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ABSTRACT

RAY TRACING GEOMETRIC MODELS AND 
PARAMETRIC SURFACES

Veysi İşler
M.S. in Computer Engineering and Information Sciences 

Supervisor: Prof. Dr. Bülent Özgüç 
1989

In many computer graphics applications such as CAD, realistic displays 

have very important and positive effects on designers using the system. There 

axe several techniques to generate realistic images with the computer. Ray 

tracing gives the most effective results by simulating the interaction of light 
with its environment. Furthermore, this technique can be easily adopted to 

many physical phenomena such as reflection, refraction, shadows, etc. by 

which the interaction of many different objects with each other could be 

realistically simulated. However, it may require excessive amount of time 

to generate an image. In this thesis , we studied the ray tracing algorithm 

arid the speed problem associated with it and several methods developed to 

overcome this problem. We also implemented a ray tracer system that could 

be used to model a three dimensional scene and And out the lighting effects 

on the objects.

Ill

Keywords: Ray tracing. Octree , Shading , Realistic Images.



ÖZET

GEOMETRİK MODELLER VE PARAMETRİK YÜZEYLER
ÜZERİNDE IŞIN İZLEME

Veysi İşler
Bilgisayar Mühendisliği ve Enformatik Bilimleri Bölümü

Yüksek Lisans
Tez Yöneticisi: Prof. Dr. Bülent Özgüç

1989

Bilgisayarlı bir çok uygulamada gerçeğe uygun görüntüler sıkça kulla

nılmaktadır. Bu nedenle, bilgisayarda gerçekçi görüntüler elde etmek için 
çeşitli yöntemler geliştirilmiştir. Işın izleme bunlar arasında en etkili ger
çekçi görüntüler elde etmeye yarayan bir yöntemdir. Işın izlemede temel 

nokta, sunulacak sahnedeki ışık ve modellerin çevreleri ile etkileşimlerinin 

benzetimi yapılarak yansıma, gölgeleme ve kırılma gibi doğal olayları bilgisa

yarda hesaplamaktır. Işın izleme metodu bu kadar yararlı olmasına rağmen, 

bu teknikle elde edilen görüntüler aşırı hesaplama zamanı gerektirmektedir. 

Bu araştırmada ışın izleme metodu çalışılmış ve bu yöntemin seıhip olduğu 

avantajlar ve dezavantajlar incelenmiştir. Ayrıca, ışın izlemedeki problemleri 

çözmek için geliştirilen metotlar araştırılıp geliştirilen ışın izleme sisteminde 

kullanılmıştır.

V
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1. INTRODUCTION

One of the most important goals in computer graphics is to generate images 
that appear realistic, that is, images that can deceive a human observer when 

displayed on a screen. Realistic images are used widely in many computer 

graphics applications. Some of them are :

• CAD

• Animation and Visualization

• Simulation

• Education

• Robotics

• Architecture

• Inside Decoration

• Advertising

• Reconstruction for Medical and Other Purposes

There axe several advanced techniques used to add realism to a computer gen

erated picture. All these techniques involve both hidden-surface and shading 

computations. The hidden-surface computation determines which parts of 

object surface are visible, which ones are not. Hidden-surface elimination is 

essential for realistic display of objects. Once visible surfaces have been iden

tified, for instance, by a hidden-surface method, a shading model is used to
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compute the intensities and colors of the surfaces. The shading model does 
not exactly simulate the behavior of light and surfaces in the real world but 
only approximates actual conditions. The design of the model is a compro
mise between precision and computing expense.

The initial approaches to generate realistic images on a computer were 
primarily hidden-surface removal and shading of surfaces without considering 
the effects of objects in the environment. However, to obtain more realistic 
and detailed images, global shading in addition to hidden-surface operation 

should be performed.

Ray tracing was the first method introduced in order to generate very 
realistic images by including the effects of shadows and reflections in addition 
to transparency of neighboring surfaces [43]. The basic idea in ray tracing 
is to find out the effect of the light source(s) on the objects in the scene. 

Ray tracing that performs a global shading gives more depth cues than the 

local shading [19]. This is due to the fact that, the images generated by ray 

tracing algorithm may contain a number of optical effects such 8is shadows, 

reflection, refraction and transparency. That is, both geometric eind shading 
information are calculated for each pixel of the image [23].

Although ray tracing is so useful in generating very realistic images, it 
has two major drawbacks: one is its computational complexity and the other 

is the aliasing caused by the inherent point sampling nature of the technique

[2]. Due to these difficulties, this powerful technique cannot be included in 

most interactive systems. Once the time spent is reduced to a reasonable 

amount, this elegant technique could be widely used in many applications.

Ray tracing algorithms can be practical in a wide variety of applications 

when the following conditions are satisfied [23] : •

• First of all, the rendering time should be independent of the scene 

complexity. That is, when the number of objects in the scene increases, 

the time to generate an image should remain close to a constant.

• Secondly, the computation time should be reasonable for each scene so 

that we do not spend an excessive amount of time to generate an image.
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• Thirdly, each generated ray should take almost a constant time inde
pendent of the origin or direction of the ray.

• Another important condition is that, the ray tracer should not accept 

only specific types of geometric objects but must also be extendible to 
a variety of types easily.

• Finally, the user should not get involved in the construction of the 

auxiliary data structures used in the algorithm and the algorithm should 

be amenable to implementation on parallel architectures.

In chapter 2 , a brief description of the algorithm will be presented. Each 
ray tracing algorithm adopts an appropriate shading model to find a color 
value on an object’s surface. As it is pointed out earlier, there is a trade-off 

in using a shading model against the time spent on the computer. A simple 
shading model which gives satisfactory results is also given in this chapter.

Since ray tracing consumes most of the time in testing intersections of the 

rays with the objects, researchers have attempted to reduce these intersection 

calculations. In chapter 3, some historical attempts to speed up the algorithm 

are overviewed.

One o f the methods used to speed up the algorithm is to subdivide the 
space into disjoint volumes. Many variations of this method exist to ac

complish this. In chapter 4, a scheme that uses ’’ Octree” hierarchical data 

structure is presented with its important implementation details.

As one important part of the thesis, we implemented a ray tracing system 

to generate realistic images. The scene to be processed can be defined by an 

interactive tool that has several facilities. The tool with the other peurts of the 

system is described in chapter 5. Finally, a conclusion and future directions 

are given in chapter 6.



2. THE RAY TRACING ALGORITHM

In a naive ray tracing algorithm, a ray is shot for each pixel from the view 
point into the three dimensional space as seen in Figure 2.1. Each object is 

tested to find the first surface point hit by the ray. The color intensity at the 

intersection point is computed and returned cis the value of the corresponding 
pixel. In order to compute the color intensity at the intersection point, the 
ray is then refiected from this surface point to determine whether the reflected 
ray hits a surface point or a light source. If the reflected ray ends at a light 
source, highlights or bright spots are seen on this surface. If the reflected ray 

hits another surface of an object, the color intensity at the new intersected 

point is also taken into account. This gives reflection of a surface on another. 
When the object is transparent, the ray is divided into two components and 

each ray is traced individually.

As explained above, the color value at the intersection point gives the color 
value of the pixel associated with the intersecting ray. Therefore, having 

found the intersection point, the color at that point should be calculated 

according to a shading model. A simple one is given in the next section.

2.1 The Shading Model

2.1.1 Ambient Light

Initially the surface has ambient color which is a result of the uniform ambient 

light emitted by the surrounding objects. That is, a surface can still be visible 

even if it is not exposed directly to any light source. In this case, the surface



Figure 2.1: Tracing of one ray.

is illuminated by the objects in its vicinity. Ambient color behaves similarly 

regardless of the viewing direction . We can express the intensity at a point 

on the surface of an object as

Color„ =  kdColova

where kd is the coefficient of reflection, Colora is the ambient light intensity. 
kd takes values between 0 and 1. It is 1 for highly reflective surfaces. Unfor

tunately, ambient color alone does not give satisfactory results. Therefore, 
the effect of the light source(s) on the surface according to the orientation of 
the surface should also be considered in the computation of shading. That is, 
the diffuse reflections and the specular reflections add very much to the re

alism of the image. These computations use the reflection, normal and other 

vectors as seen in Figure 2.2. N  is the unit vector normal to the point being 

shaded. L is the unit vector from the point to the light source. R is the unit 

vector in the reflection direction. The angle between R and N  is equal to the 

angle between V and N. V is the unit vector from the viewing point to the 
point on the surface.



2.1.2 Diffuse Reflection

Diffuse reflection computation is based on the Lambert cosine law, which 
states that the intensity of the reflected light depends on the cosine of the 
angle between the normal of the surface and the ray to the light [33]. The 

cosine of this angle is the dot product of two unit vectors in the light and 
normal vector directions.

Diffuse reflection is computed as

kdColori

where Colorí is the intensity of the light source, d represents the distance 
from a light source to the point being shaded and do is a constant to prevent 
denominator from approaching zero.

2.1.3 Specular Reflection

Highlights are seen from the view point when incidence light ray is at a 
certain angle and surface is shiny. The highlights (specular reflection) can be 

modeled as

where n is a constant related to the surface optical property. It is zero if 

the surface is dull and very large if the surface is a perfect mirror, fc, is a 

constant for speculcir reflection depending on the surface property.

2.1.4 Reflection

In order to simulate the reflection of surrounding objects on the point being 

shaded, a reflection ray is sent from this point and this ray is tested with the 

objects to find any intersection. If this ray hits any object, the color intensity 

at the intersected point contributes to our shading computation as follows:

Colorp =  Color p +  krColorr



where Colorp was the intensity computed previously for the point being 
shaded. Color^ is the intensity at the intersection point, kr is a constant 

that is related to the surface property. It is coefficient of reflection.

2.1.5 Transparency

If the shaded object is transparent, the reflections from the objects behind it 

should also be considered. This reflection contributes to the shading compu

tation as

ColoTp =  (1 — r)ColoTt +  rColori,

Colort is the total intensity at the surface point after summing the intensities 
of the ambient light, the diffuse reflection and the specular reflection. Colors 
is the intensity of the surface point behind the transparent object, r is a 

constant that is related to the transparency of the object. It is 0 if the object is 

opaque. In other words, the ray that hits a surface continues traveling through 

the transparent object until it intersects another object. The intensity at the 

intersection point is taken to contribute to the transparent object. This ray 

could also be refracted.

2.1.6 Shadows

Shadows that give very strong depth cues to the image can be obtained while 
finding out the diffuse and specular reflections. The regions of a surface are 
in shadow if the light sources are blocked by any opaque or semi-transparent 

object in the scene. This is found out by sending a ray from the point on the 

surface towards the light sources and testing for intersection of the ray with 
an object before the light source. If there is any intersection both diffuse and 

specular reflections become zero.





3. SPEEDING UP THE ALGORITHM

As mentioned above, the major drawback which prevents ray tracing from 
being attractive for interactive systems is its computational complexity due 

to many intersection tests between rays and objects. Whitted has estimated 

that up to 95% of the time is spent during these intersection tests [43]. They 
take too much time since all of the objects in the scene have to be tested to 
find the nearest intersection point with the ray, requiring intensive floating 

point operations. In order to reduce the processing time in the ray tracing 

algorithm, the computation for intersection tests should be decreased. There 

are two baisic approaches to do this. •

• First, an intersection test should be simple to compute. That is, it 
should take minimum number of computer cycles. The initial attempts 

to speed up the ray tracing were based on this approach. To make the 

intersection tests simple to compute, either intersection tests are made 

efficient [17,19,29,34,38,39] or bounding volumes explained in the next 

section are used.

• Second, the number of objects to be tested for intersections should be as 

few as possible. Not all of the objects in the scene should be tested for 

intersection with the traced ray as in the naive ray tracing algorithm. 
Only objects that are highly possible for intersection should be tested. 

In other words, the objects on the ray’s path should be considered for 

intersection tests. Several methods have been developed to achieve this. 

They are discussed in the next sections.



3.1 Bounding Volumes

Some simple mathematically defined objects such as spheres, rectangular 
boxes or cones can be tested for intersection with few number of operations 
[13]. The complex objects are surrounded by these simple objects (bounding 
volumes) as in Figure 3.1 and intersections are first tested with the bound
ing volumes instead of the complex objects . When the ray intersects the 
bounding volume of an object, tests are carried out for the complex object 

as well. Obviously, the advantage of using bounding volumes is to eliminate 
the intersection test with a complex object once its bounding volume is not 
intersected with the ray. Its disadvantage is the extra time spent in testing 
the bounding box if the object itself has a possible intersection. It should 

be noted that the bounding volumes are not mutually exclusive and thus a 

ray might be tested for an intersection with more than one object. This is 
another drawback of the bounding volumes, since an intersection test for a 

complex object may take excessive time. When this type of test is carried 

out more than once for a ray, it will be even worse.

When there is a large number of objects in the scene, even the tests for
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the bounding volumes can take an enormous amount of time. By forming 

a hierarchy of bounding volumes, a number of tests can be avoided once a 

bounding volume that surrounds some other bounding volumes is not hit by 
the ray. Several neighboring objects form one level of the hierarchy. The other 
drawback of this method is that these hierarchies are diflicult to generate and 
manually generated ones can be poor. That is, they may not be helpful in 
speeding the intersection operation. Goldsmith has proposed methods for 

the evaluation of these hierarchies in approximate number of intersection 

calculations required and for automatic generation of good hierarchies [14].

The bounding volumes used can be spheres, rectangular boxes, polyhe
drons, pгırallel slabs, cones, or surfaces of revolution. The bounding volume 
chosen for each object in the scene can be different to enclose the object more 

tightly. This may be needed in order not to test more than one bounding 

volume for a ray.

3.2 Spatial Subdivision

A different approach to improve the efficiency of ray tracing is called space 
subdivision [10,23]. The 3-D space that contains the objects is subdivided 
into disjoint rectangular boxes so that each box contains a small number 

of objects. A ray travels through the 3-D space by means of these boxes. 

A ray that enters a box on its way is tested for intersection with only those 

objects in the box. If there eire more than one intersecting object, the nearest 

point is found and returned. If no object is hit, the ray moves to the next 

compartment (box) to find the nearest intersection there. This is repeated 

until em intersection point is found or the ray leaves the largest box that 

contains all of the objects. It is necessary, in this case, to build an auxiliary 

data structure to store the disjoint volumes with the objects attached to them 

[36,37].

This preprocessing will require a considerable amount of time and memory 

as a price for the speedup in the algorithm. It is, however, worth using the 

space subdivision particularly when the scene contains many objects, since
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Figure 3.2: Adaptive space subdivision.

this data structure is constructed only once at the beginning eind is used 

during the ray tracing algorithm. The number of rays traced depends both 

on the resolution of the generated image and the number of objects in the 
scene. The auxiliary data structure helps to minimize the time complexity of 

the algorithm by considering only those objects on the ray’s way.

There are several techniques that utilize space coherence. They basically 

differ in the auxiliary data structures used in the subdivision process, and 

the manner used to pass from one volume to another.

In some ray tracing schemes that utilize the spatial coherence, the space 

subdivision process is based on the octree spatial representation. An octree is 
a hierarchical data structure organized such that each node cam point to one 
pzirent node and eight leaf nodes. Figure 3.2 shows this type of subdivision 
of the space. In the spatial subdivision ray tracing algorithm, each node of 
the octree corresponds to a region of the three dimensional space [11,12,14]. 
The octree building starts by finding a box that includes all of the objects in 

the scene. A given box is subdivided into eight equally sized boxes according 

to a subdivision criterion. These boxes are disjoint and do not overlap as the 

bounding volumes might do. Each of the generated boxes are examined to

12



Figure 3.3: Subdivision of space into equtilly sized cubes.

find which objects of the parent node гıre included by each child node. The 
child nodes are subdivided if the subdivision criterion is satisfied. This is 

carried out recursively for each generated box.

The subdivision criteria may be based on the number of objects in the 

box, the size of the box, the density ratio of total volume that is enclosed by 
all objects in the scene to the volume of the box. When the criterion for the 
number of objects in a given box is very large, each object in the scene is 
tested for intersection for all rays as in the naive algorithm. No speedup will 

be achieved, on the contrary the time and the memory will be wasted for the 
octree data structure. On the other hand, if the number of objects is one for 

the criterion, there will be many boxes in the structure and the overhead for 
traveling through the 3-D space may increase.

Kaplan used a data structure which he calls BSP (Binary Space Partition
ing) tree to decompose the three-dimensional space into rectangular regions 
dynamically [23]. BSP is very similar to octree structure in that it also di

vides the space adaptively. The information is stored as a binary tree ( a 

tree where each non-terminal node can have exactly two child nodes) whose 

non-leaf nodes are called slicing nodes, and whose leaf nodes are called box
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nodes and termination nodes. Each slicing node contains the identification 
of a slicing plane, which divides all of space into two infinite subspaces. The 

slicing planes axe always aligned with two of the cartesian coordinate axes of 

the space that contains the objects. The child nodes of a slicing node can 

be either other slicing, termination nodes or box nodes. A termination node 

denotes a subspace which is out of the three-dimensional space that does not 
contain any objects. A box node , on the other hand, is described by the slic
ing nodes that are traversed to reach it. They denote a subspace containing 

at least one object. BSP actually encodes the octree in the form of a binary 

space partitioning tree and it is traversed to find the node containing a given 
point.

The other spatial subdivision technique for ray tracing is based on the 
decomposition of the 3-D space into equally sized cubes [10]. Figure 3.3 
contains a scene decomposed into equally sized volumes. The size of the 
cubes determines the number of objects in each cube. Therefore, zin optimal 

cube size must be considered such that the overhead for moving through the 
boxes should not exceed the time gained in testing intersections.

Fujimoto proposed a scheme that imposes an auxiliary structure called 

SEADS (Spatially Enumerated Auxiliary Data Structure) on objects in the 
scene [10]. This structure uses a high level of object coherency. He also 
developed a traversing tool that fits in well with SEADS to t2ike advan

tage of the coherency in a very efficient way based on incremental integer 

logic. This method, called 3DDDA (3-D Digital Differential Aneilyzer), is 

a three-dimensional form of the two-dimensional digital-differential analyzer 

algorithm commonly used for line drawing in raster graphics system. The 

major advantage of this scheme is related to the manner to travel through 
3-D space containing the objects. 3DDDA does not require floating-point 

multiplications or divisions in order to pass from one subspace (voxel) to the 

next while looking for intersections, once a preprocessing for the ray has been 

performed. Fujimoto states that an order of magnitude improvement in ray 

tracking speed over the octree methods has been achieved. It is also possi

ble to improve the performance of octree traversal by utilizing the 3DDDA 

method to traverse horizontally in the octree, but vertical level changes must
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be traversed as usual.

3.3 A  Hybrid Technique

Recently, Glassner has presented techniques for ray tracing of animated scenes 

efficiently [13]. In his technique, he renders static 4-D objects in spacetime 
instead of rendering dynamically moving 3-D objects in space. He uses 4- 

dimensional analogues familiar to 3-dimensional ray-tracing techniques. Ad
ditionally, he performs a hybrid adaptive space subdivision and bounding 
volume technique for generating good, non-overlapping hierarchies of bound
ing volumes. The quality of the hierarchy and its non-overlapping property 
is an advantage over the previous algorithms, because it reduces the number 
of ray-object intersections that must be computed.

The procedure to create such a hierarchy starts by finding a box that 

encloses all of the objects in the scene, including light sources and the view 
point. The algorithm then subdivides the space adaptively as in the octree 

method. The subdivision that is based on a given criterion is performed for 
each box recursively. The recursion is terminated when no boxes need to be 

subdivided.

As returning from the recursive calls made by the space subdivision pro

cess, the bounding volume hierarchy is constructed. Each box is examined, 

and a bounding volume is defined that encloses aill the objects included within 

that box. The defined bounding volume must not intersect any other box. 

That is, it is clipped by the space subdivision box.

At the end of this process, a tree of bounding volumes that has both the 

nonoverlapping hierarchy of the space subdivision technique and the tight 

bounds of the bounding volume technique is constructed. Thus, the new 

hierarchy has the advantages of both approaches while avoiding their draw

backs.
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3.4 Parallel Ray Tracing

One other approach that is useful to speed up the algorithm is to use several 
processing elements running in parallel. Since the rays are traced indepen
dency from each other, the eilgorithm can be easily parallelized by distribut
ing the computation related to different rays.

The simplest way to parallelize the algorithm is to partition the image 
space into several rectangular regions and to compute pixel values for each 
disjoint region in parallel. The image can be partitioned in several ways: 
the regions may be obtained by simply dividing the image space into equal 
sized rectangles. Each rectangular area is computed on different processing 

elements and the generated images are joined as a single image. A disadvan
tage of dividing the image space in this way is related to the distribution of 
computation load to different processing elements unevenly. That is, some 

processing elements may complete their tasks much earlier than others, since 

less objects are contained in the viewing volume associated with the region. 

The other approach to obtain the subimages divides the image space adap

tively in order to distribute the tasks evenly. The subimages obtained in this 
way may be of different sizes but they should require approximately the same 

computation time so that no processing element is idle for a long time, while 

others are busy. In this case, we may achieve a speedup that is close to the 

number of processing elements running in parallel.

Another parallel ray tracing is essentially based on the spatial subdivision 

mentioned eeirlier [9]. The 3-D space containing the objects is subdivided into 

several disjoint volumes. The computation in each volume is carried out on a 

different processing element. The ray that travels through 3-D space to find 

an intersection passes from one processing element to another via messages. 

Each processing element contains the information about the volume assigned 

to it. A suitable architecture to accomplish this can be three dimensional 

array processor. In this architecture, each processing element is connected to 

6 neighboring processing elements in order to pass messages which consist 

of information about the rays. On the other hand, hypercube architecture 

has potential to perform this task as 3-D array processor. A hypercube of
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dimension d contains 2** processors [35]. Assume the processors are labeled 
0,1,...,2*^ — 1. Two processors i and j  are directly connected iff the binary 
representations of i and j  differ in exactly one bit. Its advantages in this 
context may come from its recursive definition and embedding the 3-D array 
processor architecture.

Both of the above ideas can be combined to reach at a more efficient 

utilization of processing elements [6,9,30]. The 3-D space is again decomposed 
into disjoint volumes which are assigned to different processing elements. In 
this case, several rays are traced independently in peirallel by subdividing the 

image space as well. A more detailed parallel ray tracing can be seen in [6,9].

Miiller has attempted to ray trace movies by distributing the frames to 
different Workstations connected through a network [26]. They generated a 

5-minutes ray traced animation within 2 months without boring the users of 
the Workstations by efficiently using the network.
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4. AN IMPLEMENTATION OF SPACE 
SUBDIVISION USING OCTREE

4.1 Overview

The space subdivision method can be broken up into two different steps; 
preprocessing and ray casting. We first build an auxiliary data structure 

that will be then used while traveling through the 3-D space. The auxiliary 

data structure will contain the information that will allow ray-environment 

intersections to be computed as quickly as possible. The 3-D space which 
contains all of the objects in the scene is divided into a hierarchical structure 

of cubic boxes aligned with the cartesian coordinate system. In the algorithm 

that uses space coherence, the only difference is in the intersection routine 
to find the first object hit by the ray, if there is any. The new intersection 

routine will be as follows: •

• Find a point along a given ray in the first box it intersects. If the ray is 
originated inside the root box that encloses all of the boxes, the starting 

position is the point looked for. Otherwise, the ray that is originated 
outside the root is tested for intersection with this largest box. The 

point to be returned is the one a little further from the intersection 

point which is in the first box on the path of the ray. If the ray does 

not hit the root box, the next ray is shut from the viewpoint and no 
intersecting object is returned.

• Having found a point, find the box id that is associated with that point. 

This step may take most of the time for traveling through the boxes.
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Therefore, the data structure should be designed so that we can access 
a box in the hierarchy for a given box name quickly.

• At this step, only the objects in the currently visited box are tested for 
intersection. Since each box contains few number of objects, we spent 
a little and approximately constzint time in each box. If the ray hits 

more than one object in the same box, the nearest intersection point is 

returned. If the ray does not hit any object in this box, we move to the 

next box along the ray and perform intersection tests with the objects 

in this box. This process is repeated until an intersection is found or 
the ray leaves the root box.

Basically, there are three operations to be performed for the above algorithm.

They are:

• Given a point in space, find the box and its data. Since space is divided 

dynamically eind unevenly, this cannot be performed simply by indexing 
into a three-dimensional table of box references.

• Given a ray that originates within a given box, find the next intersected 
box, if there is. Otherwise, return a message signaling that it will leave 

the largest box.

• Given a box that describes a subspace of the scene, obtain a list of all 

objects whose surfaces intersect that box. Only the objects in this list 
will be tested for intersection with each ray that passes through the 

box.

The new algorithm after subdividing the 3-D space into cubic boxes will 

refer to the data base frequently. Therefore, it is important for the sake of 

the speed to organize the data structure so that it will be easy to access 

the information contained in it. We used a hierarchical data structure called 

octree to store this information. Octree structure consists of nodes that 

represent a subspace of the scene. A node is a leaf node if it is not subdivided 

any more. Each non-leaf node has eight children each of which describe a 

subspace of the parent node. The volumes described by children nodes are
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Figure 4.1: Naming the boxes.

disjoint and are equal in size. The root node which encloses all of the objects 
in the scene is labeled node 1. When we subdivide a node, it passes its name 

as a prefix to all its children, which are numbered 1 through 8, as shown in 

Figure 4.1. Thus the eight children of the root node are nodes 11 through 
18. The children of node 15 are nodes 151 through 158, and so on. Now, 
we should answer the second question in the previous section. That is, how 

could we find the address of the box given its label ?

We can accomplish this in two extreme ways. In the first way, we could 
build a table with an entry for every possible node name that contains that 
node’s address. Obviously, this possibility will require large amount of mem
ory. This is due to the fact that not all possible nodes need to be created. 
Instead, the nodes of octree are created dynamically when needed. If we 

subdivide the root node twice, the maximum possible box name is 188. For 
example, we may not need to create nodes 151-158 if node 15 does not satisfy 

a subdivision criteria. On the other hand, this scheme would have the advan

tage of extreme speed in finding the address of a node for a given name. In 

the second way, we could construct the hierardiy by using linked lists. This 

time, each node would have eight pointers to its children and each time we 

would search the tree from beginning to find a node address of a given node
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name. This scheme requires less memory than the first one but searching for 
a node slows down the operation and may come up with great overhead.

4.2 Octree Building and Storage

We mixed these two methods using a hashing scheme in the same way as 
Glassner did [12]. In this scheme, we have a hash table to hold pointers to 

a structure. This structure contains addresses of eight children of a subdi

vided node and the name of their parent node as shown in Figure 4.2. The 
construction of the data structure is as follows:

1. Find a cubic box, called root, which contains all of the objects in the 

scene. A box is defined by its center, size, a flag and a list of objects 
whose surfaces intersects with this box. Flag is set to zero for a leaf 
box.

2. If the root box contains objects more than a specified number, go to 
the next step to subdivide it into disjoint volumes. Otherwise, this is 
the leaf node. No further actions are to be taken for this box.

3. Using the name of current box that is to be subdivided, compute a hash 
function. We use a very simple hash function which is the node name 

modulo tablesize. Let index be the computed hash function.

4. The index is the location where we want to put the consecutive ad

dresses of eight children and their parent name. If this location is not 

empty, the collided node names form a linked list. That is, by simply 

following the linked list, the new structure is appended to the end of 

this list. If this location does not point to any structure, it will contain 

the address of the new structure.

5. Now, for each generated child, find the center and the objects the sur

faces of which intersect the box represented by the child. The size of 

the child node is the half of the parent’s size.While determining the 

sizes of generated boxes, the minimum size of the boxes is stored in a
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Figure 4.2: Heish table to store the generated boxes.

global variable ceilled M inlen. M inlen is to be used later for moving 
from a box to another.

6. If the number of objects pointed by a child exceed a specified value, 
Its flag is set to a non-zero value. Each child node is subdivided as its 
parent if the flag is non-zero. That is, we go to the step 3 for each child 
with a non-zero flag.
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4.3 Movement to the Next Box

Whenever no object in a box intersects the ray being traced, the next box, 
if any, on the ray’s path should be determined and this time the intersection 
tests are ceirried out with the objects in this box. Movement to the next box 
continues until an intersection point is found, or until the ray leaves the root 
box. There are two issues involved in this operation: First, because the space 
is dynamically decomposed when we build the octree, we do not know how 
large (or small) any box in space is with the exception of the current one. 
That is, how far should we move in order to guarantee that we are in the 
next box, but not in another. Secondly, movement to the next box should be 
fast enough so that we do not loose what we gain by decomposing the 3-D 

space into boxes.

The essence of the box-movement algorithm is to find a point that is 
guaranteed to be in the next box whatever its size. This point is then used 

to derive a box name and the address of this box along with the information 

contained in it.

A point on a ray can be defined by a parameter t. The value of t increases 
as we move away from the origin, where t has the value 0. The parametric 

line equations give us the point P  =  (x, y, z) corresponding to parameter t 
as below:

X =  Xa +  tXr

y =  y, + ttjr

Z =  Za +  tZr

where (x ,,j/a ,z,) is the starting position of the ray, (xr,yr,Zr) is the move

ment in each direction. Given a box definition and a ray that passes through 

the box, we can find the maximum value of t which may attain in this box. 

Let this parameter be tmax which will give the intersection point when the 

ray leaves the box. We can compute tmax by intersecting the ray with the 

six planes that bound the current box. Two of these intersections give us 

bounds on t for X —planes, two others for y—planes and the remaining two for 

z—planes. Since each plane is parallel to two of the three coordinate axes.
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it is inexpensive to intersect a ray with one of these ’’ simple” planes. Let 

the bounds be denoted by tXminytXmax̂ iyminjiymaxŷ ^mim̂ ^max· For exam
ple, tXmin is the minimum, tx^ax is the maximum of t values that give the 
intersection points with x —planes. The other four are used similarly. Note 
that the points describing the intersections of the ray with the planes of the 
box may lie far outside the value of the box itself. But certainly some values 
of t will hold for all three ranges: these are the values of t inside the box. 

The intersection of three ranges {tXmin--t^max,tymin-tymax,tZmin-tZmax) gives 
the values of t that the ray may take while it is inside the box. The value of 

iffidx IS the minimum of iXmax̂  "̂ ymax snd î nuix·

Now, we will use the variable M inlen to find a point in the next box. 

M inlen was the size of the smallest box. Having found the parameter tmax, 
we compute P  =  (x,y, z)  using above equation We find the point within 

the next box along the ray by merely moving perpendicularly to the planes 
by a distance M inlen if their t values are equal to tmax· H the point of 

intersection is on an edge, that is, when two of the parameters are equal to 

tmax, we must travel perpendicularly to both faces sharing that edge, and 

similarly we must travel in three directions if tmax is on a corner of the box. 
We simply increment x ,y  or z component of the point P  by M inlen, if the 

corresponding t value is equal to tmax·

Now, using this point, we should access the box and its information. We 

start by checking whether the point is in root or not. If the point is outside 

the root box, we return and report this. If it is in the root box that has label 

1, we find the children of the root box by using the hash function. Next, we 

can decide which one of eight children contains this point. The same process 

is applied recursively for the child node that includes that point until a box 
that has a zero flag is reached. Flag was set to zero for the leaf boxes.
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5. A RAY TRACER SYSTEM

A ray tracing system is designed and implemented in C programming lan
guage [24] on SUN  ̂ Workstations running under UNIX^ operating system. 
The system has three major parts:

• Create a scene with objects provided by the system.

• Process the defined scene to obtain a realistic image that consists of 
RGB values.

• Display the generated image.

The system mainly can be used to create scenes containing 3-D objects 

and then find out the effect of light sources and the objects on each other. 
Each part is to be explained in detail in the following sections :

5.1 Defining the Scene

This is the first step in generating a realistic image. User is provided with 
several types of objects to model the scene. In addition to the definition of 

objects to be included in the scene, the user can give a number of parameters 

such as point light sources, viewpoint, origin of the scene etc. so that the 

processing is carried out with these parameters, otherwise, which would be 

assigned default values. The mentioned input can be given in two different 

ways :

ŜUN Workstation is a registered trademark of Sun Microsystems, Incorporated. 
^UNIX is a registered trademark of AT&T Bell Laboratories.
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• A text file can be prepared with definitions of objects and scene param
eters using a text editor.

• The scene can be defined using an interactive tool that gives a friendly 
environment to the user.

5.1.1 Textual Input

When a person chooses the first way to define a scene, he must describe the 

scene according to a given syntax. UNIX tools LEX and YACC have been 

used to parse and process the user input [41]. The file consists of three kinds 

of information :

• Scene Parameters,

• Object Definitions,

• Material Properties.

Scene Param eters

Scene parameters are related to the things in the scene other than the objects. 

Each parameter declaration is started by a keyword that consists of uppercase 

letters. A set of values follows this keyword. The parameter declarations are 

given in the following form :

V IE W P O IN T  X y z

This is the place in three-dimensional space where the eye of the observer is 

located.

O R IG I N  X y z

This is the point in three-dimensional space where the eye looks at.
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UPVECTOR X y Z

This is used to describe the orientation of the user, (a;, y, z) is a normal vector 
that indicates the viewing direction.

R A S T E R  w i d t h  h e i g h t

It is the resolution of the screen, ’’width” and ’’height” are the size of the 

screen in terms of number of pixels.

VIE W P O R T w i d t h  h e i g h t

This gives the window size that the user can see.

RDEPTH n

This is used for the termination condition of the recursive call to the shad
ing routine. It actually gives interreflections between objects. If n is 0, no 

reflections exist on the objects.

IM A G E F IL E  f i l e  n a m e

The computed RGB values are written on the given file name.

L IG H T  b r i g h t n e s s  

X y z

This is to define a point light source anywhere in the three-dimensional space, 

’’ brightness” gives the intensity of the point light source and ranges from 0 

to 1. It is 0 if no illumination is done by the source. Next triple gives the 

position of the point light source.
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Object Definitions

Next comes the definition of objects in the scene. There are five types of 

objects definable by the system. They axe sphere, superquadric, triangle, 
rectangle and box. Their textual descriptions are as follows :

Each object description is started by a keyword followed by a surface 

number and the parameters to define the object. Surface number is an integer 

that refers to a surface definition used for shading computations.

Sphere has two parameters which are center and radius of the sphere.

SPHERE s u r f a c e - n u m b e r  

r a d i u s

X y  z  / ♦  c e n t e r  o f  t h e  s p h e r e  * /

Note that comments can be written as in the C language to make the 

description more understandable.

A box can be defined by its center and the size information from the 

center. Boxes are always aligned with the coordinate axes.

BOX s u r f a c e - n u m b e r

x c  y c  z c  / ♦  c e n t e r  o f  t h e  b o x  * /

x s  y s  z s  / *  s i z e  o f  t h e  b o x  * /

Superquadrics in the context of this system can be defined as boxes whose 

corners are rounded. Therefore, a superquadric is defined similarly to a box 

with an additional parameter called ’’ Power” . ’’Power” gives the degree of 

roundness of the corners. Its definition is as follows :

SUPERQUADRIC s u r f a c e - n u m b e r  

p o w e r

x c  y c  z c  / *  c e n t e r  o f  t h e  s u p e r q u a d r i c  ♦ /  

x s  y s  z s  / *  s i z e  a s  i n  b o x  d e f i n i t i o n  ♦ /
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A triangle in three dimensional space is defined by its three corners, the 

points of the corners should be given in the counterclockwise direction that 
is very important in shading computations. The syntax for a triangle decla
ration is :

TR IA N G L E  

x l  y l  z l  

x 2  y 2  z 2  

x 3  y 3  z 3

s u r f a c e - n u m b e r

Similar to a triangle definition, a rectangle is defined by its corners. Again, 

the corners should be given in counterclockwise direction. Its syntax is :

RECTANGLE  

x l  y l  z l  

x 2  y 2  z 2  

x 3  y 3  z 3  

x 4  y 4  z 4

s u r f a c e - n u m b e r

Material Properties

A surface description that is referred by the objects serves the shading com

putations in all steps. A surface description can be given as follows :

SURFACE s u r f a c e - n u m b e r  

r l  g l  b l  / *  a m b i e n t  c o l o r  ♦ /

r 2  g 2  b 2  / *  d i f f u s e  r e f l e c t i o n  * /

r 3  g 3  b 3  / *  s p e c u l a r  r e f l e c t i o n  ♦ /

k  / *  c o n s t a i n t  r e l a t e d  t o  t h e  s u r f a c e  p r o p e r t y  * /

r  / *  r e f l e c t i v i t y  c o e f f i c i e n t  * /

t  / *  t r a n s p a r e n c y  c o e f f i c i e n t  ♦ /
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5.1.2 Interactive Tool

The other way to specify a scene is to use an interactive tool. The user can 

give the description of a scene using mouse, menus etc. in a user friendly 
environment. This tool projects the three-dimensional world onto the two- 

dimensional screen to provide user with an easy user interface when entering 
three-dimensional points.

Using this tool, the scene description mainly involves selecting one of 

the object types and specifying the size and other parameters related to 
the selected object type by the mouse, panel and other windowing system 

elements. A more detailed information on the interactive tool is given in the 

appendix as the user’s manual.

After completing the description of the scene, the system converts it into 
the format given in the previous section and writes the textual description 

on a text file. Therefore, this interactive tool is nothing but a shell that 

generates the description on a text file as an output. The textual description 

of a scene is useful in the sense that the ray tracer can be portable to any 

computer system.

B-Spline Surfaces

The other advantage of the interactive tool is that user can generate free

form surfaces other than five primitive object types. A free-form surface can 

be created and placed into 2in appropriate location in the scene. B-Spline 

method is used by the system to find out the surface to be included in the 

scene description. The surface generated is then triangulized and written in 

the known format on the output file as a collection of triangle primitives.

Since objects with complex shapes occur frequently in our three-dimensional 

world, special techniques to model them properly are needed [31]. Although 

these objects can be approximated with arbitrarily fine precision as plane

faced polyhedra, such representations are bulky and intractable. For example, 

a polyhedral approximation of a hat might contain 1000 faces and would be

30



difficult to generate and to modify. We need a more direct representation of 

shapes, easy both to the computer and to the person trying to manipulate the 

shapes. Bézier and B-Spline are the two methods frequently used to generate 

curves and surfaces of 3-D. They are similar to each other in that a set of 

blending functions is used to combine the effects of the control points. The 

key difference lies in the formulation of the blending functions [3,18,31].

5.2 Processing: Ray Tracer

This part accepts a textual scene description as input that was explained 

in the previous section and it generates an image containing several optical 

effects for the sake of realism using ray tracing zilgorithm. There are three 

major data structures used by this module. They are used to store the 

objects, the surfaces and the light point light sources in the scene. The 

objects are stored in an array that has elements of the following structure:

O BJECT T Y P E  

O BJECT ID  

SURFACE NUMBER

P O IN T E R  TO AN OBJECT IN STAN CE

OBJECT TYPE indicates one of the five primitive objects. For example, 

OBJECT TYPE for a sphere is 0. It is iise.d to call intersection and nor

mal routines related to OBJECT TYPE. OBJECT ID indicates the object 
instance in the scene. It is used to access the object variables in intersec

tion and normal routines. SURFACE NUMBER refers to a surface definition 

that gives the object material property. The last entry is an address to an 

object instance. For example, the address in this entry may contain a sphere 

definition as below:

R A D IU S  

X Y  Z

The surface definition are stored in an array of the following structure:
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AR AG AB / ♦  A m b i e n t  c o l o r  c o m p o n e n t s  * /

DR DG DB / ♦  D i f f u s e  c o l o r  c o m p o n e n t s  * /

SR SG SB / *  S p e c u l a r  c o l o r  c o m p o n e n t s  * /

COEF / *  S u r f a c e  c o e f f i c i e n t  ♦ /

REFL / *  R e f l e c t i o n  c o e f f i c i e n t  * /

TRANSP / *  T r a u i s p a r e n c y  c o e f f i c i e n t  * /

Point light sources are simply stored in an array of lights. Each light is 

defined by

BRIG H TNESS  

X Y  Z

Each object type definable by the system has its own intersection function. 

This gives a great flexibility for adding new objects to the system. That is, 
if a new object type is to be added to the system , the following should be 

available for the new object type:

• Object Definition

• A function that allocates space for an instance of the new object type.

• A function that finds out the intersection point on the surface with a 

ray. This is used during intersection tests.

• A function that returns the normal vector at a given point on the object 

surface. This is used for shading computations.

Additionally, the intersection calculations become more efficient since each 

function is implemented for a specific object type.

The shading model used by the system is similar to the one given in 

the second chapter. Ambient color that is stored in surface definition is the 

initial color for the point being shaded. The diffuse and specular reflections 

are calculated by using the entries in the surface structure. The level of 

reflection is the terminating criterion for the recursive call when the reflected
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ray hits another object other than light source. Transparency of an object 

is simulated by the given calculation model. That is, the ray is divided into 

two components and one of them continues traveling through the treinsparent 
object until it hits another object at its back. After calculating the intensity 

at the hit point, the intensity at the point of the transparent object is found 

out by the given formula. In addition to these optical effects, shadows that 

give very strong depth cues may exist if the light is blocked by opaque or 

semi-transparent objects.

This part of the system has three different versions. The first version of 

the system is based on the naive ray tracing algorithm. That is, all objects 

in the scene are tested to find the first intersection with a traced ray. As it 
is very obvious, the time spent increases with the number of objects in the 

scene. For example, when we have 10,000 objects in the scene, processing 

may take even days on a mini computer.

In the second version of the ray tracing system, the intersection tests 

are not carried out with all objects in the scene but the spatial coherence 

technique is used to perform intersection tests only for the objects that are on 
the path of the ray. Therefore, the space containing the objects is subdivided 

using the octree representation. The second version of the program is capable 

of generating the images much faster than the first version that does not 

utilize the space coherence.

The last version is the parallel ray tracing algorithm. It partitions the 

image space into four equal sized rectangles and generates pixel values for each 

of them on a different file. It is just a simulation of the parallel algorithm 

using UNIX’s ’’ fork” and ’’wait” system calls [42]. No actual speedup is 

achieved, since only one processor is used.

5.3 Displaying the Image

We compute a triple (RGB) for each pixel of the image after tracing a ray. 

When we compute RGB values in shading routine, we assume a linear inten

sity response. That is, pixel of a value of 127, 127, 127 has the half intensity
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of a pixel value of 255, 255, 255. However, the response of typiczil video color 

monitors and of the human visual system is non-linear. Thus, displaying of 

images in a linear format results in effective intensity quantization at a much 
lower resolution than the available 256 resolution per color. That is, the true 

colors will not be perceived by the human eye, because of the non-linearity 

in the monitor. Therefore, it is necessary to correct the computed values so 

that the generated picture appears more realistic to a human observer.

A function called gamma correction is used for this purpose [16]. It is an 
exponential function of the form:

lookupvalue —

Gamma represents the nonlinearity of the monitor. Generally monitors have 

a gamma value that is in the range 2.0 to 3.0. If gamma is equal to 1, the 
device is a linear one. An incorrect value results in incorrect image contrast 
and chromaticity shifts. If the gamma is too small, the contraist is increased 
and the colors approach to the primaries.

The RGB values should be corrected by the above function before the 

image is displayed or stored to a file.

5.4 Examples and Timing Results

In this section, several images generated by our system are presented in Fig

ures 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8. We also compare the time spent in 

the first and second version of the algorithm for some images.

Table 1 contains the clock timings for rendering three images given in 

Figures 5.1, 5.2, 5.3. Actually, there may be several other influences on the 

rendering time other than the complexity of the algorithm. These are the 

programming style, the code optimization, the processor speed, etc. As it is 

clear from these measurements, when the number of objects in the scene in

creases, the ratio of the naive technique to the fast one gets larger and larger. 

This is due to the fact that a great amount of time is wasted for the inter

section calculations in the naive ray tracing system. The ratio approaches
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Figures No. of Objects 
in the scene

Naive 1 Fast 
(in minutes)

5.1 5 05:06 08:50
5.2 50 "54:26 25:40
5.3 200 123:20 40:52

Table 5.1: Timing results of figures 5.1, 5.2, 5.3.

No. of Objects 
in boxes

Time
(in minutes)

2 22:21
6 17:52
8 28:36

Table 5.2: Timing results of figure 5.4.

one for the scenes containing few number of objects [21]. In higher

speed models, we note that the timings are dependent on the criteria used 

to subdivide the space. For example, when the space is divided into very 

small boxes that contain only one object, the overhead for traveling through 

the boxes may approach to the time saved for intersection tests. That is, the 
ray may frequently pass through many empty volumes wasting a considerable 

amount o f time. Table 2 shows timings for the image in Figure 5.4 gener

ated using the octree auxiliary data structure for three different terminating 

criteria values.
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Figure 5.1: Four spheres and a triangle.

Figure 5.2: F ifty  spheres.
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Figure 5.3: Two hundred spheres.

§  i

Figure 5.4: T w enty  four spheres.
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Figure 5.5; Sphere above chessboard.

Figure 5.6: Shield and a sphere.
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Figure 5.7: Boxes and superquadrics.

Figure 5.8: M irrors and reflections.
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6. CONCLUSICN

Computer generated images that appear realistic to a human observer have 
been one of the most important goals in Computer Graphics. Ray tracing 
algorithm with this respect is the most popular method for realistic image 
synthesis. It is in the class of image generation algorithms, called global 
shading, that provide the most realistic images by considering the optical 

effects such as shadowing and reflection from the surfaces in the environ
ment. However, it requires a tremendous amount of time to generate an 
image. Several methods have been developed to overcome the time problem 

[6,9,10,11,12,13,23,28,29]. In this thesis, we investigated these methods and 

used two of them, namely space subdivision and parallelism, in the imple
mentation of the ray tracing system. The space subdivision method saves 

considerable amount of time when the scene is complex. Hut the speedup 

achieved is still not enough when many images are to be generated. The 

parallel version of the space subdivision method may be the best solution for 

the time problem. As the first conclusion, the parallelism is essential for the 

interactive realistic image generation.

Another method in the global shading class has been introduced later 

than ray tracing as radiosity [7,15,20]. This method can simulate the global 

illumination effect more accurately than ray tracing can do. Although there 

has been several attempts to obtain more detailed images using ray tracing as 

in [1,5,8,22], no one could consider the interaction between diffuse surfaces. 

Another advantage of radiosity method is that the resultant surface intensities 

are independent of the viewer position. This allows efficient rendering of 

dynamic sequences. As the next conclusion, ray tracing should utilize some 

ideas in this method, namely radiosity to increase the accuracy in simulating
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the global illumination effects.

Finally, we should also taJce into account the texture mapping that is used 
to cover over a surface with texture [4], in order to provide more detailed im

ages. Texture mapping is basically the method of wallpapering the polygons 
in the scene. One o f the future directions in realistic image generation is 
to develop methods for ray tracing texture mapped surfaces in a reasonable 
ajnount of time.
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A. THE USER’S MANUAL

This system is mainly used to model 3-D scenes, to find the interaction of 

objects with the light sources and to display the resultant image that appears 

realistic.

To provide the users with a friendly environment, SUNVIEW has been 

used for creating panels, menus, buttons, etc. [40]. More information about 
multi window environment can be found in [32]. The modules that comprise 
the system and the user interface are given in detail in the following two 

sections.

A .l  The Modules

The system can be broken up into two different subsystems: the interactive 

tool and the ray tracer. The first one is used to model a 3-D scene as an input 

to the ray tracer and to display the realistic image that contains some optical 

effects. The second subsystem generates the realistic image that is to be 

displayed by the interactive tool. Each subsystem consists of several modules 

and header files written in the C programming language. The description and 

comments about the modules are given at the beginning of the files containing 

the modules. The modules are compiled and linked using the UNIX’s makefile 

facility.

The interactive tool contains the following files :

c o a r s e . c c o n l s . c d i s p . c
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imsl.c model.c object.c parmenu.c
pmain.c pnot.c surface.c trans.c
writedef.c

peons.h pdef.h pext.h pfunc.h
plib.h ptype.h

box.icon eye.icon light.icon psource.icon
rec.icon sph.icon spl.icon sup.icon
tri.icon viewp.icon

The ray tracer contains the following files :

b o x . c c r e a t e s t r . c f i n t e r s e c t . c f m a i n . c

i n p u t . l e x l . c i n p u t . y a c c l . c i n t e r s e c t . c l i g h t . c

l i g h t 2 . c m a i n . c n e x t b o x . c o b j b o x . c

o b j  e n d . c o u t p u t p . c p f m a i n . c p m a i n . c

p o u t p u t p . c r a y m a t h . c r e c t a u i g l e . c s e t u p . c

s h a d e . c s h a d e 2 . c s p h e r e . c s t u b s . c

s u p e r q u a d r i c . c  t r i a n g l e . c v i e w i n g . c

c o n s t a n t s . h c o n s t z i n t s l  . h f u n e d e f s . h f u n e d e f s i . h

g l o b a l v a r . h g l o b a l v a r l . h m a i n d e c l . h m a i n d e c l 1 . h

t y p e d e f s . h t y p e d e f s i . h y . t a b . h

i n p u t _ y a c c . y i n p u t _ y a c c l . y i n p u t _ l e x . 1 i n p u t . l e x l

A .2 The Interface

The user interface for the system consists of four subwindows. The first one is 

a panel that contains several buttons, two text items to enter full path name 

of a file and a message item to give wmnings and messages. The second one is
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a canvas to draw the scene elements onto the screen. The third subwindow is 

used for different purposes at different times. For example, eight icons appear 

on this window when the ’’ Objects” menu item under ’’ Define Scene” button 
is selected. After selecting one o f these icons, this subwindow then displays 

various parameters related to the selected icon that can be modified. The 

fourth subwindow is used to enter color information about surfaces. Below, 
the way how these subwindows are used is given in detail.

There are eight buttons in the main panel as shown in Figure A .l. Some 

of them cause menus to be popped up when selected. The function of each 

button in the panel is explained in the following sections.

• GENERAL : This button is used to select the actions that are generic 

in the sense that they can be selected at any time while using the 

system. Currently, one menu item is contained in the menu related to 

this button. More can be appended to provide user with other facilities. 
The function of this menu item is given below :

— Operating System: This creates a window and enables user to 

work at the operating system level.

• DEFINE SCENE: This button is used to define the scene to be ray 

traced. A scene can be defined by one or more objects with their ma

terial properties and scene parameters such as light sources, viewing 
direction, etc. Objects and scene parameters can be given by select

ing ’’ Objects” menu item, while material properties can be entered by 

’’ Surface” menu item. Each is going to be described below.

— Objects: After selecting this menu item, the panel on the left 

(third subwindow) contains 8 choices indicated by icons as in Fig

ure A .2. At the same time, three dimensional coordinate axes and 

y-z plane as a reference is drawn on the canvas where 3-D points 

are given for the objects, light sources and view point. In other 

words, 3-D space is projected on the 2-D screen to facilitate for 3-D 

input. The first six icons are to define objects to be included in the 

scene while the last two icons are to give other scene parameters.
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The object definition starts by selecting the corresponding icon 
and inputting the necessary size and position information about 

the selected object. Every object should refer to a number called 
’’ Surface number” that must be defined to denote the material 
properties of the object referring to it.

A point in 3-D space is entered by first pointing at x-z plane and 
pressing a mouse button at that point, then dragging either up 

or down to enter the y-coordinate. In other words, first x,z com

ponents are given, next the y component of the point is denoted 
by releasing the mouse button. The y-component is the difference 
between the heights of releasing point cmd pressing point.

Each icon has a function that will be described below:

* Triangle : Three points are given successively for the corners 

of the triangular plane in space. Before that, the referred 

surface number should be selected from the panel in the third 
subwindow. To put other objects into scene after one or more 

triangular planes are defined, ’’ Objects” menu item should be 

selected.

* Rectangle : Rectangular surface is defined similarly, but with 

four points for the corners of the rectangle.

* Sphere : First, the center is given as a 3-D point. Next, the 

radius is entered by pressing a mouse button for a second 

time. The distance between center and the last position gives 

the radius of the sphere.

* Superquadric : Superquadric in the context of this system is a 
box with rotmded corners. The center is entered simply as a 3- 

D point. The size information is given by dragging the mouse 

in x,y and z directions. A box that encloses the superquadric is 

drawn when the button is released. ’’ Power” is the parameter 

that denotes the roundness of the superquadric. It shows up 
in the panel of the third subwindow and it takes a default 

value if the user does not specify its value.

* Box : A box is defined by its center and size in three directions, 

namely x,y, and z. The surface associated with the box should
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be given as in other object definitions.

* B-Spline : B-Spline surfaces are defined by a set of control 

points and the order o f continuity that gives the smoothness 

of the generated surface. Before entering the control points, 
the user should specify the order of continuity, the number 

of control and generated points in the panel of the third sub

window. Otherwise, default values shown in the panel are as

sumed. The control points axe entered by selecting 3-D points 

that form a network of points in space. After entering the 
complete network of points, the user should wait for a while 
until the surface is obtained and drawn as wire-frame. User 

can proceed to define the rest of scene as in the previous object 

definitions.

* View Point : Each scene definition contains exactly one viewer 
position. It is selected as if a 3-D point is entered. When the 

view point is given, two other parameters, namely ’’Recursive 

Depth” and ’’Raster Size” are specified in the panel of the 
third subwindow. Recursive depth is used for terminating cri

terion which determines the level of reflections on the surfaces. 

Raster size is the size of the screen where the image is to be 

displayed.

* Light Source : A scene may contain a number of light sources 
to illuminate the environment. A light source has a position 

and brightness. Its position is given as 3-D point, and bright

ness is specified in the panel of the third subwindow.

Surface : Each object refers to a surface by its number. Surface 

definition gives the material property of the object with its color. 

Surface definition consists of the following information.

* Ambient Color

* Diffuse Color

* Specular Color

* Surface Coefficient

* Reflection

51



* Transparency

The color values are given using the panel in the third subwindow. 

There are 16 predefined colors displayed in the small squares. User 

can select one of these and load into ambient, diffuse or specular 
boxes that axe above squares. To select a color, the square is 

pointed and the mouse button is pressed. To load a color from 

current selected square, point at one of ambient, specular or diffuse 

boxes and press a mouse button. The color of a selected square 
can be changed by sliding the red, green or blue components. The 
background color is taken from the last square in the panel.

The last three parameters are entered from the panel in the third 

subwindow. They assume default values for the parameters, if no 

value is specified. For more information about these parameters, 
refer to chapter 2.

• PROCESS : This button is used to process the defined scene in three 
different ways. The menu items related to this button are explained 

below:

— Naive : This choice calls the naive version of the ray tracing algo
rithm. That is, all of the objects in the scene are compared to find 
the first intersection point, if any. Naturally, it is very slow when 

the number of objects is large. It is included into the system to 

be able to compare the timing results with other versions.

— Fast : This calls the fast algorithm that uses spatial coherence. 
The space is subdivided into disjoint volumes and only the objects 
on the path of the ray are tested for intersection. The reader is 

referred to the related chapter for other details.

— Parallel : This choice calls the parallel version of the ray tracing 

algorithm. It only simulates the parallelism using some operating 

system functions. It divides the image space into four equal sized 
rectangles and generates pixel values for each of them on a different 

file.

• DISPLAY : This is used to display the generated image on the screen.

Due to the limited size of the color table in our system, we could not
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manage to display an image with more than 256 different color values. 

For instance, a generated image on the average contains 4000 different 

RGB values depending on the object colors in the scene. Therefore, 
we had to map the 4000 different RGB values to the 256 available 
colors reducing the quality of the display. There are several ways to 

accomplish this:

— Scan : One way to do this is to map several close RGB values 

to one entry of the table. A hashing function is used to find an 
entry for an RGB value in the color table. The RGB values at 
the calculated entry are compared to the ones of the pixel being 

scanned. If they are almost the same, the new pixel takes its 

color value from this entry by simply pointing to it. Otherwise, 

an empty entry in the color table, if available, is used for this new 

value.

— Dither : This choice calls the dither procedure that reduces the 

number of colors to at most 256 through multiplying the pixel 

values by a dither matrix.

— Coarse : This is similar to the previous one, but it forms bound
aries around objects. It is slower them dither procedure.

— Gray : This is called to generate a gray level image from the color 
one. It can be useful on the systems with limited colormap size.

• IMAGE : This button is used to save or to load the displayed image in 

different formats which are machine dependent.

— Save Raster : This saves the canvas in raster format that is usually 

used on SUN Workstations.

— Load Raster : This loads the image saved in raster format. It is 

very fast compared to other display functions.

— Save Targa : This is used to save in a format that can be displayed 

on the machine with ’’Targa” board.

• CLEAR : To clear the canvas.

• QUIT : To exit from the ray tracing system.

53



• HELP : To display help texts about the system.
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