-parameter perturbed 
Discrete-time Systems
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ilp

Qs

^ y \Pr\̂ max(̂ F'r) 1
r= l

m
IblU =  max \pr\ <  I Fr |)

r= l

771 rn

r= l r=l

 ̂ V |pr |̂ maa;(-̂ r̂) 1
r= l

m
· Wp Woo =  max \ p r \  <  I I )

r=l

m m

r= l r=l

where

and

i\p

its

• 'y y li r̂ b m a a ; ( ( A i  j-)s) ^  1
r=l

m

: IIp IIcx, =  max < cr -lJ j^  I (M r)s |)
r=l

m m

■■ Iblh =  (E P rY '"  <
r= l r= l

0

M r  =

0 . . .  0 0 ... 0 Er ® Ex

0 . . .  0 0 0 . . .  0 E r® E ^
0 . . .  0 (7 -  $  (g) i>)"^ 0 . . .  0 -{E r  ® ® Er)

{Mr)s =  {M j  +  Mr)/2

Table 3.2. Stability robustness bounds for multi-parameter perturbed 
Discrete-time Systems
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Exam ple 3.2 To illustrate the computation of the stability robustness 
bounds for single-parameter perturbed systems, consider two perturbed 
systems Dpi and Dp̂  where

$  =
’ 0.5 1

El =
' 1 0 '

and E 2 =
' 0 1 '

0 -0 .5 0 0 0 0

The solution for the Liapunov equation for the nominal system is obtained 
as

’  20/15 8/15
8/15 36/15

An unstructured perturbation model yields the following bounds for both Dpi 
and Dp2 :

H  =

Ip I < //„J =  0.2136

Ip I < fjiu'i =  0.1908

Ip I < fXu3 =  0.4109

(3.52)

(3.53)

(3.54)

On the other hand, if the structure of perturbations are taken into 
consideration, the bounds are modified into

For Dpi For Dp2

\ p \ < P-si = 0.4056 bl < Psi =  0.3571

\ p \ < PS3 --= 0.3962 bl < P̂ i =  0.342

\ p \ < Psi --= 0.5 bl < P34 =  0.5

bl < Ps3 --= 0.5 bl < Pss = 00

bl < Pse ==. 0.3884 bl < Pse =  0.3489

Now, using the same and E2 matrices consider a system.

Dp : Xk+i = ($  + P 1 E 1 +  p2E2)xk 

Then, we obtain the stability robustness regions

2.3742|pi| -i-2.7742|p2| < 1 

max{|pi|, |p2|} < 0.2411 

(pI + pIY^  ̂ <  0.296

ÜÎ

a i

a i
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from ( 3.27) -( 3.29);

■Md .

from ( 3.46) - ( 3.48); and

q III

2.8985bi| +  3.1732|p2| < 1

max{|pi|, \p2 \] < 0.2109 

{p\ + pIY '‘̂  < 0.3019

2.3219bi| +  1.8595|p2| < 1 

max{|pi|, |p2|} < 0.2725 

{P\ + pVŶ  ̂ < 0.3649

from ( 3.49) - ( 3.51).

These stability regions are shown in Figures 3.1, 3.2, 3.3. Note that the 
stability regions obtained from ( 3.49) - ( 3.51) are superior to others.

Finally, by using ( 3.55) and modifying $ and p2 as

$ ' =  $ +  0.2725^2 P2=P2 -  0.2725

i.e. shifting the origin along the p2 axis, then the following bounds are 
obtained from ( 3.49) - ( 3.51).

2.54431p i|+ 2.242|p̂ | < 1

max{|pi| +  IP2I} < 0.2377 

{P l+ P tf^^  < 0.3201

(3.55)

(3.56)

(3.57)
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Figure 3.1. Stability regions obtained using ( 3.27) - ( 3.29)

Figure 3.2. Stability regions obtained using ( 3.46) - ( 3.48)

Figure 3.3. Stability regions obtained using ( 3.49) - ( 3.51)

Figure 3.4. Stability regions obtained l>y shifting the origin



Chapter 4

APPLICATION TO 
DISCRETE-TIME 
INTERCONNECTED SYSTEMS

A natural way to describe a complex system is to view it as an interconnection 
of dynamic parts, or subsystems. In such a description, the essential 
uncertainty lies in the interconnection parameters, which reflect the strength 
of coupling, or interaction, among more precisely modeled subsystems. The 
concept of connective stability, put forward by Siljak [26], refers to the 
stability of an interconnected system, where the subsystems are disconnected 
and connected again during operation. Since overall stability of the system 
when ail the subsystems are decoupled requires the stability of individual 
subsystems, in connective stabilit}  ̂ analysis the interconnections are treated 
as undesired perturbations. This brings into picture the issue of robustness.

In this chapter, we apply the results of the ¡previous chapter to obtain 
robustness bounds for a discrete-time interconnected system described as

N
Vp : X i{ k  +  1) =  i> iX i{k)  +  J 2 p i j ^ i j X j ( k ) ,  i =  1 ,2 ,... ,N. (4.1)

i=i

39
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In ( 4.1), Xi{k) G 7?.”· is the state of the ith subsystem,

T>i : Xi(k +  1) =  ^iiXi(k) (4.2)

which is assumed to be stable; 4>,j are fixed interconnection matrices, and pij 
are interconnection gains which are treated as perturbation parameters.

Letting
x(k) =  [x'dk) x l{k ) . . .  xj^(k)T / (4.3)

and
$ =  diagi^x, $ 2, }, (4.4)

the collection of decoupled subsystems in ( 4.2) can be described in a compact
way as

T> : x{k +  1) =  ^x{k) (4.5)

Similarly, letting Eij =  {E]̂ \)nxN·, where

E 3̂ =  ) iovp =  i,q =  j
0, otherwise

the interconnected system in ( 4.1) can be modelled as 

V , : x{k +  !)  =  ($  +
1=1 i = l

which has the standard multi-parameter perturbation description.

(4.6)

(4.7)

Choosing V(x) =  x^Hx as a Liapunov function for V  oi { 4.5), where

- H  =  - I  (4.8)

we obtain the following stability regions in the parameter space of T>p.

(4.9)
i 3

Q p  : i w | p , : j |  <  I F ij  I ) ,  ( 4 . 1 0 )

: (E EP p·)'^" < (4-11)
i 3 I 3
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where

F - =■ 1̂3
0

We immediately notice from ( 4.4) and ( 4.8) that

H  =  diag{H i,Ë2 , . . . ,  Hn }

(4.12)

(4.13)

where Vi(xi) =  xjHiXi are Liapunov functions for the decoupled subsystems 
Vi of ( 4.2), with Hi being the solutions of

^jH i^i -  Hi =  - I (4.14)

The block diagonal structure of H, together with the special structures of 
the perturbation matrices Eij defined in ( 4.6) allows for obtaining explicit 
expressions for cr„iax(·) terms in ( 4.9)-( 4.11). As an illustration, for N =  3, 
and i =  l^j = 2, Fij becomes

Ei2 —

0 0 0 0 H y ^ ^ l 2 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0

0 0 0 0

0 0 0 0 0 0

from which we obtain

^  max ( ^ 12)

where

=  KÜÂn-ù

=  A ifiiV S X n )

(4.15)

(4.16)

(4.17)

In general, we have

(4.18)
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which provides an explicit expression for (Xmax{Fij) in terms of system 
matrices. Majorizing ( 4.18) further, we obtain

resulting a stability region

(4.19)

^ ‘d - E E <  1 (4.20)
t  J

which is smaller than of ( 4.9), but easier to compute.

We now turn our attention to stability analysis of Vp via composite 
Liapunov functions ( Sezer and Siljak [18]). Let Vi(x{) =  xjH{Xi be the 
subsystem Liapunov functions, where

(4.21)

for positive definite matrices (?,·. Computing the increment of Vi along the 
solutions of the interconnected system Vp of ( 4.1), we obtain

AVi(xi) =  +  J2i)ijxJ^Jj)Hi(^iXi +  ~ ^jHiXi
j  j

=  ~ x j  GiXi +  2xJ f f , · Ç  pijH}/'^^ijXj
3

3 3

<  -<T„,»(G,.)||xi||̂  +  2 < /i (4 f iT .# i )  ||x,.|| ( E  Ip.,1 (a  İlgili)
3

=  -  [cTmin(<?.·) +  Cr,nax(if,' ~ G',')] 11X·,· ||̂

-  C?0 lkll +  E  bdl Ikb-r
3

=  -k^||.r.ir-(A||xı|| +  E b ö K d l K m

(4.22)

(4.23)
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where

“f" Gi^

ft = (4.24)

We now choose
N

V ( x )  =  Y , d i V i ( x i ) (4.25)
2 = 1

as a candidate for a Liapunov function for T>p̂  where di > 0 are to be 
determined. Using ( 4.23), we get

N

where

and

Ay(.T) < -  -  (№i\\ + \pij\ io  Ikjil)^]
2 = 1 j

=  -U^(\\x\\)(C^DC-B^DB)U(\\x\\)

£ ^ ^ ( N I )  =  [ | | ^ i | | ,  I k 2| | , I K | | ]

(4.26)

(4.27)

C =  diag{ai, 0(2, . • · , Ocn}

D =  diag{di, ¿2) ·· ., djv} (4.28)

B =  (bij)NxN (4.29)

j  _ i A "b |p»»liti )
1 |p«iliu 5

j  =  i 
j  7̂  i

(4.30)

with

Thus A y  (a:) is negative definite if the matrix CDC — B^DB  is positive 
definite for some suitable choice of the diagonal matrix D. However, the 
latter is equivalent to the aggregate matrix

W  =  C - B

being an M-matrix. Letting W  =  we observe that

(4.31)

Wii =  O'i -  ft

=  (4.32)
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and
~ ~  i  7̂  * (4.33)

That is, each interconnection gain \pij\ appears in an ofF-diagonal element of 
W. The M-matrix conditions in terms of the leading principal minors of W  
provide a set of inequalities in |ptj|’s, which define a stability region in the 
parameter space.

To obtain explicit expressions for the robustness regions defined through 
W , let us choose G,· =  G,· =  I, so that ( 4.32) and ( 4.33) become

Wii =  -  [cTmax(Hi) -  1]̂ /̂ , (4.34)

Wij (4.35)

We also note that W  — (u),y)/yxiv is an M-matrix if and only if W
is an M-matrix, where

~ i 1, J = i  
=  ) _ / _ . . . (4.36)

From ( 4.34) - ( 4.36), we can write

w  =  I
i j^i

(4.37)

where Fij has a single nonzero element in the position given by

(4.38)
(rllLiHi) -  [(TmaxiH,) -

Obviously, W  in ( 4.37) is an M-matrix if

^maxC^'^^\Pij\Fij) < 1 
*

(4.39)

from which we obtain the stability regions

\PijWmax{Fij) < 1
t j^i

(4.40)

: max \Pij\ <
.■ i#.·

(4.41)

Q f  :
» 1 3î i

(4.42)
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In other words, the role of F{j in ( 4.9)-( 4.11) are taken Fij in ( 4.40) - 
( 4.42). However, it is much easier to evaluate the exin-essions in ( 4.40) - 
( 4.42). R'om the structure of Fij, it follows that

4 R i) =
0-1/2 (&T.H^··)

aU liH i) -  K a x (//i)  -  1]'/^

^max (EL -Pi'j ) — ̂ maxî F̂
i 3

where F =  [cTmax(Fi3 )\NxN, and

i ; , £ ( E  E - P u - i / )  =

(4.43)

(4.44)

(4.45)

which provide very simj l̂e characterization of the stcibility regions in ( 4.40) 
- ( 4.42).

Finally, it is interesting to compare the stability regions obtained by the 
two approaches. Since,

1

a U l i H . )  -  [ a ,n a . { H i)  -  l ] i / 2
(4.46)

from ( 4.19) and ( 4.43), we get

<̂ maa:(Fp') ^ (̂ max(,Fij') (4.47)

Thus,
C Q'd C Qd (4.48)

where '̂d defined in ( 4.9), ( 4.20) and ( 4.40)
respectively. This shows that, for the choice G·',· =  I, the composite Liapunov 
function approacli does not provide any improvement over ordinary Liapunov 
functions as far as the diamond-shaped stability region is considered. Since 
explicit expressions for other stability regions are not available, it is not 
possible to compare Q,p and of ( 4.10) and ( 4.11) with and 
of ( 4.41) and ( 4.42). However, and i2^ are so easy to characterize 
compared to Qp and Cls that, any loss in the estimate of stabilit}'  ̂ regions 
should be outweighed by the enormous reduction in computational effort.
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Exam ple 4.1 Consider an interconnection of three subsystems

3

Vp : X i{ k  +  1) =  ^ i X i ( k )  +  ' ^ p i j ^ i j X j ( k )  i =  1,2,3 (4.49)

where

=
' 0.25 -0 .5  ‘

, $2 —
’ -0 .9 - 0.6 '

) ^3 —
' 0.5 1 '

0.5 0.75 0.3 0 0 -0 .5

$ 1 2  —
’  0 .1 0  '

, $ 2 3  =
'  0 .1 0 .2

, $ 3 2  —
'  0 .1 0

0 0 0 - 0 .1 0 .1 0 .1

and all other are zero.

Using Vi(xi) — xjHiXi as subsystem Liapunov functions, where Hi satisfy 
( 4.14), the stability regions in ( 4.9) - ( 4.11) are evaluated as

an  : 0.1626|pi2| +  0.6003|p23| +  0.3907lp32| < 1 (4.50)

Clp : rnax I < 1.6288 (4-51)
h3

■ (p?2+ P23+P32)^^  ̂ < 0-S791 (4.52)

On the other hand, computing W  of ( 4.37) as

W  =
1 0.402|pi2| 0
0 1 1.1201b23|
0 1.0641|p32| 1

we observe that , W  is an M-matrix, if

W  : |p23| |p32| < 0.8389 (4.53)

It is interesting to compare the stability regions in ( 4.53)with the ones 
in ( 4.50) - ( 4.52)

1. While each of and Cls are bounded in the pi2- direction, is
not. This is because ^ carries more information about the structure of 
2?p, in which the subsystems do not form a loop through T>i.
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2. Q includes Od if |pi2| > 0.6941, Q,p if |pi2| > 1.6288 and Q,s for all |pi2|.

Finally, the stability regions in ( 4.40) - ( 4.42) are found as

: 0.402bi2| +  1.1201|p23| +  1.064|p32| < 1 
maxjpjjl < 1.6364

(Pi2 +  pIs +  <  0.8791

(4.54)

(4.55)

(4.56)

We observe that although C Clp as expected, D Qp and =  Cis- 
Thus, the regions are comparable to Cl although they are much easier to 
compute.



Chapter 5

FURTHER RESEARCH AREAS

Usually, the more general the problem is, the harder the solution is. This has 
been the case of robust stability problem in state-space. Although, necessary 
and sufficient bounds are available for some special cases, in general we have 
only sufficient bounds.

The robust stability problem in state-space can be handled in two ways; 
Liapunov and Non-Liapunov approaclies. Liapunov approach uses Liapunov 
stability theory to determine to what extend the nominal system is still 
stable when it is perturbed. This approach usually yields bounds which are 
conservative, but easier to compute. It is possible to reduce the conservatism 
of the bounds if some information about the structure of the perturbations 
exists. But, this brings out the question of choosing a Liapunov function for 
the nominal system which has the best decaying rate, i.e. choosing the best 
G in the Liapunov equation, A^H +  HA =  —G or — H — —G. We
know that the best choice of G depends on both the structures of the system 
matrix and the perturbations, but the answer is not straightforward.

Non-Liapunov approaches, including frequency-domain techniques, yield 
bounds which are better for some cases, but harder to compute. Use of 
operators like Kronecker sums or products causes an increase in the matrix 
dimensions. Introducing new operators which have smaller dimensions and 
easier to compute, would be for the benefit of the analysis of robust stcibility

48
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problem.

One of the open questions is modelling the perturbations. Usually, a 
perturbation model is assumed and the problem is solved in either frequency 
domain or in state-space. As in all control problems, the question of whether 
the perturbation model is physically meaningful or not is important. In 
addition, since robust stability problem can be analyzed in frequency domain 
or in state-space, the relations between the existing bounds in each domain 
should be revealed.

If the perturbations are due to the nonlinear functions of some parameters, 
this case should also be studied extensivelз^ Up to now, only results about 
linear parametric perturbations are at hand, which can be extended to 
polynomial case. But, nonlinear parametric perturbation case is an open 
question.

Another open question is the stability robustness analysis of sampled-data 
systems. Since perturbations in the continuous-time system seems highly 
nonlinear when the system is sampled, a special care must be taken for the 
analysis of this case.

Searching a norm type bound on the perturbation matrix is equivalent 
to finding the distance of the system matrix to the unstable real matrices. 
However, we still don’t know the distance of a stable matrix to the unstable 
real matrices whereas the distance to the unstable complex matrices is known.

Consequently, robust stability problem is still an active, promising 
research area.



Appendix A

BACKGROUND MATERIAL

In this appendix, we briefly review stability of linear systems and summarize 
some results from matrix algebra.

A .l  Lyapunov Theory for Linear Systems

Consider the linear, continuous time system

S : x{t) =  Ax(t) (A..1)

which has an equilibrium at Xg =  0. It is well-known [21] that due to linearity 
of <.9, stability, asymptotic stability in the large, and exponential stability of 
the equilibrium Xg =  0 imply each other. They also imply that origin is the 
unique equilibrium of S. In this thesis, we use the phrase “stability of S” to 
mean these equivalent concepts of stability.

Let V (x) =  x^Hx, where Lf is a symmetric, po.sitive deflnite matrix. The 
derivative of V(a;) along the solutions of S is given by

I/(.'c)j5 =  x^iA'^'H +  HA)x (A.2)

Then, a symmetric matrix G can be deflned as

A'^H ^-H A =  - G

50

(A.3)
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We now state a basic result about the stability of S :

T heorem  A .l  (  Vidyasagar [21]) The following are equivalent :

1. S is stable.

2. All eigenvalues of A have negative real parts.

S. For every symmetric, positive-definite matrix G, equation (  A.S) has a 
unique, symmetric, positive-definite solution H .

Consider a stable system S, and let

cTo =  mjn{ |iie[A,(A)]| }

where i?e[A,(A)] denote real part of the eigenvalues of A. From the solution 
properties of S, it can easily be shown that there exists M  > 0 such that

|a:(i)|| < Me-^“‘ |la;(0)||, Vt G U.+

for all initial states a:(0). In other words, <tq is the degree of exponential 
stability of S.

Now let H  be the positive-definite solution of ( A.S) for some given 
positive-definite matrix G. Then V {x) =  x^Hx is a Liapunov function for S, 
having a negative-definite time derivative.

F(a:)|5 =  -x ^ G x  (A.4)

Using the inequalities

‘'mi.i(M) ||l|p < x ’ 'Mx <  l|a:||̂ (A.5)

where orrnin(Ai) and cr„iax(M) denote the minimum and maximum singular 
values of the symmetric matrix M, it follows from ( A.4) that

V(x(t)) < exp[-c7„u„(G)/cr,nax(-ff)]U(.r(0)) (A.C)
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and that
Ik(f)ll <  M „e-'-'||x(0)|| (A.7)

where

M . = (A.8)

(Ty — O'min (̂ Ĝ /2, (7 max (A.9)

Thus, if V{x) =  x^Hx is a Liapunov function for S, then cr„ provides an
estimate of the degree of stability <To such that

O 'y  ^  (Tq

It is also well-known that [21], the solution H  ( A.3) is given by

H = -  r  (A. 10)
Jo

Using this expression it can be shown that the estimate cxy of the degree of 
stability given by ( A.9) is maximized for the choice oi G =  I. That is the 
main reason for choosing the corresponding V (x) as a Liapunov function in 
most of studies on robustness analysis.

All the stability concepts and the results mentioned so far also apply to 
discrete-time linear systems described as

V  : Xk+i =  ^Xk, k e 2+ 

In this case, Theorem A .l becomes :

T heorem  A .2 The following are equivalent :

1. V  is stable.

2. All eigenvalues of $  have moduli less than unity.

(A. l l )
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3. For every symmetric, positive-definite G, the equation

- H  =  - G

has a unique, symmetric, positive-definite solution H ,

(A.12)

When T> is sta-ble,
po =  mp,x{|A,($)|}

is the degree of exponential stability in the sense that there exists an M  > 0 
such that

l|x<,|| <  M p 5||x „||, Vt e (A.13)

for all initial states Xq.

As in continuous-time systems, with H  being the solution of ( A .12) for 
some positive-definite G, V{x)  =  x^Hx  is a Liapunov function for T> with a 
negative-definite increment.

AV{x)\v =  -x'^Gx (A.14)

From ( A.14) it follows that

V(xt)  < [1 -  -?=4 ^ ] ‘ n x „ ) ,

,¿1
and hence,

Ik̂ -ll < Mг,/)*||·'Co||,

where My is given in ( A.8) and

/1 — n _  11/2
~  /T i

is an estimate of the degree of stability of V  such that

0 < Pt; < Po < 1

Using the fact that the solution of ( A.12) is given by
OO

H =
t=0

(A.15)

(A.16)

(A.17)

(A.18)

(A.19)

It can be shown ( Sezer and Siljak [18] ) that the best estimate of the degree 
of stcibility is obtained b}'· choosing G = I.
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A .2 Kronecker Products and Sums of Matrices

In this part of the Appendix, we present some results on Kronecker products 
and sums of matrices, which are borrowed mainly from Lancaster and 
Tismenetsky [22] and Fuller [23]

The Kroneclcer product of the p x q  matrix A — (a,j) and the m x n matrix 
B =  (bij) is defined as

A ® B  =

C l l l B  C I 1 2 B  . . . CLlqB

<i2\B (X2 2B :

ap\B • · · ^pqB

(A.20)

The Kroneclcer sum of the n x n matrix N  and the m x m matrix M  is 
the nm X nm matrix defined as

N ® M  =  N ®Im +  I n ® M (A.21)

The following identities involving Kronecker products can easily be shown 
using the definition.

(yuA) 0  B =  A ® {¡J-B) =  fj,(AB)

(A +  B ) ® C  =  ( A ®  C) +  { B ® C )

A ® ( B  +  C) =  { A ® B )  +  ( A ® C )

A ® ( B ® C )  =  ( A ® B ) ® C

(A ® B f  =  (A^ ® B^)
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(A ® B ){C  ® D )  =  A C ® B D  

A ® B  =  { A ® I ) { I ® B )

(A 0  B)~^ =  A~  ̂ 0  B~^ if A~  ̂ and 5 “ ^exists. 

det(A 0  B) =  (det AY{det B Y  

tr{A 0  B) =  (tr ^ )( tr B) 

rank(A 0  B ) =  (rank^)(rank5)

The following theorem states a basic result about the eigenvalues of the 
Kronecker product of matrices.

T heorem  A .3 (Stephanos [2.4])

Let {Ap} and {i?^} be finite sets of n x n and m x m matrices having 
eigenvalues i =  1, . . .  ,n and ¡jfij, j  =  1,2, . . .  ,m. Then, the eigenvalues of 
the matrix

Y )  hpqAp 0  B g  ( A . 2 2 )

are the nm values Ŷ p̂ q h p g X ^ i  =  1,2, . . .  ,n-,j =  1,2, . . .  ,m

C orollary A . l  Let A and B be sqxiare matrices of dimensions n and m, 
and having eigenvalues A,·, i =  1,2, . . .  ,n and ¡.ij, j  =  1, 2, . . . , m. Then the 
matrices A 0 B  and A@B have the eigenvalues Xifij and Xi+/j.j, ¿ =  1, 2, . . . ,  n 
j  =  1, 2, . . . ,  ?n, respectively.
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As an illustration of Corollary A.l,  consider the 2 x 2 matrix

A =
0 1 

- n  E
S + /̂ 2) n — HifJ.2

0 1 1 0
- n E 0 1
- n 0 E 1
0 - n - n 2E

which has the eigenvalues Xi =  fj,i i — 1,2. The matrix

A ®  A =

has the characteristic polynomial

(5 — S)̂ (s  ̂— 2Ss + 47t),

and the eigenvalues

Ai = n + x/n2 -  4n = 2/ii 

A 2 =  H =  fJ,i +  fJ-2 

A3 =  E =  /ii +  2̂ 
A4 =  E — \/E  ̂— 4II =  2/̂ 2)

verifying Corollary A .l.

A.3 M-matrices

A class of matrices, which play an important role in dynamical modelling of 
economic systems as well as in stability analysis of large-scale systems via 
composite Liapunov functions, is M-matrices characterized by the following 
theorem.

Theorem  A .4 (  Araki [25])

Let A be a real square matrix with non-negative off-diagonal elements. 
Then, the following statements are equivalent.
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1. The principal minors of A are all positive,

2. There is a vector x (  or y )  whose elements are all positive such that 
the elements of Ax (  or A^y ) are all positive.

3. The leading principal minors of A are all positive.

Ĵ. A  is nonsingular and the elements of A~  ̂ are all nonnegative.

5. (  Liapunov-type condition ) There is a diagonal
matrix D=diag( )  with dj > 0; such that A^D +  DA is a
positive definite matrix.

A matrix A satisfying the above conditions is called an M-matrix.
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