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ABSTRACT

Unit Demands Inventory System 
W ith Acceptance Sampling

Zeki Akbaş
M.S. in Industrial Engineering 

Supervisor : Prof. Dr.İzzet Şahin 
June, 1989

In this study, an extension to the unit demands inventory 
model with exponentially distributed interdemand times is 
considered. In this extension orders may arrive in two shipments 
due to an acceptance sampling scheme. The defective items that are 
detected by the plan will arrive through a second shipment. A 
reorder-point, order-quantity (s,Q) type control plan is adopted. 
The corresponding cost-rate function is constructed and 
numerically optimized for the best operating policy.
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ÖZET

Kabul örneklemeli Birim İstem 
Envanter Sistemi

Zeki Akbaş
Endüstri Mühendisliği Bölümü Yüksek Lisans 

Tez Yöneticisi: Prof. İzzet Şahin 
Temmuz, 1989

Bu çalışmada istem ara zamanlarının üssel dağıldığı birim istem 
envanter sisteminin bir uzantısı ele alınmıştır. Gelen siparişler 
kabul örneklemesinden geçirilmekte ve örnekleme planının 
saptadığı bozuk malların ikinci bir sevkıyat ile gönderildiği 
varsayılmaktadır. Tekrar ısmarlama noktası, ısmarlama miktarı 
(s,Q) tipi envanter kontrol planı kullanılmıştır. Bu sisteme 
karşılık gelen maliyet fonksiyonu oluşturularak sayısal olarak 
eni yilenmi şti r.
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CHAPTER 1 
INTRODUCTION

In this study, we consider a continuous review inventory 
system in which units are demanded one at a time and interarrival 
times between successive demands are exponentially distributed. We 
allow for complete backlogging of unfilled demand. We assume that 
a reorder-point, order-up-to-level type control policy is active. 
That is, when the inventory position (inventory on hand plus on 
order less backorders) falls below the reorder point s (i.e. when 
it becomes s-1), a constant order of size A+1 (A=5-s) is placed to 
bring it back up to S. We also assume that orders may arrive in 
two shipments due to an acceptance sampling scheme.

There is a considerable amount of literature on the analysis 
of continuous review (s,5) inventory systems with various 
extensions ( Beckman (1965), Sivazlian (1974), Sahin (1979), 
etc.). In most of the studies it is implicitly assumed that 
quantity received is the same as quantity ordered. However, there 
might be cases where quantity received may not be the same as 
ordered due to various reasons (see, for example. Silver (1976)).



The situation where the quantity received is uncertain is 
investigated by various authors. Silver (1976) considers the case 
where the amount received is random under the assumptions of 
classical Economic Order Quantity (EOQ) model with no lead time. 
Later, Karlo and Gohil (1982) extend his work to include partial 
backlogging of unfilled demand with constant lead time. In both of 
these works, it is assumed that amount received is a proportion of 
the amount ordered and received quantity may exceed quant ity 
ordered. Lee and Rosenblatt (1985) consider a similar system under 
two inspection policies assuming constant and continuous demand 
rate with no procurement lead time. However, in these studies, 
there is no second shipment for the cases where the amount 
received is less than the amount ordered.

Peters, Schneider and Tang (1988) work on the problem of 
determining the best inventory and quality control policy 
simultaneously. They use a cost model which is a combination of 
fixed order quantity (s,Q) inventory control system and a 
lot-by-lot attribute acceptance sampling system. They also give an 
algorithm that finds the best operating policy.

In these studies the basic idea is to extend the classical 
EOQ model to consider various situations. In most of the cases, 
one or more of the assumptions of the EOQ model are relaxed and 
some solution procedures for the new problems are presented. The 
size of the coming order is random and this causes the source of 
uncertainty.



Moinzadeh and Lee (1989) consider the case where a random 
part of the order is first received and the remaining items arrive 
through a second shipment. They give the time dependent and 
stationary distributions of the inventory on hand and use it to 
construct the appropriate cost-rate function assuming the demands 
are generated by a Poisson process. The cost-rate function that 
they developed turns out to be computationally cumbersome and they 
make an assumption to obtain an approximation. Based on that 
assumption, they derive an approximate inventory level and use it 
in the cost-rate function. Sahin (1989) generalizes their model to 
the case where demands are generated by a general renewal process.

In this study, we consider a situation where the arriving lot 
may contain some defective items. We assume that the supplier 
produces the items by a process that yields a proportion of 
defectives that is known or estimated. The coming units are 
inspected by using an acceptance sampling plan and this causes the 
two shipments. That is, the arriving shipment is sampled and it is 
either accepted or rejected. If the lot is rejected, a rectifying 
inspection scheme is applied. We assume that the rejected lots are 
100% inspected and defective items found both in sampling and in 
full inspection are replaced by good ones through a second 
shipment. We also assume that second shipment contains no 
defective items.

Our aim is to incorporate a particular acceptance sampling



scheme with the unit demands inventory system. By doing this, we 
are specializing on the source of uncertainty in the size of the 
first shipment. We follow Moinzadeh and Lee (1989) to give the 
time dependent and stationary distributions of inventory position. 
However they use an approximate inventory level in the cost-rate 
function. We derive the distribution of the size of the first 
shipment by using a single sampling acceptance plan. This 
distribution is used to construct the stationary distribution of 
on-hand inventory. Then, the exact cost-rate function is 
established and numerically optimized to find the best inventory 
policy under various inventory parameter configurations.

While Moinzadeh and Lee (1989) is based on an approximation 
for the cost-rate function, we construct and optimize the exact 
function. Their approximation is based on an assumption. They 
assume that the probability of more than one outstanding order at 
any time is negligible. This is a strong assumption and it 
particularly holds when the lead times are small. However, we find 
that when only the second lead time is small, the classical 
one-shipment model also gives a good approximation. Our findings 
indicate that this second approximation is quite accurate in a 
number of situations. Since the approximation of Moinzadeh and Lee 
is particularly valid for small lead times and in these cases 
one-shipment model provides good results, this approximation 
becomes somewhat redundant.

Moinzadeh and Lee basically study the two-shipment model.



Although they indicate that the reason for the second shipment may 
be due to the defective items in the first shipment, they do not 
give any structure or result that are specific for the problem we 
consider in this study. However, one needs the particular
distribution of on-hand inventory in order to use the model and 
this distribution may be computationally complex. In our case, the 
distribution of the size of the first shipment (that is the lot 
size after the quality control) that we derive turns out to be 
complicated. Furthermore, we need the convolutions of this 
distribution with itself for the distribution of on-hand 
inventory. In Moinzadeh and Lee this distribution is simply 
expressed as a convolution and no specific expression is provided. 
Another complication is »elated to the shape of the cost-rate 
function. Our numerical results indicate that this function is 
convex. However, we also provide a methodology that locates the 
global without using the convexity.

After the optimization, we add the quality control costs to 
the model and investigate the changes in the cost-rate function 
when one of the acceptance sampling parameters is altered. We 
change the acceptance number for some of the cases keeping the 
sample sizes as before. In the last part of the study, the 
numerical results are presented and conclusions are derived.



CHAPTER 2 
MODELS

2.1. Basic Unit Demands Model

In this section, we present the basic unit demands inventory 
model with a constant lead time. This model is well-studied in the 
literature; the outline below follows Sahin (1979).

We assume that unit demands are generated by a renewal 
process. We analyze a continuous review (s,S) inventory system 
with a constant procurement lead time, L. We also assume complete 
backlogging of unfilled demand.

Let I (t) be the inventory position and I(t) be the on-handp
inventory at time t and let L 0 denote the constant lead time. 
The control policy is an (s,S) (reorder-point, order-up-to level) 
policy; that is, whenever the inventory position I (t) < s (i.e.p
I (t) = s-1), we place an order to raise it back to S, The order p
comes after the lead time, L. Since we assume unit demands, the 
size of each order is A+1 where A=5-s. This makes the (s,S) policy 
operate like a reorder-point (s-1), order-quantity (A+1) policy.



Figure 1 represents a possible realization.

Figure 1, Basic unit demands inventory system with constant lead tim 

2.1.1. Distributions

In this section, we give the time-dependent and stationary 
distributions of inventory position and inventory on-hand. The 
following notation is used throughout:

I (t), I(t)p

I

f (.), f(.)P
Q- ( · ) t A ( · )

. )

D(t,t+u), D(u)

D(u)

Inventory position and inventory on-hand 
at time t.
Inventory position and inventory on-hand 
in a stationary process, 
p.d.f.s of I (t) and I(t).pp.d.f.s of I and I.Pp.d.f. and c.d.f. of interarrival times, 
k-fold convolutions of a(.) and A(.).
Mean of the interarrival distribution. 
Total demand from time t to t+u, demand 
during u starting right after a withdrawal 
point (that is after a unit is taken).
Total demand during u in a stationary 
process.



By the assumptions that interarrival times are i.i.d. and 
demands are of size one, we may conclude that demand during 
(u,u+t] is a delayed renewal process. If u is an arrival point, we 
have from renewal theory that:

P [ D(t) = n ] r A (t) - A (̂t).n n+1 '

Time points at which the inventory position becomes S define 
inventory cycles. Assume I^(0)=5 and consider the length of the 
first cycle, T :

P [ X ] = p [ D(x) s A + 1 ]
00

n = A·»· 1

Since the sequence {T̂ , n=l,2,...} is that of i.i.d. random
variables,

P [ i X ] = A^^j(x) , X  ̂0, n = 1,2,...

Therefore, the p.d.f. of cycle length is The expected
cycle length is given by:

.00

E [ T ] =n P [ T > X ] dx n

.OD
[ 1 - A^^j(x) ] dx = + 1).

o''

8



Let m(.) be the renewal density of the renewal process 
n=l,2,...} formed by cycle lengths| then, from renewal 

theory:

m ( t ) = a^̂  j( t ) + m (t - u) â  ̂ (u) du.
o''

By conditioning on the renewal process of cycles, we can write the 
distribution of inventory position as:

f (t,n) = ^p

P[D(t)=S-n] +

1 - A(t) +

m(t -u) P[D(u)=5-n] du, s^n<S

( 1 )

m(t-u) [1 - A(u)] du, n = 5.

The first branch can be verified as follows. The first term 
is the probability that total demand during (0,t] is S-n ,sin<5. 
The second term accounts for cases where there was a cycle end at 
time t-u, followed by a total demand during u of S-n. Similarly, 
first term in the second branch represents the probability that no 
demand occurred in the time interval (0,t], and second term stands 
for the probability that a cycle ended at time t-u and no demand 
occurred from that point to time t.

The stationary distribution of inventory position follows by 
taking the limit of f (t,n) as t tends to infinity and by usingp
the result from renewal theory that lim m(t)=— ¡7~7a+T1 * findt-»oo
the well-known result that the limiting distribution of inventory



position is uniform:

12m f (t,n) = f (n)P Pt->a>  ̂ ^ A+l n = s,s+l,...,S ( 2 )

Richards (1965) proved that the stationary distribution of 
inventory position is uniform over (A+l) under an (s,S) type 
control policy, if and only if the demand sizes are unity.

For the distribution of inventory on-hand, we can use the 
following well-known relationship between inventory on-hand, 
inventory position and demand during the lead time:

I(t+L) = I (t) - D(t,t+L).p

I (t) and D(t,t+L) are independent if demands are generated by a p
Poisson process. Also, it is shown in Sahin (1979) that I andp
D(L) are asymptotically independent. This result, and the above
relationship between I and I (that is I = I -D(L) ) enable us top p
obtain the stationary distribution of on-hand inventory as:

f(n) = A+l I P[ D(L) = k-n ] -® < n i S
ksinax(n, g )

2.1.2. Cost Rate Function

A common objective in designing an inventory system is to 
minimize the total cost involved in operations. There are three 
basic costs in an inventory system: procurement, holding and

10



shortage costs. Here, the procurement cost can be represented by- 
ordering cost К ($/order), since we assume that the unit price of 
the item is constant. We also take the unit shortage and holding 
costs to be P and H ($/unit/unit time) respectively.

The expected cost-rate function representing the total 
expected cost per unit time can be given as:

s о
E(s,A) = К

Ц (1+Д)a
H ^  n f(n) - P ^  n f(n

П = 0 n « -00

Note that, /Ĵ (l+A) is the expected cycle length. We can optimize
A 3İCthis function to get the best operating policy (s, A ). It turns 

out that the cost-rate function is pointwise convex and therefore 
the optimization is straightforward ( Sahin (1989) ).

2.2. Two-Shipment Model

In this section, we present the case where the orders may 
arrive in two shipments, following Moinzadeh and Lee (1989), and 
Sahin ( 1989) .

In some cases, the incoming orders are not directly accepted. 
Instead, a quality control plan is used to ensure a specific input 
quality level. According to the result of this plan, either the 
lot is accepted and placed in inventory or rejected with a 
corrective action. In the rejection case, a second shipment is 
used to recover the defectives found in the first shipment. We 
assume that the second shipment contains no defective items.

11



The two-shipment model under the assumption of unit demands 
generated by a Poisson process is worked out by Moinzadeh and Lee 
(1989). Unit demands case results in the constant order size and 
the assumptions of the basic continuous review model still 
appli es.

In the version of this model that is of interest to us, the 
orders come after a constant lead time of L, L>0. Then, according 
to the sampling plan, either the lot is accepted or it is 
rejected. In the rejection case, the whole lot is inspected and a 
second shipment is used to compensate for the defectives found. 
This shipment arrives after another constant lead time, -C, Z > 0. 
There is no relation between Z and L. Possible realizations of 
I (t) and I(t) are given in Figure 2.p

Figure 2. Unit demands inventory model with two shipments 

2.2.1. Distributions

Under the assumption of a Poisson demand process, we give in 
this section the time-dependent and stationary distributions of

12



inventory position and inventory on-hand, following Moinzadeh and 
Lee ( 1989 ) .

We note that the distribution of inventory position is 
uniform over (A+1) and it is not affected by order splitting. 
Thus, the time dependent and stationary distributions of inventory 
position remain to be (1) and (2). But the relation between 
inventory on-hand and inventory position is more complicated and 
is given as:

I(t+L+-f) = <
I (t) - D( t, t+>e+L) ,p if I (t)-D(t, t+-f) i sp

I (t) - D(t,t+>e+L)+V(t, t+-C) , if I (t)-D( t, t+-d) < sV p P

where V(t,t+u) is the units received through the first shipment of 
the orders placed during (t,t+u].

The above relation is verified by noting that in the first
case, no orders are placed during (t,t+-€] and the equation holds.
In the second case, I (t) - D(t,t+-C) < s results ordering duringP
(t,t+-C]. Since the first shipment comes after the lead time, L, we 
receive them during (t+-f, t+'f̂ +L] . But there may be more than one 
order placed during (t,t+-f], so that V(t,t+-f) represents the sum 
of such units received by t+-€+L. It can also be justified by 
noting that :

I(t+'C+L) = I(t) + M(t,t+'C+L) - D(t,t+<t+L) 
where M(t,t+-f+L) is the total units received during (t,t+'C+L].

13



Also:
I (t) = I(t) + 0(t),p

where 0(t) is the outstanding orders by time t, and
M(t,t+^+L) = V{t,t+l) + 0(t).

V(t,t+-€.) can be expressed as
N

V(t,t+>e) = ^  Oj
i » 1

where O.s are the i.i.d. random variables representing the first 
shipment sizes of the orders placed during (t,t+'6] and M is the 
number of such orders. Since each order is of size A+1, M can be 
given as:

M = integer
S - I (t) + D( t, t+-C)______ P________________

A + 1

The numerator is the total deficit (relative to S) in inventory 
position during (t,t+^].

To obtain the distribution of on-hand inventory, we first
note that I (t), D(t,t+-C) and D (t+-C, t+-t+L) are independent if thep
demands are generated by a Poisson process. Now defining the joint 
distributions of time-dependent and stationary processes,

and c^(.,.,.) —, we get.

14



q(t,-C,L ; n,k,i) = P[I^(t)=n, D(t,t+-€)=k, D (t+^, t+-C+L) = i ]
-M/  ( t)

P[I (t)=n] ep
-Ai L (  ̂L) a a

k ! i !
and
q(n,k,i) = IJin q(t,>t,L ; n,k,i) = P[ I =n, D(>C)=k, D ( L) = i ]t-WD ^

( IĴ Z) -u L (ML)a al+A · k ! i !

Using the limiting distribution and the relationships noted 
above, we can obtain the stationary distribution of on-hand 
inventory - f(.) - for the two-shipment model as follows (cf
Moinzadeh and Lee (1989), Sahin (1989) ):

f(J) = l+A · ( fi L)a
mi nĵ n- J , n- 8 ) k

( Ma• I
00

n=max(J,8)
ik 2

ksO k !

-¡iZ e a •I In«8 k3n-8·»·!
( Ma
k ! ^  (j-n+k+i) , j  ̂S

where m = integer [ (k+s-n) / (A+1) ] , <i>( ·) is the distribution of the 
first shipment size and <#>*(·) is the m*th convolution of <P( · ) .m
i [ n - j - k ] ^  and i2= S-j-mod^^j(k+s-n)· Note that m* represents 
the number of orders placed during (t,t+·̂ ].

The lower limit for i is î  because the argument of <A· *(·)1 m
should be nonnegative. The upper limit for i is î  since there are 
m* orders and the maximum size of each order is A+1, that is 
m*(A+1)¿j-n+k+i.

15



2.3 Acceptance Quality Control

In the previous sections, the basic model and the
two-shipment model are presented and the general form of the 
stationary distribution of on-hand inventory is given due to
Moinzadeh and Lee (1989) and Sahin (1989). Note that, in order to
use this expression, we need the convolutions of the distribution 
of first shipment sizes with itself ( <#>)«:(.) ). In this section,m
we derive this distribution based on an acceptance sampling 
scheme. By this way, we are specializing on the cause for two 
shipments and we are providing the explicit form of the
distribution of the first shipment sizes. In addition, we 
construct the convolutions of this distribution with itself which 
is needed in the stationary distribution of on-hand inventory for 
the two-shipment model.

In the first part, we give the details of acceptance qual ity 
control of the incoming orders. Then, single sampling by 
attributes is described and the necessary distributions are 
derived.

Individual sampling plans are used to decide the acceptance 
or rejection of the lot without inspecting the whole lot (see, for 
example. Burr (1976) and Duncan (1974) ).There are three measures
in which the quality is expressed:

Attributes. A two class classification of units into

16



defective and non-defective.
Counting. An enumeration of occurrences of a given 

characteristic per given number number of units counted.
Variables. The measurement of some characteristic along a 

continuous scale.
In this study, sampling by attributes is adopted and we assume 
that the items are produced by a process with proportion 
defective, p.

There are three basic sampling plans used in practice. These 
are (i) single, (ii) double-multiple and (Hi) sequential sampling 
plans. We selected the single sampling plan for simplicity and
since it is the most widely used one.

2.3.1 Single Sampling by Attributes

The simplest form of sampling plan is the single-sampling 
plan. It is employed in inspection by evaluating the proportion 
defective from the process from which the lots are coming. Single 
sampling plan operates by taking a random sample of size n from a 
lot of size N (In our case N=A+1). The sample is intended to 
represent the process used to produce the lot. The sample is
inspected and the number of defective items, d, is compared to an
acceptance number, c. If the number d is less than or equal to c,
the lot is accepted; otherwise, it is rejected. The defectives 
found both in sampling and in full inspection are replaced by good 
ones through the second shipment.

17



The random sample of size n taken from the lot and the 
remainder of the lot of size A+l-n can be considered as two 
independent samples from the same population. Consequently, the 
number of defective items in the sample and in the remainder are 
two independent random variables. The distribution of the number 
of defectives in the sample is given by the binomial distribution 
as:

P[ # of defectives = j ] = j = 0,1,...,n,

where p is the proportion defective in the process and q = 1-p. We 
need the joint density of the number of defectives in the sample 
of size n and in the remainder of the population of A+l-n elements 
to obtain the distribution of the first-shipment size.

Let D denote the number of defectives in a sample of size n,n
^A+1 n number of defectives in the rest of the population,
and the number of non-defectives in the (first) shipment. We 
have:

P[ S^= A+1 - x] = E  “n= j' “i+l-n =

Since and are independent.

r>r r. · 1 r a 1 a n-j f A+l-n ') x-j „A+l-n
Pf V · ) ’ V i - „ =  [ j J P <1 I x-J J P ’

-n-x+j

18



Thus,
P[ S^= A+l-x ] =

(") X n - Xp q

X
\  ' r n ^ j n-j (  A + l - n ^  x-j A +i -n -x+ j .2_ _ I J  J ^ l x-j Jp ’ ■ . "

j z ma X ( c + l , x - ( A + l ) + n )

IZZ ("]'>' [ 'x-j"]»“·'
 ̂ j zma X ( c ·*· 1 , X - (A + 1 ) + n )

Making the change of variable, z=A+l-x,

X n 1 1 1 · · · I A t  1

I I

\  ' i  ̂ 1 f A+l-n  ̂ A+i-z 22____, I J J I A+l-z-j J P ’ z = 0,...,A n
j =ma x(c-fl,n-z)

A+ 1 - z
P[ S^= z ]= \ ' f n ') f A+l-n 1 A + i -z  z . .Z____ , I J J I A+l-z-j J P ^ ’ z = A+l-n,...,

j zma x ( c + l , n - z )

f
n 'I A + l - z  n - A - l  + ;

A+l-z J P f Z — A + 1 — C f · · t f

The lower branch is for the case where the number of 
defectives found in the sample, n, is less than or equal to the 
acceptance number, c, when the shipment is accepted. The middle 
and top branches are for the rejection case. The bounds on the 
index j are adjusted so that the binomial expressions are 
meaningful.

19



We need the convolutions of this distribution with itself for 
the distribution of on-hand inventory. They can recursively be 
given by the following relationship:

<t> |̂ (i) = ^  4>(j) . (3)

where <i>(j)= P[S^ = j]. Writing (3) in a more open form;

<!> ,(i)

4>(j) . » i=0,...,A+l
j=0
A+i
) ' 0(J) . . i=A+2, . . . , (k-1) (A+1)
j =0 
A+1
^ » i = (k-1) ( A+1 ) + l, . . . ,k( A+1)

 ̂j*i-(k-1) (A+1)

Again, the bounds on j are adjusted so that the arguments of
4>{ ·) and <P (·) make sense. Unfortunately, since the distribution k-1
of <P(x)= P[S^ = x] is complicated, there is no closed form for

2.4 Quality Costs:

Up to this point, we only consider the inventory control 
costs. However, there are also quality related costs present in 
the system due to the application of the single sampling

20



acceptance quality control. We assume that the quality cost is 
composed of three basic parts : cost of sampling, cost of 
inspection and warranty cost. Costs of sampling and inspection are 
directly proportional to the number of units involved. The last 
cost is incurred for the cases where there are defective units in 
the accepted lot. Based ort these, we may derive the expected 
quality cost function as :

Q C = n c  + c , ( n + ( A + l - n ) P  )8 1 rejection

A+ l-n

n
c

+ C ( y X Pi D. , = x} ).Pw A-fl-n accept anee
x = 0

where ĉ  : unit cost of sampling,
c, : unit cost of inspection,
c : unit warranty cost (cost of defectiveW

units in the accepted lot),
: sample size,
: acceptance number,

^  n
P . . : probability of rejection ( = ) P{ D =x } ) .rejection n

X a c+ 1
c

P : probability of acceptance ( = ) P{ D =x ) )acceptance ¿j n
x>0

Note that the quality costs are directly related to the 
sampling plan used. One may explicitly try to find the minimum 
cost sampling plana for product attributes (see, for example, 
Moskowitz and Berry (1976) ). Although the joint determination of

21



inventory and quality control policy is out of the scope of this 
work, we still make some experiments to see the effect of the 
quality control parameters on the overall cost value. We change 
one of the sampling plan parameters and evaluate the combined 
costs for a number of problem instances. For this purpose we use 
acceptance number, c. In most of the cases, the increase in the 
acceptance number causes an increase in the combined cost 
function. The detailed results of this experimentation are 
presented in the last chapter.
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CHAPTER 3
OPTIMIZATION AND RESULTS

In chapter 2, we established the stationary distribution of 
on-hand inventory which is needed in the evaluation of the 
cost-rate function. In this chapter, we explain the optimization 
process and its results.

Since we do not know the shape of the cost-rate function for
the two-shipment case, we need to establish some bounds on s and
"AA in the search routine. They can be found as follows: Suppose 
that the proportions defective, p, is 1. In this case we always 
reject the lot and everything will arrive in the second shipment. 
Then this case coincides with the one-shipment case with lead time 
equal to L+-C. The optimal (s,A) for lead time L+'t then gives the

A Aupper bounds on (s ,A ) for the two-shipment case. Similarly, if
the proportions defective, p, is 0, then everything will be
accepted in the first shipment and this case becomes equivalent to 
the one-shipment case with lead time equal to L. Then lower bound 
on (s*,A*) will be the optimal (s,A) for the one-shipment case 
with lead time L.
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Since demands are of size one, (s,A) pairs are integers. This 
results in evaluating the cost-rate function at discrete points. 
To avoid possible errors, we take loose bounds for both s*and Af 
For example, if the original bounds on s is si to s2, we take sl-1 
and s2 + l. After the optimization, the values of s and A are 
compared with the bounds. If they are on the boundaries, then 
bounds are relaxed by one unit and the search is repeated. This 
way, we make sure that the pair s* and A* found is within the 
bounds. The cost-rate function is evaluated for each (s,A) pair 
within the bounds. The pair which gives the minimum cost-rate 
value is selected as the operating policy for the two-shipment 
case.

We developed a code in Pascal for the optimization of the 
exact cost-rate function. The routine first evaluates the 
distribution of the first shipment size. Its convolutions are then 
computed and stored in a two dimensional array. Then, the 
distribution of on-hand inventory is evaluated and used in the 
cost-rate function to get the cost value for that particular (s,A) 
pair. This procedure is repeated for each (s,A) pair within the 
bounds and the pair which gives the minimum cost value is selected 
as the two-shipment inventory policy. A relative error measure 
(cf. equation (4) below) is then calculated and the results are 
given through an output file. A typical problem takes about 10 
minutes of CPU time on the mainframe.

The routine is used for a range of problem parameters. The
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customer arrival rate is taken as 1 throughout. The unit shortage 
cost P, and ordering cost K, are expressed in terms of H. The 
range of the parameters are :

P/H = 1 , 5 ,20 and K/H = 1 , 5 ,
L/l = 5 , 2.5 , 1 and L = 5 , 10.
P = 0.05 , 0.10 , 0.25.

We assume that if the two-shipment model is not used, then the 
inventory policy will be determined by the single lead time model 
corresponding to the same parameter values. We can utilize this 
assumption to define the relative error measure :

R E(s°,A°) - E(s*, L·*)
-r-  ̂ * A  ̂VE(s , A )

. 100 (4)
where (s*̂ ,A*) is the two-shipment optimum po licy, ( ,  a“) is the 
one-shipment optimum policy, and E(.,.) is the cost rate function 
for the two-shipment model. R is a measure of the relative 
increase in inventory cost induced by ignoring defectives in the 
first shipment.

Computational results are presented in Tables 1 to 18.

For L=5, relative errors lie between 0% and 13.5%, typically 
below 5%. The maximum errors occur in the case where L=5,'d=5 and 
proportion defective p=0.25 in which they vary between 8 and 13 
percent except for one case. In all the other cases for L=5, 
relative errors are between 0 and 4 percent. The errors generally 
increase as L/-f decreases.
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In some cases, policy changes occur both in s* and 6.*, but 
the order up to level S , stays the same (See, for example, 
p=0.05, L=5, 'f=l,'f=2.5; and P=20, K=1 in Tables 1 & 2 ). In these 
situations, the relative errors are very small and we may conclude 
that the policy is not significantly affected by the second 
shipment.

For L=10, relative errors become larger as compared with L=5. 
Larger errors occur for L=10, -f=10, p=0.25, which is an extreme 
case. In this situation, both s and A values increase and the

Achange in the order-up-to level S reach 3 to 4 units (a 30 
percent increase) whereas for lower -t values, this change drops to 
1 to 3 units (a 5 to 20 percent increase).

Relative errors do not seem to be affected by changes in P/H 
or K/H. They are more sensitive to the changes in proportion 
defective, L and L/-C. For example as L/-t varies , relative errors 
(R) behave as follows (p=0.25 and L=10): 

for hZ-t = 5, R=0 to 2.2percent, 
for L/-C = 2, R=2.4 to 7.0 percent, 
for L/-C = 1, R=12.5 to 34.2 percent.

Note the increase in error as L/-t decreases. A similar behavior 
may be observed in other cases as well. As expected, relative 
errors also increase with p. As an example, for L='C=5, we find: 

for p=0.05, R= 0 to 1.3 percent 
for p=0.10, R= 0.8 to 4.4 percent 
for p=0.25, R= 12.5 to 34.2 percent.
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Finally, we see that relative errors also increase with L. For 
example, for p=0.25 and L='C, we have:

for L = 5, R= 8.1 to 13.5 percent, 
for L = 10, R= 12.5 to 34.2 percent.

These patterns of change for relative errors are not observable 
for small proportions defective and high L/-C values, since in 
those cases the policies do not change from the one-shipment 
model.

By observing the results, we may conclude that for small 
proportions defective (i.e. p^O.05), the two-shipment policies are 
similar to one-shipment policies. For proportions defective that 
are not so small (i.e., p>0.05), the two-shipment model should be 
used when the second lead time is relatively longer (i.e., L/‘t<2) , 
It should also be used when the proportion defective is very large 
(i.e., piO.25) even though the second lead time is relatively
short.

Based on these results, we may state that, when the second 
lead time is small, there is no need to use the two-shipment model 
and classical single shipment model gives good approximations. 
Moinzadeh and Lee (1989) suggest an approximation for the on-hand 
inventory and use this simplified expression in the cost-rate 
function. They make a somewhat strong assumption that probability 
of more than one order outstanding at any time is negligible. This

27



assumption particularly holds when the lead times are small. 
However, when only the second lead time is small, single lead time 
model can be successfully applied and their approximation becomes 
somewhat redundant in these cases.

After the optimization, one of the acceptance sampling plan 
parameters (acceptance number) is altered to see its effect on the 
cost-rate function. For this purpose, the following problem 
instances are used :

p=0.25 , L=10 , Z=5,

p=0.25 , L=10 , -e=io,
p=0.25 , L=5 , -f=2.5.

Quality and inventory costs are then evaluated for the 
optimal (s* A*) pairs of these parameter settings. Three
acceptance numbers, c, are used : 0,1 and 2. The quality cost is
expressed in terms of unit warranty coat, c^ which is taken as a 
multiple of unit holding cost, H. In all cases c = 0.20 H is used. 
The other cost parameters for the quality cost function are also 
given in terms of unit warranty cost. The parameter values are :

c =w 0.2, 0.01, 0 .002

C / 6 C = w 0.02, 0.001, 0.0002,

c . and c are the unit inspection and sampling costs.

respectively. These parameter values are similar to the ones used 
in Tagaras and Lee (1987).
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The results of this experimentation show that there is no 
obvious relation between the acceptance number and combined cost 
values. In some rare instances, as the acceptance number is 
increased from 0 to 2, the quality cost increases but overall cost 
decreases. In all cases, the increase in c causes an increase in 
the quality cost. In general, the overall cost increases as 
acceptance number increases but inventory cost decreases. However, 
these patterns are not observable in all cases. Results for one 
case is presented in table 19.
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Future Researh

The following extensions could be considered as follow-ups.

1. Quality control costs may be included in the model 'and the 
model may jointly be optimized for the best inventory and qual ity
control policies. In this study, we change the acceptance number 
for various problem instances to see its affect on the cost-rate
function. All of the quality control parameters may be considered
jointly.

2. The shape of the cost-rate function is not known but the 
computational results suggest that it may be unimodal. One may try 
to establish the unimodality of the cost-rate function.

3. We only utilized the single sampling acceptance plan for 
the inspection of the incoming orders. Other sampling plans may be 
incorporated within the model, such as double-multiple and 
sequential sampling plans.
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P = 0.05 L = 5

P/H K/H
Bas e

ΛS
Model

Δ *

Ύ W ο - ! 

S

shipment

Δ * R
1 1 4 2 4 2 0 . 0

5 3 4 3 4 0 . 0

10 9 6 2 6 0 . 0

δ 1 7 1 6 2 1 . 2

5 6 4 6 ■ί 0 . 0

10 δ δ δ 6 0 . 0 1

20 1 9 1 8 2 1 . 1

δ 8 3 8 3 0 . 0

10 8 4 7 6 1 . 1

Table 1. L / l  = 5 ( ' f  = l  )

Base Mode 1 Two- sh i P m e η t
P/H K/II S Δ * S ж

Δ
R

1 1 1 2 4 2 0 . 0

5 3 4 2 6 0 . 2

10 2 6 2 6 0 . 0

5 1 7 1 6 2 0.5
5 6 4 6 4 0 . 0

10 δ δ δ 6 0.4
20 1 9 1 8 2 0.9

5 8 3 8 3 0.0
10 8 4 7 6 1.4

Table 2. h/l = 2 {1=2.5)

P/H K/H
Uĉ S e

As
Μ ο d e 1

δ"
Τ W Ο - S h İ ρ πι e η t

A AS Δ R
1 1 4 2 4 2 0 . 0

5 3 4 3 5 0.7
10 2 6 2 7 0.4

5 1 7 1 7 2 0 . 1

δ 6 4 6 4 0 . 0

10 δ δ δ 6 1 . 0

20 1 9 1 9 1 0 . 0

δ 8 3 8 4 0.3
10 8 4 7 6 0.5

T a b l e  3. L/'t = 1 {-¿=5)



P = 0.10

P/H К/II
0 ci í> θ 

AS
Model

Δ*
Τ WO -

S
shipment
A .AΔ R

1 1 4 2 4 2 0.0
5 3 1 2 6 0.04

10 2 6 2 6 0.0
δ 1 7 1 6 2 1.0

5 6 4 6 4 0.0
10 δ δ δ 6 0.1

20 1 9 ι 8 2 0.9
δ 8 3 8 3 0.0

10 8 4 6 1.2

Table 1. L/l = 5 (1=1 )

P/H К/Н
ϋ a ΰ e

AS
Mode 1

Δ*
Two- s

AS
h i p rn e n t

Δ* R
1 1 4 2 4 2 0.0

5 3 4 3 δ 1.2
10 2 6 2 7 0 . δ

5 1 7 1 6 3 0.6
5 6 I 6 4 0.0

10 5 δ δ 6 1 . 1
20 i 9 1 8 2 0.09

5 8 3 8 4 0.8
10 8 4 7 6 1. 7

Table 5. L/l = 2 (1=2.5)

Р/И Κ/Π
ϋ a tí e

AS
Mod e 1
Δ*

Two-shipment
A As Δ R

1 1 4 2 4 3 0.9
δ 3 4 3 δ 2.3

10 2 6 2 7 1 . 7
5 1 7 1 7 2 1 . 9

δ 6 4 6 4 0.0
10 δ 5 5 6 2.3

20 1 9 1 9 2 1.0
δ 8 3 8 4 1.8

10 8 4 8 5 1.4

T a b l e  6. L / l  = 1 (^=5)



p = 0.25

Base Model Two - shipment
P/H K/H A's A* S A .AA R
1 1 4 2 4 2 0 . 0

5 3 4 3 5 1 . 1
10 2 6 2 7 0 . 3

5 1 7 1 6 3 1 .4
5 6 4 6 4 0 . 0
10 5 5 5 6 0 . 8

20 1 9 1 8 3 0 . 7
5 8 3 8 4 0 . 7

It) 8 4 7 6 1 . 6

Table 7, h/-i = 5 ('C = l )

Base M o d e 1 Two- shi p m e n t
P/H K / H A

S
AA A

S a " R
1 1 4 2 4 3 2 . 8

5 3 4 3 5 4 . 1
10 2 6 2 7 2 . 7

5 1 7 1 7 2 3 . 5
5 6 4 6 5 0.4

10 5 5 5 7 3.8
20 1 9 1 9 2 2.1

5 8 3 8 5 3.3
10 8 4 7 7 2.6

Table 8. L/l = 2 {1=2.5)

P/H K/H
Base

As
Model
Â

T w o -
S
shipment
* A* R

1 1 4 2 5 3 8.1
5 3 I 3 6 9.8
10 2 6 2 9 8.7

5 1 7 1 8 2 11.2
5 6 4 7 4 3.8
10 5 5 5 8 12.7

20 1 9 1 10 2 11.5
5 8 3 9 4 13.5

10 1 8 4 10 6 8.2

T a b l e  9. h / t = 1 (-t=5)



p = 0.05 L = 10

P/H K/H
B a s e

XS
Model
A*

T w o -
S
shipment
X - XA R

1 1 9 2 9 2 0 . 0
5 7 6 7 6 0 . 0

10 6 8 6 8 0 . 0
5 1 1 3 1 12 2 1 . 8

5 11 5 11 5 0 . 0
10 11 6 11 6 0 . 0

20 1 15 2 15 2 0 . 0
5 14 4 14 4 0 . 0

10 14 5 14 5 0 . 0

Table 1 0 . L/l = 5 (1=2 )

P/H K/H
Bas e Model

A AS A
Two - s li i pm e n t

X XS A R
1 1 9 2 9 2 0 . 0

5 7 6 7 6 0 . 0
10 6 8 6 8 0 . 0

5 1 13 1 12 3 1 .2
5 11 5 11 5 0 . 0

10 11 6 11 6 0 . 0
20 1 1 5 9 15 2 0 . 0

5 14 4 14 4 0 . 0
10 14 5 14 5 0.0.

Tabl e 1 1 . L/·̂. = 2 U = 5 )

P/H K/H
Base Model

X . Xs A
Tw o - s

XS
h i p m e n t

a " R
1 1 9 2 9 3 1 .0

5 7 6 8 5 0 . 1

10 6 8 7 7 0.4
5 1 13 1 13 2 1.3

5 11 5 12 4 0.5
10 11 6 11 6 0 . 0

20 1 15 2 15 2 0.0
5 14 4 14 5 0.4

10 14 5 14 6 0.2

Table 1 2 . L/-̂  = 1 ( 1 = 1 0 )



P = 0.10 L = 10

Base Model T w o -shipment
P/H K/H A'S

'*·A o* a " R
1 1 9 2 9 3 0.4

7 6 7 6 0.0
iO 6 S 6 8 0.0

5 1 13 1 12 3 1 . 7
5 11 5 11 5 0.0

10 11 6 11 6 0.0
20 1 15 9 1 5 2 0.0

5 11 1 1 1 1 0.0
iO 1 4 5 11 5 0.0

Tabl e 1 3. L/l = 5 {1=2 )

U s e Mode 1 I w o - s h i f> m e n i
P/II K/H ks Â^ A  ̂As A R
1 1 9 2 9 3 1.2

5 7 6 7 6 0.0
10 6 8 6 9 0.05

5 1 13 1 13 2 1.1
5 11 5 11 5 0.0

10 11 6 11 6 0.0
20 1 15 2 15 2 0.0

5 11 1 11 5 0.6
10 11 5 11 6 0.4

Tcible 1 . L/l = 2 {1=5 )
B a s t.· M o d e 1 T w o - sh i p rn e n 1

P/H K/H S a " As A* R
1 1 9 2 9 3 3.2

5 7 6 8 6 2.1
10 6 8 7 8 1.8

5 1 13 1 13 2 3.4
5 11 5 12 5 3.3

10 11 6 11 7 6.8
20 1 15 2 16 2 3 . 1

5 11 1 15 5 1.4
10 11 5 15 5 1. 7

Table 15. L/l = 1 (^=10)



P = 0 25 L = 10

и а tí о М о < і *.;* 1 Two - ö h i p m eni
P/H К/Н ■к

S δ " S * R
1 J. 9 2 9 3 1.8

5 7 6 7 7 0.08
10 6 8 6 8 0.0

δ I 13 1 12 3 2.2
δ 11 δ 11 6 0.1
10 1 1 (3 1 1 6 0.0

20 1 1 5 2 1 δ 3 0.1
δ 11 1 1 1 5 0.8

10 1.1 δ M 5 0.0

Table .16. L/l = 5 {1=2 )

P/H lv/11
ÍJ -Λ ;> о M <:> ‘.I e i

 ̂ A ^s Δ
Two - υ h i p rn о π i

s Δ

20

1

5
10
1.
0

iO
1

5
10

9
7
6

I 3
II 
1 1 

1 5 
il 
1 I

2
6

8
1
δ
6
V

9
7
6

13
12

11

16
15
11

•1

8
10

3
Ü
7
2

δ
7

δ.8 
1 . 2
3.9
6 . о

1.9 
2 . 1 

δ . 1 
7.0 
1 . 1

ТсчЫе 17. L/l = 2 (1=Ъ)



Inventory Quality Total
P/H K/H C Cost Cost Cost
1 1 0 2.24 0.15 2.40

1 2.23 0.17 2.41
2 2.22 0.18 2.40

5 0 2.99 0.21 3.20
1 3.00 0.25 3.25
2 2.99 0.27 3.26

1.0 0 3.62 0.28 3.90
1 3.64 0.32 3.96
2 3.64 0.34 3.99

5 1 0 4. 18 0.11 4.30
1 4.15 0.13 4.28
2 4.13 0.13 4.27

5 0 5.05 0.21 5.26
1 5.07 0.25 5.32
2 5.06 0.27 5.34

10 0 5.77 0.28 6.05
1 5.80 0.32 6.12
2 5.81 0.34 6.16

20 1 0 5.89 0.11 6.01
1 5.85 0.13 5.98
2 5.83 0.13 5.96

5 0 6.82 0.21 7.03
1 6.84 0.25 7.09
2 6.83 0.27 7.10

10 0 7.60 0.28 7.89
1 7.64 0.32 7.96
2 7.65 0.34 8.00

Table 19. Inventory, quality and total coats for L=5, -€=2.5,
p=0.25 case, (c =0.2 H, c =0.02 c , c,=0.2 c )^  W 8 W I w
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