
!« W , . /*4) ··»·. ,j»“ -ia'i. ·· Λ·' r i
Л і ;? ώ 1 L í j\j 1

• "Î5 -9
P.S ¿4

RAY TRACING GEOMETRIC MODELS AND
PARAMETRIC SURFACES

A THESIS

SUBMITTED TO THE DEPARTMENT OF COMPUTER

ENGINEERING" AND INFORMATION SCIENCES

AND THE INSTITUTE OF ENGINEERING AND SCIENCE

OF BILKENT UNIVERSITY

IN PARTIAL, FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF
MASTER OF SCIENCE

By
Veysi I§ler

1989

QA

h Q
m

5Î8G5

I certify that I have read this thesis and that in my
opinion it is fully adequate, in scope and in quality, as
a thesis for the degree of Master of Science.

Prof. Dr. Bülent Özgüç (Principal Advisor)

I certify that I have read this thesis and that in my
opinion it is fully adequate, in scope and in quality, as
a thesis for the degree of Master of Science.

I certify that I have read this thesis and that in my
opinion it is fully adequate, in scope and in quality, as
a thesis for the degree of Master of Science.

Asst. Prof. Dr. Cevdet Ay kanat

Approved for the Institute of Engineering and Sciences:

Prof. Dr. Mehmet Baray, Director of Institutfeof Engineering and Sciences

11

ABSTRACT

RAY TRACING GEOMETRIC MODELS AND
PARAMETRIC SURFACES

Veysi İşler
M.S. in Computer Engineering and Information Sciences

Supervisor: Prof. Dr. Bülent Özgüç
1989

In many computer graphics applications such as CAD, realistic displays

have very important and positive effects on designers using the system. There

axe several techniques to generate realistic images with the computer. Ray

tracing gives the most effective results by simulating the interaction of light
with its environment. Furthermore, this technique can be easily adopted to

many physical phenomena such as reflection, refraction, shadows, etc. by

which the interaction of many different objects with each other could be

realistically simulated. However, it may require excessive amount of time

to generate an image. In this thesis , we studied the ray tracing algorithm

arid the speed problem associated with it and several methods developed to

overcome this problem. We also implemented a ray tracer system that could

be used to model a three dimensional scene and And out the lighting effects

on the objects.

Ill

Keywords: Ray tracing. Octree , Shading , Realistic Images.

ÖZET

GEOMETRİK MODELLER VE PARAMETRİK YÜZEYLER
ÜZERİNDE IŞIN İZLEME

Veysi İşler
Bilgisayar Mühendisliği ve Enformatik Bilimleri Bölümü

Yüksek Lisans
Tez Yöneticisi: Prof. Dr. Bülent Özgüç

1989

Bilgisayarlı bir çok uygulamada gerçeğe uygun görüntüler sıkça kulla

nılmaktadır. Bu nedenle, bilgisayarda gerçekçi görüntüler elde etmek için
çeşitli yöntemler geliştirilmiştir. Işın izleme bunlar arasında en etkili ger
çekçi görüntüler elde etmeye yarayan bir yöntemdir. Işın izlemede temel

nokta, sunulacak sahnedeki ışık ve modellerin çevreleri ile etkileşimlerinin

benzetimi yapılarak yansıma, gölgeleme ve kırılma gibi doğal olayları bilgisa

yarda hesaplamaktır. Işın izleme metodu bu kadar yararlı olmasına rağmen,

bu teknikle elde edilen görüntüler aşırı hesaplama zamanı gerektirmektedir.

Bu araştırmada ışın izleme metodu çalışılmış ve bu yöntemin seıhip olduğu

avantajlar ve dezavantajlar incelenmiştir. Ayrıca, ışın izlemedeki problemleri

çözmek için geliştirilen metotlar araştırılıp geliştirilen ışın izleme sisteminde

kullanılmıştır.

V

Anahtar kelimeler: Işın İzleme , Sekizli Ağaç, Tonlama, Gerçekçi Görüntü.

ACKNOWLEDGEMENT

I wish to thank very much my supervisor Professor Bülent Özgüç, who

has guided and encouraged me during the development of this thesis.

I am grateful to Professor Mehmet Baray and Dr. Cevdet Aykanat for

their remarks and comments on the thesis.

I would also like to express my gratitude to Dr. Varol Akman, who
provided me with several papers that were very helpful to me.

My sincere thanks are due to Cemil Türün for his technical help.

Finally, I appreciate my colleagues Aydın Açıkgöz and Uğur Güdükbay

for their valuable discussions.

Vll

TABLE OF CONTENTS

1 INTRODUCTION

2 THE RAY TRACING ALGORITHM

2.1 The Shading M odel................................

2.1.1 Ambient Light . . .

2.1.2 Diffuse Reflection . .

2.1.3 Specular Reflection .

2.1.4 R eflection

2.1.5 Transparency

2.1.6 Shadows

4

4

4

6

6

6

7

7

3 SPEEDING UP THE ALGORITHM 9

3.1 Bounding V olum es... 10

3.2 Spatiail Subdivision .. 11

3.3 A Hybrid T ech n ique.. 15

3.4 Parallel Ray T ra cin g .. 16

Vlll

4 AN IMPLEMENTATION OF SPACE SUBDIVISION US
ING OCTREE 18

4.1 Overview 18

4.2 Octree Building and Storage... 21

4.3 Movement to the Next Box 23

5 A RAY TRACER SYSTEM 25

5.1 Defining the Scene 25

5.1.1 Textual Input 26

5.1.2 Interactive Tool 30

5.2 Processing: Ray Tracer ... 31

5.3 Displaying the Im age.. 33

5.4 Examples and Timing Results ... 34

6 CONCLUSION 40

APPENDICES 49

A THE USER’S MANUAL 47

A .l The M o d u le s .. 47

A .2 The Interface.. 48

IX

LIST OF FIGURES

2.1 Tracing o f one ray.

2.2 Vectors used in shading computations.

3.1 Several types of bounding volumes. 10

3.2 Adaptive space subdivision. 12

3.3 Subdivision of space into equally sized cubes.............................. 13

4.1 Naming the boxes. 20

4.2 Hash table to store the generated boxes...................................... 22

5.1 Four spheres and a triangle. 36

5.2 Fifty spheres. 36

5.3 Two hundred spheres... 37

5.4 Twenty four spheres... 37

5.5 Sphere above chessboard. 38

5.6 Shield and a sphere. 38

5.7 Boxes and superquadrics. 39

5.8 Mirrors and reflections. 39

A .l User interface of the system.. 54

A.2 Selecting objects.. 54

XI

LIST OF TABLES

5.1 Timing results of figures 5.1, 5.2, 5.3.

5.2 Timing results of figure 5.4................ 35

. . . . 35

XII

1. INTRODUCTION

One of the most important goals in computer graphics is to generate images
that appear realistic, that is, images that can deceive a human observer when

displayed on a screen. Realistic images are used widely in many computer

graphics applications. Some of them are :

• CAD

• Animation and Visualization

• Simulation

• Education

• Robotics

• Architecture

• Inside Decoration

• Advertising

• Reconstruction for Medical and Other Purposes

There axe several advanced techniques used to add realism to a computer gen

erated picture. All these techniques involve both hidden-surface and shading

computations. The hidden-surface computation determines which parts of

object surface are visible, which ones are not. Hidden-surface elimination is

essential for realistic display of objects. Once visible surfaces have been iden

tified, for instance, by a hidden-surface method, a shading model is used to

1

compute the intensities and colors of the surfaces. The shading model does
not exactly simulate the behavior of light and surfaces in the real world but
only approximates actual conditions. The design of the model is a compro
mise between precision and computing expense.

The initial approaches to generate realistic images on a computer were
primarily hidden-surface removal and shading of surfaces without considering
the effects of objects in the environment. However, to obtain more realistic
and detailed images, global shading in addition to hidden-surface operation

should be performed.

Ray tracing was the first method introduced in order to generate very
realistic images by including the effects of shadows and reflections in addition
to transparency of neighboring surfaces [43]. The basic idea in ray tracing
is to find out the effect of the light source(s) on the objects in the scene.

Ray tracing that performs a global shading gives more depth cues than the

local shading [19]. This is due to the fact that, the images generated by ray

tracing algorithm may contain a number of optical effects such 8is shadows,

reflection, refraction and transparency. That is, both geometric eind shading
information are calculated for each pixel of the image [23].

Although ray tracing is so useful in generating very realistic images, it
has two major drawbacks: one is its computational complexity and the other

is the aliasing caused by the inherent point sampling nature of the technique

[2]. Due to these difficulties, this powerful technique cannot be included in

most interactive systems. Once the time spent is reduced to a reasonable

amount, this elegant technique could be widely used in many applications.

Ray tracing algorithms can be practical in a wide variety of applications

when the following conditions are satisfied [23] : •

• First of all, the rendering time should be independent of the scene

complexity. That is, when the number of objects in the scene increases,

the time to generate an image should remain close to a constant.

• Secondly, the computation time should be reasonable for each scene so

that we do not spend an excessive amount of time to generate an image.

2

• Thirdly, each generated ray should take almost a constant time inde
pendent of the origin or direction of the ray.

• Another important condition is that, the ray tracer should not accept

only specific types of geometric objects but must also be extendible to
a variety of types easily.

• Finally, the user should not get involved in the construction of the

auxiliary data structures used in the algorithm and the algorithm should

be amenable to implementation on parallel architectures.

In chapter 2 , a brief description of the algorithm will be presented. Each
ray tracing algorithm adopts an appropriate shading model to find a color
value on an object’s surface. As it is pointed out earlier, there is a trade-off

in using a shading model against the time spent on the computer. A simple
shading model which gives satisfactory results is also given in this chapter.

Since ray tracing consumes most of the time in testing intersections of the

rays with the objects, researchers have attempted to reduce these intersection

calculations. In chapter 3, some historical attempts to speed up the algorithm

are overviewed.

One o f the methods used to speed up the algorithm is to subdivide the
space into disjoint volumes. Many variations of this method exist to ac

complish this. In chapter 4, a scheme that uses ’’ Octree” hierarchical data

structure is presented with its important implementation details.

As one important part of the thesis, we implemented a ray tracing system

to generate realistic images. The scene to be processed can be defined by an

interactive tool that has several facilities. The tool with the other peurts of the

system is described in chapter 5. Finally, a conclusion and future directions

are given in chapter 6.

2. THE RAY TRACING ALGORITHM

In a naive ray tracing algorithm, a ray is shot for each pixel from the view
point into the three dimensional space as seen in Figure 2.1. Each object is

tested to find the first surface point hit by the ray. The color intensity at the

intersection point is computed and returned cis the value of the corresponding
pixel. In order to compute the color intensity at the intersection point, the
ray is then refiected from this surface point to determine whether the reflected
ray hits a surface point or a light source. If the reflected ray ends at a light
source, highlights or bright spots are seen on this surface. If the reflected ray

hits another surface of an object, the color intensity at the new intersected

point is also taken into account. This gives reflection of a surface on another.
When the object is transparent, the ray is divided into two components and

each ray is traced individually.

As explained above, the color value at the intersection point gives the color
value of the pixel associated with the intersecting ray. Therefore, having

found the intersection point, the color at that point should be calculated

according to a shading model. A simple one is given in the next section.

2.1 The Shading Model

2.1.1 Ambient Light

Initially the surface has ambient color which is a result of the uniform ambient

light emitted by the surrounding objects. That is, a surface can still be visible

even if it is not exposed directly to any light source. In this case, the surface

Figure 2.1: Tracing of one ray.

is illuminated by the objects in its vicinity. Ambient color behaves similarly

regardless of the viewing direction . We can express the intensity at a point

on the surface of an object as

Color„ = kdColova

where kd is the coefficient of reflection, Colora is the ambient light intensity.
kd takes values between 0 and 1. It is 1 for highly reflective surfaces. Unfor

tunately, ambient color alone does not give satisfactory results. Therefore,
the effect of the light source(s) on the surface according to the orientation of
the surface should also be considered in the computation of shading. That is,
the diffuse reflections and the specular reflections add very much to the re

alism of the image. These computations use the reflection, normal and other

vectors as seen in Figure 2.2. N is the unit vector normal to the point being

shaded. L is the unit vector from the point to the light source. R is the unit

vector in the reflection direction. The angle between R and N is equal to the

angle between V and N. V is the unit vector from the viewing point to the
point on the surface.

2.1.2 Diffuse Reflection

Diffuse reflection computation is based on the Lambert cosine law, which
states that the intensity of the reflected light depends on the cosine of the
angle between the normal of the surface and the ray to the light [33]. The

cosine of this angle is the dot product of two unit vectors in the light and
normal vector directions.

Diffuse reflection is computed as

kdColori

where Colorí is the intensity of the light source, d represents the distance
from a light source to the point being shaded and do is a constant to prevent
denominator from approaching zero.

2.1.3 Specular Reflection

Highlights are seen from the view point when incidence light ray is at a
certain angle and surface is shiny. The highlights (specular reflection) can be

modeled as

where n is a constant related to the surface optical property. It is zero if

the surface is dull and very large if the surface is a perfect mirror, fc, is a

constant for speculcir reflection depending on the surface property.

2.1.4 Reflection

In order to simulate the reflection of surrounding objects on the point being

shaded, a reflection ray is sent from this point and this ray is tested with the

objects to find any intersection. If this ray hits any object, the color intensity

at the intersected point contributes to our shading computation as follows:

Colorp = Color p + krColorr

where Colorp was the intensity computed previously for the point being
shaded. Color^ is the intensity at the intersection point, kr is a constant

that is related to the surface property. It is coefficient of reflection.

2.1.5 Transparency

If the shaded object is transparent, the reflections from the objects behind it

should also be considered. This reflection contributes to the shading compu

tation as

ColoTp = (1 — r)ColoTt + rColori,

Colort is the total intensity at the surface point after summing the intensities
of the ambient light, the diffuse reflection and the specular reflection. Colors
is the intensity of the surface point behind the transparent object, r is a

constant that is related to the transparency of the object. It is 0 if the object is

opaque. In other words, the ray that hits a surface continues traveling through

the transparent object until it intersects another object. The intensity at the

intersection point is taken to contribute to the transparent object. This ray

could also be refracted.

2.1.6 Shadows

Shadows that give very strong depth cues to the image can be obtained while
finding out the diffuse and specular reflections. The regions of a surface are
in shadow if the light sources are blocked by any opaque or semi-transparent

object in the scene. This is found out by sending a ray from the point on the

surface towards the light sources and testing for intersection of the ray with
an object before the light source. If there is any intersection both diffuse and

specular reflections become zero.

3. SPEEDING UP THE ALGORITHM

As mentioned above, the major drawback which prevents ray tracing from
being attractive for interactive systems is its computational complexity due

to many intersection tests between rays and objects. Whitted has estimated

that up to 95% of the time is spent during these intersection tests [43]. They
take too much time since all of the objects in the scene have to be tested to
find the nearest intersection point with the ray, requiring intensive floating

point operations. In order to reduce the processing time in the ray tracing

algorithm, the computation for intersection tests should be decreased. There

are two baisic approaches to do this. •

• First, an intersection test should be simple to compute. That is, it
should take minimum number of computer cycles. The initial attempts

to speed up the ray tracing were based on this approach. To make the

intersection tests simple to compute, either intersection tests are made

efficient [17,19,29,34,38,39] or bounding volumes explained in the next

section are used.

• Second, the number of objects to be tested for intersections should be as

few as possible. Not all of the objects in the scene should be tested for

intersection with the traced ray as in the naive ray tracing algorithm.
Only objects that are highly possible for intersection should be tested.

In other words, the objects on the ray’s path should be considered for

intersection tests. Several methods have been developed to achieve this.

They are discussed in the next sections.

3.1 Bounding Volumes

Some simple mathematically defined objects such as spheres, rectangular
boxes or cones can be tested for intersection with few number of operations
[13]. The complex objects are surrounded by these simple objects (bounding
volumes) as in Figure 3.1 and intersections are first tested with the bound
ing volumes instead of the complex objects . When the ray intersects the
bounding volume of an object, tests are carried out for the complex object

as well. Obviously, the advantage of using bounding volumes is to eliminate
the intersection test with a complex object once its bounding volume is not
intersected with the ray. Its disadvantage is the extra time spent in testing
the bounding box if the object itself has a possible intersection. It should

be noted that the bounding volumes are not mutually exclusive and thus a

ray might be tested for an intersection with more than one object. This is
another drawback of the bounding volumes, since an intersection test for a

complex object may take excessive time. When this type of test is carried

out more than once for a ray, it will be even worse.

When there is a large number of objects in the scene, even the tests for

10

the bounding volumes can take an enormous amount of time. By forming

a hierarchy of bounding volumes, a number of tests can be avoided once a

bounding volume that surrounds some other bounding volumes is not hit by
the ray. Several neighboring objects form one level of the hierarchy. The other
drawback of this method is that these hierarchies are diflicult to generate and
manually generated ones can be poor. That is, they may not be helpful in
speeding the intersection operation. Goldsmith has proposed methods for

the evaluation of these hierarchies in approximate number of intersection

calculations required and for automatic generation of good hierarchies [14].

The bounding volumes used can be spheres, rectangular boxes, polyhe
drons, pгırallel slabs, cones, or surfaces of revolution. The bounding volume
chosen for each object in the scene can be different to enclose the object more

tightly. This may be needed in order not to test more than one bounding

volume for a ray.

3.2 Spatial Subdivision

A different approach to improve the efficiency of ray tracing is called space
subdivision [10,23]. The 3-D space that contains the objects is subdivided
into disjoint rectangular boxes so that each box contains a small number

of objects. A ray travels through the 3-D space by means of these boxes.

A ray that enters a box on its way is tested for intersection with only those

objects in the box. If there eire more than one intersecting object, the nearest

point is found and returned. If no object is hit, the ray moves to the next

compartment (box) to find the nearest intersection there. This is repeated

until em intersection point is found or the ray leaves the largest box that

contains all of the objects. It is necessary, in this case, to build an auxiliary

data structure to store the disjoint volumes with the objects attached to them

[36,37].

This preprocessing will require a considerable amount of time and memory

as a price for the speedup in the algorithm. It is, however, worth using the

space subdivision particularly when the scene contains many objects, since

11

Figure 3.2: Adaptive space subdivision.

this data structure is constructed only once at the beginning eind is used

during the ray tracing algorithm. The number of rays traced depends both

on the resolution of the generated image and the number of objects in the
scene. The auxiliary data structure helps to minimize the time complexity of

the algorithm by considering only those objects on the ray’s way.

There are several techniques that utilize space coherence. They basically

differ in the auxiliary data structures used in the subdivision process, and

the manner used to pass from one volume to another.

In some ray tracing schemes that utilize the spatial coherence, the space

subdivision process is based on the octree spatial representation. An octree is
a hierarchical data structure organized such that each node cam point to one
pzirent node and eight leaf nodes. Figure 3.2 shows this type of subdivision
of the space. In the spatial subdivision ray tracing algorithm, each node of
the octree corresponds to a region of the three dimensional space [11,12,14].
The octree building starts by finding a box that includes all of the objects in

the scene. A given box is subdivided into eight equally sized boxes according

to a subdivision criterion. These boxes are disjoint and do not overlap as the

bounding volumes might do. Each of the generated boxes are examined to

12

Figure 3.3: Subdivision of space into equtilly sized cubes.

find which objects of the parent node гıre included by each child node. The
child nodes are subdivided if the subdivision criterion is satisfied. This is

carried out recursively for each generated box.

The subdivision criteria may be based on the number of objects in the

box, the size of the box, the density ratio of total volume that is enclosed by
all objects in the scene to the volume of the box. When the criterion for the
number of objects in a given box is very large, each object in the scene is
tested for intersection for all rays as in the naive algorithm. No speedup will

be achieved, on the contrary the time and the memory will be wasted for the
octree data structure. On the other hand, if the number of objects is one for

the criterion, there will be many boxes in the structure and the overhead for
traveling through the 3-D space may increase.

Kaplan used a data structure which he calls BSP (Binary Space Partition
ing) tree to decompose the three-dimensional space into rectangular regions
dynamically [23]. BSP is very similar to octree structure in that it also di

vides the space adaptively. The information is stored as a binary tree (a

tree where each non-terminal node can have exactly two child nodes) whose

non-leaf nodes are called slicing nodes, and whose leaf nodes are called box

13

nodes and termination nodes. Each slicing node contains the identification
of a slicing plane, which divides all of space into two infinite subspaces. The

slicing planes axe always aligned with two of the cartesian coordinate axes of

the space that contains the objects. The child nodes of a slicing node can

be either other slicing, termination nodes or box nodes. A termination node

denotes a subspace which is out of the three-dimensional space that does not
contain any objects. A box node , on the other hand, is described by the slic
ing nodes that are traversed to reach it. They denote a subspace containing

at least one object. BSP actually encodes the octree in the form of a binary

space partitioning tree and it is traversed to find the node containing a given
point.

The other spatial subdivision technique for ray tracing is based on the
decomposition of the 3-D space into equally sized cubes [10]. Figure 3.3
contains a scene decomposed into equally sized volumes. The size of the
cubes determines the number of objects in each cube. Therefore, zin optimal

cube size must be considered such that the overhead for moving through the
boxes should not exceed the time gained in testing intersections.

Fujimoto proposed a scheme that imposes an auxiliary structure called

SEADS (Spatially Enumerated Auxiliary Data Structure) on objects in the
scene [10]. This structure uses a high level of object coherency. He also
developed a traversing tool that fits in well with SEADS to t2ike advan

tage of the coherency in a very efficient way based on incremental integer

logic. This method, called 3DDDA (3-D Digital Differential Aneilyzer), is

a three-dimensional form of the two-dimensional digital-differential analyzer

algorithm commonly used for line drawing in raster graphics system. The

major advantage of this scheme is related to the manner to travel through
3-D space containing the objects. 3DDDA does not require floating-point

multiplications or divisions in order to pass from one subspace (voxel) to the

next while looking for intersections, once a preprocessing for the ray has been

performed. Fujimoto states that an order of magnitude improvement in ray

tracking speed over the octree methods has been achieved. It is also possi

ble to improve the performance of octree traversal by utilizing the 3DDDA

method to traverse horizontally in the octree, but vertical level changes must

14

be traversed as usual.

3.3 A Hybrid Technique

Recently, Glassner has presented techniques for ray tracing of animated scenes

efficiently [13]. In his technique, he renders static 4-D objects in spacetime
instead of rendering dynamically moving 3-D objects in space. He uses 4-

dimensional analogues familiar to 3-dimensional ray-tracing techniques. Ad
ditionally, he performs a hybrid adaptive space subdivision and bounding
volume technique for generating good, non-overlapping hierarchies of bound
ing volumes. The quality of the hierarchy and its non-overlapping property
is an advantage over the previous algorithms, because it reduces the number
of ray-object intersections that must be computed.

The procedure to create such a hierarchy starts by finding a box that

encloses all of the objects in the scene, including light sources and the view
point. The algorithm then subdivides the space adaptively as in the octree

method. The subdivision that is based on a given criterion is performed for
each box recursively. The recursion is terminated when no boxes need to be

subdivided.

As returning from the recursive calls made by the space subdivision pro

cess, the bounding volume hierarchy is constructed. Each box is examined,

and a bounding volume is defined that encloses aill the objects included within

that box. The defined bounding volume must not intersect any other box.

That is, it is clipped by the space subdivision box.

At the end of this process, a tree of bounding volumes that has both the

nonoverlapping hierarchy of the space subdivision technique and the tight

bounds of the bounding volume technique is constructed. Thus, the new

hierarchy has the advantages of both approaches while avoiding their draw

backs.

15

3.4 Parallel Ray Tracing

One other approach that is useful to speed up the algorithm is to use several
processing elements running in parallel. Since the rays are traced indepen
dency from each other, the eilgorithm can be easily parallelized by distribut
ing the computation related to different rays.

The simplest way to parallelize the algorithm is to partition the image
space into several rectangular regions and to compute pixel values for each
disjoint region in parallel. The image can be partitioned in several ways:
the regions may be obtained by simply dividing the image space into equal
sized rectangles. Each rectangular area is computed on different processing

elements and the generated images are joined as a single image. A disadvan
tage of dividing the image space in this way is related to the distribution of
computation load to different processing elements unevenly. That is, some

processing elements may complete their tasks much earlier than others, since

less objects are contained in the viewing volume associated with the region.

The other approach to obtain the subimages divides the image space adap

tively in order to distribute the tasks evenly. The subimages obtained in this
way may be of different sizes but they should require approximately the same

computation time so that no processing element is idle for a long time, while

others are busy. In this case, we may achieve a speedup that is close to the

number of processing elements running in parallel.

Another parallel ray tracing is essentially based on the spatial subdivision

mentioned eeirlier [9]. The 3-D space containing the objects is subdivided into

several disjoint volumes. The computation in each volume is carried out on a

different processing element. The ray that travels through 3-D space to find

an intersection passes from one processing element to another via messages.

Each processing element contains the information about the volume assigned

to it. A suitable architecture to accomplish this can be three dimensional

array processor. In this architecture, each processing element is connected to

6 neighboring processing elements in order to pass messages which consist

of information about the rays. On the other hand, hypercube architecture

has potential to perform this task as 3-D array processor. A hypercube of

16

dimension d contains 2** processors [35]. Assume the processors are labeled
0,1,...,2*^ — 1. Two processors i and j are directly connected iff the binary
representations of i and j differ in exactly one bit. Its advantages in this
context may come from its recursive definition and embedding the 3-D array
processor architecture.

Both of the above ideas can be combined to reach at a more efficient

utilization of processing elements [6,9,30]. The 3-D space is again decomposed
into disjoint volumes which are assigned to different processing elements. In
this case, several rays are traced independently in peirallel by subdividing the

image space as well. A more detailed parallel ray tracing can be seen in [6,9].

Miiller has attempted to ray trace movies by distributing the frames to
different Workstations connected through a network [26]. They generated a

5-minutes ray traced animation within 2 months without boring the users of
the Workstations by efficiently using the network.

17

4. AN IMPLEMENTATION OF SPACE
SUBDIVISION USING OCTREE

4.1 Overview

The space subdivision method can be broken up into two different steps;
preprocessing and ray casting. We first build an auxiliary data structure

that will be then used while traveling through the 3-D space. The auxiliary

data structure will contain the information that will allow ray-environment

intersections to be computed as quickly as possible. The 3-D space which
contains all of the objects in the scene is divided into a hierarchical structure

of cubic boxes aligned with the cartesian coordinate system. In the algorithm

that uses space coherence, the only difference is in the intersection routine
to find the first object hit by the ray, if there is any. The new intersection

routine will be as follows: •

• Find a point along a given ray in the first box it intersects. If the ray is
originated inside the root box that encloses all of the boxes, the starting

position is the point looked for. Otherwise, the ray that is originated
outside the root is tested for intersection with this largest box. The

point to be returned is the one a little further from the intersection

point which is in the first box on the path of the ray. If the ray does

not hit the root box, the next ray is shut from the viewpoint and no
intersecting object is returned.

• Having found a point, find the box id that is associated with that point.

This step may take most of the time for traveling through the boxes.

18

Therefore, the data structure should be designed so that we can access
a box in the hierarchy for a given box name quickly.

• At this step, only the objects in the currently visited box are tested for
intersection. Since each box contains few number of objects, we spent
a little and approximately constzint time in each box. If the ray hits

more than one object in the same box, the nearest intersection point is

returned. If the ray does not hit any object in this box, we move to the

next box along the ray and perform intersection tests with the objects

in this box. This process is repeated until an intersection is found or
the ray leaves the root box.

Basically, there are three operations to be performed for the above algorithm.

They are:

• Given a point in space, find the box and its data. Since space is divided

dynamically eind unevenly, this cannot be performed simply by indexing
into a three-dimensional table of box references.

• Given a ray that originates within a given box, find the next intersected
box, if there is. Otherwise, return a message signaling that it will leave

the largest box.

• Given a box that describes a subspace of the scene, obtain a list of all

objects whose surfaces intersect that box. Only the objects in this list
will be tested for intersection with each ray that passes through the

box.

The new algorithm after subdividing the 3-D space into cubic boxes will

refer to the data base frequently. Therefore, it is important for the sake of

the speed to organize the data structure so that it will be easy to access

the information contained in it. We used a hierarchical data structure called

octree to store this information. Octree structure consists of nodes that

represent a subspace of the scene. A node is a leaf node if it is not subdivided

any more. Each non-leaf node has eight children each of which describe a

subspace of the parent node. The volumes described by children nodes are

19

! 5 I 1 5 2

1 5 3 1 5 4

158

Figure 4.1: Naming the boxes.

disjoint and are equal in size. The root node which encloses all of the objects
in the scene is labeled node 1. When we subdivide a node, it passes its name

as a prefix to all its children, which are numbered 1 through 8, as shown in

Figure 4.1. Thus the eight children of the root node are nodes 11 through
18. The children of node 15 are nodes 151 through 158, and so on. Now,
we should answer the second question in the previous section. That is, how

could we find the address of the box given its label ?

We can accomplish this in two extreme ways. In the first way, we could
build a table with an entry for every possible node name that contains that
node’s address. Obviously, this possibility will require large amount of mem
ory. This is due to the fact that not all possible nodes need to be created.
Instead, the nodes of octree are created dynamically when needed. If we

subdivide the root node twice, the maximum possible box name is 188. For
example, we may not need to create nodes 151-158 if node 15 does not satisfy

a subdivision criteria. On the other hand, this scheme would have the advan

tage of extreme speed in finding the address of a node for a given name. In

the second way, we could construct the hierardiy by using linked lists. This

time, each node would have eight pointers to its children and each time we

would search the tree from beginning to find a node address of a given node

20

name. This scheme requires less memory than the first one but searching for
a node slows down the operation and may come up with great overhead.

4.2 Octree Building and Storage

We mixed these two methods using a hashing scheme in the same way as
Glassner did [12]. In this scheme, we have a hash table to hold pointers to

a structure. This structure contains addresses of eight children of a subdi

vided node and the name of their parent node as shown in Figure 4.2. The
construction of the data structure is as follows:

1. Find a cubic box, called root, which contains all of the objects in the

scene. A box is defined by its center, size, a flag and a list of objects
whose surfaces intersects with this box. Flag is set to zero for a leaf
box.

2. If the root box contains objects more than a specified number, go to
the next step to subdivide it into disjoint volumes. Otherwise, this is
the leaf node. No further actions are to be taken for this box.

3. Using the name of current box that is to be subdivided, compute a hash
function. We use a very simple hash function which is the node name

modulo tablesize. Let index be the computed hash function.

4. The index is the location where we want to put the consecutive ad

dresses of eight children and their parent name. If this location is not

empty, the collided node names form a linked list. That is, by simply

following the linked list, the new structure is appended to the end of

this list. If this location does not point to any structure, it will contain

the address of the new structure.

5. Now, for each generated child, find the center and the objects the sur

faces of which intersect the box represented by the child. The size of

the child node is the half of the parent’s size.While determining the

sizes of generated boxes, the minimum size of the boxes is stored in a

21

Figure 4.2: Heish table to store the generated boxes.

global variable ceilled M inlen. M inlen is to be used later for moving
from a box to another.

6. If the number of objects pointed by a child exceed a specified value,
Its flag is set to a non-zero value. Each child node is subdivided as its
parent if the flag is non-zero. That is, we go to the step 3 for each child
with a non-zero flag.

22

4.3 Movement to the Next Box

Whenever no object in a box intersects the ray being traced, the next box,
if any, on the ray’s path should be determined and this time the intersection
tests are ceirried out with the objects in this box. Movement to the next box
continues until an intersection point is found, or until the ray leaves the root
box. There are two issues involved in this operation: First, because the space
is dynamically decomposed when we build the octree, we do not know how
large (or small) any box in space is with the exception of the current one.
That is, how far should we move in order to guarantee that we are in the
next box, but not in another. Secondly, movement to the next box should be
fast enough so that we do not loose what we gain by decomposing the 3-D

space into boxes.

The essence of the box-movement algorithm is to find a point that is
guaranteed to be in the next box whatever its size. This point is then used

to derive a box name and the address of this box along with the information

contained in it.

A point on a ray can be defined by a parameter t. The value of t increases
as we move away from the origin, where t has the value 0. The parametric

line equations give us the point P = (x, y, z) corresponding to parameter t
as below:

X = Xa + tXr

y = y, + ttjr

Z = Za + tZr

where (x ,,j/a ,z,) is the starting position of the ray, (xr,yr,Zr) is the move

ment in each direction. Given a box definition and a ray that passes through

the box, we can find the maximum value of t which may attain in this box.

Let this parameter be tmax which will give the intersection point when the

ray leaves the box. We can compute tmax by intersecting the ray with the

six planes that bound the current box. Two of these intersections give us

bounds on t for X —planes, two others for y—planes and the remaining two for

z—planes. Since each plane is parallel to two of the three coordinate axes.

23

it is inexpensive to intersect a ray with one of these ’’ simple” planes. Let

the bounds be denoted by tXminytXmax̂ iyminjiymaxŷ ^mim̂ ^max· For exam
ple, tXmin is the minimum, tx^ax is the maximum of t values that give the
intersection points with x —planes. The other four are used similarly. Note
that the points describing the intersections of the ray with the planes of the
box may lie far outside the value of the box itself. But certainly some values
of t will hold for all three ranges: these are the values of t inside the box.

The intersection of three ranges {tXmin--t^max,tymin-tymax,tZmin-tZmax) gives
the values of t that the ray may take while it is inside the box. The value of

iffidx IS the minimum of iXmax̂ "̂ ymax snd î nuix·

Now, we will use the variable M inlen to find a point in the next box.

M inlen was the size of the smallest box. Having found the parameter tmax,
we compute P = (x,y, z) using above equation We find the point within

the next box along the ray by merely moving perpendicularly to the planes
by a distance M inlen if their t values are equal to tmax· H the point of

intersection is on an edge, that is, when two of the parameters are equal to

tmax, we must travel perpendicularly to both faces sharing that edge, and

similarly we must travel in three directions if tmax is on a corner of the box.
We simply increment x ,y or z component of the point P by M inlen, if the

corresponding t value is equal to tmax·

Now, using this point, we should access the box and its information. We

start by checking whether the point is in root or not. If the point is outside

the root box, we return and report this. If it is in the root box that has label

1, we find the children of the root box by using the hash function. Next, we

can decide which one of eight children contains this point. The same process

is applied recursively for the child node that includes that point until a box
that has a zero flag is reached. Flag was set to zero for the leaf boxes.

24

5. A RAY TRACER SYSTEM

A ray tracing system is designed and implemented in C programming lan
guage [24] on SUN ̂ Workstations running under UNIX^ operating system.
The system has three major parts:

• Create a scene with objects provided by the system.

• Process the defined scene to obtain a realistic image that consists of
RGB values.

• Display the generated image.

The system mainly can be used to create scenes containing 3-D objects

and then find out the effect of light sources and the objects on each other.
Each part is to be explained in detail in the following sections :

5.1 Defining the Scene

This is the first step in generating a realistic image. User is provided with
several types of objects to model the scene. In addition to the definition of

objects to be included in the scene, the user can give a number of parameters

such as point light sources, viewpoint, origin of the scene etc. so that the

processing is carried out with these parameters, otherwise, which would be

assigned default values. The mentioned input can be given in two different

ways :

ŜUN Workstation is a registered trademark of Sun Microsystems, Incorporated.
^UNIX is a registered trademark of AT&T Bell Laboratories.

OK

• A text file can be prepared with definitions of objects and scene param
eters using a text editor.

• The scene can be defined using an interactive tool that gives a friendly
environment to the user.

5.1.1 Textual Input

When a person chooses the first way to define a scene, he must describe the

scene according to a given syntax. UNIX tools LEX and YACC have been

used to parse and process the user input [41]. The file consists of three kinds

of information :

• Scene Parameters,

• Object Definitions,

• Material Properties.

Scene Param eters

Scene parameters are related to the things in the scene other than the objects.

Each parameter declaration is started by a keyword that consists of uppercase

letters. A set of values follows this keyword. The parameter declarations are

given in the following form :

V IE W P O IN T X y z

This is the place in three-dimensional space where the eye of the observer is

located.

O R IG I N X y z

This is the point in three-dimensional space where the eye looks at.

26

UPVECTOR X y Z

This is used to describe the orientation of the user, (a;, y, z) is a normal vector
that indicates the viewing direction.

R A S T E R w i d t h h e i g h t

It is the resolution of the screen, ’’width” and ’’height” are the size of the

screen in terms of number of pixels.

VIE W P O R T w i d t h h e i g h t

This gives the window size that the user can see.

RDEPTH n

This is used for the termination condition of the recursive call to the shad
ing routine. It actually gives interreflections between objects. If n is 0, no

reflections exist on the objects.

IM A G E F IL E f i l e n a m e

The computed RGB values are written on the given file name.

L IG H T b r i g h t n e s s

X y z

This is to define a point light source anywhere in the three-dimensional space,

’’ brightness” gives the intensity of the point light source and ranges from 0

to 1. It is 0 if no illumination is done by the source. Next triple gives the

position of the point light source.

27

Object Definitions

Next comes the definition of objects in the scene. There are five types of

objects definable by the system. They axe sphere, superquadric, triangle,
rectangle and box. Their textual descriptions are as follows :

Each object description is started by a keyword followed by a surface

number and the parameters to define the object. Surface number is an integer

that refers to a surface definition used for shading computations.

Sphere has two parameters which are center and radius of the sphere.

SPHERE s u r f a c e - n u m b e r

r a d i u s

X y z / ♦ c e n t e r o f t h e s p h e r e * /

Note that comments can be written as in the C language to make the

description more understandable.

A box can be defined by its center and the size information from the

center. Boxes are always aligned with the coordinate axes.

BOX s u r f a c e - n u m b e r

x c y c z c / ♦ c e n t e r o f t h e b o x * /

x s y s z s / * s i z e o f t h e b o x * /

Superquadrics in the context of this system can be defined as boxes whose

corners are rounded. Therefore, a superquadric is defined similarly to a box

with an additional parameter called ’’ Power” . ’’Power” gives the degree of

roundness of the corners. Its definition is as follows :

SUPERQUADRIC s u r f a c e - n u m b e r

p o w e r

x c y c z c / * c e n t e r o f t h e s u p e r q u a d r i c ♦ /

x s y s z s / * s i z e a s i n b o x d e f i n i t i o n ♦ /

28

A triangle in three dimensional space is defined by its three corners, the

points of the corners should be given in the counterclockwise direction that
is very important in shading computations. The syntax for a triangle decla
ration is :

TR IA N G L E

x l y l z l

x 2 y 2 z 2

x 3 y 3 z 3

s u r f a c e - n u m b e r

Similar to a triangle definition, a rectangle is defined by its corners. Again,

the corners should be given in counterclockwise direction. Its syntax is :

RECTANGLE

x l y l z l

x 2 y 2 z 2

x 3 y 3 z 3

x 4 y 4 z 4

s u r f a c e - n u m b e r

Material Properties

A surface description that is referred by the objects serves the shading com

putations in all steps. A surface description can be given as follows :

SURFACE s u r f a c e - n u m b e r

r l g l b l / * a m b i e n t c o l o r ♦ /

r 2 g 2 b 2 / * d i f f u s e r e f l e c t i o n * /

r 3 g 3 b 3 / * s p e c u l a r r e f l e c t i o n ♦ /

k / * c o n s t a i n t r e l a t e d t o t h e s u r f a c e p r o p e r t y * /

r / * r e f l e c t i v i t y c o e f f i c i e n t * /

t / * t r a n s p a r e n c y c o e f f i c i e n t ♦ /

29

5.1.2 Interactive Tool

The other way to specify a scene is to use an interactive tool. The user can

give the description of a scene using mouse, menus etc. in a user friendly
environment. This tool projects the three-dimensional world onto the two-

dimensional screen to provide user with an easy user interface when entering
three-dimensional points.

Using this tool, the scene description mainly involves selecting one of

the object types and specifying the size and other parameters related to
the selected object type by the mouse, panel and other windowing system

elements. A more detailed information on the interactive tool is given in the

appendix as the user’s manual.

After completing the description of the scene, the system converts it into
the format given in the previous section and writes the textual description

on a text file. Therefore, this interactive tool is nothing but a shell that

generates the description on a text file as an output. The textual description

of a scene is useful in the sense that the ray tracer can be portable to any

computer system.

B-Spline Surfaces

The other advantage of the interactive tool is that user can generate free

form surfaces other than five primitive object types. A free-form surface can

be created and placed into 2in appropriate location in the scene. B-Spline

method is used by the system to find out the surface to be included in the

scene description. The surface generated is then triangulized and written in

the known format on the output file as a collection of triangle primitives.

Since objects with complex shapes occur frequently in our three-dimensional

world, special techniques to model them properly are needed [31]. Although

these objects can be approximated with arbitrarily fine precision as plane

faced polyhedra, such representations are bulky and intractable. For example,

a polyhedral approximation of a hat might contain 1000 faces and would be

30

difficult to generate and to modify. We need a more direct representation of

shapes, easy both to the computer and to the person trying to manipulate the

shapes. Bézier and B-Spline are the two methods frequently used to generate

curves and surfaces of 3-D. They are similar to each other in that a set of

blending functions is used to combine the effects of the control points. The

key difference lies in the formulation of the blending functions [3,18,31].

5.2 Processing: Ray Tracer

This part accepts a textual scene description as input that was explained

in the previous section and it generates an image containing several optical

effects for the sake of realism using ray tracing zilgorithm. There are three

major data structures used by this module. They are used to store the

objects, the surfaces and the light point light sources in the scene. The

objects are stored in an array that has elements of the following structure:

O BJECT T Y P E

O BJECT ID

SURFACE NUMBER

P O IN T E R TO AN OBJECT IN STAN CE

OBJECT TYPE indicates one of the five primitive objects. For example,

OBJECT TYPE for a sphere is 0. It is iise.d to call intersection and nor

mal routines related to OBJECT TYPE. OBJECT ID indicates the object
instance in the scene. It is used to access the object variables in intersec

tion and normal routines. SURFACE NUMBER refers to a surface definition

that gives the object material property. The last entry is an address to an

object instance. For example, the address in this entry may contain a sphere

definition as below:

R A D IU S

X Y Z

The surface definition are stored in an array of the following structure:

31

AR AG AB / ♦ A m b i e n t c o l o r c o m p o n e n t s * /

DR DG DB / ♦ D i f f u s e c o l o r c o m p o n e n t s * /

SR SG SB / * S p e c u l a r c o l o r c o m p o n e n t s * /

COEF / * S u r f a c e c o e f f i c i e n t ♦ /

REFL / * R e f l e c t i o n c o e f f i c i e n t * /

TRANSP / * T r a u i s p a r e n c y c o e f f i c i e n t * /

Point light sources are simply stored in an array of lights. Each light is

defined by

BRIG H TNESS

X Y Z

Each object type definable by the system has its own intersection function.

This gives a great flexibility for adding new objects to the system. That is,
if a new object type is to be added to the system , the following should be

available for the new object type:

• Object Definition

• A function that allocates space for an instance of the new object type.

• A function that finds out the intersection point on the surface with a

ray. This is used during intersection tests.

• A function that returns the normal vector at a given point on the object

surface. This is used for shading computations.

Additionally, the intersection calculations become more efficient since each

function is implemented for a specific object type.

The shading model used by the system is similar to the one given in

the second chapter. Ambient color that is stored in surface definition is the

initial color for the point being shaded. The diffuse and specular reflections

are calculated by using the entries in the surface structure. The level of

reflection is the terminating criterion for the recursive call when the reflected

32

ray hits another object other than light source. Transparency of an object

is simulated by the given calculation model. That is, the ray is divided into

two components and one of them continues traveling through the treinsparent
object until it hits another object at its back. After calculating the intensity

at the hit point, the intensity at the point of the transparent object is found

out by the given formula. In addition to these optical effects, shadows that

give very strong depth cues may exist if the light is blocked by opaque or

semi-transparent objects.

This part of the system has three different versions. The first version of

the system is based on the naive ray tracing algorithm. That is, all objects

in the scene are tested to find the first intersection with a traced ray. As it
is very obvious, the time spent increases with the number of objects in the

scene. For example, when we have 10,000 objects in the scene, processing

may take even days on a mini computer.

In the second version of the ray tracing system, the intersection tests

are not carried out with all objects in the scene but the spatial coherence

technique is used to perform intersection tests only for the objects that are on
the path of the ray. Therefore, the space containing the objects is subdivided

using the octree representation. The second version of the program is capable

of generating the images much faster than the first version that does not

utilize the space coherence.

The last version is the parallel ray tracing algorithm. It partitions the

image space into four equal sized rectangles and generates pixel values for each

of them on a different file. It is just a simulation of the parallel algorithm

using UNIX’s ’’ fork” and ’’wait” system calls [42]. No actual speedup is

achieved, since only one processor is used.

5.3 Displaying the Image

We compute a triple (RGB) for each pixel of the image after tracing a ray.

When we compute RGB values in shading routine, we assume a linear inten

sity response. That is, pixel of a value of 127, 127, 127 has the half intensity

33

of a pixel value of 255, 255, 255. However, the response of typiczil video color

monitors and of the human visual system is non-linear. Thus, displaying of

images in a linear format results in effective intensity quantization at a much
lower resolution than the available 256 resolution per color. That is, the true

colors will not be perceived by the human eye, because of the non-linearity

in the monitor. Therefore, it is necessary to correct the computed values so

that the generated picture appears more realistic to a human observer.

A function called gamma correction is used for this purpose [16]. It is an
exponential function of the form:

lookupvalue —

Gamma represents the nonlinearity of the monitor. Generally monitors have

a gamma value that is in the range 2.0 to 3.0. If gamma is equal to 1, the
device is a linear one. An incorrect value results in incorrect image contrast
and chromaticity shifts. If the gamma is too small, the contraist is increased
and the colors approach to the primaries.

The RGB values should be corrected by the above function before the

image is displayed or stored to a file.

5.4 Examples and Timing Results

In this section, several images generated by our system are presented in Fig

ures 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8. We also compare the time spent in

the first and second version of the algorithm for some images.

Table 1 contains the clock timings for rendering three images given in

Figures 5.1, 5.2, 5.3. Actually, there may be several other influences on the

rendering time other than the complexity of the algorithm. These are the

programming style, the code optimization, the processor speed, etc. As it is

clear from these measurements, when the number of objects in the scene in

creases, the ratio of the naive technique to the fast one gets larger and larger.

This is due to the fact that a great amount of time is wasted for the inter

section calculations in the naive ray tracing system. The ratio approaches

34

Figures No. of Objects
in the scene

Naive 1 Fast
(in minutes)

5.1 5 05:06 08:50
5.2 50 "54:26 25:40
5.3 200 123:20 40:52

Table 5.1: Timing results of figures 5.1, 5.2, 5.3.

No. of Objects
in boxes

Time
(in minutes)

2 22:21
6 17:52
8 28:36

Table 5.2: Timing results of figure 5.4.

one for the scenes containing few number of objects [21]. In higher

speed models, we note that the timings are dependent on the criteria used

to subdivide the space. For example, when the space is divided into very

small boxes that contain only one object, the overhead for traveling through

the boxes may approach to the time saved for intersection tests. That is, the
ray may frequently pass through many empty volumes wasting a considerable

amount o f time. Table 2 shows timings for the image in Figure 5.4 gener

ated using the octree auxiliary data structure for three different terminating

criteria values.

35

Figure 5.1: Four spheres and a triangle.

Figure 5.2: F ifty spheres.

36

Figure 5.3: Two hundred spheres.

§ i

Figure 5.4: T w enty four spheres.

37

Figure 5.5; Sphere above chessboard.

Figure 5.6: Shield and a sphere.

38

Figure 5.7: Boxes and superquadrics.

Figure 5.8: M irrors and reflections.

39

6. CONCLUSICN

Computer generated images that appear realistic to a human observer have
been one of the most important goals in Computer Graphics. Ray tracing
algorithm with this respect is the most popular method for realistic image
synthesis. It is in the class of image generation algorithms, called global
shading, that provide the most realistic images by considering the optical

effects such as shadowing and reflection from the surfaces in the environ
ment. However, it requires a tremendous amount of time to generate an
image. Several methods have been developed to overcome the time problem

[6,9,10,11,12,13,23,28,29]. In this thesis, we investigated these methods and

used two of them, namely space subdivision and parallelism, in the imple
mentation of the ray tracing system. The space subdivision method saves

considerable amount of time when the scene is complex. Hut the speedup

achieved is still not enough when many images are to be generated. The

parallel version of the space subdivision method may be the best solution for

the time problem. As the first conclusion, the parallelism is essential for the

interactive realistic image generation.

Another method in the global shading class has been introduced later

than ray tracing as radiosity [7,15,20]. This method can simulate the global

illumination effect more accurately than ray tracing can do. Although there

has been several attempts to obtain more detailed images using ray tracing as

in [1,5,8,22], no one could consider the interaction between diffuse surfaces.

Another advantage of radiosity method is that the resultant surface intensities

are independent of the viewer position. This allows efficient rendering of

dynamic sequences. As the next conclusion, ray tracing should utilize some

ideas in this method, namely radiosity to increase the accuracy in simulating

40

the global illumination effects.

Finally, we should also taJce into account the texture mapping that is used
to cover over a surface with texture [4], in order to provide more detailed im

ages. Texture mapping is basically the method of wallpapering the polygons
in the scene. One o f the future directions in realistic image generation is
to develop methods for ray tracing texture mapped surfaces in a reasonable
ajnount of time.

41

REFERENCES

[1] Amanatides, J., “Ray Tracing with Cones,” ACM Computer Graphics ̂
Vol. 18, No. 3, (July 1984), pp. 129-135.

[2] Amanatides, J., “Realism in Computer Graphics : A Survey,” IEEE CG
& j4, (January 1987), pp. 44-56.

[3] Barsky, B. A., “A Description and Evaluation of Various 3-D Models,”

IEEE CG&A, (January 1984).

[4] Blinn, J. F. and Newell, M. E., “Texture and Reflection in Computer

Generated Images,” Communications of the ACM., Vol. 19, No. 10, (Oc

tober 1976), pp. 542-547.

[5] Bouville, C., Brusq, R., Dubois, J. L., Marchal, I., “Generating High

Quality Pictures by Ray Tracing” , Computer Graphics Forum, 4 (1985)
pp. 87-99.

[6] Cleeiry, J. G., Wyvill, B. M., Birtwistle, G. M., Vatti, R., “Multiprocessor

Ray Tracing,” , Computer Graphics Forum, 5 (1986) pp. 3-12.

[7] Cohen, M. F. and Greenberg, D. P., “A Radiosity Solution For Complex

Environments,” ACM Computer Graphics (Proc. SIGGRAPH), Vol. 19,

No. 3, (July 1985), pp. 31-40.

[8] Cook, R. L., Porter, T., Carpenter, L., “Distributed Ray Tracing,” ACM
Computer Graphics, Vol. 18, No. 3, (July 1984), pp. 129-135.

[9] Dippe, M. and Swensen, J., “ An adaptive Subdivision Algorithm and

Parallel Archtecture for Realistic Image Synthesis,” ACM Computer
Graphics, Vol. 18, No. 3, (July 1984), pp. 149-158.

42

[10] Fujimoto, A., Tanaka, T. and Iwata, K., “ARTS: Accelerated Ray-
Tracing System,” IEEE CG&A, (April 1985), pp. 16-26.

[11] GeofF, W., “Space Division for Ray tracing in CSG,” IEEE CG&A, (April

1986), pp. 28-34.

[12] Glassner, A. S., “Space Subdivision for Fast Ray TVacing,” IEEE CG&A,
(Oct. 1984), pp. 15-22.

[13] Glassner, A. S., “Spacetime Ray Tracing for Animation,” IEEE CG&A,
(Meirch 1988), pp. 60-70.

[14] Goldsmith, J., Salmon, J., “ Automatic Creation of Object Hierarchies
for Ray Tracing,” IEEE CG&A, (May 1987), pp. 14-20.

[15] Goral, C. M., Torrance, K. E., Greenberg D. P. and Battaile, B.,· “Mod

eling the Interaction of Light Between Diffuse Surfaces,” ACM Computer

Graphics, (1984), pp. 213-222.

[16] Hall, R., “Color Reproduction and Illumination Models,” Techniques for
Computer Graphics, Springer-Verlag, (1987), pp. 195-238.

[17] Hanrahan, P., “Using Caching and Breadth-First Search to Speed up,”

Proceedings : Graphics and Vision Interface ’86 , Canadian Information
Society, Toronto, (1986), pp. 56-61.

[18] Hearn, D. and Baker, M. P., Computer Graphics, Printice-Hall, Inc.,

Englewood Cliffs, NJ (1986).

[19] Heckbert, P. S., Hanrahan, P., “Beam Tracing Polygonal Objects,” ACM
Computer Graphics, Vol. 18, No. 3 (July 1984), pp. 119-127.

[20] Immel, D. S., Cohen, M. F., Greenberg, D. R , “A Radiosity Method

For Non-Diffuse Environments,” ACM Computer Graphics (Proc. SIG-

GRAPH), (1986), pp. 133-142.

[21] İşler, V. and Özgüç, B., “Ray Tracing Geometrical Models,” Proceedings
of the Fourth International Symposium on Computer and Information
Sciences, Çeşme, Turkey (October 1989, to appear).

43

[22] Kajiya, J. T. and Herzen, B. P. V., “Ray Tracing Volume Densities,”

ACM Computer Graphics, Vol. 18, No. 3, (July 1984), pp. 165-174.

[23] Kaplan, M. R., “The Use of Spatial Coherence in Ray Tracing,” Tech

niques for Computer Graphics, Springer-Verlag, pp. 173-193 (1987).

[24] Kernighan, B. W., Ritchie, D. M., The C Programming Language, Pren

tice Hall, Inc., Englewood Cliffs, NJ (1978).

[25] Kuchkuda, R., “An Introduction to Ray Tracing ,V Theroretical Founda

tions of Computer Graphics and CAD. Edited by R.A. Earnshaw, NATO

ASI Series. Vol. F40, Springer-Verlag Berlin Heidelberg 1988, pp 1039-

1060.

[26] Leister, W., Maus, T., Miiller, H., Neidecker, B., Schmitt, A., Achim,

S., “Occursus Cum Novo : Computer Animation by Ray tracing in a
Network,” Technical Report, Universität Karlsruhe , Fakultät Für In

formatik, November 19S7.

[27] Levner, G., Tassinari, P. and Marini, D. “A Simple, General Method for
Ray Tracing Bicubic Surfaces,” Theroretical Foundations of Computer
Graphics and CAD. Edited by R.A. Earnshaw, NATO ASI Series. Vol.
F40, Springer-Verlag Berlin Heidelberg 1988, pp 805-820.

[28] Müller, H., “Ray Tracing Complex Scenes By Grids,” Technical Report,

Universität Karlsruhe , Fakultät Für Informatik, December 1985.

[29] Müller, H. and Hagen, H., “Trading Speed Against Space in Ray Tracing

Free Form Surfaces,” Technical Report, Universität Karlsruhe , Fakultät

Für Informatik, May 1986.

[30] Nemoto, K. and Omachi, T., “An Adaptive Subdivision by Sliding

Boundary Surfaces,” Proceedings : Graphics and Vision Interface’86,
Canadian Information Society, Toronto, (1986), pp. 43-48.

[31] Newman, W. and Sproull, R., Principles of Interactive Computer Graph

ics, McGraw-Hill, (1981), second edition.

44

[32] Özgüg, B., “Thoughts on User Interface Design for Multi Window Envi
ronments,” Proceedings of the Second International Symposium on Com

puter and Information Sciences, Istanbul, Turkey (1987), pp. 477-488.

[33] Phong, B. T., “Illumination for Computer Generated Pictures,” Com

munication of the ACM., Vol. 18, No. 6, (June 1975), pp. 311-317.

[34] Pulleyblank, R., and Kapenga, J., “ The feasibility of a VLSI Chip for

Ray Tracing Bicubic Patches,” IEEE CG&A, (March 1987), pp. 33-44.

[35] Sahni, S. and Ranka., S., Hypercube Algorithms for Image Processing
and Pattern Recognition, (to be published), (1989).

[36] Samet, H. and Webber, R. E., “ Hierarchical Data Structures and Algo
rithms for Computer Graphics , Part I: Fundamentals,” IEEE CG&A,
(May 1988), pp. 48-68.

[37] Samet, H. and Webber,_R. E., “Hierarchical Data Structures and Algo

rithms for Computer Graphics , Part II: Applications,” IEEE CG&A,
(July 1988), pp. 59-75.

[38] Schmitt, A., Müller, H. and Leister, W., “Ray Tracing Algorithms - The
ory and Practice,” Theroretical Foundations of Computer Graphics and
CAD. Edited by R.A. Earnshaw, NATO ASI Series. Vol. F40, Springer-

Verlag Berlin Heidelberg 1988, pp 997-1030.

[39] Sederberg, T. W. and Anderson, D. C., “Ray Tracing of Steiner

Pathces,” ACM Computer Graphics, Vol. 18, No. 3, (July 1984), pp.

159-164.

[40] Sun Microsystems, Sun View Programmer’s Guide, Mountain View, CA

(1986).

[41] Sun Microsystems, Programming Utilities for the Sun Workstation,
Mountain View, CA (1986).

[42] Sun Microsystems, UNIX Interface Reference Manual, Mountain View,

CA (1986).

45

[43] Whitted, T., “An Improved Illumination Model for Shaded Display,”
Communications of the ACM, 23 (June 1980), pp. 343-349.

46

A. THE USER’S MANUAL

This system is mainly used to model 3-D scenes, to find the interaction of

objects with the light sources and to display the resultant image that appears

realistic.

To provide the users with a friendly environment, SUNVIEW has been

used for creating panels, menus, buttons, etc. [40]. More information about
multi window environment can be found in [32]. The modules that comprise
the system and the user interface are given in detail in the following two

sections.

A .l The Modules

The system can be broken up into two different subsystems: the interactive

tool and the ray tracer. The first one is used to model a 3-D scene as an input

to the ray tracer and to display the realistic image that contains some optical

effects. The second subsystem generates the realistic image that is to be

displayed by the interactive tool. Each subsystem consists of several modules

and header files written in the C programming language. The description and

comments about the modules are given at the beginning of the files containing

the modules. The modules are compiled and linked using the UNIX’s makefile

facility.

The interactive tool contains the following files :

c o a r s e . c c o n l s . c d i s p . c

47

d i t h e r . c

imsl.c model.c object.c parmenu.c
pmain.c pnot.c surface.c trans.c
writedef.c

peons.h pdef.h pext.h pfunc.h
plib.h ptype.h

box.icon eye.icon light.icon psource.icon
rec.icon sph.icon spl.icon sup.icon
tri.icon viewp.icon

The ray tracer contains the following files :

b o x . c c r e a t e s t r . c f i n t e r s e c t . c f m a i n . c

i n p u t . l e x l . c i n p u t . y a c c l . c i n t e r s e c t . c l i g h t . c

l i g h t 2 . c m a i n . c n e x t b o x . c o b j b o x . c

o b j e n d . c o u t p u t p . c p f m a i n . c p m a i n . c

p o u t p u t p . c r a y m a t h . c r e c t a u i g l e . c s e t u p . c

s h a d e . c s h a d e 2 . c s p h e r e . c s t u b s . c

s u p e r q u a d r i c . c t r i a n g l e . c v i e w i n g . c

c o n s t a n t s . h c o n s t z i n t s l . h f u n e d e f s . h f u n e d e f s i . h

g l o b a l v a r . h g l o b a l v a r l . h m a i n d e c l . h m a i n d e c l 1 . h

t y p e d e f s . h t y p e d e f s i . h y . t a b . h

i n p u t _ y a c c . y i n p u t _ y a c c l . y i n p u t _ l e x . 1 i n p u t . l e x l

A .2 The Interface

The user interface for the system consists of four subwindows. The first one is

a panel that contains several buttons, two text items to enter full path name

of a file and a message item to give wmnings and messages. The second one is

48

a canvas to draw the scene elements onto the screen. The third subwindow is

used for different purposes at different times. For example, eight icons appear

on this window when the ’’ Objects” menu item under ’’ Define Scene” button
is selected. After selecting one o f these icons, this subwindow then displays

various parameters related to the selected icon that can be modified. The

fourth subwindow is used to enter color information about surfaces. Below,
the way how these subwindows are used is given in detail.

There are eight buttons in the main panel as shown in Figure A .l. Some

of them cause menus to be popped up when selected. The function of each

button in the panel is explained in the following sections.

• GENERAL : This button is used to select the actions that are generic

in the sense that they can be selected at any time while using the

system. Currently, one menu item is contained in the menu related to

this button. More can be appended to provide user with other facilities.
The function of this menu item is given below :

— Operating System: This creates a window and enables user to

work at the operating system level.

• DEFINE SCENE: This button is used to define the scene to be ray

traced. A scene can be defined by one or more objects with their ma

terial properties and scene parameters such as light sources, viewing
direction, etc. Objects and scene parameters can be given by select

ing ’’ Objects” menu item, while material properties can be entered by

’’ Surface” menu item. Each is going to be described below.

— Objects: After selecting this menu item, the panel on the left

(third subwindow) contains 8 choices indicated by icons as in Fig

ure A .2. At the same time, three dimensional coordinate axes and

y-z plane as a reference is drawn on the canvas where 3-D points

are given for the objects, light sources and view point. In other

words, 3-D space is projected on the 2-D screen to facilitate for 3-D

input. The first six icons are to define objects to be included in the

scene while the last two icons are to give other scene parameters.

49

The object definition starts by selecting the corresponding icon
and inputting the necessary size and position information about

the selected object. Every object should refer to a number called
’’ Surface number” that must be defined to denote the material
properties of the object referring to it.

A point in 3-D space is entered by first pointing at x-z plane and
pressing a mouse button at that point, then dragging either up

or down to enter the y-coordinate. In other words, first x,z com

ponents are given, next the y component of the point is denoted
by releasing the mouse button. The y-component is the difference
between the heights of releasing point cmd pressing point.

Each icon has a function that will be described below:

* Triangle : Three points are given successively for the corners

of the triangular plane in space. Before that, the referred

surface number should be selected from the panel in the third
subwindow. To put other objects into scene after one or more

triangular planes are defined, ’’ Objects” menu item should be

selected.

* Rectangle : Rectangular surface is defined similarly, but with

four points for the corners of the rectangle.

* Sphere : First, the center is given as a 3-D point. Next, the

radius is entered by pressing a mouse button for a second

time. The distance between center and the last position gives

the radius of the sphere.

* Superquadric : Superquadric in the context of this system is a
box with rotmded corners. The center is entered simply as a 3-

D point. The size information is given by dragging the mouse

in x,y and z directions. A box that encloses the superquadric is

drawn when the button is released. ’’ Power” is the parameter

that denotes the roundness of the superquadric. It shows up
in the panel of the third subwindow and it takes a default

value if the user does not specify its value.

* Box : A box is defined by its center and size in three directions,

namely x,y, and z. The surface associated with the box should

50

be given as in other object definitions.

* B-Spline : B-Spline surfaces are defined by a set of control

points and the order o f continuity that gives the smoothness

of the generated surface. Before entering the control points,
the user should specify the order of continuity, the number

of control and generated points in the panel of the third sub

window. Otherwise, default values shown in the panel are as

sumed. The control points axe entered by selecting 3-D points

that form a network of points in space. After entering the
complete network of points, the user should wait for a while
until the surface is obtained and drawn as wire-frame. User

can proceed to define the rest of scene as in the previous object

definitions.

* View Point : Each scene definition contains exactly one viewer
position. It is selected as if a 3-D point is entered. When the

view point is given, two other parameters, namely ’’Recursive

Depth” and ’’Raster Size” are specified in the panel of the
third subwindow. Recursive depth is used for terminating cri

terion which determines the level of reflections on the surfaces.

Raster size is the size of the screen where the image is to be

displayed.

* Light Source : A scene may contain a number of light sources
to illuminate the environment. A light source has a position

and brightness. Its position is given as 3-D point, and bright

ness is specified in the panel of the third subwindow.

Surface : Each object refers to a surface by its number. Surface

definition gives the material property of the object with its color.

Surface definition consists of the following information.

* Ambient Color

* Diffuse Color

* Specular Color

* Surface Coefficient

* Reflection

51

* Transparency

The color values are given using the panel in the third subwindow.

There are 16 predefined colors displayed in the small squares. User

can select one of these and load into ambient, diffuse or specular
boxes that axe above squares. To select a color, the square is

pointed and the mouse button is pressed. To load a color from

current selected square, point at one of ambient, specular or diffuse

boxes and press a mouse button. The color of a selected square
can be changed by sliding the red, green or blue components. The
background color is taken from the last square in the panel.

The last three parameters are entered from the panel in the third

subwindow. They assume default values for the parameters, if no

value is specified. For more information about these parameters,
refer to chapter 2.

• PROCESS : This button is used to process the defined scene in three
different ways. The menu items related to this button are explained

below:

— Naive : This choice calls the naive version of the ray tracing algo
rithm. That is, all of the objects in the scene are compared to find
the first intersection point, if any. Naturally, it is very slow when

the number of objects is large. It is included into the system to

be able to compare the timing results with other versions.

— Fast : This calls the fast algorithm that uses spatial coherence.
The space is subdivided into disjoint volumes and only the objects
on the path of the ray are tested for intersection. The reader is

referred to the related chapter for other details.

— Parallel : This choice calls the parallel version of the ray tracing

algorithm. It only simulates the parallelism using some operating

system functions. It divides the image space into four equal sized
rectangles and generates pixel values for each of them on a different

file.

• DISPLAY : This is used to display the generated image on the screen.

Due to the limited size of the color table in our system, we could not

52

manage to display an image with more than 256 different color values.

For instance, a generated image on the average contains 4000 different

RGB values depending on the object colors in the scene. Therefore,
we had to map the 4000 different RGB values to the 256 available
colors reducing the quality of the display. There are several ways to

accomplish this:

— Scan : One way to do this is to map several close RGB values

to one entry of the table. A hashing function is used to find an
entry for an RGB value in the color table. The RGB values at
the calculated entry are compared to the ones of the pixel being

scanned. If they are almost the same, the new pixel takes its

color value from this entry by simply pointing to it. Otherwise,

an empty entry in the color table, if available, is used for this new

value.

— Dither : This choice calls the dither procedure that reduces the

number of colors to at most 256 through multiplying the pixel

values by a dither matrix.

— Coarse : This is similar to the previous one, but it forms bound
aries around objects. It is slower them dither procedure.

— Gray : This is called to generate a gray level image from the color
one. It can be useful on the systems with limited colormap size.

• IMAGE : This button is used to save or to load the displayed image in

different formats which are machine dependent.

— Save Raster : This saves the canvas in raster format that is usually

used on SUN Workstations.

— Load Raster : This loads the image saved in raster format. It is

very fast compared to other display functions.

— Save Targa : This is used to save in a format that can be displayed

on the machine with ’’Targa” board.

• CLEAR : To clear the canvas.

• QUIT : To exit from the ray tracing system.

53

• HELP : To display help texts about the system.

54

55

