

A RUN-TIME ENVIRONMENT FOR AN
OBJECT-ORIENTED DATABASE

MANAGEMENT SYSTEM

A THESIS

SUBMITTED TO THE DEPARTMENT OF COMPUTER

ENGINEERING AND INFORMATION SCIENCES

AND THE INSTITUTE OF ENGINEERING AND SCIENCES

OF BILKENT UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF
MASTER OF SCIENCE

By
Can Yengiil

1989

C Z

QA

• D3

Ô 1 8 5 6

I certify that I have read this thesis and that in my
opinion it is fully adequate, in scope and in quality, as
a thesis for the degree of Master of Science.

Prof. Erq■ <^Arkun(Principal Advisor)

I certify that I have read this thesis and that in my
opinion it is fully adequate, in scope and in quality, as
a thesis for the degree of Master of Science.

Prof. Dr. Mehmet ay

I certify that I have read this thesis and that in my
opinion it is fully adequate, in scope and in quality, as
a thesis for the degree of Master of Science.

S V uUMJXKj

Prof. Dr. Asuman Doğaç

Approved for the Institute of Engineering and Sciences:

Prof. Dr. Mehmet Baray, Director of Institutd^f Engineering and Sciences

11

ABSTRACT

A R U N -TIM E E N V IR O N M E N T FO R A N
O B JE C T-O R IE N TE D D ATABASE M A N A G E M E N T

SYSTE M

Can Yengiil
M .S. in Computer Engineering and Information Sciences

Supervisor: Prof. Dr. M . Erol Arkun
1989

In this thesis, an object-oriented query processor, a database language
executer, and the protocols for the system- defined classes are designed and
implemented. The designed and implemented database language completely
fulfills the requirements of the object-oriented paradigm.

Query processing functions are implemented through the message pass
ing paradigm, which results in a uniform treatment of data manipulation
and query processing functions. The run-time environment also supports
the implementation of inheritance mechanism, class hierarchy maintenance,
instance access and modification, and access to class definitions.

Keywords : object-oriented database, query processor, object- oriented
query model, object-oriented language, object, class, instance, message, met
hod, class hierarchy, object identity.

Ill

ÖZET

NESNESEL BİR VERİ TA B A N I İŞLETİM SİSTEM İ İÇİN
Ç ALIŞM A ORTAM I

Can Yengül
Bilgisayar Mühendisliği ve Enformatik Bilimleri Bölümü

Yüksek Lisans
Tez Yöneticisi: Prof. Dr. M. Erol Arkım

1989

Bu tez çalışmasında nesnesel bir sorgulama işlemcisi, nesnesel bir veri
tabam dili için çalıştırıcı ve sistemde bulunan sınıflar için gerekli iletişim
protokolleri tasarımlanmış ve gerçekleştirilmiştir. Geliştirilen veri tabanı dili
nesnesel yaklaşımın tüm gereklerini yerine getirmektedir.

Sorgu işleme fonksiyonları mesaj yollama yöntemi ile gerçekleştirildiğinden,
veri kullanımı ve sorgu işlemleri benzer şekilde ifade edilebilmektedir. Ak
tarım mekanizması, sınıf sıradüzeninin kurulması, nesne örneklerine ve sınıf
tanımlamalarına ulaşım da program çalıştırma ortamı tarafından gerçekleş-
tirilmektedir.

Anahtar sözcükler : nesnesel veri tabanı, sorgulama işlemcisi, nesnesel
sorgulama işlemcisi, nesnesel sorgulama modeli, nesnesel dil, nesne, sınıf,
nesne örneği, mesaj, metot, sınıf sıradüzeni, nesne kimliği

IV

ACKNOWLEDGEMENT

I would like to acknowledge the valuable help, cooperation and encour
agement of Prof. Dr. M. Erol Arkun. I would also like to thank Sibel
Türkmen with whom I worked together throughout the development of an
object-oriented database management system prototype (ODS) for her heljD
and friendly cooperation. I also acknowledge the help and support of Pınar
Ayer and appreciate the support of my lovely family.

V

TABLE OF CONTENTS

1 INTRODUCTION

2 THE OBJECT-ORIENTED APPROACH

2.1 The Basic Concepts

2.2 Basic Characteristics of Object-Oriented Systems

2.2.1 Data Abstraction

2.2.2 Homogeneity

2.2.3 Independence

2.2.4 Information Hiding

2.2.5 Inheritance

2.2.6 Late Binding

2.2.7 Message Passing

2.2.8 Object Identity

2.2.9 Overloading and Genericity... 10

2.2.10 Reusability.. 11

3 THE OBJECT-ORIENTED DATABASES 12

VI

3.1 Object-Oriented Versus Traditional Databases......................... 13

3.2 Advantages of the Object-Oriented M o d e l............................... 14

3.3 Disadvantages of the Object-Oriented Model 15

4 THE ODS PROTOTYPE 17

4.1 An O verview .. 17

4.2 Implementation of the Classes.. 19

4.3 The Database Language... 35

4.3.1 An Overview 35

4.3.2 Basic Constructs in the Language 38

4.4 The Run-Time Environment 49

4.4.1 The Necessary Structures for the Run-Time Environment 49

4.4.2 The Executor Module 51

4.4.3 The Expression Evaluation M odule............................... 54

4.4.4 The Message Passing Module 60

4.4.5 The Object Memory Module 63

4.5 The User Interface 69

4.5.1 The Class Browser 69

4.5.2 The Programming Shell 69

5 QUERIES IN OBJECT-ORIENTED DATABASES 73

5.1 Object-Oriented versus Relational Queiies............................... 73

5.2 The ODS Query Model ... 75

Vll

5.2.1 Predicate Construction ' 75

5.2.2 The ODS Query Language ... 77

5.3 Object-Oriented Query Processing in other S y stem s............ 81

5.3.1 GEM STONE.. 81

5.3.2 O R IO N ... 82

6 AN APPLICATION WITH ODS 84

6.1 The Example Object-Oriented Database S ch em a.................. 84

6.2 Example Programs............... ... 89

7 CONCLUSIONS 94

REFERENCES 97

APPENDICES lOi

A List of Run-Time Errors 101

VI n

LIST OF FIGURES

4.1 The Initial Class H ierarchy... IS

4.2 A Class Describing O bject.. 23

4.3 An Instance Variable Definition Table Entry............................ 24

4.4 A Method Definition Table Entry.. 25

4.5 An Argument Definition... 25

4.6 A BAG/SET O b je c t ... 28

4.7 An ARRAY O bject... 31

4.8 A STRING O b je c t ... 32

4.9 A BLOCK O b je c t ... 34

4.10 A User-Defined O b ject.. 34

4.11 An Expression C o d e .. 57

4.12 An Arithmetic Expression Code 59

4.13 A Message Expression C o d e ... 64

4.14 The Class Browser 68

4.15 The Programming S h e ll ... 70

4.16 The Run-Time Window 71

IX

4.17 The Read Panel 72

6.1 The Example H ierarchy... 85

X

1. INTRODUCTION

Object-oriented systems are considered to be of significant value in domains
such as software engineering, computer graphics and office automation sys
tems. They combine well-known techniques such as modularization and data
abstraction, and present a new framework for applications [4, 6, 9, 19].

The notion of objects allows any real world entity to be modelled by an
object. Naturally, the closer the constructs in a language are to the entities
we deal with in the real world the less difficulty we encounter in translating
the real-world problem into a program. The object-oriented approach is a
major step in this direction, since working with objects seems more natural
than with constructs found in standard languages.

The object-oriented approach is the most promising technique now known
for attaining such objectives as extendibility and reusability.

Currently, the complexity of applications such as CAD/CAM, document
retrieval and expert systems need more powerful data modelling concepts. It
has been believed that object-oriented databases are a step in this direction.
They provide more flexible modelling tools than traditional database systems.
They also incorporate some of the software engineering methodologies, such
as data abstraction, that have proved to be effective in the design of large-
scale software systems [14, 19].

Object-oriented databases are emerging to support these complex applica
tions. Developed from the concepts of object- oriented programming, object-
oriented databases reduce the semantic gap between complex applications

and the data storage supporting those applications.

1

The basic idea of an object-oriented database is to represent an item in the
real woxdd being modelled with a corresponding item in the database. This
includes the behaviour of each object as well as its structure. This one-to-one
mapping reduces the semantic gap between the real world and the database
modelling the real world [30].

In this thesis an object-oriented query processor and a database language
executor has been designed and implemented for an object-oriented database
management system prototype (ODS) that has been under development since
1987 in Bilkent University [16, 18, 27, 28, 34, 35]. The work also contributed
to the design of the database language. Other parts of ODS include a user
interface which performs basic schema evolution functions, a compiler and a
code generator for the object-oriented database language [34, 35].

In Chapter2, the basic concepts and characteristics of the object-oriented
approach are given. Object-oriented databases, a comparison of object-
oriented databases and traditional databases, advantages and disadvantages
of object-oriented systems and databases are given in Chapter 3. Chapter
4 discusses the designed and implemented object-oriented database system
(ODS) in detail. First, an overview of the system is given. Second, the pro
tocols and the internal representations of objects are explained. Third, the
object-oriented database language developed is discussed in detail. Then, the
run-time modules of ODS, namely the executor, the expression evaluation,
the message passing, the object memory module and their related structures
are discussed. Finally, the user-interface module including the Class Browser
and the Programming Shell modules are described. In Chapter 5, the basics
of object-oriented query processing, a comparison of object-oriented and re
lational queries, the ODS query model and query language and information
about a few database systems that have dealt with the object-oriented query
processing are discussed. Chapter 6 presents an example database application
developed using ODS. Chapter 6 is the conclusion.

2. THE OBJECT-ORIENTED APPROACH

2.1 The Basic Concepts

Instead of having two types of entity that represent information and its ma
nipulation independently, an object- oriented system has a single type of
entity, the object, that represents both. Objects can be manipulated as or
dinary data while they describe manipulation, like procedures, as well. The
data contained in an object is manipulated through sending a message to the
object.

Formally, an object consists of a private memory and a public interface
part. The private memory part consists of instance variables capturing the
state of the object. The instance variables can contain other objects which
have their own states [4, 29, 31].

The set of messages that an object can respond to by executing related
pieces of code constitutes its public interface part characterizing the be
haviour of the object. The private memory part is only accessible through
the public interface part.

When an object receives a message, it determines how to manipulate
itself. The object to be manipulated is called the receiver object. A message
contains a message name, which is also called a message selector, and possibly
some arguments. The message selector describes what the programmer wants
to happen, not how it should happen.

Procedures have names too, and they are called by using their names.

Nevertheless, each procedure name corresponds to only one procedure, there
fore specifies exactly what should happen. However, a message can be inter
preted in different ways by different receivers. Therefore, the receiver of the
message determines exactly what will happen, not the message itself.

For each message, there is a procedure-like entity called a method which
implements the response when a message is sent to an object. Although meth
ods are procedure-like entities, they can only communicate through messages
and can not communicate directly.

Most object-oriented systems make a distinction between the description
of an object and the object itself. The description of an object is called a
class, since the class can describe a whole set of related objects. Formally,
a class can be defined as a description of one or more similar objects. Each
object described by a class is called an instance of that class [4, 31].

Inheritance is the concept in object-oriented approach that is used to
define objects that are almost like other objects. Inheritance mechanism is
important because it makes the declaration of shared specifications possible.
It helps to keep programs shorter and more tightly organized. There are
two types of inheritance, namely hierarchical inheritance and multiple inher
itance. In a hiereircliy, a class is defined in terms of a single superclass. A
specialized class modifies its superclass with additions and substitutions. The
hierarchy of classes is called the class hierarchy. On the other hand, multiple
inheritance makes it possible to combine descriptions from several classes. In
multiple inheritance the class hierarchy takes the form of a class lattice [4,
31].

2.2 Basic Characteristics of Object-Oriented Systems

Currently, the following notions are associated with the object-oriented ap
proach [25, 26, 29, 40] :

• Data abstraction

• Homogeneity

• Independence

• Information hiding

• Inheritance

• Late binding

• Message passing

• Object identity

• Overloading and genericity

• Reusability

2.2.1 Data Abstraction

The principle that is fundamental to the object-oriented approach is encapsu
lation or data abstraction. Data abstraction means that one is not interested
in the representation of an object but its behaviour [24].

A programmer defines an abstract data type that consists of an inter
nal representation and a set of methods to access and manipulate the data
contained in the internal representation. Object-oriented languages enable
the programmer to create his own abstract data types. Although languages
like C and Pascal support the construction of programmer-defined t3’’pes, one
cannot define operations that are only applicable to that type.

The separation of interface and implementation of a new type makes the
types representation independent. It allows the modification of the methods
of a class without affecting the other classes that reference the class being
modified, because other classes can only communicate with the instances of
this class through messages. Therefore, the portability of software increases.

2.2.2 Homogeneity

In order to have a fully object-oriented system, everything should be an
object. The degree of homogeneity depends on whether programs and classes
are objects, there is a difference between user-defined and system defined
objects.

Theoretically, to have everything as an object seems to be attractive.
However, this introduces some circularity that has to be broken at some level.
For example, assume that some messages are also objects. Then, in order to
manipulate a message, one has to use a message, a circularity. Therefore, the
degree of homogeneity is a question.

2.2.3 Independence

Object models often encapsulate objects in terms of a set of operations as a
visible interface, while hiding the realization of an object. Realization of an
object consists of its data structures and implementation of the operations.
Since the only mechanism to communicate between objects is through mes
sages, object independence is enforced. Objects have their own control over
their own state and the object’s methods are the only way to manipulate its
state. If an object can access another object’s state, then it is clear that the
fact that the implementation and the interface are independent is not correct.

2.2.4 Information Hiding

Information hiding reduces the interdependencies between software modules
and allows the development of reliable and easily modifiable software systems.
The state of a module is represented by a set of instance variables which
are private to the module and only a set of local methods are allowed to
manipulate these variables. Since the only way to manipulate an internal
state of a module is to use messages which constitute the public interface
part of a module, the internal data structures and methods can be easily
modified without affecting the implementation of other modules.

2.2.5 Inheritance

Inheritance is a reusability mechanism for sharing behaviour between objects.
It enables a programmer to create classes and, therefore, objects that are spe
cializations of other objects. Creating a specialization of an existing class is
called subclassing. The new class is a subclass of of the existing class and the
existing class is the superclass of the new class. The subclass inherits instance
variables, class variables and methods from its superclass. The subclass may
add instance variables, class variables and methods that are appropriate to
the more specialized objects. A class may also override or provide additional
behaviour to the methods of its superclass.

Class inheritance is an important mechanism which can simplify large
pieces of software by using the similarities between certain classes. The key
idea of class inheritance is to provide a simple and powerful mechanism for
defining new classes that inherit properties from existing classes.

In hierarchical inheritance, a class is defined in terms of a single super
class. This is also called simple or single inheritance. A natural extension is
multiple inheritance which increases sharing by making it possible to combine
descriptions from several classes [31].

In a typical high-level language such as C, when a function is called, the
compiler and the linker generate a subroutine call to a physical address. This
is rather efficient, but one has to be careful about the arguments, because a
type mismatch may cause severe errors. But specifying some directives, the
compiler’s type checking facility might catch those type mismatches.

The object-oriented languages relieve the programmer from this problem
by automatically calling the appropriate method for a given data structure.
The programmer uses generic message selectors, and the system determines
the method corresponding to this selector from the class of the receiving
object.

Since all references are symbolic, a method can be recompiled without
having to recompile all of its callers. In ODS, the same name can be used
to identify a method or a message which operate in a similar way in sev
eral different classes. For example, each class can implement its own class
definition.

The fact that a single message can invoke any one of several methods
depending on the receiver object is the most important feature of the object-
oriented approach. A lot of control structure, such as if and case statements,
are not required because the executor determines the code to be executed
according to the receiver object.

However, late binding has the important disadvantage of reduced effi
ciency. Researcli continues on improving the efficiency of the late binding
approach [12].

2.2.7 Message Passing

2.2.6 Late Binding

In conventional programming languages, active procedures act on passive
data that is passed to them via arguments. Object- oriented languages employ
a data or object-centered approacli to programming. Instead of passing data

to procedures you ask objects to perform operations on themselves. All of the
action in object-oriented programming comes from sending messages between
objects.

Message sending supports data abstraction. The calling program cannot
make any assumptions about the implementation and internal representation
of the receiving objects.

2.2.8 Object Identity

Identity is the property of an object that distinguishes it from all others. Most
of the programming languages and database languages use variable names to
distinguish temporary objects which mixes the addressibility and identity.
On the other hand, most of the databases use identifier keys to distinguish
objects which mixes the data value and identity. However, object-oriented
languages oifer a different approach for identification which is independent of
the address and the data value of an object [19].

If the concept of identity is built into a language, then an object’s unique
ness is modelled even though its description is not unique. Use of identifier
keys causes several problems because of mixing data value and identitj ̂ con
cepts. First, identifier keys are not allowed to change, although they are
user-defined data. Second, sometimes any attribute or a set of attributes of
an object cannot uniquely determine the object. Then some artifacts have to
be introduced. Third, the choice of attribute(s) to use for an identifier key
may need to change. Fourth, use of identifier keys causes joins to be used in
retrievals instead of the more desirable path traversal.

There is a growing trend to merge programming and database languages
into a hybrid environment which includes a language with unified typing and
computational identity.

The most powerful technique for supporting identity is through surrogates
[19]. Surrogates are system generated globally unique identifiers, completely

independent of any physical location. Surrogates provide full location in
dependence. If surrogates are associated with every object then they also
provide full data independence. Each object is associated with a unique
identifier which is called an object-oriented pointer (oop).

We may talk about three predicates, namely, identity, shallow equality
and deep equality predicates. Given two objects, the identity predicate re
turns true if their oops are the same. Two objects are shallow-equal if their
values are identical. However shallow equality predicate is not recursive. For
example, two set objects whose elements have pairwise equal values are not
necessarily shallow-equal. Two atomic objects are deep-equal if their values
are the same. Two set objects are deep-equal if they have the same cardinality
and the elements in their values are pairwise deep-equal. One may implement
operators to obtain another object which is shallow-equal or deep-equal to
the original object.

2.2.9 Overloading and Genericity

Another feature of object-orientation is operator overloading. Overloading
means attaching more than one meaning to a name, such as the name of
an operation. Operator overloading describes the useful notion of using the
same operator symbol to denote distinct operations on different data types.

For example, the same notation can be used to add two integers, two
floating point numbers or an integer and a float.

Another technique which complements overloading is genericity. Gener
icity allows a module to be defined with generic parameters that represent
types. Instances of the module are then produced by supplying different types
as actual parameters. This is a definite aid to reusability because just one
generic module is defined, instead of a group of modules that differ only in
the types of objects they manipulate.

Both overloading and genericity leads to reusability.

10

Encapsulation of procedures, macros and libraries has been exploited for
many years to enhance the reusability of software. Object-oriented techniques
achieve further reusability through the encapsulation of programs and data
124).

Inheritance enables programmers to create new classes of objects by spec
ifying the differences between a class and an existing class instead of starting
from scratch each time. A large amount of code can be reused in this way.

2.2.10 Reusability

11

3. THE OBJECT-ORIENTED DATABASES

A database is normally used to maintain a model of some aspect of reality.
Traditional data models, such as the relational model, have achieved great
efficiency in data storage and retrieval, however it is subject to the limitation
of a finite set of data types and the need to normalize data [22].

In contrast, object-oriented languages offer flexible abstract data-typing
facilities and the ability to encapsulate data and operations via the mes
sage passing paradigm. Combining object-oriented language capabilities and
the storage management functions of a traditional data management system
yields an object-oriented database system which reduces application devel
opment time and increases modelling power [23].

Object-oriented databases are emerging to support complex applications
such as CAD/CAM, document retrieval, expert systems and decision sup
port systems. Developed from the concepts of object-oriented programming,
object-oriented databases reduce the semantic gap between complex applica
tions and the data storage supporting those applications.

The basic idea of an object-oriented database is to represent an item in
the real world being modelled with a corresponding item in the database.
This includes modelling the behaviour of each object as well as the object’s
structure.

12

3.1 Object-Oriented Versus Traditional Databases

Object-oriented systems emphasize object-independence by encapsulation of
individual objects. Objects’ contents and the implementation of their oper
ations are hidden from other objects. Interaction with objects is through a
well-defined interface [36].

Traditional databases, on the other hand, emphasize data independence
by separating the world into two independent parts, namely the data and the
applications operating on them.

Traditionally, databases make a very strong distinction between instances
and classes. Instances are in the database, whereas class information, i.e.,
the schema, is stored in the data dictionary.

It is obvious that object-oriented systems need to manage both instances
and classes. In object-oriented systems, classes are themselves objects and
they can be manipulated as objects.

Databases traditionally provide operations based on selection by contents.
This is especially true in relational systems, where all relationships between
entities are represented by contents, and all operations are based on contents.

In object-oriented systems object contents are typically encapsulated, i.e.,
hidden. We are not supposed to know the values of an object’s variables.
Since objects encapsulate behaviour, they should also be selectable in terms
of their behavioural aspects rather than by how the behaviour is implemented.

Databases traditionally have very few classes with a large number of in
stances per class. The differentiation between entities is represented by at
tribute contents and not by subdividing or creating extra classes. Classifica
tion in object- oriented systems serves a very different function which support
instantiation, encapsulation and class inheritance.

Database systems traditionally provide very few generalized types. There
fore, they provide a small number of operations for queries and updates on
database objects. The operations are the same regardless of the semantics

13

of the object involved. Queries and updates on employees, cars, accounts all
utilize the same operations. In addition, these operations are simple.

Object-oriented systems require that all objects provide some set of oper
ations which are shared through object classes and inheritance mechanisms.
In addition, the methods can be very complex.

Database systems utilize object identifiers internally for implementation
purposes. In the relational model tuples do not have a visible identifier.
They’re identified by their contents, via primary or secondary keys.

In object-oriented systems object identifiers are very important for two
reasons. First, identifiers provide a permanent handle for objects that may
move in much the same way that file names hide the fact that a file’s contents
and physical location may change. Second, if an object’s contents are properly
encapsulated they cannot be expected to provide a means for identification.
These identifiers should be purely for identification purposes and should not
be related to the physical location of the objects in the database.

Traditioneil databases allow very little flexibility for evolution of their
classes. Schema evolution is very restricted. However, some of the rela
tional systems allow adding new attributes. In object-oriented systems object
classes should be able to change to accommodate software evolution [3].

This is obvious, because the classes are also objects as any ordinary entity.

3.2 Advantages of the Object-Oriented Model

An object-oriented model supports modelling of complex objects and rela
tionships directly and organizes classes of data items into an inheritance hi
erarchy. A single entity is modelled as a single object, not as multiple tuples
spread among several relations [22].

One of the characteristics of object-oriented systems, object identity, al
lows a data object to retain its own identity through arbitrary changes. Two
entities which both include the same information can be modelled as two

14

objects with a shared subobject that contain the common information. Such
sharing reduces the update anomalies that exist in the relational data model
[10]. We note that referential integrity [10] is directly satisfied in object-
oriented data model. One object refers directly to another instead of refer
ring to the name of that object. The reference can not be created if the other
object does not exist. Therefore there are no dangling identifiers [22].

Information hiding and data abstraction increase reliability and make
applications independent of procedural and representational specifications
which are defined in the classes [29].

The class structure speeds application development. Dynamic binding in
creases flexibility by permitting the addition of new classes of objects without
having to modify the existing code. Inheritance mechanism allows code to
be reused which reduces the amount of code written by a programmer and
increases his productivity.

Building and meinaging a database schema requires a great effort to main
tain consistency between records, fields, relations, data types and values.
Therefore, data dictionary facilities have been static in nature. However,
building a database schema as an object-oriented hierarchy provides an as
sistance for automatically describing data representations and transparently
mainteiining them. Schema descriptions are represented as objects and proce
dures for adding, modifying and deleting dictionary objects are implemented
in methods associated with the schema object.

3.3 Disadvantages of the Object-Oriented Model

Although object-oriented databases are being built and have practical appli
cations, there is no agreement as to a standard data model for object-oriented
databases. We do not have the equivalent of the relational algebra for an
object-oriented data model [26]. Therefore it is also difficult to decide on a
standard query language for objects.

The cost of dynamic binding is also encountered as a disad\'antage.

15

Object-oriented databases provide a database language which include the
data definition and data manipulation facilities together with computational
aspects. These languages operate on database objects directly. The im
plementation of these languages are more complex compared to any other
procedural language because the semantic gap between these languages and
typical hardware is greater.

16

4. THE ODS PROTOTYPE

4.1 An Overview

ODS supports modelling of complex objects and relationships directly. Any
real world entity can be modelled by an object. The state of em object is
captured in the instemce variables. The domain of an instance variable is
not restricted to be a simple data type but can be other entities of arbitrary
complexity [34, 35].

ODS represents the behaviour of the real world entities in addition to its
structures. The behaviour of an object is encapsulated in the methods. Each
object responds to a set of messages which constitutes its public interface
part. For each message, there is a corresponding method which implements
the message.

Similar objects are grouped into a class. Classes define the internal struc
ture and behaviour of their instances. In ODS both classes and instances are
viewed as objects. This allows a uniform treatment of messages. Since classes
are objects, they also respond to messages which are called class messages.
For example, in order to create an instance of a class, the class message New
is sent to that class.

Grouping objects into classes helps avoid specification and storage of re
dundant information. In ODS, a class hierarchy is maintained. The sys
tem initially comes with a set of classes which helps the development of
applications a great deal. These classes are called system-defined classes.

17

The user may also add new classes to the system which are called user-
defined classes. Both the system-defined classes and the user-defined classes
are treated uniformly. The system defined-classes are OBJECT, CLASS,
PRIMITIVE, CHAR, INTEGER, COLLECTION, BAG, SET, ARRAYED,
ARRAY and STRING classes. The PRIMITIVE, COLLECTION and AR
RAYED classes are abstract classes which have no instances. The initial class
hierarchy is shown in Figure 4.1.

It is possible to create temporary objects which are the instances of
BAG/SET, ARRAY, ARRAY/STRING classes. The New method of each
of these classes expects an argument specifying the newly created object to
be a temporary (’T ’) or persistent (’P ’) object. All the user-defined objects
are persistent.

ODS supports class variables to reduce redundant storage and specifica
tion of objects. Each user-defined class can define a set of class variables that
are shared by all instances of the class.

The variables that are supported in ODS are always bound to a specific

18

class which is desirable for integrity control.

ODS supports identity which is implemented through surrogates which are
globally unique system generated identifiers. Objects can be shared through
their object-oriented identifiers which is also called an object-oriented pointer
(oop). The relationship between objects are represented by object-oriented
pointers which automatically satisfy the referential integrity requirements.

In ODS set valued entities are supported directly through the instances
of the SET class. A SET object can have arbitrary objects as elements and
it needs not be homogeneous. Sets are extensively used in establishing 1:N
and N:M relationships and in query processing.

ODS provides a database language which includes data manipulation fa
cilities and computational aspects. The language is strongly typed. Both
the language and the database support the same data types and solve the
impedance mismatch problem. Queries can also be expressed in this language.

The object-oriented database language does not yet have a data definition
capability. The modification of existing classes and addition of new classes
are handled by the Class Browser module [34, 35] instead.

The implementation of ODS has been carried out on SUN Workstations'
running Berkeley UNIX^ 4.2 [7, 32, 38] using the C programming language
[17]. The internal representations of objects and class hierarchy is taken from
the predecessor of ODS [16, 18, 27, 28] which was partially implemented on
SUN workstations.

4.2 Implementation of the Classes

In this section, the internal representation of objects and protocols of the sys
tem defined classes will be given. The internal representation of the objects
differ from each other. The instances of the system-defined classes have differ
ent internal representations. The user-defined classes share the same internal

'SUN Workstation is a registered trademark of SUN Microsystems, Incorporated
^UNIX is a trademark of Bell Laboratories

19

representation, but this is also different from the internal representation of
the system-defined classes. There are classes which are created for a logical
grouping of their subclasses which define the common properties of their sub
classes but they don’t have any instances. These classes are called abstract
classes. For example, PRIMITIVE, ARRAYED, COLLECTION classes are
abstract classes of the ODS class hierarchy [35].

The system-defined classes have their own message protocols. Each class
implements its own methods and messages which constitute the public inter
face of its instances. The following sections will discuss the internal represen
tations and the message protocols of the classes in the ODS class hierarchy.

The OBJECT Class :

The protocol common to all the objects in the system is provided in the
description of the OBJECT class. The OBJECT class does not have any
instances. Therefore, it is an abstract class. However it implements several
class and instance methods that may be used by its subclasses or the instances
of its subclasses. These methods provide a default behaviour to the instances
of the subclasses of the OBJECT class. However, they may provide a basis
to construct specialized versions of other methods.

The Protocol for the OBJECT Class

print(new_line) :

The receiver object is printed to the run-time window. If the new-line
argument is TRUE a NEWLINE character is also printed. Since all system-
defined classes implement their own print methods, this message is used for
only instances of the user- defined classes. The method is recursively defined
so that every instance variable of the receiver object is expanded until a
primitive object is reached. The message returns TRUE if it successfully
completes its operation, FALSE otherwise, to comply with our convention
that each method returns a value.

20

New() :

The receiver object of the class messages is always a class object. The
system-defined classes define their own New methods, therefore this message
can only be applied to the user-defined classes. The New message creates
an instance of the receiver class object by allocating chunks for each of the
superclasses of the receiver class and initializes all the instance variables to
NIL. Finally it returns the oop of the newly created object.

GetsetO :

As will be presently discussed in the class representing object structure,
each class maintains a SET object which includes all the oops of the instances
of that class. This message returns the oop of the SET object that represents
the instances of the receiver class.

removeO :

The receiver object is logically deleted by marking the status field in its
corresponding object-table entry.

There are some other messages for equality checks and copying objects.
However, these are not implemented yet. These can be listed as follows :

shallow_equal(object) :

Determines if the receiver object and the argument object are shallow
equal. Returns TRUE or FALSE.

deep_equal(object) :

Determines if the receiver object and the argument object are deep equal.
Returns TRUE or FALSE.

21

Shallow_copy(object) :

The receiver class creates a new instance and copies the contents of the
argument object into the newly created object. Returns the oop of the newly
created object.

Deep_copy(object) :

The receiver class creates a new instance and for each instance variable
of the receiver class a new instance of its domain is created. This continues
until a primitive domain is reached. Then, the contents are copied from the
argument object to the receiver. The oop of the newly created object is
returned.

The CLASS Class :

Each class in the system is an instance of the CLASS class. Both the
user-defined classes and the system-defined classes are represented by a class
defining object. Each class object desci’ibes the structure and the behaviour
of the instances of the class it represents. The class describing object has the
following information as shown in Figure 4.2 :

• oop of the class

• name of the class which also describes the type of the instances of the
class

• oop of the superclass of the class

• oop of the set object which represents the oops of the instances of the
class

• instance variable count which is used when allocating space for an in
stance

• a ¡pointer to the instance variable definition table

• class variable count

00

Class oop
Class name

Oop of the super class
Instance set oop

(oop of the set of the instances)
Instance variable count

Pointer to instance variable definitions
Pointer to class variable definitions

Class variable count
Pointer to instance methods

Pointer to class methods
Pointer to place in hierarchy

Figure 4.2: A Class Describing Object

• a pointer to the class variable definition table

• a pointer to the instance method definition table

• a pointer to the class method definition table

• a pointer to the class hierarchy entry to specify the position of the
class in the class hierarchy which provides a path to access the class’s
superclass chain and its subclasses.

The definitions of the instance variables are stored in an instance variable
definition table (IVDT) [18]. The instance variable definition table contains
the following information as shown in Figure 4.3:

• name of the instance variable

• type of the instance variable

• size of the instance variable if it is an indexed type

• element type of the instance variable if it is an indexed type

• a pointer to the next instance varictble definition table entry

23

Name
Type
Size

Element type
Pointer to next variable

Figure 4.3: An Instance Variable Definition Table Entry

The definitions of class variables are stored in a class variable definition
table (CVDT). The structure of CVDT is nearly the same, but there is an
additional entry to store the values of the class variables. Since the value of
a class variable is shared among all the instances of a class, the value of the
class variable is also kept with its definition.

Both the definitions of the instance methods and the class methods are
put into the method definition table (MDT). The method definition table
contains the following information as shown in Figure 4.4 :

• a flag indicating whether the corresponding method is implemented as
a C function or in the ODS database language

• a pointer to a C function for methods written as C functions

• name of the method

• message selector name of the method

• the name of the file that contains the method

• the number of arguments of the method

• a pointer to the list of argument definitions. Each node

contains the following information as shown in

Figure 4.5 :

— type of the argument

— size of the argument if it is an indexed type

24

C-Code
Function pointer
Method Name
Message name

Argument count
Method file name

Pointer to the list of arguments
Pointer to the next method

Figure 4.4: A Method Definition Table Entry

Type
Maximum length

Element Type
Symbol table index

Pointer to the next argument

Figure 4.5: An Argument Definition

— element type of the argument

— the index of the corresponding symbol table entry

for the argument. Argument values are put into the

oop field of the symbol table using this index

during parameter passing operation

— a pointer to the next argument definition

Since the data definition facility is not included in the ODS database
language yet, the CLASS class does not implement its methods to perform the
definition of new classes and modification of existing classes. These functions
are put into a submodule of the system which is called the Class Browser [34,
35] and it will be discussed in section 4.6.1.

The INTEGER Class :

The instances of the INTEGER class has only one state which is the value
represented and this never changes. Integers have their values encoded in

25

their object-oriented pointers which provides efficiency in their manipulation
by the system. The object-oriented pointers of the INTEGER objects have
their least significant bits 1. The oops of the instances of other classes never
have 1 in their least significant bits. For example the integer value 30 is
represented by 61. First, the integer value is shifted left one bit. Then, 1 is
added to this value to obtain the oop of this value.

The Protocol for the INTEGER Class :

print(new _line)

Converts the destination object into its integer format and then prints the
integer value to the run-time window. If the new-line argument is TRUE, a
NEWLINE character is also printed.

Read(prompt.string)

Reads an integer value through a read panel which will be discussed in
the user interface part. The prompt-string argument contains a string which
is printed in the read panel to inform the user.

The CHARACTER Class :

Similar to the INTEGER class, characters have their values encoded in
their object-oriented pointers. The ASCII values of the characters range
between 0 and 255. Multiplying a value in this range by two yields an even
integer between 0 and 510. Therefore, these do not overlap with the oops of
integer values. For example, the character ’A’ (65 ASCII code) is represented
as 130.

The Protocol for the CHAR class :

Read(prompt_string) :

Reads a character value through a read panel. The prompt string is
printed to the read panel to inform the user.

26

print(new_line) :

Prints the receiver CHAR object. If newJine argument is TRUE, a NEW-
LINE character is also printed.

asciiO :

Returns the ASCII value of the receiver CHAR object as an INTEGER
object.

isd ig itO :

Tests if the receiver CHAR object is a digit. Returns TRUE or FALSE.

isalphaO :

Tests if the receiver CHAR object is an alphabetic character. Returns
TRUE or FALSE.

isalphanumO :

Tests if the receiver CHAR object is an alphanumeric character. Returns
TRUE or FALSE.

The BAG and SET Classes :

A BAG/SET object contains oops of objects that are instances of either
system-defined classes or user-defined classes. The objects contained in a
BAG/SET object are not necessarily of the same type, they may belong to
arbitrary classes. An element of a BAG/SET object can also be another
BAG/SET object.

The internal representation of both the BAG and SET objects as shown
in Figure 4.6 are the same and contain the following information :

27

Figure 4.6: A BAG/SET Object

• oop of the BAG/SET object

• oop of the BAG/SET class

• number of elements in the BAG/SET object

• a pointer to a list of elements, each node of the list contains the oop of
one of the elements

• a pointer to the c.. 'iit element, used in iterating over the elements.

The difference between a SET and a BAG object is that a SET object
does not allow duplication of any of its elements. However, a BAG object
allows duplicates.

The Protocol of the BAG Class :

New(temporary_flag) :

This message creates a BAG object and returns its oop. The tempo
rary-flag specifies if the object will be a temporary (’T ’) or permanent (’P’)
object. The newly created BAG object represents an empty bag.

add(object) :

The object specified in the argument is inserted into the receiving BAG
or SET object. The method implementing the message is a generic function
to cover both the SET and BAG objects. If the object to be added to a SET
object is a duplicate, the message returns FALSE. Otherwise TRUE.

28

print(new.line) :

Prints the receiving BAG/SET object. Each object included in the receiv
ing object is printed one by one. If new .line is TRUE, a NEWLINE character
will also be printed.

include(bag_object) :

All the elements of the argument BAG object are added to the receiving
BAG object. Returns TRUE or FALSE.

e x is to b j(o b je c t) :

Tests if the object is itained in the receiving BAG/SET object. Returns
TRUE or FALSE.

rem oveobj(object) :

Removes the object from the receiving BAG/SET object,

remove 0 :

Removes the receiving BAG/SET object if it is empty.

isemptyO :

Tests if the receiving BAG/SET object contains any elements. Returns
TRUE or FALSE.

f ir s t 0 :

Returns the oop of the first element in the receiving BAG/SET object. It
sets the current .element pointer to the beginning of the list. Returns NIL if

the BAG/SET is empty.

29

nextO :

Returns the oop of the next element in the element list of the receiving
BAG/SET object. Sets the current .element pointer to the next-element in
the list. Returns NIL if there is no next element.

The BAG class implements all the query processing methods as well.
These will be discussed in section 5.2.2. These include the methods retrieve,
forall, forany, modify, count, countu, sum and sumu.

The Protocol for the SET class :

Since the SET class is a subclass of the BAG class, it inherits all the
methods defined in the BAG class. Some of them are directly applicable to
the SET objects, but some of them are generic methods that change their

behaviour according to the type of the receiver object. The only message
implemented for the SET class is :

in clu d e(set_ob ject) :

All the elements of the argument set object are added to the receiving
SET object.

The A R R A Y E D Class ;

An ARRAY object is a collection of arbitrary objects that can be ac
cessed by integer indices. An ARRAY object can contain other ARRAY
objects which can be of arbitrary size which allows the construction of multi
dimensional arrays. The internal representation of an ARRAY object is
shown in Figure 4.7.

The protocol for the ARRAY class :

at(index) :

Returns the oop of the object whose location in the receiving ARRAY

object is specified by the index.

30

oop
ARRAY-oop

Size
0 oopi
1 OOp2

.

.

.

n-1 OOpn

Figure 4.7: An ARRAY Object

changeât(index, oop) :

The second argument oop is put into the location specified by the index
in the receiving ARRAY object.

prin t(new .line) :

Prints the contents of the receiving ARRAY object to the run-time win
dow. If new-line contains TRUE, it also iDiints a NEWLINE character.

The STRING Class :

A STRING object is a collection of characters which can be accessed by
indices. The internal representation of a STRING object is shown in Figure
4.8.

The Protocol for the STRING Class :

Read(prompt_str) :

Reads a string through a read panel, creates a new STRING object and

returns the oop of this object. The prompt-str is printed to inform the user.

31

oop
STRING-oop

Size
0 chari
1 char2

.

.

.

n-1 chavn

Figure 4.8: A STRING Object

print(new.line) :

Prints the receiving STRING object to the run-time window. If new-line
is TRUE a NEWLINE character is also printed.

lengthO :

Returns the length of the receiving STRING object as an INTEGER
object.

strcpy(string_object) :

Copies the contents of the argument string to the receiving STRING ob
ject. The length of the receiving STRING object should not be less than the
length of the argument string.

at(index) :

Returns the character at index in the receiving STRING object.

32

changeât(index, char_object) :

The character specified by index in the receiving STRING object is re
placed by char .object.

strcat(string_object) :

Concatenates the argument string to the receiving STRING object. The
receiver object should contain enough spaces.

strcmp(string_object) :

Compares the receiver and the argument STRING objects. If they repre
sent the same string, returns TRUE. Otherwise FALSE.

The BLOCK Class :

Any block literal that appears in a program or a method is represented
by a BLOCK object during run-time. A block literal can contain any valid
relational or arithmetic expressions including message expressions. Currently,
block literals are only used in query processing to formulate selection and
projection expressions which are discussed in section 5.2.2 in detail. Figure
4.9 shows the internal representation of a block object which contains the
following information :

• oop of the BLOCK object

• oop of the BLOCK class

• pointer to a block of integer codes that represents the expression con
tained in the block literal. Each code is augmented with a line number
field in order to identify a source line with errors to the user.

33

Code Line No
C O D E i
C O D E 2

.

.

.

C O D E n •

Figure 4.9: A BLOCK Object

oop
Class oop

Size
Oop of the super chunk
Value of the variable\
Value of the variable^

Value of the variablen

Figure 4.10: A User-Defined Object

The User-Defined Classes ;

Since these are user-defined classes , their structure and behaviour are
defined by the user. The user specifies the names of instance variables and
their corresponding domains which information is stored in the class describ
ing object that is an instance of the class CLASS. The internal representation
of all user-defined objects are the same as shown in the Figure 4.10.

The instance variables are put into contiguous memory locations each 32
bits wide. Each user-defined object starts with a header, that contains the
oop of the object, oop of the object’s class, and number of words allocated.

34

4.3 The Database Language

4.3.1 An Overview

In conventional systems, the emphasis is much more on programs than data.
In traditional programming languages data that exist for the life time of the
program are treated differently than the data that persist after execution.
The data structures supported in files are usually not as rich as the data,
structures supported in main memory, which necessitates user- generated
encodings to write structured values to files. In the database ai'ea, data ma
nipulation languages do not provide arbitrary computational facilities which
results in the requirement of an interface to a programming language. The
interface can be in one of two forms :

• One language can be embedded into another.

• Procedure calls to the database system from within the programming
language

Since we have two languages, the so called ’’ impedance mismatcli” prob
lem arises [2, 8]. There might be two kinds of mismatches:

1. One mismatch is conceptual, the programming language and the data
manipulation language might support different programming paradigms.
One might be a procedurid language while the other might be declara
tive.

2. The other mismatch is structural, the languages might not support the
same data types, which results in a structure reflected at the interface.

For example, one can access a relational database using SQL [10] from
COBOL. However, COBOL can operate only at the tuple level. Therefore,
the relational structure is lost [8].

35

The consequences of the impedance mismatch are [2]:

1. More code has to be written because the programmer has to handle
data conversion and binding of variables.

2. This code is hard to write because it is not related to the pi'oblem that
programmer is solving but it is related to the system deficiencies.

3. It makes the programmer to decide on which environment to solve the
problems : in the programming language or in the data manipulation
language.

4. It reduces the performiince of the system because it introduces a lot
of unnecessary communication between the programming language and
the database system.

To sum up, the impedance mismatch is a major deficiency of existing
systems.

The object-orientation is a promising approach for solving the impedance
mismatch problems, because encapsulation embodies data and programs in
the same object. Programs become part of the database.

We can list three approaclies for the choice of the language in an object-
oriented data model :

• New language approach

• Existing language approach

• Multilanguage approach

In the new language approach, we define a new language which is specif
ically designed for this task. It has to add the features of a programming
language, such as I/O.

In the existing language approach, we choose an existing programming
language such as C or Pascal. The language can be chosen according to its

36

popularity or suitability. Then, the language chosen is connected to the data
model.

In the multilanguage approach, the user is allowed to write methods in a
set of existing programming languages.

Each of these three approaches have its advantages and disadvantages [2].
There is no optimal way to choose between these approaches. However, it
will mainly depend on the type of objective assigned to a system in terms
of research and development, whether one is technology driven or market
driven.

The object-oriented database management prototype ODS is developed
for i^ure research purposes to investigate and analyze the issues of object-
oriented approach. Therefore we have chosen the new language approach.
Although designing a new language is a long task and it may meet user resis
tance, the connection between the programming language and the data model
is smooth and natural because the language is designed for that purpose.

ODS comes with a built-in class hierarcliy that contains the system-
defined classes. However, the user can extend the class hierarchy with user-
defined classes. Therefore, during the execution of the system, the type
system of ODS might be extended or modified. When a new class is added,
the methods that belong to that class are compiled and linked to the system.

In order to solve the problem of dynamically adding new classes and
new methods to the system, we Inive chosen the new language approach and
decided to develop our own run-time environment. The modification of the
existing methods also require dynamic compilation and linking. Therefore, it
is decided that developing our own environment is the right choice.

The designed and implemented object-oriented database language is
strongly typed. A user programming within the prototype cannot only define
methods for user-defined classes, but also write programs for manipulating

classes.

37

4.3.2 Basic Constructs in the Language

The designed and implemented object-oriented database language supports
the following constructs :

• expressions

• assignment statement

• conditional constructs

• looping constructs

• declarations

• blocking

• return statement

These constructs are used to develop programs and methods for the
database. The user can modify or retrieve the instances of classes in the sys
tem or perform any other programming activity by writing programs. This
section explains the basic constructs of the database language of ODS at an
introductory level for understanding the run-time environment and the query
language. The formal grammar of the language can be found in [34].

Expressions

An expression is a sequence of characters that describes an object called the
value of the expression. Expressions in ODS database language are used to
invoke operations on objects and structure and manipulate values. Every
expression has a value which is typed. Therefore every expression is also
typed. There are six types of expressions in database language of ODS :

38

1) Literals

They describe certain constant objects such as numbers, characters or
character strings.

2) Variable Expressions

They describe the accessible variables.

3) Message Expressions

They describe messages to receivers. The value of a message expression
is determined by the method that the message invokes.

4) Arithmetic Expressions

They contain any number of arithmetic operators and numeric literals
and variable names. They may also contain message expressions.

5) Relational Expressions

Relational expressions contain arithmetic expressions and relational op
erators. Any non-zero value is considered TRUE; FALSE otherwise.

6) Logical Expressions

They connect relational expressions via logical operators and evaluate to
either TRUE or FALSE.

Literals

Five kinds of objects can be referred to by literal expressions. Since the
value of a literal expression is always the same object, these expressions are
also called literal constants. The five kinds of literals are :

39

1) Numbers

Currently only integer numbers are supported in the ODS database lan
guage. The literal representation of a number is a sequence of digits that
may be preceded by a minus sign, for example,

• 5

• -3

2) Characters

Characters are objects that represent the individual symbols of an alpha
bet. A character literal expression consists of a character enclosed in single
quotes, for example.

• ’A ’

’a’

3) Strings

Strings are objects that represent sequences of characters. The literal
representation of a string is a sequence of characters delimited by double

quotes, for example,

• ’’ Any questions ?”

• ” ODS System ”

4) Class Names

Class names represent the class objects in any expression. The literal
representation of a class name is a sequence of capital letters, for example.

40

• PERSON

• INTEGER

5) Block Expressions

A block expression contains any valid arithmetic, relational, logical or
message expression. It is delimited by square brackets, and it may take a
value of any type depending on the expression, for example,

• [i + 1]

• [person getage() > 30]

Variables

A variable name is a simple identifier, a sequence of letters and/or digits
beginning with a letter, for example,

• person

• Count

• student la

There are three kinds of variables that are available for a method. The
instance variables and temporaiy variables are required to have lower-case
initial letters, class variables are required to have upper-case initial letters.

1) Instance Variables

They exist for the lifetime of an object.

41

2) Temporary Variables

They are created for a specific activity and are available for the duration
of that activity.

3) Class Variables

These are shared by all instances of a class and by its subclasses unless
overridden.

One can only use temporary variables in a program. Since, programs are
not executed due to a message call there is no object, O, that the instance
variables of O or class variables of the class of 0 can be used. Since the ODS
database language is strongly typed, all the variables, i.e. instance variables,
temporary variables and class variables are typed.

Current values of instance variables of an object represent the object’s
current state. An object has one variable corresponding to each instance
variable name in its class definition [13].

Instance variables are also typed and may take values compatible with
their types. The dornain of an instance variable can be any class that is
defined in the class hierarcliy. It may either be a user-defined class or a
system-defined class. Thus, the construction of nested objects is allowed.

When a new instance is created by sending the message New to a class,
a new set of locations for instance variables is created. The default New
message in the definition of the OBJECT class initializes all the instance
variables to NIL. But each class can define its own New method to initialize
its instances appropriately.

The ODS database language allows programmers to declare variables local
to a program or a method. Instance variables represent the current state of
an object while temporary variables represent a transition state to carry out
some activity [13]. Temporary variables are created whenever a message
invokes a method or a user explicitly states a program execution and they
are discarded at the end of the execution of the program or the method.

42

Each class may define zero or more class variables which are accessible by
its instances. The value of a class variable is independent of which instance
is usiiag the method in which the name of the class variable appears. On the
other hand, the value of instance variables and temporary variables depend
on the instance that receives the message.

Message Expressions

In ODS, sending a message involves :

1) Identifying the object to which the message is sent, the receiver object

2) Identifying the arguments of the message

3) Specifying the desired operation to be performed via a message selector

4) Accepting the single object that is returned as the message answer.

The formal syntax of a message expression is as follows :

<receiverObject>

< messages elector \ > (< argn >, ... ,< argin >)

< messages elector n > (< argni > , ... , < argn„ >)

The receiver object may be referenced either by a variable or a class
constant which denotes its corresponding class object. The message selector
is a simple identifier. However, an instance message selector starts with
a lower-case letter whereas a class message selector starts with a capital

letter. Each message can have several arguments which can be any valid
expression defined in the ODS database language. The result of the first
message becomes the receiver object of the second message and this goes on

43

until the last message. The result of the last message becomes the result of
the whole message expression.

Here are some example message expressions in ODS database language :

• Get the age of a person, person getage().

• Change the name of a company that the person works,
person getcompanyO setname(STRING Read(” Name : ”)).

• Retrieve all person names that are above 25 years old.
PERSON Getset() retrieve(%p, [%p getage() > 25]

[%p getname()]).

Arithmetic Expressions

Arithmetic expressions can contain constants, variables, messages and
arithmetic operators. Valid arithmetic operators are,

• plus (+)

• minus (-)

• divide ()

• unary minus (-)

• multiply (*)

The operands of these operators are limited to be of type INTEGER. Any
other type of object is not acceptable and causes an error. For example,

• i + 1

• person getage() + 1

44

Relational Expressions

Relational expressions are used to compare integer values via relational
operators. They evaluate to either true or false. Valid relational operators
are,

• Greater (>)

• Greater than or equal to (> =)

• Less than (<)

• Less than or equal to (< =)

• Equal (=)

The operands of a relational operator are limited to be of type INTEGER.
The operands can be any valid arithmetic expressions. Any value other than
zero is considered as TRUE, zero is considered to be FALSE. Therefore any
valid arithmetic expression can be used in place of a relational expression.
For example.

• 0

• 1

person ismale().

• i + 1

• i + 1 > = 100

are all relational expressions.

Logical Expressions

It is possible to express more complex conditions through the use of log
ical operators. The operand(s) of a logical expression can be anj'̂ relational

expression(s). Valid Boolean operators are,

45

• Boolean And (and)

• Boolean Or (or)

• Boolean Not (not)

Some exeunple logical expressions are :

• i +j > 100 and j < 20

• not (i > j)

The Assignment Statement

Like all other programming languages, the ODS database language has an
assignment statement. One can change the value of a temporary variable,
an instance variable or a class variable using the assignment statement. The
lefthand side of the assignment operator (:=) contains a variable name. Its
righthand side contains an expression. For example,

• person := PERSON New().

• i := j.

• i := i + 1.

The Conditional Constructs

The language currently supports only the if_then_else construct. The if_then_els('
statement is the same as the ones in conventional programming languages
and it has no type. It is used to control the flow of execution in a method
or ¡program. The condition part of this statement contciins a valid relational
expression. For example,

i f person ismaleO then

malecnt := malecnt + 1.

else femalecnt := femalecnt + 1.

46

The Looping Constructs

Currently, only the while statement is supported in the language. It is used
to repeat a block of statements as long as the condition holds. The condition
part can be any valid relational expression. For example,

while i < 10 do

i := i + 1.

Declarations

The language allows a user to declare local variables in a program or method.
The variables are also typed. For example,

INTEGER i .

PERSON person.

The Blocking Construct

It is ¡possible to block several statements together between the keywords BE
GIN and END. They are very useful in if_then_else and while statements. For
example.

begin

1 :

j :

* i + 1.
» j + 1,

end.

The Return Statement

This statement is very similar to the return statement in the C programming
language. It can be used in a method but cannot be used in programs. Since
each message retuims an object as its result, each method contains a return

47

statement. The argument of the return statement can be any valid expression.
For example,

• return(l).

• return(” OK”).

return(self getage() + 1).

48

4 . 4 The Run-Time Environment

4.4.1 The Necessary Structures for the Run-Time En
vironment

This section describes the data structures associated with the run-time envi
ronment and its submodules. The following structures are needed to perform
methods and programs [IS] :

• Symbol Table

• Reference Table

• Activation Record

• Method Return Structure

• Expression Evaluation Stack

• Environment Stack

The Symbol Table

The compiler of the ODS database language creates a symbol table for
each method or program compiled. The symbol table contains an entry for
each literal or local variable that appears in a method or program.

The symbol table contains the following information :

• name of a literal or local variable

• type of a literal or local variable

• maximum length of a loccd variable if it is an indexed type

• type of the elements of an indexed variable

• a flag to determine redundant variable declarations.

49

• oop of the literal object or the object referenced by the variable

The Reference Table

A reference table is created by the system for each method/program.
The reference table contains an entry for each instance/class variable and
instance/class message selector that appears in the corresponding program
or method. A reference table entry contains the following information :

• name of a variable or message

• type of a variable or message, the value of a

variable/message type can be one of the following :

- INSTANCE-MESSAGE

- CLASS-MESSAGE

- INSTANCE-VARIABLE

- CLASS-VARIABLE

The Activation Record

The activation record is used to implement message passing and each met
hod or program is represented by an activation record. An activation record
contains the following information: •

• a program counter

• a pointer to the beginning of the executable code, each entry in the
executable code contains an integer code and a line number of the cor
responding source code

• a pointer to the symbol table of the method/program

• a pointer to the reference table of the method/program

• a pointer to the method return structure

50

• name of the message that caused the creation of the activation record

• the oop of the class object of the method

• the oop of the receiver object

The Method Return Structure

Each method returns a method return structure at the end of its execu
tion. The structure contains the following information :

• an error flag

• a flag indicating whether the method returned a value or not

• oop of the returned object

The Expression Evaluation Stack

The expression evaluation stack is used to evaluate expressions, namely,
arithmetic expressions, relational expressions, logical expressions and message
expressions. All expressions are converted into their equivalent postfix form
in order to facilitate expression evaluation b}»̂ use of a stack.

The Environment Stack

Each program execution request or a message call is represented by an
activation record. Each time a message call is issued, the executor creates and

initializes a new activation record and pushes it into the environment stack.

At the end of the execution of a program or a method its corresponding
activation record is popped from the environment stack. The use of the
environment stack and activation records solves the return address handling
problem and allows recursion.

4.4.2 The Executor Module

The ODS programs are comi^iled into an intermediate language. This lan
guage has a set of primitive code blocks, such as expressions, if.then_else and

51

while_wend blocks. Theoretically, users can write code in this language too,
but they will not be as comfortable as using the compiler provided. The job
of the executor is to scan the intermediate code and execute machine code to
make the language perform. Actually, this situation is very similar to a mi
croprocessor scanning machine instructions and executing microinstructions.
In addition, the Executor has also a program counter for each executable
block which is the equivalent of the instruction i)ointer of the microprocessor
[12].

The executor module is a submodule of the run-time environment of ODS.
The operations specified in the code generated by the compiler are performed
by the executor module. The message passing operation is also performed
through this module.

The executor module depends heavily on other modules of the run-time
environment :

• the message passing module

• the expression evaluation module

• the object memory module

Each of the above modules is designed to cooperate with the executor
module and some of them have several sul^modules which will be discussed

in detail.

The executor is designed to execute a compiled code which is the output
of the compilation of either a method or a program. The executor module
is invoked by the user interface module whenever the RUN button is pressed
after a program is selected for execution. The RUN button is in the pro
gramming shell window. The user interface module passes the filename of
the program that is to be executed by the executor module. First, the nec
essary files related with the program to be executed are tested for existence.
If any of these files is missing, the executor rejects the request by issuing an
error message.

52

The executor expects the presence of the following files in order to execute
a program or method in C :

• C.com : Contains the integer codes that are generated by the compiler.

• C.sym : Contains the symbol table entries of the symbolic code in C.

• C.ref : Contains the reference table entries of the symbolic code in C.

• Cblockl : Contains the code generated for the expression in the first
block if any. These files are numbered from 1 to n, where n is the
number of block expressions in the file.

To solve the return address handling problem, the Executor uses a struc
ture called an activation record [1]. Each time a program is to be executed,
the Executor creates and initializes an activation record of the currently exe
cuting program or method. When a program is to be executed, the environ
ment stack is initially always empty. The program may cause new activation
records to be created due to message calls in the program and they are also
pushed into the environment stack.

Since the introduction of the Algol 60 programming language, a run-time
stack with activation records has been the primary mechanism to implement
block structured programming languages. An activation record represents the
local variable storage associated with the activation of a procedure. It also
contains some control information that is used to access a global variable or
to return to the calling environment. Since most of the modern programming
languages enforce the following semantic requirements, a simple LIFO (Last
In First Out) stack is sufficient for managing the activation records : •

• Return from a procedure P can not occur until all the procedures in
voked from P have returned.

• Pointers to data stored in activation records are not allowed.

The management of a LIFO stack is quite efficient for the implementation
of an activation record stack, in ODS it is called the environment stack.
Recursion is possible due to the use of activation records [39].

53

The activation record of a program is initialized as follows. The program
counter is set to zero. Executable-code, symbol-table and reference-table
entries are initialized using F.com, F.sym, F.ref files respectively. The rest of
the fields of an activation record are used in case of message calls which will
be discussed in the message passing module.

The code generator creates an object-oriented pointer for each character
or integer literal and puts them to the corresponding symbol table entry.
However, it is not possible to allocate an oop for literals of type string, class
and block expression at compile time. The code generator allocates a symbol
table entry for each occurrence of these literals by filling the name and type
fields of the entry, and leaving the oop field undefined. For such symbol table
entries, the code generator puts the literals into the name field and constant
types such as stringcons, blockcons and classcons into the type field.

After each activation record creation, the executor module scans the sym
bol table to see if there is such a constant which will be converted to a tem
porary object during a specific task initiated by a program execute request or
a message call. These constants are converted to temporary objects because
the literals are available in the code as long as the code exists.

For each constant type, the executor creates a temporary instance of the
corresponding class and assigns their oops to the oop fields of the symbol
table entries. This allows the uniform treatment of string objects and string
literals, class objects and class literals. The literals do not have any special
treatment.

4.4.3 The Expression Evaluation Module

The primitive operations used in expression evaluation are variable value
retrieval, operator application and message passing.

Variable Value Retrieval Primitive

Since there axe three kinds of variables in the language, this operation
can also be subdivided into three. The temporary variables are defined in

54

the symbol table related to a method or a program in which the variable ap
pears. When the SYMBOL-TABLE code is fetched, the expression evaluation
module gets the index of the variable from the next entry in the executable
code and retrieves the oop field of the symbol table entry specified by this
index. The value retrieved is pushed into the exj^ression evaluation stack.

The same steps apply to the processing of literal references, because they
are also put into the symbol table and referenced by the SYMBOL-TABLE
code.

All undeclared variable names and their types are entered into the refer
ence table. These are either instance variable names or class variable names.
All message names of type class or instance are also put into the reference
table. The code generator outputs the REFERENCE-TABLE code and an
index for each reference to these variable and message names into the exe
cutable code.

The expression evaluation module invokes the appropriate routines of the
object memory module to access the class/instance variables when it fetches
the REFERENCE-TABLE code and the index. Since class and instance
variables are subject to inheritance, the object memory module performs the
necessary tasks related with this issue as discussed in section 4.5.

At this stage an existence test is performed for each reference to a class
or instance variable. In case of non- existence the execution terminates with
a proper error message.

Operator Application Primitive

When the ARITHMETIC-OPERATOR or RELATIONAL-OPERATOR
code is encountered in the executable code, the Executor performs the op
erator specified by the next code in the executable code. If the operator
is a unary operator such as unary minus or logical not, only one operand
is popped from the expression evaluation stack and the value obtained by
the application of the operator is pushed onto the stack. If the operator is
binary, two operands are popped and the result is pushed onto the stack.
The expression evaluation module assumes that the code generated for any

55

expression is in postfix notation.

The operands of both relational and arithmetic operators are limited to
type INTEGER. However, other classes such as CHAR or STRING may
implement their own methods to compare their instances.

For example, let’s examine how the following arithmetic expression is
executed :

a (b + c)

Assume that a, b and c are temporary variables. Then, for each tem
porary variable, there is a corresponding entry in the symbol table of the
rnethod/program where these variables are declared. Executable code seg
ment and symbol table entries for the above expression and variables are
shown in Figure 4.11.

Since the expression contains only temporary variables, the code contains
only references to the symbol table which is specified by SYMBOL-TABLE
code. The arithmetic operator codes are preceded by
ARITHMETIC-OPERATOR code. After the executor recognizes an arith
metic expression, it calls the expression evaluation module and assumes that
the result of the expression is put onto the expression evaluation stack.

The arithmetic expression evaluation module starts scanning the exe
cutable code and performs the primitives under discussion. In this particular
example expression, the oop fields of the symbol table entries indexed by 1,
2 and 3 are pushed into the expression evaluation stack in the order they are
referenced in the executable code. Fetching the ARITHMETIC-OPERATOR
causes the specified operation to be performed. When the evaluator module
encounters the first operation the stack contains 5, 2 and 3 where 3 is on the
toj) of the stack. First, PLUS operator is applied by popping two operands
and pushing the result 5. Then, the TIMES operator causes 5 and 5 to be
multiplied and 25 to be pushed on the stack. The EXPRESSION-END code
informs the evaluator module that the job is finished.

Note that each time an arithmetic operator is applied, the types of the

56

ARITHMETIC-EXPRESSION
SYMBOL-TABLE

1
SYMBOL-TABLE

SYMBOL-TABLE

ARITHMETIC-OPERATOR
PLUS

ARITHMETIC-OPERATOR
TIMES

EXPRESSION-END

Executable Code Fragment

NAME TYPE OOP
1 a INTEGER 11
2 b INTEGER 5
3 C INTEGER 7

Symbol Table Entries

Figure 4.11: An Expression Code

57

operands are tested and if they are not of INTEGER type an error message
is generated and the execution tei’minates.

Message Passing Primitive

The expression evaluation module calls the message passing module when
ever it encounters MESSAGE.BEGIN code in the executable code. This
module j)ops the destination object from the expression evaluation stack and
executes the corresponding method. Each message call returns a value which
is pushed again onto the expression evaluation stack through the method
return structure.

In ODS, each method returns a value which can be used in an arithmetic
expression like the value of a vciricible or a constant. The value returned can
be ignored whenever required.

Since the message passing module pushes onto the stack the return value
which comes from the method that corresponds to the message being ser
viced, the message passing primitive is very similar to the variable value
retrieval primitive. The arithmetic expressions in ODS can contain any valid
combination of operators, messages, variables and constants.

The following expression which contains a message and an integer constant
is represented in integer codes as shown in Figure 4.12.

person getage() -|- 2.

Note the constant 2 in the expression is also inserted into the symbol ta
ble. The name of the message, here getage, is put into the reference table and
because it is an instance message its type is set as INSTANCE-MESSAGE
as in Figure 4.12. The reference to the reference table is made by REFER
ENCE-TABLE code.

As we discussed earlier, the expression evaluation module has three prim
itives and when it is invoked it starts performing these three primitives. In
the example in Figure 4.12, first the value of the person variable is pushed
into the expression evaluation stack. The value is retrieved from the oop

58

EXPRESSION-BEGIN
SYMBOL-TABLE

MESSAGE-BEGIN
REFERENCE-TABLE

0
MESSAGE-END

SYMBOL-TABLE

ARITHMETIC-OPERATOR
PLUS

EXPRESSION-END

Executable Code Fragment

NAME TYPE OOP
1 person PERSON 1200
2 INTEGER 2

Symbol Table Entries

NAME TYPE
1 getage INSTANCE-MESSAGE

Reference Table Entry

Figure 4.12: An Arithmetic Expression Code

59

field of the first entry of the symbol table. Then, as MESSAGEJBEGIN code
will be fetched, the message passing primitive will be performed. Next, the
constant 2 will be pushed into the stack. The oop contained in the person
variable will receive the message and the value returned from the method will
be one of the operands of the PLUS operator.

4.4.4 The Message Passing Module

This module is called from the expression evaluation module whenever a
MESSAGE-BEGIN code is fetched from the executable code. The message
passing module assumes that the oop of the object which is the receiver of
the message is on top of the expression evaluation stack.

First, the oop of the receiver object is popped from the stack and its owner
class is determined. Then, the name of the message and its type is retrieved
from the reference table entry that is specified by the reference table index.
At this point a conflict test is performed to see if a class message is received
by an instance object or vice versa. If such a case occurs the execution
terminates with a proper error message. Next, the message passing module
requests the corresponding method definition table entry (method definition)
from the object memory module by specifying the class that is the owner of
the receiver object, the name of the message and the type of the message, i.e.
instance or class message. However, if the super flag is set by the expression
evaluation module, the class that is the superclass of the class which is the
owner of the receiver object is passed to the object memory module instead
of the owner class of the receiver object. In order to find the superclass of
the owner class of the receiver object, the message passing module calls the

object memory module.

If the requested method is not found, the object memory module informs
the message passing module about this fact, returns the definition of the
method corresponding to the message otherwise. In case of non-existence of
the method, the execution terminates.

60

Then, the module compares the number of arguments in the method def
inition with the number of arguments actually used by the user which is the
fourth argument in a MESSAGE.BEGIN ... MESSAGE-END block. If these
do laot match, the execution is terminated and an error message is issued.

If the number of actual arguments, and the number of arguments in the
method definition matches, the module tests the flag in the method definition
which indicates whether the method is written in C or in the ODS database
language. If the method is implemented by a C function, the arguments are
pushed into the argument passing stack. In the ODS database language, an
argument of a message can be any valid expression which may be a simple
variable or a constant, a sequence of messages and can contain arithmetic
operators or a combination of all of these. For each argument, the code gen
erator generates an EXPRESSION-BEGIN ... EXPRESSION-END block
and the message passing module calls the expression evaluation module to
obtain the value of each argument. The argument expressions can contain
messages which results in a new call to the message passing module. No
tice the recursive nature of the expression evaluation module and message
passing module through one another. The expression evaluation module in
vokes the message passing module which later may cause the invocation of
the expression evaluation module, and this may continue like this.

All the system-defined methods are C functions written in the C program
ming language and they are expected to pop the correct number of arguments
in a correct order. Otherwise, the argument stack becomes inconsistent and
the system might fail. The system-defined methods are built-in in ODS and
they are tested for such inconsistencies. The user can not add new C func
tion methods to the system during run-time. Because this requires a dynamic
linking facility which is very much dependent on the operating system envi
ronment and a highly complex task. It also reduces the compatibility of the
system with other environments.

If another C function method is to be added to the existing system-defined
classes or a new system-defined class is to be added to the system, the whole
system must be compiled and linked after a few minor additions to the source

61

code.

The message passing module evaluates each argument expression, deter
mines the type of the result of the expression and compares it with the type
of the formal argument which is defined in the method definition. Any mis
match terminates the execution with an error message.

The function pointer field of the method definition contains a pointer to
a C function which is executed for each message call. The message passing
module calls this function through its pointer in the function pointer field
of the method definition. If an error is detected during the execution of a
C function, it informs the message passing module to terminate the execu
tion. Otherwise, the value returned from the C function is pushed onto the
expression evaluation stack.

If the method is implemented through the ODS database language, the
process of parameter passing and method execution is different. The mes
sage passing module does not create an activation record for the C function
methods. However, for each message call whose method is implemented in
the ODS database language, an activation record is prepared and pushed
into the stack. As in the case of an activation record created for a program
execution, the program counter is set to zero, executable code, symbol ta
ble, and reference table fields of the activation record are initialized from
their corresponding files. The number of arguments and the values of the
argument expressions are placed in the argument count and parameter be
gin fields, respectively. The message selector which caused the creation of a
new activation record is placed in the message name field. The oop of the
receiver object and the oop of its class are placed in the oop emd coop fields,
respectively.

The number of arguments and their types which are obtained after the
evaluation of the argument expressions are tested with the information in
the corresponding method definition structure. Any conflict results in the
termination of the execution and an error message is printed.

The message passing module pushes the newly created activation record

62

into the environment stack and it becomes the current activation record.
Then, the executor module is called to execute the statements of the method.
Therefore, the executor module is recursive through the message passing
module. On the other hand, the message passing module is also recursive,
because the executor module might call the message passing module again.

The code generated for the following message expression which modifies
the location of the company that the person works through a read panel is
shown in Figure 4.13.

person getcompanyO setlocation(STRING Read(” Location : ”)).

In the example above, the messages are cascaded and the output of the
getcompany message becomes the receiver object of the setlocation message.
The output of the setlocation message is ignored. The parameters of the
messages can be any valid expressions which may also contain messages.

4.4.5 The Object Memory Module

The object memory module provides an interface to the objects in the system
[18]. Each object is associated with a unique identifier (oop - object-oriented
pointer) as discussed earlier. All the run-time modules communicate about
objects through their oops.

Object Memory Data Structures

Object memory uses an object table to map the oops of the objects into
their physical locations in the main memory. Each reference to an object is
indirected through the object table to find its physical location [18]. This
indirection allows objects to be moved freely in memory without modifying
the references. The object table contains the following information :

object-oriented pointer

status of the object (whether the object is deleted or not)

G3

EXPRESSION-BEGIN
SYMBOL-TABLE

1
MESSAGE-BEGIN

REFERENCE-TABLE

0
MESSAGE-END

MESSAGE-BEGIN
REFERENCE-TABLE

EXPRESSION.BEGIN
SYMBOL-TABLE

MESSAGE-BEGIN
REFERENCE-TABLE

SYMBOL-TABLE

MESSAGE-END
EXPRESSION-END

MESSAGE-END
EXPRESSION-END

Executable Code Fragment

NAME TYPE OOP
1 person PERSON 1500
2 STRING classcons
3 location stringcons

Symbol Table Entries

NAME TYPE
1 getcompany INSTANCE-METHOD
2 setlocation INSTANCE-METHOD
3 Read CLASS-METHOD

Reference Table Entries

Figure 4.13: A Message Expression Code
64

• reference count shows the number other objects that refer to the object

• physical memory address of the object

The object memory is also responsible for the maintenance and update
of the class hierarchy which is used to determine the superclass of a class,
the subclasses of a class and the siblings of a class. The class hierarchy is
maintained as a tree and each node in the tree has the following information

• class oop of the class that the node represents

• a pointer to the parent node which represents the

superclass of the current node

• a pointer to a list of sibling nodes of the current node

• a pointer to a list of child nodes which I'epresents the

subclasses of the current class

Functions of the Object Memory Module

The object memory module provides the following fundamental functions to
the run-time modules :

• Determine an object’s class (type) and size

• Access and change the value of an instance variable

• Access the type of an instance variable

• Access and change the value of a class variable

• Access the type of a class variable

• Access the definition of an instance/class method

• Create a new object

65

Determine an Object’s Class

Since type checking is performed during run-time, the executor module,
the expression evaluation module and the message passing module frequently
require the determination of the type of an object. The object memory
performs several tests to determine an object’s type, i.e. its class. First, the
oop of the object is tested to be an odd integer which means it is of type
INTEGER. Then, the oop is tested to be an integer in the range of 0 and
510 which means that the object is of type CHAR. If neither of these tests
succeeds, the object is tested to be a class object, which means that it is of
type CLASS. If all these tests fail, the object memory determines the type
of the object by looking its second field. Note that all the objects other than
CHAR, INTEGER and CLASS objects, store their class’s oop in their second
field.

Access and Modify the Value of an Instance Variable

The object memory is responsible for accessing and modifying the value
of an instance variable of an object. To perform this task the name of the
instance variable and the oop of the object for which the particular value of
the instance variable will be maniiDulated are required.

The object memory first tests if the mentioned instance variable exists. If
it does not exist an error status is returned to the caller. Since instance vari
ables ai’e subject to inheritance, the class of the object and the superclasses
are searched for the instance variable under consideration. The superclasses
ivre determined using the class hierarchy structure. After determining the
class which defines the instance variable, the chunk of the object which cor
responds to that class and the offset of the instance variable in that chunk
are established. Finally, the value of the instance variable is either retrieved
or modified.

Access the Type of an Instance Variable

The object memory provides access to the t} p̂e of an instance variable.
The calling module passes the name of the instance variable and the class oop
of the class which should define or inherit the instance variable. The type of

66

the instance variable is returned after possibly examining the superclasses of
the class which is passed as an argument.

Access and Change the Value o f a Class Variable

The value of a class variable might be modified or retrieved through the
object memory module. The name of the class variable and the oop of the
class that defines or inherits the class variable should be passed. The su
perclass chain of the specified class might be examined if the variable is not
defined in the specified class. If the module cannot find the variable definition,
it informs the caller about this situation. Since space for the class variables
are together with their class definitions, this process does not involve dealing
with chunks of objects.

Access the Type o f a Class Variable

This is very similar to the class variable value access and modification
process discussed above. The type of the class variable is returned after
possibly examining superclasses of the specified class.

Access the Definition o f an Instance/C lass M ethod

The message passing module requests the definition of a method that
corresponds to a message selector for each message call. The message passing
module passes the oop of the class of the receiver object, the name of the
message selector and the message type (class message or instance message) to
the object memory module. First, the MDT of the receiver’s class is searched
for an entry with a matching message selector. If none is found, the MDT of
the class’s superclass is searched next. The search continues upwards along
the superclass chain [13] of the specified class until a matching method is
found. If there is no method matching the selector, the message passing
module is so informed.

Create a New O bject

Creation of an instance of ci class is also performed by the object memory
module. Each system-defined class implements its own New method that

67

OBJECT
CLASS
COLLECTION

BAG
SET

ARRAYED
ARRAY
STRING

PRIMITIVE
CHAR
INTEGER

BLOCK
PERSON
VEHICLE

CAR
TRUCK
BUS

COMPANY

C13?s name PERSON

msm
name
age
autos
company

Variable Mode :

Variable : nan

'INSTANCE

Initialize
getname
setname
getage
eetage
getautos
setautoe
getcompany
setcompany

modi fу

Method Mode : C INSTANCE

Method : initialize

Hit the button to compile and save the method below [SAVE

Figure 4.14: The Class Browser

creates the instances of that particular class. The New class method defined
in the OBJECT class is implemented for the creation of the instances of user-
defined classes. The method New allocates space for the instance of the class,
creates an object-pointer for the object just created, inserts it to the object
table and inserts the oop to the class’s class representing set.

G8

4.5 The User Interface

In this section, the user interface of ODS will be presented [34, 35]. There are
two basic modules which are related to the user interface : the Class Browser
and the Programming Shell. The user interface is supported through pop-up
menus, icons, and windows which are facilities provided by the SUN Windows
System [33].

4.5.1 The Class Browser

Since, the database language of ODS does not include data definition ca
pabilities, the Class Browser is responsible for the definition of new classes
and modification of existing ones. It is possible to add a class, add or delete
an instance/class variable, modify an instance/class variable, add or delete
a class/instance method, modify a class/instance method through the Class
Browser. The Class Browser is shown in Figure 4.14.

4.5.2 The Programming Shell

The Programming Shell allows programs to be edited, compiled, listed, and
executed. The Class Browser is also initiated from the Programming Shell
window. Part of the Programming Shell window is a UNIX C Shell. There
fore, one can initiate other programs, communicate with other users in the
system, and compile programs in this shell. The Programming Shell is shown
in Figure 4.15.

The functions of the Programming Shell are initiated through selecting
their corresponding buttons. When the RUN button is selected, the executor
module is invoked and the run-time window appears as shown in Figure 4.16.
The CONTINUE button in the run- time window is used to start the execu
tion. The same program can be reexecuted after each execution by selecting
this button again. The QUIT button returns back to the Programming Shell.

The output of programs or methods are directed to the run- time window.

69

[LIST] [EDIT) [EDIT NEW] [DELETE] (COMPILE] RUN

<10i>ls -1
-rui-r— r—

♦.prog
1 yongul 235 Jun 13 'll:31 company.prog

-ru-r— r— 1 yongul 0 Jun 26 12:36 clataentry .prog
-ru-i— r— 1 yongul 411 May 22 13:29 dene1.prog
-rui-r— r— 1 yengul 361 May 25 12:27 clene2.proq
-ru)-r--t' — 1 yengul 352 Jun 13 11:30
-rui-r— r— 1 yengul 158 May 31 12:29 queryl.prog
-ru-r— 1— 1 yengul 76 May 4 13:38 query2.prog
-ru-r— r— 1 yengul 157 May 4 13:38 query3.prog
-ru-i— r— 1 yengul 241 Jun 28 12:45 queryal1.prog
-ru-r— r— 1 yengul 254 Jun 14 13:26 queryany.prog
-ru-r--r— 1 yengul 98 May 31 12:49 querycount.prog
-ru-r— r— 1 yengul 187 Jun 14 14:30 querysum.prog
-ru-r— r— 1 yengul 77 May 31 12:48 queryxl.prog
-ru-r— r— 1 yengul 102 May 31 12:48 queryx2.prog
<102>[]

3 [CLASS EDIT] [QUIT)

Figure 4.15: The Programming Shell

70

LIST] [EDIT 1 [EDIT MEV] [dELETE) | COMPILE) [RUM] [CLASS EDIT] [QUIT

Is -1
<101>- -ry-r- -ru-r- -ry-r
-ry-r-
-ry-r-
-ry-r-
-ry-r-
-ry-r-
-ry-r-
-ry-r-
-ry-r-
-ry-r- <1G2.{]

♦ .prog
ry-r— r·r— -r— -r— -r—
I—-r—

- r —

- r —

- r —

- r —

- r —

1 yengu
yengul
yengu1
yengul
yengul
yengul
yengul
yengul
yengul
yengul
yengul
yengul
yengul

[CONTINUE 1 (QUIT 1

name : CAN YENGUL
age : 24
autos : NIL

company : NIL

name : PINAR AYER
age : 24
autos :

name : MURAT
model :
year ; 1.981
color : ORANGE

speed : 200

company :

name : ODTU
location : ANKARA

Successful Termination

Bye...

ñSBB»

Figure 4.1C: The Run-Time Window

71

t LIST T (E D I T — 1

Ms -1 ».prog 1
<101>-rui-r--r— 1 yengu
-ru-r— r— 1 yengul
-ruj-r--r— 1 yengul
-rw-r--r— 1 yengul
-ru-r— r— 1 yengul
-ru-r--r— 1 yengul
-ru-r--r— 1 yengul
-rijJ-r--r — 1 yengul
-ruj-r--r— 1 yengul
-ru-r— r— 1 yengul
-ru-r--r— 1 yengul
-ru-r--r— 1 yengul
-ruj-r--i-- 1 yengul
<i02;Q

PROGRAMMING SHELL

) [EDIT NEV] [DELETE] [COMPILE] [RUN) (CLASS EDIT] [QUIT]
Run-Time V/indouj

iWCOtiTOijil [QUIT 1

Read panel

Company name : ODTU^

[RETURN ^

Figure 4.17: The Read Panel

On the other hand, input operations are performed through the read panel
which appears for each input request as shown in Figure 4.17.

72

5. QUERIES IN OBJECT-ORIENTED
DATABASES

Conventional object-oriented programming language systems do not support
the notion of predicate-based queries. Applications must navigate from an
object to others referenced by it through the object-oriented pointers of the
referenced objects embedded in the former object. However, the need for
predicate-based queries in large databases is obvious [5].

5.1 Object-Oriented versus Relational Queries

The process of retrieving nested objects is similar to the relational query
evaluation. One can model a class as a relation and each attribute of the class
becomes an attribute of the relation. Since in the object-oriented data model
every object has a unique identifier we have to append a unique-identifier
(UID) field to satisfy the uniqueness property of tuples. Then the retrieval
of an instance of a class C which has a complex attribute A whose domain is
the class D is similar to the relational join of a tuple of a relation C with a
tuple of a relation D where the join columns are column A of the relation C
and the UID column of the relation D [5].

Although there are similarities between object-oriented and relational
query evaluation there are also some fundamental differences.

In relational databases, one can formulate a query that may involve one
or more relations. The result of a query against a single relation R, is another
relation S whose attributes form a subset of the attributes of the relation R.

73

On the other hand, the result of a query against say n relations, R\, R 2 ,

..., Rn is another relation S which consists of a subset of tuples of the cross
product of the n relations. Again, the attributes of S form a subset of the
attributes of these n relations. In relational query evaluation, logically all
predicates on a single relation and all predicates which correlate columns of
pairs of relations are applied to this cross product and columns axe projected
from the resulting set of tuples of the cross product.

In object-oriented databases, however, the result of a query involving a
single class C can either be a subset of the instances in C, or a subset of the
instances of another class which is the domain of an instance variable of the
class C or a class that can be reached from the class C. Therefore, the q\iery
must return either one or all attributes of a class. Formally, for a class with
m attributes, the query can not result with a set of objects with k attributes
where 1 < k < m holds. This is mainly due to the fact that every object
should belong to a class and the result of a query is a set of objects.

If a query which is formulated against a BAG/SET of objects whose
elements are instances of a class C retrieves all the attributes of the class C,
the result of the query is a subset of the objects which are the instances of the
class C. If the query retrieves only one attribute of the class C, the result of
the query is a set of objects which belong to the domain class of the selected
attribute. Note that, for any other subset of the attributes other than any
one or all attributes there is no class defined that the resulting objects can
belong.

In object-oriented databases a query which involves n classes, considers
n classes involved in the construction of nested objects. But, there is no
mechanism for correlating the instances of these n classes on the basis of
user-defined predicates between pairs of classes. In the relational model, the
result of a query which requires a join of n relations is obtained by using
user-defined predicates between pairs of relations. Here we conclude that
there’s no physical or logical links between tuples of different relations [5]. On
the other hand, in object-oriented databases, a nested object is constructed
through explicit logical links which are the object- oriented pointers of the

74

contained objects.

In a relational database, there are several independent relations, whereas
an object-oriented database consists of a hierarchy of classes. This fact in
troduces interdependencies between classes. The first consequence of this
interdependency is that a query formulated against the instances of a class
C may either fetch only the instances of the class C or in addition to the
instances of the class C, the result may include instances of subclasses of the
class C. The second consequence is that the domain D of an attribute of a
class is the class D and all subclasses of D [5].

5.2 The ODS Query Model

A query may be formulated against an object-oriented schema which will fetch
instances of a class or elements of a collection which will satisfy a search crite
rion. A search criteiion may be formulated using predicates on the attributes
of the destination objects.

5.2.1 Predicate Construction

In conventional object-oriented languages, we do not see any predicate-based
query processing functions. But in a database application, there is a great
need for predicate-based queries. One may write a query to retrieve a subset
of the instances of a class by specifying predicates involving the attributes of
the class and/or attributes of classes that are referenced in the instances of
the subject class [5]. In the literature, we see two approaches for predicate
formulation:

• Path Expression Approach

• Message-Based Approach

75

Path Expression Approach

In the path expression approach [21, 22], a predicate is formulated using
instance variables of the subject class and the variables that are contained
in any class that is referenced by the subject class. For example, to retrieve
the name of the company that Ali works, where Ali is an instance of the
PERSON class which is the subject class here, the following path expression
can be written:

Ali.company.name

First, the company instance variable of PERSON object Ali is extracted.
The company instance variable contains an oop of an instance of the COM
PANY class which is the referenced class from the PERSON class. Next,
the name instance variable of the company object that is owned by Ali is
accessed. But, the path expression approach seems to violate the data en
capsulation requirements. It is stated that the attributes of any object is not
visible outside the object and the only way to communicate with objects is
through messages. Therefore, this approach violates the data encapsulation
property of object- oriented systems [21, 22, 23, 26].

Message-Based Approach

Since messages are the only means to communicate with objects, their use
in predicate formulation is desirable [5]. To retrieve or update the value of
any instance variable, one has to send a corresponding message to the object.
Therefore, for each instance variable that is allowed to be accessed, there
has to be messages, hence methods, in the class definition of the object for
retrieval and update of the value of the instance variable.

The ODS system automatically defines methods and the corresponding
messages for setting and getting the values of instance and class variables.
The message names are obtained by prefixing the corresponding variable
names with the word get or set. One may restrict the set of variables that
are accessible by the user by deleting the access methods for these variables.
The methods corresponding to the name instance variable of the PERSON
class were presented in Section 6. The path expression example considered

76

above can be rewritten using messages as follows:

Ali getcompanyO getname()

First the getcompany message is sent to ali and the value of the instance
variable company in ali object is retrieved. Then getname message is sent to
the retrieved company object to retrieve the name of the company.

In ODS predicates are formulated using the message-based approach.

5.2.2 The ODS Query Language

All the functions of the Query Processor are implemented through messages
[34]. The messages that are designed and implemented in the prototype for
query formulation are

• retrieve

• modify

• forany

• forall

• sum

• sumu

• count

• countu

which operate on the collections bag or set of objects.

For each class in the system, there is a SET object associated with that
class which contains oops of all the instances of that class. Queries are for
mulated against these SET objects, hence the classes through an indirection,
and the result of each query is put into another BAG object in case the query

77

specifies a retrieval operation [22]. Queries can also be formulated against
any BAG or SET object which does not correspond to any of the classes.

The formal syntax of the retrieve message is as follows:

receiverObj ect

retrieve(iterationVariable
selectionBlock
projectionBlock).

The receiver object can be of either SET or BAG type. Iteration variable
deviates from the syntax for a variable by being preceded by a % sign. This
variable is used to iterate over the elements of valid collection objects.

The first block is used for selection and the second block is used for pro
jection. For each instantiation of the iteration variable, the selectionBlock,
which is a block of code that contains a relational expression, is evaluated
to the value of either TRUE or FALSE. The projection block either contains
the iteration variable itself or a message expression involving the iteration
variable. If it contains only the iteration variable, then all the attributes
of the objects which are subject to the query are projected. On the other
hand, if it contains a message expression, one of the attributes of the object
is projected. The result of the evaluation of a projection block is put into the
resulting BAG object.

To formulate a query against the instances of a class C, one has to obtain
the corresponding set object that contains its instances. This is accomplished
by sending the message Getset() which is defined as a class method in the
OBJECT class. All the examples in this section refer to the object-oriented
databcise schema discussed in section 6.

Example Query 1 :

Retrieve the names of persons that are older them 25.

78

PERSON GetsetO retrieve(y,p

[*/,p get age () > 25]
[*/,p getnameO]) .

In the above query, %p iteration variable assumes the instances of the
PERSON class one by one. For each instantiation the first block is evaluated,
that is the age of the instantiated person object is retrieved and compared
to 25. If the result is True, then the object is selected £uid the projection
is applied. The second block contains the projection expression. Here the
names of person objects are projected. The result of the projection operation
is put into the resulting bag. Therefore, the result of this query is a bag of
oops of names.

One may update or delete elements of a bag or a set using the modify
message. Consider the following queries that increment the ages of all persons
by one and delete persons that are older than a hundred.

Exajnple Query 2 :

Increment the ages of a ll persons by one.

PERSON GetsetO modify(%p

[TRUE]

[*/,p setage(*/,p getageO + 1)]) .

Example Query 3 :

Delete persons older than 100.

PERSON GetsetO modify(*/lp

[•/.p getageO > 100]

[*/,p removeO]).

Sum and count messages are similar to the select message except that
they return the sum and count of the elements of the resulting bag. Sumu

79

and countu messages eliminate the duplicate elements in the resulting bag
before proceeding.

Example Query 4 :

Get the number of persons that are older than 25.

PERSON GetsetO count (Xp

[*/,p getageO > 25] [*/,p]).

Forany and forall messages are also similar to the retrieve message but
forany/forall I’eturns True if any/all of the elements of the destination bag
satisfy the relational expression block.

Example Query 5 :

Retrieve the persons that have at least a MERCEDES
vehicle and work in MICROSOFT Inc.

PERSON GetsetO
retrieve (*/p

[Xp getvehiclesO

forany (*/,a

[*/.a getnameO strcmpC'MERCEDES")])
and

y,p get company O

getnameO strcmp("MICROSOFT Inc")]

CXp]) .

Example Query 6 ;

Retrieve the naunes of persons who have only red
vehicles.

80

PERSON GetsetO

retrieve (y,p

[%p getvehiclesO
forall(*/a

['/,a getcolorO = "Red"])]
[*/,p getnam eO]).

Queries can be used anywhere in the methods where a message is appro
priate. Query functions are implemented by the message passing paradigm
and their corresponding definitions are in the BAG class. This solves the
impedance mismatch problem between the programming and query languages
[22].

5.3 Object-Oriented Query Processing in other Sys
tems

5.3.1 GEM STONE

Gemstone provides a limited query sublanguage. The sublanguage only sup
ports selection on collections which are the instances of SET or BAG classes.
Selection conditions are conjunctions of comparisons, where the comparisons
are between path expressions and other path expressions or literals.

An associative query is a variation on a select expression. Suppose an
Employee object also has a worksin instance variable whose domain is De
partment class. The following query will make use of all indexes available on
the paths specified in the conditions. OPAL differentiates between selection
expression and associative queries by the use of brackets and braces. Braces
indicate an associative query whereas brackets indicate a selection expression.
This distinction introduces an impedance mismatch between OPAL and its
query sublanguage [21, 22, 23].

81

Emps select :

{anEmp I anEmp.naone. last = ’ Jones’
k

ainEmp.salary >

anEmp.worksin.manager. salary}

The OPAL language allows the use of path expressions which violates
the data encapsulation and independence properties of the object-oriented
approach. The select message is similar to the retrieve message in ODS.
However, ODS not only supports selection but also projection on objects. It
also provides additional messages which are quite useful in expressing queries.
However, ODS does not support indexes and therefore cannot utilize them
in query processing yet.

5.3.2 ORION

The query model of the ORION [2, 3, 4, 5] is very similar to the ODS query
model. In fact, ORION has affected a great deal the implementation of query
processing methodology in object-oriented databases.

In ORION, one uses predicates to formulate the search criteria in queries
which iire expressed in terms of messages. The use of a path-expression is
not allowed which violates the data encapsulation requirement. However,
the ORION query language supports only selection but does not provide
projection on objects. For example, to retrieve vehicles which are blue and
manufactured by the Ford motor company, the formulation is as follows :

82

(Vehicle select :V
(:V Color = "blue")

and

(:V Manufacturer Neime

= "Ford Motor Company")))

The result of the query above is a set of Vehicle objects. In addition to the
select message, ORION implements some and all messages which a ê similar
to forany and forall messages of ODS. As discussed earlier, ODS implements
modify, sum, sumu, count and countu messages as well which do not have
counterparts in ORION.

S3

6. AN APPLICATION W ITH ODS

In this section an example database application developed in ODS is pre
sented. First the classes involved in the application with their instance vari
ables and protocols are explained. Then, some application programs on the
example object-oriented database schema are given to show the data manipu
lation and computational aspects as well as the query processing capabilities
of the ODS object-oriented database language.

6.1 The Example Object-Oriented Database Schema

The example schema includes six classes, namely, PERSON, COMPANY,
VEHICLE, BUS, TRUCK and CAR. The relationships between these classes
are given in the example hierarchy shown in Figure 6.1. The figure also
shows the instance variables of each class in the system.

In addition to the user-defined methods, each class implements methods
to retrieve and modify the values of its instance variables. These methods
are named by prefixing the resi^ective instance variable names by get and set

strings. Examples of these methods are given in the protocol of the PERSON
class for the age instance variable only. Each class implements methods to
retrieve and modify the values of its instance variables, but we omit the
listings here.

84

The Protocol of the PERSON Class :

PERSONgetagei.met : Returns the age of a person.

getage ()
begin

return(age).
end

PERSONsetagei.met : Sets the age of a PERSON object.

setage(INTEGER s)
begin

age := s.
return(l).

end

85

in itia liz e O
CAR car.

BUS bus.

TRUCK truck.

STRING companyname[80].
CHAR emswer.

CHAR vehicletype.

begin

name := STRING Read("Name")·
age := INTEGER Read("Age").

answer := CHAR

Read("Does she/he have a vehicle ? (Y/N)")

autos := SET New(»PO ·
The user may enter several vehicles

while (answer = ’ Y’) do

begin

vehicletype := CHAR

Read(" (T)ruck, (C)ar, (B)us ? ") .

A person may have several different vehicles#

i f (vehicletype = ’C ’) then
begin

car := CAR New().
car in itia lize O .
autos add(car).

end.

else if (vehicletype = ’B’) then
begin

bus := BUS NewO.
bus in it ia liz e O .

autos add(bus).

end.

else

P E R S O N in it ia liz e i .m e t : In itia lize s a P E R S O N o b je c t .

86

begin

truck := TRUCK New().

truck in itia liz e O .
autos add(truck).

end.

answer := CHAR Read("Another vehicle ? (Y/N)")
end.

сотрапупгше := STRING Read("Company Name : ") .

Get the oop of the COMPANY object that the person#

works for#
company :=

COMPANY GetsetO

retrieve C/c,

['/,c getnameO strcmp(companyname) = 1],
[*/.c])

f ir s t 0 .

return(1).

end

The Protocol of the COMPANY Class :

COMPANYinitializei.met : Initializes a COMPANY object by setting its
name and location instance variables through the read panel.

in itia lize O

begin
naune := STRING Read ("Company name

location := STRING Read("Location

return(1).

end

")
")

The Protocol of the VEHICLE Class :

VEHICLEinitializei.met : Initializes ci VEHICLE object by setting its
name, model, year and color instance variables.

87

in itia liz e O

begin

neime := STRING Read("Name of the vehicle ? ") ·
model

year

color

= STRING Read("Model ? ") .
= INTEGER ReadC'Year ? ") .

= STRING ReadC’Color ? ") .
return(1).

end

The Protocol of the BUS Class :

BUSinitializei.met : Initializes a BUS object by setting its seatno in
stance variable. Inherited instance variables are initialized by the initialize
method in the superclass of the BUS class (VEHICLE class) which is acti
vated through the pseudo variable super.

in itia lize O

begin

seatno := INTEGER Read("Seats

super in itia lize O ■
retu rn (l).

end

")

The Protocol of the CAR Class :

CARinitializei.met : Its function is similar to the initialize method in the
BUS class.

in itia liz e O

begin

super in it ia liz e O .

speed := INTEGER Read("Speed

return(1).

end

")

88

The Protocol of the TRUCK Class :

TRUCKinitializei.met : Its function is similar to the initialize method in
the BUS class.

in itia liz e O

begin

super in itia lize O .

capacity := INTEGER Read("Capacity ? ") .
return(1).

end

6.2 Example Programs

1) company.prog

The company information is accepted from the user in this program. The
user is able to enter as many companies as he wants. All the company objects
are listed to the run-time window at the end of the program as shown in
Figure 4.16.

progreim

CHAR answer.

COMPANY compeiny.
begin

answer := ’ Y’ .

while (answer » ’ Y’) do

begin

company :« COMPANY New().

compainy in itia lize O .

answer := CHAR Read("Another company ? (Y /N)")·

end.

COMPANY GetsetO p rin t(l).

end

89

This program is used for entering information on a person into the database.
At the end of the program all person objects are listed to the run-time win
dow.

program
PERSON pi.

INTEGER i .

CHAR answer.

BAG baggy.
begin

answer := ’ Y ' .

Allows several persons to be added

while (answer = ’ Y’) do

begin

pi := PERSON New().
pi in itia lize O .

answer := CHAR Read("Another person ? (Y/N)")·

end.

PERSON GetsetO p rin t(l).

end

3) queryall.prog

This program tests if all ¡versons are older than 18. The forall query
message is used.

2) person.prog

program

STRING s [80].

begin

i f (PERSON GetsetO

forall (*/,p, [Xp getageO > 18]) = 1) then

begin

90

S := "Everyone is older than 18
s print (1).

end.

else

begin

end.

s := "There is a person below 18",
s print(1).

end

4) queryany.prog

Test if any of the persons is older than 100.

program

STRING s[80].
begin

i f (PERSON GetsetO

foranyC/,p, CXp getageO > 100]) = 1) then
begin

s : =

"There is at least a person older them 100".
s print(1).

end.

else

begin

s:= "There is nobody older than 100",
s print(1).

end.
end

91

5) querycount.prog

Retrieve the number of persons that are older than 100.

program

begin

PERSON GetsetO

count('/,p, [*/.p getageO > 100], [*/,p getage()])

p r in t(l) .

end

6) querysum.prog

Retrieve the total of ages of persons older than 10.

program
STRING s [80].
begin

s := "The total of ages of people older them 10

s print(0).

PERSON GetsetO

sum(*/,p, [y.p getageO > 10],

[*/,p get age]) .

end

7) queryxl.prog

Print all the person objects to the run-time window.

program

begin

PERSON GetsetO

retrieve(*/,p, [1], ['/,p]) print(l) .

end

92

Print the person object whose name is Can.

program

begin

PERSON GetsetO

retrieve(*/,p, [*/,p getnameO strcmpC'Can")] ,
[y.p print(1)]) .

end

8) queryx2.prog

93

7. CONCLUSIONS

The greatest strength of the object-oriented approach is that it allows the
modelling of a real world entity whatever its complexity is by a single object.
This increases the maintainability and understandability of complex systems
such as CAD/CAM, document retrieval systems, programming languages and
databases.

Most of the advantages of object-oriented systems are due to the basic
characteristics of these systems which are data abstraction, homogeneity,
independence, information hiding, inheritance, late binding, message passing,
object identity, overloading and reusability.

Information hiding and data abstraction increases the reliability, integrity
and security of the systems. The inheritance mechanism enforces reusability.
The dynamic binding mechanism allows new classes to be added dynamically,
thus supporting extendible data typing facilities. The ability to represent the
behaviour together with the structure of an entity makes it easier to enforce
the data integrity constraints.

Independence of objects appears to be an important concept. It guaran
tees a higher degree of security and allows an efficient data integrity enforce
ment, since the state of an object can only be accessed by its methods.

One of the application areas of the object-oriented approach is object-
oriented database management systems. Object-oriented database manage
ment systems are shown to be suitable for applications which require the
modelling of complex data. They introduce powerful concepts for modelling
real world entities by narrowing the semantic gap between the data and its

94

representation in the database. The concept of object identity reduces the
update anomalies and automatically satisfies the referential integrity, because
references are only through object identifiers, but not through data values.

In spite of its advantages, there are some disadvantages of object-oriented
database systems. They have relatively poor performance and a lack of a
theoretical data model. We do not, for instance, have any equivalent of
relational algebra.

An object-oriented database management system prototype (ODS) has
been under development since 1987 at Bilkent University. ODS supports
all the basic characteristics of the object-oriented approach. In this thesis
an object-oriented query processor, a database language executor and the
protocols for the system-defined classes have been designed and implemented.

ODS has an object-oriented database language which is strongly typed
and provides data manipulation and computational facilities. The language
can be extended to support a data definition facility which is currently pro
vided by the Class Browser of ODS. All type checking operations are per
formed at run-time. The compiler of the language can be modified to support
some of the type checking operations at compile-time for performance rea
sons.

ODS supports an object-oriented query model which is similar to that
of ORION’s but provides a projection operation in addition to a selection
operation. Since the query functions are implemented using the message
passing paradigm, the formulation of queries in the object-oriented database
language does not lead to any impedance mismatch problems. In addition,
the query model does not violate the data encapsulation principle, since it
uses messages in the construction of selection and projection expressions.

ODS is developed as a single-user memory-based system. It can be modi
fied to support multiple users. However, this introduces several concepts such
as concurrency control, transactions and authorization.

ODS supports simple inheritance which could be extended to support

multiple inheritance.

95

The system can be extended to support interactive query processing and
to provide an object displayer which enhances the user friendliness of the
system.

An object browser that will deal with class instances could be developed.
Such a browser may be integrated with the interactive query processor and
object display modules.

A secondary storage management facility is an essential part of a database
management system. Currently, the ODS only stores(retrieves) objects in
cluding the class definitions at the end(beginning) of a session. Secondary
storage management facilities need to be added to the system. Indexing
should also be introduced to improve the performance of query processing in
ODS.

96

REFERENCES

[1] Aho, A.V., J.D. Ullman, Principles of Compiler Design, Addison Wesley,
1977.

[2] Bancilhon, F., and, D. Maier, “Multilanguage Object-Oriented Systems;
New Answer to Old Database Problems” , Programming of Future Gen

eration Computers II, April 1988.

[3] Banerjee, J., H. J. Kim, W. Kim, and H.F. Korth, “ Schema Evolu
tion in Object-Oriented Persistent Databases” , Proc.of the 6th Advanced

Database Symposium (Tokyo,Japan,Aug.) Information Processing Soci

ety o f Japan’s Special Interest Group on Database Systems, 1986, pp.23-
31.

[4] Banerjee, J. et al., “Data Model Issues for Object-Oriented Applica
tions” , A C M Transactions on Office Information Systems, Vol.5, No.l,
Jan.1987, pp.3-26.

[5] Banerjee, J., W. Kim,, and, K. C. Kim, Queries in Object- Oriented

Databases, MCC Technical Report, 1987

[6] Casasis, E.,“An Object-Oriented System Implementing KNOs” , Proceed

ings of the Conference on Office Information Systems, Palo Alto, March
1988, pp. 284-290

[7] Commands Reference Manual, Sun Microsystems Inc., 1986.

[8] Copeland, G., and D. Maier, “Making Smalltalk a Database System” ,
P roc.A C M S IG A C T / SIG M O D International Conference on the Man

agement of Data, 1985.

97

[9] Сох, Brad J., Object-oriented Programming Ah Evolutionary Approach,

Adddison-Wesley, 1986.

[10] Date, C.J., An Introduction to Database Systems, Fourth Edition, Vol.l,
Addison Wesley, 1986.

[11] Diederich, J., and J. Milton, “Experimental Prototyping in Smalltalk” ,
IE E E Software, May 1987, pp.50-64.

[12] Duff C., “Designing an Efficient Language” , B Y T E Magazine, August
1986

[13] Goldberg, A., and D. Robson, Smalltalk-80 :The Language and Its Im

plementation, Addison-Wesley, 1983.

[14] Hornick, M.F., and S.B. Zdonik, “A Shared, Segmented hlemory System
for an Object-Oriented Database” , A C M Transactions on Office Infor

mation Systems, Vol.5, No.l, Jan.1987, pp.70-95.

[15] Kaehler, T., and D. Patterson, “A Small Taste of Smalltalk” , B Y T E

Magazine, August 1986, pp.145-159.

[16] Karaorman, M., Secondary Storage Management in an Object- Oriented

Database Management System, M.S. Thesis, Bilkent University, Ankara,
July 1988.

[17] Kernighan, B. W., D. M. Ritchie, The C Programming Language, Pren
tice Hall,1978.

[18] Kesim, N., An object M em ory for an Object-Oriented Database Manage

ment System, M.S. Thesis, Bilkent University, Ankara, July 1988.

[19] Khoshafian, S.N., and G.P. Copeland, “Object Identity” , A C M OOP-

S L A ’86 Proceedings, Sept.1986.

[20] Kim , W., H. Chou, and, J. Banerjee, “Operations and Implementations
of Complex Objects” , IE E E Transactions on Software Engineering, Vol.
14, No. 7, July 1988.

[21] Maier, D., and J. Stein, “Indexing in an Object-Oriented DBMS” , Proc.

of the Workshop on Object-Oriented Database Systems, Sept.1986.

98

[22] Maier, D., J. Stein, A. Otis, and A. Purdy, “Development of an Object-
Oriented DBMS” , A C M Conference on Object-Oriented Programming

Systems, Languages and Applications,1986.

[23] Maier, D., and, J. Stein, “Development and Implementation of an
Object-Oriented DBMS” , Research Directions in Object- Oriented Pro

gramming, Shriver, B., and, P. Wegner Eds, 1987

[24] Meyer, B., “Reusability : The Case for Object-Oriented Design” , IE E E

Trans. Software Eng., March 1987, pp. 50-65

[25] Nierstrasz, O.M., “What is the ’Object’ in Object-Oriented Program
ming ?” , Objects and Things, ed. D.Tsichritzis,Centre Universitaire
D ’Informatique, Üniversite de Geneve, March 1987, pp.1-13.

[26] Nierstrasz, O.M., “A Survey of Object-oriented Concepts” , Active Object

Environments, ed. D.Tsichritzis,Centre Universitaire D’Informatique,
Üniversite de Geneve, July 1988.

[27] Ozelçi, S. M., Message Passing in an Object-Oriented Database Manage

ment System, M.S. Thesis, Bilkent University, Ankara, July 1988.

[28] Ozelçi, S.M., N. Kesim, M. Karaorman, E. Arkun, “An Experimental
Object-oriented Database Management System Prototype” , Proc. of the

Third International Symposium on Computer and Information Sciences,

October 1988, Çe-^me, Turkey.

[29] Pascoe, G.A., “Elements of Object-Oriented Programming” , B Y T E

Magazine, August 1986, pp. 139-144.

[30] Peterson, R., “Object-Oriented Database Design” , A I Expert, March
1987, pp. 26-31

[31] Stefik, M.,and D.G. Bobrow, “Object-Oriented Programming: Themes
and Variations” , A I Magazine, Jan. 1986, pp. 40-62.

[32] Sun System Overview, Sun Microsystems Inc., 1986.

[33] SunView Programmers Guide, Sun Microsystems Inc., 1986.

99

[34] Türkmen, S., Data Definition and Manipulation Languages for an

Object-Oriented Database Management System (O D S), M.S. Thesis,
Bilkent University, Ankara, July 1989.

[35] Tiirkmen , S., C. Yengül, E. Arkun, “An Object-Oriented Database Sys
tem Prototype” , to appear in the Proc. o f the Fourth International Sym

posium on Computer and Information Sciences, October 1989, Çeşme,
Turkey.

[36] Tsicritzis, D. C., 0 . M. Nierstratz, “Fitting Round Objects Into Square
Databases” , Proceedings EC O OP 88, Oslo, Springer- Verlag

[37] Ullman, J.D., Principles of Database Systems, Computer Science
Press,1982.

[38] UNIX Interface Reference Manual, Sun Microsystems Inc., 1986

[39] Zeigler S., N. Allegre, D. Coor, R. Johnson, J. Morris, “The Intel 432
Ada Programming Environment” , C O M P SC O N S ’81, 1981, pp.405-410

[40] Zaniolo C. et ah, “Object-Oriented Database Systems and Knowledge
Systems” , 1st International Workshop on Expert Database Systems,

1985, pp.1-17.

100

A. List of Run-Time Errors

The run-time module generates several error messages to inform the user
about problems. Each time an error is detected, the name of a code currently
being executed, the line number of the currently executing statement and
other additional information such as message or variable name together with
the error message are printed. The list of the error messages are as follows :

• Invalid class message

• Invalid instance message

• No of parameters does not match

• Parameter types are not compatible

• Return statement is missing in the niethod body

• Duplication of an element of the SET object

• Object does not exist in the BAG/SET object

• ARRAY size too large

• STRING size too large

• Index out of range in the ARRAY object

• Index out of range in the STRING object

• String overflow in string concatenataion

• Operand type is not an integer in arithmetic expression

101

• Type mismatch in assignment

• Instance variable not found

• Class variable not found

• Object table overflow

• Symbol table not found

• Reference table not found

• Executable code not found

102

