
1Ж8І-ОМ ÄNB OF /•.Ϊί.
OBJECT - GHîHNTED EBFE'JJT SYîiTSvI 31£ЕіД,·

УУШЯіТ«

Α'·;·άί-ϊ-<̂νί-ί4 Ϊ-Ο' .ítX'íüj
scr«í̂ r̂ <-:í'̂

ШІЛЗІШ*·. ÜH2YEE-0Î1‘·
l ̂ -,■ ·_Γ̂'/;ν>Γΐ< *f ·. -,'.··'■·>

ií’H:?: г

braiiïi 22ökfa /¿{йгоУ'·'

‘ía;-S
T 6 : ? í j

/9 S 9

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bilkent University Institutional Repository

https://core.ac.uk/display/52927657?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

DESIGN AND IMPLEMENTATION OF AN
OBJECT-ORIENTED EXPERT SYSTEM SHELL

A THESIS

SUBMITTED TO THE DEPARTMENT OF COMPUTER

ENGINEERING AND

INFORMATION SCIENCES

AND THE INSTITUTE OF ENGINEERING AND SCIENCE

OF BILKENT UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF
MASTER OF SCIENCE

By
Ismail HakkiToroslu

June 19S9
I Í-4-Ĉ LLi 'Tc/’oilt4

tarafiadan bagislanmigtir.

QA
*ν\.*ϊ

т ь і ч

s 185У

I certify tlicit I have read this thesis and that in my
opinion it is fully adequate, in scope and in quality, as
a thesis for the degree of Master of Science.

(S Â m u T)
Asst. Prof. Dr. Halil jOt.aj- GÜVENİR (Principal Advisor)

I certify that I have read this thesis and that in my
opinion it is fully adequate, in scope and in quality, as
a thesis for the degree of Master of Science.

I certify that I have read this thesis and that in my
opinion it is fully adequate, in scope and in equality, as
a thesis for the degree of Master of Science.

Prof. Dr. David Davenport

Approved for the Institute of Engineering and Science:

Prof. Dr. Mehmet Barav. Director of lijiifitute of Engim'ermg and Scienci'

ABSTRACT

DESIGN AND IMPLEMENTATION OF AN
OBJECT-ORIENTED EXPERT SYSTEM SHELL

Ismail HakkıToroslii
M.S. in Computer Engineering and

Information Sciences
Supervisor: Asst. Prof. Dr. Halil Altay GÜVENİR

June 1989

Expert systems represent a new opportunity in computing. An expert sys
tem is a computing system capable of representing and reasoning about some
knowledge-rich domain with a view to solving problems and giving advice.
Expert system shells are developed to create expert systems in an easy way.
In recent years the object-oriented paradigm has been developed. The object-
oriented approach has many advantages such as data abstraction, program
modularity, and structural data representation. Therefore, we are developing
an expert system shell which stores knowledge and data in object-oriented
style. Also, an object-oriented DBMS part of our shell satisfy the needs of
several expert systems rec|uiring large base of fcvcts. Such shells can be used
to build expert systems by only adding the domain-specific knowledge.

Keywords: Expert system, e.xpert system shell, knowledge representation,
object-oriented approach.

lU

ÖZET

NESNESEL UZMAN SİSTEM KABUĞU TASARIM VE
GERÇEKLEŞTİRİMİ

İsmail HakkıToroslu
Bilgisayar Mülıendisliği ve Enformatik Bilimleri Yüksek Lisans

Tez Yöneticisi: Yrd. Doç. Dr. Halil Altay GÜVENİR
Haziran 1989

Uzman sistemler bilgisayar bilimlerinde yeni bir konu olarak ortaya çık
mıştır. Uzman sistemler bilgi yoğun sistemlerin geliştirilmesinde kullanılan
yazılım sistemleri olarak tanımlanabilir. Uzman sistem kabukları da uzman
sistemlerin kolayca geliştirilebilmeleri için ortaya çıkmıştır. Son yıllarda yeni
bir yazılım tekniği olarak ortaya çıkan nesnesel yaklaşım birçok üstünlüklere
sahiptir. Bunlardan en önemlisi nesnesel yaklaşımın insanın düşünme tarzına
yakın olmasıdır. Bu nedenle, bizim de geliştirmekte olduğumuz uzman sis
tem kabuğunda bilgilerin saklanması için nesnesel yaklaşım teknikleri kul
lanılmıştır. Sistemimizin bir parçası olan nesnesel veri tabanı büyük bilgi ta
banını gerektiren uzman sistemlerin geliştirilmesine de olanak sağlamaktadır.

Anahtar Kelimeler: Uzman sistem, uzman sistem kabuğu, bilgi gösterimi,
nesnesel yaklaşım.

IV

ACKNOWLEDGEMENT

I would like to thank Asst. Prof. Dr. H. Altay Güvenir, who is the
supervisor of this thesis, because of his valuable help, remarks and advising
this interesting thesis subject.

V

TABLE OF CONTENTS

1 INTRODUCTION 1

2 EXPERT SYSTEMS 4

2.1 Types of Expert Systems ... 5

2.2 Components of Expert Systems... 6

2.3 Construction of Expert Systems... 8

3 EXPERT SYSTEM SHELLS 9

3.1 Basic Properties of Expert System T ools 9

3.2 Some Examples of Expert System T o o ls 10

4 KNOW LEDGE REPRESENTATION MODELS 14

4.1 Production R u les... 14

4.2 Frames.. 17

5 OBJECT-ORIENTED APPROACH 20

5.1 Ba.sic Concepts... 20

5.2 Object Identity.. 22

6 THE OES SYSTEM 24

vi

6.1 Unification of Expert and Database Systems Using Object-
Oriented Approach.. 24

6.2 DBMS Part of the O E S ... 26

6.3 Inference Engine Part of O E S .. 38

6.3.1 Knowledge Representation Language of O E S 38

6.3.2 Control Structure of O E S .. 41

6.4 Implementation of O E S ... 45

7 CONCLUSION 48

APPENDICES 54

A SYN TAX OF THE KNOWLEDGE REPRESENTATION LAN
GUAGE OF OES 54

B SYN TAX OF THE METHOD DEVELOPMENT LANGUAGE
OF OES 56

C AN EXAM PLE EXPERT SYSTEM IMPLEMENTED IN
OES 59

C.l Knowledge Base of ADVICE ... 60

C.2 Some Part of the Database of A D V IC E 63

C.3 The Outputs of ADVICE for Some E xecutions.......................... 68

Vll

LIST OF FIGURES

2.1 Structure of an ideal expert sj'stem... 6

6.1 The structure of OES.. 25

6.2 The main menu of OES.. 26

6.3 The menu of the DBMS part of OES.. 26

6.4 The class hierarchy for a simple expert system.......................... 27

6.5 The menu of the DDL part.. 27

6.6 The menu used for defining the properties of classes................. 28

. 6.7 Definition of the instance variable “TAKES” of class “COURSE.” 29

6.8 Definition of the instance variable “PREREQUISITES’” of
class “COURSE.” .. 30

6.9 Definition of the message “COUNT” of class “COURSE.” . . 32

6.10 The menu of the DML part.. 33

6.11 Creation of an instance of chess “STUDENT.” 34

6.12 Deletion of an instance of class “COURSE.” 35

6.13 Main control algorithm of OES.. 42

6.14 Definitions of the classes of an example expert system. 43

6.15 Selecting a specific instance of cla.ss STUDENT....................... 44

6.16 Obtaining the results *)f the execution of the expert system. . 45

viii

1. INTRODUCTION

An expert system is a specicU kind of computer program that embodies the
expertise of human experts in some specific domain. The behavior of an
expert system is intended to be similar to that of a human expert in the
specific field. This is the major difference of expert systems from conventional
computer programs [24,15,10,33].

Another difference of expert systems from conventional computer pro
grams is that their tasks usually have no algorithmic solutions or they must
make conclusions based on incomplete information [13].

There are many tools for constructing expert systems ranging from general-
purpose programming languages (e.g. LISP) to highly specialized tools (e.g.
EMYCIN) [16]. Early expert systems are implemented with general-purpose
programming languages. Earliest expert system tools such as EMYCIN are
based on the past expert systems such as MYCIN [33]. Therefore, they were
not general purpose tools. Today, there are several general-purpose expert
system development tools such as OPS5 and ROSIE. Expert system shells
can be viewed as new programming languages. Instead of the data objects
in conventional languages such as integers and arrays, expert system shells
maintain facts and rules. The control structure of expert system shells are
also different from conventional languages. Conventional languages’ control
structures consist of sequential execution, conditional statements and loops.
However, in expert system shells rule-chaining and pattern mcitching are the
basic control structures [33].

Many expert system applications require both the problem solving capa
bility and the management of large database of facts. The organization of
new tools suitable for these types of applications is one of the most important
issues in Computer Science [24].

Object-oriented knowledge rci)rescntation model is used in several expert

1

systems, but there is no commercial expert system tool that has an object-
oriented knowledge representation language [17,25,27]. Many expert systems
and expert system shells provide database support in addition to their infer
ence mechanisms [7,10,12,19,22,34]. However, these expert system tools are
not suitable for all kind of expert system applications.

Each expert system application I’equires different properties. Some of
them require very powerful database support, but for some expert system
applications a simple database system or a static knowledge representation
model may be enough, but they require numerical calculations or formu
las. Therefore, the expert system shell must have all these properties to
be a general purpose tool, and much research is being done on this subject
[1,7,8,11,20,29,30,34].

Another important issue in expert system shells is the need for a high-
level representation language for expressing the knowledge of human experts.
The language should be readable, manageable and experts should be able
to read and understand the rules easily. Among the present tools only a
few has this property (e.g. R0SIE)[1G]. Therefore, we designed a high-level
representation language for this implementation.

The goal of this research is to design a general purpose expert system
shell which is able to maintain hvrge databases. An object-oriented approach
is used for this reason. This implementation consists of two parts; object-
oriented database management part is used to store large number of facts,
and expert system shell pcirt is used to invoke the application of the rules.
Because of its object-oriented style, we called our system O bject-O riented
Expert System Shell (OES).

In the second chapter of this thesis, information about the expert systems
is given. The basic properties, structures, type and the construction of the
expert systems are explained in this chapter.

In the third chapter, expert system shells are defined and some well-known
commercial expert system tools are introduced.

The fourth chapter defines the basic knowledge representation models
used in expert systems. The.se models “production rules” and “frames” are
defined and their advantages and disadvantages are discussed.

The fifth chapter gives the basic information about the object-oriented
approach. Basic concepts of object-oriented approach and object identity

concepts are discussed in this chapter.

The sixth chapter is about the OES system. Its structure, knowledge rep
resentation model and DBMS part are explained in detail. The user interface
of OES is also explained in this chapter by examples.

2. EXPERT SYSTEMS

The term “knowledge-based systems” and “expert S3^stems” are used to de
scribe the programs such as much knowledge embedded in the program and
expert human methods are utilized to achieve expert-level performance [33].

Expert systems differ from conventional computer programs because their
tasks have no algorithmic solutions and because they must often make con
clusions based on incomplete or uncertain information [13]. The structures
of expert systems are modular. Facts and other knowledge of the domain can
be separated from the inference engine which applies the general knowledge
to the particular problem. With this separation, the program can be changed
by simple modification of the knowledge base.

Basic reasons of why expert systems are used instead of conventional
systems are as follows [15]:

• Many difficult and interesting problems do not have tractable algorith
mic solutions.

ex-• Human experts achieve outstanding performance in their domain of
pertise, therefore if computer programs embody human experts’ knowl
edge, then, they should attain high performance also.

• Knowledge is a scarce resource. Extracting knowledge from humans
and putting it in computable forms reduce the cost of knowledge repro
duction. This roi^roduction is done l̂ y making the knowledge available
for public in expert systems.

Expert systems have some differences from conventional systems. The
first basic difference of expert systems from the conventional systems is that
expert systems perform difficult tasks at expert level of performance. Another

difference is that they include domain-specific problem solving strategies in
stead of general but weak methods. The third basic difference of expert sys
tems is thcit they provide explanations or justifications on their conclusions
and on their inference processes. Because of those important differences of
expert systems from the conventional systems, expert systems are defined as
a new area in Computer Science.

2.1 Types of Expert Systems

Basically, expert systems can be classified into ten different types [15,32].
However, some expert system applications do not fit directly into one of those
types, and they can have the properties of more than one of those types.

• Interpretation systems (c.g. speech understanding s}'’stem) analyze data
to determine its meaning.

• Prediction systems (e.g. weather forecasting system) infer consequences
from given situations.

• Diagnosis systems (e.g. medical diagnosis system) infer system mal
functions from observable data.

• Design systems (e.g. circuit board design system) develop configura
tions of objects that satisfy the constraint of the design problem.

• Planning systems (e.g. exi:>eriment planning system) design actions that
can be carried out to achieve goals.

• Monitoring systems (e.g. monitoring system for air traffic) compare
observations of features that seem crucial to successful plan outcomes.

• Debugging systems (e.g. computer-aided debugging system for com
puter iDi'ograms) prescribe remedies for malfunctions and include rec
ommendations for correcting diagnosed problem. •

• Repair systems (e.g. computer maintenance system) develop and exe
cute plans to administer a remedy for some diagnosed problem.

• Instruction systems (e.g. educiition system) diagnose and debug stu
dent behavior.

• Control systems (e.g. l)u.siness management system) include interpret
ing, i^redicting, repairing and monitoring system behaviors.

5

UGcR

Figure 2.1: Structure of an ideal expert system.

2.2 Components of Expert Systems

Most expert systems have similar structures. None of expert systems con
tains all the components described here, but usually they have most of these
components. An ideal expert system contains the following components [15]
(Fig. 2.1): •

• A language processor.

• A blackboard.

• A scheduler.

• An interpreter.

• A knowledge base.

• A consistency enforcer.

• A justifier.

A language processor is used for communication between the user and the
expert system. This language is usually a restricted English-like language or
other user interface facilities such as menus.

A blackboard is used to hold intermediate results. There are basically
three types of decisions recorded on blackboard. The plan elements describe
the overall steps of the current problem, including current plans, goals and
problem states. The agenda elements include the actions waiting for the exe
cution, that is the rules in the knowledge base which seem relevant to decision
placed on the blackboard. The solution elements represent the candidate hy
potheses and decisions generated by the system.

A scheduler is used to control the order of rule processing. The scheduler
keeps the control of the agenda and determines the next action that will be
executed.

An interpreter is used to execute the chosen agenda item by applying the
corresponding knowledge base rule.

A knowledge base consist of facts and rules of the application domain.

A consistency enforcer is used to adjust previous conclusions when new
datci or knowledge alter their bases. The consistency enforcer tries to keep
the knowledge base and datal^ase in an consistent form.

A justifier is used to exi)lain the system behavior. In general, the justi
fier answers questions about why some conclusions was reached or how this
conclusion was obtained by the system.

2.3 Construction of Expert Systems

There are five major stages in the evolution of an expert system [15]. They
C cin be explained shortly as follows:

1. Identification is the process of determining problem characteristics.
During identification, the knowledge engineer and expert work together
to identify the problem area and define its scope.

2. Conceptualization is the process of finding concepts to represent knowl
edge. During conceptualization, the expert and the knowledge engineer
find the key concepts, relations and information fiow characteristics of
the problem.

3. Formalization is the process of designing structures to organize knowl
edge. Formalization involves finding the formal representations cor
responding to the key concepts and relations for some expert system
tool.

4. Implementation is the process of formulating rules that embody knowl
edge. During imi)lementation, the knowledge engineer combines and
reorganizes the formalized knowledge to make it suitable to informa
tion fiow characteristics of the problem.

5. Testing is the process of validating rules that embody knowledge.

3. EXPERT SYSTEM SHELLS

Many tools are used in the construction of expert systems. Those tools
range from general purpose languciges such as LISP to highly specialized
expert system tools such as EMYCIN. Today, several general purpose tools
are developed for the construction of expert systems. Those tools are called
expert system shells (tools). Expert system shells can be viewed as
new programming languages. Instead of the data objects in conventional
languages such as integers and arrays, expert system shells provide facts
and rules. The control structures of expert system shells are also different
from that of conventional languages. The control structure of conventional
languages consist of sequentiid execution, conditional statements and loops.
However, in expert system shells, rule-chaining and pattern matching are the
basic control structures.

3.1 Basic Properties of Expert System Tools

The features needed in expert system tools depend on three things [16]:

• The characteristic of the domain, which includes the form of data and
the structure of the problem.

• The characteristic of the approach to solving the problem, which in
cludes the type of search, representation of knowledge and the form of
the control.

• The desired characteristics of the expert system to be built, which in
cludes the type of users and the method of extending the system.

The design cJf a tool for building an expert system involves many con
siderations including generality, completeness, language features, database
structui'es and control methods.

In the design of an expert system tool one of the most important con
siderations is the need for a high-level representation language for expressing
procedural knowledge [16]. If there is no such language, it becomes very dif
ficult for the users to develop an expert system application or to extend an
existing expert sj' ŝtem. The language should be readable and manageable.
With only a little training, application domain experts should be able to read
and understand the rules written in this language.

Another issue that must be considered in the design of the expert system
tool is the structure of database. Capability of the tool for representing static
knowledge is extremely important, because if the system is too restrictive,
even very simple problems cannot be implemented with this tool.

3.2 Some Examples of Expert System Tools

This section describes eiglit different well-known commci'cial expert system
tools: EMYCIN, KAS, EXPERT, 0PS5, ROSIE, RLL, HEARSAY-III, and
AGE [16,3]. They are defined shortly and basic advantages and disadvantages
of those tools are explained. The aim of this section is to give a general idea
about the commercial expert system tools evnd their structures.

E M YC IN

EMYCIN is a domain-indeix:ndent version of MYCIN, Since the MYCIN
was developed for diagnosis, EMYCIN is most suitable for deductive prob
lems including diagnosis. EMYCIN uses backward-chaining control strategy.
Knowledge is re2:>resented as production rules in EMYCIN. EMYCIN’s great
est strength is its very convcuiient environment and user interface for building
an expert diagnostic system. Major limitation of EMYCIN is its constrained
control structure.

KAS

KAS is based on the PROSPECTOR, which is a consultation program de
veloped for diagnosis prol:>lems in mineral exploration. In KAS data is rep
resented in semantic-network form and procedural knowledge is represented

10

as probabilistic inference rules. Theie are liotli backward and forward chain
ing control strategies in KAS. Binding of antecedent variables to be used in
conseqxient actions is not permitted in KAS, therefore it cannot be suitable
for some problems.

EXPERT

EXPERT is a programming system developed for building consultation mod
els based on classification problems. EXPERT evaluates its rules in an or
dered manner. When more than one rule is applicable, the rule with the
highest confidence is used. The major strength of EXPERT is that it is easy
to rise and i^ermits the rapid development of a prototype model. However, it
is not possible to develop some systems, especially those requiring extensive
search.

OPS5

0PS5 is a rule-based programming language. Rules in 0PS5 are data-driven
and operate on a single glolsal database. Conti'ol in 0PS5 is done by the
recognize-act cycle, which is a simple loop in which rules with satisfied an
tecedents are found, one is selected and its action is performed. Unlike
EMYCIN, KAS and EXPERT models, the 0PS5 model does not have sophis
ticated user interface and explanation facilities. However, 0PS5 is a general
purpose tool, and it can be suitable for different types of applications.

ROSIE

ROSIE is a general purpose rule-based programming system suitable for a
broad range of knowledge engineering applications. ROSIE has an English-
like syntax which has the capability of the creation and manipulation of its
database. ROSIE has 3-types of inference mechanisms: state driven, where
the state of the system directly causes a rule to fire; goal driven, where
backward-chaining is used to find rules that will verify predictions in the
rule conditions; change driven, where a database change causes a rule to
fire. The nicvin strength of ROSIE is its English-like syntax. This permits
the user to write entirely readable code, even to those people unfamiliar

11

with programming. The English-like syntax speeds the task development
process. A major weakness of ROSIE is its lack of accessibility to its own
rules and control structure, and lack of facilities for database structure and
construction.

RLL

RLL is a structured collection of tools to help the knowledge engineer con
struct, use and modify expert systems. Its strength is its competence model
of programming and its generality of data structures and algorithms. Its lack
of a user friendly front end is the major limitation in developing the RLL
model. All code had to be entered in a LISP-like format.

H EAR SAY-III

HEARSAY-III is a domain independent programming facility for develop
ing prototype expert systems. It was designed to help the user in develop
ing methods for representing and applying knowledge to a chosen problem
area. In HEARSAY-III, the blackboard is used by the prototype expert
system to store and coordinate information about the domain, pEirtial solu
tions, and current activities. Execution usually i-esults in the modification
of blackboiird information. HEARSAY-III model lacks sophisticated facili
ties for I/O , database construction, and explanation. The major strength
of HEARSAY-III is its general-purpose control structure, which supports
interaction among numerous sources of knowlcxlge. A major weakness of
HEARSAY-III is its lack of a high-level representation language.

AGE

The AGE system is a tool for helping knowledge engineers design, build,
and test different frameworks for expert systems. It provides an environment
in which different representational and control techniques can be developed.
The AGE model lacks useful facilities for I/O, database construction and
explanation. A major strength of AGE is its flexibility of representation and
its easy way for the user to api)ly the general control frameworks supplied by
the system.

12

Five of the tools (EMYCIN, KAS, EXPERT, 0PS5, ROSIE) are varia
tions of conventional rule-based systems and thus provide the IF-THEN rule
as a basic building block. 0PS5 and ROSIE «are general-purpose tools that
provide greater flexibility of control and representation than do EMYCIN,
KAS or EXPERT. The other tools (HEARSAY-III, AGE and RLL) are
general-purpose systems for experimenting with expert system architecture.
HEARSAY-III provides blackboard framework with cooperating knowledge
sources as the basic design p«aradigm. AGE provides both a blackboard and
backward-chaining paradigms. RLL provides a unit representation for both
I'ules and facts.

Because of the restricted specialized structures in EMYCIN, KAS, and
EXPERT, it is difficult to represent static knowledge(database) including
objects having complex relationships between each other. Therefore, it is
not possible to do search on those complex objects in these system. In RLL
and AGE, static knowledge is represented using LISP code, therefore more
complex than the one used in 0PS5 and ROSIE. Other than the static knowl
edge, basically there are two w«ays of representing the knowledge. They are
as follows:

• In declarative knowledge (such as iDi'edicate logic) most of the knowledge
is represented as a static collection of facts accompanied by a small set
of general procedures for manipulating them.

• In procedural knowledge the bulk of the knowledge is represented as
procedures and it shows how to do things.

The declarative knowledge can be represented in EXPERT, 0PS5, ROSIE
and HEARSAY-III as procedural forms, and in RLL and AGE as static forms.
EMYCIN does not have a direct way of representing declarative knowledge.
In KAS, declarative knowledge can be represented as definitions. The proce
dural knowledge is repi’esented in IF-THEN rules in all systems easily.

The ROSIE language seems to capture the intended meaning of the given
knowledge most easily. This is because of its English-like syntax. Also,
ROSIE code is easy to read and understand than the code of the other sys
tems.

13

4. KNOW LEDGE REPRESENTATION
MODELS

There are several knowledge representation models. Basic knowledge repre
sentation models are [35]:

• Semantic networks,

• Frames,

• Production rules,

• Predicate calculus, and

• Hybrid of those models.

However, in expert systems usually onlj ̂ two of those models are used
for knowledge representation, which are frames and ■production rules. This
chapter discusses tliose two most commonly used knowledge representation
models.

4.1 Production Rules

Systems using production rules as a knowledge representation model are
called rule-based Bjî stems. In a rule-based system, a rule base composed
of a set of production rules and an inference engine controls the activity of
the system [18]. Rules provide a modular and uniform approach to knowl
edge representation. Tools that support rules as their only representation
paradigm are relatively simple to learn and use [23].

Two fundamental components of rule-based systems [5]:

14

• Inference engine which is a mechanism that uses the knowledge in the
knowledge base, appl5nng it to the problem.

• Knowledge base which contains rules of the very simple if-then decision
form and facts.

Experts usually express their knowledge in term of a situation-action rules.
Therefore, usually rule-based systems are used in expert systems, which re
quire codifying the problem solving know-how of human experts. Most rule
based systems share the following properties [14]:

• They incorporate human knowledge in if-then rules.

• Their skill increases as their knowledge base enlarges.

• They can solve a wide range of problems by selecting related rules and
combining the results in appropriate ways.

• They determine the best way to execute the rules.

• They explain their conclusions.

Rule-based systems permit the representation of knowledge in a highly
uniform and modular way. A knowledge engineer has to codify human knowl
edge using only if-then rules. Therefore rule-based systems are uniform.

The modularization of the program can be defined as the degree of separa
tion of its functional units into isolatable parts. A program is modular if any
functional unit can be changed (added, deleted or modified) with no unan
ticipated change to other functional units. Rule-based systems are highly
modular, Ijecause the next rule to be invoked is determined only by the con
tents of the database and no rule is Ccilled directly [6]. Thus, the change of a
rule docs not require the modification of any other rule.

The most popular and effective representational form for declarative knowl
edge is pat tern-action rules, which are called production rules in knowledge
systems. Production rules are indeed a subset of the predicate calculus [9].
How the information in the rules is to be used during reasoning is added in
rule-bcised systems. Production rules can be easily understood by the do
main experts and have sufficient expressive])ower to represent a useful range
of domain-independent inference nilcs.

15

PROLOG was the first general-purpose logic-based (using predicate cal
culus) programming language. PROLOG is a rule-based system that uses
stored facts and rules to deduce solutions to goal patterns [14]. The predi
cate calculus has very general expressive power and well-defined semantics.
However, it has some major disadvantages: firstly, it is difficult to define
complex objects using predicate calculus, and secondly, domain experts have
difficulty using the predicate calculus or understanding knowledge expressed
in it [9]. Therefore, production rules are used instead of predicate calculus
as a knowledge representation model.

In rule-based systems rules perform a variety of functions [14]:

• They define a parallel decomposition of state transition behavior. Every
result can thus be traced to its antecedent data and intermediate rule-
based inferences.

• They simulate deduction and reasoning by expressing logical relation
ships.

• They can simulate subjective decision making by using conditional rules
to express heuristics.

Facts, the other kind of data in knowledge base, express assertions about
properties, rehitions and propositions. In contrast to rules, which the rule-
based systems interpret as imperatives, facts are usually static and inactive.
In addition to its static memory for facts and rules, a rule-based system uses
a working memory to store temporary assertions. These assertions record
earlier rule-based inferences.

There are a numl>er of shortcomings in conventional programming tech
nology. They are [14]:

1. The nonspecifiability of programs.

2. The rapid changes in principles of operation that can arise during de
velopment.

3. The lack of user/expert participation in operations specification.

4. The lack of experimental development for coni2Duter based competence.

5. The lack of expertise in exi:)loiting corniDuter capabilities.

16

Rule-based systems have solutions to those shortcomings. The features of
rule-based systems are [14]:

1. Modular know-how.

2. Knowledge bases for storing rules and facts that directly determine
decisions.

3. The capacity for incremental development with steady performance im
provements.

4. Explanations of results, lines of reasoning, and questions asked.

5. Intelligibly encoded l^eliefs and problem-solving techniques.

6. Inference chains assembled dynamically by built-in control procedures
that can often perform efficient searches.

In contrast to conventional programming, rule-based programming re
quires a programmer to think more analytically than procedurally. Many
experts represent their knowledge in rule-based manner, because rules seem
like a natural way to express the situation-action heuristics of problem-solving
protocols of experts and experts are able to develop learning procedures ca
pable of inferring rules from experience.

As it explained in this section rule-based s}'̂ stems have three basic advan
tages. Rule-bcvsed systems are modular, uniform and natural (that is they
are structured similarly to the way people think about solving a problem).
In addition to their advantages, rule-based systems also have some disad
vantages. Uniformity of rule-based systems can introduce a rigid structure
that makes it difficult to follow the flow of the control in problem solving.
Another disadvantege of rule-based systems is that, every execution must go
through the match-action cycle in context data structure, making it difficult
to efficiently execute predetermined situational sec[uences.

4.2 Frames

Sometimes “what to do and when” is not the only focus of interest. Some
times a detailed representation of the physical or conceptual objects in the
domain is important [18]. A frame language provides the knowledge base

17

builder with an easy means of describing the types of the domain objects
that the system must model [9]. The knowledge base for a frame-based sys
tem consists of a large number of frames, each capturing a single prototypical
description [5].

A frame provides a structured representation of an object or class of ob
jects. In a frame language frames are represented in a hierarcliical manner.
The major disadvantages of production rules can be overcome by frames. The
information stored in frames has often been treated as the database of the
knowledge system. The control of the sj’̂ stem is done by other parts of the
system.

Pi'ame languages are based on semantic networks. In semantic networks
collection of objects (nodes) linked together by relationships (arcs) in an un
restricted graph structure. Nodes represent objects, concepts and situations.
Arcs represent the relationships between nodes.

Some important advantages of semantic networks as a knowledge repre
sentation model are:

• It is easy to add, modify, delete nodes and I'elationships.

• Iiiheritance property, where one node can inherit relationships of other
nodes without having direct links to them. By using this property
objects form classes and a member of a class inherits all of the attributes
of that class. Classes also form a hierarchical structure.

Semantic network is a very powerful knowledge representation model.
However, it has some major disadvantages which prevent it to be used in
real-life knowledge system applications. The major disadvantage is that there
is no formal representation structure for semantic networks. Another basic
disadvantage of semantic network is that because same kind of links are used
in inheritance, it is not easy to distinguish between an individual inheritance
and a class of inheritances. Therefore, the implementation of semantic net
works is very difficult.

Because of those reasons, frames are developed as a knowledge represen
tation model. In a frtimc-based representation a frame consists of a collection
of slots that contaiia attributes to describe: •

• An object.

IS

• a class of objects,

• a situation,

• an action, and

• an event.

Therefore, each individual or class is represented by a frame. Frames can
be organized to represent relationships between frames. Member links and
subclass links are used to ci'eate those relationships. Member links are used
to show the class of individual frames and subclass links are used to create a
hierarchical structure between frame classes.

Frames have sets of attribute descriptions called slots [28]. A frame used
for representing a class contains prototype descriptions of members of the
class and descriptions of the chiss as a whole. In the KEE system, prototype
descriptions are distinguished from other descriptive information by the use
of two kinds of slots, which arc own slots and member slots. Own slots can
occur in any frame and are used to describe attributes of the object or class
represented by the frame. Member slots can occur in frames that represent
classes and are used to describe attributes of each member of the class itself.

Although frame languages provide no specific facilities to declaratively
describe behavior, they provide various ways of attaching procedural infor
mation expressed in some other language (e.g. LISP) to frames [28]. This
procedural attachment capability enables behavioral models of objects and
exi^ertise in an application domain to be built.

Knowledge systems have pi'oved to be particularly effective for performing
diagnostic tasks in a variety of domains. Such tasks involve determining a
description of a given situation in terms of the types of situations the system
knows about. Ff ame languages have several representational features that are
particularly useful for designing and directing the reasoning processes that
are involved in diagnostic tasks.

The primary advantage of frame representation is that the more concise
and compact the knowledge base, the shorter the amount of time required for
searching for si^ecific information. Frames allow for layers of abstraction to
separate out low-level details from high-level abstracts. However, frame rep
resentation also have some disadvantages, such as their inabilities to express
procedural knowledge of the human experts.

19

5. OBJECT-ORIENTED APPROACH

Object-oriented paradigm has been developed in recent years. Object-oriented
approach has many advantages such as data abstraction, program modular
ity, and structural data representation. There are three basic concepts in
object-oriented computation [28]. They are as follows:

• Object,

• message, and

• class.

The major application areas of the object-oriented approach are program
ming languages, database management systems, knowledge representation,
CAD/CAM systems and office automation systems [30]. Object-oriented sys
tems have many advantages in the production of the software. Code sharing,
portability, flexibility are some of its advantages. Also, in object-oriented
approach, the problem can be easily decomposed into subproblems. Because
of these advantages, object-oriented systems are being used in many areas of
Computer Science.

5.1 Basic Concepts

In an object-oriented system, all conceptual entities are modeled as objects
[31,20]. An object encapsulate a private data set and it can only be accessed
or modifled by sending messages to it. Objects having the same properties
are grouped into classes and each object is an instance of a class. Another
irni^ortant mechanism of oljject-oriented paradigm is inheritance property.
Classes can be arranged in a hierarchical structure. When a new class is

20

created, it must be defined as a subclass of an existing class, and this new
class inherits all properties of its superclass. This hierarchical representation
and inheritance property is a natural way of representation of entities.

The state of an object is represented using a collection of inst£ince vari
ables. Also, the value of each instance variable is an object. The description
of object’s instance variables, methods, and messages defines a class, and an
object created using this description is called an instance of this class. The
class provides necessary information to create and use instances of that class.
An instance has a single class, but a class may have any number of instances.
The class concept reduces storage and duplication, because class definition is
shared by all instances of the class.

Messages of object-oriented systems are analogues to procedure calls of
conventional programming systems. In an object-oriented system messages
are used to access or modify the objects. In most object-oriented systems
message sending jorocess is done as follows:

<object-narne> <message-name> <arguments>

Arguments of a message (if exist) are objects and this message also returns
another object. When a messiige is sent to an object, corresponding method
is activated. Methods describe how to perform some operations and messages
specify which method will be executed. Therefore, methods behave like the
procedure bodies of conventional systems. Implementation of methods are
not visible from outside the objects. As instance variables and messages,
methods are also defined in the class definition.

The class concept provides modularization and conceptual simplicity as
well as reducing duplication [2]. All messages, methods and instance vari
ables are defined only once in the class definition and they are shared by
all instances of the class. Another tool in object-oriented approach which
reduces storage and duplication, is inheritance. Inheritance means a class
can be defined as a subclass of another class and inherits all the descriptions
of its superclass. Therefore, all classes in the system form a class hierarchy.
In this hierarchy, a parent node is called as a superclass and a child node is
called as a subclass. Inheritance enables programmers to create new classes
by specifying only the differences between a new class and an existing class.
In this way, a large numljcr of code is shared and can be reused between
classes. There are two types of inheritance; simple inheritance and multiple
inheritance. In the simple inheritance, a class can have only one superclass

21

and the class hierarchy forms a tree, whereas in the multiple inheritance a
class can have more than one superclasses and therefore, the class hierarchy
forms a lattice structure.

5.2 Object Identity

Every language must have some way to identify one object from other objects.
Identity is a property of an object which distinguishes it from all others [21].
Each olijcct must keep a separate identity regardless of its location in the
memory or how it is accessed and content or how it is modeled with descriptive
data.

Most programming languages and file systems provide user-defined names,
that is variables in languages and file names in file systems, to represent
identity. This approach mixes addressability and identity concepts [21]. Ad
dressability is external, but identity is internal to an object. Addressability
provides a way to access to an object. However, identity pi'ovides a way to
represent an object indei^endeiitly of how it is accessed. One problem of this
representation is that a single oliject may be accessed in different ways and
bound to different variables without a way of finding out whether they refer
to the same ol>ject or not.

In dcitaba.se languages, which cire designed to support large number of
objects, every real-world ol^ject is an individual. In other words, there is
something unique for everything. When a real-world object is modeled, some
subset of its description is used in the idcntitJ ̂ An identifier key is some
subset of the attributes of an ol:)ject which is unique for all objects in the
relation. Therefore, this approach mixes data value and identity concepts,
and this create.s some problems [21]. One problem is that identifier keys can
not be changed, even though they are user-defined descriptive data. Another
problem is that identifier keys cannot ¡provide identity for every object in the
relational model, because each attril^ute or meaningful subset of attributes
cannot have identity. The third problem is that the choice of which attribute
to use for an identifier key maj’̂ need to change. The last problem is that the
use of identification keys cause joins to be used in retrievals instead of path
expressions.

An ol)ject-oriented system, including large number of objects, is consistent
if no two distinct objects have the same identifiers and for each identifier

90

present in the system there is an object with this identifier [21]. An object can
belong to multiple objects through set membership or attribute assignment
without being replicated and without being owned by any objects. Object-
oriented systems provide several special operators to compare or manipulate
objects having strong identity. Identities of objects are not related with their
contents or locations in object-oriented systems.

23

6. THE OES SYSTEM

6.1 Unification of Expert and Database Systems Using
Object-Oriented Approach

Data Base Management System (DBMS) and expert system technologies are
completely clifFercnt. DBMSs deal with simple facts in well-organized struc
tures, whereas expert systems deal with complex objects (the knowledge)[24].
In this study an object-oriented expert system tool, called 0.bject-O riented
Expert System Shell (O ES), is developed. It unifies these two different
technologies in one system to satisfy the needs of many expert system appli
cations requiring both problem solving capability and management of large
base of facts.

There are basiccilly two wajî s in combining expert systems and DBMS
technologies, namely homogeneous and heterogeneous approaches [24]. In
homogeneous approach ̂ both rules and facts ai’e represented in the same pro
gramming system. PROLOG is an example of this type of approacli. In
PROLOG rules and facts arc represented and can be manipulated in the
same way. PROLOG seems to l:)e suitable for small applications, but it has
major limitations. For the program to be executed, all rules and facts must
be in the main memory, which limits the size of the application. Another
disadvantage of this approach is its limited data structure in representing
both rules and facts.

Heterogeneous approach is the second way of combining expert system and
DBMS. This appi’oach can ho imi)lemented in two ways. In expert system-
DBMS loosely coupled system, DBMS can act as a server to the expert sys
tem and supplies data when needed by the expert system. Separating data
retrieval sj^stem from the expert system inference mechanism is the major

24

USER

Figure 6.1: The structure of OES.

disadvantage of this approach. However, in expert systein-DBMS tightly cou
pled system interaction between expert system and database can take place
directly. Database seems as the extension of Knowledge Base. Expert system
decides when and how to use the database.

The aim of our implementation is to create an expert system-DBMS
tightly coupled system. Object-oriented approach seemed suitable to im
plement such a system. Basic concepts of object-oriented cipproach are risecl
both in DBMS and inference engine parts of OES. Therefore, an impedance
mismatch problem which occurs between the programming languages and
data manipulation languages does not exist in OES.

OES has two main parts, which are the DBMS part and the Inference
Engine part (Fig. 6.1, 6.2). DBMS part is used to create and manipulate the
contents of the database of the applications. Inference Engine executes the
rules using the objects created by DBMS.

To develop a new expert system application in OES, first, a user must
create the necessary database using the DBMS of the system. An existing
datal^ase can be very large, including many classes, and therefore it ciui be
used in several expert systems. Even the different expert syst(?rns may use the
same parts of the database. Thus, if some part of the required data already

MAIN MENU

1- Object-Oriented DBMS
2- Inference Engine
3- Quit

>>

Figure 6.2: The main menu of OES.

OBJECT-ORIENTED DBMS MENU

1- Modify Class Structure
2- Create / Delete Instances of Class
3- Quit

>>

Figure 6.3: The menu of the DBMS part of OES.

exists in the database of the system, it is not necessary to create it again.
Therefore, a large amount of code can be shared.

6.2 DBMS Part of the OES

Object-oriented DBMS part of OES is a menu-driven system. It has a Data
Definition Language (DDL) i:>art which is used to modify the class structure
by adding new classes to the sj^stem, or by deleting existing classes of the
system, and a Data Manipulation Language (DML) part which is used to
create and delete instances of the classes of the system.

The first menu of the DBMS part of OES, which is used to select one of
those DDL and DML parts is “OBJECT-ORIENTED DBMS MENU” (Fig. 6.3).
When the user selects the first item of this menu, the menu of the DDL part
appears on the screen, and when the user selects the second item of this
menu, tlie menu of the DML part of the system appears on the screen.

26

Figure 6.4: The class hierarchy for a simple expert system.

CLASS STRUCTURE SYSTEM PRIMITIVES

1- Add New Class
2- Delete Class
3- Quit

>>

Figure 6.5: The menu of the DDL part.

The menu used in the DDL part of the system is “CLASS STRUCTURE
SYSTEM PRIMITIVES” (Fig. 6.5). It has only “Add new class” and “Delete
class” options. If “Add new class” choice is selected by the user, the system
first asks the name of this class. If the user enters a valid class name (i.e., it
does not exist in the existing class structure, and it is a string of alphanumeric
characters, starting with cin alphabetic character) the superclass of this class
is asked to the user. To do this, existing class names are listed on the screen,
and the user is asked to select one of them as the superclass of this newly
defined class. The class hierarchy is in the form of the tree in OES, and the
name of the root class is OB.IECT. All the user defined classes must either be
defined as the subclass of the class OB.IECT or any other previously defined
user defined class. The class hierarchy of the simple expert system application
used to advice courses to the students is shown in the figure 6.4. When the
superclass of the class is defined, all properties of this superclass (its instance
variables and messages) are inherited by this new class. Then, another menu
is displayed on the screen to define other instance variables and messages of
this class (Fig. 6.6). This menu is called “CLASS DEFINITION MENU” and
it has four items. The user can add new instance variables and messages and
can delete existing instance variables and messages of the class by using this
menu.

27

CLASS DEFINITION MENU

1- Add Variable
2- Delete Variable
3- Add Message
4- Delete Message
5- Quit

>>

Figure 6.6: The menu used for defining the properties of classes.

The first item of this menu is used to add new instance variables to the
class. When this item is selected, the user is asked for the name of an in.stance
varicible. After the name of the instance variable is entered, the properties of
this variable is defined as follows (Fig. 6.7, 6.8):

• First, the user is asked whether this instance variable is a “primitive”
variable or a “collection” variable.

• Secondly, the domain of the variable is defined. The domain of the
instance varialile can be another user defined class as well as the prim
itive data types such as “integer” , “float” , “boolean” , and “string.” If
the user wants to define the domain of the variable as another user
defined class, all existing class names are listed on the screen and the
user selects one of them as the domain of this instance variable. This
way, very complex class structures even including the variables hav
ing the domain of the class itself may be created. For example, the
instance variable “inerecpiisites” of the class “course” must have the
type “course” , because, it contains the list of the courses that must be
taken before taking this course. If the course “CS202” can be taken
after taking the courses “CS102” and “CS201” , in the definition of this
course instance, i:>rerequisites of this course must be defined as those
two courses. Therefore, in some cases, an instance variable of a class
also has the domain of the same class. •

• In tlie third step, the tjq)e of an instance variable is defined as “tempo
rary” or “persistent” The contents of “iDersistent” variables are stored
with the instances in the database of the system, but “temporary” vari
ai:) les are used only in the execution, and their values are not saved in

28

Enter (1-Primitive 2-Collection): 2

Enter (1-Integer 2-Float 3-Boolean 4-String
5-User defined class): 5

List of User Defined Classes:

Enter instance variable name: TAKES

1- COURSE
2- STUDENT

Enter class number: 1

Enter (1-Temporary 2-Persistent): 1

Enter (0-Set 1-Bag): 0

Figure 6.7: Definition of the instance variable “TAKES” of class “COURSE.”

the database after the execution.

• The last step is used only for “temporary” variables. For some primitive
variables, the user does not want to change the value of it anymore once
it is instantiiited. Therefore, the user is asked whether this variable is
“changeable” or not. Also, the user can define collection variables such
that they may include the same element in their lists more than once
(i.e., bag) or the same element cannot be repeated in their lists (i.e.,
set). The user selects one of the “bag” and “set” options to define this
property of the “collection” variables.

Using those four steps (onlj'̂ the first three steps are used for “persistent”
variables), all instance varial:)les of the class are defined.

The second item of the “CLASS DEFINITION MENU” is used to delete
instance variables of the classes. If this item is selected, the system asks the
name of an instance variable that will be deleted, and if it already exists, it
is deleted from the definition of the class.

The third item of “CLASS DEFINITION MENU” is used to add new
messages to the classes. To define a new message, first its name is entered

29

Enter (1-Primitive 2-Collection): 2

Enter (l-Integer 2-Float 3-Boolean 4-String
5-User defined class): 5

List of User Defined Classes:

1- COURSE
2- STUDENT

Enter class number: 1

Enter (1-Temporary 2-Persistent): 2

Enter instance variable name: PREREQUISITES

Figure 6.8: Definition of the instance variable “PREREQUISITES’” of class
“COURSE.”

and the properties of the ol^ject returned by the execution of this message is
defined. After that, the nuinljcr of arguments of the message and the num
ber of variables used in the method definition corresponding to this message
are specified. Then, domains of those arguments and variables are defined
(Fig. 6.9).

Definition of the object, returned by the execution of the message, includes
three steps:

• First, it is asked whether it is a “primitive” , or a “collection” object.

• Then, its domain is asked to the user as in the definition of the instance
variables.

• For some messages, the user may want to execute it only once, store the
result of that execution and return that value whenever this message is
invoked again. Therefore, it is asked to the user whether this message
will be executed only once or it can be executed many times.

After obtaining the numljer of arguments of the message and the number
of variables of the method, each of them is defined as follows:

30

• First, the name of an argument or a variable is asked.

• Next, it is asked whether it is a “primitive” or a “collection” variable.

• Then, its domain is asked to the tiser as in the definition of the instance
variables.

The last item of “CLASS DEFINITION MENU” is used to delete existing
messages of the classes. When this item is selected, the name of the message
is asked to the user, and the message is deleted from the definition of the
class.

The definition of the class is completed by exiting from “CLASS DEFINI
TION MENU” and the definition of this class is added to the existing class
structure.

The second choice of “CLASS STRUCTURE SYSTEM PRIMITIVES” is
“Delete class” option. When this item is selected, the system lists the names
of existing user defined classes and asks the user to choose one of them, and
deletes that class from the class structure. Whenever a class definition is
dropped, all its instances are deleted automatically, since instances cannot
exist outside of a class. However, subclasses of this class are not dropped,
but they will gain its superclass as thier immediate superclass. Further,
when a class is dropped, its suljclasses will not lose the instance variables
(and methods) that they had previously inherited from that class in OES.

The second item of “OBJECT-ORIENTED DBMS” menu is used to select
the DML part of the system. The menu displayed when this item is selected
is “OBJECT UPDATE MENU” (Fig. 6.10). This menu contains only two
items. They are “Create New Object” and “Delete Object.” Only two ba
sic functions of the DML are implemented in the OES system. Those two
functions can be used to create new objects and delete existing objects of the
classes. Object update and (piery processing functions are not implemented
in OES. If the user wants to create a new instance of any existing class, he/she
must select the first choice of “OBJECT UPDATE MENU” and to delete an
existing instance of any class, he must select the second choice of this menu.

In the creation of the new instance, the system first asks the class of the
object and then dis2:>lays all “persistent” instance variables of this class to
the user to enter a value for each of them (Fig. 6.11). If an instance variable
has a i:)rimitive domain, the user can enter any valid value of that domain for
that instance variable. However, if an instance variable has any user defined

31

Enter (1-Primitive 2-Collection): 2

Enter (1-Integer 2-Float 3-Boolean 4-String
5-User defined class): 1

Enter (0-Invariant 1-Changeable): 1

Enter the number of the arguments: 1

Enter the number of the variables of the method: 1

Enter argument name: C_LIST

Enter (1-Primitive 2-Collection): 2

Enter (1-Integer 2-Float 3-Boolean 4-String
5-User defined class): 5

List of User Defined Classes:

Enter message name: COUNT

1- COURSE
2- STUDENT

Enter class number: 1

Enter variable name: I

Enter (1-Primitive 2-Collection): 1

Enter (1-Integer 2-Float 3-Boolean 4-String
5-User defined class): 1

Figure G.9: Definition of the message “COUNT” of class “COURSE.”

32

OBJECT UPDATE MENU

1- Create New Object
2- Delete Object
3- Quit

>>

Figure 6.10: The menu of the DML part.

class as its domain, the system displays all instances of that class and asks
the user to select any of thcm(or some of them for “collection” variables) as
the value of this instance variable. This way seems too much time consuming
because all instances of one class is searched sequentially. However, there is
no way to prevent this time consuming search other than the querying the
instances of the class. In object-oriented systems, each object must have an
identity independently from its content and its location in the storage. This
property of object-oriented systems prevent them from creating pointers to
the objects using some part of their contents or locations in the storage,
as identifiers of these objects. Because of the lack of the query processing
facilities in OES, there is no way of identifying a specific instance for the user
other than looking at the content of that object. Therefore, this sequential
search is lequired.

The deletion process is also similar to the object creation process. First,
the class name of the object is asked to the user, and then all instances of
this class are listed to the user one by one and the user is asked to select one
instance to delete from that class (Fig. 6.12). However, the deletion process
does not end by deleting an object from the class. To preserve the integrity
constraints, some additional process must be done after deleting an instance.

There is a similar integrity problem in object-oriented DBMSs with refer
ential integrity consti’tiint of relational model. Referential integrity rule can
be defined as follows; every value in a foreign key (primary key of any other
relation) in relation R must either be equal to the primary key value of a
tuple in relation S or be wholly null [4]. This integrity constraint can be
explained with an example as hallows:

Let us assume that in Supplier-Parts database there are three relations;

33

Variable NAME String and Primitive
Enter a string: Ismail_Hakki_Toroslu

Variable YEAR Integer and Primitive
Enter an integer: 1

Variable SEMESTER String and Primitive
Enter a string: spring

Variable STANDING String and Primitive
Enter a string: probation

Variable COURSES_TAKEN has Domain of Class COURSE and
Collection

A COURSE instance:

CNO: mathlOl
REQUIRED.YEAR: 1
REQUIRED.SEMESTER: fall
GIVEN.SEMESTER: fall
PREREQUISITES:
TYPE: must_course

Is this COURSE instance that you want?
Enter (1-Yes 0-No): 1

Figure 6.11: Creation of an instance of class “STUDENT.”

34

A COURSE instance:

CNO: mathlOl
REQUIRED_YEAR: 1
REQUIRED.SEMESTER: fall
GIVEN.SEMESTER: fall
PREREQUISITES:
TYPE: must_course

Is this COURSE instance that you want to delete?
Enter (1-Yes 0-No): 0

A COURSE instance:

CNO: physlOl
REQUIRED.YEAR: 1
REQUIRED.SEMESTER: fall
GIVEN.SEMESTER: fall
PREREQUISITES:
TYPE: must.course

Is this COURSE instance that you want to delete?
Enter (1-Yes 0-No): 0

A COURSE instance:

CNO: cslOl
REQUIRED.YEAR: 1
REQUIRED.SEMESTER: fall
GIVEN.SEMESTER: fall spring
PREREQUISITES:
TYPE: must.course

Is this COURSE instance that you want to delete?
Enter (1-Yes 0-No): 1

Figure 6.12: Deletion of an in.stance of clciss “COURSE.”

35

Supplier (S), Part (P), and Supplier-Part (SP). The relation S has four at
tributes; supplier number (S#), which is a primary key of this relation, sup
plier name (SNAME), status (STATUS), and city (CITY). The relation P
also has four attributes; part number (P #), which is a primary key of this re
lation, part name (PNAME), color (COLOR), and weight (WEIGHT). The
last relation SP has three attributes; S^ and P ^ , which are together pri
mary key of this relation, and quantity (QTY). In relation SP, Ŝ ̂ and P̂ ^
are foreign keys, because they are the primary keys of relations S and P.

¥

If Supi:)lier-Parts database includes the tuples S(S1, Smith, 10, Paris),
SP(S1, PI, 100) and SP(S1, P2, 200), and if the S(S1, Smith, 10, Paris)
tuple is deleted from the relation S, the tuples SP(S1, PI, 100) and SP(S1,
P2, 200) must also be deleted from the relation SP to preserve referential
integrity. If they are not deleted from the relation SP, these two tuples
become meaningless, because supplier Si does not exist in supplier relation
but it supplies part PI with quantity 100 and part P2 with quantity 200.
Therefore, those two tuples must be deleted from the SP relation.

A similar problem occurs in object-oriented DBMSs. This problem can
be explained with an example as follows:

Assume that our class structure includes two classes; COURSE and STU
DENT. The domain of the instance variables PREREQUISITES, which is an
instance variable of the class COURSE, and COURSES-TAKEN, which is an
instance variable of the class STUDENT, are the user defined class COURSE.
We can create the following instance of those classes (The Object-ids used in
these examples are not the same in OES. They are used to make the examples
easily understandable):

OBJECT-ID CLASS NAME INSTANCE VARIABLE VALUE

COOl COURSE CNO mathlOl

PREREQUISITES

C002 COURSE CNO mathl02

36

PREREQUISITES COOl

SOOl STUDENT NAME Ismail_Toroslu

COURSES.TAKEN COOl C002

If an instance COOl is deleted from class COURSE, to preserve the in
tegrity constraint some update operations must be done on other instances of
classes COURSE and STUDENT. Because an instance COOl is deleted, the
prerequisites of no course cem be the course having an object-id COOl, and
no student can take this non-existing course. Therefore, after deleting this
object, other instances must be updated as follows;

OBJECT-ID CLASS NAME INSTANCE VARIABLE VALUE

C002 COURSE CNO mathl02

PREREQUISITES

SOOl STUDENT NAME Ismail_Toroslu

COURSES.TAKEN C002

This update operation is done in OES by changing the corresponding
pointers in the memory and in the files where those classes are stored.

37

6.3 Inference Engine Part of OES

When the second item of “MAIN MENU” (Inference Engine Part) is selected,
the system asks the name of the expert system application to the user and
then executes it. Rules of the application must have been written using the
knowledge representation language of OES, and stored in a file before the
execution.

Expert system shells should have a high-level representation language for
expressing the knowledge of human experts. This language should be readable
and mamvgeable.

6.3.1 Knowledge Representation Language of OES

Knowledge representation language of OES is very flexible. The user can
write the same rule in several different ways. Therefore, the user can select
the best way to write the rules. The syntax of the knowledge representation
language of OES in BNP notation is given in Appendix A.

In OES, a newly developed knowledge representation model is used to
express knowledge of human experts. This model is a hybrid model which
combines production rules with the object-oriented approach. Therefore, it
has the advantages of both the production rules and frame-based knowledge
representation models (because of its object-oriented style). In OES all rules
are written using IF-THEN constructs. In addition to those IF-THEN rules,
there is an object-oriented DBMS of OES and all the entities used in those
IF-THEN rules correspond to the objects, instance variables of the objects,
class names and messages of those classes created in this DBMS part.

A method, which is an executable code corresponding to a message, is
an other way of expressing procedural knowledge. In some expert system
applications, numerical calculations, input/output proce.ssing and some set
operations may be needed. OES supports methods for these types of ap
plications. The user can write methods in a specific language of OES, and
the messages execute those methods and return their results when they are
invoked. The messages can be used in the rules of an expert system. The
syntax of the method development language in BNF notation is given in
Appendix B.

The rules are written using the Irê words, such as “if” , “then” , “and” , and

38

the entities (which are concepts of an object-oriented approach) developed
in DBMS. Those entities are instance variables of classes, class names which
are pointers to instance objects of that class, and messages. For example,
the rule for “If a student had received ‘F ’ from a course and the course is
a ‘must-course’ and the course is given in this semester and the number of
courses assigned to the student is less than 5 then the student must take this
course." can be written in OES as follows:

i f type o f course is equal_to ’ must_course’
and course is member_of f_ cou rses_ lis t o f student
and semester o f student is member_of given_semester o f course
and student count(takes) is less_than 5
then student takes course;

In this rule student and course are class names, therefore they are point
ers to the instances of those classes. Type and given.semester are instance
variables of the class course. The variable given-semester is a collection
varicible and can take one or more values. Its meaning in this rule is that,
the course may be given in “fall” or “spring” semesters or in both semesters.
F_courses_list, semester, and takes are instance variables of the class
student. The variable f-cou rses_ list is a collection variable with type
pointer to the class course. Therefore, its value is a list of courses, that is
the list of the courses that the student had received “F.” The variable takes
has the same type as the vai’iable f -co u rs e s .lis t , but this variable is a
temporary variable and it is not saved in database. In this example takes
contains the lists of courses already assigned to the student. When this rule is
fired and its condition part is satisfied for some course and student instances,
in the action part, the current course instance is added to the collection in
stance variable takes of the current student instance. At the end of the
session, the user can check the courses assigned to the student by looking at
the content of this variable. Count is a message with one attribute, and it is
sent to current instance of the class student to find the number of courses
in the variable takes.

In OES, methods are simple codes which are executed when the corre
sponding messages cire invoked. This simple method definition only involve
sequential executions, which include arithmetic calculations, input/output
processing statements, and set operation functions. An example message
which is used to find the averages of the union of two sets (sets of integers)
has the following method definition:

39

union(Sl,S2,L);
Avg ® sum(L) / count(L);
return(Avg) :

In this method definition, the first line is used to find the union of the
sets SI and S2, which are the parameters of this method. The union of those
two sets is put into the set L. The second line is used to find the averages
of the numbers in the set L. The function sum finds the sum of the numbers
in this set and the function count finds the number of the elements in the
set L. The last line returns this average when this method is executed by the
corresponding message, and the result is returned to the main system.

In this method, Avg and L are the variables declared with the message
definition to use in the implementation of the method. The variables SI and
S2 are the parameters of the method. Therefore, the message that executes
this method can be called from the main system as follows:

<class_name> <message_name> (< Set.l > , < Set_2 >)

The <class.name> is indeed an instance of this class, and two variables <
Set_l > and < Set_2 > are bound to the variables SI and S2 in the method.
< Message-name > and the name of the file which is used to store method
definition must be the same in OES.

Another method that iiacludes input/output operations which is used to
find the Value Added Tax (VAT) of the price of a good can be implemented
as follows:

write(Good);
prompt(’Enter the tax rate:
read(Rate);
VAT = Price * Rate / 100;
return(VAT);

') ;

When this method is executed, the user is asked to enter the tax rate of
the Good, and VAT is calculated using this tax rate and the price of the good
and the result is returned.

40

6.3.2 Control Structure of OES

OES hcis a data driven control structure. In most data driven systems, data
ai’e stored as facts, but in OES, because of its object-oriented style, data are
stored as objects.

Before the execution of the expert system application is started, the user
must define which classes will be used for this application and how they will
be used. To do this, for each user defined class, the system asks the user
whether a specific instance of this class will be used, or all instances of the
class is required in the execution, or this class is not needed in this application
(Fig. 6.14). In figure 6.14, the classes of the expert system which is developed
for giving advice to students are defined. All instances of the class COURSE
is used in this expert system application, and a specific STUDENT instance is
needed for the execution of the system. When a specific instance of a class
is needed in the execution, the system lists the instances of that class one
by one and asks the user whether he wants that instance or not, until one of
them is selected by the user. (Fig. 6.15). The purpose of this expert system
execution is to advice courses to this specific student. Therefore, only two
classes COURSE and STUDENT, are used in this expert system application.

When the system starts execution all class names which are the pointers
to instances are initialized to the first instances of the classes, if those classes
are defined such that all instances of them will be used in the execution.
Although there is no order in the instances of the classes, they are searched
sequentially in the order they are created. However, some class names may be
pointed to the specific instances by the user before the execution as explained
befoi’e. These pointers do not change during the execution.

During execution, the system tries to fire the rules with the current in
stances of the classes. Whenever a rule is fired, all other rules are tried again.
This loop continues until no rule can fire with the current instance objects.
Then, one of those instances, whose class is defined such that all instances
of it to be used in the execution, is rephiced with the next one from the
same class, and the loop starts again. This process continues uiitil the action
“sto2)” is executed or all instances of classes are exhausted. The main control
algorithm of OES is shown in the figure 6.13.

When the execution of the system terminates, the results of the session
can be obtained by the user by checking relevant instance variables. The
purpose of OES is to find the values of the instance variables defined by the

41

get the classes whose all instances will be used
(Cl_list)
initialize these classes with the first instances

get the classes whose specific instances will be used
(C2_list)
initialize these classes with those specific instances

initialize the fired_rules_list to nil
while (stop is not executed

and all instances of Cl_list are not exhausted)
begin

initialize this_rule to first_rule
initialize fire_flag to false
while (not all rules are checked and fire_flag is false)
begin

if this_rule is not in fired_rules_list
then try to fire it

if it is fired
then make fire_flag true

and put this rule into fired_rules_list
get next rule

end
if all rules are checked
and fire_flag is false
and stop is not executed

then get new instance from one of the classes in Cl_list
and initialize fired_rules_list to nil

end

Figure 6.13: Main control algorithm of OES.

42

DEFINITION OF THE CLASSES OF THE APPLICATION

Class Name : COURSE
0) This class is not used in this application
1) A specific instance of this class is used

in the application
2) All instances of this class is needed in

this application
Enter Your Choice : 2

Class Name : INSTRUCTOR
0) This class is not used in this application
1) A specific instance of this class is used

in the application
2) All instances of this class is needed in

this application
Enter Your Choice : 0

Class Name : STUDENT
0) This class is not used in this application
1) A specific instance of this class is used

in the application
2) All instances of this class is needed in

this application
Enter Your Choice : 1

Figure C.14: Definitions of the classes of an example expert system.

43

NAME : Ugur_Gudukbay
YEAR : 2
SEMESTER : spring

A STUDENT instance:

Is this STUDENT instance that you want?
Enter (1-Yes 0-No) : 0

A STUDENT instance:

NAME : Faruk_Polat
YEAR : 3
SEMESTER : spring

Is this STUDENT instance that you want?
Enter (1-Yes 0-No) : 0

A STUDENT instance:

NAME : Ismail_Hakki_Toroslu
YEAR : 1
SEMESTER : spring

Is this STUDENT instance that you want?
Enter (1-Yes 0-No) : 1

This STUDENT is selected...

Figure 6.15: Selecting a specific instance of class STUDENT.

44

Execution of the system terminated...

Instance variable MATH_COURSES

Do you want to see the content of this variable?
Enter (1-Yes 0-No): 0

Instance variable TAKES

Do you want to see the content of this variable?
Enter (1-Yes 0-No): 1

Figure 6.16: Obtaining the results of the execution of the expert system.

user as “temporary” variables. These instance variables are not saved with
the instances in database. For example, if an expert system is written for
designing the list of courses to take for a given semester for the student, in
the action joart of the rules, the variable used to store the list of courses may
be assigned a new vtilue or may be modified (The variable takes is used to
store the advised courses). At the end of the session, the user can obtain the
list of the courses by asking the vcdue of this instance variable. When the
execution terminates, the system displays all the “temporary” variables of
the classes used in this expert system application, and asks the user whether
he wants to see the contents of those variables or not (Fig. 6.16). If the result
is “yes” , the content of the variable is displayed, and by this way the result
of the expert system application can be obtained. In the example shown in
figui’e 6.16 cill courses advised to the student are listed by displaying the
content of the variable takes.

6.4 Implementation of OES

OES hcus been implemented on Sun system running under Unix environment,
and the C programming language is used in the implementation of OES. No
special features of Sun system is used in the implementation of OES, therefore
it is possible to execute OES on every standard C and Unix environment.

The OES .system consists of eleven modules. One of those modules is a
header file used for the global data structure declarations (main.h). Other
modules of the OES system and their functions are as follows:

45

• The module rnain.c is the shortest module and it controls the whole
system. When the system is executed the control of the execution
starts from this module and also the initializations of the main data
structures are done in this module.

• The module lexical, c is used to find the tokens of the data files. The
tokens of both the knowledge base and the method definitions are an
alyzed and required symbol tabels and token lists are created by this
module.

• The module syntax, c is used for parsing the tokens of the knowledge
base. This module also creates some error messages to the user when
ever required. If the knowledge base is syntatically error free, necessary
data structures are created corresponding to the rules of the knowledge
base.

• The module semantic, c is used to find other the errors in the knowledge
base which could not be found by the syntax, c. Those errors include
type and argument mistmatches.

• The module msyntax.c is used for ¡^arsing the tokens of the method
definitions. It is similar to the syntax, c.

• The module mseman.c is used to find the other errors of the method
definitions. This module is similar to the semantic.c.

• The module struct.c is the DDL part of the OES system. The modi
fications on the class structures of the system is done by this module.
Class definitions, deletion of the existing classes, maintaining of the
class hierarchy are the basic functions of this module.

• The module object.c is the DML part of the OES system. Secondary
storage management of the database system including the object create
and delete operations is the basic function of this module.

• The module rnexecute.c executes the methods and return their results.
Numerical calculations, input/output processing and some set opera
tions are the basic functions of this module.

• The module forward, c executes the rules of the expert system applica
tions. This module is the inference engine of the OES system.

A Makefile is used to complie and link those modules of the system. After
the compilation and the link operations, an executable code is created with

46

the name oes. The whole system consists of around nine thousand lines
of the C codes and it requires around 250 KB of the disk memory. In the
execution of the system some additional data files are created to store the class
structure of the expert system application. Those files are class.i, message.i
and variable.i. Also, the system creates files for each user defined classes and
keeps the instances of those classes in these files.

The aim of this study is to experiment how an expert and database sys
tems can be unified as a tightly-coupled system using object-oriented ap
proach. Instead of imi^lementing the whole object-oriented DBMS, only a
portion of it, is implemented. The database side of OES includes only the
DDL part and object create and delete facilities as the DML part. Therefore,
it is not a real DBMS, but it is a database system and the basic object-
oriented concepts are used in it. To make the implementation simple, class
hierarchy is represented in the form of a tree. The knowledge representa
tion language involves production rules as the basic knowledge representation
model. Usucdly, experts express their knowledge in IF-THEN rules, and they
can easily understcind the knowledge expressed in production rules. There
fore, production rules are used as a basic knowledege representation model.
In addition to the production rules, methods are used to represent procedural
knowledege. Both in the knowledege representation part and database part
object-oriented concepts are used. Thus, impedence mismatch problem does
not exist in OES.

47

7. CONCLUSION

The aim of this study is to unify expert and database systems as a tightly-
coupled system using object-oriented approach. Therefore, only a portion of
the database side of the system is implemented to maintain the objects that
will be used in the expert system side of the system. The system developed
in this study is called Object-Oriented Expert System Shell (OES).

OES is a general-purpose expert sj^stem shell. It has a DBMS as a part
of the whole system. A new software technique, object-oriented approach, is
used in OES. Object-oriented approach provides a natural way of representing
knowledge and solves the impedance mismatch problem between DBMS and
expert system language. Also, high-level language of OES makes it easy for
the users to express their knowledge.

The OES system has been designed and implemented, and it is a prototype
system. OES is tested only with some small expert systems. An example
expert system application is given in the Appendix C. The execution of such
simple expert system applications that are developed with OES, does not
takes more than a few seconds. The major limitation of OES is that only
one instance of a class can be active at a time. Thus, it is not easy to make
comparisons among the objects of the same class. For those objects, different
chisses may be created, and then the instances of those different classes can
be compared by this way. Therefore, OES may not be suitable for some
expert system appliccitions. However, the idea used in OES can be developed
to make it suitable for all expert system applications.

In our prototyi:>e system only one instance of a class can be active at a
time, because each class name is a pointer to an instance of that class. This
limitation of the system can be overcame by creating multiple pointers to the
classes. To do this, for each class, several pointers must be defined before the
execution of the system. Also, the lack of a query processing facilities of the
database side of the system is another important limitation of it. However,

48

the query processing facility can easily be added to the whole system, and
this increases both the speed and the usability of the system.

Although, OES is not a complete system (since query processing facilities
of DBMS do not exist and there is only one pointer to each class), it is possible
to develop many different expert system applications, especially requiring
large databases, using OES. Therefore, we can claim that the unification of
expert systems with object-oriented databases as tightly-coupled systems is
a reasonably good ai-)proach.

49

REFERENCES

[1] Akman, V., ten Hagen, P., Rogier, J., Veerkamp, P., “Knowledge Engi
neering in Design,” Knowledge-Based Systems, Vol. 1, No. 2, pp. 67-77,
March 1988.

[2] Banerjee, J., et. al., “Data Model Issues for Object-Oriented Applica
tions,” ACM Transactions on Office Information Systems,Vol. 5, No. 1,
pp. 3-26, Jan. 1987.

[3] Barstow, D. R., “Languages and Tools for Knowledge Engineering,”
Building Expert System, ed. Hayes-Roth, F., Waterman, A., Lenat, D.
B. , Addision-Wesley Publishing Company, Inc., pp. 283-345,1983.

[4] Date, C. J.,An Introduction to Database Systems, Addision-Wesley Pub
lishing Company, Inc., 1981.

[5] Davis, R., “Knowledge-Based Systems: The View in 1986,” AI in 1980s
and Beyond, ed. Grim.son, E. L., Patil, R. S., The MIT Press, pp. 43-
74,1987.

[6] Davis, R., King, J. J., “The Origin of Rule-Based Systems in AI,” Rule-
Based Expert Systems, ed. Buchanan, B. G., Shotliffe, E. H., Addision-
Wessley Publishing Company, pp. 20-52,1985.

[7] Delcambre, L. M. L., “RPL An Expert System Language with Query
Power,” IEEE Expert, pp. 51-61, Winter 1988.

[8] Dhar, V., Pople, H. E., “Rule-Based versus Structure-Based Models for
Explaining and Geiaerating Exi^ert Behavior,” Communications of the
ACM, Vol. 30, No. 6, pp. 542-555, June 1987.

[9] Fikes, R., Kehler, T., “The Role of Frame-Based Representation in Rea
soning,” Communications of the ACAJ, Vol. 28, No. 9, pp. 904-920, Sept.
1985.

50

[10] Fisher, E.L., “ An AI-Based Methodolgy for Factory Design,” AI Mag
azine, Vol. 7, No. 4, pp. 72-85, Fall 1986.

[11] Francioni, J. M., Kandel, A., “ A Software Engineering Tool for Expert
System Design,” IEEE Expert, pp. 33-41, Spring 1988.

[12] Frank, J. L., DufReld, C. A., Swearingen, C. A., “Mentor-I: An Expert
Database System for Student Guidence,” IEEE ExjDert, pp. 40-46, Sum
mer 1988.

[13] Gevarter, W. B., “Expert Systems: Limited But Powerful,” Applica
tion in Artificial Intelligence, ed. Andriole, S. J., Petrocelli Books, Inc.,
pp.125-139.

[14] Hayes-Roth, F., “Rule-Based Systems ,” Communications of the ACM,
Vol. 28, No. 9, pp. 921-932, Sept. 1985.

[15] Hayes-Roth, F., Wciterman, A., Lenat, D. B., “An Overview of Ex
pert Systems,” Building Expert Systems, ed. Hayes-Roth, F., Water
man, A., Lenat, D. B. , Addision-Wesley Publishing Company, Inc., pp.
283-345,1983.

[16] Hayes-Roth, F., Waterman, A., “An Investigation of Tools for Building
Expert Systems,” Building Expert Systems, ed. Hayes-Roth, F., Water
man, A., Lenat, D. B. , Addi.sion-Wesley Publishing Company, Inc., pp.
169-214,1983.

[17] Hever, S., Koch, U., Cryer, C., “INVEST: An Expert System for Finan
cial Investment,” IEEE Expert, pp. 60-68, Summer 1988.

[18] Jackson, P., “Review of Knowledge-Representation Tools and Tech
niques,” lEE Proceedings, Vol. 134, No. 4, i:>p. 224-230, July 1987.

[19] Kaiser, G. E., et. al. , “Database Support for Knowledge-Based Engi
neering Environments,” IEEE Expert, pp. 18-32, Summer 1988.

[20] Kai.ser, G. E., Fciler, P. H., Popovich, S.S., “Intelligent Assistance for
Software Development and Maintenance,” IEEE Software, pp. 40-50,
May 1988.

[21] Khoshafian, S. N., Copeland, G. P., “Object Identity,” ACM OOP-
SLA‘86 Proceedings, pp. 406-416, Sept. 1986.

[22] Marcus, S., Stout, J., Me Dermott, J., “VT: An Expert Elevator De
signer That Uses Knowledge-Based Biicktracking,” AI Magazine, Vol. 9,
No. 1, pp. 95-112, Spring 1988.

51

[23] Mettrey, W., “An Assessment of Tools for Building Large Knowledge-
Based Systems AI Magazine, pp. 81-89, Winter 1987.

[24] Missikoff, M., Wiederhold, G., “Towards A Unified Approach For Expert
And Database Systems,” Expert Database Systems: Proceedings from
the First International Workshop, ed. Larry Kerscberg, The Benjamin /
Cummings Publishing Company, Inc., pp. 383-397, 1986.

[25] Mohan, L., Kashyap, R. L., “An Object-Oriented Knowledge Represen
tation for Spatial Information,” IEEE Trans, on Software Engineering,
Vol. 14, No. 5, pp. 675-681, May 1988.

[26] Nierstrasz, O. M., “What is the ‘Object’ in Object-Oriented Program
ming? ,” Objects and Things, ed. Tsichritzis, D., Centre Universitaire
D‘Informatique, Üniversite de Geneve, pp. 1-13, March 1987.

[27] Phillip, C., Sheu, Y., “VLSI design with object-oriented knowledge
bases,” Computer Aided Design, Vol. 20, No. 5, pp. 272-280, June 1988.

[28] Ramamoorty, C. V., Sheu, P. C., “Object-Oriented Systems,” IEEE
Expert, pp. 9-15,Fall 1988.

[29] Scohen, E., Smith, R. G., Buchanan, B. G., “Design of Knowledge-Based
Systems with a Knowledge-Based Assistant,” IEEE Trans, of Software
Engineering, Vol. 14, No. 12, pp. 1771-1790, Dec. 1988.

[30] Smith, D. R., Kotik, G. B., Westfold, S. J., “Research on Knowledge-
Based Software Environments at Kestrel Institute,” IEEE Transaction
on Software Engineering, Vol. 11, No. 11, pp. 1278-1295, Nov. 1985.

[31] Stefik, M., Bobrow, D. G., “Object-Oriented Programming: Themes and
Variations,” AI Magazine, pp. 40-62, Jan. 1986.

[32] Stefik, M., et. al., “The Organization of Expert Systems, A Tutorial,”
Artificial Intelligence, Vol. 18, pp. 135-173, 1982.

[33] Szolovits, P., “Expert System Tools and Techniciues: Past, Present and
Future,” AI in 1980s and Beyond, ed. Crimson, E. L., Patil, R. S., The
MIT Press, pp. 43-74,1987.

[34] Tsur, S., “LDL- A Technology for the Realization of Tightly Coupled
Expert Database Systems,” IEEE Expert, pp. 41-51, Fall 1988.

[35] Wolfgram, D. D., Dear, J. J., Galbraith, C. S., Expert Systems for the
Technical Professional, John Wiley Sons Inc, New York,1987.

52

[36] Zaiiiola, C., et. al., ‘'Object-Oriented Database Systems and Knowledge
Systems,” 1st International Workshop on Expert Database Systems, pp.
1-17,1985.

53

A. SYNTAX OF THE KNOWLEDGE
REPRESENTATION LANGUAGE OF OES

• rule.l^ase
<rule_base> :;= <rule.list>

• rule-list
<ruleJist> <if_statcment> ; | <if_statemcnt> ; <rule_list>

• if-statement
<if_statement> if <condition_part> then <action_part>

• conditioii-part
<condition_part> <condition_list>

• condition-list
<conditionJist> ::= <condition> I <condition> and <condition_list> •

• condition
<condition> <class_name> <variable_naine> <operand> |
<operand> is <opcrator-and-opcrand> |
<operand> is <siinple_operator>

• operand
<operand> ::= <class-narne> <message_name> (<argumentJist>) |
<variable-name> o f <class-naine> |
< const ant >

• operator-and-operand
<operator-and_operand> [not] < condition-operator> <operand>

• condition-operator
<condition-operator> ::= equaLto | m em ber_of |
siibset_of I greater_than | less_than |
greater_than_or_equaLto | Iess..than-or_equal_to

54

• simple-operator
<simple_opeiator> ::= [not] null | [not] true | [not] false

• action-part
<action_part> <class_name> <variable_name> <operand> |
<variable_naine> of <class_name> is <operand> |
skip <class_iiame> | stop

• argument-list
< argument-list > ::= <argument> | <argument> , < argument Jist>

• argument
<argument> <varial)le-name> | <constant>

• constant
<constant> ::= <single-constant> | <multi-valued-constant> | <class-name>

• rnulti-valued-constant
<multi-valueil-constant> ::= [<siuglc_constant.list>]

• single-constant-list
<single-constant-list> :;= <single-constant> |
<single-constant> , <singlc-constant-list>

• single.constant
<single-Constant> ::= <integer> (<float> | < string-constant> •

• string-constant
<string-constant> ::= ’<string>’

55

B. SYNTAX OF THE METHOD
DEVELOPMENT LANGUAGE OF OES

• method
<method> ::= <statementJist>

• statement-list
<statement-list> ::= <statement> ; | <statcment> ; <statementJist>

• sentence
<statement> ::= <functions> | <set.functions> | <assignment_statement>

• functions
<functions> ::= read (<variablel>) | write (<variable>) |
prompt (<string>) I return (<variablel>)

• set-functions
<set-functions> ::= set-Copy (<variable> , <variablel>) |
union (<variable> , <variable> , <variablel>) |
intersection (<varial3le> , <variable> , <variablel>) |
difference (<variable> , <variable> , <variablel>)

• assignment-statement
<assignment-statement> <variablel> = <expression>

• expression
<expression> ::= <term> | <expression> + <term> |
<expression> — <tenn>

• term
<term> ::= <factor> | <term> * < factor> |
<term> / <factor>

5C

• ftictor
<factor> ::= <variable> | (<expression>) | <constant> |
sum (<variable>) | product (<variable>) |
count (<variable>) | count-ob jects (<class_name>) |
sum f (<variable>) | prod u ctf (<variable>) |
countf (<variable>) | icountf-objects (<class-name>)

• variable
<variable> ::= <vai'iablel> | <variable2> | <variable3>
<variablel> ; variable used in method definition
<variable2> : parameter of method (argument of message)
<variable3> : instance variiible of chiss

Method definition language provides 16 different functions. They are
described as follows:

• Read is used to input value to a single variable.

• Write displays the value of a single variable on the screen.

• Prompt is used to display a string on the screen.

• Return returns the value of its parameter as the value of the method.

• Set-copy is used to copy a set from one variable to the other. It copies
the value of its first parameter into the second one.

• Union finds the union of the two sets (first two parameter) and puts
the result into the new varialile (third parameter).

• Intersection finds the intersection of the two sets (first two parameter)
and puts the result into the new variable (third parameter). •

• Difference finds the difference of one set from the other one (first two
parameters) and puts the result into the new variable (third parameter).

• Sum finds the sum of the values in the set and returns its result as
integer.

• Product finds the product of the values in the set and returns its result
as integer.

• Count returns the numljcr of the elements in the set.

• Count-ohjects returns the number of the instances of the class.

57

• Sumf finds the sum of the values in the set and returns its result as
float.

• Product/finds the product of the values in the set and returns its result
as float.

• Countf returns the number of the elements in the set. It returns its
result in the float tjq>e.

• Countf-objects returns the number of the instances of the class. It
returns its result in the float form.

5S

C. A N EXAM PLE EXPERT SYSTEM
IMPLEMENTED IN OES

The name of this exj^ert system is “ADVICE” and it is developed to advice
courses to the students. Only two classes course and student are used in
this expert system application. Instance variables of the class course are as
follows:

• Cno: Course number (e.g. CSlOl).

• Required-year: If the value of this variable is 2 then second year stu
dents must take this course.

• Required-semester: The content of this variable shows the required
semester of the course.

• Given-semester: The content of this variable shows the given semesters
of the course. Some courses may be given in only one semester in a year,
but some courses may be given in both semesters of a year.

• Prerequisites: Shows all he courses that must have been taken before
taking this course.

• Type: Shows whether the course is a must course or an elective course.

Instance variables of the class student are as follows:

• Name: Name of the student.

• Year: Year of the student.

• Semester: Semester of the.student.

59

• standing: This variable shows whether the student is probation or
satisfactory in the last semester.

• Courses-taken: List of the courses that the student had passed.

• F -courses-list: List of the courses that the student had failed.

• Takes: This temporary variable is used to store the courses that are
adviced to the student by this expert system.

• Math_course: This is a temporary variable.

• E lective: This is a temporary variable.

Also the message count is defined for the class student. This message is
used to find the number of the courses assigned to the student.

C .l Knowledge Base of ADVICE

i f course is member.of courses^taken of student
then skip course;

i f student count(takes) is equal.to 5
then stop;

i f type of course is equal_to ^must.course^
and standing of student is not equal.to ^repeat^
and standing of student is not equal.to ^probation^
and course is not member.of courses.taken of student
and required.year of course is equal.to year o f student
and required.semester of course is equal.to semester of student
and prerequisites o f course is subset.of courses.taken of student
and student count(takes) is less.than 5
then student takes course;

i f type of course is equal.to ^must.course^
and course is member.of f .c o u r s e s .l is t of student
and semester of student is member.of given.semester of course
and student count(takes) is less.than 5

CO

if type of course is equal_to ’must_course’
and standing of student is equal_to ’probation’
and course is not member_of courses_taken of student
and required_year of course is equal_to year of student
and required_semester of course is equal_to semester of student
and prerequisites of course is subset_of courses_taken of student
and student count(takes) is less_than 5
then student takes course;

if type of course is equal_to ’must_course’
and course is not member_of courses_taken of student
and semester of student is member_of given_semester of course
and required_year of course is less_than year of student
and prerequisites of course is subset_of courses_taken of student
and student count(takes) is less_than 5
then student takes course;

if type of course is equal_to ’must_course’
and course is not member_of courses_taken of student
and semester of student is member_of given_semester of course
and required_year of course is equal_to year of student
and required_semester of course is equal_to ’fall’
and semester of student is equal_to ’spring’
and prerequisites of course is subset_of courses_taken of student
and student count(takes) is less_than 5
then student takes course;

if student year 3
and student semester ’fall’
and type of course is equal_to ’math_course’
and course is not member_of courses_taken of student
and student count(takes) is less_than 5
then student math_course course;

if student year 2
and type of course is equal_to ’nontechnical_elective’
and course is not member_of courses_taken of student
and student count(takes) is less_than 5

then student takes course;

61

then student elective course;

if student year 3
and type of course is equal.to ^nontechnical^elective’
and course is not member_of courses.taken of student
and student count(takes) is less^than 5
then student elective course;

if math.course of student is not NULL
then student takes math_course of student;

if elective of student is not NULL
then student takes elective of student;

if student year 4
and type of course is equal^to ^restricted.elective^
and student wants.software.coursesO is true
and course group ^software^
and course is not member.of courses.taken of student
and prerequisites of course is subset.of courses.taken of student
and student count(takes) is less.than 5
then student takes course;

if student year 4
and type of course is equal.to ^restricted.elective^
and student wants.hardware.courses() is true
and course group ^hardware^
and course is not member.of courses.taken of student
and prerequisites of course is subset.of courses.taken of student
and student count(takes) is less.than 5
then student takes course;

G2

C.2 Some Part of the Database of AD VICE

Instances of the class COURSE

Object-id: COOl

CNO: mathlOl
REQUIRED.YEAR: 1
REQUIRED.SEMESTER: fall
GIVEN.SEMESTER: fall
PREREQUISITES:
TYPE: must.course

Object-id: C002

CNO: physlOl
REQUIRED.YEAR: 1
REQUIRED.SEMESTER: fall
GIVEN.SEMESTER: fall
PREREQUISITES:
TYPE: must.course

Object-id: COOS

CNO: cslOl
REQUIRED.YEAR: 1
REQUIRED.SEMESTER: fall
GIVEN.SEMESTER: fall
PREREQUISITES:
TYPE: must.course

Object-id: C004

CNO: chemlOl
REQUIRED.YEAR: 1
REQUIRED.SEMESTER: fall
GIVEN.SEMESTER: fall spring
PREREQUISITES:

G3

Object-id: COOS

CNO: englOl
REQUIRED.YEAR: 1
REQUIRED.SEMESTER: fall
GIVEN.SEMESTER: fall
PREREQUISITES:
TYPE: raust_course

Object-id: 0006

TYPE: must_course

CNO: mathl02
REQUIRED.YEAR: 1
REQUIRED.SEMESTER: spring
GIVEN.SEMESTER: spring
PREREQUISITES: COOl
TYPE: must.course

Object-id: C007

CNO: mathllO
REQUIRED.YEAR: 1
REQUIRED.SEMESTER: spring
GIVEN.SEMESTER: fall spring
PREREQUISITES:
TYPE: must.course

Object-id: COOS

CNO: physl02
REQUIRED.YEAR: 1
REQUIRED.SEMESTER: spring
GIVEN.SEMESTER: spring
PREREQUISITES: C002
TYPE: must.course

G4

CNO: csl02
REQUIRED.YEAR: 1
REQUIRED.SEMESTER: spring
GIVEN.SEMESTER: spring
PREREQUISITES: COOS
TYPE: must.course

Object-id: COlO

CNO: engl02
REQUIRED.YEAR: 1
REQUIRED.SEMESTER: spring
GIVEN.SEMESTER: spring
PREREQUISITES: COOS
TYPE: must.course

Object-id: COll

Object-id: C009

CNO: cs221
REQUIRED.YEAR: 2
REQUIRED.SEMESTER: fall
GIVEN.SEMESTER: fall
PREREQUISITES:
TYPE: must.course

Object-id: C014

CNO: ee281
REQUIRED.YEAR: 2
REQUIRED.SEMESTER: fall
GIVEN.SEMESTER: fall
PREREQUISITES;
TYPE; must.course

65

CNO: cs242
REQUIRED.YEAR: 2
REQUIRED.SEMESTER: spring
GIVEN_SEMESTER: spring
PREREQUISITES: CO11
TYPE: must_course

Object-id: C016

CNO: cs232
REQUIRED.YEAR: 2
REQUIRED.SEMESTER: spring
GIVEN.SEMESTER: spring
PREREQUISITES: C007 C009
TYPE: must.course

Object-id: C017

CNO: ee212
REQUIRED.YEAR: 2
REQUIRED.SEMESTER: spring
GIVEN.SEMESTER: spring
PREREQUISITES: CO14
TYPE: must.course

Object-id: C015

Object-id: C032

CNO: ell23
REQUIRED.YEAR:
REQUIRED.SEMESTER:
GIVEN.SEMESTER: fall
PREREQUISITES:
TYPE: nontechnical.elective

GO

Instances of the class STUDENT

Object-id: SOOl

NAME: Ali
YEAR: 1
SEMESTER: spring
STANDING: probation
COURSES.TAKEN: COOl C002 COOS
F_COURSES_LIST: C003 C004

Object-id: S002

NAME: Veli
YEAR: 1
SEMESTER: spring
STANDING: satisfactory
COURSES.TAKEN: COOl C002 COOS
F_COURSES_LIST: C007

Object-id: S003

NAME: Selami
YEAR: 2
SEMESTER: spring
STANDING: satisfactory
COURSES.TAKEN: C002 C004 COOS COlO COll C014
F.COURSES.LIST: COOl СООЗ C007 COOS

67

C.3 The Outputs of AD VICE for Some Executions

ADVICE is executed for the following applications and the following results
are obtciined:

• All instances of class COURSE and the first instance (SOOl) of the class
STUDENT is used to find the courses advised to the student “Ali” and
the system advised courses with id’s C004, C006, C007, COOS and COIO.

• All instances of class COURSE and the second instance (S002) of the
class STUDENT is used to find the courses cidvised to the student “Veli”
and the system advised courses with id’s C004, C006, C007, COOS and
COIO.

• All instances of class COURSE and the third instance (S003) of the class
STUDENT is used to find the courses advised to the student “Selami”
and the system advised courses with id’s C007, COOS, C015, C017 and
C032.

GS

