
ί г i
DES íQ tí a n d t e s t i n g o f a

Q PñOCESSOñ COIVîPâ T İB L c 1·2β-8ΙΤ
COKñHLATOR CHIP

іЛ. TD ·. ¿ D T.-А А .D JÍAwiK
Vs

5 S- CV.-ir·'/·

- Î̂SŜjÜ ̂ Vİ̂

DESIGN AND TESTING OE A
MICROPROCESSOR COMPATIBLE 128-BIT

CORRELATOR CHIP

A T H E SIS

S U B M I T T E D T O T H E D E P A R T M E N T O F E L E C T R I C A L A N D

E L E C T R O N IC S E N G IN E E R IN G

A N D T H E IN S T I T U T E O F E N G IN E E R IN G A N D SC IE N C E S

OF B I L K E N T U N I V E R S I T Y

IN P A R T IA L F U L F IL L M E N T O F T H E R E Q U IR E M E N T S

F O R T H E D E G R E E O F

M A S T E R O F S C IE N C E

By
Satılmış Topçu

July 1989

'TVíti^
'ΎΥ.

T t2 _

To my lovely wife and family

I certify that I have read this thesis and that in my
opinion it is fully adequate, in scope and in quality, as
a thesis for the degree of Master of Science.

Assoc. Prof. Dr. Abdullah Atalar(Principal Advisor)

I certify that I have read this thesis and that in my
opinion it is fully adequate, in scope and in quality, as
a thesis for the degree of Master of Sconce.

Assoc. Prof. Dr. Levent Onural

I certify that I have read this thesis and that in my
opinion it is fully adequate, in scope and in quality, as
a thesis for the degree of Master of Science.

4 ̂ / i l l
Asst. Prof. Dr. Mehm' an

Approved for the Institute of Engineering and Sciences:

Prof. Dr. Mehmet Baray, Director oTlnstitut^^f Engineering and Sciences

11

ABSTRACT

DESIGN AND TESTING OF A MICROPROCESSOR
COMPATIBLE 128-BIT CORRELATOR CHIP

Satılmış Topçu
M.S. in Electrical and Electronics Engineering
Supervisor: Assoc, Prof. Dr. Abdullali Atalar

July 1989

In digital synchronous data transmission, synchronization (sync) words
are used to mark the beginning of the incoming data stream. Detection of
the sync word received from a noisy channel is a difficult problem. One of the
optimum solutions to this problem is to use a correlator. A correlator could
be implemented with SSI and MSI components on a printed circuit board
with the disadvantage of bulkiness. To use it in light-weight equipment such
as portable data terminals, it is designed to be implemented as a full-custom
single VLSI chip. It can be used for the 128-bit sync word detection and
PRBS generation. Two chips can be cascaded for 256-bit correlation as well
as distributed sync words, and inverted or non-inverted sync words can be
detected. It is fully programmable by a microprocessor to set the number of
tolerable errors in detection and to select the bits of the 128-bit (or 256-bit)
input data stream to be used in the correlation and hence, it can be directly
connected to a microprocessor as a peripheral device.

In designing the correlator chip some Design For Testability methods are
used to improve the testability. Especially, scan design and partitioning tech
niques are applied resulting in a significant decrease in the number of test
patterns although these techniques involve an overhead in the overall tran
sistor count only by 1 percent.

For functional and timing simulations ESIM and R N L simulators are
used, respectively. Test patterns for the registers are generated manually

iii

and for testing of the combinational part two programs, gen and check,
are written in C programming language. The simulation programs and test
pattern generation programs are run on SUN workstations under 4.3 BSD
UNIX^ operating system.

Keywords: Digital synchronous data transmission, correlator, chip, VLSI,
IC testing, design for testability.

^UNIX is a Trademark of Bell Laboratories.

IV

ÖZET

b i r MIKROİŞLEMCI u y u m l u 128-BIT k o r e l a t ö r
YONGASININ TASARIMI VE TEST EDİLMESİ

Satılmış Topçu
Elektrik ve Elektronik Mühendisliği Bölümü Yüksek Lisans

Tez Yöneticisi: Doç. Dr. Abdullah Atalar
Temmuz 1989

Eş zamanlı sayısal veri iletişiminde, senkron (sync) sözcüğü gelen verinin
başlangıcını belirler. Gürültülü bir kanaldan alman senkron sözcüğün sezil
mesi zor bir problemdir ve bu problemin en uygun çözümlerinden biri ko
relatör kullanmaktır. Bir korelatör düşük ve orta yoğunluklu tümleşik dev
reler kullanılarak baskılı devre üzerinde gerçekleştirilebilir, fakat büyük bir
alan kaplaması olumsuz yanıdır. Bu çalışmada, taşınabilir veri terminalleri
gibi hafif donanımlarda kullanılabilecek, mikroişlemci uyumlu, çok yüksek
yoğunluklu tümleşik (VLSI) 128-bit programlanabilir sayısal korelatör yon
gası tasarlandı. Bu korelatör yongası 128-bit uzunluğa kadar olan senkron
sözcüklerini sezebilir. Ayrıca iki yonganın birbirine kademeli olarak bağlan
masıyla 256-bitlik korelatör elde edilebilmektedir. Senkron sözcük, gelen
verinin düz yada tersine çevrilmiş olduğu her iki durumda da sezilebilir. Ko
relatör bir mikroişlemci tarafından bütünüyle programlanabilir ve bu nedenle
mikroişlemciye bir çevre birimi olarak doğrudan bağlanabilir. Korelasyonda
kullanılacak bitleri seçme özelliğine sahip olan korelatör, dağıtılmış senkron
sözcüğü seziminde ve yalancı rasgele ikili seri (PRBS) üretiminde kullanılabi
lir.

Korelatörün tasarımında bazı “test edilebilirlik tasarımı” metodları kul
lanıldı. Özellikle tarama tasarımı (scan design) ve parçalama (partition
ing) yöntemleri kullanılarak test vektör sayısı önemli ölçüde azaltıldı. Buna

rağmen test edilebilirlik tasarım metodları yonga tasarımına yalnızca % 1 ek
transistor artışı getirdi.

Yonganın işlevsel ve zamanlama simülasyonları ESİM ve RN L simülas-
yon programları kullanılarak yapıldı. Yazmaçlar için kullanılacak olan test
vektörleri doğrudan elle bilgisayarda üretilmiş olup kombine mantık devreleri
nin test edilmesi için de, C programlama dilinde gen ve check adlı iki prog
ram yazıldı. Bu test vektörü üreten programlar ve simülasyon programları 4.3
BSD UNIX^ işletim sistemi altında SUN bilgisayar sistemlerinde çalıştırıldı.

Anahtar kelimeler : Eş zamanlı sajusal veri iletişimi, korelatör, yonga,
VLSI, tümleşik devre testi, test edilebilirlik tasarımı.

^UNIX, Bell Laboratuvarlarının ticari markasıdır.

VI

ACKNOWLEDGEMENT

I would like to thank to Assoc. Prof. Dr. Abdullah Atalar for his supervision,
guidance, suggestions, and encouragement throughout the development of
this thesis. I am also indebted to the members of my thesis committee:
Assoc. Prof. Dr. Levent Onural, Asst. Prof. Dr. M. Ali Tan, and Asst.
Prof. Dr. Gürhan Şaplakoğlu for their advice and support.

A special note of thanks is due to the research assistants in VLSI group:
I. Enis Ungan and Mustafa Karaman for their valuable remarks, comments,
and helps. Many thanks also to Şenol Toygar who is the original designer of
the correlator, to Nesip Aral, Tuncay Ergün, Oğuz Şener (all from ASELSAN)
who gave their time for the improvement of the correlator system design.

I am grateful to my wife for providing morale support during this study.

Vll

TABLE OF CONTENTS

1 INTRODUCTION

1.1 Detection of Digital Signals

1.2 PRBS Generation...............

1
4

1.3 The Digital Correlator

2 THE ARCHITECTURE DESIGN AND OPERATION OF
THE CHIP 7

2.1 General IC Design Process... 7

2.2 Specifications... 10

2.2.1 Specification of the Functions... 10

2.2.2 Performance Requirements 11

2.2.3 System Environment and Interface D efinition............ 11

2.3 The Architecture Design.. 12

2.3.1 General D escription ... 12

2.3.2 Block Representation 12
2.3.3 Pin Description.. 22

2.4 Modes of Operation

2.4.1 Correlator Mode

23

23

Vlll

2.4.2 PRBS Generator Mode 29

3 THE LOGIC AND CIRCUIT DESIGN 31

3.1 The Logic D esign... 31

3.2 The Circuit D esign.. 40

4 DESIGN FOR TESTABILITY 42

4.1 Ad Hoc DFT M ethods... 43

4.2 Structured DFT Approaches 45

5 SIMULATIONS AND TESTING OF THE CHIP 51

5.1 Functional Verification.. 51

5.2 Timing Verification.. 53

5.3 Test Pattern Generation (TPG) and Fault Simulation 55

6 CONCLUSION 63

REFERENCES 65

APPENDIX A 68

APPENDIX B 75

IX

LIST OF FIGURES

1.1 Basic digital correlator. 3

1.2 Maximal-length linear feedback shift register............................. 5

2.1 The linear design process not including iterative loops.............. 8

2.2 Block diagram of the correlator in the beginning...................... 13

2.3 Simplified block diagram of the correlator.................................. 15

2.4 Block diagram of the mask and reference registers................... 16

2.5 Timing diagram of the write and read cycles............................. 17

2.6 Block diagram of the integrator. 20

2.7 Block diagram of the decision maker... 20

2.8 Pin diagram of the correlator.. 22

2.9 Timing diagram of the sync detection... 25

2.10 128-bit correlation scheme. 26

2.11 256-bit correlator... 27

2.12 256-bit correlation scheme in the master chip............................ 28

2.13 The configuration for PRBS generator.. 29

3.1 Logic diagram of the 8-bit tristate bidirectional buffer.............. 32

3.2 Logic diagram of the controller module....................................... 33

X

3.3 Decoder circuit used in the controller... 34

3.4 Logic diagram of the status register.. 34

3.5 Master-slave flip-flop.. 35

3.6 Schematic of the 128-bit shift register... 36

3.7 Logic diagram of the reference and mask registers...................... 37

3.8 Logic diagram of the threshold register....................................... 37

3.9 Logic diagram of the comparator.. 37

3.10 Logic diagram of the I ’s counter... 38

3.11 The circuit of an n-bit full-adder... 38

3.12 The 9-bit full adder circuit.. 39

3.13 Transistor circuit of a compare cell.. 41

4.1 Symbolic representation of a shift register latch........................ 46

4.2 Level sensitive scan design of the reference/mask registers. . . 47

4.3 Level sensitive scan design of the threshold register. 47

4.4 Level sensitive scan design of the status register. 48

4.5 LSSD configuration of the registers. 49

XI

LIST OF TABLES

2.1 Function of a compare cell. 18

2.2 Function table of the controller block. 21

2.3 Selecting inodes of the correlator... 23

2.4 Decision table for the sync detection... 27

2.5 Decision table for 256-bit sync detection.................................... 29

3.1 Function table of the buffer.. 32

3.2 Truth table of a carry cell... 39

5.1 Timing simulation of the reference register................................ 54

5.2 Timing simulation of the sync detection..................................... 56

5.3 Test vectors for two-bit full-adders.. 60

5.4 Test vectors for three-bit full-adders... 61

5.5 The number of test vectors for stages in the I ’s counter. . . . 61

Xll

1. INTRODUCTION

1.1 Detection of Digital Signals

Synchronous data transmission is more complicated than asynchronous data
transmission. Because it requires a higher level of coordination between the
data source and user data terminal equipment than does asynchronous data
communication. In return for this inconvenience, synchronous data transfer
largely eliminates the overhead of the start/stop pulses of the asynchronous
method and therefore provides for more efficient data transfer.

On a synchronous data link, there are two levels of synchronization to
be achieved: bit synchronization and character synchronization. Bit syn
chronization refers to the adjustment of the receiving data communications
equipment timing so that it “knows” at what point in time to make the de
cision as to whether a 1 bit or a 0 bit is currently being received. Character
or frame synchronization allows the receiving equipment to determine which
bit of the received bit stream actually is the first bit in a received character
or which bit actually begins the data in a data frame. Frame synchroniza
tion technique is useful in situations where the data transmission (bit) rate
is known and invariant, where the receiver’s clock is triggered by the clock of
the transmitter or where the “receiver and transmitter” are part of the same
system [1].

In general, a system can achieve and maintain frame synchronization only
if the incoming data stream is interrupted periodically by a specific “start-
of-frame” pattern. This pattern, transmitted at the beginning of each new
frame, tells the receiver that a new frame will immediately enter the input
register and must be handled accordingly.

In digital synchronous data transmission, frame synchronization is ob
tained by transmitting a synchronization (sync) word to define the beginning

of the incoming data frame. Detection of the sync word received from a noisy
channel is an important problem. Because, in practice, due to the noise in the
channel, some bits of the incoming data stream will be altered. That is why
error detection and correction techniques are used in digital data transmis
sion systems. Especially, the sync word, which determines the beginning of
the incoming data stream, can be lost if the channel noise is high. A powerful
technique for detecting the sync word is to use a correlator [2].

Correlation techniques are used widely in communications, instrumenta
tion, computers, telemetry, sonar, radar, medical and other signal processing
systems. Correlation has several desirable properties, inchiding:

• The ability to detect a desired signal in the presence of noise or other
signals,

• The ability to recognize specific patterns within analog or digital sig
nals,

• The ability to measure time delays of known signals through various
media, such as materials, the human body, RF paths, electronic circuits,
etc..

Probably we use correlation daily when we compare sounds, images, or
other sensations relative to other sounds, images or sensations stored in our
brain. As these properties indicate, the correlation between two functions is
a measure of their similarity; loosely termed, it is a comparison process. This
comparison can be expressed mathematically as the correlation between two
functions ui(t) and 1 2̂ (i) [2]:

1 /■ + ^ /2
Rn{T) = lim Tf; I , M t) M i + dt T-+00 1 J-Tf2

Here , R\2 {t) refers to the coi'relation between two signals, Vi and v̂ . It
is determined by multiplying one signal, vi(t), by the other signal shifted in
time, V2 {t + T), and then taking the integral of the product. Thus, correlation
involves multiplication, time shifting (or delay) and integration. Inspection
of the arguments of functions v\ and V2 shows that correlation handles two
functions “forward” in time and it is very sensitive to their relative phase.

Whereas the functions discussed above are continuous analog representa
tions of physical variables, digital signal processing requires functions to be

represented in discrete form, where the time scale and amplitude are quan
tized into discrete steps. So, in a digital system, each signal may be a series of
single bit samples where the two bit values 1 and 0 are generally interpreted
as positive and negative respectively and the correlation integral is changed
into a finite sum. The correlation equation in discrete form becomes [2];

= X] vi{k) V2(n + к)
k=—oo

Here, the indices “ i;” and “n” measure out the variables denoted by “t”
and “r ” in the earlier discussion. In practice, the summation will cover finite
range of values of ‘Ч·” , rather than the infinite range shown here. The range
depends on the durations of the two functions and of their sampled portions.

In applications involving single bit reference and single bit data streams,
multiplication is actually implemented with the exclusive-NOR (EX-NOR)
function, which yields positive results (1) if the two bits (polarities) coincide
and negative results (0) if they differ. If these I ’s and O’s are then summed (i.e.
if the number of I ’s is calculated), then the result is a correlation score ranging
from 0 (for perfect anticorrelation) to N (for perfect correlation, where N is
the number of taps in the system).

A digital correlator can perform correlation, operating according to the
discrete summation equation. The major functions of a digital correlator are
shown in Fig. 1.1. A reference shift register is pre-loaded with the standard
synchronization pattern, while the incoming data stream is shifted serially
through the input shift register. Both shift registers are n-bit long. The
respective bits of the two shift registers are connected to individual exclusive-
NOR gates, whose outputs are applied to a summing circuit [2].

INPUT SHIFT REGISTER

■ OUTPUT

REFERENCE SHIFT REGISTER

Figure 1.1: Basic digital correlator.

3

In operation, the correlator output is obtained by aligning the input word
relative to the reference word. The respective bits in the two shift registers are
compared by the exclusive-NOR gates, whose outputs are summed. The shift
registers, the exclusive-NOR gates, and the summer fulfill the three functions
of the correlation: time delay, multiplication, and integration, respectively.
When a frame sync pattern embedded in the incoming data stream aligns
exactly with the stored sync pattern, the correlator produces a sync pulse at
the output, which in turn tells the receiver to start handling a new frame of
data. The special start-of-frame pattern must be long and unusual to prevent
false synchronization, which occurs when the correlator finds and locks onto
a portion of the data stream resembling the desired synchronization pattern.
The longer the sync pattern, the lower the chance of a false synchroniza
tion, but the larger the percentage of the total data stream that must be
dedicated to synchronization and hence is unavailable for transmitting useful
information.

The receiver-correlator system operates continuously, with the correlator
producing a sync pulse as it receives each successive frame sync pattern in
the incoming data stream. The rate at which these pulses are generated is
the frame rate of the incoming data. The correlator mainly compares the
incoming data stream with a predetermined reference data and then decides
whether the sync word is received or not. But, since there is a noise in the
channel, the correlator must be modified in such a way that it may tolerate
some number of errors in the data stream.

1.2 PRBS Generation

A pseudo-random binary sequence (PRBS) consists of a sequence of ones and
zeros that possess certain specific autocorrelation properties. Such sequences
play an important role in almost all types of spread-spectrum systems. One
method of producing pseudo-random binary sequence is the use of feedback
shift registers. These are simple to implement, are very fast in operation,
and can be made to generate statistically very good sequences, provided
the registers are long enough. In general, such a shift register consists of n
locations labeled from 1 on the left to n on the right, which holds a binary
n-string as shown in Fig. 1.2. Here, modulo 2 addition can be achieved by
using exclusive-OR gates. The shift register is stepped on by shifting all the
bits right one location and feeding back the modulo 2 sum output into the
left-hand location [3].

Figure 1.2: Maximal-length linear feedback shift register.

It can be shown that the output sequence must eventually repeat with a
period which is at most 2" —1. If the feedback connections have been chosen to
give this maximal period, the output sequence depends on the initial contents
only for its starting point (provided the initial contents are not the string of
all zeros). Since the output sequences can be shown to have good quasi
random properties, it seems reasonable to use them as sync words, provided
n is chosen large enough and provided that the feedback is chosen to give the
maximal period 2̂ ̂— 1. The key would be to specify the feedback connections
and the initial contents of the feedback shift register. In this case, the output
sequence is known as a maximal-length feedback shift-register sequence.

In the correlator chip, a 128-bit shift register is used for PRBS genera
tion and a single feedback line obtained from it modulo 2 summation of the
selected shift register taps is applied to the serial input on the left hand side.
The PRBS output is also taken serially from this feedback line instead of the
output of the last stage. Here, it n is equal to 128 and it is large enough to
generate very good pseudo-random binary sequences.

1.3 The Digital Correlator

Electronic systems that perform correlation have been around for years, but
they have been bulky and inefficient. The development of VLSI (Very Large
Scale Integration) has changed this; now correlation can be performed effi
ciently with a digital correlator chip [4]. In fact, a digital correlator could
be implemented with SSI and MSI components on a printed circuit board
with the disadvantage of bulkiness. The continued progress in increasing the
performance, speed, reliability, and the simultaneous reduction in size and
cost of IC’s has made the solution easier. To use it in light-weight equip
ment, such as portable data terminals, this correlator and PRBS generator
was designed to be implemented as a full-custom VLSI chip. Actually, it is
seen that as levels of integration go towards VLSI, the design time and design

effort needed for full-custom design technology is likely to grow exponentially.
But, on the other hand, full-custom design technology offers great flexibility
to the designer and it reduces circuit complexity per function and improves
system performance. Also, this design technique may provide the designer
an easy way of testing the chip.

The design of full-custom VLSI correlator chip was jointly carried out
with I. Enis Ungan. At the beginning, we had a correlator circuit at the logic
level designed by M. Şenol Toygar. Then this circuit was modified to give it
some important properties such as cascade connectibility, PRBS generation,
etc.. One of the main improvement is the added circuitry for testability.
For this purpose, special Design For Testability (DFT) methods were used.
Especially, scan design technique was applied to conti’ol the states of the
registers and observe the contents of them easily by forming a scan path.
Another important DFT technique used is the partitioning which reduces
the problem of testing into dealing with the smaller modules. As a result,
testability was improved considerably. Circuit and layout designs were done
by I. Enis Ungan and so details of the circuit and layout designs can be found
in [5,6].

2. THE ARCHITECTURE DESIGN AND
OPERATION OF THE CHIP

2.1 General IC Design Process

The design description for an integrated circuit may be described in terms of
three domains, namely; 1) the behavioral domain, 2) the structural domain,
and 3) the physical domain. A good VLSI design system should provide for
consistent descriptions in all description domains and at all relevant levels
of abstraction. The means by which this is accomplished may be measured
in various terms that differ in importance based on the application. These
design parameters may be summarized in terms of [7,8,9]

• performance - speed, power, function,

• size of die,

• time to design - ease of use, and

• ease of test generation and testability.

Design is a continuous trade-off to achieve adequate results for all of the above
parameters. As such, the tools and methodologies used for a particular chip
will be a function of these parameters. Certain end results have to be met (i.e.
the chip must conform to performance specifications), but other constraints
may be a function of economics or even subjectivity [10,11].

The general IC design process includes all individual steps required for
designing an integrated circuit, starting with specification and ending with
the generation of production control and test data. The linear design process,
not including iterative loops, is shown in Fig.2.1 [12].

Mask tape Test program

Figure 2.1: The linear design process not including iterative loops.

It is divided in four segments, namely

1. system design,

2. logic design,

3. circuit design, and

4. layout design.

The first two segments are also often termed “logical design” , the last two
“physical design” .

The system design includes the architecture and module design which, in
several detailing steps, leads to logic design on the gate level. Next come
the logic verification and the testability analysis. The electrical circuit design
initiates the physical design with realization of logic by means of transistor
circuits and subsequent verification. Finally, the layout design includes ge
ometric design (i.e. the design of all masks required for production of all
levels), corresponding steps of verification and, in order to establish a path
to production, generation of the mask tapes. The generation of test data is
based upon the logic design which results in executable test programs.

This segmentation in various levels is characteristic for IC development
and shows the process from the abstract representation on a conceptual level
in step-by-step realization to the mask tapes which describe in detail the
manufacturing process. Each higher level constitutes an abstract represen
tation of the next lower level. Vice versa, moving from a higher to a lower
level requires special design know-how corresponding to the design method
and technology chosen. Thus, the circuit designer has to know, for example,
a way to realize the logic function of a D-fiipfiop by means of transistors and
their interconnection utilizing CMOS technology.

However, it is obvious that if certain rules (design rules) have to be fol
lowed, errors can be made. So, a sequence of the “implementation” and
“integration and test” steps is formed which is repeated on the various de
sign levels. The repetition of the “implementation” and “integration and
test” phases is required because, for each design realization, compliance with
two correctness conditions has to be examined:

• Compliance with the requirements of the previous design levels, i.e.
ensuring that the given target function is met by the design result
obtained to that point.

• Compliance with the design rules for the actual draft of the design
object on each level of representation, across the whole of the design
object.

Rules pertaining to point 1 ensure vertical consistency, and rules pertaining
to point 2 ensure horizontal consistency. In the case of the “layout design”
step, for example, the result has to be examined with regard to consistency
with the given electrical circuit design. In addition, a check of the layout
design rules must be done [12].

In designing the correlator and PRBS generator chip, the general top-
down method has been used following the design steps shown in Fig. 2.1.
Basically, the design process includes eleven individual steps starting with
specification and ending with the generation of production and test data. In
the following sections, these basic design steps are presented in detail.

2.2 Specifications

Based upon a study of the requirements, the specification or performance de
scription is developed by applying available techniques for problem solving.
The specification includes the solution concept, functional concept, perfor
mance concept and the structure concept. For the development of subsys
tems, their arrangement in the main system plays a crucial role. The interface
between subsystem and main system is defined by criteria such as type, for
mat and range of data and command flow. For object specification including
the solution concept, the performance requirements are also defined. These
are, in most cases, the determination of critical time conditions, or of maxi
mum values, such as the maximum current supply or the size of the memory.
In the specification phase for the correlator and PRBS generator chip, af
ter the specification of functions and performance requirements, the system
environment and interface definition has been done [12].

2.2.1 Specification of the Functions

The correlator and PRBS generator executes the following functions:

• It can detect sync words of length up to 128-bit.

10

• Two chips can be cascaded to increase the length to 256-bit.

• It allows detection of the sync regardless of the polarity of the incoming
data stream.

• It can also detect distributed sync words.

• It has error tolerance utility by means of which a number of errors in
the data stream can be tolerated.

• It can generate PRBS (Pseudo Random Binary Sequence).

2.2.2 Performance Requirements

Basically, the performance requirements for the correlator and PRBS gener
ator chip have included the following:

• clock rate for correlation greater than 25 KHz,

• time to decide whether the sync is detected or not less than 20 /US,

• clock rate for PRBS generation greater than 500 KHz,

• supply current less than 20 mA, supply voltage : 5 V.

2.2.3 System Environment and Interface Definition

The correlator and PRBS chip functions as a programmable microprocessor
peripheral. So, it has an 8-bit data bus and a 3-bit address bus with chip
select (CS), write (W R), and read (RD) inputs controlled by microprocessor.
Thus, its internal registers can be programmed directly through data bus of
the microprocessor. The incoming data entering from the serial input (SIN)
is taken inside the chip serially by using the clock (CLK) supplied by phase
lock loop (PLL) and go out from the serial output (SOUT). When the sync
is detected, the chip informs microprocessor by sending an interrupt signal’,
which we call the sync pulse, through sync (SYN) output. In addition, the
chip has an 8-bit bidirectional bus making possible 256-bit correlation by
means of cascade connection of two chips.

11

2.3 The Architecture Design

2.3.1 General Description

The architecture design is a first approach to meet the specification require
ments. The realization or actual development begins with this design phase.
As usual, a top-down method is applied. The system function is divided into
hierarchical levels from top to bottom. It is divided into single functions
which are placed in a static connection structure, and whose interactions are
controlled by means of a dynamic cooperation structure. Connection and
cooperation structures are called function structures. The cooperation struc
ture consists in turn of two components: one for the information flow, and
one for the control flow.

In the architecture design phase, far-reaching assessments are made, such
as the formal representation of system functions (target functions), division
into subfunctions by hierarchically layered resolution, design of interface ar
chitecture, connection structure and functional structure. For complex prob
lems such decisions cannot, in general, be made with certainty. Wrong de
cisions and design errors in this phase cause especially undesirable effects.
So, on the various levels of the architecture design, verification steps are per
formed repeatedly (architecture verification). These steps have been carried
out manually for the first design outlines, as design reviews or walk-throughs
[12].

2.3.2 Block Representation

In the beginning of the architecture design, the correlator circuit designed
by M. Şenol Toygar was used [13]. The block diagram of this circuit is
shown in Fig. 2.2. It has some unnecessary features as well as some missing
and important properties. For example, it has a PWO (Power Okey) input
which will put the data bus in high-Z state when the power supply of the
microprocessor is down. It has also lACS and SACS bits which control the
active position of INV and SYN outputs, respectively. In addition, it has an
SYN output pin. These features were thought as unnecessary and they were
omitted from the design. Afterwards, the design was changed to have some
important properties. For this purpose, firstly, cascade connection property
was added to it in order to have the ability of performing 256-bit correlation.

12

Figure 2.2: Block diagram of the correlator in the beginning.

Due to this cascade connection property, 8 pins were added to be able to
transfer the intermediate 128-bit correlation score at the I ’s counter output
from one chip to the other. Later, PRBS generation was made possible by
forming a synchronous feedback loop from the I ’s counter output to the serial
input of the 128-bit shift register. In addition, some other useful features
were added such as reading the I ’s counter output through 8-bit data bus
and loading the 128-bit shift register using data bus in 16 write cycles of the
microprocessor. Also, the first 8-bit of the shift register can be read again
through data bus. In parallel with doing these changes, control and status
blocks were modified [14].

The most important feature that the first design does not have is the
testability. So, aiming to improve the testability of the chip, some design for
testability techniques were used in the architecture design. First, the registers
were modified to make them easily testable since they can be used to control
many other signals going to the inputs of other modules. The 128-bit shift
register was easily testable because it has a serial input and a serial output

13

which enable us to control and observe the register contents. Then comes
the reference, mask, threshold, and status registers. These registers can be
easily controlled, i.e. they can be loaded directly by using data bus. But,
after loading, their contents cannot be observed in any way. Therefore, the
scan design technique is used for these registers such that by means of a test
signal, they are connected serially to form a single shift register, called the
scan path. This scan path has a serial input and output, SCIN and SCOUT,
respectively. Thus, the contents of these registers may be easily observed at
SCOUT by shifting the bits towards the serial output. The comparator and
I ’s counter blocks are tested together because there is a 128-bit bus between
them and it is not suitable to control and observe this bus. The inputs to
the comparator block are controlled indirectly by loading the shift, reference,
and mask registers. The I ’s counter output can be read from the 8-bit output
pins used for cascade connection. Consequently, the design was brought into
a position that it is efficiently testable at the expense of minimum additional
logic. Actually, details of the modifications to make the design testable are
given in a subsequent chapter. A detailed block representation of the circuit
after all changes is given in the following paragraphs.

This correlator chip can detect sync words of length up to 128-bits. That
is, the maximum correlation length that can be done using only one chip is
128-bits. However, two chips can be cascaded in a master-slave configuration
to increase the length to 256-bits. The sync word can be detected for either
inverted or non-inverted input data streams. This means that the sync word
can also be detected if every bit of the input data is inverted. The correlator
is fully programmable by a microprocessor to set the number of tolerable
errors in sync detection and to select the bits of the 128-bit (or 256-bit) data
stream to be used in correlation. The latter feature makes the correlator
capable for use in detection of distributed sync words and PRBS (Pseudo-
Random Binary Sequence) generation.

The correlator chip is beisically composed of five registers, a comparator,
an integrator, a decision maher, a buffer, and a controller block. It has also
an internal 8-bit data bus and a 3-bit address bus. A simplified block diagram
of the correlator is shown in Fig.2.3. Buffer is an 8-bit tristate bidirectional
buffer controlled by chip select (CS), read (RD), and write (WR) signals. It
is bidirectional because the 8-bit data bus is used for both read and write
purposes. When the CS is low, it is in the read mode if the RD signal is also
low, but it is in the write mode if the W R signal is low and it goes into high
impedance state when the chip is not selected (i.e. CS is high).

14

SIN ■

CLK ·

PRBS

D0-D7 C=^

cs
WR

RD

A2

A1

A0

BUFFER

< = 0

CONTROL
WREF
WMVT
tfS
RS
INT
RSH
TEST

128-BIT SHIFT REGISTER

Q0 ... Q127

j) " (f t
WSH RSH

___________ iz.
“ T
SOE

-sour

0-BIT DATA BUS

0

REFERENCE

Q0
Q127

128 / / 128

HREF

8

INT

THRESHOLD

D0 THREl
D7

THRE2

T>rr

-h

c = >

STATUS
INVOUr
SYNOUT

CLK
PRBS
M/S
WSH
SOE
CLR

I T
WS RS

128/

COMPARATOR

MASK

Q0
Q127

00
D7

/ 1̂28

INTEGRATOR

/ 9

DECISION

- INV SYN

T
WM

8

M/S

■ M/S
■ CLK
■ CLR

C0-C7

SYN

Figure 2.3: Simplified block diagram of the correlator.

15

DO

D1

D7
WREF or WM

Figure 2.4: Block diagram of the mask and reference registers.

One of the five registers is the serial 128-bit shift register which has a serial
input and a serial output. It passes the serial data input (SIN) to serial data
output (SOUT) and it holds 128 consecutive data bits for correlation. While
doing correlation, in order to ensure synchronization, its clock is supplied by
a phase-locked loop (PLL) which sends the serial incoming data stream to
the correlator. In addition to serial loading, it can be loaded through the
data bus in 16 write cycles of the yuP and the first 8-bits beginning from the
serial input of it can be read by microprocessor using data bus. It is also
used for holding the binary sequence in PRBS generation.

The reference and mask registers which are the 128-bit write-only registers
have the same structure as shown in Fig. 2.4. Each of these registers consists
of eight 16-bit shift registers and so they can be loaded through the data
bus in 16 write cycles of the microprocessor. The reference register must
be loaded with the sync word and the I ’s in the mask register show the
corresponding bits in the 128-bit shift register to be masked. The presence of
the mask register allows the detection of distributed sync words and PRBS
generation, because it provides the capability of selecting any bit in the 128-
bit shift register to be included in the correlation. The clock signals of these
registers come from the controller block during write operation. While the
data and address are valid at the data and address busses respectively, data
is latched at high-to-low transition of W R signal of fxF as shown in Fig. 2.5.

16

The threshold register is very similar to the reference and mask registers
in structure and it consists of two 8-bit write-only registers which are named
as THREl and THRE2. In the same way as the reference and mask registers
are loaded, the threshold register can be loaded from the data bus in two
write cycles of the microprocessor. During write cycle, the clock for this
register is generated by the controller block. THREl and THRE2 registers
must be loaded with the error tolerances in order to produce sync (SYN) and
inverted sync (INV) pulses respectively.

cs

A0 -A2

Dg-D,

h \ 7 ·

ADDRESS VALID

I DATA VALID

WR I
I

RD I

WRITE CYCLE

! r ~
1
ADRESS VALID
1 1

DATA VALID

i 1
1 ,
1 1

V_ _ _ _ _ _ _ _ _ _ _ y
1 READ CYCLE

Figure 2.5: Timing diagram of the write and read cycles.

The status register has three read-only and five write-only bits. This
register holds some status bits determining the operation modes of the corre
lator. The read-only bits are SYNOUT, INVOUT, and CLK which show the
states of SYN and INV outputs and clock (CLK) signal respectively. When
the address of status register is valid on the address bus (A0-A2), read-only
bits are seen at the data bus after high-to-low transition of the read (RD)
signal as shown in Fig. 2.5 and by this way the microprocessor can check the
states of these bits. Actually the correlator chip has a sync (SYN) output
pin which informs the /iP by sending an interrupt signal when the sync word
is detected. Thus the microprocessor has two alternatives to learn the state
of SYN output. There is no output pin for the INV output and so the only
way to learn the state of INV output is to read the status register. Every
time a sync word is detected, the /xP checks the state of INV output imme
diately in order to determine whether the detected sync word is inverted or
not. Both of the SYN and INV outputs are activated if an inverted sync
word is detected. On the other hand, for a non-inverted sync word, only the
SYN output is activated. In writing to the status register, after the data and
address become valid, data is latched when the write (W R) signal goes from
high to low as shown in Fig. 2.5. While doing write operation, the read-only
bits goes into high impedance state. Since the read and write signals for this
register do not become low simultaneously, there is no contention problem.

17

The write-only bits of status register are PRBS, master-slave (M /S), serial
data output enable (SOE), clear (CLR), and write shift register (WSH) bits.
PRBS bit is used to control the operation of the chip as correlator or PRBS
generator. It is set to “1” , if PRBS generation is to be done, otherwise it is
set to “0” . That is, before starting to generate PRBS, this bit must be made
high. M /S bit determines whether the chip is master or slave while doing a
256-bit correlation in cascaded configuration. If it is “ 1” , the chip becomes
master, otherwise it becomes slave. For a 128-bit correlation M/S bit is set
to “0” and thus the chip behaves as slave. SOE bit is used to disable serial
data output (SOUT) and it is active low. So when it is low, SOUT is in high
impedance state. CLR bit is used to disable the SYN output and it is also
active low. This bit is useful while doing PRBS generation, because in this
mode SYN output is not used and so it is better to disable it, in the view
of system environment. WSH is an active high bit which is used to load the
128-bit shift register through the data bus. In other words, this bit must be
set to high and it must be remain at high state until the shift register is fully
loaded . In addition, this bit is necessary in order to synchronize the clock
of the shift register with the write signal of the microprocessor. Actually,
when the WSH bit is not high, clock is supplied by the phase lock loop to be
synchronized with the incoming data. The loading of shift register from data
bus is needed in PRBS mode to increase the speed.

The comparator is a simple combinational logic consisting of 128 compare
cells each of which compares the bits in the shift and reference registers and
produces a “1” at the output if they are equal. But if the corresponding bit
in the mask register is “1” , the output of the compare cell is “1” , irrespective
of the state of the shift and reference register bits. The operation of a single
compare cell is shown in Table 2.1.

Mask Reference Shift Output
0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 1
1 X X 1

Table 2.1: Function of a compare cell.

18

The integrator block takes the 128-bit comparator output and finds the
number of matched and masked bits of the shift register. Its block diagram is
shown in Fig.2.6. It contains a I ’s counter block, two 8-bit tristate unidirec
tional buffers, an 8-bit adder, and a 9-bit 2-to-l multiplexer. The I ’s counter
block is a combinational logic consisting of half-adders and full-adders in an
inverse binary tree form. It simply counts the number of I ’s in the 128-bit
comparator output. The tristate buffers at the output of I ’s counter has dif
ferent purposes and different enable signals where the INT signal is produced
by controller block and the M/S signal comes from the status register. The
buffer having enable signal INT is used to read the 8-bit output of the I ’s
counter through the data bus. That is, the microprocessor can read the I ’s
counter output while doing correlation. This is an importcint property of the
correlator because it provides an immediate result of the correlation to be
able to make some decisions before continuing. Additionally, the output of
I ’s counter gives more detailed information than the SYN pulse about the
correlation. In other words, by looking at the I ’s counter output, one can
calculate the number of matched and masked bits in the 128-bit shift regis
ter and can learn the noise level on the incoming data. The other tristate
buffer with enable signal M/S is used to send the I ’s counter output to the
bidirectional pins CO to C7. This is necessary when two chips are cascaded
to make a 256-bit correlation. In this case, the chip operating as slave must

'send its I ’s counter output to the one being master through 8-bit bus C0-C7.
So, when M/S bit is low tristate buffer is enabled and I ’s counter output is
seen at the output pins and when M/S bit is high tristate buffer is disabled
emd its output is in high impedance state. The 8-bit adder in the integrator
block is used to be able to make 256-bit correlation. It adds two I ’s counter
block outputs in the master and slave chips resulting in a 9-bit number at the
output. Then the output of 8-bit adder is multiplexed with the I ’s counter
output by means of the 9-bit 2 to 1 multiplexer of which the select signal is
M/S. The multiplexer output is the output of I ’s counter if M/S bit is high
otherwise it is the output of 8-bit adder. Thus, by using this multiplexer,
desired correlation score depending on the correlation length can be sent to
decision maker. Consequently, the intermediate results of the correlation are
prepared by the integrator to be used in decision maker or to be read by the
microprocessor.

The decision maker is the block which gets the integrator output and the
error tolerances kept in the threshold registers, THREl and THRE2, and
decides whether the sync word is detected or not. Therefore, it has two
outputs which are SYN and INV. Its block diagram is shown in Fig. 2.7.

19

comparator
output

To decision maker
Figure 2.6: Block diagram of the integrator.

Integrator
output

THREl

THÊ 2

CLK CLR INV SYN

Figure 2.7: Block diagram of the decision maher.

20

The decision block contains mainly two 9-bit adders, a 2 to 1 multiplexer,
and two D-latch with a reset. The 9-bit adders are used to add the integrator
output with the error tolerances. As shown in the figure, these adders have
only the most significant two sum outputs that are the only ones needed to
produce SYN and INV pulses. The two input “or” gate ensures that if INV
signal is high, SYN signal is also high because, as mentioned earlier, when an
inverted sync word is detected SYN and INV must be both high. Finally, the
values of SYN and INV outputs are latched in every low-to-high transition
of the CLK signal in two master-slave flip-flops. Thus, they can be read by
the microprocessor using the status register. The master-slave flip-flops have
the same clock signal with the shift register and so at the beginning of every
clock cycle, as a new data enters into the shift register, the SYN and INV
signals produced by using the previous data are latched into flip-flops. By
means of the reset of flip-flops, the SYN and INV outputs can be reset while
generating PRBS where these outputs are not needed.

The controller block is used to produce timing signals for the registers and
for the purpose of testing. Besides the test signal which is used in testing, it
generates read and write signals for the registers by using the address signals
(A0-A2), CS, RD, and W R signals. It decodes the address signals to select
the registers or other blocks and produces eight different signals as shown in
Table 2.2. Here the X values are used for don’t care conditions. While the
CS is high, all output signals become inactive, i.e. low, irrespective of all
other input signals to the controller.

CS RD W R A2 A1 AO Signal Function
1 X X X X X All signals inactive
0 1 0 0 0 0 WREF Write reference register
0 1 0 0 0 1 WM Write mask register
0 1 0 0 1 0 W T Write threshold register
0 1 0 0 1 1 WS Write status register
0 0 1 0 1 1 RS Read status register
0 0 1 1 0 0 RSH Read shift register
0 X X 1 0 1 INT Integrator selected
0 X X 1 1 0 TEST Scan path formed

Table 2.2: Function table of the controller block.

21

2.3.3 Pin Description

The correlator has 28 pins and its pin diagram is shown in Fig.2.8. Three of
them are chip select (CS) input pin, read (RD) and write (WR) signal pins
which are all active low and controlled by ¡j,F. The other ones are:

SERIAL
DATA OUT

COUNTER
OUTPUT

INTERRUPT

Figure 2.8: Pin diagram of the correlator.

1. D0-D7: Bidirectional, tristate 8-bit data bus. When CS is high it is in
high impedance state. Otherwise it is either in the write or read mode.

2. A0-A2: 3-bit address pins in order to select the internal registers and
integrator block and to produce a test signal in the chip.

3. CLK: It is the clock generated by digital phase-lock loop (DPLL) such
that the incoming data can be taken into the 128-bit shift register.

4. SIN: Serial data input to the correlator. Data at this pin is latched to
the 128-bit shift register at the low-to-high transition of the CLK.

5. SOUT: Serial data output from the correlator. At the low-to-high tran
sition of the CLK, the least significant bit of the shift register is seen
at this pin during a period of the CLK.

6. C0-C7: Bidirectional, 8-bit integrator input/output bus which is used
to perform 256-bit correlation. That is, in cascade connection the 8-bit
busses of two chips are connected to each other and the slave chip sends
its I ’s counter output to the master chip through this 8-bit bus.

7. SYN: Sync output pin. When a sync word is detected it makes a tran
sition from low to high and remains at high state for one CLK cycle.

In addition to these, there are two pins for power (VDD) and ground (GND)
connections.

22

2.4 Modes of Operation

As mentioned previously, the chip can function in two modes which are the
correlation and PRBS generation modes. Selection of these modes is done
as shown in Table 2.3. The operation mode of the chip is determined by the
PRBS bit in the status register. In order to switch from one mode to another
the state of this bit must be altered. Although the same circuitry is used in
both modes, the chip performs totally different functions in two modes. In
the following two subsections operation of the chip in two modes is presented
in detail.

PRBS M/S Operation mode
128-bit correlator(SLAVE)0
256-bit correlator(MASTER)

X PRBS generator

Table 2.3: Selecting modes of the correlator.

2.4.1 Correlator Mode

In order to operate the chip as a correlator, the PRBS bit in status register
must be set to low. In addition to PRBS bit, also M/S bit in status register
must be set to a value to determine the length of the correlation which is
128-bit or 256-bit. In this mode the chip perform the basic function:

N
CORRELATION = OR{XNOR[Di, R . ·) , M .)

t = l

where the D{ are the current contents of the 128-bit shift register which
holds the data, the R,· are the corresponding values in the reference register,
and Mi are the corresponding latched masking values. The mask function,
implemented with one OR gate per bit, tells the chip to include only a speci
fied subset of 128-bit shift register bits in the final correlation score. N is the
total number of shift register taps which is equal to 128 or 256 depending on
the length of the correlation.

23

In the correlator mode, after setting the PRBS bit in the status register
to low, it is determined that whether a 128-bit or 256-bit correlation is to
be done and then the M/S bit in the status register is set to low or high
according to the correlation length. If a 128-bit correlation is done, this bit
is set to low and we call such a chip as slave. On the other hand, if a 256-bit
correlation is done, two chips are cascaded and one of them is called as master
whereas the other one is called as slave. As opposed to slave, in the master
chip, the M/S bit in status register is set to high and this means that the
final 256-bit correlation result is to be produced by the master chip. The only
difference between the functions of these two types of chips called master and
slave, although they have the same hardware, is that one of them produces a
256-bit correlation score while the other produces a 128-bit correlation score.
This is an important property of the correlator chip that by controlling a
bit in the status register, the correlation length can be doubled. In other
words, it is sufficient to change the state of M/S bit in order to determine
the correlation length.

In 128-bit correlation, the reference register is loaded with the sync word
and the mask register is loaded with the masking data in 16 write cycles of
the /xP. The sync word is chosen by the user and it can be changed at any
time only by loading the reference register with the new sync word. This can
be done by putting the reference register address and the data on the 3-bit
address bus and 8-bit data bus for 16 write cycles of the /xP. The mask register
content determines the subset of the 128-bit data in the shift register to be
included in the correlation. That is, the “1” s in the mask register means
that the corresponding bits in the shift register are considered as “don’t
care” . This is also an important property of the correlator chip because by
having this feature the chip can detect the distributed sync words which may
have data bits among the sync bits. This means that, if it is desired, sync
words of length less than 128 can also be detected. These capabilities makes
the correlator flexible about the sync word length and the distribution of its
bits. Now, after the reference and mask registers are loaded, there comes the
loading of the threshold register consisting of two 8-bit registers, THREl and
THRE2. THREl is related with the noninverted sync detection and THRE2
is related with the inverted sync detection. THREl register must be loaded
by the maximum number of errors that can be tolerated and cis it is clearly
understood, this register content can have values between 0 and 128. THRE2
must be loaded by 255 (all I ’s) minus (maximum number of tolerable errors
+ number of I ’s in the mask register). This is equal to the I ’s complement
of the binary number which is equal to the tolerable errors plus number of

24

masked bits. Here, this number in the register THRE2 is to be used for
subtracting the number of error tolerance from the number of erroneous bits
in the shift register. If the result of the subtraction becomes positive, this
means that the number of erroneous bits is greater than the number of error
tolerance. But if the result of the subtraction is negative then the number of
erroneous bits is smaller than the number of error tolerance. Consequently,
an inverted sync word is detected when this subtraction results in a negative
number. Actually, by using this method, a Hamming distance between input
data and reference data is calculated and if this Hamming distance is below
a given threshold, it is decided that a sync word is detected.

Now, the correlation can begin with the first bit of the incoming data
entering to the 128-bit shift register from serial input, SIN. Data is latched to
the first master-slave flip-flop of the shift register at the high level of the clock.
Since master-slave flip-flops are used in the shift register, the new content of
it for calculating the correlation score becomes available after high-to-low
transition of the clock. After 128 clock cycles the first bit of the incoming
data appears at the serial output SOUT and if a sync word is detected, SYN
and/or INV outputs become high at the 129’th pulse as shown in Fig. 2.9.
As it is clear, correlation is done for every clock period and calculations start
after the falling edge of the clock and finish before the next rising edge of the
clock. Thus, all calculations must be done while the clock is low and it must
be decided whether the sync word is detected or not before the rising edge of
the clock. Therefore, the duration between the falling edge of the clock and
the time at which the decision maker output becomes stable determines the
speed of the correlator and frequency of the clock.

SI _r 8 SO

first pulse

CLK
SYNC

^ ^ 1 2 8 ‘'th pulse

JlJl_rLn-TLrL
SYM

INV

I
1— -JI I

- I ________ L

I
Figure 2.9: Timing diagram of the sync detection.

When the outputs of the shift register become valid, meaning that the
comparator inputs axe ready, comparator block checks whether the shift and
reference register bits are the same or not and also looks for the mask register
bits in order to understand which shift register bits are to be masked (i.e.

25

don’t care). Then it produces a “1” at the output for the matched or masked
shift register bits and produces “0” for others. The comparator block has
a 128-bit output which is connected directly to input of the I ’s counter in
the integrator block. I ’s counter finds the number of comparator output
bits which are “1” and produces an 8-bit number having a value between
0 and 128. In 128-bit correlation this is the output of the integrator block
which is fed into the decision maker. In decision block, this 8-bit number
is summed with both threshold register outputs, THREl and THRE2. This
configuration is shown in Fig. 2.10. In this way, the I ’s counter output is
summed with the error tolerances held in the threshold register.

Comparator
output

Figure 2.10: 128-bit correlation scheme.

We are interested only in the most significant output bits of the 9-bit
adders in order to decide about the detection of a sync or inverted sync word
as shown in Table 2.4. The output of that 9-bit adder which adds the I ’s
counter output with the output of THREl can have values between 0 and
256. If the output of this adder is between 128 and 256, this means that the
number of matched and masked bits plus the tolerable erroneous bits in the
shift register is greater than or equal to 128. In other words, if the 8’th bit of
the 9-bit adder output is 1, it means that a sync word is detected. For deciding
about the inverted sync word detection, other 9-bit adder which adds the I ’s
counter output with the output of THRE2 is used. If the most significant
bit is “1” meaning that the output of the adder is greater than 255, there is
more erroneous bits in the shift register than the error tolerance. But if the

26

most significant bit is “0” , this shows that an inverted sync word is detected.
So, when a sufficient number of bits come inverted with respect to bits in
the reference register, an inverted sync word is detected. Actually, in the
case of inverted sync word detection, both the sync (SYN) and inverted sync
(INV) outputs of the decision maker becomes high. In 256-bit correlation.

S8i 502 SYN INV
0 1 0 0
1 1 1 0
0 0 1 1

Table 2.4: Decision table for the sync detection.

two 128-bit correlator chips are cascaded as shown in the Fig. 2.11. The
reference, mask, and threshold registers in both chips are similarly loaded as
in the 128-bit correlation. But this time, the contents of THREl registers can
have values between 0 and 255 which cbrresponds to the maximum number
of error tolerance. In the same way, the THRE2 registers are loaded with
the I ’s complement of the binary number which is equal to the number of
tolerable errors plus the number of masked bits.

SERIAL DATA
IN CLOCK

SERIAL DATA
OUT

CHIPSELECTl
CHIPSELECT2

WRITE
READ

DATA BUS
ADDRESS BUS■

SIN CLK sour SIN CLK sour

BAC128 8 BAC128
INTERRUPT ---- SYN (MASTER) C0-C7 - 7 ^ C0-C7 (SLAVE)

CS W R RD D0-D7 A0-A2 CS WR RD D0-D7 AO--A2

Figure 2.11: 256-bit correlator.

We call the first chip as master since it calculates the final correlation score
and produces a sync pulse if a 256-bit sync word is detected. The incoming
data first enters to the serial input of the master and after 128 clock cycles

27

it is seen at the output of this chip. Then the data enters into the slave
from its serial input and at the end of the 256’th clock cycle it appears at
the serial output of this chip. At the falling edge of the 256’th clock pulse,
the comparison between input data and reference data is started in the chips
and both chips produce their intermediate results which correspond to 12S-
bit correlation score of each chip. Later, the slave sends its result to the
master through the 8-bit bus CO — C7. Then the master sums the result
coming from the slave and its result and sends the summation output to the
decision maker block as shown in Fig. 2.12. As in the 128-bit correlation,
additions with the THREl and THRE2 outputs are performed by using two
9-bit adders. The decision for the 256-bit sync or inverted sync detection
is made as shown in Table 2.5. It is clear that, this decision is made only
in the master chip so the SYN output of only this chip is connected to the
interrupt pin of the microprocessor. In fact, also the slave chip makes some
calculations and decisions and it may produce a sync pulse too. However, its
SYN output pin is not connected to anywhere and therefore its decision is
not taken into consideration in the 256-bit correlation.

Figure 2.12: 256-bit correlation scheme in the master chip.

28

S ’Oi 5 9 2 S Y N I N V

0 1 0 0

1 1 1 0

0 0 1 1

Table 2.5: Decision table for 256-bit sync detection.

2.4.2 PRBS Generator Mode

The configuration for operating the chip as PRBS generator is shown in the
Fig. 2.13. In fact, this scheme realizes a linear feedback shift register used in
PRBS generation. Here the 128-bit shift register is loaded with an initial state
chosen by the user and at every clock cycle its contents changes randomly.
The mask register is used to select the necessary taps from the shift register
outputs. In order to do this, the mask register bits corresponding to the
selected taps are loaded with zero and all other bits are loaded with one.

SIN

Figure 2.13: The configuration for PRBS generator.

Thus selected taps of the shift register appear at the corresponding com
parator output bits while other comparator outputs are 1. Then the I ’s
counter in the integrator block counts the number of I ’s at the comparator
outputs. The I ’s counter behaves as a huge EX-OR gate with 128 inputs
because we are interested in only the least significant bit (LSB) of its output.
That is, if there is an even number of I ’s at the comparator output, LSB will

29

be 0 but if there is an odd number of I ’s then LSB will be 1. In this way, the
selected taps in the shift register would be EX-OR’ed and LSB representing
the EX-OR output is fed back to the serial input of the shift register by using
a multiplexer which is controlled by PRBS status bit. Consequently, a new
pseudo-random bit enters to the shift register at every clock cycle and at the
same time this bit can also be seen at SOUT. In other words, PRBS generator
output is taken from SOUT because we don’t have to wait for a random bit
propagating from serial input through shift register to the serial output.

In this mode, the generated bit sequence will have a nearly random dis
tribution if the tap points are suitably chosen, because the length of the shift
register is quite large. The sequence repeats itself after a large number of
clock cycles. But here the important thing is the initial state of the shift
register. If the initial state is known, the state that the shift register will
have after a certain number of clock cycles can be predicted. Due to these
properties of PRBS, it can be used for sync word generation, i.e. a portion
of this sequence can be chosen as a sync word.

30

3. THE LOGIC AND CIRCUIT DESIGN

In this chapter the details of the logic design are given and some important
points about the circuit and layout designs are also presented. Actually, for
the details of the circuit and layout designs we address the reader to [6].

3.1 The Logic Design

After an architecture plan has been made which has resulted in a block di
agram of the chip ajid the description of functions and specifications of the
blocks, interior of each block has been designed in logic level carefully so
that it would be consistent with the architecture design. In other words, the
function of each block and the communications among the blocks have been
determined in the architecture design and the logic design of the blocks has
been carried out with respect to these specifications trying to use minimum
number of logic gates [7,8,15]. In addition, a testability analysis has been
done manually and according to the result of this analysis some modifications
with minimum additional logic have been performed which are presented in
the next chapter. By the way, all input-output connections of the blocks are
shown in Fig. 2.3.

Buffer is an 8-bit tristate bidirectional buffer which is controlled by CS,
RD, and WR signals of the /zP as shown in Fig. 3.1. It is called bidirectional
because it can be used for both read and write operations. Its outputs go
to the high-impedance state when the CS is high meaning that the chip is
not selected and also when the RD and WR are both high. The function
table of the buffer module is given in the Table 3.1. It is clear that, while
the CS is low if the W R signal becomes low, the data can be written to the
chip but if the RD signal becomes low then the data can be read from the
chip. In addition, inserting a simple NAND gate to the logic, data collision is

31

prevented when both of the RD and W R signals become low simultaneously.
In such a case (i.e., CS = 0, VFi? = 0, RD = 0) the W R signal appears to be
dominant with respect to RD signal and thus a write operation is performed.

Figure 3.1: Logic diagram of the 8-bit tristate bidirectional buffer.

CS WR RD WRITE READ FUNCTION
1 X X 0 0 HIGH-IMPEDANCE
0 0 X 1 0 WRITE
0 1 0 0 1 READ
0 1 1 0 0 HIGH-IMPEDANCE

Table 3.1: Function table of the buffer.

The controller is an important module which produces the clocks for the
registers and the enable signal for integrator as well as a test signal. Its logic
diagram is shown in Fig. 3.2. Note that the address signals entering to the
controller come inverted because we use inverting input pads for these pins
on the chip. The pads are the layout blocks connected to pins through which
the chip communicates with the outside world. As it is seen, the controller
decodes the address bits in order to generate its output signals to be used in
writing into the reference, mask, threshold, and status registers as well as in
reading the status register, shift register, and integrator output.

32

Figure 3.2: Logic diagram of the controller module.

The logic diagram of the decoder is shown in Fig. 3.3. It is a 3-to-7
decoder since the combination in which all address lines are high is not used.
In the controller, CS signal is used to enable or disable the decoder outputs.
The inverters used for TEST and INT outputs serve as buffers due to fan-out
considerations. These outputs are independent of the RD and WR signals.
TEST output is used only in testing of the registers and so when this output
is high, register clocks behave as a single clock (i.e. they change their states
simultaneously).

The status register has been designed as shown in Fig. 3.4. It holds some
status bits necessary for changing operation of the chip. It contains 5 master-
slave flip-flops and 3 tristate buffers whose enable signals (RS) are supplied
by the controller. The flip-flops are loaded from the data bus in one write
cycle of the ^P. The purpose of using tristate buffers is to check the state of
SYN and INV outputs of the decision maker by means of the data bus. To
do this, must also check the state of CLK because SYN and INV outputs
become stable while the CLK is high. Thus the first three bits, DO — D2, of
the data bus are used for both reading and writing. Here data collision never
occurs since WS and RS axe obtained from the /xP’s write and read signals
and these signals do not become active together in axiy time.

33

Figure 3.4: Logic diagram of the status register.

34

Here it is useful to mention about the master-slave flip-flop because a total
of 405 master-slave flip-flops are used throughout the design. Its schematic
is given in Fig. 3.5. It consists of four tristate inverters and two ordinary
inverters. The tristate inverters can also be called as clocked inverters because
when the clock becomes active their outputs are valid otherwise they drive
their outputs into a high-impedance state. As it is seen, a clock called PHI
and its inverse PHIB are used as clocks of the master and slave flip-flops,
respectively. If the PHI is high, tristate inverters TRINVl and TRINV4 are
enabled and so the new input data is latched to the master while the old data
is preserved in the slave since TRINV3 is in high-impedance state. However,
if the PHI is low, TRINV2 and TRINV3 are enabled and thus the new data
reaches the slave output, Q, and it is also preserved in the master.

Figure 3.5: Master-slave flip-flop.

One of the flve registers, the 128-bit shift register has been designed as
shown in Fig. 3.6. It has a serial input (SIN) and a serial output (SOUT). In
addition to 128 master-slave flip-flops, it contains 11 multiplexers, 8 inverters,
and 8 tristate inverters. In the correlator mode of the chip, the shift register
is serially loaded from SIN taking its clock from CLK input. In fact, all
multiplexers and inverters axe needed for PRBS generation because in PRBS
mode, shift register is loaded from data bus instead of SIN to increase the
loading speed. For writing into the shift register from the data bus, the data
bus lines are multiplexed with the corresponding shift register outputs using
eight multiplexers whose select signals axe WSH bit held in the status register.
Also the clock of the shift register is synchronized with the write signal of
the ^P instead of the CLK signal using a multiplexer which is controlled by
the WSH bit. As well as writing from data bus, the first eight bits of the
register can be read through the data bus using tristate inverters shown in
Fig. 3.6. As mentioned in the subsection 2.4.2, the least significant bit (LSB)
of the I ’s counter output is replaced with SIN and SOUT of the shift register
during PRBS generation.

35

LSB

D7

D6

DO

LSB

SIN

soirr

PRBS WSH WR CLK DO D7

Figure 3.6: Schematic of the 128-bit shift register.

The reference and mask registers are exactly similar to each other. Their
logic diagram is shown in Fig. 3.7. They contain 128 master-slave flip-flops
grouped as 16-bit shift registers ageiinst data bus. All flip-flop outputs of
these two registers go to the comparator block together with the 128-bit shift
register outputs. Their clocks, WREF and WM, are supplied by the con
troller. The threshold register is very similar to reference and mask registers
but it consists of 16 master-slave flip-flops grouped as 2-bit shift registers.
Its logic diagram is given in Fig. 3.8.

The comparator block is a simple combinational logic and so its design
is rather easy than the other blocks. It has three 128-bit input busses and
a 128-bit output bus. The logic diagram of the comparator is shown in the
Fig. 3.9. It simply consists of two-input EX-NOR and OR gates. Here EX-
NOR gates check the match or mismatch between the shift and reference
register bits. If these bits are same the EX-NOR output will be 1 otherwise
it will be 0. The OR gates are used for masking the desired bits such that
if the mask register bit is 1, the comparator output is 1 irrespective of the
corresponding reference and shift register bits.

36

Figure 3.7: Logic diagram of the reference and mask registers.

THRE2 THREl

Figure 3.8: Logic diagram of the threshold register.

_ COMPARE_CELL _

HO..------------ Z 3 _ J ^ C P 0

S127-
R127-
M127-

1
'CP127

Figure 3.9: Logic diagram of the comparator.

37

CP о
CPI

CP2

СРЗ

CPI 2 4
CP125

CP126

CP127
7 stage

HA: Half Adder
nFA: n-bit Full Adder

Figure 3.10: Logic diagram of the I ’s counter.

The I ’s counter in the integrator block is a combinational logic consisting
of half-adders and full-adders as shown in Fig. 3.10. It is used to find the
number of I ’s at the 128-bit comparator output. First, 64 half-adders sum
the one-bit numbers. Then 32 two-bit full-adders sum the half-adder outputs
and two-bit full-adder outputs are summed by 16 three-bit full-adders. It
continues like this up to seven-bit full-adder in an inverse binary tree struc
ture. The 8-bit output of the I ’s counter can have values between 0 and 128.
Each of the n-bit full-adders used in the I ’s counter has been designed by
using simple half-adders and full-adders as shown in Fig. 3.11. Half-adders
are used in the places where there is no carry input. As a result, a total of
127 half-adders and 120 full-adders are used in the I ’s counter.

A2 An B,

FA
c in Cout

Sum

C arry
Out

Si S2 Sn

Figure 3.11: The circuit of an n-bit full-adder.
38

However, the 9-bit full-adders used in decision maker have been designed
in a different way because some of the sum outputs of these adders are not
used. The circuit of these 9-bit adders is shown in Fig. 3.12. In the places
where sum output is not needed, carry generation and/or propagation is
sufficient and thus a carry cell is used. Each carry cell generates and/or
propagates the carry to the succeeding carry stages according to the truth
table shown in Table 3.2. In the first stage of the 9-bit adders, since there is
no carry input, the carry cell is replaced with a NAND gate. Since, only if
both inputs, Ai and Bi, are high, a carry is to be generated, this function can
be performed by a NAND gate. While using these 9-bit adders in decision
maker, we have a 9-bit number and an 8-bit number to be summed. Here the
8-bit number has a zero at the 9’th bit and therefore this input line of the
adders is connected to ground.

A1 Bl A2 B2 A7 B7 A8 B8 A9 B9

S8 S9

Figure 3.12: The 9-bit full adder circuit.

C in A B ^ out

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Table 3.2: Truth table of a carry cell.

The logic design of the correlator chip has been performed by using the
schematic editor (CASS) of the Silvar-Lisco Standard Design System (SDS)
on APOLLO workstations under the operating system AEGIS. Test pattern
generation and fault simulation will be done on this circuit.

39

3.2 The Circuit Design

The last step before the layout design is the circuit design. In fact, it is
difficult to separate the circuit and layout design processes because they are
intimately meshed. So it is useful to mention about both design phases
together. In the circuit design phase, the logic gates or blocks are designed
using transistors which are the primitive elements. Here transistors can be
thought as simple switches. Now the goal is to use minimum number of
transistors in realizing the circuit design. Because the chip area and power
consumption increase directly proportional with the transistor count.

There are various types of CMOS logic structures such as complementary
CMOS logic, pseudo-nMOS logic, dynamic CMOS logic, clocked CMOS logic,
CMOS domino logic, etc.. In designing the correlator chip, the complemen
tary CMOS logic has been used since the others have an increased design and
operational complexity and, possibly, decreased circuit stability [7].

In CMOS complementary logic, it is possible to merge several simple gates
into a complex gate performing the same function. For example, the single
compare cell has been designed in this way. The compare cell consists of an
EX-NOR gate and an OR gate as shown in Fig. 3.9. It has been designed in
the transistor level as shown in Fig. 3.13. As seen in the figure, it is realized
by using 10 transistors. If it is realized by implementing the EX-NOR with
simple gates, this number is approximately doubled. In the same way, full-
adders, half-adders, and carry generators are designed with transistor counts
less than that would be in standard methods. Thus a considerable number
of transistors are saved in the whole circuit.

The layout of the chip has been implemented by using 3-micron double
metal double-poly n-well CMOS technology by I. Enis Ungan [6]. For drawing
the layout and extracting the netlist. Magic layout editor has been used on
SUN workstations under the 4.3 BSD UNIX operating system. Magic is
a hierarchical layout editor with the features of circuit extraction, CIF file
generation, and on-line design rule checking [16]. The resultant chip [18] has
28 pins and contains approximately 15,000 transistors occupying a silicon
area of 5.6mm x 5.2mm.

40

s > -

SB > -

MB >-

R >-

RB > -

VDO

QPl QP2
S s|____

' 0

0 D

QP3
s s

D 0

QNl

0N2
D D

QK3

QM4

s s

D D

S S

QN5

6

s
vss

->CP

Figure 3.13: Transistor circuit of a compare cell.

41

4. DESIGN FOR TESTABILITY

VLSI has brought exciting increases in circuit density and performance capa
bility along with the decreases in gate costs. However it has also aggravated
the problem of testing. Testing is the problem of determining, in a cost-
effective way, whether a chip, module, board, or system has been manufac
tured correctly. A standard among people familiar with the testing process
is: if it costs $0.30 to detect a fault at the chip level, then it would cost $3
to detect that same fault at the board level; $30 when it is embedded at the
system level; and $300 when it is embedded at the system level but it has
to be found in the field. Thus if a fault can be detected at the chip level,
then significantly larger costs per fault can be avoided at subsequent levels
of packaging [19,20,21].

The circuit complexities, in terms of the number of gates, have increased
the cost of testing; however, this increase in cost arises not only from the size
of the circuit but also from the way in which the circuit has been designed,
that is, from the fact that emphasis has been placed during design phase on
the implementation of the function at the expense of consideration o f the
way in which the circuit would ultimately be tested. Regardless of the size
of the circuit, various factors make the testing process difficult. The first is
the inability to initialize memory elements in the circuit into some known
state independent of the present state. The second factor is the inability to
control or observe signal values on internal nodes in the circuit. Finally, the
realization of logic functions using pass transistors which do not map readily
onto equivalent gate models [23].

One general approach to addressing this problem is embodied in a collec
tion of techniques known as “ Design For Testability (DFT)” whose objective
is to reduce the cost of testing in general, by

• making internal nodes in a circuit more accessible';

42

• transforming sequential circuits into combinational circuits or decom
posing complex circuits into less complex sub-functions for the purposes
of testing;

• reducing the amount of test data which is needed to test the circuit.

There are two key concepts in Design For Testability: controllability and
observability. Control and observation of a circuit are central to implementing
its test procedure.

The collection of techniques that comprise Design For Testability are, in
some cases, general guidelines; in other cases, they are hard and fast design
rules. Although these design methodologies which improve the testability of
a circuit are highly desirable, ultimately they incur some penalty with re
spect to the effect upon the designer and the performance of the circuit. If a
particular design style adopted to ease the testing problem is chosen, it must
be easy to apply and not so constraining as to inhibit the flexibility of the de
signer. Furthermore, since most design for testability methods involve either
additional hardware and/or routing, the physical size of circuit increases and
subsequently has an effect on the yield. The additional hardware also intro
duces extra signal delays into the circuit which affect the performance of the
circuit. There can be also a requirement for extra input/output pins, increas
ing the cost of packaging. In view of these penalties it must be demonstrated
that a particular design style produces a marked reduction in test generation
costs with respect to CPU time and personal effort [23,22].

Designing for testability implies some modifications to the circuit to en
hance the process of test pattern generation and application. These tech
niques have been categorized into three main groups [20]:

1. ad hoc methods;

2. structured approaches;

3. built-in test methods.

4.1 Ad Hoc DFT Methods

Ad hoc methods evolved through the necessity to solve a particular testing
problem, rather than trying to solve the problem of testing complex circuits in

43

general by using some design methodology. The methods evolved can be clas
sified as test point insertion, pin amplification, blocking or degating logic for
partitioning, bus architecture, control and observation switching, test state
registers, and signature analysis [23,20]. Ad hoc methods for improving the
testability of a circuit have the advantage of not imposing severe constrains
on the designer but have the disadvantage that the methods cannot be au
tomated, and consequently there is no software support for these techniques
of designing for testability. In addition, these techniques solve the testing
problem for a given design and axe not generally applicable to all designs.

In designing the correlator chip, some ad hoc methods have been used
such as partitioning, pin amplification, and control and observation switch
ing. For partitioning, additional gates have been incorporated into the de
sign -to inhibit data flow along certain paths, thus dividing the circuit into
smaller subcircuits which are much more manageable for the purpose of test
ing. These subcircuits have not been necessarily designed with any design for
testability in mind. This approach is also called as “Divide and Conquer” .
In applying this method, address pins AO, A l, A2 and additional gates in
the controller have been used to control data flow among the modules thus
reducing the testing problem into dealing with the smaller modules.

Since the number of pins available for test purposes was minimal, the num
ber of test pins was increased by multiplexing of the normal input/output
pins to perform an additional function of acting as test inputs and outputs.
For example, the address pin A2 and the SYN output pin were utilized in
this direction. This technique is called as pin amplification. However, the
delays introduced by the multiplexers/demultiplexers would degrade the cir
cuit response under the normal operating conditions. For control and obser
vation switching technique signal lines whose logic values were either easily
controlled or observed have been identified in the circuit. And these have
been used in conjunction with demultiplexers/multiplexers to improve the
access to nodes, in close proximity to these lines, whose logic values were
difficult to control or observe. Test mode control inputs to the multiplex
ers/demultiplexers determine whether the lines, whose signal values can be
easily controlled or observed, are to be used for transmitting normal data or
test data.

In fact, the chip already has similar features with some other DFT meth
ods like bus architecture and test state registers. Because the chip is bus
structured with a data bus going to different modules on the chip and with
an address bus controlling the selection of these modules. Bus structured

44

architectures are successfully used in the partitioning problem. In addition,
the 128-bit shift register can be thought of as a test state register since it is
a serial input parallel output shift register which may be used to increase the
number of test control signals applicable to the circuit at any given time.

4.2 Structured DFT Approaches

In contrast to the ad hoc methods, the structured approaches to design for
testability are more formal and are incorporated into a design from the outset
rather than introduced as an afterthought as with the ad hoc methods. The
objective in developing the structured approach was to facilitate the testing of
complex circuits; consequently these approaches are directed at increasing the
controllability and observability of the internal states of the circuit, essentially
transforming the testing of a sequential circuit into the simpler task of testing
a combinational circuit. In other words most structured design approaches
are built upon the concept that if the values in all the latches can be controlled
to any specific value, and if they can be observed with a straightforward
operation then the test generation, and possibly, the fault simulation task,
can be reduced to that of doing test generation and fault simulation for a
combinational logic circuit [23,20].

Over the past years several structured approaches have evolved, namely
Level-Sensitive Scan Design (LSSD), Scan Path, Scan/Set, and Random Ac
cess Scan [23,20]. In design phase of the correlator chip level-sensitive scan
design approach has also been applied. LSSD which is an IBM’s discipline
for structural design for testability incorporates two design concepts namely
level sensitivity and scan path. “Scan” refers to the ability to shift into or
out of any state of the circuit. “Level-sensitive” refers to constraints on cir
cuit excitation, logic depth, and handling of clocked circuitry. The concept
of a level sensitive design requires that the operation of the circuit is inde
pendent of the dynamic characteristics of the logic elements, that is, rise and
fall times and propagation delays. Furthermore in a level sensitive design the
next state of the circuit is independent of the order in which changes occur
when a state change involves several input signals; this circuit characteristic
implicitly places a constraint on what signal changes can occur in the circuit,
these constraints however are usually applied to the clocking signals.

The major element in a level sensitive design is the “shift register latch”
(SRL) generally used to implement all storage elements in the circuit. The

45

TEST clock

Figure 4.1: Symbolic representation of a shift register latch.

shift register latch used in the correlator chip has been designed as shown in
Fig. 4.1. It consists of a simple master-slave flip-flop and an additional 2-to-l
multiplexer. Input D is the normal signal input to the SRL and SI is the scan
path input to the element. In LSSD applications the shift register latches are
driven by two nonoverlapping clocks which can be readily controlled from
the primary inputs to the circuit. But here only one clock signal is used to
control the normal operation of the element and movement of data through
the SRL when it is used as part of the scan path. And this clock signal is
controlled from a primary input pin of the chip.

In addition to providing a circuit response which is independent of delays,
the SRL play an important function in the testing of the circuit. Because
all the SRLs have the ability to be conflgured into a long serial shift register
called a “scan path” , which permits the internal states in the circuit to be
easily controlled or observed, access to each storage element in the circuit is
available via the scan path. Fortunately, the registers used in the correlator
circuit are already composed of shift register blocks but not single flip-flops.
Therefore the SRL shown in Fig. 4.1 is used only at the first stages of these
shift register blocks. For example, the logic diagram of the reference and
mask registers modified with respect to LSSD technique is shown in Fig. 4.2.
As it is seen, only 8 multiplexers are sufficient for making these registers
LSSD testable. The multiplexers are switched from the normal operation
mode to the test mode by using a test signal produced in the controller block
via decoding the address bus. In the test mode (i.e., TEST=1) the shift
register latches take their inputs from other latches instead of data bus. Also
both registers have a single scan input (SCI) and a single scan output (SCO).

Similarly, the threshold and status registers have been modified using
LSSD technique as shown in Fig. 4.3 and Fig. 4.4. As it is seen additional 8
multiplexers for threshold register and 5 multiplexers for status register are
needed. As in the reference and mask registers, these multiplexers switch
from normal operation to test mode according to the state of the TEST
signal. Again each register has a scan input and a scan output.

46

DO

D1

D7

TEST

WREF
o r WM

Figure 4.2: Level sensitive scan design of the reference/mask registers.

THRE2

SCI

DO

D7

wr

THREl

TEST SCO

Figure 4.3: Level sensitive scan design of the threshold register.

47

TEST SCO
Figure 4.4: Level sensitive scan design of the status register.

In order to complete the scan path, scan output of a register block has
been connected to the scan input of another register block as shown in the
Fig. 4.5. In this LSSD configuration four registers commanded as shown
act as a single serial shift register with a scan input (SCI of the reference)
and a scan output (SCO of the status). Here the reference register gets its
scan input from data bus line DO. This means that the scan path input
can be accessed from a primary input pin. To be able to observe the scan
path output, SCO of the status register has been multiplexed with the SYN
output of the decision maker block. Thus, in the test mode, the scan path has
a primary input and a primary output. In addition to these, the clocks of the
four registers constituting the scan path behave as a single clock whose state
depends on the fiP's write signal which is a primary input. Note that the 128-
bit shift register holding the incoming data for correlation is not included in
the scan path because it has already a primary input and a primary output.

48

Figure 4.5: LSSD configuration of the registers.

An important feature of the LSSD technique is that for the purposes of
testing, a large circuit is implicitly partitioned into smaller subcircuits, con
sisting entirely of combinational logic functions, by the shift register latches,
which will be instrumental in applying the test patterns to the combinational
blocks. And by using the scan path, future states can be set up independently
of the present state of the system and internal states can be easily observed.
It turns out that the circuit can now be thought of as purely combinational,
where tests are applied via primary inputs and register outputs. Therefore
the main advantages of the LSSD technique are that it removes the necessity
of performing detailed timing analysis on the circuit since it is level sensitive;
automatic test pattern generation is simplified since tests need only be gen
erated for a combinational circuit; and finally this technique is a disciplined
design methodology.

However, the LSSD technique has several disadvantages; first, the designer
is constrained to implement his system as a synchronous sequential circuit.
This condition is not important for the correlator circuit because it already
satisfies this constraint. Second, the shift register latches in the registers
are, logically, two or three times as complex as simple latches. But in the
correlator chip, although the SRL element shown in Fig. 4.1 is not used for all
register latches but only for 7 percent of them, it additionally contains only
a multiplexer subsequently having 4 transistors more than the other latches
which has 20 transistors. Third, additional input/output pins are required
for the scan-in/out ports and clocks. This overhead has also been totally
removed because the scan input and scan output are used also as functional
input and output of the chip. And the clock of the scan path is controlled by

49

the write signal of the microprocessor, consequently an extra pin on the chip
is not needed. Finally, test times are increased since the input and output
data must be scanned serially. Test times for the correlator can be reduced
significantly because the four registers in the scan path can also be loaded
from data bus in parallel instead of serially and there remains only observing
the states of the registers at the scan path output as serially.

As a result, all design for testability techniques applied to the correlator
chip has increased the overall transistor count by 1 % while improving the
testability of the chip considerably.

50

5. SIMULATIONS AND TESTING OF THE
CHIP

After the layout design has been completed, simulations of the chip had to be
done. Two types of simulations hcis been performed in the simulation part,
namely: functional simulation and timing simulation. The important thing
to mention is that both types of simulations has been carried out using the
layout design of the chip on SUN workstations.

5.1 Functional Verification

The purpose of the functional simulation is to verify whether the chip per
forms its various functions correctly not regarding the timing characteristics
such as rise and fall times or propagation delays of the elements. That is, by
such a simulation only operation of the chip can be checked with the speci
fied functions in the beginning of the design phase. This simulation has been
done by using an event driven switch level simulator for nMOS or CMOS
transistor circuits, ESIM [16]. The speed of ESIM is comparatively high: it
takes approximately 15 minutes to simulate the overall circuit for 5000 input
vectors.

In the functional simulation phase, first each block shown in the Fig. 2.3
has been simulated individually. To do this, separate input batch files con
taining the input vectors and ESIM commands to direct the simulation for
each block have been prepared and then these files have been given to ESIM
subsequently simulating the circuit and saving the results in the separate
output files for each block. In fact, the electrical circuit descriptions of these
blocks has been obtained by using the netlist extractor of Magic layout ed
itor. For example, the input batch file to ESIM for the controller block is

51

given below. As it is seen, first the circuit is initialized with an I command.
Here the w command describes the nodes to be watched in the circuit during
the simulation and the V command defines the input vectors to the circuit
in which the vectors consist of ones and zeros. The controller block has six
input nodes and all combinations of the states of these inputs are given in
the vectors. Now the circuit can be simulated and this is achieved by giving
a G command to ESIM. This command runs the simulator as long as the
longest vector and reports back the states of all the watched nodes as vec
tors succeedingly for every column of the input vector array. Finally, the q
command is used to terminate the simulation run.

I
w A2 A1 AO CS WR RD
w WRE WM WT WS RS RSH INT TEST
V A2 0000000000000000000000000000000011111111111111111111111111111111
V A1 0000000000000000111111111111111100000000000000001111111111111111
V AO 0000000011111111000000001111111100000000111111110000000011111111
V RD 01
V WR 0011001100110011001100110011001100110011001100110011001100110011
V CS 0000111100001111000011110000111100001111000011110000111100001111
G
q

After this input batch file has been created, ESIM has been invoked in
batch mode by such a command

esim cntl.sim -cntl.out cntl.in

where the file “cntl.sim” contains the circuit description, “cntl.in” file de
scribed above has the input vectors, and “cntl.out” is the output file to which
the simulation results will be written instead of the computer screen. The
results of this simulation saved in the output file “cntl.out” is given below.
The input node values are also listed as well as output nodes and as it is
seen the read and write signals (i.e., clocks) for registers and the test signal
is properly generated. Here the sign > represents the prompt of ESIM and
at the last row it gives some information such as the number of transistors
and the number of nodes in the whole correlator circuit.

52

>0000000000000000000000000000000011111111111111111111111111111111:A2
>0000000000000000111111111111111100000000000000001111111111111111:A1
>0000000011111111000000001111111100000000111111110000000011111111:AO
>0000111100001111000011110000111100001111000011110000111100001111:CS
>0011001100110011001100110011001100110011001100110011001100110011:Wll
>01:RD
>00000011001100000000:WRE
>00000000000000110000000000000000000000000000d0000000001100000000:WM
>0000000000000000000000110000000000000000000000000000001100000000:WT
>0000000000000000000000000000001100000000000000000000001100000000:WS
>0000000000000000000000000000010000000000000000000000000000000000:RS
>0000000000000000000000000000000000000100000000000000000000000000:RSH
>0011110000000000000000:INT
>00111100000000:TEST
14912 transistors, 8307 nodes (6 pulled up)

In a similar manner, all the other blocks have been simulated and then
the overall functional simulations of the correlator chip have been carried out
by using ESIM. The results of these simulations are given in Appendix A. In
one of the overall simulations, first the reference, mask, threshold, and status
registers have been loaded where the error tolerance in the threshold register
was zero, and then the input data which was exactly same as the reference
data has been loaded serially into the 128-bit shift register from SIN. In the
128’th cycle of the “CLK” input signal, the sync word has been detected at
the SYN output of the chip. Similar simulations have been performed for
inverted sync word detection and also for 256-bit correlation.

5.2 Timing Verification

The timing simulation has been divided into two steps in which SPICE and
RNL [17] simulators have been used. SPICE is a general-purpose circuit sim
ulation program for nonlinear dc, nonlinear transient, and linear ac analyses.
It has been used for the detailed and precise timing simulations of the small
sized layout cells having the number of transistors up to 300. The SPICE
simulations has been done by I. Enis Ungan [6]. RNL is a timing logic
simulator for digital MOS circuits. It is an event driven simulator that uses
a simple RC (resistance capacitance) model of the circuit to estimate node
transition times and the effects of charge sharing. This simulation program

53

has been used in the timing simulations of the large and complicated layout
d not be analyzed by using SPICE in a
process of the 128-bit reference registe:
'able 5.1.

time db W R reflast
50 O b l l l l l l l l 1 ObOOOOOOOO
100 O b l l l l l l l l 0 ObOOOOOOOO
150 O b l l l l l l l l 1 ObOOOOOOOO
200 O b l l l l l l l l 0 ObOOOOOOOO
250 ObOOOOOOOO 1 ObOOOOOOOO
300 ObOOOOOOOO 0 ObOOOOOOOO
350 ObOOOOOOOO 1 ObOOOOOOOO
400 ObOOOOOOOO 0 ObOOOOOOOO

1450 ObOOOOOOOO 1 ObOOOOOOOO
1500 ObOOOOOOOO 0 ObOOOOOOOO
1550 ObOOOOOOOO 1 ObOOOOOOOO
1600 ObOOOOOOOO 0 ObOOOOOOOO
1650 O b l l l l l l l l 1 O b l l l l l l l l
1700 O b l l l l l l l l 0 O b l l l l l l l l
1750 O b l l l l l l l l 1 O b l l l l l l l l
1800 O b l l l l l l l l 0 O b l l l l l l l l
1850 ObOOOOOOOO 1 ObOOOOOOOO
1900 ObOOOOOOOO 0 ObOOOOOOOO
1950 ObOOOOOOOO 1 ObOOOOOOOO
2000 ObOOOOOOOO 0 ObOOOOOOOO
2050 O b l l l l l l l l 1 O b l l l l l l l l
2100 O b l l l l l l l l 0 O b l l l l l l l l
2150 O b l l l l l l l l 1 O b l l l l l l l l
2200 O b l l l l l l l l 0 O b l l l l l l l l

Table 5.1: Timing simulation of the reference register.

Here some nodes are grouped as binary vectors. The vector “db” rep
resents the data bus and it stands for “db=D0 D1 D2 D3 D4 D5 D6 D7” .
The vector “reflast” represents the reference register outputs. These vector
definitions are done in the control file (./ file) of RNL with the command

(defvec ’(bin db DO D l D2 D3 D4 D5 D6 D7))

54

Since base of the vectors are chosen as binary in “defvec” command, they are
printed as binary numbers at the end of each simulation step. In the RNL
simulation results the first two characters, Ob, of the vectors indicate the base
(they would be 0 for octal. Ox for hexadecimal, and none for decimal).

In this RNL simulation of the reference register time is presented in terms
of nanoseconds (ns). So, every simulation step takes 50ns and the period of
the W R signal is chosen to be 100ns. As it is seen, after 16 write cycles, the
patterns given at the data bus appear at the reference register outputs.

In addition to the simulations of the blocks, also the timing characteristics
of the whole layout of the correlator has been checked for consistency with the
timings of the microprocessor. For instance, simulation results for the 128-bit
sync detection is shown in Table 5.2. In order to perform such a simulation,
the reference, mask, threshold, and status registers are loaded previously.
Then a serial input data is applied to the serial input (SIN) of the 128-bit
shift register. The aim is, first, to produce a sync pulse at SYNOUT and
then to produce an inverted sync pulse at INVOUT. Here the time values are
expressed in terms of nanoseconds. This simulation is carried out in steps
of 500ns and the clock period is 1000ns. This means that the correlation
frequency is IMHz.

As shown in Table 5.2, after 128 clock cycles, the data in the 128-bit shift
register correlates well with the content of the reference register and a sync
pulse is generated. After 256 clock cycles, the shift register data changes
wholly such that an inverted sync pulse is generated.

5.3 Test Pattern Generation (TPG) and Fault Simula

tion

In addition to the problems of verifying complex circuit designs prior to
fabrication, a second major issue in the design of VLSI circuits is that of
isolating faulty devices immediately after fabrication by means of testing.
The VLSI testing problem is the sum of a number of problems which relate
to the cost of doing business in the final analyses. There are two basic problem
areas:

1. test generation, ^

2. test verification via fault simulation.

55

time
40000
40500
41000
41500
42000
42500
43000

ab CLK SIN SOUT SYNOUT INVOUT
ObllO
ObOll
ObOll
ObOll
ObOll
ObOll
ObOll

1
1
0
1
0
1
0

0
1
1
1
1
1
1

0
0
0
0
0
0
0

0
0
0
0
0
0
0

0
0
0
0
0
0
0

165500 ObOll 1 1 0 0 0
166000 ObOll 0 1 0 0 0
166500 ObOll 1 1 0 0 0
167000 ObOll 0 1 0 0 0
167500 ObOll 1 1 0 0 0
168000 ObOll 0 1 1 0 0
168500 ObOll 1 1 1 1 0
169000 ObOll 0 1 1 1 0
169500 ObOll 1 1 1 1 0
170000 ObOll 0 1 1 1 0
170500 ObOll 1 0 1 1 0
171000 ObOll 0 0 1 1 0
171500 ObOll 1 0 1 0 0
172000 ObOll 0 0 1 0 0
172500 ObOll 1 0 1 0 0
173000 ObOll 0 0 1 0 0
173500 ObOll 1 0 1 0 0
174000 ObOll 0 0 1 0 0

295500 ObOll 1 0 1 0 0
296000 ObOll 0 0 1 0 0
296500 ObOll 1 0 1 0 0
297000 ObOll 0 0 1 0 0
297500 ObOll 1 0 1 0 0
298000
298500
299000
299500
300000

ObOll
ObOll
ObOll
ObOll
ObOll

0
1
0
1
0

0
0
0
0
0

0
0
0
0
0

0
1
1
1
1

0
1
1
1
1

Table 5.2: Timing simulation of the sync detection.

56

The problem with test generation is that as logic circuits get larger, the
ability to generate test patterns will become more and more difficult. Fault
simulation is that process by which the fault coverage is determined for a
specific set of input test patterns. In particular, at the conclusion of the fault
simulation, every fault that is detected by the given pattern set is listed.
However, it is a very time-consuming, and hence, expensive task. It has
been observed in the literature [20] that the computer run time to do test
generation and fault simulation is approximately proportional to the number
of logic gates to the power of 3; hence, small increases in gate count will yield
quickly increasing run times.

Test pattern generation methods are divided into two classes, namely
those which use the logic equations to generate test patterns and are referred
to as algebraic or functional methods and those which use topological gate
level descriptions for test pattern generation, referred to as the structural
methods. Although adequate test pattern generation methods exist for de
tecting faults in combinational circuits, the same cannot be said for sequential
circuits. The major difficulty is that the output response of a sequential cir
cuit depends not only on the present input values but also on the stored states
in the circuit. Therefore in order to detect a fault in a sequential circuit a
series of test vectors must be applied, rather than a single test vector as in
the combinational circuit [23,25].

Fault simulators are used extensively to predict the behavior of the cir
cuit under fault conditions. As circuit complexities increased efficient fault
simulation techniques were developed: (1) parallel fault simulation, (2) de
ductive fault simulation, and (3) concurrent fault simulation [23]. In fact,
fault simulations are performed in conjunction with automatic test pattern
generation programs: first to determine the overall fault coverage of a set of
test vectors; second, to determine what other faults a given test vector will
detect, since the generation of a test for a fault condition is a time-consuming
process, so that when a test vector is generated a fault simulator is used to
determine what other faults the test will detect, since this is considered more
economical than test vector generation.

Test pattern generation methods have been directed at generating test
patterns to detect faults with the use of fault models. That is, test pattern
generation began with the concept of fault models [26,27]. A model of faults
which does not take into account all possible defects, but is a more global
type of model, is the stuck-at model. The stuck-at model being the most
common one assumes that a logic gate input or output is fixed to either a

57

logic zero or a logic one. As stated, not all defects which occur in present-
day integrated circuits can be modeled with a stuck-at-fault model. Some
examples of the faults that cannot be modeled by stuck-at model are shorted
or open interconnections which change the logical function of the circuit: for
example, a short circuit between two signal lines may introduce an asyn
chronous feedback loop into a section of combinational circuitry, or in the
case of CMOS circuits a simple NOR gate in the presence of a stuck-open
fault is transformed into a logic function which has a ‘memory’.

For the correlator circuit test patterns were generated via computer by
using the existing fault models and known techniques. Mainly, bridging faults
(shorts) and stuck-at faults were taken into consideration related with chip
layout. Since there weis a tight interaction with the layout, the location of
possible shorts between the interconnections could easily be seen. As men
tioned in the previous chapter, LSSD technique was applied in designing the
correlator circuit. A feature of this design technique is that for the purposes
of testing, a large circuit can be partitioned into smaller subcircuits, consist
ing entirely of combinational logic, by the blocks of shift register cells which
are implicit in the LSSD style of design. These shift register blocks are in
strumental in applying the test inputs to the subcircuits; consequently the
registers must be tested first for possible faults before testing can begin on
the combinational subcircuits. The tests performed on the registers comprise
a ‘flush’ and a ‘shift’ test; that is, clocking blocks of I ’s and O’s or a pattern
001100, which checks all combinations of initial and next states through the
registers, which can be concatenated into a single serial shift register. Of
course, this testing of the registers was performed in the test mode of the
chip in which a scan path was formed. The test patterns were applied to
the scan path input (SCI of the reference register), producing a one-stage
shift along the registers for every write cycle of the microprocessor, and the
resulting pattern was then scanned out of the registers from scan path output
(SCO of the status register). As it is clear, testing of the registers is very
easy, however, the input and output data must be handled serially.

The number of test vectors necessary for testing of the comparator block
was also very small: 8. This is because all the 128-bit outputs of it were
independent of each other. But in order to apply these test vectors to inputs
of the comparator block, one must load first the reference, mask, and 128-bit
shift registers because the comparator inputs can only be accessed through
these registers and it takes some time. Then comes the testing of the I ’s
counter block which is a large combinational circuit having the 30 percent of
overall transistor count in the chip. The logic diagram of the I ’s counter is

58

shown in Fig. 3.10. This block has 128 inputs and it is impossible to either
generate or apply all the combinations of input values (2̂ ®̂). Therefore it was
carefully analyzed and as a result it was observed that there are independent
paths between the inputs and outputs. In other words, it has seven stages
from half-adders to seven-bit adder where all the inputs entering to these
stages can be controlled directly by accessing to the comparator outputs. To
do this, 128-bit shift register and mask register must be loaded with all I ’s
and with all O’s, respectively, so that the contents of the reference register
could reach to the comparator outputs thus having the ability to control the
I ’s counter inputs through the data bus. The outputs of I ’s counter can be
observed from the primary output pins, C0-C7, of the chip.

Here it is convenient to mention that the I ’s counter is tested functionally.
Now, we assume a single stuck-at fault or bridging fault in this block. This
is called as the single stuck-at fault model. Then the whole process of testing
the I ’s counter block proceeds as follows: it is started by testing of the half
adders at the first stage. A half-adder has two inputs whose combinations are
2̂ = 4. Since the inputs of each half-adder are independent of those of others,
64 half-adders can be tested by using only 4 test vectors which are 00, 01, 10,
and 11. When these vectors are applied in this order to the input of every
half-adder, the value of 8-bit output of I ’s counter must be 0, 64, 64, and 128.
If the I ’s counter output deviates from these numbers then this means that
there is a faulty half-adder at the first stage. At the second stage there are
two-bit full-adders whose inputs are connected to outputs of the half-adders
at the first stage. Now let’s think about a single two-bit full-adder at the
second stage. It performs the addition of 2 two-bit numbers whose values
can be 0, 1, or 2. So the combinations of the input values of a two-bit adder
is 3̂ = 9. This means that all the two-bit adders can be tested functionally by
using only 9 test vectors shown in Table 5.3 with the corresponding numbers
which must be at the I ’s counter output. As stated before, the inputs of
these adders can be controlled from the I ’s counter inputs. Note that every
two-bit adder is manipulated independent of the others.

The test vectors for three-bit full-adders at the third stage of the I ’s
counter is found similarly. If a three-bit adder is considered alone, it adds
2 three-bit numbers whose values can range between 0 and 4, thus having
5̂ = 25 combinations as shown in Table 5.4 with the corresponding numbers
that must be seen at the I ’s counter output. Therefore all the three-bit adders
can be tested by using these 25 test vectors. In a similar manner other stages
can be tested too. Consequently, the number of test vectors needed to test

59

A2 Al B2 B1 counter output
0

32
64
32
64
96
64
96
128

Table 5.3: Test vectors for two-bit full-adders.

each stage in the I ’s counter is shown in the Table 5.5. However there are
some overlaps among the test vector sets for the stages. That is, certain
vectors may be used for testing of more than one stage and so they are
considered more than once but these vectors can be eliminated easily.

For testing process of the I ’s counter two programs have been written
in C programming language using the techniques mentioned above. One of
the programs called gen generates all the test vectors for the I ’s counter
block in the format of the ESIM functional simulator. That is, the test
vectors generated by this program can be simulated on the I ’s counter using
ESIM. This program also calculates the actual outputs of the I ’s counter
corresponding to each test vector. So we know what the I ’s counter output
must be while applying the test vectors using ESIM and subsequently we
have the chance to check the simulation results. The program gen writes the
generated test vectors and the calculated actual outputs for each stage of the
I ’s counter into different files. For example, ‘Tcount.vecl’ , ‘Tcount.outl’ and
‘Tcount.vec2’ , ‘Tcount.out2’ files are created by this program for the first and
second stages, respectively.

The second program called check compares the actual outputs of the I ’s
counter produced by the first program with the ESIM simulation outputs for
the I ’s counter. If there is a difference between these two outputs, this pro
gram finds the difference and gives information about which stage is faulty
with the test vector causing the problem. Thus, by using these two programs,
gen and check, first all the test vectors for the I ’s counter have been gener
ated as well as the actual outputs and these vectors have been applied to the

60

A3 A2 A1 B3 B2 B1 counter output
0 0 0 0 0 0 0
0 0 0 0 0 1 16
0 0 0 0 1 0 32
0 0 0 0 1 1 48
0 0 0 1 0 0 64
0 0 1 0 0 0 16
0 0 1 0 0 1 32
0 0 1 0 1 0 48
0 0 1 0 1 1 64
0 0 1 1 0 0 80
0 1 0 0 0 0 32
0 1 0 0 0 1 48
0 1 0 0 1 0 64
0 1 0 0 1 1 80
0 1 0 1 0 0 96
0 1 1 0 0 0 48
0 1 1 0 0 1 64
0 1 1 0 1 0 80
0 1 1 0 1 1 96
0 1 1 1 0 0 112
1 0 0 0 0 0 64
1 0 0 0 0 1 80
1 0 0 0 1 0 96
1 0 0 0 1 1 112
1 0 0 1 0 0 128

Table 5.4: Test vectors for three-bit full-adders.

s tg l stg2 stg3 stg4 stg5 Stg6 stg7 TOTAL
4 9 25 81 289 1089 4225 5722

Table 5.5: The number of test vectors for stages in the I ’s counter.

61

I ’s counter by means of ESIM, finally a check between ESIM outputs and the
actual outputs has been done. Consequently, the I ’s counter has been tested
exhaustively by using 5722 test vectors. The two programs and example files
are given in Appendix B.

As a result all the registers and a significant part of the combinational
circuitry in the correlator chip has been tested using the extracted netlist
from the layout. The testing of the registers and the comparator block was
easy with a small number of test vectors. However, for testing of the I ’s
counter and the 8-bit adder the number of test vectors needed was somewhat
large, about 6000. But this number can be reduced considerably by doing a
fault simulation using the generated test vectors. Finally, with respect to the
ratio of the number of transistors or number of nodes in the part of the chip
that can be tested to the whole chip, the expected fault coverage of the test
patterns generated is 95 percent.

62

6. CONCLUSION

A microprocessor compatible 128-bit digital correlator has been designed to
be implemented as a full-custom single VLSI chip. This work has been jointly
carried on with I. Enis Ungaxi. The details of the circuit and layout designs
and SPICE simulations can be found in [6].

The chip is to be placed in a microprocessor (/iP) based portable data
terminal using HE radio communication. It meirks the beginning of a syn
chronous data stream received from the very noisy channel by detecting a
synchronization (sync) word. It can detect sync words of length up to 128-bits
but two chips can be cascaded to make a 256-bit correlator. The sync word
can be detected for either inverted or non-inverted incoming data streams.
The correlator is fully programmable by a microprocessor to set the number
of tolerable errors in detection and to select the bits of the 128-bit (or 256-
bit) data stream to be included in the correlation. The latter feature makes
the chip capable for use in detection of distributed sync words and PRBS
generation.

The digital correlator compares, bit-by-bit, a given data sequence of bi
nary digits against a standard (correct) sequence. If these two binary se
quences are derived from different sources, the operation is cross-correlation.
In contrast, auto-correlation is the comparison of a single binary sequence
against a time-shifted copy of itself. The chip fits many of the correlator ap
plications which include: detection of differences between two data sequences,
determination of the time, delay between two similar signals, correction of er
rors in expanded-code data streams, multiplexing of data among several users,
recognition of specified patterns within an incoming data stream, synchro
nization of a decoding process or analyzer with an incoming data stream,
identifying periodicities within a data stream, and extracting a periodic sig
nal from its random noise back-ground. In addition to these, it could be used
in the automated testing of digital circuits, in principle.

63

While designing the correlator chip some “Design For Testability (DFT)”
methods, especially scan design and partitioning techniques, have been used.
These methods have increased the testability of the chip significantly resulting
in an easy way of test generation and fault simulation although they have
involved very small additional logic such as an overhead in the transistor
count only by 1 percent. The chip contains approximately 15,000 transistors
occupying a silicon area of 5.6mmx 5.2mm and it has 28 pins.

Two types of simulations, functional and timing simulations, has been
performed on the chip layout by using ESIM and R N L simulators, respec
tively. Test patterns for the registers have been generated manually and for
testing of the combinational part, two programs gen and check have been
written in C programming language. The test patterns and the correct out
puts for the combinational circuitry have been generated by using the first
program and these test vectors have been simulated against the layout using
ESIM. Then the second program has been used to check for any difference
(i.e., fault) between the correct outputs and the ESIM outputs. In the re
sult, approximately 6000 test vectors have been generated and applied to the
correlator chip with an expected fault coverage of 95 %.

64

REFERENCES

[1] R. A. Williams, Communication Systems Analysis and Design - A Sys
tems Approach, Prentice-Hall, New Jersey, 1987.

[2] J. Eldon, Correlation: A Powerful Technique for Digital Signal Process

inĝ TRW LSI Publication, TP17B-4/81.

[3] G. R. Cooper and C. D. McGillem, Modern Communications and Spread
Spectrum, McGraw-Hill, 1986.

[4] K. Ramachandran and R. R. Cordell, “A 30 MHz Programmable CMOS
Video FIR Filter and Correlator” , in Proc. of ISCAS’88, pp. 705-708,
1988.

[5] I. E. Ungan, S. Topcu, and A. Atalar, “VLSI Implementation of a Mi
croprocessor Compatible 128-bit Programmable Correlator” , in Proc. of
Third Inter. Symp. on Comp. Inf or. Sci., Çeşme, Izmir, Turkey, pp.
791-797, 1988.

[6] I. Enis Ungan, VLSI Implementation of a Microprocessor Compatible
128-bit Programmable Correlator, M.S. Thesis, Bilkent University, May
1989.

[7] N. Weste and K. Eshraghiaxi, Principles of CMOS VLSI Design, Reading
MA: Addison-Wesley, 1985.

[8] L. A. Glasser and D. W. Dobberpuhl, The Design and Analysis of VLSI
Circuits Addison-Wesley, 1985.

[9] C. Mead and L. Conway, Introduction to VLSI Systems. Reading, MA:
Addison-Wesley, 1980.

65

[10] M. J. Foster and H. T. Kung, “The Design of Special-Purpose VLSI
Chips” , IEEE Computer, pp. 26-40, Jan. 1980.

[11] R. D. Davies, “The Case for CMOS” , IEEE Spectrum, pp. 26-32, Oct.
1983.

[12] E. Hörbst, C. Mûller-Schloer, and H. Schwartzel, Design of VLSI Circuits
- Based on VENUS, Springer-Verlag, Heidelberg, 1987.

[13] M. Ş. Toygar, Design and Computer Simulation of a Microprocessor
Compatible Correlator, B.S. Project, Middle East Technical University,
1987.

[14] S. Topcu, I. E. Ungan, Ş. Toygar, and A. Atalar, “Design and testing of
a microprocessor compatible 128-bit correlator,” in Proc. of Third Inter.
Symp. on Comp. Infor. Sci., Çeşme, Izmir, Turkey, pp. 798-804, 1988.

[15] M. M. Mano, Digital Design, Prentice-Hall, 1979.

[16] Berkeley CAD Tools User’s Manual, EECS Dep., University of California
at Berkeley, 1986.

[17] VLSI Tools Reference Manual, TR^87-02-01, Release 3.1, NW Lab. Int.
Sys., Dep. Computer Sci., University of Washington, Feb.1987.

[18] i. E. Ungan, S. Topcu, and A. Atalar, “A 128-bit Microprocessor Com
patible Programmable Correlator Chip for Use in Synchronous Commu
nication” , in Proc. of Third Annual European Computer Conf. on VLSI
and Computer Peripherals, Hamburg, West Germany, pp. 5.146-5.147,
May 1989.

[19] T. W. Williams, “VLSI Testing” , IEEE Computer, pp. 126-136, Oct.
1984.

[20] T. W. Williams and K. P. Parker, “Design for Testability-A Survey” ,
Proc. IEEE, vol. 71, no. 1, pp. 98-112, Jan. 1983.

[21] T. W. Williams and K. P. Parker, “Testing Logic Networks and Design
ing for Testability” , IEEE Computer, pp. 9-21, Oct. 1979.

[22] F. F. Tsui, LSI/VLSI Testability Design, McGraw-Hill, 1987.

6 6

[23] G. Russell, D. J. Kinniment, E. G. Chester, M. R. McLauglan, CAD for
VLSI, Van Nostrand Reinhold, England, 1985.

[24] R. J. Feugate and S. M. McIntyre, Introduction to VLSI Testing,
Prentice-Hall, New Jersey, 1988.

[25] S. K. Jain and V. D. Agrawal, “Modeling and Test Generation Algo
rithms for MOS Circuits” , IEEE Trans. Comput, vol. C-34, no. 5, pp.
426-433, May 1985.

[26] J. A. Abraham and W. K. Fuchs, “Fault and Error Models for VLSI” ,
Proc. of IEEE, vol. 74, no. 5, pp. 639-654, May 1986.

[27] S. A. Al-Arian and D. P. Agrawal, “Physical Failures and Fault Models
of CMOS Circuits” , IEEE Trans. Circuits and Systems, vol. CAS-34,
no. 3, pp. 269-279, March 1987.

67

APPENDIX A

FU N CTIO N A L SIM ULATION RESULTS OF THE
CORRELATOR CHIP

In this appendix two example simulation results are presented; one for
simulation of the registers and one for simulation of the sync detection. These
results given are the output files created by ESIM. The input files to ESIM,
not shown here, are prepared as described in the section 5.1. There is one
thing to note that the input vectors as well as output vectors are given in
the following results. The symbol X in the output vectors represents an
undefined state. Also notice that the lines beginning with vertical bar (|) are
treated as comments and ignored by ESIM.

Simulations of the Registers

Here the shift, reference, mask, threshold, and status registers are simu
lated with the input vectors described in the section 5.3. Since ESIM runs
two simulation steps for a clock cycle, these input vectors are chosen as the
pattern 000011110000. In addition the watched nodes are described by the
corresponding label in the layout after a sign. For the reference, mask,
and threshold registers it is sufficient to watch only eight nodes because they
consist of shift register blocks.

initialization took 19654 steps
initialization took 64 steps
initialization took 7 steps
initialization took 0 steps

*** LOAD THE STATUS REGISTER ***

CS=0 A2=0 A l= l A0=1
>000011110000:D0
>000011110000:D1
>000011110000:D2
>000011110000:D3
>000011110000:D4
>010101010101:WR

6 8

>000001111000:CLEAR
>100001111000:SOE
>100001111000:PRBS
>X00001111000:M|S
>100001111000:WSH
|+*=t=
I*** READ THE STATUS REGISTER *+*
I
CS=0 A2=0 A l= l A0=1
>000011110000:SYNOUT
>000011110000:INVOUT
>000011110000:CLK
>010101010101:RD
>000011110000:D0
>000011110000:D1
>000011110000:D2
I***

LOAD THE THRESHOLD REGISTER **+
I***

CS=0 A2=0 A l= l A0=0
>000011110000111100001111:D0
>000011110000111100001111:D1
>000011110000111100001111:D2
>000011110000111100001111:D3
>000011110000111100001111:D4
>000011110000111100001111:D5
>000011110000111100001111:D6
>000011110000111100001111:D7
>010101010101010101010101:WR
>100000011110000111100001:thdm_0/B0
>111111100001111000011110:thdm.0/BlB
>000000011110000111100001 :thdm-0/B2
>111111100001111000011110:thdm.0/B3B
> 10000001111000011110000 l:thdm-0/B4
>111111100001111000011110:thdm.0/B5B
>100000011110000111100001:thdm.0/B6
>111111100001111000011110:thdm.0/B7B

69

1**̂ = LOAD TH E M ASK REGISTER **+

I***
C S = 0 A 2 = 0 A 1 = 0 A 0 = 1

>000011110000111100001111000011110000111100001111:D0

>000011110000111100001111000011110000111100001111:D1

>000011110000111100001111000011110000111100001111:D2

>000011110000111100001111000011110000111100001111:D3

>000011110000111100001111000011110000111100001111:D4

>000011110000111100001111000011110000111100001111:D5

>000011110000111100001111000011110000111100001111:D6

>000011110000111100001111000011110000111100001111:D7

>01:W R

>011000000000000000000000000110000001111000011110:im x21_14/B

>100000000000000001100110000111100001111000011110:im x21.8/B

>000000011110000110000000011000000001111000011110:rm x21.10/B

>000110011110000000000001100000000001111000011110:nux21-0/B

>000111111001111000000001111000000001111000011110:nux21.2/B

>111000000001100000000000000000000001111000011110:im x21.7/B

>000001100000000000000001111001100001111000011110:im x21.5/B

>100000000000000001111000000110000001111000011110:M OUT

I***
1+** LOAD TH E REFERENCE REGISTER ***

I***
C S = 0 A 2 = 0 A 1 = 0 A 0 = 0

>000011110000111100001111000011110000111100001111:D0

>000011110000111100001111000011110000111100001111:D1

>000011110000111100001111000011110000111100001111:D2

>000011110000111100001111000011110000111100001111:D3

>000011110000111100001111000011110000111100001111:D4

>000011110000111100001111000011110000111100001111:D5

>000011110000111100001111000011110000111100001111:D6

>000011110000111100001111000011110000111100001111:D7

>01:W R

>000111100000000000000000000111100001111000011110:nux21.15/B

>100000011110000001111000000111100001111000011110:rm x21.9/B

>000111100000000110011000011111100001111000011110:im x21.11/B

>111000011000000111100000000001100001111000011110:im x21-l/B

70

>00011110011111100000000001111XX00001111000011110:mix21-3/B
>11100000011111100000011000000XX00001111000011110:imx21.6/B
>000001111110000000011111100001100001111000011110:mix21-4/B
>100111100001100001111110000111100001111000011110:IDUT

I*** LOAD THE SHIFT REGISTER ***
I***
CS=0 A2=l A1=0 A0=0
>010
101
010
101
OliCLK
>00001111000011110000111100001111000011110000111100001111000011110000111
1000011110000111100001111000011110000111100001111000011110000111100001111
0000111100001111000011110000111100001111000011110000111100001111000011110
0001111000011110000111100001111000011110000111100001111000011110000111100
0011110000111100001111000011110000111100001111:SIN
>11XX111111111111
llXXllllllllllllllllllll
llllllllllXXllllllllllllllllllllllllllllllXXlllllllllllllllllllllllllll
lllllllllllllllllllllllllllllllllllXXllllllOOllllOOOOllllOOOOllllOOOOlll
100001111000011110000111100001111000011110000111100:SOUT
14912 transistors, 8307 nodes (6 pulled up)

Simulation of the Sync Detection

In this part the reference, mask, and status registers are loaded with
all zeros and the threshold register is loaded by a pattern such that the
error tolerances axe zero in both THREl axid THRE2. Then the 128-bit
shift register is loaded, first, with all zeros and then with all ones. Thus a
noninverted sync and an inverted sync pulses axe detected at the SYNOUT
and INVOUT nodes.

initialization took 19654 steps
initialization took 64 steps
initialization took 7 steps

71

initialization took 0 steps

I*** LOAD THE STATUS REGISTER

CS=0 A2=0 Al = l A0=1
>01:WR
>00:CLEAR
>10:SOE
>10:PRBS
>X0:M|S
>10:WSH
I***

LOAD THE THRESHOLD REGISTER **+
I++*
CS=0 A2=0 A l= l A0=0
>0101:WR
>1000:thdm.0/B0
>llll:thdm_0/BlB
>0000:thdm_0/B2
>llll:thdm.0/B3B
>1000:thdm_0/B4
>llll:thdm.0/B5B
>1000:thdm.0/B6
>llll:thdm.0/B7B
I***
1*++ LOAD THE MASK REGISTER ***
I+++
CS=0 A2=0 A1=0 A0=1
>0101010101010101010101010101010101:WR
>0110000000000000000000000001100000:mix21.14/B
>1000000000000000011001100001111000:imx21.8/B
>0000000111100001100000000110000000:imx21_10/B
>0001100111100000000000011000000000:mix21.0/B
>0001111110011110000000011110000000:rmx21.2/B
> 1110000000011000000000000000000000:imx21 -7/B
>0000011000000000000000011110011000:imx21_5/B
> 1000000000000000011110000001 lOOOOOrMOUT

72

I*** LOAD TH E R EFER ENCE R EGISTER ***

|=f**
C S = 0 A 2 = 0 A 1 = 0 A 0 = 0

>0101010101010101010101010101010101:W R

>0001111000000000000000000001111000:im x21.15/B

>1000000111100000011110000001111000:m ix21_9/B

>0001111000000001100110000111111000:m ix21.11/B

>1110000110000001111000000000011000:im x21.1/B

>00011110011111100000000001111XX000:im x21.3/B

>11100000011111100000011000000XX000:rm x21-6/B

>0000011111100000000111111000011000:m ix21.4/B

>1001111000011000011111100001111000:IiOUT

I+++ LOAD TH E SHIFT REGISTER AN D OBSERVE TH E SYNC PULSES *+*

1 + !*: +
C S = 0 A 2 = l A 1 = 0 A 0 = 0

>10
10
10
10
10
10
10
10101010101010101010:CLK

>00
00
00
00111111111111111111111111111111
11
11
11
11111111110000000000:SIN

>111XX11111111

llXXlllllllllllllllll
lllllllllllllXXllllllllllllllllllllllllllllllXXlllllllllllllllllllllll
lllXXllOOOOOOOOOOOOOOOOOOOOOOOOOO
00

73

00
00
0000000000000011111111111:SOUT
>XXX
x x

x x

x x x x x x x x x x x x x x x o o o o o o o o o o o o o o o o x x x x x x x x x x x x x x x x o o o o o o o o o

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOXXXXXXXXXXXXXXXXOOllOOOO
000
000
000
00000000000000000000000000000000000001100000000:SYNOUT
> x

x x

x x

x x x x x x x x x x x x x x x o o o o o o o o o o o o o o o o x x x x x x x x x x x x x x x x o o o o o o o o o

o x x x x x x x x x x x x x x x x o o o o o o o o

000
000
000
o i i o o o o o o o o : i N \ o u T

14912 transistors, 8307 nodes (6 pulled up)

74

APPENDIX B

TEST PATTERN G ENERATOR AN D OUTPUT
CH ECK ER PROGRAM S FOR THE I ’S COUNTER

BLOCK

In this appendix two programs, gen and check, written in C language
are presented. One of these programs generates the test vectors and the
correct outputs corresponding to these vectors for the I ’s counter combina
tional block. After an ESIM simulation is performed on the I ’s counter using
the vectors generated, the other program checks for any difference between
the correct outputs and the ESIM outputs. If there is a difference between
these two outputs (e.g. fault in the I ’s counter block), it also gives some
information useful for making diagnostic.

75

Test Pattern Generator Program

#include <stdio.h>
#define MAXSTG 7
#define MAXROW 128
#define MAXCOL 4225

int VARRAY[MAXROW][MAXCOL] ;

mainO
{

char *FILE1,*FILE2;
int n,x,y;

printf(
printf(
printf(
printf(
printf(
printf(
printf(
printf(
printf(
printf(
FILE1=‘
FILE2=‘

‘ ♦̂♦♦ ***\n");
Test vector generator program ***\n") ;

‘ ***\n");
‘‘ < gen > ***\n");
‘‘**♦ ***\n");

‘'M! wait...\n");
‘Tcount.vecl";
'Tcount.outl";

}

for(n=l;n<=MAXSTG;n++)
{

x=power(2,n);
y=power((x/2+l),2);
printf(''<< Executing stage */ild >>\n",n);
genvec(n,x,y,FILEl,FILE2);
♦(FILEl+10) +=1;
♦(FILE2+10) +=1;

genvec(n,x,y,FILEl,FILE2)
char *FILE1,*FILE2;
int n,x,y;
{

int i,j ,k=0,m=0,CNT;
FILE *fopen(),*fp;
/♦** INITIALIZE VECTOR ARRAY ♦*♦/
for(i=0;i<x;i++)

for(j=0;j<y;j++)
VARRAY [i] [j]=0;

76

/ * * * WRITE TEST VECTORS INTO VECTOR ARRAY * * * /
for(j=0;j<y;j++)
{

for(i=0;i<m;i++)
VARRAYCi] [j]=l;

k=k+l;
if (k==(x/2+D)

k=0;
in=m+l;

}
}
for(k=0;k<y;k=k+(x/2+D)

m=(x/2); .
for(j=k;j<k+(x/2+l);j++)
{

for(i=(x/2);i<m;i++)
VARRAYEi] Cj]=l;

m=m+l;
}

}
/**♦ WRITE VECTOR ARRAY INTO A FILE ***/
if(n==7)
{

printfC‘‘Generating vectors for */ld-bit adder.
FILE1=‘‘Tcount.vecYl";
for(m=0;m<y;m=m+(y/5))
{

fp=fopen(FILEl,“ w");
fprintf(fp,‘‘N");
for(i=0;i<128;i++)
{

fprintf(fp,‘‘\nV srmc_0/CP%ld ",i);
for(j=m;j<m+(y/5);j++)

fprintf (fp, ‘ ‘*/,ld" ,VARRAY[i] [j]) ;
}
fprintf(fp,‘‘\nG\n");
fclose(fp);
if(*(FILE1+11)==9)
{

*(FILE1+11)=1;
*(FILE1+10)+=1;

}
else

♦(FILEl+11) +=1;
>

An" ,n) ;

77

e l s e

{

}

printf (‘‘Generating vectors for */.ld-bit adders ... \n" ,n) ;
fp=fopen(FILEl,‘‘w");
if(n==l)
{

fprintf(fp,‘‘I\nl\nl\nl\n");
fprintf(fp, “ w 7.0 7.IB 7.2 7.3B 7.4 7.5B 7.6 7.7B");

}
else

fprintf(fp,‘‘N");
k=0;
for(i=0;i<128;i++)

fprintf (fp, ‘‘\nV srmc_0/CP'/,ld ",i);
for(j=0;j<y;j++)

fprintf (fp, ‘ “/.ld",VARRAY[k] [j]) ;
k=k+l;
if(k==x)

k=0;
}
fprintf(fp,‘‘\nG\n");
fclose(fp);

/*♦* WRITE ACTUAL OUTPUTS INTO A FILE ♦♦♦/
if(n==7)
■c

printf(‘‘Calculating outputs for */,Id-bit adder. . .\n",n) ;
FILE2= “ Tcount.out71";
for(m=0;m<y;m=m+(y/5))

fp=fopen(FILE2,‘‘w");
for(j=m;j<m+(y/5);j++)
{

CNT=0;
for(i=0;i<x;i++)

CNT=CNT+VARRAY[i][j];
CNT=CNT*(128/x);
fprintf(fp,‘‘%3d ",CNT);

}
fprintf(fp,‘‘\n");
fclose(fp);
if(*(FILE1+11)==9)
{

*(FILE1+11)=1;
*(FILE1+10)+=1;

}

78

else
♦(FILE2+11) +=1;

}
}
e l s e

{
printf(‘‘Calculating outputs for */,ld-bit adders.
fp=fopen(FILE2,‘‘w");
for(j=0;j<y;j++)

CNT=0;
for(i=0;i<x;i++)

CNT=CNT+VARRAY[i][j];
CNT=CNT*(128/x);
fprintf(fp/“/,3d ",CNT);

}
fprintf(fp,‘‘\n");
fclose(fp);

, \n",n);

}

power(x,n) /* raise x to n-th power; n>0 */
int x,n;
{

int p;
for(p=l;n>0;— n)

p=p*x;
return(p);

}

79

Output Checker Program

#include <stdio.h>
#define MAXSTG 7
«define MAXCOL 4225

mainO

char +FILE1,+FILE2,*FILE3;
int y,n,m;

printf(
printf(
printf(
printf(
printf(
printf(
printf(
printf(
printf(
printf(

***\n")
Output checker progreuti ***\n")

***\n")
< check > =«**\n")

***\n")
)|c:i<5*eiic +)*£:+: +)ic)ic5K5|c5|c :f:5|c5je5f: + : 4 c i(c*\n‘')

' " + + :|c:4c:4c:4c:tc:4c*****54e:4c:4o4c + :|e:|c:4e:|c:4c:4e:4o|e + :4c:4c + :4c:4c\];̂'’) ·
'"!!! wait...\n");

FILEl="Tcount.esiml";
FILE2="Tcount.outl";
FILE3="Tcount.errl";
for(n=l;n<=MAXSTG;n++)
{

y=power((power(2,n)/2+l),2);
if(n==7)
{

printf("<< Executing for y,Id-bit adder >>\n",n);
y=y/5;
FILEl="Tcount.esim71";
FILE2="Tcount.out71";
FILE3="Tcount.err71";
for(m=l;m<=5;m++)
{

printf ("— Tcount. esim7yid — ",ni);
checkerCy,FILE1,FILE2,FILE3);
♦(FILEl+12) +=1;
♦(FILE2+11) +=1;
♦(FILE3+11) +=1;

}
>
else

printf("<< Executing for Xld-bit adders >>\n",n);
checkerCy,FILEl,FILE2,FILE3);
*(FILE1+11) +=1;

80

\setlength-C\baselineskipH5min}
*(FILE2+10) +=1;
♦(FILE3+10) +=1;

}
}

}

checker(y,FILEl,FILE2,FILES)
char *FILE1,*FILE2,*FILE3;
int y;
{

char c;
int i,j ,k ,n ,CNT,SUM,ERR[MAXCOL],ARRAY[8][MAXCOL];
FILE *fopen(),*fp;

INITIALIZE ARRAY ***/
for(i=0;i<8;i++)

for(j=0;j<MAXC0L;j++)
ARRAY [i] [j]=0;

/♦** WRITE ESIM OUTPUTS INTO ARRAY ***/
fp=fopen(FILEl,"r");
if(fp!=NULL)

printf("Reading esim outputs...\n");
fscanf(fp,"Xc",&c) ;
while(c !=’> ’)

f scanf (fp, "*/(c" ,&c) ;
for(i=0;i<=8;i++)
-C

for(j=0;j<y;j++)
{

f scanf (fp, ,&n) ;
ARRAY [i] [j]=n;

}
if(i !=8)

fscanf (fp,"*/,c",&c) ;
while(c !=’>’)

f scanf (fp, "*/,c" ,&c) ;
}

}
fclose(fp);

COMPARE ESIM OUTPUTS WITH ACTUAL OUTPUTS ♦♦*/
fp=fopen(FILE2,"r");
if(fp!=NULL)
{

printf("Checking esim outputs ...\n");

81

}

k = 0 ;
for(j=0;j<y;j++)
{

SUM=0;
for(i=l;i<=7;i=i+2)
{

if(ARRAY[i][j] == 1)
SUM = SUM+power(2,i);

}
for(i=0;i<=8;i=i+2)
{

if (ARRAY [i] [j]==0)
SUM = SUM +power(2,i);

}
fscanf (fp,"*/.3d",&CNT) ;
if(SUM!=CNT)
{

ERR[k] =j ;
k+=l;

}
}
fclose(fp);
if(k>0)

printf("!H ERROR :: It is written on */,s\n", FILES) ;
fp=fopen(FILE3,"w");
for(i=0;i<k;i++)

fprintf(fp, "error found in column */,d\n" ,ERR[i]);
fclose(fp);

}
else

printf("!!! No errors found\n");
}
else

printf("\n:: File */,s not found\n\n",FILE2) ;
}
else
printf("\n:: File */,s not f ound\n\n" ,FILE1) ;

power(x,n) /* raise x to n-th power; n>0 */
int x,n;
{

int p;
for(p=l;n>0;— n)

p=p*x;
return(p);

}

82

