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ABSTRACT

CUTOFE RATE FOR FIXED-COMPOSITION CODING OVER
ENERGY CONSTRAINED AWGN CHANNELS

Nihat Cem Oguz
M.S.in Electrical and Electronics Fugineering
Supervisor: Assoc. Prof. Dr. Erdal Arnkan

February. 1990

Shannon showed that, under an energy constraint, the ensemble of shell constrained
codes optimizes the cutofl rate for AWGN channels. Unfortunately, this ensemble is not
very practical since its input alphabet is the entire real line. In this thesis, we consider
the ensemble of fixed-composition codes which satis{v the shell constraint and have a

finite input alphaber.

For a certain four-letter symmetric input alphabet, the cutofl rates for ensembles of
fixed-composilion codes of blocklengths up to 10 are computed {or the AWGN channel at
various signal-to-noise ratios. Also an asymptotic analysis of these cutoll rates is carried

out as blocklenghth tends to infinity.

These results are compared with the cutofl rates optimized over the independent-
letters code ensemble, which is the ensemble ordinarily used in practice. The results of
this comparison show that, for relatively moderate signal-to-noise ratios, it is possible
to achieve cutoff rates within 1-2% of the optimum value by using fixed-composition
codes; whereas, with independent-letters codes, one can get at most within 9-10% of the
optimurn value. Thus, fixed-composition codes can provide significant improvements in

cutofl rate in practice, especially for moderate to high signal-to-noise ratios.

Key words: fixed-composition codes, permutation codes, cutofl rate, energy con-

strained AWGN chaunels.
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OZET

ENERJI KISITLI AWGN KANALLARDA SABIT BILESIMLI
KODLAMA ICIN KESILIM HIZI

Nihat Cem Oguz
Elektrik ve Elektronik Mihendisligi Boliimii Yiksek Lisans
Tez Yoneticisi: Dog. Dr. Erdal Ankan
Subat, 1990

Shannon, enerjinin kisith oidugu durumlarda, kabuk k sith kodlar toplulugunun AWGN
kanallar icin kesilim hizini en iyilestirdigini gdstermisgtir. Ne var ki, bu topluluk, kod
alfabesi biitiin gergel sayilar kiimesi oldugundan, pek uygulanabilir degildir. Bu tez
calismasinda, kabuk k.sitlamasini saglayan ve sonlu bir kod alfabesi izerinde taniml

sabit bilegim kodlar topiulugu ele alinir.

Doért harfli simetrik bir kod alfabesi segilerek, cesitli sinyal-giiriltii oranlarinda,
AWGN kanallar ve 40’a kadar gesitli blok uzunluklan igin, sabit bilesim kodlar toplu-
luklarimn kesilim hizlart hesaplanir. Bu kesilim hizlarinin, blok uzunluklugu sonsuza

giderken aldiklar asimtotik degerler de hesaplanir.

Bu sonuglar, pratikte kullanilan bagimsiz harfli kodlar toplulugu iizerinden en
iyilegtirilen kesilim h zlariyla kargilagtinhir. Bu karstlagtizmanin sonuclari, bagimsiz harfli
kodlar ile en iyi kesiiim hzinin en fazla %90-91' elde =dilebilirken, géreceli olarak orta
sinyal-gliriltii oranlan icin, sabit bilesim kodlar kullanarak en iyi degerin %98-99’unu
elde etmenin olasi oldugunu gosterir. Boylece, sabit bile.giin kodlar, &zellikle orta ve

yiiksek sinyal-giiriiltii oranlarinda, kesilim hizinda éneisli gelismeler saglayabilir.

Anahtar sozciikler: sabit bilesim kodlar, permiitasyon kodlan, kesilim hizt, enerji

kisitli AWGN kanallar.
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Chapter 1

INTRODUCTION

Shannon [Sha48] proved that under power limitations, there is, associated with any
physical channel, an upperbound, called channel capacity, to the rates at which reliable
communication over the channel can be achieved. At rates above channel capacity, the
communication system suffers a high probability of error no matter how much effort is
made to design the system cleverly. For years, it has been of interest to build systems
that can communicate reliably at higher and higher rates to bridge the gap between the
channel capacity and the rates achieved in practice ar.d so will be the case for years.

This thesis work is another effort in that direction.

In this thesis work, the performances of fized-composition and independent-letters
codes are compared for the important example of discrete-time, memoryless, additive
white gaussian noise (AWGN) channel. For this channel, the input and output are

related at any time instant (channel use) j by
T =85+ 1y (1‘1)

where the input s; is an arbitrary real number, the noise term n; is a zero mean,
gaussian random variable with variance o2, and r; is the channel output. We show
that, in case of energy constraints at the channel input, significant coding gains are
practically achievable by using fixed-composition codes, especially in moderate to high

signal-to-noise ratio cases, as anticipated in [Gal86].

1.1 Fixed-Composition and Independent-Letters Codes

A fixed-composition code of blocklength N is a code each codeword of which contains

cach code letter ¢; the same number of times, n; times, where the code letters come from
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a finite set, A = {aj,az,...,ax}, called the code alphudet. Obviously,
ny+ng 4 -+ np = V. (1.2)

Normalizing the [requency of occurance of each code latter by the blocklength, we get

a probability distribution Q = {¢ : ! = 1,2,..., K'} on the code alphabet. That is,

defining
q;é% =12 F, (1.3)
we have i
>0 ;1=1,2,...,K,and 3_q=1. (1.4)
i=:1

Hence having fixed the code alphabet A, the parameters N and @ define a fixed-
composition code, as does the set of letter frequencies alone. Throughout this text,
pair (N, Q) denotes the parameters of such a fixed-composition code. Without loss of

generality we assume that none of the letter probabilities is zero.

On the other hand, an independent-letters code is such a code that each codeword
component is assigned the code letter a; with probability ¢;, independent of all other
component assignments both in the same codeword anc in other codewords. Therefore,
for independent-letters codes, the blocklength and the probability distribution over the
code alphabet are independent parameters. For fixed-composition codes, observe that,
given the probability distribution, the blocklength can take certain values so as to make

sure that ¢V is an integer for all /.

In applications, one encounters various channel input constraints. Among these
are, for example, runlength constraints in magnetic recording applications, charge con-
straints in DC free communication lines, spectral constraints in telephone lines, average
or peak power constraints, energy constraints, etc. The theory indicates that, under
input constraints, one may achieve significant coding gains by using fixed-composition
codes rather than codes that are not restricted in this manner [Sha59]. Thus, we are mo-
tivated to compare fixed-composition codes with independent-letters codes in particular.

Here, we have to explain what we mean by coding gain.

1.2 What is Coding Gain?

We measure the coding gain by the improvement in cutoff rate Rg of sequential decoding.
That is, fixed-composition and independent-letters ensembles are compared with respect
to their cutoff rates. This makes sense when trellis coding along with sequential decoding
is considered since sequential decoding can be used successfully for all rates below the

cutoff rate. In other words, it is possible to build sequential decoders that can correctly
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recover the message with probabilities approaching one as much as desired by increasing
the constraint span I of the trellis code provided that the communication rate is bounded
by Rp. More important than that, increasing L does not result in an extra computational
cost. The significance of Ry lies mainly in this fact, i.2. in its being the computational
cutoff rate of the sezuential decoding. For a detailed discussion of why Rg is taken as

the quantity of primary interest, one may refer to [WcJ65, p.440] and [WoK66].

In fact, theoretically both trellis and block codes exhibit an error performance that
improves exponentially with L; but, whether realizable decoders for large L exist or not
is the basic question. In this regard, fixed-composition trellis codes are more promising
since there exist sequential decoders that can successfully decode such codes for large L
and communication rates below cutoff rate. Within the scope of this work, however, no
effort is made on specific aspects of trellis coding and sequential decoding parts of the

problem. Only the cutoff rates of the two ensembles are compared.

1.3 Background and Motivation

Let C4, Cp and C¢ be three block codes over R each having A equiprobable codewords
of blocklength N for the AWGN channel and satisfy the shell, sphere and average power
constraints respectively. That is, each codeword s = (s, 82,...,5n) € RY in C4 and Cp

satisfies the constraints

N
IsI*£Y 2= NE (1.5)
Ji=1
and
Is|P<NE (1.6)

respectively, and Ce satisfies

) M 1 N ’
> Pl =32 372 sm; < NE (1.7)
seCc m=1 =1
for some positive coustant E (joules/ch.use). Observe that the first two codes can be
recognized respectively as two sets of M points on the surface of and on or inside an
N-dimensional euclidean sphere of radius v/ /N £; that is why these are said to satisfy

shell and sphere constraints respectively.

Now consider random coding over the corresponding three code ensembles {C4},
{Cg} and {C¢}. Shannon [Sha59] showed that the ensemble average of the probability
of maximum likelihood decoding error for {C4} is smaller than those for {Cp} and {Cc}.
This fact can be justified heuristically by observing that {C4} is a subset of {Cg} which

in turn is a subset of {C¢:} and, {Cp} and {C¢} contain some very poor codes that are not
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contained in {C4}. Therefore, if a code is to satisfy a1 energy constraint, it is desirable
to have all codewords catisly the constraint with equality. Since fixed-composition codes
fulfill this requirement, they are expected to be beneficial. However, at this point, one
has to make sure that it is really worth trying fixed-composition codes, i.e., there is a
significant, improvement which fixed-composition codes promise to provide so that one
can undertake the additional difficulties in encoding and decoding fixed-composition

codes.

Consider block coding over the AWGN channel described in the previous section
and let N be the blocklength. Suppose that inputs to the channel are generated at a rate
R bits per channel use. Then there exist M = 2VR distinct messages to send through the
channel and one has to associate a distinct codeword 3,, = (Sm1, Sm2,- .-, Smn) to each
message m. Shannon [Sha59] showed that one can find at least one set of M codewords

{sm}, constrained only in energy by
A N
|sm [P= > 82, <NE ;m=1,2,..., M, (1.8)
i=1

so that the probability of maximum likelihood decodirg error is bounded by

Porror < 27NEE-R) 0 < R < R} (1.9)
where
. O logye A A% 1 1 / A? : ,
= 22 = 4= = = ts/ch. :
Ry 5 1+ 3 1+ , + 2log2 5 1 +\ 1+ 1 bits/ch.use, (1.10)
and E
a L .

is the signal-to-noise ratio [WoJ65, pp.309-311], [Gal68,pp.333-343].

It is also shown in [Sha59] and [Gal65] that the cutoff rate for {C4} is equal to
R%. Recall that the fixed-composition code with parameter (I, @) is a code over a finite
quantization of the real line whereas, in deriving R}, Shannon and Gallager considered
codes of arbitrary blocklengths with code letters being arbitrary real numbers. Noting
also that fixed-composition codes satisly the shell constraint, it follows that cutoff rate

for fixed-composition ensemble approaches Rf as the quantization is made finer.

On the other hand, Gallager [Gal86] considered random coding for the AWGN
channel under the shell constraint and showed that, in the limit of large signal-to-noise

ratio,

)} = 0.28 bits/ch.use (1.12)

where .
C= Elogz(l + A) bits/ch.use (1.13)
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Figure 1.1: €, Rg and R gqussian over AWGN channel.

is the capacity of AWGN channel.

Now counsider the independent-letters code enserable in which the code letters are
selected independently from a zero mean gaussian distribution with variance . The

cutoff rate for this ensemble is given by
1 A,
Ro gaussian = ilogz(l + E—) bits/ch.use. (1.14)

It can be shown that, in the limit of large signal-to-noise ratio, we have
1 :
RS~ Ro gaussian = E(log.zc — 1) = 0.22 bits/ch.use, (1.15)

which is a significantly large gap. On the other hand, for low signal-to-noise ratios, we

have
Ry = Rogaussian = C/2 7 AJ4 (1.16)

which shows that ne coding gain can be achieved for low signal-to-noise ratios.

Although choosing code letters from a gaussiar. distribution does not maximize

the cutoff rate of independent-letters ensembles and there exist already better codes
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achieving higher cutoff rates’, this result together with the previous observations suggest
that some benefit may result from using fixed-composition codes especially at moderate
to high signal-to-no:se ratios. These cutoff rates are shown in Figure 1.1 to clarify the

above discussion.

1.4 Summary of Results

As stated before, it is theoretically expected to achieve some coding gains by using fixed-
composition codes rather than independent-letters codes. In this thesis work, our original
contribution is to show that significant improvements in cutoff rate can be achieved in
practice by using fixed-composition codes. Showing this requires computation of cutoff
rates of various fixed-composition ensembles-a task involving certain computational dif-
ficulties which are discussed in Appendix B. The results of these computations indicate
that, for certain fixed, finite code alphabets, it is possible to bridge the gap between the
cutoff rate for optimum? independent-letters ensembles and R by up to 94.5% using
fixed-composition codes of blocklength 40. These resuits together with those of asymp-
totic analysis of the cutoff rate for fixed-composition ensembles as blocklength tends to
infinity are summarized and discussed in Chapter 2. The optimization of cutoff rate for
independent-letters ensemble and the mathematical details of this asymptotic analysis
are discussed in Appendices A and C, respectively. Finally, we conclude in Chapter 3

by discussion of further research topics.

'Suppose E = 0.55 and o = 0.25. Then Ro,gaussian = 0.535. But, our results show that a cutoff
rate of 0.543 can be achieved by using an independent-letters code over a finite code alphabet (see Table
2.6).

2Here, the optimality of independent-letters ensembles is in the restricted sense that we optimize the
cutoff rate over all probability distributions on a finite code alpl.abet, not on an unquantized one.



Chapter 2

COMPARISON OF R; FOR
FIXED-COMPOSITION AND
INDEPENDENT-LETTERS
ENSEMBLES

In this chapter, the cutoff rates for the ensembles of fixed-composition and independent-
letters codes over the energy constrained AWGN channel are compared for a particular
finite code alphabet. Here, the cutoff rate for the ensemble of independent-letters codes

is optimized over all probability distributions on the code alphabet.

2.1 Mathematical Preliminaries

Let A= {a;:1=1,2,..., K} be the code alphabet and Q = {¢ : { = 1,2,..., K} be an
associated probability distribution. Suppose that A ard @ satisfy the energy constraint
K

qua,? < K (2.1)

=1
for some E > 0.

First, consider the ensemble of independent-letters codes over A containing M =
2NE codewords of blocklength N in which any codeword component s; is assigned the
code letter a; with probability ¢ independently as stated in Section 1.1. Observe that
the union of all codes in this ensemble is AN. The cutoff rate for this ensemble is

Rojie=—slogy Y Y P(s)P(s)e /87" (2:2)
sEAN s'e AN
where

N
P(s) = H P(s;) (2.3)

J=1
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is the probability of codeword s and

N 1/2
d(s,s) 2 || s - ' || = (Z (s5 - 5'1‘)2> (24)
J=1

is the euclidean distance between s and s’. Since codeword components are assigned

code letters independently, this expression reduces to [WoJ65, p.316]

K

K
Rou.(Q) = —10822 Z’]lq} gmloimanl*/80%, (2.5)

=1 h=1

On the other hand, the cutoff rate for the ensemble of fixed-composition codes

over A containing M codewords each with composition (N, Q) is given similarly by

1 ) —d2(s,s')/80> )
Bojee=—logy Do D0 P(s)P(s))em e (2.6)
SEFN,Q S'€FN,0
where Fp g is the set of all (N, Q)-composition codewords and P(s) = 1/|Fn,g| for all
s € Fn,g. Here, | Fpn gl is the cardinality of Fy o and is given by
N!

—_— 2.7
[ (aN)! &7

|Fnel =

Now, let s; and s; be two codewords in Fn ¢ and s’; be a permutation of s;.
Then observe that there exists a codeword s’, the same permutation of s, such that

d(s';,s't) = d(si,s). Therefore, we have
1 , _ !
RO,fcc = —j-v-log2 Z P(S) ( Z P(s')e d*(s,s )/802) (28)
SE}-N,Q SIGFN,Q

where the inner summation is the same constant for all s € Fy,g. Finally, it follows

from this observation that

1 1 ~ ] |
RO,fcc(]V, Q) = _NlogZIJ_-_(_‘?—l Z e d2(S,Sr)/8 2 (29)
"l s€FN.Q

where s, € Fn g is a fixed but arbitrary reference codeword.
In Appendix A, we discuss the optimization of Rg . over () under an energy con-

straint. There, we show that the optimum probability distribution and the corresponding

cutofl rate, denoted respectively by Q* and R ., can be expressed as functions of FE by
qr(E):ﬂllE"FﬂlO ) l= 172a-"7I(7 (210)

and
Ry 4.(B) = ~logy(a2 B + o E' + ) (2.11)
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N [Pl T
[0 25200
20 R117739600

30 | 3.885697753 x 10°°
40 | 2.187409495 x 1071

Table 2.1: |Fpn g for a four-letter alphabet with @ = {0.2,0.3,0.3,0.2}.

where {f31;}, @g, @; and oy are functions of the code alphabet A and the noise variance a?,
and E is to satisly E,,;, < F < Ey, for some Egp > Fpin > 0 so that (2.1) is satisfied
with equality (see Appendix A). Therefore, it is reasonable to compare Rj ;. .(E) and
Ro,fee(N,Q*(E)) at each E € [Epin, Lsqi] such that Ngf(EF) is an integer, which is

indeed the main aim of this work.

The computation of Rg sec(N,@*) for finite N involves the enumeration of all
| Fnv,+] codewords in Fy o«. Unfortunately, the complexity of this enumeration task is
exponential in N. To have an idea about how fast the complexity increases, take the
numerical results in Table 2.1 for a four-letter alphabet. For larger alphabet sizes, the
complexity is even higher. Despite these huge numbers, cutoff rates are computed for
various probability distributions on a four-letter alphabet and blocklength being equal
to 40. The details of this computation task are discussed in Appendix B. This problem
of computational complexity leads us to study the asymptotic behavior of Ro, (N, Q%)

as N tends to infinity which we discuss in Appendix C.

We are now in a position to summarize and discuss the results of comparison of
5.i1c and Ro scc(N,Q*) for N = 40 and co where the code alphabet is fixed to be the
four-letter symmetric alphabet Ay = {£0.5,£1.5} and the noise variance o?

0.05 to 0.4 in steps of 0.05.

runs from

2.2 Comparison of Rf ;. and Ry .

The results of Appendix A show that the probability distribution * which maximizes

Roi1c over A4 is symmetric, i.e.
gy = q5, 4 = 4¢3, and hence g5 = 0.5 — ¢ (2.12)

as one should expect due to the symmetry of the code alphabet. It is also shown in

Appendix A that, regardless of the value of o2,

g = —0.0625 + 0.25£. (2.13)
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From these observations, it [ollows that

4

E = Y q¢af (2.14)
I=1
= 2.(-0.0625+ 0.25E) - 1.5% + 2 - (1.5625 — 0.25E) - 0.5” (2.15)

as desired. Now suppose that we wish to compute Rg s.(40,Q*). Then the letter
probabilities have to be multiples of 0.025. Notice that the choice of £ = 0.35 +
0.1k, k = 0,1,...,17 yields all such nontrivial probability distributions on A4*. The
cutoff rates RSY”C and Ro g for Ay are compared ir. Tables 2.2-2.9 for N = 40 and
0% = 0.05,0.10,...,0.40. In these tables, E is a free parameter running from E,;, to
Lgqr in steps of 0.10. These tables also include R§ (1.10) in order to show the extent to
which the fixed-composition code imnproves the cutoff rate. As a measure of this quantity,

the percentage improvement factor defined as

*
_ Rorfcc - RO,HC

n= — x 100 (2.16)
RE — R ;.

is also included in these tables. These results are also depicted in Figures 2.1-2.8 together
with the asymptotic values that Ro f.c(N,Q*) takes as N tends to infinity. In these
figures, Ro rec(N, Q) values for all possible N < 40 are depicted. The circles show
Ro,5cc(40,Q*) and the diamonds below the circles correspond to Rg seo(N,Q*) for N <
40. For example, in [igure 2.1, the diamonds at 2 = 1.05 correspond to blocklengths of

10, 20 and 30, respectively starting from the one at the bottom.

1Refer to Appendix A for the values of £ and . for Ay.
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2.2 T T I - I
o1 Roee(N,Q*); N <40, ~
2.0 - e: Rgy.(40,Q%) / -
7 Rosec(00,Q%)
1.8 - e o —
Ry -~ p
g ' - )
T 4 3 §
T — /". / - - < -
1.6 - /// //fy > o
A < o
/ d 8' ,/"r' O
1.4 - s o —
. o
1.2 - : o . _
1.0 = 4 "Rs,tlc T
0.8 ] | | | |
0.2 0.4 0.6 0.8 1.0 1.2

Table 2.2: Comparison of &7 ;. and Ro, fcc lor A4 and o? = 0.05.

energy per ch.use, I

Figure 2.1: Rj ;). and Ro, jc(N,Q*) ‘or o* = 0.05.

E a O.ile Ro,sec Ry N
0.35 [ 0.025 | 1.019047 | 1.074402 | 1.227390 | 26.6
0.45 1 0.050 | 1.149965 | 1.234435 | 1.386135 | 35.8
0.55 | 0.075 | 1.277097 | 1.362302 | 1 516461 | 35.06
0.65 1 0.100 | 1.398178 | 1.466158 | | 626947 | 29.7
0.75 1 0.125 | 1.510515 | 1.550317 | 1.722812 | 18.7
0.85 1 0.150 | 1.611058 | 1.617367 | 1.807462 | 3.2
0.95 1 0.175 | 1.696540 | 1.668961 | 1.883242 | -14.8
1.05 { 0.200 | 1.763726 | 1.706168 | :.951830 | -30.6
1.15 1 0.225 | 1.809738 | 1.729655 | 2.014472 | -39.1
1.25 1 0.250 | 1.832420 | 1.739781 | 2.072114 | -38.6

1.4

11
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0
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0.6 ° | | | | |
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

energy per ch.use, F

Figure 2.2: R} ;. and Ry (N, Q*) for o2 = 0.10.

E

*
i

*
0,tlc

R(),fcc

Eg

n

0.35

0.025

0.747307

0.803548

(0.825997

71.5

0.45

0.050

0.856146

0.940396

0.964115

78.0

0.55

0.075

0.961877

1.053851

1..080826

77.3

0.65

0.100

1.063106

1.149289

1.181692

72.7

0.75

0.125

1.158227

1.229599

1.270414

63.6

0.85

0.150

1.245454

1.296544

1.349558

49.1

0.95

0.175

1.322875

1.351262

1.420966

28.9

1.05

0.200

1.388544

1.394495

1.486001

6.1

1.15

0.225

1.440605

1.426704

1.545698

-13.2

1.25

0.250

1.477440

1.448128

1.600861

-23.7

1.35

0.275

1.497820

1.458811

1.652127

-25.3

Table 2.3: Comparison of R(’;,”C and Ro, fee for Ay and 02 = 0.1.
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Figure 2.3: Rf ;. and Ro jec(N,Q*) for o = 0.15.

E

*
41

RS ite

RO,fcc

Rg

n

0.35

0.025

0.575721

0.618477

0.625949

85.1

0.45

0.050

0.670384

0.737019

0.746369

87.7

0.55

0.075

0.762523

0.838728

0.850821

86.3

0.65

0.160

0.851193

0.926770

(.942769

82.5

0.75

0.125

0.935327

1.002984

1.024744

75.7

0.85

0.150

1.013746

1.068544

1.098620

64.6

0.95

0.175

1.085192

1.124231

1.165808

48.4

1.05

0.200

1.148362

1.170561

1.227390

28.1

1.15

0.225

1.201970

1.207860

284213

7.2

1.25

0.250

1.244815

1.236293

336948

-9.2

1.35

0.275

1.275859

1.255888

]
]
1.386135
]

-18.1

1.45

0.300

1.294304

1.266531

1.432216

-20.1

1.6

Table 2.4: Comparison of Rf ;. and Ro s for Ay and o? = 0.15.
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Figure 2.4: ng,-,c and Ry (N, @*) for o = 0.20.

E

0

*
0,tlc

RO,fcc

Ry

n

0.35

0.025

0.467204

0.500028

(.503806

- 89.7

0.45

0.050

0.551395

0.604260

0.609554

90.9

0.55

0.075

0.633489

0.695999

(.703306

89.5

0.65

0.100

0.712809

0.777156

0.787200

86.5

0.75

0.125

0.788595

0.848917

(.862939

81.1

0.85

0.150

0.860022

0.912074

0.931865

72.5

0.95

0.175

0.926204

0.967165

0.995041

59.5

1.05

0.200

0.986220

1.014555

1.053312

42.2

1.15

0.225

1.039142

1.054471

1.107359

22.5

1.25

0.250

1.084073

1.087032

1.157735

4.0

1.35

0.275

1.120188

1.112252

1.204896

-9.4

1.45

0.300

1.146776

1.130046

1.249217

-16.3

1.55

0.325

1.163291

1.140216

1.291016

-18.1

1.65

0.350

1.169378

1.142430

1.330560

-16.7

1.8

Table 2.5: Comparison of R ae and Ro, e for A4 and o2 =0.2.
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Figure 2.5: Rf ;. and Ro foo(N,Q*) lor 0% = 0.25.

E

*
US!

R it

-RO,fcc

R5

n

0.35

0.025

0.393180

0.418942

(0.421267

91.7

0.45

0.050

0.468994

0.511527

0.514992

92.5

0.55

0.075

0.543042

0.594624

(.599559

91.3

0.65

0.100

0.614822

0.669408

0.676304

88.8

0.75

0.125

0.683776

0.736654

0.746369

84.5

0.85

0.150

0.749301

0.796897

(.810710

77.5

0.95

0.175

0.810752

0.850512

0.870118

67.0

1.05

0.200

0.867457

0.897753

0.925247

52.4

1.15

0.225

0.918730

0.938782

0.976638

31.6

1.25

0.250

0.963894

0.973680

1.024744

16.1

1.35

0.275

1.002301

1.002458

1.069942

0.2

1.45

0.300

1.033363

1.025047

1.112554

-10.5

1.55

0.325

1.056577

-1.041303

1.152849

-15.9

1.65

0.350

1.071550

1.050983

1.191061

-17.2

1.75

0.375

1.078020

1.053719

1.227390

-16.3

Table 2.6: Comparison of R ;. and Ro, fec for A4 and o? = 0.25.

15



CHAPTER 2.

1.2

1.0

0.8

0.6

COMPARISON OF Ity I'OR F.CC. AND I.L. ENSEMBLES

0.6

0.8 1.0

1.4 1.6

energy per ch.use, £

1.8

Figure 2.6: Rf ;. and Ro, jc(N,Q*) for o = 0.30.

E

q

Ra,ilc

RO,fcc

a2

U

0.35

0.025

0.339533

0.360186

0.361775

92.9

0.45

0.050

0.408435

0.443185

1).445636

93.4

0.55

0.075

0.475836

0.518819

0.522369

92.4

0.65

0.100

0.541354

0.587829

0.592828

90.3

0.75

0.125

0.604568

0.650731

0.657785

86.7

0.85

0.150

0.665028

0.707888

0.717922

81.0

0.95

0.175

0.722250

0.759561

0.773825

72.3

1.05

0.200

0.775731

0.805931

0.825997

60.1

1.15

0.225

0.824954

0.847112

().874868

44.4

1.25

0.250

0.869402

0.883161

(0.920803

26.8

1.35

0.275

0.908567

0.914083

(0.964115

9.9

1.45

0.300

0.941974

0.939628

1.005073

-3.4

1.55

0.325

0.969189

0.960288

1.043910

-11.9

1.65

0.350

0.989844

0.975285

1.080826

-16.0

1.75

0.375

1.003648

0.984556

1.115997

-17.0

1.85

0.400

1.010399

0.987713

1.149574

-16.3

2.0

Table 2.7: Comparison of Rj ;. and Ro,fcc for A4 and c? =10.3.

16



CHHAPTLER 2.

1.2

1.0

0.8

0.6

COMPARISON OF 8o FOR I'.C. AND I.L. ENSEMBLES

energy per ch.use, F

Figure 2.7: R§ ;1. and Rp jeo( N, Q*) for o = 0.35.

E

*x
41

*
0.ilc

RO,fcc

R

Ul

0.35

0.025

0.295858

0.315733

(.316893

93.6

0.45

0.050

0.361959

0.390774

0.392600

94.0

0.55

0.075

0.423773

0.459979

().462649

93.1

0.65

0.100

0.484004

0.523830

0.527600

91.4

0.75

0.125

0.542328

0.582674

(.587986

88.4

0.85

0.150

0.588400

0.636764

0.644293

86.5

0.95

0.175

0.651851

0.686283

0.696959

76.3

1.05

0.200

0.702296

0.731359

(0.746369

65.9

1.15

0.225

0.749337

0.772074

0.792862

52.2

1.25

0.250

0.792574

0.808469

0.836734

36.0

1.35

0.275

0.831609

0.840546

(.878242

19.2

1.45

0.300

0.866056

0.868267

(1.917612

43

1.55

0.325

0.895556

0.891552

0.955040

-6.7

1.65

0.350

0.919784

0.910271

0.990700

-13.4

1.75

0.375

0.938460

0.924236

1.024744

-16.5

1.85

0.400

0.951362

0.933173

1.057305

-17.2

1.95

0.425

0.958332

0.936686

1.088504

-16.6

2.2

Table 2.8: Comparison of RE e and Ro e for A4 and o? = 0.35.
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Figure 2.8: Rf ;. and Ro yo.(N,Q*) for o2 = 0.40.

E @ RS e Ro,sec RS n
0.35 | 0.025 | 0.266945 | 0.280964 | 0.281849 | 94.1
0.45 | 0.050 | 0.325114 | 0.349336 | 0.350747 | 94.5
0.55 | 0.075 | 0.382171 | 0.412995 | 0.415071 | 93.7
0.65 | 0.100 | 0.437882 | 0.472264 | (0.475199 | 92.1
0.75 1 0.125 | 0.491995 | 0.527382 | 0.531503 | 89.6
0.85 1 0.150 | 0.544238 | 0.578528 | (.584336 | 85.5
0.95 [ 0.175 | 0.594324 | 0.625831 | 0.634025 | 79.4
1.05 1 0.200 | 0.641955 | 0.669384 | 0.680868 | 70.5
1.15 | 0.225 | 0.686819 | 0.709246 | 0.725130 | 58.5
1.25 ] 0.250 | 0.728601 | 0.745446 | (.767051 | 43.8
1.35 10.275 | 0.766985 | 0.777986 | 0.806841 | 27.6

1 1.45 | 0.300 | 0.801662 | 0.806836 | 0.844690 | 12.0
1.55 | 0.325 | 0.832333 | 0.831937 | 0.880763 | -0.8
L.65 | 0.350 | 0.858721 | 0.853196 | 0.915210 | -9.8
1.75 1 0.375 | 0.880575 | 0.870473 | (.948162 | -14.9
1.85 | 0.400 | 0.897680 | 0.883576 | 0.979737 | -17.2
1.95 | 0.425 | 0.909863 | 0.892232 | 1.010040 | -17.6
2.05 | 0.450 | 0.916995 | 0.896039 | 1.039164 | -17.2

Table 2.9: Comparison of Rf ;. and Ro,scc for A4 and o? = 0.4.
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2.3 Discussion of Results

Now, recall that [E,.;,, Eg) is the interval for £ on which the energy constraint (2.1)
is satisfied with equality. Therefore, as stated in Chapter 1, we expect that fixed-
composition codes provide coding gains for E € [E,,;,,, Es]. The results are in accor-

dance with our expectation (see Figures 2.1-2.8), i.e.,
Ro)fcc(oo, Q*) > RS,[IC for Emin <E< Esat (217)

and
Ro,jec(00, Q%) = RS 4y, at E = E,4, and Eyqy. (2.18)

Here, we leave (2.18) as a conjecture the proofl of which needs further work. But, since
Ein and Egq; are the boundary points of the region on which the energy constraint is

satisfied with equality, it is quite normal that one expects no coding gain at these energy

values.

The trend common to Figures 2.1-2.8 indicates that for £ > E,,; we have
Ro,fce(00,Q*(E)) = R; 4.(E) = B o Esar) (2.19)

justifying the use of label ‘saturation’ for the situaticu. For E < Fp;,, to argue in a
similar way is difficult; because, in this case, the size of the code alphabet K is to be

decreased and, hence, everything changes.

For fixed 02, as E gets closer to E,, RS,“C starts beating Ro rc.(40). Having noted
above that Rf ;. and Rg fec become asymptotically equal at Es,; as N tends to infinity,
we should increase the size of the code alphabet in o:der to change the picture. This
result is in accordance with the general statement that the cutoff rate for an ensemble
of codes over a finite code alphabet saturates as signal-to-noise ratio increases and one

should increase the alphabet size to achieve higher cu%off rates for large signal-to-noise

ratios.

Observe that for fixed o2, the percentage improvement factor peaks around E =
0.45 and then decreases monotonically. This is because Ry s and R, salurate for

large F whereas Rj increases monotonically.

The results indicate that fixed-composition coces fare significantly better than
independent-letters codes: Improvements from 35.8% {Table 2.2) up to 94.5% (Table
2.9) in the percentage improvement are achievable by using fixed-composition codes over

A4 with parameter (40,Q*). Observe that in going frora 2 = 0.4 to 0.05, the percentage
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Figure 2.9: R¥, env{Ro sec(00,Q*)} and enu{RSﬂ-lc} for 02 = 0.1.

improvement factor decreases monotonically for all F values, in other words, (40, Q*)-
composition codes over A4, start doing worse as 0% decreases. Another observation in
the same direction is that the crossover £ after which Roiic > Ro,fcc(40,Q*) decreases
as 02 decreases. So, similarly for small o2 values, i.e. for large signal-to-noise ratios, we
should increase the alphabet size to achieve a further improvement provided that the

2 increases, R, Ro, fcc

gap between Rf and Rj ;. is significantly large. Observe that as o
and Rs,ilc get closer and closer to each other at £ close to Ep,;,. An abrupt change of
this kind in the behavior of these cutoff rates can be recognized in going from o2 = 0.05

to 0.10.

The above discussion is made for N = 40. But, igures 2.1-2.8 also reveal that as
o? increases (signal-to-noise ratio decreases) even smaller values of N provides coding

gains.

As the need of increasing the size of the code alphabet arises for large signal-to-
noise ratios, in Figure 2.9, we compare the envelopes of Ro ii.(F) and Rg,fcc(00, @*(E))
for Ay, As, ..., As1, 02 = 0.1, and E € [Epin(K = 4), Egq(K = 16)]. This figure shows
that using code alphabets of the particular form defined by (A.23), it is possible to bridge

the gap between R}, and R§ by 56% for high signal-to-noise ratios. To obtain closer

e
cutoff rates to R§, we should definitely use code alphabets which are finer quantizations



CHAPTER 2. COMPARISON OF Eo FOR F.C. ANJ L. ENSEMBLES 21

of the real line.

Finally, we finish this chapter by observing that, ror relatively medium signal-to-
noise ratios at which it is still reasonable to use the four-letter symmetric alphabet Ay,
we can achieve cutolf rates within approximately 1% of R} by using fixed-composition
codes of blocklength 40. This result has a practical significance as will be discussed in

Chapter 3.



Chapter 3

CONCLUSION AND
FURTHER RESEARCH
TOPICS

The results discussed in Chapter 2 prove the basic claim stated in Chapter 1: For medium
to high signal-to-noise ratios, one can achieve significant coding gains by using fixed-
composition codes rather than codes selected from an independent-letters ensemble even
when the selection is done from an optimum distributioa. It is shown that for moderate
signal-to-noise ratios it is possible to achieve cutoff rates within approximately 1% of
R} by using fixed-composition codes of blocklength 40 aver a four-letter symmetric code

alphabet.

This is an important result as it is stated in Chapter 1 that fixed-composition codes
are expected to achieve cutoff rates getting closer and closer to Rj as the quantization is
made finer. On the other hand, a blocklength of 40 is a reasonable one for practical pur-
poses. Arikan [An89] has recently proposed a method for constructing fixed-composition

trellis codes with smallest possible degree which is independent of the blocklength.

Finally, we conclude by pointing out two topics that may be of interest for further
research. I'irstly, for relatively larger values of signal-to-noise ratio, the need of increasing
the size of the code alphabet arises as the results of Chapter 2 indicate. One may seek
ways of computing cutofl rates of fixed-composition codes over code alphabets of sizes
larger than 4. Secondly, as also pointed out in [Ar189], the sequential decoding of fixed-
composition codes needs to be investigated further. Namely, the problem stems from
the memory introduced by the fixed-composition constraint; hence, optimum metrics for

sequential decoding require excessive computation.

22



Appendix A

Optimization of Rj ;. under Energy
Constraint

Suppose that the code alphabet A of size K is fixel. Rewriting the expression for

Ro,u:(Q) (2.5) as [WoJ65, p.354]

K K
Ro,ite(@) = —logy > > qibimgn (A.1)
I=1 h=1
where
by 2 e~ /577 = gy, (A.2)
and
A
din = |y — ap| = du, (A.3)

our objective is to find the probability distribution ()* for which Rg ;. is maximum,

subject to an energy constraint. This is same as minimizing

K K
e~ Rojitc — Z Z q1bing,, (A.4)

=1 h=1

over all valid probability distributions @ on A such that A4 and @ satisfy the energy
constraint (2.1).

A.1 Minimization of e~ Roit

Let 2Ap and 2X; be Lagrange multipliers. Then we have

K K K
0(11 0 abign - ZAOY a— 2\ quaz] =2 [} bingn — do — Aiaf|

{=1 h=1 =1 =1
1=1,2,...,K. (A5)

23
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Setting each partial derivative equal to zero yields the following set of K inhomogeneous

linear equations:
K
> bimgn = Xo+ Maf ;1=1,2,.. K. (A.6)
h=1

Now, suppose that not only the code alphabet but also the noise variance o2 is fixed.
Then these linear equations can be solved for {¢f} in terms of A\g and A; which can be
determined using the constraints Z{‘zl g =1 and Z,I‘:l ¢fa} = E. Whenever the {gf}
are all non-negative, they maximize Rg i with energy constraint satisfied with equality

and we have

K K K
Yoy atbudh =Y af(ho+ Maf) = Ao+ ME, (A7)
=1 h=1 =1
and hence
R e = —loga(Ao + A1 E) bits/ch.use (A.8)

But, observe that, for large values of F, it may Lappen that no valid probability
distribution {g;} solving (A.G) and at the same time satisfying the energy constraint with
equality exists. This corresponds to the case of having the energy constraint inactive,

or equivalently A; = 0. So, solving (A.6) lor {¢;*'} with Ay set equal to zero, we have
RS, = —logy)o. (A.9)
This solution holds whenever £ > F,,; where
K
Esat = qusatai?; (AlO)
=1
that is why associated quantities are labeled with ‘sat’ standing for ‘saturation’.

This completes the optimization of Rg ;. under an energy constraint. In the fol-

lowing section, we express * and RE;,Z-,C as functions of F for F < Egu;.

A.2 Q" and R, as Functions of £

Recall that we have all by, determined since A and 52 are fixed. Therefore, we can
solve the problem explicitly. Fortunately, the solution has a simple form as the {¢f} are
linear functions of I, and Rf ;. is given by the logarithm of a quadratic function of £

as expressed in (2.11).

Let B71 = [b’m]{\;L:, be the inverse of the matrix B = [b”l]l},\.;Lzl' Then from (A.6)

K K
aq =X (Z Vin | + X4 (Z b’{)la.i) s 1l=1,2,..., K. (A.11)
h=1 h=1
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Imposing the two constraints, we have the following system of two linear equations in

unknowns Ag and Aj:

K
Sar =X +YA =1 (A.12)
=1
and
K
dSgfal =Y+ 2\ = E (A.13)
=1
where
Al KK
X=X X=>5"Vu (A.14)
=1 =1 h=1
Al AE K
Y= M= S vnd (A.15)
=1 (=1 h=1
and
K K
Z = Z Z afb'ipat. (A.16)
I=1 h=1
Solving (A.12) and (A.13) simultaneously, we have
zZ -Y
o=yt 5757 F (A.17)
and y e
A = X7V + X737 E (A.18)
which yields R YV 4 VX
. X2 -1 XY +NRX -
S T X7 7?2 E ;1=12,...,K. (A.19)

Buo Bu
Observe that the constraint that {g/} is a probability distribution implies an allowable

range for E, i.e. assuming 0 < ¢f < 0.5, F has to satisfy Epin £ E < Eppgp where

Eoin = max [0'5 1{fn < 0} — ,310] , (A.20)
1<IKK B

Baz = min_ [0'5 b > 0}~ ,310] , (A.21)
1<IKK B

and 1{.} is the indicator function which takes the value 1 or 0 according to whether its
argument is logically frue or false respectively. Here, we assume that the code alphabets
are restricted to be symmetric around the origin so that 0 < ¢f < 0.5. Now, observe
that Enin < Egat < Fopaz; that is because E,,;, and F,q, correspond to the cases of
using only the lowest and highest energy code letters with non-zero probabilities, and

obviously, {g/*'} that yield Ey is somewhere between the two extremes.

Finally, from (A.8), (A.17) and (A.18), we have che following result:

_‘ X o, = g
Ro (L) = —log, X7 V2 E* + X7 Y2 E+ Xz-y?2|
~ _, \ ~ 7
o2 [¢51 o

Emin S E S Esat- (A22)
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Now, consider a particular class of code alphabets consisting of K equispaced code
letters symmetrically located around the origin with the distance between the adjacent
letters equal to one. That is, consider the code alphabets of the form

K +1
2

A ={a:aq=1- ,I=1,2,...,K}. (A.23)
Then, the optimum probability distribution Q* is symraetric, i.e.,

G =G »1=1,2,.. K. (A.24)

The results of optimization of Rg ;. for Ax , K = 4,5,6,7 and 8 are summarized in

Tables A.1 and A.2. Observe that for A, we have

Emin = 0.5-(—0.5)* 4+ 0.5 (0.5)% = 0.25, (A.25)
Emaz = 05+ (=15 + 0.5+ (L5)" = 2.25, (A-26)
and
‘1f = 1810 + [311 Emin = 0, (A27)
(]'f = :810 + :Bl'l Emaa: =05 (AQS)
imply Bio = —0.0625 and 81, = 0.25 regardless of the value of o%. However, this is not

the case for larger K.
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K| 0% | Enn Ea ag a Qs

4 1 0.05 0.25 1.2928 | 0.6810 | -0.6198 | 0.2397
4 10.10 0.25 1.4185 | 0.7807 | -0.6029 | 0.2125
4 10.15 0.25 1.5404 | 0.8595 | -0.5756 | 0.18068
4 10.20 0.25 1.6577 | 0.8926 | -0.5405 | 0.1630
4 10.25 0.25 1.7751 | 0.9202 { -0.5032 | 0.1417
4 10.30 0.25 1.8944 | 0.9387 | -0.4672 | 0.1233
4 10.35 0.25 2.0158 | 0.9516 | -0.4340 | 0.1077
4 1040 0.25 | 2.1390 | 0.9609 | -0.4040 | 0.0944
5 10.05 ] 0.6093 | 2.0664 [ 0.5305 | -0.2947 | 0.0713
5 10.10 [ 0.6480 | 2.2511 | 0.6383 | -0.3106 | 0.0690
5 10.15 | 0.7023 | 2.4415 { 0.7113 | -0.3085 | 0.0632
5 1020 0.7651 | 2.6443 | 0.7572 | -0.2948 | 0.0557
6 [ 0.05 | 1.0711 | 3.0073 | 0.4375 | -0.1651 | 0.0275
6 | 0.10 | 1.1384 | 3.2470 | 0.5419 | -0.1833 | 0.0282
6 10.15(1.2077 | 3.4768 | 0.6170 { -0.1905 | 0.0274
6 | 0.20 | 1.2749 | 3.7019 | 0.6694 | -0.1904 | 0.0257
6 | 0.25] 1.3421 | 3.9275 | 0.7077 | -0.1865 | 0.0237
7 10.05(1.6340 | 4.1152 | 0.3732 | -0.1023 | 0.0124
7 10.10 ] 1.7346 | 4.4117 {1 0.4707 | -0.1175 | 0.0133
7 10151 1.8404 | 4.6963 | 0.5423 | -0.1249 | 0.0133
7 | 0.20 ] 1.9529 ] 4.9858 | 0.5931 { -0.1267 | 0.0127
8 | 0.05 1 2.2976 { 5.3900 | 0.3258 | -0.0679 | 0.0063
8 10.10 | 2.4308 | 5.7429 | 0.4162 | -0.0799 | 0.0070
8 | 0.15 ] 2.5622 | 6.0746 | 0.4840 | -0.0867 | 0.0071
8 | 0.20 | 2.6915 { 6.4009 | 0.5339 | -0.0897 | 0.0070
8 | 0.25 | 2.8214 | 6.7291 | 0.5722 | -0.0904 | 0.0067

Table A.1: Results of Optimization of Ry ;i for A4 to As.

For Fpin < F < FEg4, the optimum cutoff rate for the independent-letters code

ensemble is given as a function of I by

Rj1(E) = —logy(0 E* + a1 E + an) bits/ch.use.
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b

o? B1o P11 B20 Ba1 F30 B31
* -0.0625 | 0.25 - - - -
0.05 | -0.0879 | 0.1442 | 0.3515 | -0.0768 - -
0.10 ) -0.0972 { 0.1500 | 0.3888 | -0.1000 - -
0.15 | -0.1113 | 0.1585 | 0.4452 | -0.1339 - -
0.20 | -0.1290 { 0.1686 | 0.5160 | -0.1744 - -
0.05 | -0.0973 | 0.0909 | 0.2295 | -0.0226 - -
0.10 | -0.1096 | 0.0963 | 0.2664 | -0.0339 - -
0.15 | -0.1234 | 0.1022 | 0.3077 | -0.0565 - -
0.20 { -0.1376 | 0.1079 | 0.3502 | -0.0737 - -
0.25 | -0.1525 | 0.1136 | 0.3951 | -0.0909 -
0.05 1 -0.0997 | 0.0610 | 0.1536 | -0.0036 | 0.2826 | -0.0347
0.10 | -0.114L ] 0.0658 | 0.1902 | -0.0(57 { 0.2660 | -0.0292
0.15 1 -0.1310 | 0.0712 | 0.2366 | -0.0306 | 0.2328 | -0.0185
0.20 | -0.1510 | 0.0773 | 0.2950 | -0.0485 { 0.1788 | -0.0018
0.05 | -0.0987 | 0.0429 | 0.1038 | 0.0033 | 0.2182 | -0.0177
0.10 | -0.1140 | 0.0469 | 0.1374 | -0.0053 | 0.2093 | -0.0154
0.15 | -0.1311 | 0.0512 | 0.1781 | -0.0155 | 0.1899 | -0.0105
0.20 | -0.1497 | 0.0556 | 0.2245 | -0.0266 | 0.1621 | -0.0038
0.25 1 -0.1700 | 0.0603 | 0.2773 | -0.0387 | 0.1257 { 0.0046

[N

[0.2] o e] Joo} oo} oo} ILNE I | IEN] BN Nerl Rer] Karl el e S P11 IS2 3 N2 Y I

Table A.2: Results of Optimization of Rg ;. for A4 to Ag continued.

And letter probabilities that optimize Rg ;. are given by

G =0mE+pPo ;1=12,..., K.



Appendix B

Computation of Ry ¢

In this appendix, we discuss two enumeration algorithms used in computing Ro seo(N, @)-
The first of them enumerates all codewords in F g in a lexicographical order, whereas
the second divides Fyy g into subclasses of codewords «t equal distances to a fixed refer-

ence codeword and enumerates these subclasses.

B.1 Algorithm 1: Enumeration in Lexicographical Order

Define a lexicographical order on the code letters so that
a] < ap < ---<ag.
The elements of Fp ¢ listed with respect to this lexiccgraphical order start with

aja)...a1a2a3...42043...0K -1 &L\-"(ZK NN/
~~ ~~ r——
alN 2N axcN

The following algorithm enumerates all codewords in the above order [PaW79, p.108].

Let s = (s1,82,...,8n) be the current input to the algorithm.

1. Find the largest ¢ such that s;—1 < s;.

2. Find the largest j such that s;—; <s;.

3. Interchange s;_.; and s,.

4. Reverse the order of the digits $;8i41...5N.

Interchanging ;-1 and s; yields a codeword that comes after s in the list, but not

necessarily the immediate successor of s. Despite this, the first codeword after s has to

29
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have s; in (¢ — 1)-st position; because, s; is the smallest code symbol which is larger
than s;_; and lies to the right of s;_;. This can be seen by observing that s;8;4) ...sn
satisfy
$i 2 Sit1 2 2 SN
since 7 is the largest index such that s;—y < s;. Also after interchanging s;_; and s;, we
have
8§ 2 8ig1 2 - 2 8j—1 2 Si~1 2 8541 2 ... 2 SN;

because j is the largest index such that s;_; < s; and hence, s;_1 > s;41. Therefore,
reversing the order of the digits from i to N in the fourth step yields the smallest possible
otdering of these digits and hence, the immediate successor of s in the list. In Section
B.3 a code implementing this algorithm is given. Unfortunately, this algorithm is not
fast enough to run through huge ensembles. To overcome this difficulty, Algorithm 2,

discussed next, takes advantage of the symmetries inherent in a fixed-composition code.

B.2 Algorithm 2: Enumerating Joint-Composition Classes

Let the fixed reference codeword s, be the first codeword in the lexicographical order
defined in the previous subsection. Then comparing any codeword s with s,, consider

the joinl-composition matriz, W = [wii]i\j—p with w;;’s defined as
J=

i1
wi; = Z H{sm = a;} (B.1)
m=I;+1
where -
L=NY" gm. (B.2)
m=1

In other words, w;; ic the number of a;’s in the subsequence sy, 118742 .. .55, of s which
corresponds to the portion of s, that is reserved for the code letter a;. Observe that j-th

column sum and ¢-tk row sum of W are equal to ¢; N aad ¢; NV respectively. That is,

K Iigs
L Wiy == L L Hsm = aj} = }_J Hem = aj} = ¢;jN (B.3)
1=1 m=IL;+1 m=1
K K Iig i K
Zwi] Z Z 1{‘5’“ - aJ} - Z Z l{sm = (I,]} = 1,+1 - I = qlN (B4)
=1 j=lm=L+1 m=I;+1j=1
N, o e e’
1

Also, observe that corresponding to any codeword s € Fjy ¢ there exists only one joint-
composition matrix whereas many codewords correspond to the same joint-composition
matrix and all codewords in the same joint-composition class are at the same euclidean

distance to the reference codeword s,. Thus, one should expect some computational
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savings by enumerating all joint-composition matrices instead of all codewords in Fp q.
It is an easy task to show that

- I/‘ _2 s S
Ry jee(N, Q) = ——1 ZLI}WI; & (57)/807 )
!

where the summation is over all joint-composition matiices and dy(s;) is the euclidean
distance of any one of [I¥| codewords in the joint-com position class represented by the

matrix W to the reference codeword s,, and

K

(G N)! .
Wl =T1] ,—-)— (B.6)
iy [y wij!
So, one has to enumerate at most
[ Fn.ql

min{|W|}

joint-composition matrices, which certainly indicates a computational saving. An im-
plementation of this idea of enumerating joint-composition matrices is given in Section

B.3. It can be extended so as to compute £ s.. for code alphabets of larger size.
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B.3 Codes Implementing Algorithms 1 and 2

cw is the global array of length N that represents the current input codeword to the
algorithm. The code finds the immediate successor of cw. If the input codeword is the

last one in the list, then it will remain unchanged.

/* Implementation of Algorithm 1 */

void find_next_codeword()

{

int i,j,m,x;

for (1 = N-1; i > 0; --1)

{
if (cwl[i] > cw[i-11)
{
x = cwl[i-1];
for (j = N-1; j >= i; --3)
{
if (ew[j] > x)
{
cwli-1] = cw[j];
cwljl = x;
for (m = 0; m <= (N-i-1)/2; ++m)
{
x = cw[N-1-m];
cw[N-1-m] = cw[i+m];
cwli+m] = x;
}
break;
}
}
break;
}
}
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/* Implementation of Algorithm 2 */

#include <math.h>
#include <stdio.h>

#define max3(a,b,c) (((a>b)7a:b)>c)?((a>b)?a:b):c
#define min(a,b) (a<b)7a:b

int
int
int
int
int

int

nil,n2,n3,n4; /* symbol frequencies */
vi1,v12,v13,v14; /* elements of the */
v21,v22,v23,v24; /* joint-composition */
v31,v32,v33,v34; /* matrix *x/

v41,v42,v43,v44;
block_length;

double no_of_cws;
double N_O;
double R_O;

double fact(n)

int

{

n;

int 1i;
double r = 1.0;

if (n <= 1)
return(r);

else

{
for (i = 2; i <= n; ++i)
r %= i;

return(r);

double no_of_cws_in_class()

{

double x;

fact(nl) * fact(n2) * fact(n3) * fact(n4d);

x:
x = x / (fact(vil) * fact(vi2) * fact(vi3) * fact(vi4));
x = x / (fact(v21) * fact(v22) * fact(v23) * fact(v24));
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/* Implementation of Algorithm 2 */
#include <math.h>

#include <stdio.l>

#define max3(a,b,c) (((a>b)?a:b)>c)?((a>b)?a:t):c
#define min(a,b) (a<b)?a:b

int n1,n2,n3,n4; /* symbol frequencies */
int vi1,v1i2,v13,v14; /* elements of the */
int v21,v22,v23,v24; /* joint-composition */
int v31,v32,v33,v34; /* matrix */

int v41,v42,v43,v44;
int block_length;
double no_of_cws;
double N_O;

double R_O;

double fact(n)
int n;
{
int i;
double r = 1.0;

if (n <= 1)
return(r);

else

{
for (i = 2; i <= n; ++i)
r k= 1i;

return(r);

double no_of_cws_in_class()

{

double x;

fact(nl) * fact(n2) * fact(n3) * fact{(n4d);

X =
x =x / (fact(v1l) * fact(vi2) * fact(vi3) * fact(vi4));
x = x / (fact(v21l) * fact(v22) * fact(v23) * fact(v24));
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x=x/ (
x=x/(
return(x)
}
main()
{
int ali,b

fact(v31) * fact(v32) * fact(v33) * fact(v34));
fact(v4l) * fact(v42) * fact(v43) * fact(v44d));

’

11,a12,b12,a21,b21,a22,b22;

double sum;

double ex

N_O=0.4
nl = n4d =
n2 = n3 =
block_len

no_of_cws

sum = 0.0;

for (wil
for (wi2
for (w21
for (w13
for (w31

wig
wil

all

bi1

for

al2

bi2

for

a2l

b21

ponent,nocwic;

2;

3;

gth = nl + n2 + n3 + n4;

= fact(block_length) / (fact(ni)*fact(n2)*fact(n3)
*fact(nd));

?

; wil <= n1l; ++wil)
; wi2 <= ni-wil; ++w12)

0
0
= 0; w21 <= nt-wil; ++w21)
0; w13 <= ni1-(wil+w12); ++w13)
0; w3l <= ni1-(wiil+w21); ++w31)
= ni-(wil+wi2+w13);
= ni-(wli+w21+w31);
= max3(0,n2-w21-(n3-wi3+n4-wi4) ,12-wi2-(n3-w31+n4d
-w41));
min(n2-w21,n2-w12);
(w22 = all; w22 <= bll; ++w22)

max3(0,n2-(w21+w22)-(n4-wi14) ,n3-w13-(n3-w31+n4
-w41));

It

min(n2-(w21+w22),n3-w13);
(w23 = al2; w23 <= bi2; ++w23)

1l

max3(0,n3-w31-(n3-(w13+w23))-(nd-wi14d) ,n2-(wi2
+w22)-(nd-wai));

min(n3-w31,n2-(wi2+w22));

34



APPENDIX B. COMPUTATION OF Ry rcc

for (w32 = a21; w32 <= b21; ++w32)

{

w24 = nZ-w21-w22-w23;
wé?2
az22

b22
for (w33 = a22; w33 <= b22; ++w33)

{

WO W o

20

= n2-wil2-w22-w32;
= max3(0,n3-(w31+w32) - (n4-(w14+w24)) ,n3- (wi3+w23)
-(n4-(wa1+w42)));

= min(n3-(w31+w32),n3-(w13+w23));

w34 = n3-(w31+u32+w33);
w43 = n3-(w13+w23+w33);
w44 = n4-(wi4+w24+w34);

nocwic = no_of_cws_in_class();
exponent = wi2+w21+w23+w32+w34+w43+4.0%(w13+w31
+Ww24+w42)+ 9.0%(wild+w4l);

sum += nocwic * exp(-exponent / (4 * N_0));

= ~log(sum / no_of_cws) / (block_length * log(2.0));

35
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N[ T T3 [{7]]
10 | 30 sec 1 sec 626
20 - 19 sec 28469
30 - 5 min 21 sec | 412460
40 - 48 min 33 sec | 3228457

Table B.1: Time complexities of Algorithms 1 and 2.

The time complexities of the two algorithms discussed above are compared in
Table B.1 for (N, {0.2,0.3,0.3,0.2})-composition ensemble. 7 and Ty denote the run-
times of the two programs that compute Rg s by using Algorithms 1 and 2 respectively,
and [{W}| denotes the number of distinct joint-composition classes in Fn . One can
see the significant computational savings by comparing the number of distinct joint-

composition classes with the |Fy g| values in Table 2.1.

B.4 Numerical Results of R ;.. Computations

Although R f.c(40,Q*) values with a precision of six sigaificant digits are given in Tables
2.2-2.9, in this section, we tabulate all Ry s.o(V, Q*) data for N < 40 with a precision of
nine significant digits so as to summarize all Rq, ;.. computations carried out in this thesis

work. Tables B.2-B.6 also include Rf ;. data for the sake of immediate comparison.
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o2 B RS .. Ry jee/N o? b il Ry jee/N
0.05 1 0.35 | 1.019047432 | 1.074402093/40 || 0.10 | 0.3 | 0.856145947 0.940396283/40
0.45 | 1.149965011 | 1.164629119/20 0.55 | 0.961877244 | 1.053850651/40
1.234434911/40 0.65 | 1.063105786 | 1.054909688/10

0.55 | 1.277097450 | 1.362301899/40 1.120844952/20
0.65 | 1.398177755 | 1.239642421/10 1.140319953/30

1.381937417/20 1.149289105/40

1,437533477/30 0.75 | 1.158226836 | 1.090187475/ 8
1.466158048/40 1.181589273/16
0.75 | [.510515202 | 1.248391516/ 8 1.209471304/24

1.420158914/16
1.490509220/24
1.527778842/32
1.550316832/40

1.222280721/32
1.229599424/40

1.245453701

1.263279162/20
1.296544070/40

0.85 | 1.611057941 | 1.525034620/20 0.95 | 1.322874600 | 1.351261740/40

1.617367432/40 (1.05 | 1.388543689 1.271224065/10
0.95 | 1.696540129 | 1.668961268/40 1.356856598/20
1.05 | 1.763726129 | 1.442304898/10 1.382429259/30
1.608509997/20 1.394494739/40

1.673136883/30 1.15 | 1.440605117 | 1.426703877/40

1.706167864/40 1.25 | 1.477440354 | 1.064231357/ 4
1.15 | 1.809738485 | 1.729654586/40 1.265595392/ 8
1.25 | 1.832419971 | 1.139006247/ 4 1.344304411/12

1.398111503/ 8
1.520190130/12
1.591739429/16
1.638602131,/20
1.671463505/24
1.695609341/28
1.713973933/32

1.383507145/16
1.406137134/20
1.420643403 /24
1.430686457/28
1.438047484/32
1.443678135/36
1.448127949/40

1.728322480/36 1.35 | 1.497819503 | 1.458810605/40
1.739781356/40 || 0.15 | 0.25 | 0.575720551 | 0.618477354/40
0.10 | 0.35 | 0.747307416 | 0.803547950/40 0.45 | 0.670383731 | 0.727043639/20

0.45 | 0.856145947 | 0.918123041/20 0.737019353/40

Table B.2: Numerical results of Rg s.. computations.
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of | E Rt Ro,jec/N ol | I Qe Rofec/ N
0.15 | 0.55 | 0.762523089 | 0.838728166/40 || 0.20 | 0.35 | 0.467203935 | 0.500027999/40
0.65 | 0.851193312 | 0.877116024/10 015 | 0.551394827 | 0.598576967/20
0.912086273/20 _ 0.604259559 /40
0.922058198/30 0.35 | 0.633489363 | 0.695999383/40
0.926770330/40 0.G5 | 0.712808548 | 0.746179819/10 |

0.767857497/20
0.977133811/16 0.774143148/30
0.991976320/24 0.777155774/40

0.75 | 0.935326622 | 0.925283759/ 8

0.998931952/32 0.75 | 0.788595405 | 0.798637219/ 8
1.002984224 /40 0.832065429/16
0.85 | 1.013746032 | 1.049760284/20 0.841665412/24
1.068544145/40 0.846236021/32
0.95 | 1.085191582 | 1.124230574/40 0.848916894 /40

1.05 | 1.148361673 | 1.097191536/10 [ 0.85 | 0.860022161 | 0.899387490/20
1.147926657/20 | 0.912073506/40
1.163174770/30 0.95 [ 0.926203917 | 0.967164946/40

1.05 | 0.986219829 | 0.963553178/10
0.998549618,/20
1.009304606/30
1.014554582/40

1.170561117/40
1.15 | 1.201969901 | 1.207859632/40
1.25 | 1.244815142 | 0.969490581/ 4

| 1.119925139/ 8

1.171538701/12 1.75 | 1.039142273 | 1.054471317/40
1.195852549/16 1.25 | 1.084073463 | 0.886484928/ 4
1.209771620/20 1.002938218/ 8
1.218785704/24 1.040131211/12
1.225110604/28 1.057529281/16
1.229799383 /32 1.067589111/20
1.233416616/36 1.074161012/24
1.236292975 /40 1.078797170/28
1.35 | 1.275859349 | 1.255887704/40 1.082244991/32
1.45 | 1.204301287 | 1.168916321/10 1.084910115/36
1.235734001/20 1.087032149/40
1.256455480/30 1.65 | 1.120187751 | 1.112252372/40
1.266531410/40 1.45 | 1.146776429 | 1.056958091/10

Table B.3: Numerical results of Rg f.. computations continued.
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39

o | I RS ... Ro,jec/N o? i< RS e Ro.fec/ N
0.20 | 1.45 | 1.146776429 | 1.106779879/20 || 0.25 | 1.25 | 0.963893557 | 0.967282673/28
1.122390341/30 0.969960610/32
1.130045936/40 0.972031344/36
1.55 | 1.163290663 | 1.140215720/40 0.973680440/40
1.65 | 1.169377567 | 1.114459671/20 1.35 | 1.002300664 | 1.002457564/40
1.142430324/40 1.15 | 1.033363115 | 0.967276417/10
0.25 | 0.35 | 0.393179776 | 0.418941694/40 1.006560544/20
0.45 | 0.468993614 | 0.507834979/20 1.018955892/30
0.511526853/40 1.025047260/40
0.55 | 0.543042316 | 0.594623821/40 1.55 | 1.056577378 | 1.041303237/40
0.65 | 0.614821813 | 0.648158197/10 1.65 | 1.071550289 | 1.028327482/20
0.662938851/20 1.050983171/40
0.667302804/30 1.75 | 1.078020353 | 0.948684398/ 8
0.669407538/40 1.015412852/16
0.75 | 0.683775999 | 0.701264557/ 8 1.036985610/24
0.724667530/16 1.047497063/32
0.731471922/24 1.053719246/40
0.734734911/32 |} 0.30 | 0.35 | 0.339532702 | 0.360185665/40
0.736653620/40 0.45 | 0.408434500 | 0.440587558/20
0.85 | 0.749300839 | 0.787651917/20 0.443184964 /40
0.796897179/40 0.55 | 0.475835857 | 0.518818751/40
0.95 | 0.810752243 | 0.850511755/40 065 | 0.541353518 | 0.572348875/10
1.05 | 0.867457204 | 0.859580359/10 0.583070402/20
0.885675078/20 0.586277668/30
0.893785603/30 0.587829384/40
0.897752623/40 0.75 | 0.604568290 | 0.624459385/ 8
1.15 | 0.918730275 | 0.938781538/40 0.641760884/16
1.25 | 0.963893557 | 0.816107155/ 4 0.646844683 /24
0.908979172/ 8 0.649290728/32
0.937453132/12 0.650730627/40
0.950816393/16 0.85 | 0.665027547 | 0.700846413/20
0.958590107/20 0.707887875/40
0.963684128 /24 0.95 | 0.722249701 | 0.759561370/40

Table B.4: Numerical results of Ry f.. computations continued.
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o’ £ 15 41c Ro,jec/N o’ L 0,ile Ro,jec/N

0.30 | 1.05 | 0.775730916 | 0.776152693/10 || 0.35 | 0..45 | 0.361958759 | 0.388846374/20
0.796479014/20 0.390774359/40

0.802825904/30 0.55 | 0.423772903 | 0.459979235/40

0.805931180/40 0.05 | 0.484003690 | 0.512065646/10
1.15 | 0.824951297 | 0.847111968/40 0.520189588/20
1.25 | 0.869401567 | 0.755850769/ 4 0.522641762/30
0.831568973/ 8 0.523830279/40

0.854208412/12 0.75 | 0.542328342 | 0.562426255/ 8
0.864869359/16 0.575721707/16
0.871085771/20 0.579658971/24
0.875162055 /24 0.581556607/32
0.878041942/28 0.582674283/40

0.880184950/32 0.85 | 0.598400106 | 0.631233512/20
0.881841882/36 0.636764147/40
0.883161294/40 0.95 | 0.651850976 | 0.686283062/40
1.35 | 0.908567060 | 0.914083259/40 1.05 | 0.702295735 | 0.707485722/10

0.723773935/20
0.924758914/20 0.728867621/30
0.934863380/30 0.731359128/40

1.45 [ 0.941973553 | 0.892818922/10

0.939828117/40 1.15 | 0.749337451 | 0.772074252/40

1.55 | 0.969189184 | 0.960287651/40 1.25 | 0.792574473 | 0.703579674/ 4
1.65 | 0.989844385 | 0.956548207/20 0.766360029/ 8
0.975284996/40 0.784818535/12
1.75 | 1.003647616 | 0.896220898/ 8 0.793526383/16

0.952706909/16
0.970641998/24
0.979380328/32
0.984555786 /40

0.798606495 /20
0.801937057/24
0.804289422/28
0.806039427 /32
0.807392199/36

1.85 | 1.010398565 | 0.913902764/10

0.963921901/20 0.808469211/40

0.979905507/30 1.35 | 0.831608884 | 0.840345831/40
0.987713095/40 [ 1.45 | 0.866056228 | 0.829307574/10

0.35 | 0.35 | 0.298858491 | 0.315732969/40 0.855780714/20

Table B.5: Numerical results of Ry sc. computations continued.
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o2 | E I Ro e/ N o | L Ry 1. Ro ree/ N
0.35 | 1.45 | 0.866056228 | 0.86:4155238/30 || 0.40 | 1.05 | 0.641954689 | 0.667345921/30
0.868266598 /40 0.669383822/40

0.895556165 | 0.891551523/40 1.15 | 0.686818698 | 0.709245919/40
0.919783600 | 0.894579958/20 1.25 [ 0.728600875 | 0.657726084/ 4
0.910271497/40 0.710485519/ 8

1.75 | 0.038450645 | 0.849412698/ & 0.725810812/12
0.897470893/16 0.733044456/16

0.912546644 /24 0.737263280/20

0.919889179/32 0.740027913/24

0.924236314 /40 0.741979816/28

1.85 | 0.951361727 | 0.870559112/10 0.743431468/32
0.913161762/20 0.744553343/36

0.926606429/30 0.745446356/40

0.933 173273 /40 .35 | 0.766985280 | 0.777985777/10

1.95 | 0.958332120 | 0.936686174/40 1.45 | 0.801661772 | 0.774114452/10
0.40 [ 0.35 | 0.266945353 | 0.280963785/40 0.796360601/20
0.45 | 0.325113759 | 0.347848083/20 0.803388766/30
0.349335875/40 0.806835902/40

0.55 | 0.382170968 | 0.412994978/40 1.55 | 0.832332748 | 0.831937429/40
0.65 | 0.437882425 | 0.463034102/10 1.G5 | 0.858720547 | 0.839929133/20
0.469394785/20 0.853195706,/40

0.471326719/30 1.75 | 0.880574911 | 0.806714518/ 8

0.472264150/40 0.847791937/16

0.75 | 0.491994971 | 0.511326278/ 8 0.860573072/24
0.521847047/16 0.866793029/32

0.524980276/24 0.870473153/40

0.526491864/32 1.85 | 0.897680297 | 0.830265918/10

0.527382439/40 0.866625560,/20

0.85 | 0.544237849 | 0.574079384/20 0.878015520/30
0.578527764/40 0.883576208/40

0.95 | 0.594324421 | 0.625830822/40 1.95 | 0.909862598 | 0.892231742/40
1.05 | 0.641954689 | 0.619851996/10 2.05 | 0.916994853 | 0.873400932/20

0.663177939/20

0.896038891/40

Table B.6: Numerical results of R fc. computations continued.




Appendix C

Asymptotic Analysis of R, fee

Consider the K-letter symmetric code alphabet Ay defined by (A.23) and the associ-
ated probability distribution * which maximizes the cutoff rate for the ensemble of
independent-letters codes over Ag. The computation of cutoff rates for the ensemble
of (N, @*)-composition codes was discussed in Appendix B, and the results were given
for the particular code alphabet A4 and for N = 40 in Chapter 2. Unfortunately, it
was not possible to go beyond blocklengths of 40 and alphabet sizes of 4 due to the
exponentially increasing complexity of the problem. Therefore, one may wonder which
values Rg feo(N,Q*) would take as N tends to infinity. Here, having fixed the code
alphabet and hence determined the optimal probability distribution Q*, we suppress *

to simplify the notation. We define the asymptotic value of Ko fcc by
Royf,;c(oo) = lim RO,fcc(IV)- (Cl)
N—o0

In the following section, the computation of Ry fec(00) is discussed and the error term

eN = Ro fee(00) — Ry jec(N) is analyzed in Section C.2.

C.1 Computation of Ry s..(c0)

From (B.5), we have

/
—NRQ fec — |1 I —d%/(sr)/so’z (C 2)
e Jee = ¥ ¢ . .

; TN,

where V' is the normalized version of the joint-composition matrix W and is defined by
A Wi o .
W — Vij = *1,]r ;4,0 =1,2,..., K. (C.3)
g N

Then, from (B.3) and (B.4), we have

K
> v =1, (C.4)
i=1

42
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N
> qfvi; = qf. (C.5)
=1

Observe that v;;’s can be regarded as transition probabilities on a discrete channel with
K input and K outpnt letters; that is, v;; can be regarded as the probability of receiving

letter j at the channel output given that letter ¢ is sert.

Using the Stirling formula for the factorials, we can approximate |Fin g+| and |V/|
for large N as
[Fn x| ~ NHE@T) (C.6)

and
V| =~ NHVIRY (C.7)

where H(Q*) and H(V|Q*) are unconditional and conditional entropy functions given

by

K
HQ*) ==Y g Ing (C.8)
1=1
and K K
{ K
]I(VlQ*) = —ZZ(]:@U]IL Vij. (Cg)
=1 j5=1

Leaving the verification of this result to be discussed in Section C.2, observe that we

have on the other hand

d(s;) s A N X, & N E( 802 10
S = 2 2 Wiger ~ N L s = NEW@/Sh. (G0

Therefore, combining (C.6), (C.7) and (C.10), (C.2) reduces to

e~ NRo,jec o Ze—Nf(V) (C.11)
v
where
fV) = H(@Q") - HVIQ*)+ E(d/80%), (C.12)

K K
1 ;
= Z ¢ |In— + Z vi; In (v.ijedfi/&’z) . (C.13)
1=1 % i=1 ‘
Form (C.4), it follows that

K K vise 897
f(V)=Zq?Zvijln< > .——>- (C.14)
J

X
1=1 =1 ¢

Notice that f(V') is convex cup in v;;’s; because,

2 *
T?f,,:i>0 Cij=1,2,... K. (C.15)
O(vij)” i
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So, it follows from (C.11) that only one term in the summation becomes dominant as
N gets large. This term is the one that corresponds to the joint-composition matrix V3
which minimizes f(V') over all joint-composition matrices of Fy g«. Observe that the
entries of V3 are multiples of 1/¢*N. That is, for large N, the solution V§ € QF*F;
but, as N tends to infinity the solution becomes more and more likely to be in RF*K,
Since Rg ec(00) is the quantity of interest, the solution V*(= V) € R**E. Hence, to
find Ry, fec(00) we have to minimize f(V') over the set of normalized joint-composition
matrices V € REXK sybject to the constraints (C.4), (C.5) and v;; > 0. Then, Ry, sec(o0)
is given by

Ro,fec(00) = n};n{f(V)} = f(V*). (C.16)

Minimization of f(V): Let {Ag;} and {A;}, i =1,2,..., K, be two sets of Lagrange
multipliers and define

K K
F(V, Aoi, A1j) = f(V) = /\(),'Z’Uij - )‘Uzqz*vij 7 =1,2,..., K. (C.17)

j=1 =1

Then, taking partial derivatives of I” with respect to v,;’s and equating these to zero we

have
o o? /802
1’ v, C " .. - e
—(2—:(1;*1,1‘1 i—;—- +qf —Aoi— Ay =0 ;4,5=1,2,...,K, (C.18)
0v;; q
which implies
v = q}*e_d?i/gaze(’\"‘“”qf_””/qf, (C.19)

Let p; = e*i/% and v = e, then

v = qfe_(1+d-21/8"2)piz/j. (C.20)

Imposing the constraints we have

K K
Z'vij = Z qz‘e_(l'i-d?j/sa'z)uil/j =1 (CZl)
Jj=1 J=1
and
K ' K ) 2 /802
quvu =3 qu* e“(1+ ,‘j/ 4 ),Uil/j — q;\' (022)
i=1 =1

(C.21) implies
3 -1
K
Wi = ((1}\'21/3-6_(1""171/8””)) (C.23)
i=1

Finally, combining (C.22) and (C.23) we have

2 2
.e—d'-J-/Sa

K
14
* * J
(Ij = E :(Ii < 174
1=1

i=1,2,..., K. (C.24)
k\z 1Yk

c—d?k /80’2 /



APPENDIX . ASYMPTOTIC ANALYSIS OF Ry poese: 145

Solving this equation for v; iteratively using

ntl) _ (]; -~ s =1,2,..., K, (0_2,5)
Zﬁ:l [q?e—d?j/&ﬂ (Eﬁ:l V,(Cn)e_d?k/tg”z) J

we have the solution. (Observe that regardless of the initial values of ;s the iteration

)

converges to the same solution up to a scaling factor.) Having found v;’s and hence
i;'s, we have the joint-composition matrix V* that minimizes f(V') and the solution for
Ry fec(00) follows from (C.14) and (C.20)
i KooK s e [t
Ro,jec(00) = —== |3 %1 > v 4i/® (—i—'-) bits/ch.use. (C.26)
— e
J=1

T
eln?2 =

C.2 Analysis of the Error Term

Having discussed the computation of Rg sec(c0), in this section the behavior of the error
term ey = Ro fec(00) — Ro,sec( V) is analyzed. Observe that in approximating Ro, fec(N)
for large N there are two types of errors-one originating from the approximations made
for | Fn,g=| and |V, and the other originating from approximating the summation over
all joint-composition matrices V with a single dominauat term. Both of these errors are

discussed in the following subsections.

C.2.1 Error due to Approximating |Fn o« and |V]

First recall the Stirling formula for the factorials [Gal68, p.530].

n\" |
n! = \/27r'n<~—> e (C.27)

(4

where ¢, is decreasing with n and satisfies 0 < ¢, < 1/12n. Therefore, from (2.7) we

have
o I _ N! _ \/271'N(N/(5)Nr.""~"’ (('28)
MO M (@ N T TS, VIR N (N ) e .
K -1/2 K K )
= <(2FN)I\—1 II q¢> ‘ (H (g5)7® N) NTLi N (C9)
eNA(Q™)
= NH@)+AI(N.Q) (C.30)
where

1 E K -1 N e
A (N,QY) = v eV - Z(Q?’N -3 In(27N) — _—2-111 e (C.31)
: i=1 =1
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Observe that 3IM € R* such that |A;(N,Q*)] < MIn N/N,in other words, Ay(N,Q*) =
O(In N/N) [DeB81]; because, (exy — 1K, €,+N)/N goes to zero with 1/N? and is domi-

nated by In N/N term. Hence, it follows that
lfN Q*, = eN[H(Q*)-I-O(lnN/N)]

eNH(QY) for large .

Similarly, from (B.6) we can show that

V| = eNEVIQN+22(V.Q7V)]

(C.32)
(C.33)

(C.34)

where
K K ( 1)
As(N,Q* V) = ZCQ*N LZGU-J‘JT“ 5 In(27N)
i=1 j=1
K—1 K K K
- In (H qz> - —ln [IIIvi)| (C35)
1=1j=1
InN
= O(——) (C.36)
Hence, it follows that
V| = NU(VIQ*)-0 (1 N/N)) (C.37)
~ NTVIRY for large N. (C.38)
Combining these results, we have
Vi ~NIH(Q*)-H(VIQ)+AN,Q* V)] :
— = Y ' 03¢
Fnon] (C.39)
where
A(N,Q5V) = Ay(N,Q%) = Ax(N,Q™,V) (C.40)
1 K K )2
= —F EN — ZZGq*N + ZZG”U‘I*N + 1[1(2#1\’)
i=1j=1
KE-2 (& i
+ In H g —In H H Vij (C.41)
i=1 i=1j=1
In N
= 0, (C.42)

and (C.11) follows.
over non-zero v;;’s since 0! is defined to be 1.

Here, one point to note is that products including v;; factors are

C.2.2 Error due to Approximating the Summation by the Dominant

Term

Observe that to be exact we have to consider

B_N]zo,/CC e Z e_N[f(‘/)+A([\r,Q*,V)];

Vv

(C.43)
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but, since A(N,Q*, V) term is shown to be O(In N/N) we can neglect it and thus treat
the rest of the problem as in Section C.1. Therefore, forgetting about A(N,Q*, V) term
the following very rough bounds on e=NFo.sec(N) for large N follow from (C.11)

e~ NIV ¢ e=NloseeN) o (N 4 1)fC = NIV*) = (= NU(V)-K*W(N+1)/N](C 44)

which imply

: K?
RO.jcc(oo) > RO,fcc(_—N) > RO,fcc(oo) - —]‘V—IH(N + 1) (045)
Therefore, it follows [or large NV that
In N
0 <en = Ro,pee(20) — o, pee(N) = O < N ) (C.46)

which is same as saying that the error term goes to zero with In N/N. Observe that
even the rough bound of (N + l)K2 on the number of distinct joint-composition matrices
leads to an O{ln N/N) term which is of the same order with the error term due to
approximating |Fn qg+| and |[V]. Therefore, we can conclude that there is no need to
use a better estimate for the number of distinct joint-composition matrices; because
otherwise, there will still be an O(In N/N) term remaining even if the better estimate

leads to an error ol order less than In N/N.
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