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ABSTRACT

TWO NEW ALGORITHMS FOR THE LINEAR ASSIGNMENT
PROBLEM

Oya Ekin
M.S. in Operations Research 

Supervisor: Assoc. Prof. Mustafa Akgiil 
October 1990

The linear assignment problem (AP) being among the first linear programming problems 
to be studied extensively,, is a fundamental problem in combinatorial optimization and 
network flow theory. AP arises in numerous applications of assigning personnel to jobs, 
assigning facilities to locations, sequencing jobs, scheduling flights, project planning and 
a variety of other practica.1 problems in logistics planning. In this thesis work, we seek for 
new approaches for solving the linear assignment problem. The main concern is to develop 
solution methods that exhibit some sort of parallelism. We present two new approaches 
for solving the assignment problem : A dual-feasible signature guided forest algorithm and 
a criss-cross like algorithm.

K eyw ords: Assignment problem, signature, stronly feasible tree.
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ÖZET

DOĞRUSAL ATAMA PROBLEMİNİN ÇÖZÜMÜNDE İKİ YENİ
ALGORİTMA

Oya Ekin
Yöneylem Araştırması Bölümü Yüksek Lisans 

Tez Yöneticisi: Doç. Mustafa Akgül 
Ekim 1990

Doğrusal atama problemi, birleşi (combinatorial) eniyileme ve serim akım teorisinde en 
temel problemlerden biri olarak literatürde geniş kapsamda çalışılmıştır. Bu tez çalışmasında, 
atama problemini çözmek için iki yeni yaklaşım önerilmiştir. Birinci algoritma ikil uyarlılığı 
sürekli sağlar ve ağaçlar topluluğu ile çalışır. Çizgedeki batak noktaların derece dizimi belli 
bir özelliğe ulaşınca durulur, ikinci algoritma ise pivotsal bir algoritmadır.

Anahtar K elim eler: Atama problemi, ikil uyumlu ağaçlar.
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Chapter 1

INTRODUCTION

The linear assignment problem (AP) being among the first linear programming problems 
to be studied extensively, is a fundamental problem in combinatorial optimization and 
network flow theory. AP has received a great deal of attention in the literature and justi­
fiably so, since it arises in numerous applications of assigning personnel to jobs, assigning 
facilities to locations, sequencing jobs, wiring computers, scheduling flights, project plan­
ning and a variety of other practical problems in logistics planning. In some of these 
applications, an AP directly provides a solution to the entire optimization problem, and 
in others, provides solutions for embedded subproblems on which the optimization of the 
complete system depends (e.g. the traveling salesman problem). Moreover, historically, 
the assignment problem has served as a useful test problem for developing instrumental 
computational ideas for solving more general network optimization problems [9]. A classic 
example is Kuhn’s Hungarian method and its influence on developing the blossom algo­
rithm for solving weighted matching problems in undirected network and on developing 
the primal-dual method for general linear programs [9].

Many studies of assignment problem methods have been launched over the past 
three decades. However, as in other areas of network optimization, the most dramatic 
gains (especially in the design of special list structures and processing techniques) have 
been made in the last ten years [19].

r

In this study, we seek for new approaches for solving the linear assignment problem. 
The main concern is to develop solution techniques that exhibit some sort of parallelism. 
The two algorithms constructed during this thesis work are capable of finding the optimal 
solution of a problem instance given the optimal solutions to its underlying independent 
subproblems. The work presented throughout this study should be viewed as a basic step 
for a further research in parallel algorithms for the assignment problem.

We now give an overview of the thesis. Following the introduction, we give a review 
of the related literature in Chapter 2. In this chapter, the emphasis is given to the well



CHAPTER 1. INTRODUCTION 2

known primal-dual, primal and dual algorithms for the assignment problem together with 
some others that we use in order to set up the background for the algorithms resulting 
from this study. The notation used throughout the thesis will also be presented in this 
chapter. Chapter 3 introduces our first algorithm which is a dual-feasible forest algorithm 
for the assignment problem. The algorithm, being an improved variant of Paparrizos’[27] 
algorithm, is guided by the signature of a strongly feasible tree and terminates with such a 
tree. A criss-cross like algorithm is presented in Chapter 4. As the name implies, at some 
stages of the algorithm, primal pivots are made to obtain a primal-feasible solution and at 
others, dual pivots are made to achieve a dual-feasible solution. Thus, the algorithm can 
not be categorized as primal, dual or primal-dual. In Chapter 5, we provide concluding 
remarks about parallelism in assignment problems.



Chapter 2

REVIEW OF THE RELATED 
LITERATURE

Being a fundamental problem in linear programming and network flow theory, the assign­
ment problem has been extensively studied and numerous special algorithms have been 
developed to solve it. Solution procedures vary from primal-dual [24, 9, 25, 31], dual 
[2, 5], network flows [17, 16], cost parametric [29], recursive [30], relaxation [15, 22] to 
primal methods [6]. Assignment problem has been generalized to bottleneck, quadratic 
and algebraic cases [10, 11].

The most efficient of these algorithms have computational bounds of 0{n^) for the 
n X n problem in the dense case. These include:

• efficient versions of Kuhn’s Hungarian method [24] using successive shortest paths 
[12, 23],

• a relaxation method due to Hung and Rom [22],

• an efficient version of Balinski and Gomory’s [6] primal algorithm due to Cunningham 
and Marsh [14], primal simplex algorithm of Akgiil [3],

• signature methods of Balinski [5] and Goldfarb [17],

• the dual forest algorithm of Paparrizos at al. [1],

• Dual-simplex algorithms of Akgiil [2] and Balinski [5] and,

• the two algorithms we are going to present in Chapters 3 and 4.

Needless to say, we are going to touch only a few of the mass of AP algorithms that 
exists in the literature. Those we are going to mention include the well known primal-dual, 
primal, and dual algorithms together with some others that we use in order to set up the 
background for algorithms in Chapters 3 and 4.



We categorize the algorithms under four major headings. In Section 2.1, we are 
going to describe the Hungarian algorithm as a prototype primal-dual algorithm. Primal 
network simplex algorithms are mentioned in Section 2.2. Section 2.3 is reserved for 
signature guided algorithms and 2.4 covers some dual-simplex algorithms.

2.1 Primal-Dual Algorithms

In what follows, we are going to describe the ‘Hungarian Algorithm’ which is a prototype 
primal-dual algorithm that solves the assignment problem. First we give some preliminar­
ies:

Definition 2.1 A bipartite graph G = (V^E) is one whose node set V can be parti­
tioned into two sets R (row or source nodes) and C (column or sink nodes) so that no 
edge of G has both ends in the same set. When G is directed, each edge has its tail in R 
and its head in C. Often, G will be represented as G = (R,C,E) .

D efinition 2.2 A m atching M in G is a subset of its edges such that no two meet the 
same node. A perfect matching in G is a subset of its edges such that exactly one 
member meets each node.

D efinition 2.3 Given any bipartite graph G = iy^E) with real numerical weight ŵ  for 
each edge e E E, the optim um  assignment problem  is to find a perfect matching M  
which minimizes Wq.

Consider a directed bipartite graph G = (R,C,E)  with V  = ii U C as its node 
set and E as its edge set. Let the edges be directed from source(row) nodes towards 
column(sink) nodes.

The optimum assignment problem (weighted bipartite matching problem) can be 
represented with the following simple algebraic formulation

CHAPTER 2. REVIEW OF THE RELATED LITERATURE 4

min

s.t

E W i j X i j

· (*)j) ^ -®} ~ 1-
Xij > 0

i e R 
j e c  

( i j )  e E

where it is assumed that | i? | = | C |= n.

Here, Xij = 1 means that the edge ( i , j )  is included in the matching, whereas X{j = 0 
means that it is not.



More compactly, we can write the optimum assignment problem as:

min xux
Ax  = b (LP)
X > 0

where A is the node-edge incidence matrix of G. The dual LP is then:

max 7t6 (DLP)  
ttA < w

or more explicitly

max
i

7T/i(e) -  7Ti(e) < Vc = (¿(e), h(e)) G E 

The complementary slackness (CS) conditions say that

if Xj > 0 then TTo·’ = wj

where is the column of A and Xj and Wj are the components of vectors x and w 
respectively.

So, if we have an .'c-vector feasible in LP and a 7r-vector feasible in DLP satisfying 
the CS conditions, then a: and tt are both optimal.

The generic primal-dual algorithms proceed as follows:

Starting with a dual-feasible tt, let E{n) = {e : Wg — '!r’k(e) ~ '^t(e)}· That is to say, 
E(-k) is the set of indices of an LP solution vector x, that are allowed to be positive if tt is 
optimal. We search for such an x by solving an auxiliary problem, called the restricted 
primal LP(Tr) determined by the tt we are working with. .LP(7t) is

A.г· ' b
Xj = 0 Vi ^ ¿ '(tt)

CHAPTER 2. REVIEW OF THE RELATED LITERATURE 5

or more compactly
A^x^ = b 
x^ > 0 .

If the feasibility problein LP^tt) is successful i.e. x'" solves LP('k), then x =  
and 7T are both optimal in LP and DLP respectively.

If LP( tt) has no solution, then there exists a vector cr solving

era·’ < 0  i  G E(Tr) 
ab > 0

Let
- . (Wj -  Trâ  ·
t = mm{-^^---- —̂  : era·' > 0}

 ̂ aaJ ^
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If  ̂ = + 00, then dual LP is unbounded and hence LP is infeasible. In the case when t is 
finite, increment tt with ta and continue with the recently obtained dual-feasible tt.

In what follows, some information on matching in general and implementation details 
of the ‘Hungarian Algorithm’ will be presented.

Any tree of G rooted at say, source node r, can be described by parent pointers. That 
is to say, if e = (¿, j )  is an edge between source i and sink j  then, parent{j) = p{j) = i. Let 
M  be any given matching in G. Ad ate is an array of size | V  | which stores the adjacency 
information defined by Ad:

e = (ij j )   ̂ Ad ^  mate(i) = i  O  mate{j)  = i

D efinition 2.4 If mate{i) = 0, then node i is defined to be free (exposed) node i,e. node 
i meets no edge of Ad. Else, node i is a saturated node.

Let Ad = E\Ad be the set of unmatched edges.

Definition 2.5 An alternating path with respect to matching Ad is one on which edges 
alternate between matched and unmatched. An augm enting path is an alternating path 
joining two exposed vertices. There exists one more edge of Ad than of Ad in an augmenting 
path. Let P be the set of edges on an augmenting path in a graph G with respect to matching 
Ad. Then, an augm entation is the replacement of Ad with Ad’ = M © P  where © denotes 
the symmetric difference operation.

Theorem  2.1 (B erge) A matching Ad in G is not of maximum cardinality if and only 
if (G,Ad) contains an augmenting path with respect to Ad.

Definition 2.6 An alternating tree, T, with respect to matching Ad, rooted at source 
node, say r, has the following properties.

• r is a free node

• deg{j) — 2 Vj G C fl T i.e. there exists two edges incident with each sink node in T

• Vv E T (i; 7̂  r), the unique path from r to v is alternating

• All leaf nodes are source nodes

• I V(T)  \= 2k + 1, \ T n Ad \= k, \ T H R \= k + 1, \ T n C \= k for some positive 
integer k,k < n.



D efinition 2.7 A maximal alternaiincj tree is called a Hungarian tree, A subset H of 
nodes in G is called Hungarian relative to G, if no two of them are joined by an edge ofG  
and if the set of neighbors of H i.e. N(II)  has fewer members than H , i.e. \ N{H)  |<| II |. 
So, for a Hungarian tree, T C\ R is Hungarian.

Theorem  2.2 (H all) A directed bipartite graph G = (R,G,E)  has a perfect matching if 
and only if \/S C R, \ N{S)  |>| S \ i.e. if and only if subset R contains no Hungarian 
set.

Let
¿■•■(.S’) = {e G E(G) : e = (u,v) ,u E S,v ^ S)

Then an a.lternating tree, T, is Hungarian <=> ¿+(H (T)) = 0.

2 .1.1 T h e  H ungarian  A lg o r ith m

CHAPTER 2. REVIEW OF THE RELATED LITERATURE 7

Given any dual-feasible tt, let G'(7t) = (K, i?(7r)) denote the equality subgi'aph of G 
relative to tt i.e. G(7t) consists of all nodes of G and those edges e E E such that 7T/i(e) — 
t̂(e) = ' ê where e = (h(e),i(e)).  Letting We -  We -  -f 7r,(e) Ve G E, E(r)  = {e G 

E : We = 0). M  is any given matching in E(7t) and F  is the set of free nodes. Label is an 
array of size | V \ which contains the label information of nodes. Each node can have label 

or ‘O’ . Root node has label ‘ -1- ’ in the alternating tree and all nodes having odd 
distance from root have labels (odd or inner nodes) and all those having even distance 
from root have label ‘ -f ’ (even or outer nodes). ‘0’ label means, that specific node is is not 
currently in the alternating tree.

Let L be the list of edges emanating from the current alternating tree T. Since G is 
directed, L = {e = {u,v) : e E <5'^(H(r)) and u is an even node }.

procedure A ug (r,G,M) 
begin

T ^ 0
label{r) ^  ‘ -h'
L ^  6+{r) 
found ^  false

while L ^ 0 and not found do 
begin

take e — (u,v) E L 
L ^  L\e 
if label{v) = ‘O' 
then if mate(v) = 0
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then begin
augment
found <— true 

end
else grow  tree

end {while}
end{aug}

Depending on whether node v is free or saturated, two things can happen in pro­
cedure Aug.

( 1) augment If v is free, the matching M  is augmented, the existing tree T is thrown
away, another free source node is chosen and the matching algorithm is 
continued.

(2) grow  tree If v is saturated and say mate(v) = ‘to', then T is enlarged by adding two
edges and two nodes and hence maintaining the alternating structure. The
arrays are altered as follows:
label(w) <— ‘+ '
parent(w) <— ‘u'
parent(v) <— ‘u'
L ^  L\jS+{w)
T <— r  U (u, u) U (v, w)

The prototype weighted matching algorithm given dual-feasible tt and feasible M  is
then:

begin
choose r £ F  n R 
Aug(r, G{x ) ,M)  
i f  found=false
then begin *(make dual-variable changes)* 

let € =  min'{u)e ye £ (5+(F(T))}
x„ c Vv £ T
A ug ( r ,G{x) ,M)  

end
end. {Hungarian}

Let us call the computation between two successive augmentations a stage. Thus, 
a stage consists of a search for an augmenting path in the bipartite graph made up of 
admissible edges (e £ E{x) ) ,  interleaved with dual variable modifications that change 
the set of admissible edges. To modify the dual variables, we need to calculate e as



CHAPTER 2. REVIEW OF THE RELATED LITERATURE 9

mentioned above. To recompute this quantity every time that we modify dual variables 
needs comparing the iî  candidates which could be very costly. If the Hungarian algorithm 
is implemented in a brute way, the cost will be However, any good implementation
will solve the shortest path problem on the residual graph 7iG (7r, M)  (the graph obtained 
from G by reversing the orientation of edges in M ) which will improve the cost to O(n^).

2.2 (Primal) Network Simplex Algorithms and Notation

In the rest of this Chapter, we are going to stick to the notation used in [3]. We will 
view the assignment problem {AP)  as an instance of a transshipment problem. AP  can 
be represented as a flow problem over a finite directed graph G = (V, E),  with V = RUC,  
where R is the set of row(source) nodes and C is the set of column(sink) nodes. Each 
edge e £ E IS directed from its tail t{e) E R t o  its head h(e) G C, has flow Xg a-nd cost Wg. 
Clearly 11^1=271 and let | E |= m.

For graph G and disjoint sets X , Y  C V,  we let

j ( X )  = { e G E :  t{e) G X,Ii{e)  G X } ,

G[X] — {X, ' f (X) )  (the node induced subgraph of G),

6(X,Y)  = { e e E :  t{e) G X ,h (e) G Y] ,

6 - {Y)  = 8{Y ,Y\

d)+(y) = 8{Y,Y)  where Y = V - Y

For V E V, d{v) = d'r{v) is the degree of node v in tree T. For a subgraph H of G, N{Ii)  
and E(H)  represent the node set and the edge set of H . We use +  and — to denote set 
union and set difference, when it is convenient.

The transshipment problem can then be formulated as

min ^  WeXe 
eeE

s.t. ^ (a ;e  : v = h{e)) -  ^ ( x e  : v = t{e)) = by, v e V 

Xe > 0,e G i?

which can be written more compactly as

minfmx : Ax = b,x > 0} 

where A is the node-edge incidence matrix, and

br =  -1 ,  r E R
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— "fl) c E C

The dual of (AP)  is
max{7r6 : 7Th{e) “  ¿̂(e) < G E}

Reduced cost of edge e = (i^j) is

We =  W i j  =  C e -  7Cj  +

The network simplex method is a specialization of the primal simplex method of general 
linear programming to transshipment problem. It is well-known that any basis of (/IP) 
consists of n positive variables (nondegenerate) and n -  1 degenerate variables which 
together correspond to a spanning tree T of G.

Given any T, the flow values .rc,e G T can be uniquely determined for each compat­
ible ‘supply’ vector h i.e. = 0 is a necessary condition for (AP) to have a solution.
Moreover, the complementary dual basic solution is also uniquely determined once one 
of the node-potentials (tt's) is fixed arbitrarily. Optimality conditions for (AP) are pri­
mal feasibility, dual feasibility and complementary slackness. The simplex method, while 
maintaining primal feasibility and complementary slackness, proceeds towards attaining 
dual feasibility.

D efinition 2.8 For every co-tree edge e E T — E — T̂  P + e contains a unique cycle 
C{T^e) named as the fundam ental cycle. We can partition C (T ,e) into C ‘̂ (T, e) con­
taining edges having the same orientation with e and C ” (T, e) consisting of the remaining 
edges in the fundamental cycle.

In the classical network simplex method, the leaving edge /  is determined by

/  = argmin{xy : j  e C~{T,e ) }

If Xf = 9, the new flow values will be

r xj + 9 j e C + ( T , e )
Xj^= < Xj -  0 j  £ C~{T,e)

[ Xj j ^ C ( T , e )

T — f  has exactly 2 components, say X  and X  = V — P, where t{e) E X.  The dual 
variable changes will then be

TTy V E X
TTy -}- c V E X

where e = —Wq is the amount of dual-infeasibility of edge e.
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D efinition 2.9 The set of edges with one end in X  and the other in X  is defined as the 
fundam ental cocycle  which can be partitioned into D'^(T,f)  and D~{T , f )  where

D + (r , / )  ^ { j e E :  t{j) e x , h ( j )  G X }

and
D - { T J )  = D { T , f ) - D + { T J )

Hencej f  and e both belong to D '^(T,/ )

A primal simplex algorithm for the assignment problem proceeds from one feasible basis 
to another via a selection rule specifying the choice of one dual-infeasible co-tree edge e 
(nonbasic variable) and the choice of /  E T (basic variable). Primal simplex algorithms 
differ from each other in the way the entering and leaving variables are chosen.

Provided that cycling does not occur, the classical simplex algorithm is finite and 
practically efficient. If the linear program is nondegenerate, simplex method is finite. 
However, instances of (AP)  are highly degenerate, especially when b is an integer vector.

Cunningham [13] introduced a simple combinatorial modification to prevent cycling 
in the primal simplex algorithm for the transshipment problem. The method involves 
keeping ‘strongly feasible’ bases, which arise from spanning trees of G providing basic 
feasible solutions and whose edges satisfy certain additional orientation requirements. Barr 
et al. [7] independently introduced a specialization of strongly feasible tree to assignment 
problem in order to circumvent and exploit degeneracy. When restricted to AP, the two 
definitions in [7] and [13] are dual to each other; root is chosen as a source in [7], and as 
a sink in [13] and the roles of ‘forward’ and ‘reverse’ edges are interchanged.

Using the notation of [7], let r be a specific source node chosen as root and disxiv) 
be the distance of node v from r in T i.e. number of edges in the unique path form r to v.

D efinition 2.10 e £ T is a reverse edge (e E Re) if disT{t[e)) = disT{h{e)) + 1, 

otherwise it is a forward edge (e E P).

r

D efinition 2.11 A rooted tree is strongly feasible (S F T ) i f \ / f £ T , X f  = 0 inn.plies f  
is a reverse edge.

D efinition 2.12 Co-tree edge e E T is a forward edge (e E F) if t{e) lies on the unique 
path from r to h(e) in T. e is a reverse edge (e E Re) if h(e) lies on the path from r to 
/(e). Otherwise, co-tree edge is called a cross edge (e E Cr).

D efinition 2.13 For nodes and v, the nearest com m on ancestor NCA(г¿,'ı;) is the 
last node common to paths from r to u and v respectively.
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Then, e = (u,v) e F if u = NCA(u,v)^ e E Re  if v = NCA(u , v)  and e G Cr 
otherwise.

When rooted at a source node, the SFT of an assignment problem resembles the 
alternating tree of the bipartite matching algorithm mentioned in Section 2.1 and the 
unique path from r to any v E V is an alternating path.

Lem m a 2.1 The SFT has the following properties:

(i) every forward edge has flow value 1, and every reverse edge has flow value 0.

(ii) every source node except root has degree 2; root has degree 1

(in) let e E T , /  E C'(T,e) and t(e) = t{ f ) .  Then, the selection of f  as the departing 
variable is valid and maintains strong feasibility

(iv) for e E T, pivot specified by (in) is nondegenerate O e G F o / E T f l F

(v) for e , /  same as in (iv), the pivot is nondegenerate ^  r E X  (component o fT  — f  
containing t{e)).

The alternating basis (AB)  algorithm of Barr et al. [7] starts with any feasible AP  basis 
i.e. SFT for the assignment problem. It then successively applies the simplex pivot step 
keeping the root node fixed and picking the leaving variable according to Lemma 2.1(iii). 
Cunningham essentially does the same in his simplex algorithm [13].

The simplex algorithm presented by Hung [21] specifies that in selecting the entering 
arcs, those arcs that are reverse or cross are to be. chosen first. An /IP-basis (SFT) is 
‘degenerate pivot free’ if every reverse or cross nonbasic arc has a nonnegative reduced 
cost i.e. is dual feasible. So, Hung’s algorithm performs degenerate pivots at an extreme 
point until a degenerate-pivot-free basis is found and only then moves to a new extreme 
point. The entering arc(e) selection rule in Hung’s algorithm is the “Modified row most 
negative” (MR.MN) rule which is:

Let e = ( i i , j )  be the most recent entering arc that belongs to basis T. Select 
= {h + I ji* ) a,s the current 'entering arc if Wq* < 0, e* is either a reverse or a cross arc 

on T and We* = mimue where S = {e  = (ii + l , j )  \fj E Cr and e is either reverse or cross 
on r  }. If lyg > 0 Ve G 5, then rows + 2,ix +  3, ...,n ,2,3, are scanned respectively 
in a similar manner. The leaving arc /  is chosen according to Lemma 2.1(iii) as is done 
in [7].

In his simplex algorithm, Akgiil [3] starts with a problem of size 1 and sequentially 
solves problems of size 2,3,4,...,n. The algorithm utilizes degeneracy by working with 
strongly feasible trees and employs Dantzig’s rule for entering edges of the subproblems.
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The full basis of the original problem is carried throughout the algorithm and this makes 
it a purely primal simplex algorithm. Instead of evaluating the change in the objective 
function value, the structure of cutsets i.e. set of nodes on which dual variable changes 
are made, generated during the solution of the current subproblem is studied. Some facts 
about these sets are:

• cutsets are disjoint,

• edges emanating from a cutset are dual-feasible once for the subgraph under consid­
eration,

• the tails of dual-infeasible edges undergo no dual variable change

• each node is subject to at most one dual variable change.

Now, we sum up the computational complexities of some primal simplex algorithms for 
the assignment problem.

Although Barr et al.’s [7] algorithm works well in practice, it is theoretically an 
exponential algorithm. Roohey-Laleh [28] exhibits a family of problems with exponentially 
long nondegenerate pivot sequences.

Hung’s algorithm [21], being a polynomial primal simplex method requires 0(n^ log A) 
pivots, where A is the gap in the objective function value between an initial extreme point. 
Although, ilung’s algorithm achieves polynomial convergence, he states that the algorithm 
is probably less efficient than the primal simplex algorithm of Barr et al.[7].

Orlin [26], using a perturbation technique which is equivalent to using strongly 
feasible trees and applying Dantzig’s rule, reduced the bound on the number of pivots to 
0(n^log A) which then is reduced to 0(n^m logn) again by him.

Cunningham and Roohey-Laleh [28] developed a genuinely polynomial primal sim­
plex algorithm that needs O(n^) pivots and O(n^) time in the worst case.

The mentioned algorithm of Akgiil [3] solves the assignment problem in |n(n-f3) —4 
pivots. The algorithm can beTmplemented to run in O(n^) time for dense graphs and 
0{n^ logn + nm) time for sparse graphs using state of the art data structures.

2.3 Signature Guided Algorithms

Following the notation presented in Section 2.2, we now give an overview of signature 
guided algorithms. Signature methods were first introduced by Balinski [4]. We discuss 
his algorithm together with efficient variants of it introduced by Goldfarb [20]
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Definition 2.14 The signature of a tree T is the vector of its cohimn(row) node degrees
d — d\,..., dfi), ^ ]d{ — 2n 1, < /¿^ 1·

i

Lem m a 2.2 Lei T be a spanniruj tree for the AP rooted at a sink node. Then, the fol­
lowing are equivalent.

• T is a SFT

• T is primal feasible. In particidar,

Xe = G T O  e G Re

and
Xe = 0,e e T  e e F  

• Column signature of T is (2 ,2 ,2 ,...,!) .

Clearly, a dual-feasible tree which is also SFT is an optimal tree. A signature guided 
method changes the tree by linking and cutting edges to obtain a tree having the desired 
signature, i.e., (2, 2, 2, ...,2, 1).

D efinition 2.15 A tree is in level k if its signature has exactly k ones.

Balinski’s algorithm begins with a tree at ‘level n — 1’ and ends when ‘level 1’ is 
reached. The method is entirely guided by the signatures.

The initial dual-feasible tree T (Balinski tree) is constructed as follows:

( I , i )  e T V j e C  

0 if t 6 i? n { 1}7T,· = Wii if i £ C

and

. 7T,· = mm(wik -  Wik) 1 ^ i £ R

(i , j )  £ T for j  =  argrmn(ti)iik -  wik).

During the course of the algorithm, the first level k tree T encountered has by 
construction the row signature (k +  1, 2, 1, 1): source node 1 has degree A: + 1,
some k row nodes have degree 1 (leaf nodes) and the remaining n -  k -  1 row nodes have 
degree 2. One of the leaf nodes, say t, is singled out as the ‘target’ . During the pivot, the 
leaving edge /  is chosen as edge (1,/) which is on the unique path from root (source node 
1) to the target t. The entering edge e is chosen so as to maintain the dual-feasibility. If
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we let T* be the component of T containing t after the removal of / ,  e is chosen as the 
edge having minimum reduced cost among edges in The dual variable changes are
done accordingly i.e.

TTy Tty — € Vu G

where e is the reduced cost of edge e.

Let e = (g,h) .

(i) If g was a leaf node in T, level  ̂ -  1 is achieved, and the basic step is complete

(ii) If this is not the case (g has degree 2 in T), take g as the source node in the new 
tree (tree after the pivot) and repeat, pivoting on (g,l') on the path joining g to t.

Case (ii) can occur at most n — k — I times before a case (i) occurs, so the method 
encounters at most n — k ‘level k’’ trees giving rise to a pivot bound of _

This variant of signature method is ‘purely’ dual: it pays no attention to the primal 
problem. Thus, the method is not a simplex method in that' a pivot can be made by 
deleting an edge ( i , j )  with Xij = 0. However, there is a cost to ignoring the primal 
problem: prior to its termination, the method may encounter a dual-feasible basis that 
already admits an optimal assignment without noticing it. As Balinski states [4], this 
difficulty is easily overcome with some additional accounting.

The obvious way of obtaining a worst case count is to notice that each pivot step 
involves at most O(n^) operations (comparisons to find e = u>e). This count yields O(n^) 
total work for the signature method.

Balinski [5] and Goldfarb [20] show how each basic signature step can be accom­
plished using only 0(n?)  operations. Since Balinski’s method require only n -  2 basic 
steps, this results in an O(n^) dual algorithm.

The key to the efficiency of Goldfarb’s variants of the signature method is the use of 
labels s,· on all row nodes in TK These enable the algorithms to use information already 
computed on previous pivots during the current basic signature step.

To be specific, the computation of

We =  minftDij : { i , j )  G <5'^(T')} = e

that is required to determine the arc e to enter the basis on a simplex type pivot can be 
performed as

where

c = min {s i} = s„ 
ieT‘r\R "

S{ = min {wik : i £ T ‘ n R } 
keT‘nC
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d r '  = T -  T ‘ .

The column index which gives the minimum for each i £ D R is also needed so,
let

nb(i) = j  i f  Wij = Si

Let Q be the set of row nodes in and Q' the corresponding set at the next tree, 
P  the set of column nodes in t \ and P' the corresponding set at the next tree. By 
construction, Q' C Q and P C P ' .

After a pivot.
Si ^  minimi -  6, min i G Q'

j e P ' - P

Consequently, no matter how many pivots are carried out during a basic signature 
step, each reduced cost Wij needs to be computed and compared only once. Since the rest 
of the work required by a simplex pivot is 0{n)  and there are at most n — 2 pivots per 
basic signature step, each level step can be accomplished using only O(n^) operations.

Goldfarb [20] further presents a signature algorithm whose worst-case computational 
bound is slightly better than the bound for his variant described above. The improvement 
is obtained by solving a sequence of assignment problems, each larger than the preceding 
one by a pair of nodes, starting from a 1 x .1 problem.

Given an optimal solution to a (/: x k) assignment problem with basis tree T having 
exactly one terminal row node, T is first extended to the ( k x l ) x { k x  1) problem in such 
a way as to maintain dual feasibility. If necessary, one basic signature step is executed to 
reduce the number of leaf row nodes from two down to one. Because this step requires at 
most 0{ {k  + 1)^) rather than O(n^) operations, there is a reduction in the coefficient of 

in the worst-case computational bound.

2.4 Dual Simplex Algorithms guided by Dual Strongly Fea­
sible Trees

In this section, we are going to present Balinski’s [5] purely dual-simplex algorithm together 
with Akgiil’s sequential dual-simplex algorithm. We stick to notation used in [2] together 
with that described in Section 2.2.

The dual simplex method for the transshipment problem starts with a dual-feasible 
tree. If X/ > 0 V / G E(T),  then T is optimal (primal feasibility, dual feasibility and CS 
are satisfied). Otherwise, the algorithm chooses an /  G E{T)  with x / < 0, as the leaving 
edge, and chooses a co-tree edge as the pivot (entering) edge to satisfy the dual feasibility
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via
€ =  We = min{wij : ( i , j )  G S (X ) }

where X  is the component of T — f  containing t( f ) .  Thus, the result of a pivot is the 
new tree T' = T P e — f .  A pivot will increase flows on the edges C+(T, e) hy 0 = —x/, 
decrease flows on C~(T,e)  by 0, increase the reduced costs of the edges in <5+(X) by e, 
and decrease that of edges in Î “ (Ar) by e.

Since a tree has one less edge than the irumber of nodes, there is a natural 1 — 1 
correspondence between N(T)  — r and E{T),  i.e., between the non-root nodes and edges 
of the tree. When T is reoriented as a branching T  with root r (all edges are directed 
away from r in T), the mapping is :

g : N { T ) - r ^ E ( T ) ,  g(v) =  (piv),v),

where p(v) is the parent of node v G N(T),  v ^  r. Let L C V  — r ho the set of leaf nodes 
of T, X = {u G X : (n,r) G E{t)) ,  E{L)  = 6~{L), E{L)  = 6{L,r)  and LR = L n R .

D efinition 2.16 A dual feasible tree is a Dual Strongly Feasible Tree (D S F T ) for
AP if

(i) f  G H . o - E { L )  =» .1;  < 0

(ii) /  GF = > - a ; / > l

Note that automatically we have /  G E(L)  x / =  1.

A tree whicli is both a SFT and a DSFT is optimal (with possibly different roots). 
Akgiil’s definition is slightly different from that of Balinski: the roles of forward and reverse 
edges are interchanged and T is rooted at a sink node.

Balinski [5] proved the following Lemma.

Lem m a 2.3 Let T be a DSFT rooted at a sink node r. Consider u E R, (hence g(u) G 
R e j, with d(u) > 3. Then,

(i) Xg{u) < -1

(ii) the selection of g{u) as the leaving edge maintains DSFT.

In other words, if the selection of leaving edges is restricted to those f  e T C\ R and 
diKf))  ^ 3, dual strongly feasibility of T will be maintained.
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Balinski’s dual simplex algorithm [5] works in stages. Let S = {u £ R : d{u) > 3}. 
The algorithm for a stage (a signature step or a level), for s G 5 can be described as:

procedure A 1 (s) 
while d(s) > 3 do 

begin
cut /  = g{s), and let e G f  be the entering edge via 

€ = We =  min{il),j : ( i , j )  G 
T ^ T  +  e - f  
s <— t(e) 

end while

In a stage, the algorithm starts with s £ S and performs dual-simplex pivots until 
it reaches a node in Lr . Since X ’s are monotonically increasing, the number of pivots in 
a stage is bounded by | — Lr |. When S' = 0 or | Lr |= 1, T is optimal (since SFT).
Clearly, the total number of pivots is bounded by |(n — l)(n  — 2) and this bound is shown 
to be sharp [5].

We now describe Akgiil’s algorithm.

He solves a sequence of perturbed A P ’s over an increasing sequence of graphs 
Go,Gi,  ...,Gn· Each Gk defines an AP, say APk. Let V  = {u i,...,v „ }  be an arbitrary 
ordering of sink nodes, r =  uq be a dummy sink node, and let G"̂  =  (R, V -\-r,E + { {u,r)  : 
u £ R}) .  When the original graph G = (R,C,E)  is complete bipartite graph, then so is 
G *. Gk is defined as {uo,ui, ...,Vfc}]. Actually, APk is not strictly an assignment
problem since = — 1, u £ R, b̂ j = 1, y G [1..A;], br = n -  k. For artificial edges, 
set WuT = K·, for arbitrarily large K.  Let = I{, 7r„ = 0, u G P for APq. Clearly, Go
is a feasible and hence an optimal tree for APq. The optimal solution of will give the 
required solution.

Let Tf̂  be an optimal tree for APk. Then -  r will be a disjoint union of SFT’s 
together with n — k isolated source nodes. Letting v =  in addition to Gk, Gk+i
contains the node u, and the edges 6(R, v). Given and v, the dual vector tt is extended

' r
to node V and a new edge is added to to obtain T, a DSFT for Gfc+i:

7T„ = min{u;„,; + TTu : (u,v) £ E )  = Wuv +

and E = T^ + (u,v).  If d(u) =  2 then T is optimal. Otherwise, d{u) =  3, and all the 
reverse edges from r to u have flow values -1. Even though a dual simplex algorithm can 
choose any one of these as a leaving edge, there is a unique leaving edge which maintains 
DSFT, namely <7(u), the reverse edge whose tail is u. Solving APkj^\ starting with T above 
will be referred to as stage A: 1. The algorithm for solving AP̂ .̂ .x is:
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procedure A 2 
while cl(u) = 3 do 

begin
cut /  = g(u), and let e G f  be the pivot edge via 

e - W g =  : ( i , j )  G
T ^ T  + e - f  
u <— t(e) 

end {while}

The pivot bound of this algorithm is |n(n — 1) and the increase in the number of 
pivots is due to the dummy sink node. Both Balinski’s and Akgiil’s algorithms have O(n^) 
complexities.



Chapter 3

A DUAL FEASIBLE FOREST 
ALGORITHM

In the following, we present a dual-feasible forest algorithm for the assignment problem. 
The algorithm, being a modification of Paparrizos’ [27] algorithm, is guided by the signa­
ture of a strongly feasible tree and terminates with such a tree. It has the time complexity 
O(n^) for dense problems using elementary data structures. For sparse graphs, using 
Fibonacci-heaps of Fredman and Tarjan, the complexity drops down to (9(n^logn -f nm). 
Throughout this chapter, the notation presented in Section 2.1 will be used.

3.1 The Algorithm

First, we will describe Paparrizos’s [27] algorithm in our notation. His algorithm works 
with, what we call, layers.

Initial tree is dual-feasible and is rooted at a source node and all sink nodes of 
degree 1 are attached to this source node, i.e., Balinski tree. A layer consists of two 
parts: decom pose and link. To decom pose a tree, a sink node of degree > 3 which 
is minimal in distance to root is identified. If there is no such node, then T is SFT  and 
hence is optimal. Let v £ C he such a node. Then the edge (p(u),u) is deleted and the

r
cutoff subtree rooted at v is identified as a ‘candidate tree’ , and is denoted as say, Ty. The 
process is continued until the free rooted at r contains no sink nodes of degree > 3. The 
tree rooted at r is called and T_ is the collection of candidate trees. The link part of 
the algorithm is as follows.

20
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while T_ 7̂  0 do 
begin

e ^  argmin{iDe : e G ¿(T _,T +)}
 ̂ ^  rUe

Let ¿(c) G Ik
then

TTy TTy -  c yv e Tk
^  r_  \ Tk 

T+ ^  + Tk + e
end {w hile}

The main invariant during link is that subtree T^ is dual-feasible, i.e., edges in 
j {T^)  are dual-feasible. Consequently, when a layer is finished, the new tree is dual- 
feasible. Since layer algorithm  is continued until T is SFT^ the algorithm stops with 
an optimal tree. The pivot bound is O(n^) but the number of layers also has the same 
bound. This results in an O(n^) algorithm. Moreover, during a layer, dual-feasibility 
may be violated.

Now, we describe the new algorithm.

For a tree (forest) T, let ai = <^i(T), ct2j <̂3 be the number of sink nodes of degree 
1, degree 2 and degree at least 3 respectively. Hence, T is SFT  if and only if = 1, cj2 = 
n — 1,(73 = 0. The level of a tree is o-i(T). Our algorithm works with stages through 
each of which ai is reduced by 1. The computational cost of a stage will be O(n^) for the 
dense case and 0(n\ogn  -f m) for the sparse case.

We start with the well-known ‘Balinski-tree’ rooted at a source node r. We then
i

apply decom pose. Thus, we obtain T .̂, and T - = [J7}· and I < as.
i=l

Our link routine (at say iteration) is as follows:

begin
e = (u,v) =  argniin{u;e : e G S(T^,T^)}
Let e = We and i(e) = it ETg
then

'̂ Z ^  TTz -  € \/zeT-
r ;  -f r ,  + e 
r  ^  r_ \ Tq

end
where T =  2’_ is the forest at the iteration and T ' = T'_ UT( is the forest obtained
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after the link.

Let d(v) represent the degree of v in T+. Depending on d(v) where v = h(e) (e is 
the link-edge at link), we identify 3 types of pivots.

d(v) =  3: In this case, we cut the edge (p(v),v) from T' ,̂ and add the cutoff subtree 
rooted at v toT'_. This is called a type 1 pivot.

d{v) — 2: In this case, a stage is over. Here, we check whether the subtree of T'̂  rooted 
at V, which is r ,  -f e contains any sink node(s) of degree > 3. If so, we apply 
decom pose and add the resulting subtree(s) to the collection T'_- Otherwise, we 
just continue. The former case is called type 2 pivot and the latter type 3 pivot. 
In type 2 pivots, the number of subtrees in T'_ may increase by more than one. In 
type 1 pivots, the number of subtrees in T'_ is the same as that of T_, and in type 
3 pivots the number of subtrees in T'_ is one less than that of T_.

The algorithm continues until T_ = 0 and terminates with a strongly feasible and 
hence an optimal tree T f.

Lem m a 3.1 The new forest T' = (T! .̂,T'_) is dual-feasible.

P roof: It suffices to show that with respect to dual variables tt', forest T is dual- 
feasible and the reduced cost of the link-edge e is zero.

Clearly, the reduced costs of the edges in 7 (T_) and 7 (T+) do not change. The 
reduced costs of the edges in 6(T-,T+)  decrease by e and those in <5(T+,T_) increase by 
e. Since e > 0, edges in ¿(T+,T_) remain dual-feasible. Edges in 6(T-,T+)  are also dual- 
feasible simply because of the way link-edge e is chosen. With respect to tt', edge e has 
zero reduced cost.

Therefore, T' is dual feasible. □

Clearly, decompose.routine does not affect dual-feasibility. As a result, the forest 
of the (k + 1)̂  ̂ iteration is dual-feasible.

Since the algorithm maintains dual-feasibility and stops with SFT, it is valid.

Now, we bound the total number of pivots.

Theorem  3.1 The algorithm requires at most (n — l)(n  — 2)/2 pivots.

P roof: Let = <7j(T+),z = 1,2,3 at the beginning of a stage. A stage ends with 
a pivot of type 2 or 3. A pivot of type 1 will decrease by 1. Hence, the number
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of pivots during a stage is bounded by cr̂  +  1 < <72 + 1 =  n — (Ji — os + 1 < n — oi 
since <73 > 1. Because oi is at most n — 1 and at least 2 at the beginning of a stage, the 
maximum number of pivots is

( n -  l ) ( n - 2)
J 2 ( n - o i )  = J 2 j  =

ax=2 i=l
□ .

Now, we give the time complexity of the algorithm.

Theorem  3.2 The algorithm can be implemented so that it has O(n^) time complexity 
for dense graphs and 0{n^ logn +  nm) for sparse graphs.

P roof: It suffices to show that a stage can be implemented at 0{n^) and 0 {n  log n+ 
m) time for dense and sparse graphs respectively. First we consider the dense case. Clearly, 
other than the selection of link-edge, everything else in a pivot can be performed in 0(n)  
time per stage. To achieve 0{n?)  bound per stage, we need to analyze the cost of 
selection of link-edge altogether in a stage. Since, each such edge has its head in T+, we 
store enough information attached to these nodes. Specifically, let

s{v) = min{iOtu : f 6 r _ }  Vu G T+ n C 

nb{v) = j  if Wjy — s(v)

In other words, s(u) is the smallest reduced cost among the edges in 6{T-,v)  and 
nb(v) is the tail of such an edge. After a pivot, since the dual variables of all the nodes in 
T - decrease by e, we have

■<—  ̂ G Tj. n C,

For a type 1 pivot, at least one source node, say node v, is transferred from T+ to 
r _ . Let T" be the subtree obtained by deleting edge (p(n), v). We visit the source nodes in 
T", for each edge e in 8{T",Tj .̂ \ T")  compute reduced cost of e, compare with s{h{e)) and 
update s{h{e)) and nb(h(e)) if necessary. Thus, during a stage, each edge is examined at 
most once for the computation of s{v) and nb(v). We maintain a list representing T+ D C. 
Sink nodes in T" are deleted from the list.

For a type 2 or type 3 pivot, a stage is over. After updating dual variables and
as above, we compute afresh s{v)'s for sink nodes added to T+ during the last pivot.

In order to determine pivot or link edge, we compute min{s(v) : u G T+ D C } and 
the pivot edge is (n6(v),u) for a minimizing v. This completes the dense case.

For the sparse case, we store s(u)’s in Fibonacci heaps [18] . Thus, the cost of 
updating s(u)’s and selection of pivot edges will be O (nlogn). Since we may have to
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examine every edge at least once during a stage, total cost of these operations will be 
0 {n logn  + m) per stage. Since, in any stage, we can perform 0 (n ) pivots, updating 
dual variables after each pivot is not acceptable. As is shown in Akgul [2], and Goldfarb 
[20], the total cost of dual updates and tree/forest operations in a stage can be bounded 
in 0 {n )  time. The basic idea is to maintain an offset between actual reduced costs and 
those stored in ^(u)’s, and compute e with respect to min{s(u) : u G T+ H C } and offset. 
Dual variables can be updated when a stage is over.

3.2 Variations

1. It is not necessary to start with ‘Balinski tree’ ; the algorithm works as long as sink 
nodes of degree 1 are incident with the root. We can work with trees and dual 
variables obtained by familiar row-minimum, column-minimum method. For each 
i £ R, let u;,y(,·) =  min{u;,y· : j  6 C }. The edges Eq =  G R} form a part
of the initial forest. Let Q C C he the set of isolated sink nodes in {R, C, Eq).

Setting 7T,· = — Vi G R, and xj = 0, 'ii £ C we obtain a dual-feasible solution 
for which edges in Eq have zero reduced costs. Let r be a new (artificial) source 
node. By adding artificial edges (r , j )  Vy G C we obtain an initial tree. We set 
TTj. = —K , and assign cost K  to all artificial edges. One can add a new source node, 
say io, and edge (io,r) with cost 0 to the initial tree formed. (This last step is not 
necessary, it is introduced so that the new graph has a matching provided that the 
old graph has one). One may also apply column-minimum operation to nodes in Q 
to obtain better dual variables, but there is no need to add any edges to Eq.

The value of K  is not important, e.g., one can set K  =  0. During the course of 
the algorithm r (and io) will not have any dual-variable changes, and none of the 
artificial edges will be a link-edge. So, once the initial subtrees T_ and T+ are 
constructed, the artificial edges may be deleted. In this version, T+ will be a forest 
of subtrees not necessarily SETs as opposed to being a single SFT. Let e = (u,v) 
be the link-edge and d(v) represent the degree of v in T^' i.e. forest obtained after 
the link operation. If d(v) =  2, we add the subtree rooted at v in T+ to T- . If

r
d(v) =  3, we apply a regular type 1 pivot and delete edge (p(v),v). In the case 
when d(v) = 1, again a stage is over. We apply decom pose and add the resulting 
subtrees if any to the collection T1 (a type 2 pivot) or we just continue (a type 1 
pivot). D ecom pose and link routines are the same as before.

This version of our algorithm shows some similarities with the algorithm of Paparri- 
zos et al. [1] which is a valency related algorithm that is neither primal-dual nor 
does it preserve dual or prima.l feasibility throughout. The iterations of this algo­
rithm are guided by the valency structure of special forests called ‘superforests’ . By 
definition [1], a spanning forest F of G is called a ‘superforest’ provided the following



CHAPTER 3, A DUAL FEASIBLE FOREST ALGORITHM 25

two conditions hold:

(i) Every connected component of F  contains precisely one root which is a sink 
node,

(ii) Every node in C which is not a root has degree 2.

The algorithm starts with a dual-feasible superforest Fq and constructs a sequence 
Fo^...^Fk of superforests by a special pivoting strategy such that Fk is dual-feasible 
and contains an optimal assignment. Dual-feasibility, however, is relaxed during the 
intermediate steps of the algorithm.

The two algorithms mentioned above differ in the way they handle the subtrees of the 
forests and they make the dual-variable changes. In Paparrizos et al.’s algorithm, the 
dual-variable changes are made so that they only guarantee the reduced cost of the 
link-edge being 0. Our dual-variable changes, however, guarantee the dual-feasibility 
of the whole forest. Although our algorithm applies decom pose considering the 
degree of v (the head of the link-edge) only, theirs pay attention to keep the forest 
a superforest by making changes in the roots of the subtrees where necessary.

2. The idea of performing dual-variable changes over all subtrees in T_ can be applied 
to algorithms in [1] and [27] so that modified algorithms become dual-feasible forest 
algorithms.



Chapter 4

A CRISS-CROSS LIKE ALGORITHM

The criss-cross type algorithm is a polynomially bounded nonsimplex method for solving 
assignment problems. It begins by finding the optimum solution for a problem defined 
from the first row, then finding the optimum for a problem defined from rows one and two, 
etc., continuing sequentially until it solves the problem consisting of all the rows. At some 
stages, dual simplex type pivots are made to obtain a dual-feasible solution for a problem 
defined from a subset of rows only. At others, primal simplex type pivots are made to 
obtain a SFT. The algorithm switches between dual and primal pivots and eventually finds 
the optimal solution.

In order to convey the idea of out algorithm in a simple fashion, we let the following 
SFT T be the starting tree. Later, we will give more concrete initial starting solutions.

( i , i )er  Vi eC

i}ii)  £ T where i = j  -f 1 'ij ^ n ^ C 

The initial dual variables of nodes in T are

0 t /  i e J? n 1
’’■,·= < wi.i i f  i e c

1 ^t,t—1 i f  i ^ \  ̂ R

By construction, all edges emanating from source node 1 are dual-feasible. Column 
node n is the unique sink node with degree 1 in T. Then, T is a primal feasible (since 
SFT) tree rooted at sink irode n, i.e., it looks like Fig. 4.1.

Our algorithm has two phase, a dual phase and a primal phase. During dual 
phase, the dual-feasibility of all edges emanating from source node k is attained. In doing 
this, we retain the dual-feasibility of the so far attained edges. However, primal feasibility 
may be ruined. If so, we move to the primal-phase where we do pivots in order to get
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Figure 4.1:

back a primal feasible SFT. So, our algorithm looks like 
begin 

i ^  1
while i < n — 1 do 

begin 
i ·(— i +  1 

dual phase:
let €,· = min{u),j· : j  ^ p(i) and j  e  C } = Wih 

i f  Cj < 0 
then begin

7T,· ^  TTj -  e,·

cut (p (0 ,0  
link
if deg{h) = 3 
then begin

cut (p{h)^ h)
letvT/i be the subtree rooted at h 
go to primal phase 

end
else go to dual phase 

end
else go to dual phase

primal phase:
let 6 = : g < i  and g eT h ,l ^ Th] = Wgk
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TVy ^  -Ky- € \/v eTh  
link {(j, k) 
if  deg(k) = 3 
then begin

cut (p{k),k)
let Th be the subtree rooted at k 
go to primal phase 

end
else go to dual phase 

end {while} 
end (algorithm)

Theorem  4.1 The dual-feasibility of all edges emanating from source nodes in [1..A:] is 
retained through the primal phase starting with i = k.

P roof: (by induction) 

base case (k = 2)

After the dual variable change in the second dual phase, all edges emanating from 
source node 2 are dual-feasible. Since no change is made in the dual-variable values of sink 
nodes, there is no change in the dual-feasibility of edges emanating from source node 1; by 
construction these edges were in the initial SET. Assume the entering edge chosen during 
dual phase is not (2, n). If so, the algorithm moves to the 3’’'̂  dual phase and the statement 
is obvious. Otherwise, Th contains source node 2 together with another source node other 
than 1, and a sink node other than n. In primal phase, we consider all edges emanating 
from source node 2 that are not in Th· Due to the preceding dual phase, the reduced costs 
of all such edges are > 0. Since the dual value of the sink node in Th is decreased by a 
nonnegative amount, the dual feasibility of all edges emanating from source node 1 is also 
retained. Because of the way the link-edge is chosen during the primal phase, all edges 
emanating from source node 2 are still dual-feasible. In the worst case, we can repeat the 
primal phase so many times thaj; Th grows up to include all the source nodes (except 1) 
and all the sink nodes (except n). But, since the pivots up to now have not ruined the 
dual-feasibility of edges emanating from source nodes 1 and 2 simply because of the way 
the link-edge is chosen, the pivot in this step i.e. an edge incident with n entering, will 
retain the dual-feasibility of edges emanating from source nodes in [l..A;](A: = 2) as well. 
So, base case holds.

inductive case

Assume the statement holds V/: E [l..mj. We are going to show that it also holds 
for k = m -h 1-
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By the inductive hypothesis, the dual phase starts with all edges emanating from 
source nodes /: < ?n as dual-feasible. During the dual phase, we find the edge with 
minimum reduced cost emanating from source node m + 1. Say, this edge has negative 
reduced cost (If not, we simply move directly to the next dual phase which does not ruin 
the dual-feasibility of edges emanating from nodes in l] f l i i  at all). Since no change
is made in the dual values of sink nodes, the inductive hypothesis holds at the end of the 
dual-phase. During the pivot in the primal phase, the edge with minimum reduced cost 
among all edges in S(Tk) emanating from nodes in [l..m -f 1] fl i? is chosen. So, the pivot 
and the dual variable changes do not ruin the dual-feasibility of edges in S(Th) with tails 
in [l..m +  1]. If a source node in [l..m +  1] is not in T/i, then all the edges emanating from 
this node with head nodes in Th will have increased reduced costs (since pivot edge has 
nonnegative reduced cost) and thus their dual-feasibility will be retained.

So, however many pivots we do during the primal phase, the dual-feasibility of edges 
emanating from source nodes in [l..m 4-1] will be retained due to the way the link-edge is 
chosen. Thus, the statement holds for fc = m 1 as well. □

C orollary 4.1 At the beginning of each dual phase, say î ^̂ one, there is a SET at hand 
and all edges emanating from source nodes in [l..z — 1] are dual-feasible.

C orollary 4.2 After n — 1 repetitions of the ^while-loop\ the optimal SET is attained.

Proof:

Follows trivially form Theorem 4.1. At the last iteration (i = n), the dual phase 
guarantees the dual-feasibility of all edges emanating from source nodes in [l.,n] and the 
primal phase constructs the optimal SET. □

Theorem  4.2 Each while loop of the algorithm can be accomplished in 0 {n ) pivots. 

P roof:

In the worst case, following each pivot in the dual phase, n — 3 primal pivots are 
required to construct the SET. This adds up to a total of n — 2 pivots in each iteration 
of the algorithm. □

C orollary 4.3 Worst case pivot bound of the algorithm is (n — l)(n  — 2).

Theorem  4.3 The total work done while executing the algorithm is 0{n^).
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P roof: It suffices to show that each iteration of the algorithm can be implemented 
at O(n^) time for dense graphs. The choice of the link-edge during a dual phase can be 
performed in 0 (n )  time per iteration. To achieve O(n^) bound per iteration., say 
one, we need to analyze the cost of selection of link-edge during the primal phase of the 
iteration. Since each potential link-edge has its head in T/i, we store enough information 
attached to these nodes. Specifically, let

5(u) = min{u)^  ̂ : ? < E Th] Vu G n C

nb{v) = j  if Wjy — s(v)

In other words, ^(u) is the smallest reduced cost among the edges in ¿(Th,v) Vu G 
T/i n C and nb(v) is the tail of such an edge. After a primal pivot, we have

^ ^   ̂ G T/i D (7,

and we update s{kys  accordingly.

Say, the link-edge in primal phase is (g^k) and k has degree 3. Then, the updated 
Th includes the subtree rooted at k before the link operation. So, at least one source node, 
say node t;, is transferred from Th to Th. We visit the source nodes in Tjt, for each edge 
e in S(Tk^Th \ Ta:), compute reduced cost of e, compare with s(h{e)) and update s(h{e)) 
and nb(h(e)) if necessary. Thus, during a primal phase, each edge is examined at most 
once for the computation of ^(u) and nb(v). We maintain a list representing ThC\ C with 
sink nodes in T̂  deleted from this list.

In order to determine the link-edge of the primal phase, we compute mm{s(v) : v G 
Th n C } and the pivot-edge is {nb{v),v) for a minimizing v. □

Arguing as in the proof of Theorem 3.2, this algorithm also can be implemented 
with O(n^logn -(- nm) time complexity for sparse graphs with n nodes and m edges via 
the use of Fibonacci heaps [18].

4.1 Variations

It is not necessary to start with the suggested initial tree. We now give two further 
suggestions in order to construct the initial SFT.

1. At some problem instances, there is a near-optimal primal-feasible solution available. 
In these cases, the algorithm can start with the SFT  at hand. In this version, the 
row nodes should be traversed in a postorder manner. So, firstly, a re-ordering of 
row nodes from 1 to n is made and the algorithm is applied starting with i = 1
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instead of 2. If at the dual-phase, is the link-edge, then both (p(i),i) and 
( hj )  such that p(j) = i are deleted. Consequently, in this version, T\Th rather 
than being a SET throughout the algorithm, is a collection of SFTs, The primal 
phase of the algorithm is not altered. For this version, the average pivot bound is 
believed to be less than the original, although, (n — l)(n  — 2) stays as the worst case 
pivot bound. The time complexity of this version is again O(n^),

2. If nothing is known about the problem instance, it is best to start with the maximum 
attainable dual-feasibility. To do this, we construct the initial SFT^ T as follows:

( i , j ) e T  \ / jeC

The initial dual variables of nodes in T are

TT; = 0 i f  i e R n i  
wî i i f  i e C

Let R· = {1 } 
for i 2 to  n do 

begin
let j* = argmin{in,j — Wij} 

i f  deg{j*) = 1 in T 
then begin

T 4 - r u ( z , j " )
7Tj"  ̂ j*

R* ^  R*\J i 
end 

end {for }
i <— 2
for j  := 1 to n do 

begin
if deg(j) = 1 in 7" 
then begin

found <— false
while i < n and not found do 

begin
if deg(i) — 0 in T 
then begin

found <— true 
T ^ T U { i , j )
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end
i ^  i + J. 

end
end

end.

The first Tor-loop’ adds edges to T in such a way that the edges emanating from 
row nodes currently in T are dual-feasible. The second Tor-loop’ adds the rest of the row 
nodes in a manner that does not destroy strong feasibility of T. By construction, all edges 
emanating from source nodes in R* are dual-feasible. Let r be the unique sink node with 
degree 1 in T. Then, T is a primal feasible (since SET) tree rooted at sink r.

Let R* = R\ R*, Renumber the nodes in R* from 1 to | i?* | and change the 
numbering of the remaining row nodes accordingly i.e. from | i?* | +1 to n. The algorithm 
staxts with iteration i ==| R* | +1 instead of i =  2. If | R* |> 1, the pivot bound reduces 
to (n -  I |)(n — 2). However, the complexity is again O(n^).



Chapter 5

SOME REMARKS ON PARALLELISM 
IN ASSIGNMENT PROBLEMS

Most large-scale optimization problems arising from real-world applications can be decom­
posed into quasi-independent subproblems (corresponding to time periods, geographic dis­
tricts, physical or logical commodities, etc.), allowing the possibility of attack via iterative 
algorithms that exhibit a high degree of parallelism. Theoretical research into decompo­
sition methods for large-scale optimization dates back to Dantzig and Wolfe (1960), but 
the absence of computer hardware capable of exploiting the parallelism inherent in these 
methods has long discouraged potential research in this area. With the invention of mul­
ticomputers and multiprocessors, research into new decomposition methods is not merely 
stimulated but is made inevitable by the goal of achieving the speedups made possible by 
such architectures [8].

Our major motivation in starting this research was the design of algorithms for 
the linear assignment problem that can exhibit parallelism. Apart from being different 
techniques for solving AP with worst case bounds as good as the best available in the 
literature, the two algorithms presented will provide essential guidance towards attaining 
our ultimate goal. Both algorithms have the flexibility of working on forests instead of a 
single tree. Given two (or more) dual-feasible trees, the dual-feasible forest algorithm is 
capable of combining the given ̂ information in order to find the optimal solution of the 
underlying AP. Similarly, our criss-cross like algorithm can combine a group of SFTs into 
an optimal SFT. So, grouping a given instance of AP into certain simple independent sub­
problems and solving these embedded subproblems optimally (with perhaps more eflicient 
techniques available in the literature), we can then apply either of our algorithms to find 
the optimal solution of the main problem.

As a complementary research, we are planning to exhibit an efficiency test for out 
algorithms. To do this, certain well known eificient methods will be implemented together 
with ours using the same data structures and implementation techniques. We believe that
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only then we will be able to give information about the efficiency of the two algorithms 
presented. Although it may sound like we have attained our goal of designing iterative 
algorithms, there is yet a lot to be done. Another further research could be the design of 
improved variants of the two algorithms discussed, that will exhibit parallelism in APs in 
a more efficient fashion.
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